
Journal of Computer and System Sciences 80 (2014) 468–495
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Preprocessing subgraph and minor problems: When does
a small vertex cover help? ✩,✩✩

Fedor V. Fomin, Bart M.P. Jansen ∗, Michał Pilipczuk

Department of Informatics, University of Bergen, PO Box 7803, N-5020, Bergen, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 November 2012
Received in revised form 30 August 2013
Accepted 23 September 2013
Available online 30 September 2013

Keywords:
Kernelization complexity
Parameterization by vertex cover

We prove a number of results around kernelization of problems parameterized by the
size of a given vertex cover of the input graph. We provide three sets of simple
general conditions characterizing problems admitting kernels of polynomial size. Our
characterizations not only give generic explanations for the existence of many known
polynomial kernels for problems like q-Coloring, Odd Cycle Transversal, Chordal

Deletion, η-Transversal, or Long Path, parameterized by the size of a vertex cover, but
also imply new polynomial kernels for problems like F-Minor-Free Deletion, which is to
delete at most k vertices to obtain a graph with no minor from a fixed finite set F . While
our characterization captures many interesting problems, the kernelization complexity
landscape of parameterizations by vertex cover is much more involved. We demonstrate
this by several results about induced subgraph and minor containment testing.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Kernelization is an attempt at providing rigorous mathematical analysis of preprocessing algorithms. While the initial
interest in kernelization was driven mainly by practical applications, it turns out that kernelization provides a deep insight
into the nature of fixed-parameter tractability. In the last few years, kernelization has transformed into one of the major
research domains of parameterized complexity and many important advances in the area are on kernelization. These ad-
vances include general algorithmic findings on problems admitting kernels of polynomial size [1,7,27,38] and frameworks
for ruling out polynomial kernels under certain complexity-theoretic assumptions [6,8,20,28].

A recent trend in the development of parameterized complexity, and more generally, multivariate analysis [41], is the
study of the contribution of various structural measurements (i.e., different than just the total input size or expected solu-
tion size) to problem complexity. Not surprisingly, the development of kernelization followed this trend, resulting in various
kernelization algorithms and complexity lower bounds for different kinds of parameterizations. In parameterized graph al-
gorithms, one of the most important and relevant complexity measures of a graph is its treewidth. The algorithmic properties
of problems parameterized by treewidth are, by now, well-understood [12]. However, from the perspective of kernelization,
this complexity measure is too general to obtain positive results: it is known that a multitude of graph problems such as
Vertex Cover, Dominating Set, and 3-Coloring, do not admit polynomial kernels parameterized by the treewidth of the

✩ This work was supported by the Netherlands Organization for Scientific Research (NWO), project “KERNELS: Combinatorial Analysis of Data Reduction”,
and by the European Research Council (ERC) grant “Rigorous Theory of Preprocessing”, reference 267959.
✩✩ An extended abstract of this work appeared at the 7th International Symposium on Parameterized and Exact Computation (IPEC 2012). The present
paper contains the full proofs, together with three new theorems (Theorems 4, 10, and 12).

* Corresponding author. Tel.: +47 55 58 40 24; fax: +47 55 58 41 99.
E-mail addresses: fomin@ii.uib.no (F.V. Fomin), bart.jansen@ii.uib.no (B.M.P. Jansen), michal.pilipczuk@ii.uib.no (M. Pilipczuk).
0022-0000/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcss.2013.09.004

http://dx.doi.org/10.1016/j.jcss.2013.09.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:fomin@ii.uib.no
mailto:bart.jansen@ii.uib.no
mailto:michal.pilipczuk@ii.uib.no
http://dx.doi.org/10.1016/j.jcss.2013.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2013.09.004&domain=pdf

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 469
input graphs unless NP ⊆ coNP/poly [6]. This is why parameterization by more restrictive complexity measures, like the
minimum size of a feedback vertex set or of a vertex cover, is much more fruitful for kernelization.

In particular, kernelization of graph problems parameterized by the vertex cover number, which is the size of the smallest
vertex set meeting all edges, was studied intensively [8,9,18,19,22,36]. For example, it has been shown that several graph
problems such as Treewidth [9], η-Transversal [19], and 3-Coloring [36], admit polynomial kernels parameterized by the
size of a given vertex cover. On the other hand, under certain complexity-theoretic assumptions it is possible to show that
a number of problems including Dominating Set [22], Clique [8], Chromatic Number [8], Cutwidth [18], and Weighted

Vertex Cover [35], do not admit polynomial kernels for this parameter. As the vertex cover number is one of the largest
structural graph parameters, being at least as large as treewidth and the feedback vertex number, a superpolynomial kernel
lower bound for a parameterization by vertex cover immediately rules out the possibility of obtaining polynomial kernels
for these smaller parameters (cf. [25]). Understanding the kernelization complexity for parameterizations by vertex cover
forms the first step towards more complex parameterizations. While different kernelization algorithms for various problems
parameterized by vertex cover are known, we lack a general characterization of such problems. The main motivation of our
work on this paper is the quest for meta-theorems on kernelization algorithms for problems parameterized by vertex cover.

According to Grohe [31], meta-theorems expose the deep relations between logic and combinatorial structures, which is
a fundamental issue of computational complexity. Such theorems also yield a better understanding of the scope of general
algorithmic techniques and the limits of tractability. The canonical example here is Courcelle’s Theorem [17], which states
that all problems expressible in Monadic Second-Order Logic are linear-time solvable on graphs of bounded treewidth. For
more restricted parameters such as the vertex cover number, meta-theorems are available with a better dependency on the
parameter [39,29]. In kernelization there are meta-theorems showing polynomial kernels for restricted graph families [7,27].
A systematic way to understand the kernelization complexity of parameterizations by vertex cover would therefore be to
obtain a meta-theorem capturing a large class of problems admitting polynomial kernels. A natural approach would be
to devise a logical formalism capturing the class of problems admitting polynomial kernels parameterized by the vertex
cover number. However, such a formalism should to be able to express Vertex Cover, which admits polynomial kernel, but
not Clique, which does not [37]; it should capture Odd Cycle Transversal [37] and Long Cycle [10] but not Dominating

Set [22]; and Treewidth [9] but not Cutwidth [18]. This suggests that the constructed logical formalism would be un-
necessarily complicated, far from classical logics like Monadic Second-Order Logic or First-Order Logic, and probably also
blatantly contrived to the needs. Therefore, we take a different approach: we try to explain the existence of polynomial
kernels parameterized by the vertex cover number using new graph-theoretic characteristics.

In this paper, we provide three theorems with general conditions capturing a wide variety of known kernelization results
about parameterizations by vertex cover. It has been observed before that reduction rules that identify irrelevant vertices
by marking a polynomial number of vertices for each constant-sized subset of the vertex cover, lead to a polynomial kernel
for several problems [10,36]. Our first contribution here is to uncover a characteristic of graph problems that explains their
amenability to such reduction strategies, and to provide theorems using this characteristic. Roughly speaking, the problem of
finding a minimum-size set of vertices that hits all induced subgraphs belonging to some family Π has a polynomial kernel
parameterized by vertex cover, if membership in Π is invariant under changing the presence of all but a constant number
of (non)edges incident with each vertex (and some technical conditions are met). The problem of finding the largest induced
subgraph belonging to Π , or of finding a partition of the vertex set into a constant number of sets that each induce Π -free
subgraphs, have polynomial kernels parameterized by vertex cover under similar conditions. Our general theorems not
only capture a wide variety of known results, they also imply results that were not known before. For example, as a
corollary of our theorems we establish that the F -Minor-Free Deletion problem (see Section 2.3 for definitions) has a
polynomial kernel for every fixed F , when parameterized by the size of a vertex cover; it is noteworthy that the degree of
the polynomial bounding the kernel size depends only on the maximum degree of graphs in F , and not on their sizes. Our
third general theorem, dealing with graph partitioning problems, can be considered as a significant generalization of the
polynomial kernel for q-Coloring parameterized by vertex cover [36] since coloring a graph is equivalent to partitioning
its vertex set into independent sets. We show that many different graph partitioning problems, such as Partition into q
Forests [30, GT14] and Partition into q Planar Graphs, have polynomial kernels parameterized by vertex cover. Although
several partitioning problems were already listed by Garey and Johnson [30], little was previously known about the their
kernelization complexity. Our theorems show that in many cases, effective preprocessing is possible for instances of such
problems that have small vertex covers.

After studying the kernelization complexity of vertex-deletion problems, largest induced subgraph problems, and parti-
tioning problems, we turn to two basic graph properties: containing some graph as an induced subgraph or as a minor. It is
known that testing for a clique as a subgraph (when the size of the clique is part of the input) does not admit a polynomial
kernel parameterized by vertex cover unless NP ⊆ coNP/poly [8]. This is why we find the following result surprising: test-
ing for a clique as a minor admits a polynomial kernel under the chosen parameterization. Driven by our desire to obtain
a better understanding of the kernelization complexity of graph problems parameterized by vertex cover, we investigate
induced subgraph testing and minor testing for other classes of graphs such as cycles, paths, matchings and stars. It turns
out that the kernelization complexity of induced subgraph testing and minor testing is exactly opposite for all these classes.
For example, testing for a star minor does not have a polynomial kernel due to its equivalence to Connected Dominating

Set [22], but we provide a polynomial kernel for testing the existence of an induced star subgraph by using a guessing step
to reduce it to cases that are covered by our general theorems.

470 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
The paper is organized as follows. We start by giving preliminaries on parameterized complexity and graph theory in
Section 2. We also supply the definitions for the problems that we apply our general theorems to. In Section 3 we describe
a general reduction scheme, study its properties and use it to derive sufficient conditions for vertex-deletion problems,
largest induced subgraph problems, and partitioning problems, to admit polynomial kernels parameterized by vertex cover.
In Section 4 we investigate the kernelization complexity of induced subgraph versus minor testing for various graph families.
A succinct overview of our results is given in Tables 1, 2, 3, and 4 (pages 476, 478, 480, and 481, respectively).

2. Preliminaries

2.1. Parameterized complexity and kernels

A parameterized problem Q is a subset of Σ∗ × N, the second component being the parameter which expresses some
structural measure of the input. A parameterized problem is (strongly uniformly) fixed-parameter tractable if there exists an
algorithm to decide whether (x,k) ∈ Q in time f (k)|x|O(1) where f is a computable function. We refer to the textbooks [23,
26,40] for more background on parameterized complexity.

A kernelization algorithm (or kernel) for a parameterized problem Q is a polynomial-time algorithm which transforms an
instance (x,k) into an equivalent instance (x′,k′) such that |x′|, k′ � f (k) for some computable function f , which is the size
of the kernel. If f ∈ kO(1) then this is a polynomial kernel (cf. [32,5]).

To prove kernelization lower bounds we frequently use the framework of cross-composition [8], which builds on earlier
work by Bodlaender et al. [6], and Fortnow and Santhanam [28].

Definition 1 (Polynomial equivalence relation). (See [8].) An equivalence relation R on Σ∗ is called a polynomial equivalence
relation if the following two conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y belong to the same equivalence class
in (|x| + |y|)O(1) time.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most (maxx∈S |x|)O(1) classes.

Definition 2 (Cross-composition). (See [8].) Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ × N be a parameterized problem. We
say that L cross-composes into Q if there is a polynomial equivalence relation R and an algorithm which, given r
strings x1, x2, . . . , xr belonging to the same equivalence class of R, computes an instance (x∗,k∗) ∈ Σ∗ ×N in time polyno-
mial in

∑r
i=1 |xi | such that:

1. (x∗,k∗) ∈ Q ⇔ xi ∈ L for some 1 � i � r,
2. k∗ is bounded by a polynomial in maxr

i=1 |xi | + log r.

Theorem 1. (See [8].) If some set L ⊆ Σ∗ is NP-hard under Karp reductions and L cross-composes into the parameterized problem Q ,
then there is no polynomial kernel for Q unless NP ⊆ coNP/poly.

The set {1,2, . . . ,n} is abbreviated as [n]. If X is a finite set then
(X

n

)
denotes the collection of all subsets of X which

have size exactly n. Similarly we use
(X
�n

)
for the subsets of size at most n (including ∅). When defining cross-compositions

we will use a unique k-bit binary representation of integers in the range [1 . . . 2k] by mapping the number 2k to string
consisting of k zeros. We use the normal binary expansion for the smaller numbers.

2.2. Graphs

All graphs we consider are finite, simple, and undirected. An undirected graph G consists of a vertex set V (G) and a
set of edges E(G) ⊆ (V (G)

2

)
. A graph property Π is a (possibly infinite) set of graphs. A graph H is a subgraph of graph G ,

denoted H ⊆ G , if V (H) ⊆ V (G) and E(H) ⊆ E(G). For X ⊆ V (G) the subgraph induced by X is denoted by G[X]. Its vertex
set is X ∩ V (G), and its edge set is E(G) ∩ (X

2

)
. For a vertex subset X we use G − X to denote the subgraph of G induced

by V (G) \ X . The disjoint union of t copies of a graph G is represented by t · G . We say that a graph G is vertex-minimal
with respect to Π if G ∈ Π and for all S � V (G) the graph G[S] is not contained in Π .

The open neighborhood of vertex v in graph G is the set {u ∈ V (G) | uv ∈ E(G)}, and is denoted by NG(v). The closed
neighborhood of v is NG [v] := NG(v) ∪ {v}. The notation extends naturally to sets of vertices S . The open neighborhood
is NG(S) := ⋃

v∈S NG(v) \ S , whereas the closed neighborhood is NG [S] := ⋃
v∈S NG(v) ∪ S . The degree of a vertex v in

graph G is degG(v) := |NG(v)|. The maximum degree of a vertex in G is denoted by �(G). Contracting an edge uv ∈ E(G)

in graph G results in the graph G ′ obtained from G by removing vertices u and v together with their incident edges, and
adding a new vertex x with NG ′ (x) := NG({u, v}).

A (simple) path in G is a sequence of distinct vertices (v0, v1, . . . , vk) such that vi−1 vi ∈ E(G) for i ∈ [k]. The length of the
path is the number k of edges on it. The vertices v0 and vk are the endpoints of the path. A (simple) cycle is a sequence of

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 471
vertices (v0, v1, . . . , vk) for k � 3 such that the elements {v1, . . . , vk} are pairwise distinct and v0 = vk , with vi−1 vi ∈ E(G)

for i ∈ [k]. The length of a cycle is the number of edges on it. A graph is Hamiltonian if there is a cycle that meets all its
vertices. An odd cycle is a cycle of odd length. A chord in a cycle is an edge between two vertices that are not successive
on the cycle. A cycle is chordless if it is of length at least 4 and has no chords. A graph is chordal if it does not contain
any chordless cycles; it is bipartite if it does not have an odd cycle. A graph is perfect if for all its induced subgraphs the
chromatic number equals the size of the largest clique. As conjectured a long time ago [2], and proved recently [16], a graph
is perfect if and only if it does not contain any odd hole or odd anti-hole as an induced subgraph.

The complete graph (clique) on t vertices is denoted Kt , whereas the complete bipartite graph (biclique) with partite sets
of sizes s and t is denoted Ks,t . The path graph on t vertices is Pt , whereas the cycle graph on t vertices is Ct . A graph G
is empty if E(G) = ∅. A vertex v is simplicial in graph G if NG(v) is a clique. A minor model of a graph H in a graph G is a
mapping φ from V (H) to subsets of V (G) (called branch sets) which satisfies the following conditions: (a) φ(u) ∩ φ(v) = ∅
for distinct u, v ∈ V (H), (b) G[φ(v)] is connected for v ∈ V (H), and (c) there is an edge between a vertex in φ(u) and
a vertex in φ(v) for all uv ∈ E(H). Graph H is a minor of G if G has a minor model of H . It is easy to see that this is
equivalent to saying that H can be made from G by a (possibly empty) sequence of vertex deletions, edge deletions, and
edge contractions.

A proper q-coloring of a graph G is a function f : V (G) → [q] such that adjacent vertices receive different colors. The
chromatic number of a graph is the smallest integer q for which it admits a proper q-coloring. An H-packing in G is a set of
vertex-disjoint subgraphs of G , each of which is isomorphic to H . An H-packing is perfect if the subgraphs cover the entire
vertex set. The minimum size of a vertex cover in a graph G is denoted by vc(G). To understand the applications of our
general kernelization theorems to concrete problems, we need graph-theoretic concepts such as planarity and treewidth. As
we do not need their formal definitions, we refer the reader to the textbook by Diestel [21] for further details. The following
proposition will be useful in several occasions when applying our general theorems to the F -Minor-Free Deletion problem.

Proposition 1. If G contains H as a minor, then there is a subgraph G∗ ⊆ G containing an H-minor such that �(G∗) � �(H)

and |V (G∗)| � |V (H)| + vc(G∗) · (�(H) + 1).

Proof. Let G be a graph containing a model φ of a graph H . We show how to find a subgraph G∗ satisfying the claims.
First, for every edge uv ∈ E(H) mark an arbitrary edge of G between φ(u) and φ(v). Then, in each branch set φ(v)

for v ∈ V (H) mark the edges of any inclusion-minimal tree T v in G that contains all the vertices incident with edges
marked in the first step. Moreover, for each isolated vertex v ∈ V (H) mark an arbitrary vertex in φ(v). Now obtain G∗
from G by deleting unmarked edges, and deleting unmarked vertices which are not incident with a marked edge. It is easy
to verify that restricting φ to G∗ gives an H-model in G∗ . To see that �(G∗) � �(H), consider a vertex v ∈ V (G∗) and
partition the edges incident with it into two types: those which were marked to build a tree Tu in a branch set φ(u) for
some u ∈ V (H), and those which connect two different branch sets. Suppose v is incident with � edges of the tree Tu .
Then Tu has at least � leaves other than v , and all these leaves connect φ(u) to different branch sets. Observe that each
connection to a different branch set corresponds to a distinct neighbor of u in H . As u has at most �(H) neighbors in H ,
there are at most �(H) connections between the branch set φ(u) and other branch sets. Since at least � connections are
made by leaves of Tu unequal to v , edges incident with v can make at most �(H) − � connections to other branch sets.
As this accounts for all edges incident with v in G∗ it follows that degG∗ (v) � � + (�(H) − �). As v was arbitrary this
proves �(G∗) � �(H). It remains to prove that |V (G∗)| is suitably small.

