Algorithmica (2014) 69:216-231
DOI 10.1007/s00453-012-9731-6

Enumerating Minimal Subset Feedback Vertex Sets

Fedor V. Fomin - Pinar Heggernes -
Dieter Kratsch - Charis Papadopoulos -
Yngve Villanger

Received: 30 November 2011 / Accepted: 11 December 2012 / Published online: 15 December 2012
© Springer Science+Business Media New York 2012

Abstract The SUBSET FEEDBACK VERTEX SET problem takes as input a pair
(G, S), where G = (V, E) is a graph with weights on its vertices, and S C V. The
task is to find a set of vertices of total minimum weight to be removed from G, such
that in the remaining graph no cycle contains a vertex of S. We show that this problem
can be solved in time O (1.8638"), where n = |V|. This is a consequence of the main
result of this paper, namely that all minimal subset feedback vertex sets of a graph
can be enumerated in time O (1.8638").

Keywords Exact exponential algorithms - NP-hard problems - Subset feedback
vertex set

This work is supported by the Research Council of Norway. A preliminary version of this work was
presented at WADS 2011 [8].

F.V. Fomin - P. Heggernes - Y. Villanger
Department of Informatics, University of Bergen, Bergen, Norway

E.V. Fomin
e-mail: fedor.fomin @ii.uib.no

P. Heggernes
e-mail: pinar.heggernes @ii.uib.no

Y. Villanger
e-mail: yngve.villanger @ii.uib.no

D. Kratsch
LITA, Université Paul Verlaine, Metz, France
e-mail: kratsch@univ-metz.fr

C. Papadopoulos (<)

Department of Mathematics, University of Ioannina, Ioannina, Greece
e-mail: charis @cs.uoi.gr

@ Springer

mailto:fedor.fomin@ii.uib.no
mailto:pinar.heggernes@ii.uib.no
mailto:yngve.villanger@ii.uib.no
mailto:kratsch@univ-metz.fr
mailto:charis@cs.uoi.gr

Algorithmica (2014) 69:216-231 217

1 Introduction

Given a graph G = (V, E) and a set S C V, a subset feedback vertex set of (G, S)
is a set X € V such that no cycle in G[V \ X] contains a vertex of S. A subset
feedback vertex set is minimal if no proper subset of it is a subset feedback vertex
set. Given a weighted graph G with positive real weights on its vertices and S as
input, the SUBSET FEEDBACK VERTEX SET problem is the problem of finding a
subset feedback vertex set X of (G, S) such that the sum of weights of the vertices in
X is minimized.

SUBSET FEEDBACK VERTEX is a generalization of several well-known problems.
When S =V, it is equivalent to the classical NP-hard FEEDBACK VERTEX SET
problem [13]. When |S| = 1, it generalizes the MULTIWAY CUT problem. Given a set
T C V, called terminals, a multiway cut of (G, T) is a set of vertices whose removal
from G disconnects every pair of terminals. Given a graph G = (V, E), with weights
on its vertices, and 7 € V, the MULTIWAY CUT problem is the problem of computing
a multiway cut of total minimum weight. We will see in the last section that this is a
special case of SUBSET FEEDBACK VERTEX SET. The unweighted versions of the
three above mentioned problems are obtained when the weight of every vertex of the
input graph is 1. For further results on variants of MULTIWAY CUT see [1, 14], and
for connections between variants of SUBSET FEEDBACK VERTEX SET and variants
of MULTIWAY CUT see also [6].

SUBSET FEEDBACK VERTEX SET was first studied by Even et al. who obtained a
constant factor approximation algorithm [7]. In this paper we are interested in the ex-
act solution of SUBSET FEEDBACK VERTEX SET. This does not seem to have been
studied before, whereas there are a series of exact results on FEEDBACK VERTEX
SET. Razgon [17] gave the first non-trivial exact algorithm for unweighted FEED-
BACK VERTEX SET, which was later improved by Fomin et. al. [9, 12]. Currently,
a minimum feedback vertex set in an unweighted graph can be computed in time
O (1.7347™) [12]. Furthermore, all minimal feedback vertex sets can be enumerated
in 0(1.8638") time [9], which implies that a minimum weight feedback vertex set
can be computed in time O(1.8638"). So far, this is the best known algorithm for
FEEDBACK VERTEX SET. We would also like to remark that the unweighted version
of SUBSET FEEDBACK VERTEX SET was only recently shown to be fixed parameter
tractable [6], whereas the unweighted version of FEEDBACK VERTEX SET has long
been known to be fixed parameter tractable [2, 3, 5, 16, 20].

In this paper, we show that SUBSET FEEDBACK VERTEX SET can be solved in
time O(1.8638"). Prior to our result, no algorithm breaking the trivial 2”1 -time
barrier has been known, even for the unweighted version of the problem. As our
main result, we give an algorithm that enumerates all minimal subset feedback ver-
tex sets of (G, S) and runs in time O (1.8638"). Thus our running time matches the
best known algorithm for enumerating all minimal feedback vertex sets [9]. While
the general branching approach for enumerating the subset feedback vertex sets is
similar to the one enumerating the feedback vertex sets [9], we introduce and use
here new ideas that are needed for the subset variant of the problem. Our enumera-
tion algorithm can be trivially adapted to give an algorithm computing a minimum
weight subset feedback vertex set in time O (1.8638"). Furthermore, as we explain in

@ Springer

218 Algorithmica (2014) 69:216-231

Sect. 5, our algorithm can be used to enumerate all minimal multiway cuts within the
same running time. As a consequence, we are also able to solve MULTIWAY CUT in
time O(1.8638"). To our knowledge, this is the first non-trivial exact algorithm for
the solution of this latter problem, even for its unweighted version.

Before we present the principal results of the paper in Sects. 3 and 4, we show in
the next section that SUBSET FEEDBACK VERTEX SET is NP-hard when the input
graph G is restricted to be a split graph, even for the unweighted version of the
problem. As split graphs form a subclass of chordal graphs, this implies the hardness
of the problem also on chordal graphs. Hence we get an interesting contrast to the fact
that FEEDBACK VERTEX SET can be solved in polynomial time on chordal graphs
[4, 19].

2 Preliminaries

All graphs in this paper are undirected and with weights on their vertices. All graphs
are simple unless explicitly mentioned; in particular input graphs are always simple,
but during the course of our algorithm, multiple edges are introduced due to contrac-
tion of edges.

A graph is denoted by G = (V, E) with vertex set V and edge set E. We use the
convention that n = |V| and m = |E|. When a graph or subgraph G is mentioned
without specifying its vertex and edge sets, we use V(G) and E(G) to denote these
sets, respectively. Each vertex v € V has a weight that is a positive real number. For
a vertex set X C V the weight of X is the sum of the weights of all vertices in X,
and the subgraph of G induced by X is denoted by G[X]. The neighborhood of a
vertex v of G is N(v) ={x | {v,x} € E}. For X C V, N(X) = ,ex N(x) \ X. In
this paper, we distinguish between paths (cycles) and induced paths (induced cycles).
A path (cycle) of G is induced if there are no edges in G between non-consecutive
vertices of the path (cycle). An edge of G is called a bridge if its removal increases
the number of connected components. A forest is a graph that contains no cycles, and
a tree is a forest that is connected. The contraction of edge {u, v} removes u and v
from the graph, and replaces them with a new vertex that is incident with every edge
that was incident with u or v. If we say that edge {u, v} is contracted to u, then u
takes the role of the new vertex after the contraction. Note that multiple edges might
result from this operation.

Given a graph G and a vertex subset S of G, a subset feedback vertex set of (G, S)
is a vertex subset of G whose removal from G ensures that no cycle in the remaining
graph contains a vertex of S. Note that a minimum weight (or simply minimum) subset
feedback vertex set is dependent on the weights of the vertices, whereas a minimal
subset feedback vertex set is only dependent on the vertices and not their weights.
Clearly, both in the weighted and the unweighted versions, a minimum subset feed-
back vertex set must be minimal.

We conclude this section by providing an NP-hardness result for SUBSET FEED-
BACK VERTEX SET on split graphs. A graph G = (V, E) is a split graph if V can
be partitioned into a clique C and an independent set I, where (C, I) is called a split
partition of G. Split graphs form a subclass of the larger and widely known graph

@ Springer

Algorithmica (2014) 69:216-231 219

class of chordal graphs, which are the graphs that do not contain induced cycles of
length 4 or more as induced subgraphs. Interestingly, although FEEDBACK VERTEX
SET is solvable in polynomial time on chordal graphs [4, 19], a simple reduction
from VERTEX COVER shows that SUBSET FEEDBACK VERTEX SET is NP-hard on
chordal graphs, even on their subclass split graphs.

The decision version of unweighted SUBSET FEEDBACK VERTEX SET takes as
input a graph G = (V, E), aset S C V, and an integer k, and asks whether there is a
subset feedback vertex set of (G, S) of size at most k.

Theorem 2.1 The decision version of SUBSET FEEDBACK VERTEX SET is
NP-complete on unweighted split graphs.

Proof Given G = (V,E), S CV,and X C V, checking whether X is a subset feed-
back vertex set of (G, §) amounts to checking whether every edge incident to a vertex
of §\ X is a bridge in G[V \ X]. As this can easily be done in polynomial time, the
problem is in NP. We will give a polynomial-time reduction to it from the classical
NP-complete problem [15] VERTEX COVER: given a graph G = (V, E) and an in-
teger k, does G have a vertex cover of size at most k, i.e, is there a set ¥ C V with
|Y| <k, such that every edge in E has an endpoint in Y'?

Let (G, k) be an instance of VERTEX COVER, where G = (V, E) is an arbitrary
graph with n vertices and m edges. We construct a split graph H = (V’, E”) with split
partition (C, I) as follows. V' = C U contains n +m vertices: for each vertex u € V,
there is a vertex u’ € C, and for each edge {v, w} € E, there is a vertex uy, € 1. E’
is defined so that vertices in C are pairwise adjacent, and each vertex u,,, of I has
exactly two neighbors: vertices v" and w’ in C. Consequently, C is a clique and [is
an independent set.

We claim that G has a vertex cover of size at most k if and only if (H, I) has a
subset feedback vertex set of size at most k. Assume that Y C V is a vertex cover of
G of size at most k. In H, let Y/ C C such that u’ € Y’ if and only if u € Y. Now
Y’ is a subset feedback vertex set of (H, I), since every vertex of I has degree at
most 1in H[V'\ Y’] and therefore cannot be involved in any cycle. For the opposite
direction, let X’ be a subset feedback vertex set of (H, I) of size at most k. Suppose
X' contains a vertex u,,, of I. If X’ contains one of the two neighbors v’ or w’ of
Uyy then X’ is not minimal, and X’ \ {uy,} is also a subset feedback vertex set of
(H, I). If X’ does not contain v" or w’, then we can simply replace u,,, with v’ and
obtain another subset feedback vertex set of (H, I) of the same size. Hence we can
assume that X’ C C. Now, taking X C V such that u € X if and only if u’ € X’, we
can see that X is a vertex cover of G since X contains at least one endpoint of each
edgein G. 0

In the next two sections we present our principal results: a branching algorithm to
enumerate all minimal subset feedback vertex sets of a given graph, and the analysis
of its running time combining induction and Measure & Conquer.