Let X ⊆ V (G∗) be a minimum vertex cover of G∗ . All isolated vertices in G∗ correspond to isolated vertices in H , so
there are at most |V (H)| of them. The remaining vertices of G∗ which do not belong to X , have at least one neighbor in X
(as X is a vertex cover and the vertices are not isolated). Since each vertex in X has degree at most �(H), the total number
of vertices in G∗ is at most |V (H)| + |X | + �(H) · |X |� |V (H)| + |X |(�(H) + 1), which proves the claim. �

The following fact will be useful at various points in our proofs.

Proposition 2. If a graph G contains Pt (resp. Ct) as a subgraph, then vc(G) � �t/2� (resp. vc(G) � t/2�).

Proof. The claim follows from the observations that the vertex cover number of a subgraph of G cannot be larger than
the vertex cover number of G , and that a path and a cycle on t vertices have vertex cover numbers �t/2� and t/2�,
respectively. �
2.3. Problem definitions

For completeness we provide a definition for the problems that we apply our general theorems to. We define the prob-
lems in the order in which they appear in the summary tables.

2.3.1. Vertex-deletion problems
The vertex-deletion problems in Table 1 (page 476) are defined as follows.

472 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
Vertex Cover (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Does G have a vertex cover of size at most k, i.e., is there a set S ⊆ V (G) of size at most k such that G − S is
an empty graph?

Note that in the preceding problem, the given vertex cover X may be suboptimal. Hence this can be interpreted as asking
for the existence of a smaller vertex cover, when given some approximation.

Odd Cycle Transversal (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S is bipartite?

Chordal Deletion (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S does not have chordless cycles?

For any finite set of graphs F we define the following parameterized problem.

F -Minor-Free Deletion (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S does not contain any graph in F as a minor?

Planarization (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S is planar?

η-Transversal (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S has treewidth at most η?

2.3.2. Subgraph problems
The subgraph testing problems in Table 2 (page 478) are defined as follows.

Long Cycle (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Does G contain a simple cycle on at least k vertices?

The Long Path (vc) problem is defined analogously, by asking for a path on at least k vertices. For any graph H , we
define the following packing problem.

H-Packing (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Does G contain at least k vertex-disjoint subgraphs isomorphic to H?

Observe that the well-known Triangle Packing problem is the special case of the previous problem where H := K3.

2.3.3. Partitioning problems
The vertex partitioning problems in Table 3 (page 480) are mostly self-explanatory. To preserve space, we only give one

example to illustrate the idea.

Partition into q Forests (vc)

Input: A graph G with a vertex cover X .
Parameter: The size |X | of the vertex cover.

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 473
Question: Is there a partition of the vertex set into q sets S1 ∪ S2 ∪ · · · ∪ Sq such that for each i ∈ [q] the subgraph of G
induced by Si is a forest?

The value of q is treated as a constant in the definition. The other partitioning problems in Table 3 (page 480) are defined
in the natural way by changing the restriction on the subgraphs induced by the partite sets.

3. General kernelization theorems

3.1. Characterization by few adjacencies

In this section we introduce a general reduction rule for problems parameterized by vertex cover, and show that the rule
preserves the existence of certain kinds of induced subgraphs. The central concept is the following.

Definition 3. A graph property Π is characterized by cΠ ∈ N adjacencies if for all graphs G ∈ Π , for every vertex v ∈ V (G),
there is a set D ⊆ V (G) \ {v} of size at most cΠ such that all graphs G ′ which are obtained from G by adding or removing
edges between v and vertices in V (G) \ D , are also contained in Π .

The following proposition shows that various graph properties are characterized by few adjacencies.

Proposition 3. The following properties are characterized by constantly many adjacencies (for any fixed finite set F , graph H, or � � 4,
respectively):

1. Having a Hamiltonian path (resp. cycle) (cΠ = 2).
2. Having an odd cycle (cΠ = 2).
3. Containing H ∈F as a minor (cΠ = maxH∈F �(H)).
4. Having a perfect H-packing (cΠ = �(H)).
5. Having a chordless cycle of length at least � (cΠ = � − 1).

Proof. We prove the claims one by one.
(1) First consider the property of being Hamiltonian. Take a graph G with a Hamiltonian cycle C , and consider an

arbitrary vertex v in G . Let D contain the predecessor and successor of v on the cycle. Then it is easy to see that changing
the presence of edges between v and V (G) \ D , preserves the cycle C . Hence by Definition 3 this proves that the property
of Hamiltonicity is characterized by two adjacencies. As the length of the cycle is not affected, the same proof goes for the
property of having an odd cycle, i.e., the property (2). The proof for the property of having a Hamiltonian path is similar;
for the endpoints we only have to preserve a single adjacency.

(3) Let F be a finite set of graphs. Let G contain H ′ ∈ F as a minor, and let v ∈ V (G) be an arbitrary vertex. We give
a set D ⊆ V (G) \ {v} of size at most maxH∈F �(H) such that changing the adjacencies between v and V (G) \ D preserves
the fact that G has an H ′-minor. By Proposition 1 a subgraph G∗ of G with maximum degree at most �(H ′) exists, which
has an H ′-minor model φ. If v is not contained in graph G∗ , then changing the presence of edges incident with v preserves
the minor model φ in G . If v is contained in G∗ , then pick D := NG∗ (v) which has size at most �(H ′) by the degree bound
of G∗ guaranteed by the proposition. Changing adjacencies between v and V (G)\ D preserves the fact that G∗ is a subgraph
of G , and therefore preserves the fact that G has H ′ as a minor; this implies membership in Π .

(4) Fix a graph H and let G be a graph with a perfect H-packing. For an arbitrary vertex v ∈ V (G), consider a perfect
H-packing in G and let G ′ be the subgraph in the packing which contains v . Picking D := NG ′ (v) it follows that |D| � �(H).
Changing adjacencies between v and V (G) \ D in G preserves the perfect H-packing we started from, as all edges incident
with v needed to make the subgraph G ′ isomorphic to H are maintained. Hence the graph resulting from such modifications
has a perfect H-packing and is contained in Π .

(5) Let G be a graph with a chordless cycle C of length at least �, and let v be an arbitrary vertex. If v does not
lie on C then changing the presence of edges incident with v preserves C and results in a graph with a chordless cycle
of length at least �. Suppose therefore that v lies on C , and label the vertices on C as (v, v2, . . . , vk) for some k � �.
Define D := {v2, . . . , v�−1} ∪ {vk}, i.e., D contains the predecessor of v and its � − 2 successors. Now let G ′ be obtained
from G by changing the adjacency between v and V (G) \ D . We prove that G ′ has a chordless cycle of length at least �.
Let i be the smallest integer larger than two such that v is adjacent to vi in G ′ . As we explicitly preserved the edge from v
to vk , this is well defined. Because the vertices {v2, . . . , v�−1} are contained in D we know that i > � − 1 because C is
chordless. Since the only edges that were modified when moving from G to G ′ are incident with v , it follows from the
choice of i that (v, v2, v3, . . . , vi) is a chordless cycle in G ′ of length at least �; this completes the proof. �

We give some non-examples to aid the intuition. The properties of having chromatic number at least four, of being a
cycle, or of not being a perfect graph, cannot be characterized by a constant number of adjacencies. To see this for graphs of
chromatic number at least four, consider an odd wheel with a rim of length t: this is the graph built from an odd cycle Ct

474 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
Algorithm 1 Reduce (Graph G,vertex cover X ⊆ V (G), � ∈ N, cΠ ∈N)

for each Y ∈ (X
�cΠ

)
and partition of Y into Y + ∪ Y − do

let Z be the vertices in V (G) \ X adjacent to all of Y + and to none of Y −
mark � arbitrary vertices from Z (if |Z | < � then mark all of them)

delete from G all unmarked vertices that are not contained in X

by adding a new vertex x, the hub, that is adjacent to all vertices of the cycle. As an odd cycle requires three colors in a
proper coloring, the adjacency of the hub to all other vertices increases the chromatic number to four. Now observe that
removing any edge between the hub and the cycle decreases the chromatic number to three, as the two endpoints of that
edge can then share the same color. Hence any vertex set D that preserves the fact that the chromatic number is at least
four, when changing adjacencies between x and vertices not in D , must contain all vertices of the cycle. Consequently, such
sets cannot have constant size: having chromatic number at least four is not characterized by a finite number of adjacencies.
Similar constructions can be made for the properties of being a cycle, and for imperfectness.

Before introducing the reduction rule that is based on characterizations by few adjacencies, we prove that the existence
of such characterizations is closed under union and intersection.

Proposition 4. Let Π and Π ′ be graph properties characterized by cΠ and cΠ ′ adjacencies, respectively. The following holds:

1. The property Π ∪ Π ′ is characterized by max(cΠ, cΠ ′) adjacencies.
2. The property Π ∩ Π ′ is characterized by cΠ + cΠ ′ adjacencies.

Proof. We prove the two items separately.
(1) Let G be a graph in Π ∪Π ′ , and let v be an arbitrary vertex in G . We have to find a set D of size at most max(cΠ, cΠ ′)

that satisfies the conditions of Definition 3 with respect to v . If G ∈ Π then the characterization of Π by cΠ adjacencies
guarantees the existence of a set D ⊆ V (G) \ {v} of size at most cΠ such that changing adjacencies between v and V (G) \ D
preserves membership in Π , and hence in the union Π ∪ Π ′ . If G ∈ Π ′ we similarly find a set of size at most cΠ ′ that
preserves membership in Π ′ and therefore in the union. In either case we find a set of size at most max(cΠ, cΠ ′) that
satisfies the conditions of Definition 3, establishing the characterization of Π ∪ Π ′ .

(2) Let G be a graph in Π ∩ Π ′ , and let v be an arbitrary vertex in G . Let D ⊆ V (G) \ {v} be a set of size at most cΠ

that preserves membership in Π , and let D ′ ⊆ V (G) \ {v} be a set of size at most cΠ ′ preserving membership in Π ′ . Now
consider D∗ := D ∪ D ′ . Changing adjacencies between v and V (G) \ D∗ preserves membership in Π (since D∗ contains D),
and preserves membership in Π ′ (as D∗ contains D ′). Hence the set D∗ of size at most cΠ + cΠ ′ preserves membership in
the intersection Π ∩ Π ′ , which proves the claim. �

The closure property of Proposition 4 can be used to quickly establish that a graph class is characterized by a constant
number of adjacencies. Note that for a graph class Π that is characterized by few adjacencies, it may be impossible to
characterize its complement Π in this way. As a concrete example, consider the graphs Π with at least one edge: these
are characterized by one adjacency, but it is easy to see that the graphs Π without any edges may need arbitrarily many
adjacencies to characterize. Also observe that any finite graph property Π is trivially characterized by maxG∈Π |V (G)| − 1
adjacencies (for G ∈ Π and v ∈ V (G), choose D as V (G) \ {v}). This will be useful to verify the preconditions to the general
kernelization theorems.

The single reduction rule that we use to derive our general kernelization theorems, is the Reduce procedure presented as
Algorithm 1. Its utility for kernelization stems from the fact that it efficiently shrinks a graph to a size bounded polynomially
in the cardinality of the given vertex cover X .

Observation 1. For every fixed constant cΠ , Reduce (G, X, �, cΠ) runs in polynomial time and results in a graph on O(|X | + � · 2cΠ ·
|(X
�cΠ

)|) =O(|X | + � · |X |cΠ) vertices.

The soundness of the Reduce procedure for many types of kernelization comes from the following lemma. It shows
that for graph properties Π that are characterized by few adjacencies, an application of Reduce with parameter � = s + p
preserves the existence of induced Π subgraphs of size up to p that avoid any set of size at most s.

Lemma 1. Let Π be characterized by cΠ adjacencies, and let G be a graph with vertex cover X. If G[P] ∈ Π for some P ⊆ V (G) \ S
and S ⊆ V (G), then for any �� |S|+|P | the graph G ′ resulting from Reduce (G, X, �, cΠ) contains P ′ ⊆ V (G ′)\ S such that G ′[P ′] ∈
Π and |P ′| = |P |.

Proof. Assume the conditions in the lemma statement hold, and let R ⊆ V (G) be the vertices that are removed by the
reduction procedure, i.e., R := V (G) \ V (G ′). Let p1, p2, . . . , pt be an arbitrary ordering of P ∩ R . We inductively create
a sequence of sets P0, P1, . . . , Pt with P = P0 such that (a) G[Pi] ∈ Π , (b) |Pi | = |P |, (c) Pi ∩ S = ∅, and (d) Pi ∩ R =

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 475
{pi+1, pi+2, . . . , pt} for every i ∈ {0,1, . . . , t}. Note that P satisfies the constraints imposed on P0, while existence of Pt

proves the lemma. Hence, we only need to show how to construct Pi from Pi−1 for i ∈ [t].
Consider graph G[Pi−1] and vertex pi ∈ Pi−1. As G[Pi−1] ∈ Π , Definition 3 ensures that there exists a set D of at

most cΠ vertices of Pi−1 such that arbitrarily changing adjacencies between pi and vertices of Pi−1 \ D in G[Pi−1] preserves
membership in Π . Let D+ := NG(pi) ∩ D and D− := D \ D+ . Since vertex pi is contained in R and was removed by the
reduction process, it follows from the deletion procedure that pi /∈ X and therefore that D+ ⊆ NG(pi) ⊆ X since X is a
vertex cover of G . Let D−

X := D− ∩ X . Observe that pi was a candidate for marking for the partition (D+, D−
X) of D ∩ X ,

but as pi ∈ R it was not marked. Hence, there exist � � |S| + |P | marked vertices in V (G) \ X adjacent to all of D+ and
none of D−

X . As |Pi−1| = |P | and pi is not marked, we can find a vertex p′
i ∈ V (G) \ X that does not belong to Pi−1 or S , is

marked, and has the same neighborhood in D ∩ X as pi . Since X is a vertex cover, both pi and p′
i have all their neighbors

in X . As p′
i is not adjacent to any member of D−

X , it is not adjacent to D− . Take Pi := (Pi−1 ∪ {p′
i}) \ {pi}. Note that

|Pi| = |Pi−1| = |P | and Pi ∩ R = {pi+1, pi+2, . . . , pt}. Moreover, a graph isomorphic to G[Pi] can be obtained from G[Pi−1]
by changing adjacencies between pi and vertices of Pi−1 \ D . The only adjacencies that need to be changed are between pi
and NG(pi)�NG (p′

i) ⊆ X (� denotes symmetric difference), but this set is disjoint with D and hence the changes preserve
membership in Π . As Pi satisfies all induction claims, this completes the proof. �
3.2. Kernelization for vertex-deletion problems

Let Π be a graph property. We present a general theorem providing polynomial kernels for vertex-deletion problems of
the following form.

Deletion Distance To Π -free (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S does not contain a graph in Π as an induced
subgraph?

Observe that Π need not be finite or decidable. The condition that a vertex cover is given along with the input is present for
technical reasons; to apply the data reduction schemes presented in this paper, one may simply compute a 2-approximate
vertex cover and use that as X .

Theorem 2. If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies,
(ii) every graph in Π contains at least one edge, and

(iii) there is a non-decreasing polynomial p:N→N such that all graphs G that are vertex-minimal with respect to Π satisfy |V (G)| �
p(vc(G)),

then Deletion Distance To Π -free (vc) has a kernel with O((x + p(x))xcΠ) vertices, where x := |X |.

Before proving the theorem, we briefly discuss its preconditions. Let us first show the necessity of (ii) by considering the
property Π only consisting of the two-vertex graph without an edge. Then a graph G is a clique if and only if it does not
contain the graph in Π as an induced subgraph, and hence a graph G has a clique of size at least k if and only if we can
delete at most |V (G)| −k vertices from G to make it induced-Π -free. Observe that Π is characterized by a single adjacency
and trivially satisfies (iii) for p(n) = 2. But Clique parameterized by vertex cover does not admit a polynomial kernel unless
NP ⊆ coNP/poly [8], which explains why (ii) is necessary.

To justify (i), consider the class Π containing the odd holes and odd anti-holes (induced cycles of odd length at least
five, and their edge-complements). It is easy to verify that this Π satisfies conditions (ii) and (iii). Now observe that G has
vertex-deletion distance at most k to property Π if and only if G can be made perfect by k vertex deletions, and that the
kernelization complexity of Perfect Deletion parameterized by vertex cover is still open.

The third condition demands that the size of vertex-minimal graphs in Π is bounded polynomially in their vertex cover
number. The condition is needed to make the proof go through. Observe that the restriction to a polynomial function in the
condition is crucial, as the existence of a (possibly exponential) function is trivial. For any graph property Π , the existence of
a function g:N→ N such that all graphs G ∈ Π have an induced subgraph G ′ ⊆ G contained in Π with |V (G ′)| � g(vc(G ′))
is guaranteed by the fact that graphs of bounded vertex cover are well-quasi-ordered by the induced subgraph relation [24].1

Having justified the preconditions to our general theorem, we give its proof.