@ Springer

220 Algorithmica (2014) 69:216-231

3 Enumerating All Minimal Subset Feedback Vertex Sets

Let G = (V, E) be an arbitrary graph and let S C V. In this section we give an
algorithm that enumerates all minimal subset feedback vertex sets of (G, S).

We define an S-forest of G to be a vertex set Y C V such that no cycle in G[Y]
contains a vertex of S. An S-forest Y is maximal if no proper superset of Y is an
S-forest. Observe that X is a minimal subset feedback vertex set if and only if
Y =V \ X is a maximal S-forest. Thus, the problem of enumerating all minimal
subset feedback vertex sets is equivalent to the problem of enumerating all maxi-
mal S-forests. Consequently, we present an algorithm for enumerating all maximal
S-forests of the input graph G.

Our algorithm is a branching algorithm consisting of a sequence of reduction and
branching rules. The running time of the algorithm is up to a polynomial factor pro-
portional to the number of generated subproblems, or to the number of nodes of the
branching tree. For more information on branching algorithms and Measure & Con-
quer analysis of such algorithms we refer to [11].

In our algorithm each subproblem corresponding to a leaf of the branching tree
will define an S-forest, and every maximal S-forest will be defined by one leaf of the
branching tree. Each of the reduction and branching rules will reduce the problem
instance by making progress towards some S-forest.

To incorporate all information needed in the algorithm we use so-called red-blue
S-forests. Given a set B C V of blue vertices with BN S =0 and a set R C V of
red vertices with R C S, a maximal red-blue S-forest of G is a maximal S-forest
Y of G such that RU B C Y. If the set R U B of vertices has the property that no
two red vertices, or no two blue vertices, are adjacent, then we say that the red-blue
coloring of these vertices is a proper 2-coloring. Let RBF(G, S, R, B) be the set of
all maximal red-blue S-forests in G. Hence a maximal S-forest Y is an element of
RBF(G, S, R, B) if RU B C Y. Observe that the problem of enumerating all max-
imal S-forests of G is equivalent to enumerating all elements of RBF(G, S, 4, ?).
We refer to the vertices of V \ (R U B) as non-colored. Before proceeding with the
description of the algorithm, we need the following observations concerning the set
RBF (G, S, R, B).

Observation 3.1 Let Y = R U B be an S-forest of G that is an element of
RBF(G, S, R, B). Let G' be the graph obtained from G[Y] by contracting every edge
whose endpoints have the same color, giving the resulting vertex that same color, and
removing self loops and multiple edges. Then G’ is a forest. Moreover, red and blue
vertices form a proper 2-coloring of G'.

Proof Since Y is an S-forest in G and Y = R U B, we have that any cycle in G[Y]
contains only blue vertices. Thus, each cycle is contracted to a blue vertex in G'.
Since no cycles remain in G’, G’ is a forest. If there is an edge between two vertices
of the same color, then this edge would have been contracted, and thus the red-blue
coloring of G’ is a proper 2-coloring. O

@ Springer

Algorithmica (2014) 69:216-231 221

Let Y be an S-forest of G and let u € V \ Y. If G[Y U {u}] contains an induced
cycle C, that contains u and some vertex of S, then we say that C,, is a witness cycle
of u.

Observation 3.2 Let Y be a maximal S-forest of G. Then every vertexu € V \'Y has
a witness cycle C,.

Proof Let Y be a maximal S-forest, and thus G[Y U {u}] has a cycle C containing
u and some vertex v € S. Note that ¥ and v might be the same vertex. Since C
contains v, we have that v has at least two neighbors, x and y that belong to C. Let
P be a shortest x, y-path in G[V (C) \ {v}]. Then G[V (P) U {v}] contains an induced
cycle C’. This cycle contains v since P is a shortest x, y-path. It also contains u since
no such cycle exists in G[Y]. Thus C' = C,, is a witness cycle. O

We are ready to proceed with the description of the enumeration algorithm, which
is given by a sequence of reduction and branching rules. We always assume that the
rules are performed in the order in which they are given (numbered), such that a rule
is only applied if none of the previous rules can be applied.

Initially all vertices of G are non-colored. Vertices that are colored red or blue
have already been decided to be in every maximal S-forest that is an element of
RBF(G, S, R, B). For a non-colored vertex v, we branch on two subproblems, and
the cardinality of RBF (G, S, R, B) is the sum of cardinalities of the sets of maximal
S-forests that contain v and those that do not. The first set is represented by coloring
vertex v red or blue, and second set is obtained by deleting v. This partitioning defines
a naive branching, where a leaf is reached when there is at most one maximal S-forest
in the set. We define the following two procedures, which take as input vertex v and
RBF(G, S, R, B).

Coloring of vertex v:
if v e S then proceed with RBF (G, S, RU {v}, B);
if v ¢S then proceed with RBF (G, S, R, B U {v}).
Deletion of vertex v:
proceed with RBF(G[V \ {v}], S\ {v}, R, B).

After the description of each of the Rules 1-12, we argue that the rule is
sound, which means that there is a one-to-one correspondence between the maxi-
mal S-forests in the problem instance and the maximal S-forests in the instances of
the subproblem(s). We start to apply the rules on instance RBF(G, S, 9,).

Rule 1 If G has a vertex of degree at most 1 then remove this vertex from the graph.

Rule 1 is sound because a vertex of degree zero or one does not belong to any
cycle. Furthermore, when a vertex of degree zero or one is removed, every vertex that
previously belonged to a cycle still belongs to a cycle and maintains degree at least
two.

Note that removal of vertex v means v belongs to every element of RBF(G, S,
R, B). We emphasize that there is a crucial difference to Deletion of vertex v which

@ Springer

222 Algorithmica (2014) 69:216-231

means that the non-colored vertex v belongs to no element of RBF(G, S, R, B). Such
a removal of a vertex belonging to every element of RBF(G, S, R, B) is done in
Rules 1, 4 and 5 and it necessitates the backtracking part of our algorithm to be
explained later.

Rule 2 If R =}, and S # @ then select an arbitrary non-colored vertex v € S, and
branch into two subproblems. One subproblem is obtained by applying Deletion of v
and the other by Coloring of v.

Rule 2 is sound for the following reason. Only vertices of S are colored red. Thus
if R =, all vertices of S are non-colored vertices. For every maximal S-forest Y,
we have that either v € Y (corresponding to Coloring of v), or v € Y (corresponding
to Deletion of v).

After the application of Rule 2 there always exists a red vertex, unless S = ¢ when
we reached a leaf of the branching tree. For many of the following rules we need to
fix a particular vertex ¢ of the S-forest R U B. We call it pivot vertex t. If no pivot
vertex exists (at some step a pivot vertex might be deleted), we apply the following
rule to select a new one.

Rule 3 If there is no pivot vertex then select a red vertex as new pivot vertex .

The following reduction rule is to ensure (by making use of Observation 3.1) that
the graph G[R U B] induces a forest and that the current red-blue coloring is a proper
2-coloring of this forest.

Rule 4 If there are two adjacent red vertices u, v, then contract edge {u, v} to u to
obtain a new graph G’. Let Z be the set of non-colored vertices that are adjacent to u
via multiple edges in G'. If v was the pivot then use u as new pivot 7. Proceed with
problem instance RBF(G'\ Z, S\ ({v}U Z), R\ {v}, B).

Observe that Rule 4 corresponds to applying Deletion of w for every vertex w
of Z. Let us argue why this rule is sound. If a vertex w belongs to Z, then because
u,v € S, we have that w cannot be in any S-forest of G. Thus applying Deletion of
this vertex does not change the set of maximal S-forests. Finally, every induced cycle
of length more than 3 in G corresponds to a cycle of length at least 3 in the reduced
instance.

Rule 5 If there are two adjacent blue vertices u, v, then contract edge {u, v} to u to
obtain a new graph G’. Let Z be the set of non-colored vertices of S that are adjacent
to u via multiple edges in G’. New problem instance is RBF(G'\ Z, S\ Z, R, B\ {v}).

Observe that Rule 5 corresponds to applying Deletion of w for every vertex w
of Z. No vertex of Z can be in an S-forest containing u and v. Thus applying Deletion
of the vertices of Z is sound. As with the previous rule, every induced cycle of length
more than 3 in G corresponds to a cycle of length at least 3 in the reduced instance.
We conclude that Rule 5 is sound.

@ Springer

Algorithmica (2014) 69:216-231 223

Fig.1 LetSN{a,b,c,

d,v} =0 andset P(v) =
{a,b,c,d}. Vertex a € PW(v)
by (P2), d € PW(v) by (P3).
Vertices b and ¢ do not belong
to PW(v)

Rule 6 If a non-colored vertex v has at least two distinct neighbors wy, w» in the
same connected component of G[R U B], then apply Deletion of v.

Let us first argue that if none of Rules 1-6 can be applied to the current instance
then R U B induces a properly 2-colored forest. If there were a cycle in G[R U B]
then the last non-colored vertex of the cycle would have two colored neighbors in the
same connected component of G[R U B] which is impossible by Rule 6. Moreover
Rules 4 and 5 ensure that the red-blue coloring is a proper 2-coloring of this forest.
In the following we will call such a forest (tree) a red-blue forest (tree). Observe that
any colored path is a red-blue path.

For the soundness of Rule 6 note that the connected component of G[R U B] that
contains w; and w is a red-blue tree 7. Let wy,uy,...,up = wp, p > 1, be the
unique induced path in T between w; and w,. Then either w; or u is a red vertex,
and thus belongs to S. Hence no element of RBF(G, S, R, B) contains v. This shows
that Rule 6 is sound.

Let 7; be the vertices of the connected component of G[R U B] containing the
pivot vertex ¢. Consider a non-colored vertex v adjacent to a vertex of the red-blue
tree G[T;]. Observe that v has exactly one neighbor w in T;, by Rule 6. By Observa-
tion 3.2, every vertex u, which is not in a maximal S-forest Y, should have a witness
cycle C, such that all vertices of C, except u are in Y. Hence every vertex u ¢ Y
has at least two neighbors in Y. Since we cannot apply Rule 6 on the vertex v, this
implies that if v is not in Y, at least one of the vertices from N(v) \ T; isin Y.

For a non-colored vertex v adjacent to a vertex of T;, we define vertex set P (v)
to be the set of non-colored vertices adjacent to v or reachable from v via induced
red-blue paths in G[V \ T;]. Let w be the unique neighbor of v in 7;. We define vertex
set PW(v) to be the subset of P (v) consisting of every vertex x of P (v) for which at
least one of the following conditions holds:

Pl {w,v,x}NS #09,

P2 x & N(w), or

P3 there exists an induced red-blue path from x to v in G[V \ T;] containing at least
one red vertex.