1 Given Π , let Πn be the vertex-minimal graphs in Π with vertex cover number exactly n. The well-quasi-ordering ensures that Πn is finite;
choose g(n) := maxG∈Πn |V (G)|.

476 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
Table 1
Problems that admit polynomial kernels when parameterized by the size of a given vertex cover, by applying Theorem 2.

Problem Forbidden property Π cΠ

Vertex Cover {K2} 1
Odd Cycle Transversal Graphs containing an odd cycle 2
Chordal Deletion Graphs with a chordless cycle 3
F-Minor-Free Deletion Graphs with an H ∈ F-minor maxH∈F �(H)

Planarization Graphs with a K5 or K3,3 minor 4
η-Transversal Graphs of treewidth > η f (η)

Proof of Theorem 2. Consider some input instance (G, X,k). Firstly, observe that if k � |X |, then we clearly have a
yes-instance: removal of X results in an edgeless graph, which is guaranteed not to contain induced subgraphs from Π

due to property (ii). Therefore, we may assume that k < |X | as otherwise we output a trivial yes-instance.
We let G ′ be the result of Reduce (G, X,k + p(|X |), cΠ) and return the instance (G ′, X,k), which gives the right running

time and size bound by Observation 1. We need to prove that the output instance (G ′, X,k) is equivalent to the input
instance (G, X,k). As G ′ is an induced subgraph of G , it follows that if G − S does not contain any graph in Π , then
neither does G ′ − (S ∩ V (G ′)). Therefore, if (G, X,k) is a yes-instance, then so is (G ′, X,k). Assume then, that (G ′, X,k)

is a yes-instance and let S be a subset of vertices with |S| � k such that G ′ − S does not contain any induced subgraph
from Π . We claim that G − S does not contain such induced subgraphs either, i.e., that S is also a feasible solution for the
instance (G, X,k).

Assume for the sake of contradiction that there is a set P ⊆ V (G) \ S such that G[P] ∈ Π . Consider a minimal such
set P , which ensures by property (iii) that |P | � p(vc(G[P])). As P ∩ X is a vertex cover of G[P], it follows that |P | �
p(|P ∩ X |) � p(|X |). As we executed the reduction with parameter � = k + p(|X |), Lemma 1 guarantees the existence of a
set P ′ ⊆ V (G ′)\ S such that G ′[P ′] ∈ Π . But this shows that the graph G ′ − S contains an induced Π subgraph, contradicting
the assumption that S is a solution for G ′ and thereby concluding the proof. �
Corollary 1. All problems in Table 1 fit into the framework of Theorem 2 and hence admit polynomial kernels parameterized by the
size of a given vertex cover.

Proof. We consider the problems in the order of Table 1 and show how they fit into the framework.
Vertex Cover (vc). Observe that a graph G has a vertex cover of size � if and only there is a set S ⊆ V (G) of size � such

that G − S is an independent set, or equivalently, G − S does not have K2 as an induced subgraph. So Vertex Cover (vc)

is equivalent to Deletion Distance To Π -free (vc) for Π = {K2}. Since this Π contains only a single graph of degree one,
it is easily seen to be characterized by the single adjacency of one vertex in K2 to its neighbor (property (i)). Obviously
all graphs in Π contain at least one edge (property (ii)), and since Π contains a single graph on two vertices, having a
vertex cover of size one, the constant function p(n) := 2 suffices for property (iii). Hence all preconditions for Theorem 2
are satisfied and the problem has a kernel with O(|X |2) vertices.

Odd Cycle Transversal (vc). A graph G is bipartite if and only if it does not contain a graph with an odd cycle as an
induced subgraph. Hence by letting Π contain all graphs which contain an odd cycle (which is not the same as letting Π be
the class of all odd cycles), Odd Cycle Transversal (vc) is equivalent to Deletion Distance To Π -free (vc). By Proposition 3,
this property Π is characterized by a constant number of adjacencies; the proof of the proposition shows that cΠ := 2
suffices. Since all graphs with an odd cycle have at least one edge, the second condition is satisfied as well. For the last
condition, consider a vertex-minimal graph G with an odd cycle; such a graph is Hamiltonian, so it has a cycle on |V (G)|
vertices as a subgraph. By Proposition 2 we have that |V (G)| � 2vc(G), which proves that p(n) := 2n suffices for the
polynomial in property (iii). We obtain a kernel with O(|X |3) vertices.

Chordal Deletion (vc). A graph G is chordal if all its cycles of length at least four have a chord; this can be stated
equivalently as saying that it does not contain a graph with a chordless cycle as an induced subgraph. If we take Π to be
the class of graphs which have a chordless cycle, we can express Chordal Deletion (vc) as an instantiation of Deletion

Distance To Π -free (vc). The proof of Proposition 3 shows the property is characterized by three adjacencies. As all graphs
with a chordless cycle contain an edge, the second property is satisfied. Similarly as before, a vertex-minimal graph with a
chordless cycle is Hamiltonian and hence p(n) := 2n suffices for property (iii). The resulting kernel has O(|X |4) vertices.

F -Minor-Free Deletion (vc). If we let Π contain all graphs that contain a member of F as a minor, then a graph
is Π -induced-subgraph-free if and only if it is F -minor-free. By Proposition 3 this class Π is characterized by cΠ :=
maxH∈F �(H) adjacencies, so we satisfy property (i). If F contains an empty graph, then F -minor-free graphs have constant
size and the problem is polynomial-time solvable; hence in interesting cases the graphs containing a minor from F have
at least one edge (property (ii)). Finally, consider a vertex-minimal graph G∗ which contains a graph H ∈ F as a minor.
By Proposition 1 we have |V (G∗)| � |V (H)| + vc(G∗) · (�(H) + 1). As F is fixed, the maximum degree and size of graphs
in F are constants which shows that property (iii) is satisfied, resulting in a kernel with O(|X |�+1) vertices for � :=
maxH∈F �(H).

Planarization (vc). Since this problem is a special case of F -Minor-Free Deletion (vc) for F := {K5, K3,3}, and both
forbidden minors are nonempty, the proof given above shows that this problem has a kernel with O(|X |5) vertices.

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 477
η-Transversal (vc). Recall that the η-Transversal problem asks for a vertex set whose removal results in a graph of
treewidth at most η. Since treewidth does not increase when taking a minor [4, Lemma 16], the class of graphs of treewidth
at most η is closed under minors. By the famous results of Robertson and Seymour [42], this implies that for each η there
is a finite obstruction set Fη such that G has treewidth at most η if and only if G avoids all graphs in Fη as a minor.
It is easy to see that the minimal obstruction sets Fη do not contain empty graphs, as empty graphs have treewidth zero
and cannot be obstructions to having treewidth η � 0. Hence we may obtain a polynomial kernel for η-Transversal (vc)

by using the obstruction set Fη in the more general F -Minor-Free Deletion (vc) scheme. The kernel size is O(|X |�+1)

where � := maxH∈Fη �(H). �
Using Proposition 3 and Proposition 4 it is easy to apply Theorem 2 to many other vertex-deletion problems. For example,

a graph is distance hereditary if and only if it excludes the house, gem, domino and holes (chordless cycles of length at
least five) as induced subgraphs [14, Theorem 10.1.1]. (The house, gem and domino are fixed, constant-size graphs [14,
Chapter 1].) Hence if we take Π to contain these constant graphs, together with the graphs that contain a chordless cycle
of length at least five, then a graph is distance hereditary if and only if it is induced Π -free. Since Π is the union of a
finite graph property {house,gem,domino} with the graphs containing a chordless cycle of length at least five, and both
are characterized by a constant number of adjacencies, it follows from Proposition 4 that Π is characterized by a constant
number of adjacencies. It is easy to verify that the other preconditions to Theorem 2 are satisfied as well, which implies a
polynomial kernel for Distance Hereditary Deletion (vc). Using this recipe one can obtain polynomial kernels for a host of
vertex-deletion problems, whose corresponding graph classes can be defined by combining the elements of Proposition 3
with a finite number of arbitrary forbidden induced subgraphs. We do not list all these possible applications here, but move
on to our next general theorem.

3.3. Kernelization for largest induced subgraph problems

In this section we study the following class of problems, which is in some sense dual to the class considered previously.
For a graph property Π , we define

Largest Induced Π -Subgraph (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set P ⊆ V (G) of size at least k such that G[P] ∈ Π?

The following theorem gives sufficient conditions for the existence of polynomial kernels for such problems.

Theorem 3. If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies, and
(ii) there is a non-decreasing polynomial p:N→ N such that all graphs G ∈ Π satisfy |V (G)| � p(vc(G)),

then Largest Induced Π -Subgraph (vc) has a kernel with O(p(x) · xcΠ) vertices, where x := |X |.

There is a natural example showing the necessity of the first condition in Theorem 3. If we take Π as the class of
all cliques, then testing whether a graph G has an induced subgraph in Π on at least k vertices is equivalent to asking
whether G has a clique of size at least k. Since the vertex count of a complete graph exceeds its vertex cover number by
exactly one, the class of cliques satisfies (ii). The conditional superpolynomial kernel lower bound for Clique parameterized
by vertex cover explains why (i) is necessary; the class of cliques is not characterized by any constant number of adjacencies.

The second condition of Theorem 3 is needed to ensure that the resulting problems have kernels at all. Observe that
we do not require the set of graphs Π to be decidable. In the absence of the second condition, we could let Π contain
all i-vertex graphs for which the i-th Turing machine halts on a blank tape. This class is trivially characterized by zero
adjacencies, since membership in Π only depends on the number of vertices. If the Largest Induced Π -Subgraph (vc)

problem for this class Π would have a kernel, then we could decide the Halting problem as follows. To decide whether
the i-th Turing machine halts, we create the edgeless graph Gi on i vertices with an empty vertex cover. By the definition
of Π , the i-th machine halts if and only if Gi has an induced Π subgraph on i vertices. Running the supposed kernelization
on this instance would yield an equivalent, constant-size instance as the parameter value is zero. We could then decide the
problem by looking up the answer in a table for constant-size instances hard-coded into the algorithm, thereby solving the
Halting problem. The requirement that the size of the graphs in Π is bounded in terms of their vertex cover number, is
therefore entirely natural. We need the dependence to be polynomial in order to obtain our polynomial kernel.

Having justified the preconditions, we present the proof of the theorem.

478 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
Table 2
Problems that admit polynomial kernels when parameterized by the size of a given vertex cover, by applying
Theorem 3.

Problem Desired property Π cΠ

Long Cycle Graphs with a Hamiltonian cycle 2
Long Path Graphs with a Hamiltonian path 2
H-Packing Graphs with a perfect H-packing �(H)

Proof of Theorem 3. The kernelization reduces an instance (G, X,k) by executing Reduce (G, X, p(|X |), cΠ) to obtain a
graph G ′ , and outputs the instance (G ′, X,k). By Observation 1 this can be done in polynomial time and results in a graph
whose size is appropriately bounded; it remains to prove that the two instances are equivalent.

Since G ′ is an induced subgraph of G , any solution contained in G ′ is also contained in G: so if (G ′, X,k) is a yes-instance,
then (G, X,k) is as well. Assume then that (G, X,k) is a yes-instance and let P ⊆ V (G) be such that G[P] ∈ Π and |P | � k.
Clearly, X ∩ P is a vertex cover of G[P], so |P | � p(|X ∩ P |) � p(|X |) by property (ii). Since the reduction procedure is
executed with a value � := p(|X |) and |P |� p(|X |), by applying Lemma 1 with an empty set for S we find that G ′ contains
a set P ′ of the same size as P such that G ′[P] ∈ Π . This proves that (G ′, X,k) is a yes-instance and shows the correctness
of the kernelization. �
Corollary 2. All problems in Table 2 fit into the framework of Theorem 3 and admit polynomial kernels parameterized by the size of a
given vertex cover.

Proof. We consider the problems in the order of Table 2 and show how they fit into the framework.
Long Cycle (vc). Observe that if G has a cycle on k vertices (v1, . . . , vk) then the graph G[{v1, . . . , vk}] is Hamilto-

nian. So G has a k-cycle if and only if G has an induced Hamiltonian subgraph on k vertices. Hence Long Cycle (vc) is
equivalent to Largest Induced Π -Subgraph (vc) by letting Π be the class of Hamiltonian graphs. By Proposition 3 this
class is characterized by two adjacencies. By Proposition 2, for all Hamiltonian graphs G ′ it holds that |V (G ′)| � 2|vc(G ′)|.
Hence property (ii) is satisfied as well and we obtain a kernel with O(|X |3) vertices. The proof for Long Path (vc) is anal-
ogous.

H-Packing (vc). A graph G admits an H-packing of k disjoint subgraphs, if and only if G has an induced subgraph
on k · |V (H)| vertices which admits a perfect H-packing. If H is an empty graph then the answer is trivial: there are k
vertex-disjoint subgraphs isomorphic to H if and only if the vertex count is at least k · |V (H)|. We can therefore solve the
case that H is an empty graph in polynomial time, and focus on the case that H is nonempty. Choosing Π as the graphs
with a perfect H-packing allows us to model the packing problem as an instantiation of Largest Induced Π -Subgraph (vc),
by scaling the target value k by a factor |V (H)|. Proposition 3 shows that Π is characterized by �(H) adjacencies. Let
us now prove that the second condition is satisfied for this Π , by utilizing the fact that we demand H to be nonempty.
Consider a graph G with a perfect H-packing for a nonempty H , and let X be a minimum vertex cover of G . Each subgraph
in the packing contains at least one edge, so each subgraph in the packing has size |V (H)| and contains a vertex from X .
Hence |V (G)| � |X | · |V (H)|, which proves that p(n) := n · |V (H)| suffices for the polynomial. For fixed H this results in a
kernel with O(|X |�(H)+1) vertices. �
3.4. Kernelization for graph partitioning problems

Having considered induced subgraph testing and vertex-deletion problems in the previous two sections, we now change
our focus to partitioning problems. More concretely, we consider problems that ask for the existence of a partition of the
vertex set into a constant number of partite sets such that each partite set induces a subgraph of a desired form. For a
graph property Π , the parameterized problem we study is formally defined as follows.

Partition into q Disjoint Π -free Subgraphs (vc)

Input: A graph G with vertex cover X ⊆ V (G).
Parameter: The size |X | of the vertex cover.
Question: Is there a partition of the vertex set into q sets S1 ∪ S2 ∪ · · · ∪ Sq such that for each i ∈ [q] the graph G[Si]
does not contain a graph in Π as an induced subgraph?

Note that the value of q is treated as a constant in the above definition. To give an example of a problem that can
be captured by this template, consider the 3-Coloring problem which asks whether the graph admits a proper col-
oring with three colors. Such a coloring is a partition of its vertex set into three independent sets. Observing that
a vertex set is independent if and only if it induces a subgraph excluding K2 as an induced subgraph, we see that
3-Coloring parameterized by vertex cover can be phrased as Partition into 3 Disjoint {K2}-free Subgraphs (vc). Fur-
ther applications will be discussed after establishing a sufficient condition for polynomial kernelizability of the general
problem.

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 479
The kernelization scheme once again uses the Reduce routine as its single reduction rule. Before presenting the kernel,
we derive a lemma that shows how an application of Reduce affects instances of partitioning problems. In the following we
say that a graph G can be partitioned into q disjoint Π -free subgraphs if there is a partition of V (G) into S1 ∪ · · · ∪ Sq such
that for all i ∈ [q] the graph G[Si] does not contain a member of Π as an induced subgraph.

Lemma 2. Let Π be characterized by cΠ adjacencies, and let p:N → N be a non-decreasing polynomial such that all graphs G∗ that
are vertex-minimal with respect to Π satisfy |V (G∗)| � p(vc(G∗)). Let G be a graph with vertex cover X, and let G ′ be the graph
resulting from Reduce (G, X,q · p(|X |),q · cΠ). If G ′ can be partitioned into q disjoint Π -free subgraphs, then such a partition exists
for G as well.

Proof. Assume the conditions in the lemma statement hold, and let R ⊆ V (G) be the vertices that are removed by the
reduction procedure, i.e., R := V (G) \ V (G ′). Let r1, r2, . . . , rt be an arbitrary ordering of R . Assume that S = (S1, S2, . . . , Sq)

is a partition of V (G ′) such that for each i ∈ [q] the graph G ′[Si] does not contain an induced subgraph from Π . We
inductively create a sequence of set families S0,S1, . . . ,St with S = S0 such that Si is a partition of V (G ′) ∪ {r1, . . . , ri}
into q sets S1

i , . . . , Sq
i , and for all j ∈ [q] the graph G[S j

i] does not contain a graph in Π as an induced subgraph. Note
that S satisfies the constraints imposed on S0, while existence of St proves the lemma. Hence, we only need to show how
to construct Si from Si−1 for i ∈ [t].

To construct the partition Si out of the partition Si−1 we will show that there is a partite set S j
i−1 to which vertex ri

can be added, such that G[S j
i−1 ∪ {ri}] does not contain a graph in Π . The partition Si is then obtained by replacing S j

i−1

by S j
i−1 ∪ {ri} in partition Si−1. Hence it remains to prove that a suitable partite set exists.