See Fig. 1 for an example of sets P(v) and PW(v). The intuition behind the def-
inition of PW(v) is the following. If a vertex v does not belong to any maximal
S-forest Y of G, then there is a witness cycle C,. This cycle C,, may pass through
some connected components of G[R U B] and some non-colored vertices. If we tra-
verse C, starting from v and avoiding T3, then the first non-colored vertex we meet

@ Springer

224 Algorithmica (2014) 69:216-231

will be a vertex of PW(v). Note that the vertex set PW(v) can easily be computed in
polynomial time.

Observation 3.3 For every vertex x € PW(v) N N(T;), there is an induced cycle
containing x and v and at least one vertex of S. Furthermore this is a cycle in the
subgraph of G induced by the union of T; U {v, x} and the vertex set of a red-blue
path from v to x, and thus it contains only two non-colored vertices, namely x and v.

Proof The fact that x and v have neighbors in T}, implies that the subgraph of G
induced by the union of 7; U {v, x} and the vertex set of a red-blue path from v to x,
contains an induced cycle C. This cycle C contains v and the neighbor w of v in
T;. By Rule 6, if there is an induced cycle containing non-colored vertex v and a
vertex of S, then this cycle should contain another non-colored vertex. In the induced
subgraph the only non-colored vertex except v is x, and thus C contains x as well.
Because x € PW(v), at least one the properties P1-P3 should hold. If one of the
vertices w, v, x is in §, we are done. If x € N(w), then C contains more than one
vertex from 7}, and thus at least one red vertex from S. The only remaining case is
{fv,w,x}NS =0, x € N(w), and there is a red-blue path P from v to x in G[V \ T;]
containing a red vertex. But every red vertex is in S. |

Observation 3.4 Let v be a non-colored vertex adjacent to a vertex of T;. If there is
an induced cycle C in G that contains v and some vertex of S, then C contains also
at least one vertex of P (v).

Proof First note that C does not have to pass through the vertices of 7;. By Rule 6,
C contains at least one non-colored vertex besides v. The vertex v has two neighbors
in C, let x be a neighbor of v on C not equal to w, the neighborof vin 7;. If x € P (v),
we are done. If x is a red or blue vertex then x belongs to some red-blue tree T of
G[BURY]. Cycle C has to leave T at some point, and thus to enter a vertex of P (v).]

Lemma 3.5 A witness cycle C, of a vertex v contains a vertex of PW(v).

Proof Letus assume that v is not contained in a maximal S-forest Y, and let C,, be a
witness cycle for v. By Observation 3.4, C, contains at least one vertex x of P(v).

If x € PW(v), we are done with the proof. Otherwise, let x € P(v) \ PW(v). As a
consequence, {v, w,x} NS =0, x is adjacent to w, and every induced red-blue path
from v to x in G[V \ T;] contains only blue vertices.

We will first show that C,, contains a vertex x” # x such that x’ € P(v) \ PW(v).
Let us trace the induced cycle C,, starting from v on the path to x using only blue
vertices. By definition, no vertex on the path from v to x is contained in S. Obser-
vation 3.2 and the definition of witness cycle imply that C,, contains a vertex of S.
Continue now in the same direction along C,, until a vertex of § is reached. The cycle
has to return to v without passing through the vertex w; otherwise the edge {v, w}
would be a chord of C, contradicting the fact that C, is an induced cycle. The path
along the cycle C,, from x to v containing a vertex of S cannot be a red-blue path as
this contradicts the definition of x. As a consequence, C, contains a second vertex x’
of P(v) \ PW(v).

@ Springer

Algorithmica (2014) 69:216-231 225

Let Y be a maximal S-forest. Since w is colored blue, Y contains w. Further we
have Cy \ Y = {v} due to the maximality of Y. Denote by P the path from x to x’
on C, not containing v. Now we have a contradiction since the graph G[P U {w}]
contains the edges {x, w} and {x’, w} and induces a cycle containing a vertex of S. [J

The following rules depend on the cardinality of the set PW (v).
Rule 7 If PW(v) = @ then apply Coloring of v.

Rule 8 If PW(v) = {x} then branch into two subproblem instances: one obtained by
applying Deletion of v and then Coloring of x, and the other obtained by applying
Coloring of v.

Rules 7 and 8 are sound due to Lemma 3.5.

Rule 9 If |PW(v)| > 2 and PW(v) € N(T;) then branch into two subproblem in-
stances: one obtained by applying Coloring of v and then Deletion of x for all vertices
x € PW(v), and the other obtained by Deletion of v.

To see that Rule 9 is sound, observe that vertex v is either colored, or deleted. By
Observation 3.3, for each vertex x € PW(v) N N (T;) the subgraph of G induced by x,
v, T; and the vertex set of a red-blue path from x to v contains a cycle with a vertex
of S and x and v as its only non-colored vertices. Thus either x or v has to be deleted,
for every x € PW(v) N N(T;). When Rule 9 can not be applied, at least one of the
vertices in PW(v) is not contained in N (T3).

Rule 10 If PW(v) = {x1,x2} and x| € N(T;) then branch into three subproblem
instances. The first one is obtained by applying Coloring of v. The second by Deletion
of v and then Coloring of x1. The third one by applying Deletion of v and x| and then
Coloring of x.

Let us remark that vertex v is either colored or deleted. If v is deleted then by

Lemma 3.5, either x; or x; is contained in the witness cycle C,. This shows that
Rule 10 is sound.
Rule 11 If PW(v) = {x1, x2, x3} and x; € N (T;) then branch into four subproblem
instances. The first instance is obtained by applying Coloring of v. The second by
Deletion of v and then Coloring of x1. The third by Deletion of v and x; and then
Coloring of x;. The fourth by Deletion of v, x1, xo and Coloring of x3.

Again, the soundness of this rule follows by Lemma 3.5.