Assume for a contradiction that for all j ∈ [q], the graph G[S j
i−1 ∪ {ri}] contains an induced Π subgraph. For all j ∈ [q]

let H j ∈ Π be an induced subgraph of G[S j
i−1 ∪ {ri}] that is vertex-minimal with respect to Π . By the induction hypothesis,

each such subgraph in Π must contain ri .
Since Π is characterized by cΠ adjacencies, it follows that for each H j there is a set D j ⊆ V (H j) \ {ri} of size at

most cΠ such that changing the adjacencies between ri and V (H j) \ D j in H j preserves membership in Π . Now consider
the union D := ⋃q

j=1 D j , and let D X := D ∩ X be its intersection with X .
By the choice of parameters to Reduce and the fact that ri was not marked, we know that for the subset D X of X of size

at most q · cΠ the procedure marked q · p(|X |) vertices Z D X ⊆ V (G) \ X such that all z ∈ Z D X have the same neighborhood
into D X as ri , i.e., for which NG(z) ∩ D X = NG(ri) ∩ D X . These vertices Z D X were consequently preserved in G ′ . We will
show that there is a vertex z∗ ∈ Z D X that is not contained in any forbidden graph H j for j ∈ [q]. To see this, observe first
that ri /∈ Z D X since ri was removed from the graph by the reduction procedure whereas all vertices in Z D X were marked
to survive in G ′ . Since X is a vertex cover of G , for each j ∈ [q] the intersection V (H j) ∩ X is a vertex cover of H j . The
precondition to the lemma therefore implies that |V (H j)| � p(vc(H j)) � p(|X |). The total number of vertices in the union of
the graphs H j is therefore at most q · p(|X |). Since all these graphs contain ri , while ri /∈ Z D X , the fact that |Z D X | = q · p(|X |)
therefore implies that there is indeed a vertex z∗ ∈ Z D X that is not contained in any graph H j for j ∈ [q].

Let j∗ be the index of the partite set of Si−1 that contains z∗ , such that z∗ ∈ S j∗
i−1. We will use the characteri-

zation of Π by few adjacencies to show that ri can be replaced by z∗ in the forbidden graph H j∗ while preserving

membership in Π , thereby obtaining the contradiction that G[S j∗
i−1] contains a graph in Π . Since neither z∗ nor ri

is contained in the vertex cover X by the definition of Reduce — it only marks and deletes vertices outside X — it
follows that NG(z∗) ⊆ X and NG(ri) ⊆ X . Hence NG(z∗) ∩ (D \ X) = NG(ri) ∩ (D \ X) = ∅. By choice of z∗ we have
that NG(z∗) ∩ D X = NG(ri) ∩ D X . Combining the last two statements shows that NG(z∗) ∩ D = NG(ri) ∩ D . Hence, start-
ing from the graph H j∗ , we can obtain the graph G[(V (H j∗) \ {ri}) ∪ {z∗}] by changing the label of ri to z∗ , and changing
adjacencies between the resulting z∗ and vertices outside the set D . But since D contains the set D j∗ , which preserves
membership of H j∗ in Π , this transformation preserves membership in Π and therefore G[(V (H j∗) \ {ri}) ∪ {z∗}] is con-

tained in Π . But this graph is an induced subgraph of G[S j∗
i−1], thereby proving that the partition Si−1 that we started from

is not valid since its j∗-th partite set induces a graph containing a member of Π . It follows that when we start from a
valid partition Si−1, there is a partite set to which ri can be added without creating forbidden subgraphs. This proves the
lemma. �

Armed with this lemma we state the general kernelization theorem for partitioning problems.

Theorem 4. If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies, and
(ii) there is a non-decreasing polynomial p:N →N such that all graphs G that are vertex-minimal with respect to Π satisfy |V (G)| �

p(vc(G)),

then Partition into q Disjoint Π -free Subgraphs (vc) has a kernel with O(p(x) · xq·cΠ) vertices, where x := |X |.

480 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
Table 3
Problems that admit polynomial kernels when parameterized by the size of a given vertex cover, by applying Theorem 4.

Partition into q Forbidden property Π cΠ

Independent Sets {K2} 1
Bipartite Graphs Graphs with an odd cycle 2
Chordal Graphs Graphs with a chordless cycle 3
F-Minor-Free Graphs Graphs with an H ∈ F-minor maxH∈F �(H)

Planar Graphs Graphs with a K5 or K3,3 minor 4
Forests Graphs with a cycle 2

Proof. The kernelization reduces an instance (G, X) of Partition into q Disjoint Π -free Subgraphs (vc) by executing Reduce

(G, X,q · p(|X |),q · cΠ) to obtain a graph G ′ , and outputs the instance (G ′, X). As before, Observation 1 shows that the
running time is polynomial for fixed q, and that the output instance has the appropriate size. Note that we hide the
constant factor q in the asymptotic notation. It remains to prove that the two instances are equivalent.

If S1 ∪· · ·∪ Sq is a partition of V (G) such that G[Si] contains no induced subgraph in Π for all i ∈ [q], then that partition
can be safely restricted to the vertex set of G ′ to yield a solution to the output instance: since G ′[Si ∩ V (G ′)] is an induced
subgraph of G[Si], the Π -freeness of the latter implies that no set of the restricted partition induces a graph in Π . Hence if
the input is a yes-instance, then the output instance is as well. The reverse direction is given by Lemma 2, which concludes
the proof. �

The theorem has consequences for a multitude of graph partitioning problems; a sample is presented in Table 3. Observe
that countless other problems such as Partition into q Distance-Hereditary Graphs can be captured by the theorem, by
using Proposition 4 to find new graph properties characterized by few adjacencies.

Corollary 3. All problems in Table 3 fit into the framework of Theorem 4 and admit polynomial kernels parameterized by the size of a
given vertex cover.

Proof. Since the graph properties Π needed to establish the claims in the table were also used in Corollary 1, and the
preconditions for Theorem 2 are stronger than the preconditions to the current theorem, the proofs given there also apply to
this case. The table already lists the relevant choice of Π and the resulting cΠ needed to apply Theorem 4. For completeness
we state the corresponding choice of polynomial p(n), and the resulting size bounds.

Partition into q Independent Sets. Since the forbidden family Π is finite and contains only a single graph on two
vertices, cΠ = 1 and p(n) = 2 suffices. We obtain a kernel with O(|X |q) vertices, which may also be seen as a kernel for
q-Coloring parameterized by vertex cover.

Partition into q Bipartite Graphs. The graphs with an odd cycle are characterized by cΠ = 2 adjacencies. The number
of vertices in vertex-minimal graphs in this family is at most twice the vertex cover number, so p(n) = 2n suffices. The
resulting kernel size is O(|X |2q+1) vertices.

Partition into q Chordal Graphs. The forbidden family is characterized by cΠ = 3 adjacencies and the polynomial p(n) =
2n suffices, resulting in a kernel with O(|X |3q+1) vertices.

Partition into q F -Minor-Free Graphs. As shown in the proof of Corollary 1 the forbidden family is characterized
by cΠ = maxH∈F �(H) adjacencies and the polynomial can be taken to be a linear function whose coefficient depends
on F . We obtain a kernel with O(|X |q·�+1) vertices, where � = maxH∈F �(H).

As the last two problems are special cases of the previous item (with F = {K5, K3,3} resp. F = {K3}), this directly
shows that we obtain a kernel with O(|X |4q+1) and O(|X |2q+1) vertices for the planar and forest partitioning problems,
respectively. �

As mentioned in the introduction, Theorem 4 can be considered a strong generalization of the kernel with O(|X |q)
vertices for q-Coloring parameterized by vertex cover [36, Corollary 1]. Despite the generality of Theorem 4, the size of
the q-Coloring kernel obtained through Theorem 4 matches that of the q-Coloring kernel given earlier up to constant
factors. In the same paper [36] it is proven that for any q � 4 and ε > 0, q-Coloring parameterized by vertex cover does
not have kernels of bitsize O(|X |q−1−ε) unless NP ⊆ coNP/poly. This shows that in the kernel size bound of Theorem 4, the
appearance of q in the exponent is unavoidable.

Other partitioning problems that were listed by Garey and Johnson include Partition into q Dominating Sets [30, GT3]
(also known as Domatic Number), Partition into q Hamiltonian Subgraphs [30, GT13], and Partition into q Perfect Match-

ings [30, GT16]. These problems cannot be expressed in our framework. The last two have trivial polynomial-size kernels
parameterized by vertex cover, as one may easily verify that the size of all yes-instances is bounded polynomially in their
vertex cover number. A polynomial kernel can therefore be obtained by simply rejecting instances that are too large. The
problem Partition into q Dominating Sets may be interesting for further study.

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 481
Table 4
Kernelization complexity of testing for induced H subgraphs versus testing for H as a minor, when the graph H is given
as part of the input by specifying the index t . The problems are parameterized by the size of a given vertex cover. Kernel
lower bounds are under the assumption that NP � coNP/poly.

Graph H Testing for induced H Testing for H-minor

Kt ¬ ∃|X |O(1) kernel [8] ∃|X |O(1) kernel (Theorem 5)
K1,t ∃|X |O(1) kernel (Theorem 6) ¬ ∃|X |O(1) kernel [22]
Ks,t ¬ ∃|X |O(1) kernel (Theorem 7) ¬ ∃|X |O(1) kernel [22]
Pt ¬ ∃|X |O(1) kernel (Theorem 8) ∃|X |O(1) kernel (Theorem 3)
t · K2 ¬ ∃|X |O(1) kernel (Theorem 9) P-time solvable

4. Subgraph testing versus minor testing

Several important graph problems such as Clique, Long Path, and Long Induced Path, can be stated in terms of testing
for the existence of a certain graph H as an induced subgraph, or as a minor. Note that for these problems, the size of the
graph whose containment in G is tested is part of the input: the problem is polynomial-time solvable for each constant
size. We compared the kernelization complexity of induced subgraph- versus minor testing for various types of graphs,
parameterized by vertex cover, and found the surprising outcome that the kernelization complexity is often opposite: one
variant admits a polynomial kernel while the other does not, assuming NP � coNP/poly. In Sections 4.1–4.4 we discuss our
findings separately for each type of graph whose containment is tested. A summary of our results is given in Table 4. Con-
sidering the list of positive and negative results in the table, one might conjecture that testing for an induced H-subgraph
with vc(H) ∈O(1) admits a polynomial kernel. In Section 4.5.1 we prove that this implies NP ⊆ coNP/poly, and is therefore
unlikely. Similarly, the results in the table might lead one to conjecture that testing for any H-minor with |V (H)| ∈O(vc(G))

admits a polynomial kernel. However, we prove in Section 4.5.2 that this also implies NP ⊆ coNP/poly.

4.1. Testing for cliques

The Clique problem (i.e., testing for Kt as an induced subgraph) was one of the first problems known not to admit a
polynomial kernel parameterized by the size of a given vertex cover [8, Theorem 11]. Our main result of this section is a
polynomial kernel for the related minor testing problem.

Clique Minor Test (vc)

Input: A graph G with a vertex cover X , and an integer t � 1.
Parameter: The size |X | of the vertex cover.
Question: Does G contain Kt as a minor?

Our polynomial kernel uses reduction rules based on simplicial vertices, inspired by the recent work on kernels for
Treewidth [9].

Theorem 5. Clique Minor Test (vc) admits a kernel with O(|X |4) vertices.

The remainder of this section is devoted to the proof of the theorem. Firstly, observe that if a graph has a clique Kt

as a minor, then its vertex cover number is at least t − 1: taking a minor does not increase the vertex cover number,
and vc(Kt) = t − 1. Therefore, we assume that t � |X | + 1, as otherwise we may output a trivial no-instance. Our algorithm
is based on three reduction rules. In the following, we assume that the reduction rules are exhaustively applied in their
given order.

Reduction Rule 1. If there are distinct vertices v, w ∈ X such that v w /∈ E(G) and there are more than (|X |+1)2 vertices in V (G)\ X
adjacent both to v and w, then add the edge v w. Output the resulting instance (G ′, X, t).

Lemma 3. Rule 1 is safe.

Proof. Let G ′ be obtained from G by applying the reduction rule to v and w . As G is a subgraph of G ′ , any clique minor
in G is also contained in G ′ . Therefore we need to argue that if G ′ admits a Kt minor, then G admits one as well.

Assume that G ′ has a Kt minor, and let G∗ be a subgraph of G ′ containing a Kt minor model φ such that |V (G∗)| �
|V (Kt)| + vc(G ′) · (�(Kt)+ 1) = t + vc(G ′) · t , whose existence is guaranteed by Proposition 1. As vc(G ′)� |X | it follows that
|⋃v∈Kt

φ(v)| � t + |X | · t . Since t � |X | + 1 the number of vertices involved in the minor model is at most (|X | + 1)2. Hence
by the precondition to the reduction rule, there is a vertex y adjacent to both v and w which is not used in the minor
model.

482 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
Observe that if φ avoids one of v and w , it is also a clique model in G . Assume then that v ∈ φ(u1) and w ∈ φ(u2); it
may happen that u1 = u2. Now we can transform φ into a clique minor model φ′ in G , by adding y to φ(u1): contraction
of the edge v y in this branch set creates the edge v w that was missing in G . �

Note that exhaustive application of this rule already bounds the number of vertices in V (G) \ X that are not simplicial.
The next two rules take care of the simplicial vertices.

Reduction Rule 2. If there exists a simplicial vertex s ∈ V (G) \ X such that deg(s) � t − 1, output a trivial yes-instance.

Correctness of Rule 2 is obvious, as s together with its neighborhood already forms a Kt . The following rule is more
involved.

Reduction Rule 3. If there exists a simplicial vertex s ∈ V (G) \ X such that deg(s) < t − 1, delete it. Output the resulting in-
stance (G ′, X, t).

Lemma 4. Rule 3 is safe.

Proof. As G ′ is a subgraph of G , any clique minor in G ′ also exists in G . Therefore, we need to argue that if G admits a Kt

minor, then G ′ does as well.
Let φ be a clique minor model in G . If s does not belong to any branch set φ(v) for v ∈ Kt , then φ is also a clique minor

in G ′ and we are done. Assume then that s ∈ φ(v). Observe that φ(v) has to contain at least one vertex from NG(s), as
otherwise we would have that φ(v) = {s} and this φ(v) would be able to touch at most t − 2 other branch sets. Obtain φ′
from φ by removing s from φ(v) and observe that φ′ is a Kt model in G ′: all the connections that were introduced by s
are already present in the clique NG(s). �

The running time of the kernelization algorithm is polynomial, as the presented reduction rules can only add edges
inside X and remove vertices from V (G) \ X . Exhaustive application of the reduction rules results in an instance with at
most (|X | + 1)4 vertices.

Lemma 5. If Reduction Rules 1–3 are not applicable, then |V (G)| � (|X | + 1)4 .

Proof. After exhausting Reduction Rules 2 and 3, there are no simplicial vertices in V (G) \ X . As Rule 1 is not applicable,
for each of the at most

(|X |
2

)
non-edges in X there are at most (|X | + 1)2 vertices of V (G) \ X adjacent to both endpoints.

As every vertex of V (G) \ X is adjacent to the endpoints of some non-edge, |V (G ′)| � |X |+ (|X |
2

) · (|X |+ 1)2 � (|X |+ 1)4. �
This concludes the proof of Theorem 5. Let us briefly consider the possibility of extending this result to other graph

classes than cliques. Rule 1 can be generalized to the setting of testing for any graph of bounded independence number
as a minor; cliques are the special case of independence number one. If the graph to be tested has independence number
at most α, then we may add an edge between distinct nonadjacent vertices v, w in X if there are more than (|X | + α)2

vertices in V (G) \ X that are adjacent to both v and w . This rule allows the number of nonsimplicial vertices in the graph
to be bounded by a polynomial in the vertex cover size. Rule 2 also goes through in the general case; if G has a simplicial
vertex of degree at least t − 1, then it has a t-clique, and therefore contains all graphs on at most t vertices as a minor.
There seems to be no counterpart of Rule 3 in the general case, though. The proof of Theorem 12 shows that the low-degree
simplicial vertices are the hardest to get rid of, since no other types of vertices are needed in that kernelization lower bound
construction.

4.2. Testing for bicliques

We now consider the problem of testing for a biclique as an induced subgraph or as a minor. Observe first that if G
is a connected graph on at least three vertices, then the following conditions are equivalent: graph G has (a) a spanning
tree with t or more leaves, (b) a K1,t minor, (c) a connected dominating set of size at most |V (G)| − t . Hence there is
a trivial polynomial-parameter transformation [5] from Connected Dominating Set (vc) to K1,t Minor Test (vc). Dom et
al. [22, Theorem 5] showed2 that the former problem does not admit polynomial kernels unless NP ⊆ coNP/poly. Using the
fact that the classical versions of both problems are NP-complete, and the propagation of kernelization lower bounds by
polynomial-parameter transformations [13, Theorem 8], this implies that K1,t Minor Test (vc) does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

2 The lower bound they give is for Dominating Set parameterized by vertex cover, but a trivial transformation extends it to Connected Dominating Set.

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 483
The situation is more diverse when testing for a biclique as an induced subgraph. If we fix a constant c and wish to
test for a biclique Kc,t as induced subgraph, where t is part of the input, then this problem admits a polynomial kernel
parameterized by vertex cover. The kernel is developed in Section 4.2.1. Our main insight is a polynomial-size compression
which is obtained by guessing the model of the constant-size partite set within the vertex cover, reducing the problem to
the OR of

(|X |
c

)
instances of Independent Set parameterized by vertex cover. As Independent Set parameterized by vertex

cover is equivalent to Vertex Cover parameterized by the size of a given (suboptimal) vertex cover, each of these can be
compressed to a size polynomial in |X | using Theorem 2. The NP-completeness transformation then results in an instance
of the original problem of size O(|X |O(1)) which forms the kernel.

If the sizes of both partite sets are part of the input, then we can no longer obtain a polynomial kernel. In Section 4.2.2
we give a cross-composition from Balanced Biclique in Bipartite Graphs to show that testing for an induced Ks,t subgraph,
parameterized by vertex cover, does not admit a polynomial kernel unless NP ⊆ coNP/poly.

4.2.1. Polynomial kernel for induced Kc,t -testing
We give a polynomial kernel for the following problem.

Induced Kc,t Subgraph Test (vc)

Input: A graph G with a vertex cover X , and an integer t � 1.
Parameter: The size |X | of the vertex cover.
Question: Does G contain Kc,t as an induced subgraph?

Observe that c is treated as a constant, rather than a variable. The classical version Induced Kc,t Subgraph Test is NP-
complete, which will be used in the main proof of this section.

Proposition 5. Induced Kc,t Subgraph Test is NP-complete for every constant nonnegative integer c.

Proof. If c = 0 then the problem is equivalent to the NP-complete Independent Set problem [30, GT20]. For c � 1 we show
how to reduce an instance (G,k) of Independent Set, asking whether G has an independent set of size at least k, to an
equivalent instance of Induced Kc,t Subgraph Test, as follows. Let n be the number of vertices in G . Form the graph G ′ by
first adding 2n + 2c isolated vertices A to G , and then adding c independent vertices B which are adjacent to A ∪ V (G).
Then G ′ has an induced Kc,k+2n+2c subgraph if and only if G has an independent set of size k. In one direction, it is
easy to verify that the vertices of a size-k independent set in G , taken together with A ∪ B , induce a Kc,k+2n+2c subgraph
in G ′ . In the other direction, consider a vertex set S ′ ⊆ V (G ′) that induces a Kc,k+2n+2c subgraph. Let v ∈ V (G ′) correspond
to a vertex in the size-c side of the biclique, by the isomorphism. Then v has degree at least k + 2n + 2c in G ′ , since
that is the degree of vertices in the c-side of the biclique. Now observe that for any x ∈ V (G), we have NG ′ (x) ⊆ V (G) ∪ B
so degG ′ (x) � |V (G)|+|B| = n+c. For y ∈ A, we have NG ′ (y) ⊆ B so degG ′ (y)� |B| = c. As V (G ′) = V (G)∪ A ∪ B this implies
that v ∈ B . As a vertex in the size-c side of Kc,k+2n+2c has an independent set of size k + 2n + 2c in its neighborhood, and v
corresponds to such a vertex by the isomorphism, we find that NG ′ (v) contains an independent set of size k + 2n + 2c. By
construction we have NG ′ (v) ⊆ A ∪ V (G). As |A| = 2n+2c, there is an independent set of size at least k in NG ′ (v)\ A = V (G).
Since this set is also independent in G , this proves the equivalence of the two instances and completes the proof. �

With this proposition we can prove the following theorem.

Theorem 6. Induced Kc,t Subgraph Test (vc) admits a polynomial kernel for every constant c.

Proof. We may assume that t > c, as otherwise Kc,t is a graph of constant size and we can solve the problem in polynomial
time via brute-force. Let (G, X, t) be the input instance. We provide a polynomial-time algorithm that returns either:

(i) one instance of Induced Kc,t Subgraph Test (vc) with O(|X |c+1) vertices that is equivalent to (G, X, t), or
(ii) at most

(|X |
c

)
instances of Independent Set, each with O(|X |2) vertices, such that (G, X, t) is a yes-instance if and only

if at least one of them is a yes-instance.

The result of this algorithm gives a polynomial kernel in the following way. In case (i) we can simply output the obtained
instance of Induced Kc,t Subgraph Test (vc) as the result of the kernelization. For case (ii) we transform the OR of the
Independent Set instances into a single instance of Induced Kc,t Subgraph Test (vc) of size polynomial in |X |; the result
of this transformation is then used as the kernel output. For the transformation we use the intermediate classical problem
or-Independent Set: “Given a series of instances of Independent Set, is the answer to at least one yes”? This problem is
contained in NP as a nondeterministic Turing machine may simply guess an instance number and a solution, and then
verify whether it is correct. We transform the sequence of parameterized Independent Set instances into a single instance
of or-Independent Set of total bitsize polynomial in |X |, by appending all the instances and writing their parameter values
in unary. As there are

(|X |) instances, each with O(|X |2) vertices, this results in a classical instance of or-Independent Set
c

484 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
of bitsize polynomial in |X |. As or-Independent Set is contained in NP and Induced Kc,t Subgraph Test is NP-complete, we
may transform this or-Independent Set instance in polynomial time to an Induced Kc,t Subgraph Test instance, incurring
only a polynomial blowup in instance size. As the Induced Kc,t Subgraph Test instance at this point has size polynomial
in |X |, we may simply use the entire graph as the vertex cover X ′ to make an instance of Induced Kc,t Subgraph Test (vc),
of size and parameter bounded by a polynomial in |X |; this forms the output of the kernelization procedure.

Hence, we are left with presenting the algorithm achieving goal (i) or (ii) in polynomial time. In the following, whenever
we assume that (G, X, t) is a yes-instance, we fix some induced Kc,t subgraph of G and denote its bipartition by (A, B),
where |A| = c and |B| = t . First, we exhaustively apply the following reduction rule. For every vertex v ∈ V (G) we check
whether its neighborhood contains an independent set of size c. If this is not the case, we may safely delete this vertex
as it cannot be contained in any induced Kc,t ; note that in this step we use the assumption that t > c to verify that the
vertex cannot be in part A of the solution, either. This check can be done in polynomial time by iterating through all the
subsets of NG(v) of size c. From now on we may assume that each vertex of the graph has an independent set of size c in
its neighborhood.

Observe that if |V (G) \ X | � t · (|X |
c

)
, then (G, X, t) is a yes-instance, as some t vertices of V (G) \ X are adjacent to the

same independent set of size c in X . In this case we output a trivial yes-instance. Moreover, if this is not the case but t � |X |,
then |V (G)| � |X | + |X | · (|X |

c

) =O(|X |c+1) and we may output the graph obtained so far as the kernel in case (i).
We are left with the case that t > |X |. Note that if (G, X, t) is a yes-instance, then part B has to contain at least one

vertex from V (G) \ X , which means that A ⊆ X . For each subset A′ ⊆ X of size c that induces an independent set, we
construct an instance (G A′ , X A′ , t) of Independent Set (vc), by taking G A′ = G[⋂v∈A′ NG(v)] and X A′ = X ∩ V (G A′). Observe
that if (G, X, t) has a solution with A = A′ , then (G A′ , X A′ , t) is a yes-instance as the corresponding part B is contained
in

⋂
v∈A′ NG(v). On the other hand, if G A′ contains an independent set B ′ of size t , then A′ ∪ B ′ induces a Kc,t in G .

Therefore, (G, X, t) is a yes-instance if and only if at least one of the instances (G A′ , X A′ , t) is a yes-instance. Observing
that Independent Set (vc) is equivalent to Vertex Cover (vc) (by going to the dual target value k′ := n − k, while keeping
the parameter |X | the same) we can apply the kernelization algorithm for Vertex Cover (vc) from Theorem 2 to every
instance (G A′ , X A′ , t). Transforming the result back into Independent Set instances, we thus obtain a sequence of instances
of Independent Set with O(|X |2) vertices each, that can be returned in case (ii). �

The guessing steps used in the kernelization above are reminiscent of a Turing kernel. We are effectively creating a
compression (in the language of Harnik and Naor [33]) for Induced Kc,t Subgraph Test (vc) by reducing it to the OR of a
sequence of poly(|X |) Independent Set instances of size poly(|X |). The connection to Turing kernelization is further explored
in the conclusion.

4.2.2. Kernel lower bound for induced Ks,t -testing
In this section we prove that the requirement that c is kept fixed in the definition of Induced Kc,t Subgraph Test (vc)

is essential for obtaining a polynomial kernel. We consider the variant where the sizes of both partite sets are part of the
input, and establish a lower bound. The problem we study is formally defined as follows.

Induced Ks,t Subgraph Test (vc)

Input: A graph G with vertex cover X ⊆ V (G) and integers s, t � 1.
Parameter: The size |X | of the vertex cover.
Question: Does G contain Ks,t as an induced subgraph?

The crucial difference with Induced Kc,t Subgraph Test (vc) is that the value s is part of the input, rather than a constant.
We base our cross-composition on the balanced biclique problem in bipartite graphs.

Balanced Biclique in Bipartite Graphs

Input: A bipartite graph G with partite sets A ∪ B , and an integer k � 1.
Question: Are there subsets S ⊆ A and T ⊆ B such that G[S ∪ T] is a biclique, and |S| = |T | = k?

The problem is known to be NP-complete [30, GT24] and thus suitable for a cross-composition.

Theorem 7. Induced Ks,t Subgraph Test (vc) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We prove that Balanced Biclique in Bipartite Graphs cross-composes into Induced Ks,t Subgraph Test (vc), which
suffices to establish the claim by Theorem 1. Define a polynomial equivalence relation R as follows. Two strings
in Σ∗ are equivalent if (a) they both encode malformed instances, or (b) they encode valid instances (G1, A1, B1,k1)

and (G2, A2, B2,k2) of Balanced Biclique in Bipartite Graphs such that |A1| = |A2|, |B1| = |B2| and k1 = k2. This rela-
tion R partitions a set of instances on at most n vertices each into O(n3) equivalence classes, and is therefore a polynomial
equivalence relation.

We compose instances which are equivalent under R. So the input consists of r instances (G1, A1, B1,k), . . . , (Gr, Ar,

Br,k) of Balanced Biclique in Bipartite Graphs which all agree on the number of vertices in each partite set, and on the

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 485
value of k. By duplicating some instances we may assume without loss of generality that r is a power of two. Let n := |B1| =
· · · = |Br | and m := |A1| = · · · = |Ar |. For i ∈ [r] label the vertices in Bi as bi,1, . . . ,bi,n . We build a graph G∗ with vertex
cover X∗ as follows.

• Initialize G∗ as the disjoint union of the input graphs G1, . . . , Gr .
• For each j ∈ [n], identify the vertices b1, j, . . . ,br, j into a single vertex b∗

j . Let B∗ := {b∗
1, . . . ,b∗

n} contain the resulting
vertices, and observe that at this stage in the construction G∗[Ai ∪ B∗] is isomorphic to Gi for i ∈ [r].

• For j ∈ [log r], add to G∗ a biclique C j isomorphic to Kn+1,n+1, with partite sets denoted by P j and Q j , |P j | = |Q j | =
n + 1. The set of vertices corresponding to one value of j will be called the bit selector of j as it will be used in valid
solutions to select the bitvalue of the binary representation of the input instance corresponding to this solution.

• For j ∈ [log r], make the vertices of P j adjacent to the vertices of Ai if the j-th bit in the binary representation of
number i is a one. Similarly, make the vertices Q j adjacent to Ai if the j-th bit of i is a zero.

• Add a set D of (n + 1)(1 + 2 log r) vertices, adjacent to all the vertices of B∗ and all the vertices of all the bit selectors.
• Let X∗ contain the vertices of B∗ and all the vertices of all the bit selectors. Observe that |X∗| = n + 2(n + 1) log r =

|D| − 1 and that G∗ − X∗ is an independent set containing all the sets Ai and the set D; hence X∗ is a vertex cover
of G∗ whose size is suitably bounded for a cross-composition.

The construction is completed by setting s := k + (n + 1) log r and t := k + (n + 1)(1 + 2 log r) = k + |D|. We now prove the
completeness and soundness of the composition via two claims.

Claim. If for some i ∈ [r] the instance (Gi, Ai, Bi,k) is a yes-instance of Balanced Biclique in Bipartite Graphs, then (G∗, X∗, s, t)
is a yes-instance of Induced Ks,t Subgraph Test (vc).

Proof. Let S ⊆ Ai and T ⊆ Bi be such that |S| = |T | = k and Gi[S ∪ T] is a biclique. Let T ′ be the image of T in the
identifications, i.e., T ′ = {b∗

j | bi, j ∈ T }. For j ∈ [log r] define R j := P j if the j-th bit of binary encoding of i is equal to one,
and define R j := Q j otherwise. We claim that the set S ∪ T ′ ∪ D ∪⋃

j∈[log r] R j induces a biclique in G∗ , with T ′ ∪⋃
j∈[log r] R j

as one partite set and S ∪ D as the second. Indeed, observe that:

• D, S, T ′,
⋃

j∈[log r] R j are independent sets by the construction of G∗;
• there is no edge between D and S;
• there is no edge between

⋃
j∈[log r] R j and T ′;

• D is adjacent to the whole set X∗ , so in particular to T ′ ∪ ⋃
j∈[log r] R j ;

• as S ⊆ Ai , by the construction of G∗ we have that every vertex of S is adjacent to every vertex of R j , for all j ∈ [log r];
• all vertices in S are adjacent to all vertices of T ′ , as Gi[S ∪ T] is a biclique and G∗[Ai ∪ B∗] is isomorphic to Gi .

We conclude the proof by checking that |T ′ ∪ ⋃
j∈[log r] R j | = k + (n + 1) log r = s and |S ∪ D| = k + |D| = t . ♦

Claim. If (G∗, X∗, s, t) is a yes-instance of Induced Ks,t Subgraph Test (vc), then for some i ∈ [r] the instance (Gi, Ai, Bi,k) is a
yes-instance of Balanced Biclique in Bipartite Graphs.

Proof. Assume that there exist sets S∗ and T ∗ , |S∗| = s and |T ∗| = t , such that G∗[S∗ ∪ T ∗] is a biclique with S∗ and T ∗ as
partite sets. As |T ∗| = t � |D| > |X∗|, the set T ∗ \ X∗ is nonempty. This means that in T ∗ there is a vertex with the whole
neighborhood entirely contained in X∗ , so S∗ ⊆ X∗ . From every pair (P j, Q j), for j ∈ [log r], the independent set S∗ can
have a nonempty intersection with at most one of them. Assume that for some j we have P j ∩ S∗ = Q j ∩ S∗ = ∅. It follows
that |S∗| � (n +1) log r − (n +1)+|B∗| < (n +1) log r +k = s, which is a contradiction. Hence, for all j ∈ [log r] the set S∗ has
a nonempty intersection with exactly one set of P j and Q j . Moreover, observe that |S∗ ∩ ⋃

j∈[log r](P j ∪ Q j)| � (n + 1) log r,
so |S∗ ∩ B∗| � k.

Define i as an integer with log r binary digits, such that the j-th bit is equal to one if P j ∩ S∗ �= ∅ and is equal to zero
if Q j ∩ S∗ �= ∅. By the construction of G∗ , the set Ai is the only set from {A1, . . . , Ar} which contains vertices simultaneously
adjacent to all vertices from S∗ contained in bit selectors. There is no edge between B∗ and bit selectors, so we infer
that T ∗ ⊆ Ai ∪ D . As |T ∗| = k + |D|, we infer that |T ∗ ∩ Ai | � k.

Recall that G∗[B∗ ∪ Ai] is isomorphic to Gi , hence (T ∗ ∩ Ai) ∪ (S∗ ∩ B∗) induces a biclique in a graph isomorphic to Gi .
As |T ∗ ∩ Ai |, |S∗ ∩ B∗| � k, we infer that Gi is a yes-instance of Balanced Biclique in Bipartite Graphs. ♦

As this proves that the output instance acts as the logical OR of the inputs, it concludes the cross-composition and proves a
kernel lower bound by Theorem 1. �

486 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
4.3. Testing for paths

We turn our attention to testing for the containment of a path. Since a graph contains Pt as a minor if and only if it
contains Pt as a subgraph, testing for a Pt minor is equivalent to the Long Path problem and hence has a polynomial kernel
parameterized by vertex cover, through Theorem 3. The related induced subgraph testing problem, defined formally below,
is however unlikely to admit a polynomial kernel.

Long Induced Path (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at least k such that G[S] is a simple path?

Using cross-composition, we start from the following classical problem.

Hamiltonian s − t Path

Input: A graph G with distinct vertices s and t .
Question: Is there a Hamiltonian path from s to t in G?

Before we proceed to the formal description, let us shed some light on the intuition behind the proof. We cross-
compose r instances of Hamiltonian s − t Path into a single instance of Long Induced Path (vc). The main idea behind
the construction is to create an instance containing three paths P A, P B , P C of consecutive degree-two vertices, such that
any sufficiently long induced path traverses all these paths. The only connections between P A and P B can be made by
visiting a vertex zi outside the vertex cover; there is one such vertex zi for each input instance. Hence, the connection
between P A and P B selects an instance. The connection between P B and P C serves for checking that the selected instance
can indeed be solved. We create a universal gadget in which the connection between P B and P C has to be realized. Using
the inducedness requirement, we encode adjacency matrices of the input instances into the adjacencies between vertices zi
and the universal gadget: selection of some zi “carves out” the i-th instance from the universal gadget by forbidding usage
of vertices adjacent to zi . We now proceed to the formal description of the composition.

Theorem 8. Long Induced Path (vc) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. By Theorem 1 and the NP-completeness of Hamiltonian s − t Path [30, GT39], it is sufficient to show that Hamil-

tonian s − t Path cross-composes into Long Induced Path (vc). We define a polynomial equivalence relation R as follows.
We say that two strings in Σ∗ are equivalent if (a) they both encode malformed instances, or (b) they encode valid in-
stances (G1, s1, t1) and (G2, s2, t2) of Hamiltonian s − t Path such that |V (G1)| = |V (G2)|. This implies that R partitions a
set of instances on at most n vertices each into O(n) equivalence classes, and is therefore a polynomial equivalence relation.