Rule 12 If [PW(v)| > 4 then create two problem instances: one obtained by applying
Coloring of v, and the other obtained by applying Deletion of v.

This rule is sound because v is either colored or deleted.

@ Springer

226 Algorithmica (2014) 69:216-231

We call an instance non-reducible if none of Rules 1-12 can be applied to it. Such
an instance corresponds to a leaf of the branching tree of our algorithm. The following
property of non-reducible instances of the red-blue S-forest problem is crucial for our
arguments.

Lemma 3.6 Let (G, S, B, R) be an instance. If none of the Rules 1-12 can be applied
then RBF (G, S, R, B) contains at most one maximal red-blue S-forest. Moreover, this
forest can be computed in polynomial time.

Proof If S = () then trivially the only maximal S-forest of G is V. Let us assume that
S # (). With every rule we either remove a vertex, select a pivot vertex, color a vertex,
delete a vertex, or contract an edge. Rule 2 guarantees that the set of red vertices is
not empty. Rule 3 ensures that a pivot vertex ¢ is selected. Rules 1, 2 and 4-12 can be
applied as long as there are non-colored neighbors of red-blue tree 7;. When the set
N (T;) becomes empty then T; is completely removed by Rule 1. Then the algorithm
selects a new pivot vertex ¢ and component 7; by making use of Rule 3. Thus the
conditions that none of the rules can be applied and S # , yield that V = RU B. But
then the only possible maximal S-forest ¥ of RBF(G, S, R, B) is Y = R U B which
can easily be computed in polynomial time. U

Let us note that a non-reducible instance does not necessarily correspond to a max-
imal red-blue S-forest. This is mainly due to Rules 10 and 11 in which we delete set
of vertices in one branch. Such a deletion does not necessarily preserve maximal-
ity. As a simple example consider the graph G[{w, v, x1, x2}] that induces a clique
without the edge {w, x1} and w colored red. The application of Rule 10 results in a
branch after the deletion of both v and x; that contains a red-blue S-forest which is
not maximal.

We are finally in the position to describe the algorithm. The algorithm enumerates
all elements of RBF(G, S, ¥, ¥) by applying Rules 1-12 in priority of their numbering
as long as possible. Let F be the set of all non-reducible instances produced by the
application of the rules. These are the instances corresponding to the leaves of the
branching tree. By Lemma 3.6, for each non-reducible instance of JF there is at most
one red-blue S-forest which can be computed in polynomial time. To enumerate all
maximal S-forests of the input graph, we have to add to each S-forest of an instance
of F all vertices which were possibly removed by applications of some of the rules
on the unique path from the root of the branching tree to the corresponding leaf. This
can be done in polynomial time by backtracking in the branching tree.

The correctness of the algorithm follows by Lemma 3.6 and the fact that each rule
is sound. Thus each maximal S-forest of the input graph can be mapped to a private
element of F. In the next section we analyze the running time.

4 Running Time Analysis of the Enumeration Algorithm

With every rule we either remove a vertex, select a pivot vertex, color a vertex, delete
a vertex, or contract an edge. Thus the height of the branching tree is O(|V| + | E]).

@ Springer

Algorithmica (2014) 69:216-231 227

Hence, for every non-reducible instance, the backtracking part of the algorithm pro-
ducing the corresponding maximal S-forest in G can be performed in polynomial
time. Therefore, the running time of the algorithm, up to a polynomial multiplicative
factor, is proportional to the number of non-reducible instances produced by reduc-
tion and branching rules.

In what follows, we upper bound the number of maximal S-forests of the input
graph enumerated by the algorithm, or equivalently, the number of leaves in the cor-
responding branching tree. Rules 1, 3, 4, 5, 6, and 7 are reduction rules and generate
only one problem instance. Thus they do not increase the number of leaves in the
branching tree. Therefore we may restrict ourselves to the analyses of the branching
Rules 2, 8,9, 10, 11, and 12.

Our proof combines induction with Measure & Conquer [10]. Let us first define
a measure for any problem instance generated by the algorithm. All colored ver-
tices have weight 0, non-colored vertices contained in N(7;) have weight 1, and
non-colored vertices not contained in N (7;) have weight 1 4+ «. A problem instance
RBF(G, S, R, B) will be defined to have weight |N(T;)| + (1 +)|V \ (RU B U
N (T;))|. Define f(u) to be the maximum number of leaves in the branching tree for
any instance RBF (G, S, R, B) of weight where u > 0 is a real number.

The induction hypothesis is that (1) < x* for x = 1.49468. Note that the number
of possible measures of problem instances is finite, and thus induction is over a finite
set.

For the base case, let © = 0. Since no vertex has weight greater than 0, we have
that all vertices are colored, and thus V is the unique maximal S-forest, implying
£(0) = 1. By the induction hypothesis we assume that f(k) < x* for k < p, and
we want to prove that f(u) < x*. We prove this by showing that each rule re-
duces a problem instance of weight u to one or more problem instances of weight
W1, iy Where p; < o such that f(u) < 37y f(ui) < xH if f(u;) < x™i for
1 <i < r. Before proceeding to the detailed analysis, we mention that the in-
stance RBF(G, S, 4,) has weight n(1 4+ «), and the result will thus imply that
F(n(1+a)) < 1.49468"1+®) < 1.8638" for o = 0.5491.

Rule 2. Since R is empty, pivot vertex ¢ is undefined, and N (7;) is defined to be the
empty set. As a consequence all non-colored vertices have weight 1 + «. In both new
instances the weight of v is reduced from 1 + « to zero. In the case when v is colored
(Rule 3), we use v as vertex ¢, and due to the minimum degree 2 property by Rule 1,
there are at least two neighbors with weights reduced by «. The two subproblem
instances are Deletion of v:] < u — 1 —« and Coloring of v: u» < pu — 1 —3a,
and we get that

f) < fu—1—a)+ f(u—1—3a) <xt717o 4 xp-1730 < yn,

Rule 8. In both cases the weight of the vertex v is reduced from 1 to zero. If x is
contained in N (7;) then it has weight 1, otherwise x has weight 1 4+ «. Consider first
the case x € N(T;). Since x € PW(v), we have by Observation 3.3 that the subgraph
of G induced by x, v, T; and the vertex set of a red-blue path from x to v contains a
cycle with a vertex of § and x and v as its only non-colored vertices. Hence either v
or x has to be deleted. If v is colored, then x is deleted by Rule 6 in order to break the

@ Springer

228 Algorithmica (2014) 69:216-231

abovementioned cycle, and if v is deleted, then x is colored since it has to be in the
witness cycle. We have for Deletion of v and Coloring of x: 11 < u — 2; for Deletion
of x and Coloring of v: ur < u — 2. Thus

FUO < f(u—2)+ f(u—2) <xP 24 xh2<xh

If x € N(T;), then the weight of x is 1 + «, and we have for Deletion of v and
Coloring of x: u1 < u —2 — «a; for Coloring of v: u» < u — 1 — o, resulting in

F) < fr—2—a)+ f(u—1—a) <xh 2% 17 <y,

Rule 9. All vertices in PW(v) have weight 1. Thus we have for Coloring of v and
Deletion of PW(v): u1 < u — 1 — |PW(v)|; for Deletion of v: o < u — 1. Since
|PW(v)| > 2, we have that

FO < f=3)+ fu—1) <xM3 4 xr71 <y,

Rule 10. The vertex v has weight 1, x; has weight 1 + «, and x> has weight 1 or
1 + «. Consider first the case where x; has weight 1, meaning that x, € N(7;). If v
is colored, then x; is deleted by Rule 6 and Observation 3.3. We have for Coloring of
v: w1 < u — 2 —«a; Deletion of v and Coloring of x1: 2 < u — 2 — «; and Deletion
of v, x1 and Coloring of x2: u3 < u —3 — «. Thus

FGUO<2f(—2—a)+ f(u—3—a) <2xH 727 x 737 <y,

If xo &€ N(T}), then it has weight 1 + «. We have for Coloring of v: u1 < pu —1-2a;
Deletion of v and Coloring of x1: ny < u—2 —«a; and Deletion of v, x| and Coloring
of xp: 3 < u — 3 — 2a. Therefore,

SW=fu—-1-20)+f(p—2—a)+ f(p—3—2a)
< xy,fleoz +xu727ot +xu7372a SXM-
Rule 11.Leti be the number of vertices in PW (v) \ N (T;) and assume that x; ¢ N (1)
for j <i.The case i =0 is covered by Rule 9. For i = 1, 2, we have for Coloring of
v:) <u—4+1i—ia; Deletion of v and Coloring of x1: uy < u — 2 — «; Deletion
of v, x1 and Coloring of x3: u3 < u —3 —iw; and Deletion of v, x1, x2 and Coloring
of x3: g < —4 —ic. In total
S =fu—-4+i—io)+ f(u-2-)+ f(u—-3—ie)+ f(n—4—ia)
< xu—4+i—ia +xu—2—a +x,u—3—ioc _|_xu.—4—iot < xM.
For i = 3, we have for Coloring of v: u; < u—1—23a, for Deletion of v and Coloring
of x1: w2 < u —2 — «, Deletion of v, x; and Coloring of x3: 3 < u —3 — 2«, and
Deletion of v, x1, xo and Coloring of x3: 4 < u —4 — 3, and we get that
W =fu-1=-30)+ f(p—2—a)+ f(L—3—2a)+ f(u—4—3a)

< xu.—l—3ot +xu—2—a +xu—3—2a +xu—4—3a qu.

@ Springer

Algorithmica (2014) 69:216-231 229

Rule 12. Let i be the number of vertices in PW (v) \ N (T;) and assume that x; ¢ N (1)
for j <i.The case where i = 0 is covered by Rule 9. For i > 1, we have for Coloring
of v:i u; <pu— 1+ |PW()|) +i — io; and for Deletion of v: ur < pu — 1. Since
|PW(v)| > 4, we notice that the value is minimum when i =4 and we get

F) < fu—1—4da) + f(u—1) < x4 ximl <yt

We conclude the analysis of the running time of the algorithm with the following
theorem, which is the main result of this paper.

Theorem 4.1 Let G be a graph and let S be a set of vertices in G. The maximum
number of maximal S-forests of G is at most 1.8638". All minimal subset feedback
vertex sets of (G, S) can be enumerated in time O(1.8638™).

Proof Correctness and completeness follows from the arguments above. The num-
ber of leaves in the branching tree is at most x(!17¥7» () and 1.49468! 403491 <
1.8638. g

It is worth mentioning that the running time of our algorithm enumerating all
minimal subset feedback vertex sets is the same as the running time of the algorithm
enumerating all minimal feedback vertex sets given in [9].

5 Conclusion

We start this section with two direct consequences of Theorem 4.1, before we give
a few remarks and open questions on the number of minimal subset feedback vertex
sets. Since we can check whether a given set X is a subset feedback vertex set of
(G, S) and determine its total weight in polynomial time, the following result is an
immediate consequence of Theorem 4.1.

Corollary 5.1 SUBSET FEEDBACK VERTEX SET can be solved in time O(1.8638").

In the introductory section, we mentioned that MULTIWAY CUT is a special case
of SUBSET FEEDBACK VERTEX SET. This is explained in the proof of the following
result, which thus follows from Theorem 4.1 and the above corollary.