We show how to compose a set of instances which are equivalent under R. So the input consists of r in-
stances (G1, s1, t1), . . . , (Gr, sr, tr) of Hamiltonian s − t Path such that |V (Gi)| = n for i ∈ [r]. We may assume that n � 9,
since we can solve smaller instances in constant time, reducing to a constant-size yes- or no-instance. For i ∈ [r] label the
vertices in V (Gi) as v1, . . . , vn such that si = v1 and ti = vn . We build a graph G∗ with vertex cover X∗ as follows.

1. Add three simple paths P A, P B and P C to G∗ , containing n3 vertices each. Let the endpoints of these paths
be xA, y A, xB , yB and xC , yC respectively.

2. For j ∈ [n] add a vertex v∗
j to G∗ .

3. For { j,h} ∈ ([n]
2

)
add a vertex e j,h to G∗ and make it adjacent to v∗

j and v∗
h .

4. For i ∈ [r], do the following. Add a vertex zi to G∗ . For all pairs { j,h} ∈ ([n]
2

)
such that v j vh /∈ E(Gi) add the edge zie j,h

to G∗ .
5. Make y A and yB adjacent to all vertices zi for i ∈ [r].
6. Make xB adjacent to v∗

1, and make xC adjacent to v∗
n . This concludes the construction of G∗ , which is illustrated in

Fig. 1.

We define a set X∗ := V (G∗)\{zi | i ∈ [r]}. Since we did not add any edges between the z-vertices, they form an independent
set and therefore X∗ is a vertex cover of G∗ . It is easy to verify that the size of X∗ is polynomial in n, and therefore the
size of the parameter |X∗| is suitably bounded for a cross-composition. We set k∗ := 3n3 + 2n. The construction can be
performed in polynomial time, so it remains to prove that (G∗, X∗,k∗) is yes if and only if one of the input instances is yes.
We first establish some properties of the constructed instance.

Claim. Let S∗ ⊆ V (G) induce a simple path in G∗ , and let P∗ := G∗[S∗].

1. |S∗ \ (V (P A) ∪ V (P B) ∪ V (P C))| < n3 − 3.
2. If there is a path P W ∈ {P A, P B , P C } such that |S∗ ∩ V (P W)| � 3 then |S∗| < k∗ .

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 487
Fig. 1. An example of the lower-bound construction of Theorem 8. (a) The first input instance. (b) The graph G∗ which is the result of cross-composing four
inputs on n = 4 vertices each. Note that the composition algorithm only builds the graph G∗ when n � 9, but this picture gives the correct intuition for
the construction. Edges between {z2, z3, z4} and {e j,h | { j,h} ∈ ([4]

2

)} have been omitted for readability. The vertices below the horizontal dashed line form
the vertex cover X∗ .

Proof. Define Ĝ∗ := G∗ − (V (P A) ∪ V (P B) ∪ V (P C)).
(1) For each of the paths P A, P B , P C there are at most two vertices on the path which have neighbors outside the

path. Hence if we take the path P∗ , then deleting the vertices of V (P A) from P∗ splits the path into at most three pieces,
increasing the number of connected components by at most two. This also holds for P B and P C . Hence P̂∗ := P∗ − (V (P A)∪
V (P B)∪ V (P C)) is an induced linear forest in Ĝ∗ containing no more than seven connected components, with |S∗ \ (V (P A)∪
V (P B) ∪ V (P C))| = |V (P̂∗)|. Each connected component of P̂∗ is an induced path in Ĝ∗ . Since the set X̂∗ := {v∗

i | i ∈ [n]} ∪
{e j,h | { j,h} ∈ ([n]

2

)} is a vertex cover for Ĝ∗ of size n + (n
2

)
it follows by Proposition 2 that each connected component of P̂∗

has at most 2n + 2
(n

2

) + 1 vertices. Since the number of connected components is at most seven, the number of vertices

in P̂∗ is at most 7 · (2n + 2
(n

2

) + 1), which is less than n3 − 3 for n � 9.
(2) Assume that S∗ contains at most three vertices from P A ; the other two cases will be completely analogous.

∣
∣S∗∣∣ = ∣

∣S∗ \ (
V (P A) ∪ V (P B) ∪ V (P C)

)∣∣ + ∣
∣S∗ ∩ V (P A)

∣
∣ + ∣

∣S∗ ∩ V (P B)
∣
∣ + ∣

∣S∗ ∩ V (P C)
∣
∣

<
(
n3 − 3

) + ∣
∣S∗ ∩ V (P A)

∣
∣ + ∣

∣S∗ ∩ V (P B)
∣
∣ + ∣

∣S∗ ∩ V (P C)
∣
∣ by (1).

�
(
n3 − 3

) + 3 + ∣∣S∗ ∩ V (P B)
∣∣ + ∣∣S∗ ∩ V (P C)

∣∣ by assumption.

�
(
n3 − 3

) + 3 + n3 + n3 by definition of G∗.
� k∗. by definition of k∗.

Hence if there is one path among {P A, P B , P C } such that S∗ contains at most three vertices on it, then |S∗| < k∗ . ♦

We now prove that (G∗, X∗,k∗) indeed acts as the OR of the input instances. For the first direction, assume that G∗ has
a path on at least k∗ vertices induced by the vertex set S∗ . Let P∗ := G∗[S∗] be the path induced by S∗ . By (2) the set S∗
contains at least three vertices on each of the paths P A, P B , P C . Since P A and P C each contain exactly one vertex which
has neighbors outside the path, it is easy to see that S∗ ∪ V (P A) ∪ V (P C) is also an induced path; hence we may assume
without loss of generality that S∗ contains all vertices of P A and P C , which means that the endpoints of P∗ must be the
vertices xA and yC since they have degree one in G∗ . Since no endpoint of P∗ can lie on P B , and S∗ contains at least
three vertices on P B , it follows that S∗ must contain all vertices of P B since the internal vertices on that path do not have
neighbors outside the path. Hence V (P A) ∪ V (P B) ∪ V (P C) ⊆ S∗ . Since the only neighbors of vertex y A are the vertices zi
for i ∈ [r] and the single neighbor on the path P A , the path P∗ must contain an edge y A zi∗ for some i∗ ∈ [r] since y A must
have two neighbors on the path. By construction of G∗ we know that zi∗ yB is an edge in G∗ . This implies that if we traverse
the path P∗ starting from the endpoint xA then we traverse P A , visit zi∗ , and then go to yB . Since all vertices of P B are
in S∗ the path then traverses P B until it reaches xB . The unique neighbor v∗

1 of xB not on P B must be the successor of xB

on the path P∗ . The path now visits some more vertices. Since all vertices of P C are contained in S∗ , and xC is the only
vertex of P C adjacent to vertices not on P C , the path P∗ must finish by reaching xC and traversing P C .

Let us now consider the subpath Pi∗ of P∗ which starts at the successor of xB on the path, and stops with the prede-
cessor of xC on the path. The successor of xB must be v∗ , and the predecessor of xC must be v∗

n , since vertices xB and xC
1

488 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
have degree two in G∗; hence Pi∗ is an induced path from v∗
1 to v∗

n . Since there are 2n3 + 1 vertices on P∗ before xB ,
and n3 vertices on P∗ on the final part from xC to the endpoint, the subpath Pi∗ must contain at least k∗ − 3n3 − 1 = 2n − 1
vertices. Since the vertices y A and yB are contained in S∗ and are adjacent to zi∗ , the set S∗ cannot contain any other
vertices adjacent to zi∗ (otherwise these would induce an edge not on the path P∗). This implies that in particular, S∗
cannot contain vertices e j,h for which v j vh /∈ E(Gi∗) since these were made adjacent to zi∗ in the construction. The set S∗
cannot contain any vertices zi for i �= i∗ , since all such vertices are adjacent to y A, yB ∈ S∗ and together with zi∗ ∈ S∗ such
a vertex zi would induce a cycle. This shows that the subpath Pi∗ can contain only vertices v∗

j for j ∈ [n], and vertices e j,h

for v j vh ∈ E(Gi∗). Since the edge vertices e j,h are only adjacent to the vertices which form their endpoints, it now follows
that the edge set {v j vh | e j,h ∈ S∗} is a path in Gi∗ between v1 = si∗ and vn = ti∗ containing n − 1 edges and n vertices,
which implies that Gi∗ has a Hamiltonian v1 − vn path and proves that Gi∗ is yes.

For the reverse direction, assume that the set Ci∗ ⊆ E(Gi∗) are the edges on a Hamiltonian v1 − vn path in Gi∗ . Then it
is straightforward to verify using the construction of G∗ that S∗ := V (P A) ∪ V (P B) ∪ V (P C) ∪ {zi∗ } ∪ {v∗

i | i ∈ [n]} ∪ {e j,h |
v j vh ∈ Ci∗ } induces a simple path in G∗ and has size k∗ . This concludes the proof. �
4.4. Testing for matchings

Matchings (i.e., disjoint unions of K2’s) are the last type of graphs whose containment testing we consider. It is not
difficult to see that G has a t · K2 minor if and only if G has a matching of size t , and hence we can solve the minor-testing
variant of this containment problem in polynomial time by simply computing a maximum matching. On the other hand,
finding an induced matching is a classic NP-complete problem and we give evidence that it does not admit a polynomial
kernel parameterized by vertex cover. In the next section we use a bit-selector strategy to cross-compose Maximum Induced

Matching in Bipartite Graphs into our target problem, exploiting the inducedness requirement to allow the bit selector to
isolate a solution corresponding to a single input instance.

4.4.1. Kernelization lower bound for induced matching
Recall that an induced matching in a graph G is a matching Y ⊆ E(G) such that no edge in E(G) \ Y connects the

endpoints of two edges of Y , or equivalently, such that all connected components of the subgraph induced by the endpoints
of Y are isomorphic to K2. The size of an induced matching is measured in terms of the number of edges in it. The goal of
this section is to prove a superpolynomial kernel lower bound for the following problem.

Maximum Induced Matching (vc)

Input: A graph G with a vertex cover X , and an integer k � 1.
Parameter: The size |X | of the vertex cover.
Question: Is there an induced matching Y ⊆ E(G) in G of size at least k?

Using the technique of cross-composition, we start from the following related classical problem.

Maximum Induced Matching in Bipartite Graphs

Input: A bipartite graph G with partite sets A ∪ B , and an integer k � 1.
Question: Is there an induced matching Y ⊆ E(G) in G of size at least k?

The cross-composition embeds the OR of bipartite instances into a single instance of the parameterized problem with a small
parameter value. The construction is based on a bit masking scheme that represents the indices of the r input instances
by log r bits, as in the proof of Theorem 7. We use repeated structures in the constructed graph to simulate heavy-weight
edges.

Theorem 9. Maximum Induced Matching (vc) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We prove that Maximum Induced Matching in Bipartite Graphs cross-composes into Maximum Induced Matching

(vc), which suffices to establish the claim by Theorem 1 and the NP-completeness of the classical problem [15]. Define a
polynomial equivalence relation R as follows. Two strings in Σ∗ are equivalent if (a) they both encode malformed instances,
or (b) they encode valid instances (G1, A1, B1,k1) and (G2, A2, B2,k2) of Maximum Induced Matching in Bipartite Graphs

such that |A1| = |A2|, |B1| = |B2| and k1 = k2. This relation R partitions a set of instances on at most n vertices each
into O(n3) equivalence classes, and is therefore a polynomial equivalence relation.

We compose instances which are equivalent under R. So the input consists of r instances (G1, A1, B1,k), . . . , (Gr, Ar,

Br,k) of Maximum Induced Matching in Bipartite Graphs which all agree on the number of vertices in each partite set,
and on the value of k. By duplicating some instances we may assume without loss of generality that r is a power of two.
Let n := |B1| = · · · = |Br |. For i ∈ [r] label the vertices in Bi as bi,1, . . . ,bi,n . We build a graph G∗ with vertex cover X∗ as
follows.

• Initialize G∗ as the disjoint union of the input graphs G1, . . . , Gr .

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 489
• For each j ∈ [n], identify the vertices b1, j, . . . ,br, j into a single vertex b∗
j . Let B∗ := {b∗

1, . . . ,b∗
n} contain the resulting

vertices, and observe that at this stage in the construction G∗[Ai ∪ B∗] is isomorphic to Gi for i ∈ [r].
• For j ∈ [log r], add vertices {xs, j, ys, j, zs, j | s ∈ [n]} to G∗ and turn each triplet into a clique. As in the proof of Theorem 7

the set of vertices corresponding to one value of j is the bit selector of j.
• For j ∈ [log r], make the vertices {xs, j | s ∈ [n]} adjacent to the vertices Ai if the j-th bit in the binary representation of

number i is a one. Similarly, make the vertices {ys, j | s ∈ [n]} adjacent to Ai if the j-th bit of i is a zero. Let {xs, j zs, j |
s ∈ [n]} be the x-edges of position j, and let {ys, j zs, j | s ∈ [n]} be the y-edges of position j.

• Let X∗ contain the vertices of B∗ and all the vertices of all the bit selectors. Observe that |X∗| = n + 3n log r and
that G∗ − X∗ is an independent set containing all the sets Ai ; hence X∗ is a vertex cover of G∗ whose size is suitably
bounded for a cross-composition.

The construction is completed by setting k∗ := k + n log r and using the instance (G∗, X∗,k∗) as the output of the cross-
composition. We will need the following structural claim.

Claim. G∗ has a maximum induced matching Y ∗ ⊆ E(G∗) such that for every j ∈ [log r] and s ∈ [n], if Y ∗ contains an edge incident
with the triple {xs, j, ys, j, zs, j} then Y ∗ contains xs, j zs, j or ys, j zs, j .

Proof. Suppose Y ∗ is a maximum induced matching containing an edge incident with the triple {xs, j, ys, j, zs, j} for some
choice of j and s, but the edge is neither xs, j zs, j nor ys, j zs, j . As the triple forms a clique in G∗ , by the induced property of
Y ∗ it follows that Y ∗ contains at most one edge incident with it. Using the starting assumption we then find that Y ∗ contains
exactly one edge incident with the triple. Since vertex zs, j is only adjacent to xs, j and ys, j we find that the edge e ∈ Y ∗
incident with the triple, is incident with at least one of the vertices xs, j or ys, j . If e is incident with xs, j then we may
replace it by the edge xs, j zs, j to obtain another induced matching; zs, j was not matched before, and is not adjacent to any
matched vertices except xs, j . Similarly we may replace e by {ys, j, zs, j} if e is incident with ys, j . As this replacement step
can be performed independently for each triple, the claim follows. ♦

Claim. G∗ has a maximum induced matching Y ∗ ⊆ E(G∗) such that for every bit position j ∈ [log r], either all the x-edges of position j
are in Y ∗ , or all the y-edges of position j are in Y ∗ .

Proof. Consider a maximum induced matching Y ∗ in G∗ , and assume there is some bit position j ∈ [log r] for which the
claim does not hold. By the previous claim we may assume that if Y ∗ contains an edge incident with a triple {xs, j, ys, j, zs, j},
then it is the x-edge xs, j zs, j or the y-edge ys, j zs, j .

If at least one x-edge (resp. y-edge) of position j is contained in Y ∗ , then it is easy to verify that removing all edges
incident with the vertices of bit selector j and adding all x-edges (resp. y-edges) for that bit selector results in an induced
matching which is not smaller, and in which the status of edges for other bit selectors is not changed; this follows from
the fact that the adjacencies of the respective vertices to the outside the bit selector are identical. So in the remainder it
suffices to consider a bit position j ∈ [log r] for which Y ∗ contains no edge incident with a vertex in the bit selector. We
exhibit an induced matching which is at least as large as Y ∗ and which has the desired form.

Observe that the bit selector for position j contains n triples, each of which forms a clique. As an induced matching
cannot contain two edges incident with the same clique, Y ∗ contains at most one edge incident with each triple for each
bit selector j′ �= j, and by assumption it contains no edges incident with bit selector j. Since the union of the sets Ai
for i ∈ [r] forms an independent set in G∗ , all matching edges in Y ∗ have at least one endpoint in B∗ , or one endpoint in a
bit selector. As B∗ has exactly n vertices, this bounds the number of edges in Y ∗ by n + ((log r) − 1)n = n log r. Now observe
that the union of all the x-edges of the bit selectors forms an induced matching of size n log r, and has the desired form. As
we assumed Y ∗ to be maximum, the described induced matching is also maximum which concludes the proof. ♦

To complete the cross-composition it remains to prove that the constructed instance acts as the OR of the inputs. For
the first direction, assume that G∗ has a maximum induced matching Y ∗ ⊆ E(G∗) of size at least k∗ . By the second claim
we may assume that for each j ∈ [log r], the matching Y ∗ contains all the x-edges or all the y-edges of position j. Now
consider the instance number i∗ whose binary expansion has a zero (resp. one) in the j-th bit position if Y ∗ contains the
x-edges (resp. y-edges) of bit selector j. By definition of the adjacencies of the bit selectors it follows that for all instance
numbers i′ ∈ [r] with i′ �= i∗ , no vertex of Ai′ is the endpoint of an edge in Y ∗ . To see this, consider a bit position j ∈ [log r]
where the binary expansion of i′ and i∗ differ; the x-vertices (resp. y-vertices) of instance selector j are endpoint of edges
in Y ∗ whose other endpoints are formed by the z-vertices. As the x-vertices (resp. y-vertices) are adjacent to Ai′ by the
choice of j, inducedness of the matching shows that Ai′ contains no endpoints of matching edges. Hence Y ∗ is also an
induced matching, of the same size, in the graph obtained from G∗ by removing the vertices Ai′ for i′ �= i∗ . Each triple
of an instance selector is a clique, and by assumption on the form of Y ∗ the matching contains the x-edge or the y-edge
of the triple. Since an induced matching cannot contain two edges incident with the same clique, this shows that no
edges between Ai∗ and an instance selector can be contained in Y ∗ . Therefore it follows that if we delete the vertices Ai′
for i′ �= i∗ together with the vertices of the instance selectors from G∗ , we are left with an induced submatching of size at

490 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
least k′ − (n log r) = k. But the resulting graph is G∗[B∗ ∪ Ai∗], and as observed in the construction of G∗ it is isomorphic
to Gi∗ , which proves that Gi∗ contains an induced matching of size k and is a yes-instance.

For the reverse direction, assume there is some index i∗ ∈ [r] such that Gi∗ has an induced matching Y of size k.
As G∗[B∗ ∪ Ai∗] is isomorphic to Gi∗ , this implies that the induced subgraph admits an induced matching of size k. Now
augment this into an induced matching in G∗ by adding the x-edges of the bit selectors for positions j where the binary
expansion of i∗ has a zero, and the y-edges where the expansion has a one. Using the description of G∗ it is easy to verify
that the resulting set of edges is an induced matching, containing a total of k + n log r edges. This proves that (G∗, X∗,k∗) is
a yes-instance.

As the construction can be carried out in polynomial time and embeds the OR of the input instances into a single
instance of the target problem with parameter value |X∗| = n + 3n log r, this concludes the proof of Theorem 9. �
4.5. Lower bounds for generalized problem statements

As discussed in the introduction of Section 4 there are two obvious ways to attempt to generalize the positive results of
Table 4. We show that these generalizations for the induced subgraph testing problem (Section 4.5.1) and the minor testing
problem (Section 4.5.2) fail to admit polynomial kernels, unless NP ⊆ coNP/poly.

4.5.1. Finding induced subgraphs with constant-size vertex covers
In this section we show that even the problem of testing for the existence of an induced subgraph with a constant-size

vertex cover, is unlikely to admit a polynomial kernel when parameterized by the size of a vertex cover for the host graph.
We use the following family of graphs for our proof.

Definition 4. Let s, t � 0 be integers, and construct a graph as follows. Create a clique C1 on five vertices, and a vertex-
disjoint clique C2 on four vertices. Add two vertices z1 and z2 and the edge z1z2. Made z1 adjacent to all members of C1,
and make z2 adjacent to all members of C2. Add s isolated vertices and make them adjacent to z1. Add t isolated vertices
and make them adjacent to z2. The resulting graph is Ψs,t .

Observe that all graphs Ψs,t have a vertex cover of size 11 consisting of C1 ∪ C2 ∪ {z1, z2}. We shall prove that the
following problem is unlikely to admit a polynomial kernel, and thereby that the induced subgraph testing problem can still
be hard to kernelize when looking for graphs with constant-size vertex covers.

Induced Ψs,t -Subgraph Test (vc)

Input: A graph G with a vertex cover X , and integer s, t � 0.
Parameter: The size |X | of the vertex cover.
Question: Does G contain Ψs,t as an induced subgraph?

We prove a superpolynomial kernel lower bound for this parameterized problem using cross-composition. The following
variant of Independent Set will be used as the source problem for the composition.

Independent Set on P2-Split Graphs

Input: A graph G , an independent set Y in G such that each component of G − Y is isomorphic to P2, and an integer k.
Question: Does G have an independent set of size at least k?

Jansen et al. [35, Lemma 10] proved that Independent Set on P2-Split Graphs is NP-complete, and used it to prove a kernel
lower bound for a weighted version of Vertex Cover. By adapting their construction, we prove a lower bound for Induced

Ψs,t -Subgraph Test (vc).

Theorem 10. Induced Ψs,t -Subgraph Test (vc) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. By Theorem 1 and the NP-completeness of Independent Set on P2-Split Graphs, it is sufficient to prove that In-

dependent Set on P2-Split Graphs cross-composes into Induced Ψs,t -Subgraph Test (vc). As in the cross-composition
of Theorem 9, we define a polynomial equivalence relation R on instances of Independent Set on P2-Split Graphs

such that all malformed instances are equivalent. Two well-formed instances (G1, Y1,k1) and (G2, Y2,k2) are equivalent
if k1 = k2, |Y1| = |Y2| and |V (G1)| = |V (G2)|. It is easy to verify that these choices satisfy Definition 1.

We now give an algorithm that receives r instances of Independent Set on P2-Split Graphs which are equivalent un-
der R, and constructs an instance of Induced Ψs,t -Subgraph Test (vc) with small parameter value that acts as the OR
of the inputs. If the input instances are not well-formed, then we output a constant-sized no-instance. From now on
we may therefore assume that the input instances are (G1, Y1,k1), . . . , (Gr, Yr,kr) such that |V (G1)| = · · · = |V (Gr)| = n,
|Y1| = · · · = |Yr | = t and k1 = · · · = kr = k. As in the proof of Theorem 9 we may assume that r is a power of two. We
construct an instance of Induced Ψs,t -Subgraph Test (vc) as follows.

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 491
For each i ∈ [r], the graph Gi − Yi contains n − t vertices and is a disjoint union of P2’s by the definition of Independent

Set on P2-Split Graphs. Let q = n−t
2 be the number of P2’s in each graph Gi − Yi . For each i ∈ [r] label the vertices of

the P2’s in Gi − Yi by ai,1,bi,1,ai,2,bi,2, . . . ,ai,q,bi,q such that ai, jbi, j is an edge in Gi − Yi for j ∈ [q]; this implies that the
only edges of Gi − Yi are those between the a- and b-vertices with the same number. Construct a graph G∗ as follows.

1. Initialize G∗ as the disjoint union of the input graphs G1, . . . , Gr . This causes G∗ to contain Yi for all i ∈ [r].
2. For each j ∈ [q], identify the vertices a1, j, . . . ,ar, j into a single vertex a∗

j , and identify b1, j, . . . ,br, j into a single ver-
tex b∗

j . Let D∗ := ⋃
j∈[q]{a∗

j ,b∗
j }. Observe that at this stage in the construction G∗[Yi ∪ D∗] is isomorphic to Gi for i ∈ [r].

3. For j ∈ [log r] add vertices s0
j , s1

j to G∗ , and add the edge s0
j s1

j . Connect these to the remainder of the graph as follows.

• For i ∈ [r] and j ∈ [log r], do the following. If the j-th bit of the binary expansion of number i is a zero, then make s0
j

adjacent to all vertices of Yi that were added to G∗ in the first step. If the bit is a one, then instead make s1
j adjacent

to Yi .

Before we continue the construction, let us observe that at this stage V (G∗) can be partitioned into three independent
sets:

⋃
i∈[r] Yi is an independent set, (

⋃
j∈[q] a∗

j) ∪ (
⋃

j∈[log r] s0
j) is an independent set, and the remainder (

⋃
j∈[q] b∗

j) ∪
(
⋃

j∈[log r] s1
j) is an independent set. Hence G∗ does not have a clique of size four or more at this point.

4. Add a clique C1 on five vertices, and a clique C2 on four vertices, to G∗ .
5. Add two vertices z1, z2 and the edge z1z2 to G∗ . Make z1 adjacent to C1 ∪ (

⋃
i∈[r] Yi) ∪ D∗ , and make z2 adjacent

to C2 ∪ (
⋃

j∈[log r]{s0
j , s1

j }). This concludes the description of G∗ .

Observe that as the edges between sets Yi and D∗ were not changed in these last steps, the final graph G∗[Yi ∪ D∗] is
isomorphic to Gi for all i ∈ [r]. Since G∗ did not have cliques of size four or more in its intermediate stage, it is easy to
see that the unique maximum clique in G∗ is C1 ∪ {z1}, consisting of six vertices. In the graph G∗ − (C1 ∪ {z1}), the unique
maximum clique is C2 ∪ {z2} consisting of five vertices. We use this property of G∗ in the proof of the following claim.

Claim. There is an index i ∈ [r] such that Gi has an independent set of size k if and only if G∗ contains Ψk,log r as an induced subgraph.

Proof. (⇒) Assume that Gi∗ has an independent set of size k for i∗ ∈ [r]. Since Gi∗ is isomorphic to G∗[Yi∗ ∪ D∗], there is
a size-k independent set S∗ ⊆ Yi∗ ∪ D∗ in G∗ . Consider the binary expansion of the number i∗ . Construct a vertex set B∗
corresponding to this number as follows. For j ∈ [log r], if the j-th bit of i∗ is a one, then add s0

j to B∗ . Otherwise add s1
j

to B∗ . We end up with a set B∗ of size log r. Using the construction of G∗ it is easy to see that B∗ is independent in G∗ .
Since we have picked the vertices corresponding exactly to the complement of the binary expansion of i∗ , there are no edges
between S∗ and B∗ . Now observe that by construction, z1 is adjacent to all members of S∗ but none of B∗ , whereas z2
is adjacent to all members of B∗ but none of S∗ . Vertex z1 is adjacent to the five-clique C1, but no other vertices are
adjacent to that clique, while z2 is the only vertex not in C2 that is adjacent to the four-clique C2. Since the edge z1z2
is present, |S∗| = k, and |B∗| = log r it follows that G∗[S∗ ∪ B∗ ∪ C1 ∪ C2 ∪ {z1, z2}] is isomorphic to Ψk,log r , proving this
direction of the claim.

(⇐) Suppose that G∗ contains Ψk,log r as an induced subgraph. As G∗ has a unique six-clique, and Ψk,log r has a unique
six-clique, these six-cliques must be mapped to each other by the isomorphism. Moreover, since z1 is the only vertex of the
six-clique that has neighbors outside the six-clique (in both G∗ and Ψk,log r), the vertices labeled z1 in G∗ and Ψk,log r must
be mapped to each other by the induced subgraph isomorphism. Since the graph G∗ − (C1 ∪ {z1}) has a unique five-clique,
and Ψk,log r − (C1 ∪ {z1}) has also a unique five-clique, we infer that these five-cliques must be mapped to each other.
Again, since z2 is the only vertex of the five-clique that has a neighbor outside it (in both G∗ and Ψk,log r), the two copies
of z2 must be mapped to each other by the isomorphism. Since the only neighbors that z1 has in G∗ are C1, z2 and the
set (

⋃
i∈[r] Yi) ∪ D∗ , the vertices making up the size-k side of Ψk,log r must correspond to vertices of (

⋃
i∈[r] Yi) ∪ D∗ in G∗ .

Let S∗ be the k vertices in G∗ that realize this size-k side. Now consider the vertices in G∗ that realize the log r-size side
of Ψk,log r . Since the only neighbors of z2 in G∗ are z1, C2, and

⋃
j∈[log r]{s0

j , s1
j } it follows that the size-log r side of Ψk,log r

is realized by vertices from
⋃

j∈[log r]{s0
j , s1

j }; call these vertices U . For each j ∈ [log r] there is an edge s0
j s1

j by construction
of G∗ . As the size-log r side of Ψk,log r is an independent set, U contains at most one vertex of each such pair. As there
are log r pairs, U contains exactly one vertex of each pair. Define a number i∗ as follows. For j ∈ [log r], if s0

j ∈ U , let

the j-th bit be a one; if s1
j ∈ U , let the j-th bit be a zero. Hence the number i∗ is the complement of the binary string

represented by the values encoded by U , and therefore no vertex in U is adjacent to a vertex in Yi∗ , by construction. For
each i ∈ [r] \ {i∗}, however, there is a bit position where the binary expansion of i differs with that of i∗ , and Yi is adjacent
to the vertex in U corresponding to that bit position. As there are no edges between the size-k side and the size-log r side
of Ψk,log r , the induced subgraph in G∗ cannot contain vertices of

⋃
i∈[r]\i∗ Yi . Hence the set S∗ containing the k vertices that

realize the size-k side, is contained in Yi∗ ∪ D∗ . But as G∗[Yi∗ ∪ D∗] is isomorphic to Gi∗ , we find that S∗ corresponds to a
size-k independent set in G∗[Yi∗ ∪ D∗]. Hence Gi∗ has an independent set of size k, concluding the proof. ♦

492 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
To define an instance of Induced Ψs,t -Subgraph Test (vc), observe that the set X∗ := D∗ ∪ C1 ∪ C2 ∪ {z1, z2} ∪
(
⋃

j∈[log r]{s0
j , s1

j }) is a vertex cover in G∗ , since its complement consists of disjoint unions of independent sets. It is easy to
verify that the size of X∗ is polynomial in q + log r, which is polynomial in the encoding size of an input instance plus log r.
The claim shows that the instance (G∗, X∗, s∗ := k, t∗ := log r) is equivalent to the OR of the input instances. Since the
construction can be carried out in polynomial time this is a valid cross-composition, and by Theorem 1 this concludes the
proof. �
4.5.2. Finding small graphs as minors

In this section we consider the minor testing problem parameterized by the sum of the vertex cover size and the size of
the query graph.

H-Minor Test (vc + |V (H)|)
Input: A graph G with a vertex cover X , and a graph H .
Parameter: The value |X | + |V (H)|.
Question: Does G contain H as a minor?

We prove a superpolynomial kernel lower bound for this problem using the technique of polynomial parameter transforma-
tions, rather than cross-composition, since this simplifies the proof considerably. We therefore need the following terminol-
ogy and results. For a parameterized problem Q ⊆ Σ∗ ×N, the unparameterized version of Q is the set Q̃ = {x1k | (x,k) ∈ Q },
where 1 is a new symbol that is added to the alphabet.

Definition 5. (See [13].) Let P and Q be parameterized problems. We say that P is polynomial parameter reducible to Q ,
written P �ptp Q , if there exists a polynomial time computable function g : Σ∗ × N → Σ∗ × N and a polynomial p, such
that for all (x,k) ∈ Σ∗×N we have (a) (x,k) ∈ P ⇔ (x′,k′) = g(x,k) ∈ Q and (b) k′ � p(k). The function g is called polynomial
parameter transformation.

Theorem 11. (See [13].) Let P and Q be parameterized problems and P̃ and Q̃ be the unparameterized versions of P and Q re-
spectively. Suppose that P̃ is NP-hard and Q̃ is in NP. If there is a polynomial parameter transformation from P to Q and Q has a
polynomial kernel, then P also has a polynomial kernel.

The contrapositive of Theorem 11 can be used to obtain kernel lower bounds. We use the following problem as the
starting point for the polynomial parameter transformation.

Bipartite Regular Perfect Code (|T | + k)

Input: A bipartite graph G with partite sets T and N such that all vertices in N have the same degree, and an integer k.
Parameter: |T | + k.
Question: Is there a set N ′ ⊆ N of size at most k such that every vertex in T has exactly one neighbor in N ′?

A set N ′ as described above is a perfect code for G .

Lemma 6. (See [22, Theorem 4].) Bipartite Regular Perfect Code (|T |+k) does not have a polynomial kernel unless NP ⊆ coNP/poly.

Theorem 12. H-Minor Test (vc + |V (H)|) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We give a polynomial-parameter transformation from Bipartite Regular Perfect Code (|T | + k) to H-Minor Test

(vc + |V (H)|). As the unparameterized version of the latter problem is easily seen to lie in NP, and the unparameterized
version of the perfect code problem is NP-complete (it contains the NP-complete [30, SP2] Exact Cover by 3-Sets problem
as a special case), this suffices to prove the claim by Lemma 6 and Theorem 11. So consider an instance (G, T , N,k) of
Bipartite Regular Perfect Code (|T | + k), and let r be the degree of vertices in N . If k < |T |/r, or |T |/r is not an integer,
then we may safely output no: at most k vertices of degree r cannot uniquely cover all |T | terminals. In the remainder,
let k′ := |T |/r be an integer; any perfect code for G of size at most k, must have size exactly k′ . If r � |T | − 1 then a perfect
code consists of at most two elements of N; we solve the problem in polynomial time and give the appropriate answer. We
therefore assume that r < |T | − 1 from now on. We create an instance of H-Minor Test (vc + |V (H)|) consisting of a host
graph G ′ and a query graph H ′ .

Construct a graph G ′ from G by turning T into a clique; the vertex set of G ′ is T ∪ N . Construct a graph H ′ as follows.
Start with a clique consisting of vertices vi, j for i ∈ [k′] and j ∈ [r]. We use C to denote this clique. For i ∈ [k′] add a
vertex ui adjacent to vi,1, . . . , vi,r . Denote these vertices by D .

Claim. Graph G has a perfect code of size exactly k′ if and only if G ′ contains H ′ as a minor.

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 493
Proof. (⇒) Assume that G has a perfect code N ′ ⊆ N of size exactly k′ . We claim that the subgraph of G ′ induced
by N ′ ∪ T is isomorphic to H ′ . To prove this, we give an isomorphism f : N ′ ∪ T → V (H ′) such that for all u, v ∈ N ′ ∪ T we
have uv ∈ E(G[N ′ ∪ T]) if and only if f (u) f (v) ∈ E(H ′). Number the k′ vertices in N ′ arbitrarily as n1, . . . ,nk′ . For i ∈ [k′]
define f (ni) := ui , and consider the degG(ni) = r vertices NG(ni). Order them arbitrarily, mapping the first one to vi,1, the
second one to vi,2, up to vi,r , under the isomorphism f . Since N ′ is a perfect code, every vertex of N ′ ∪ T is mapped to a
unique vertex of H ′ by this choice of f . It is straightforward to verify the correspondence between edges of G ′[N ′ ∪ T] and
edges of H ′ . As an induced subgraph is a special case of a minor, this yields the proof in this direction.