Corollary 5.2 Let G be a graph and let T be a set of vertices (terminals) in G.
All minimal multiway cuts of (G, T) can be enumerated in time O (1.8638"), and
MULTIWAY CUT can be solved in time O(1.8638™).

Proof Let (G, T) be an instance of MULTIWAY CUT. We construct a new graph G’
by adding to G a new vertex s whose weight is larger than the sum of the weights
of all vertices in G, and by making s adjacent to all terminals in 7. Any cycle of
G’ containing s corresponds to a path in G connecting two terminals of 7. Thus a
vertex subset is a minimum weight subset feedback set of (G’, {s}) if and only if it is
a minimum weight multiway cut of (G, T). Il

@ Springer

230 Algorithmica (2014) 69:216-231

We would like to remark that the number of minimal feedback vertex sets in a
graph can be exponentially larger or smaller than the number of minimal subset feed-
back vertex sets. For example, the graph consisting of /3 disjoint triangles, has 3"/3
minimal feedback vertex sets (every triangle contains exactly one vertex from every
such a set), whereas if S = {J, the only minimal subset feedback vertex set is). The
example of a graph with polynomial number of minimal feedback vertex sets and ex-
ponential number of minimal subset feedback vertex sets is the following split graph
G on n = 6k vertices. Graph G has a clique C of size 3k and an independent set I of
size 3k. The vertices of C and [/ are partitioned into k triples; clique triples (a;, b;, ¢;)
and independent set triples (x;, yi, zi), 1 <i <k. For each i, we add edges between
vertices of clique and independent set triples as follows: x; is adjacent to a;, b;; y;
to b;,c;; and z; to a;, c;. We let S = I. Every minimal subset feedback vertex set
contains exactly 2 vertices from each clique triple, so there are 3 possible options for
each triple, and the total number of such sets is 3%, On the other hand, every mini-
mal feedback vertex set should contain at least 3k — 2 vertices from C, and thus the
number of such sets is O(k2).

We close with a couple of open questions. Fomin et al. [9] show that there are
graphs with 1.5926" minimal feedback vertex sets. However, no graph with 1.5927"
or more minimal feedback vertex sets is known. Are there graphs having 1.5927" or
more minimal feedback vertex sets or minimal subset feedback vertex sets? Can it be
that our enumeration algorithm overestimates the maximum number of minimal sub-
set feedback vertex sets, and that this number is significantly smaller than 1.8638",
say O(1.6™)? It is known that all minimal feedback vertex sets of a graph can be
enumerated by an output-sensitive algorithm of polynomial delay [18]. Are there
output-sensitive algorithms enumerating all subset feedback vertex sets of output-
polynomial running time or even of polynomial delay? As mentioned, our enumer-
ation algorithm can be used to solve SUBSET FEEDBACK VERTEX SET in time
0(1.8638"). It would be interesting to know whether a better running time can be
obtained for unweighted SUBSET FEEDBACK VERTEX SET.

Acknowledgements The authors would like to thank the anonymous referees whose valuable sugges-
tions helped improve the presentation of the paper.

References

1. Calinescu, G.: Multiway cut. In: Encyclopedia of Algorithms, vol. 12, pp. 1-99. Springer, Berlin
(2008)

2. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Proceedings of
SWAT 2010. LNCS, vol. 6139, pp. 93—104. Springer, Berlin (2010)

3. Chen, J., Fomin, FV,, Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set
problems. J. Comput. Syst. Sci. 74(7), 1188-1198 (2008)

4. Corneil, D.G., Fonlupt, J.: The complexity of generalized clique covering. Discrete Appl. Math. 22(2),
109-118 (1989)

5. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solv-
ing connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of
FOCS 2011, pp. 150-159. IEEE Press, New York (2011)

6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed pa-
rameter tractable. In: Proceedings of ICALP 2011. LNCS, vol. 6755, pp. 449-461. Springer, Berlin
(2011)

@ Springer

Algorithmica (2014) 69:216-231 231

10.

11.

12.

13.

14.

15.

18.

19.

20.

. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback vertex set prob-

lem. SIAM J. Comput. 30(4), 1231-1252 (2000)

. Fomin, E.V.,, Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumerating minimal subset

feedback vertex sets. In: Proceedings of WADS 2011. LNCS, vol. 6844, pp. 399-410. Springer, Berlin
(2011)

. Fomin, EV,, Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem:

exact and enumeration algorithms. Algorithmica 52(2), 293-307 (2008)

Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact
algorithms. J. ACM 56(5), 25 (2009)

Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science.
Springer, Berlin (2010)

Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Proceedings
of STACS 2010, vol. 5, pp. 383-394. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Leibniz
(2010)

Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1978)

Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs. J. Algorithms 50(1),
49-61 (2004)

Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations,
pp. 85-103 (1972)

. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for finding

feedback vertex sets. ACM Trans. Algorithms 2(3), 403—415 (2006)

. Razgon, I.: Exact computation of maximum induced forest. In: Proceedings of SWAT 2006. LNCS,

vol. 4059, pp. 160-171. Springer, Berlin (2006)

Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems.
Discrete Appl. Math. 117, 253-265 (2002)

Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monograph Series, vol. 19. AMS, Prov-
idence (2003)

Thomassé, S.: A k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 32 (2010)

@ Springer

	Enumerating Minimal Subset Feedback Vertex Sets
	Abstract
	Introduction
	Preliminaries
	Enumerating All Minimal Subset Feedback Vertex Sets
	Running Time Analysis of the Enumeration Algorithm
	Conclusion
	Acknowledgements
	References