(⇐) Assume that G ′ contains H ′ as a minor, and let φ be a minor model that maps V (H ′) to connected subsets of V (G ′).
Consider an arbitrary vertex c ∈ C of H ′ . As c is adjacent to all |C |− 1 other members of the clique C in H ′ , its degree in H ′
is at least |T | − 1. Since a vertex in N has degree r < |T | − 1, a branch set φ(c) for c ∈ C cannot consist of a single vertex
in N , as such a vertex alone cannot be connected to |T | − 1 other branch sets. Since the vertices N are independent in G ′ ,
and a branch set induced a connected subgraph, this implies that each set φ(c) contains a vertex in T . As |T | = |C | this
implies that each branch set φ(c) for c ∈ C contains exactly one vertex of T . But then we may restrict each branch set φ(c)
to φ(c) ∩ T without breaking the minor model of H ′: vertices of N that might belong to the branch set are not needed to
connect to other branch sets, as all possible connections to C are already made in the clique C , and vertices of N do not
connect to other vertices of N since N is an independent set. So if there is a minor model of H ′ in G ′ , then there is one
where the branch set of each c ∈ C consists of a unique vertex in T . As N is an independent set, this also shows that φ(ui)

is a singleton for each i ∈ [k′]: to contain more vertices and still induce a connected subgraph, a branch set φ(ui) would
have to contain a vertex of T . So we may assume that all branch sets in the minor model φ are singleton vertices in G ′ .

For each vertex ui let ni be such that φ(ui) = {ni}. Let N ′ = {ni | i ∈ [k′]}; since vertices ni are pairwise different, it follows
that |N ′| = k′ . We claim that N ′ is a perfect code in G . Since N ′ has size k′ = |T |/r and every vertex of N ′ has degree exactly
r in G , a simple degree-counting argument shows that it suffices to argue that each vertex of T is adjacent to at least one
vertex of N ′ . Consider any vertex w ∈ T . Since f is surjective on T , there exist some indices i, j, where i ∈ [k′] and j ∈ [r],
such that {w} = φ(vi, j). The vertex vi, j , however, is adjacent to ui in H ′ , so it follows that w must be adjacent to ni in
G . As w was picked arbitrarily, we conclude that every vertex of T is adjacent to at least one vertex of N ′ and we are
done. ♦

Observe that the set T forms a vertex cover of G ′ . The tuple (G ′, H ′, X ′ := T) can therefore serve as an instance of
H-Minor Test (vc + |V (H)|). As we established earlier that any perfect code in G must have size exactly k′ , the claim
shows the equivalence between the original instance and the constructed instance. The new value of the parameter
is |X ′|+ |V (H ′)| = |T |+ (|T |+k′) � 2|T |+k, which is polynomial in the original parameter of the Bipartite Regular Perfect

Code (|T | + k) instance. As the transformation can easily be computed in polynomial time, it is a polynomial-parameter
transformation, which concludes the proof. �

Concerning the induced subgraph testing variant of the parameterization discussed in this section, note that the kernel
lower bound for Long Induced Path (vc) (Theorem 8) already implies that Induced H-Subgraph Test (vc + |V (H)|) does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

5. Conclusion

We have studied the existence of polynomial kernels for graph problems parameterized by vertex cover. The general
theorems we presented unify known positive results for many problems, and the characterization in terms of forbidden
or desired induced subgraphs from a class characterized by few adjacencies gives a common explanation for the results
obtained earlier. Our comparison of induced subgraph and minor testing problems shows that the kernelization complexity
landscape of problems parameterized by vertex cover is rich and difficult to capture with a single meta-theorem. The kernel
lower bounds for Induced Ks,t Subgraph Test (vc), Long Induced Path (vc), and Maximum Induced Matching (vc), show
that besides connectivity and domination requirements, an inducedness requirement can form an obstacle to polynomial
kernelizability for parameterizations by vertex cover.

An obvious direction for further work is to find even more general kernelization theorems that can also encompass the
known positive results for problems like Treewidth (vc) [9], Pathwidth (vc) [11], and Clique Minor Test (vc). There are
also various problems for which the kernelization complexity parameterized by vertex cover is still open; among these are
Perfect Deletion, Interval Deletion, Bandwidth, and Orientable Genus. One may also investigate whether Theorem 2 has
an analogue for edge-deletion problems.

In light of the parameter ecology program [25] it is natural to ask whether the general kernelization theorems obtained
in Section 3 can be transferred to smaller parameters than the vertex cover number. As this parameter measures the
vertex-deletion distance to a graph of treewidth zero, an obvious next step would be parameterization by the feedback
vertex number — the vertex-deletion distance to a graph of treewidth one. Unfortunately, this seems difficult. While Vertex

Cover and Odd Cycle Transversal admit polynomial kernels for this parameter [35,37], the kernelization schemes are
rather involved and lack any similarity. For the Long Path problem, the existence of a polynomial kernel parameterized
by feedback vertex number is still open. In the case of 3-Coloring [36] and Disjoint Paths [13] we even know that no
polynomial kernel exists for the parameterization by feedback vertex number (unless NP ⊆ coNP/poly). Hence it seems

494 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495
that a better understanding of polynomial kernelizability for parameterizations by feedback vertex number is needed before
attempting to capture the phenomenon by general theorems.

The case study of Section 4 raises some interesting questions. To devise a polynomial kernel for Induced Kc,t Subgraph

Test (vc) we used a reduction to |X |O(1) instances of a kernelizable problem. The guessing phase leading to the series of
instances is reminiscent of a Turing kernelization (cf. [3,34]). Can the power of Turing kernelization be exploited to give
polynomial kernels for induced subgraph problems that do not admit polynomial many-one kernels? For example, does the
Induced Ks,t Subgraph Test (vc) problem admit a polynomial Turing kernel, or can the recent framework of Hermelin et
al. [34] be used to prove that this is unlikely? The question of Turing kernelization seems especially relevant for the area of
induced subgraph testing, as Clique parameterized by vertex cover does not admit a polynomial many-one kernel (unless
NP ⊆ coNP/poly) but has a trivial linear-vertex Turing kernel [8]. Could it be that the induced H-subgraph testing problem
has a polynomial Turing kernel for any graph H as input, when parameterized by vertex cover?

References

[1] N. Alon, G. Gutin, E.J. Kim, S. Szeider, A. Yeo, Solving MAX-r-SAT above a tight lower bound, Algorithmica 61 (3) (2011) 638–655, http://dx.doi.org/
10.1007/s00453-010-9428-7.

[2] C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Z., Martin-Luther-Univ. Halle-Wittenb., Math.-Nat.wiss.
Reihe 10 (1961) 114.

[3] D. Binkele-Raible, H. Fernau, F.V. Fomin, D. Lokshtanov, S. Saurabh, Y. Villanger, Kernel(s) for problems with no kernel: On out-trees with many leaves,
ACM Trans. Algorithms 8 (4) (2012) 38, http://dx.doi.org/10.1145/2344422.2344428.

[4] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theor. Comput. Sci. 209 (1–2) (1998) 1–45, http://dx.doi.org/10.1016/
S0304-3975(97)00228-4.

[5] H.L. Bodlaender, Kernelization: New upper and lower bound techniques, in: Proc. 4th IWPEC, 2009, pp. 17–37, http://dx.doi.org/10.1007/978-3-642-
11269-0_2.

[6] H.L. Bodlaender, R.G. Downey, M.R. Fellows, D. Hermelin, On problems without polynomial kernels, J. Comput. Syst. Sci. 75 (8) (2009) 423–434,
http://dx.doi.org/10.1016/j.jcss.2009.04.001.

[7] H.L. Bodlaender, F.V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, D.M. Thilikos, (Meta) kernelization, in: Proc. 50th FOCS, 2009, pp. 629–638,
http://dx.doi.org/10.1109/FOCS.2009.46.

[8] H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Cross-composition: A new technique for kernelization lower bounds, in: Proc. 28th STACS, 2011, pp. 165–176,
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.165.

[9] H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Preprocessing for treewidth: A combinatorial analysis through kernelization, in: Proc. 38th ICALP, 2011,
pp. 437–448, http://dx.doi.org/10.1007/978-3-642-22006-7_37.

[10] H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Kernel bounds for path and cycle problems, Theor. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.tcs.
2012.09.006, Online First.

[11] H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Kernel bounds for structural parameterizations of pathwidth, in: Proc. 13th SWAT, 2012, pp. 352–363,
http://dx.doi.org/10.1007/978-3-642-31155-0_31.

[12] H.L. Bodlaender, A.M.C.A. Koster, Combinatorial optimization on graphs of bounded treewidth, Comput. J. 51 (3) (2008) 255–269, http://dx.doi.org/
10.1093/comjnl/bxm037.

[13] H.L. Bodlaender, S. Thomassé, A. Yeo, Kernel bounds for disjoint cycles and disjoint paths, Theor. Comput. Sci. 412 (35) (2011) 4570–4578, http://
dx.doi.org/10.1016/j.tcs.2011.04.039.

[14] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.
[15] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1–3) (1989) 97–102, http://dx.doi.org/10.1016/0166-218X(92)90275-F.
[16] M. Chudnovsky, N. Robertson, P.D. Seymour, R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (2006) 51–229, http://dx.doi.org/10.4007/

annals.2006.164.51.
[17] B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of finite graphs, Inf. Comput. 85 (1) (1990) 12–75, http://dx.doi.org/10.1016/

0890-5401(90)90043-H.
[18] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, S. Saurabh, On cutwidth parameterized by vertex cover, in: Proc. 6th IPEC, 2011, pp. 246–258,

http://dx.doi.org/10.1007/978-3-642-28050-4_20.
[19] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, S. Saurabh, On the hardness of losing width, in: Proc. 6th IPEC, 2011, pp. 159–168, http://dx.doi.org/

10.1007/978-3-642-28050-4_13.
[20] H. Dell, D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses, in: Proc. 42nd STOC, 2010,

pp. 251–260, http://dx.doi.org/10.1145/1806689.1806725.
[21] R. Diestel, Graph Theory, 4th edition, Springer-Verlag, Heidelberg, 2010.
[22] M. Dom, D. Lokshtanov, S. Saurabh, Incompressibility through colors and IDs, in: Proc. 36th ICALP, 2009, pp. 378–389, http://dx.doi.org/10.1007/

978-3-642-02927-1_32.
[23] R. Downey, M.R. Fellows, Parameterized Complexity, Monogr. Comput. Sci., Springer-Verlag, New York, 1999.
[24] M.R. Fellows, D. Hermelin, F.A. Rosamond, Well quasi orders in subclasses of bounded treewidth graphs and their algorithmic applications, Algorithmica

64 (2012) 3–18, http://dx.doi.org/10.1007/s00453-011-9545-y.
[25] M.R. Fellows, B.M.P. Jansen, F.A. Rosamond, Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational com-

plexity, Eur. J. Comb. 34 (3) (2013) 541–566, http://dx.doi.org/10.1016/j.ejc.2012.04.008.
[26] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer-Verlag, New York, 2006.
[27] F. Fomin, D. Lokshtanov, S. Saurabh, D.M. Thilikos, Bidimensionality and kernels, in: Proc. 21st SODA, 2010, pp. 503–510.
[28] L. Fortnow, R. Santhanam, Infeasibility of instance compression and succinct PCPs for NP, J. Comput. Syst. Sci. 77 (1) (2011) 91–106, http://dx.doi.org/

10.1016/j.jcss.2010.06.007.
[29] R. Ganian, Twin-cover: Beyond vertex cover in parameterized algorithmics, in: Proc. 6th IPEC, 2011, pp. 259–271, http://dx.doi.org/10.1007/978-3-

642-28050-4_21.
[30] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979.
[31] M. Grohe, Logic, graphs, and algorithms, in: J. Flum, E. Grädel, T. Wilke (Eds.), Logic and Automata: History and Perspectives, Amsterdam University

Press, 2007, pp. 357–422.
[32] J. Guo, R. Niedermeier, Invitation to data reduction and problem kernelization, SIGACT News 38 (1) (2007) 31–45, http://dx.doi.org/10.1145/

1233481.1233493.

http://dx.doi.org/10.1007/s00453-010-9428-7
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib42657267653631s1
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib42657267653631s1
http://dx.doi.org/10.1145/2344422.2344428
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1007/978-3-642-11269-0_2
http://dx.doi.org/10.1007/978-3-642-11269-0_2
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1109/FOCS.2009.46
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.165
http://dx.doi.org/10.1007/978-3-642-22006-7_37
http://dx.doi.org/10.1016/j.tcs.2012.09.006
http://dx.doi.org/10.1007/978-3-642-31155-0_31
http://dx.doi.org/10.1093/comjnl/bxm037
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib4272616E6473746164744C533939s1
http://dx.doi.org/10.1016/0166-218X(92)90275-F
http://dx.doi.org/10.4007/annals.2006.164.51
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1007/978-3-642-28050-4_20
http://dx.doi.org/10.1007/978-3-642-28050-4_13
http://dx.doi.org/10.1007/978-3-642-28050-4_13
http://dx.doi.org/10.1145/1806689.1806725
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib4469657374656C3130s1
http://dx.doi.org/10.1007/978-3-642-02927-1_32
http://dx.doi.org/10.1007/978-3-642-02927-1_32
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib446F776E6579463939s1
http://dx.doi.org/10.1007/s00453-011-9545-y
http://dx.doi.org/10.1016/j.ejc.2012.04.008
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib466C756D473036s1
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib466F6D696E4C53543130s1
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1007/978-3-642-28050-4_21
http://dx.doi.org/10.1007/978-3-642-28050-4_21
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib47617265794A3739s1
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib47726F686530376C6F67s1
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib47726F686530376C6F67s1
http://dx.doi.org/10.1145/1233481.1233493
http://dx.doi.org/10.1007/s00453-010-9428-7
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1016/j.tcs.2012.09.006
http://dx.doi.org/10.1093/comjnl/bxm037
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.4007/annals.2006.164.51
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1145/1233481.1233493

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 468–495 495
[33] D. Harnik, M. Naor, On the compressibility of NP instances and cryptographic applications, SIAM J. Comput. 39 (5) (2010) 1667–1713, http://dx.doi.org/
10.1137/060668092.

[34] D. Hermelin, S. Kratsch, K. Sołtys, M. Wahlström, X. Wu, Hierarchies of inefficient kernelizability, CoRR, arXiv:1110.0976, 2011.
[35] B.M.P. Jansen, H.L. Bodlaender, Vertex cover kernelization revisited: Upper and lower bounds for a refined parameter, in: Proc. 28th STACS, 2011,

pp. 177–188, http://dx.doi.org/10.4230/LIPIcs.STACS.2011.177.
[36] B.M.P. Jansen, S. Kratsch, Data reduction for graph coloring problems, in: Proc. 18th FCT, 2011, pp. 90–101, http://dx.doi.org/10.1007/978-3-642-

22953-4_8.
[37] B.M.P. Jansen, S. Kratsch, On polynomial kernels for structural parameterizations of odd cycle transversal, in: Proc. 6th IPEC, 2011, pp. 132–144, http://

dx.doi.org/10.1007/978-3-642-28050-4_11.
[38] S. Kratsch, M. Wahlström, Compression via matroids: a randomized polynomial kernel for odd cycle transversal, in: Proc. 23rd SODA, 2012, pp. 94–103,

arXiv:1107.3068.
[39] M. Lampis, Algorithmic meta-theorems for restrictions of treewidth, Algorithmica (2011) 1–19, http://dx.doi.org/10.1007/s00453-011-9554-x.
[40] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.
[41] R. Niedermeier, Reflections on multivariate algorithmics and problem parameterization, in: Proc. 27th STACS, 2010, pp. 17–32, http://dx.doi.org/

10.4230/LIPIcs.STACS.2010.2495.
[42] N. Robertson, P.D. Seymour, Graph minors. XX. Wagner’s conjecture, J. Comb. Theory, Ser. B 92 (2) (2004) 325–357, http://dx.doi.org/10.1016/j.jctb.

2004.08.001.

http://dx.doi.org/10.1137/060668092
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib4865726D656C696E4B5357573131s1
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.177
http://dx.doi.org/10.1007/978-3-642-22953-4_8
http://dx.doi.org/10.1007/978-3-642-22953-4_8
http://dx.doi.org/10.1007/978-3-642-28050-4_11
http://dx.doi.org/10.1007/978-3-642-28050-4_11
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib4B726174736368573132s1
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib4B726174736368573132s1
http://dx.doi.org/10.1007/s00453-011-9554-x
http://refhub.elsevier.com/S0022-0000(13)00168-2/bib4E69656465726D656965723036s1
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2495
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2495
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1137/060668092
http://dx.doi.org/10.1016/j.jctb.2004.08.001

	Preprocessing subgraph and minor problems: When does a small vertex cover help?
	1 Introduction
	2 Preliminaries
	2.1 Parameterized complexity and kernels
	2.2 Graphs
	2.3 Problem deﬁnitions
	2.3.1 Vertex-deletion problems
	2.3.2 Subgraph problems
	2.3.3 Partitioning problems

	3 General kernelization theorems
	3.1 Characterization by few adjacencies
	3.2 Kernelization for vertex-deletion problems
	3.3 Kernelization for largest induced subgraph problems
	3.4 Kernelization for graph partitioning problems

	4 Subgraph testing versus minor testing
	4.1 Testing for cliques
	4.2 Testing for bicliques
	4.2.1 Polynomial kernel for induced K(c,t)-testing
	4.2.2 Kernel lower bound for induced K(s,t)-testing

	4.3 Testing for paths
	4.4 Testing for matchings
	4.4.1 Kernelization lower bound for induced matching

	4.5 Lower bounds for generalized problem statements
	4.5.1 Finding induced subgraphs with constant-size vertex covers
	4.5.2 Finding small graphs as minors

	5 Conclusion
	References

