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In 2011, Cai an Yang initiated the systematic parameterized complexity study of the
following set of problems around Eulerian graphs: for a given graph G and integer k, the
task is to decide if G contains a (connected) subgraph with k vertices (edges) with all
vertices of even (odd) degrees. They succeed to establish the parameterized complexity of
all cases except two, when we ask about:

• a connected k-edge subgraph with all vertices of odd degrees, the problem known as
k-Edge Connected Odd Subgraph; and

• a connected k-vertex induced subgraph with all vertices of even degrees, the problem
known as k-Vertex Eulerian Subgraph.

We show that k-Edge Connected Odd Subgraph is FPT and k-Vertex Eulerian Subgraph is
W[1]-hard. Our FPT algorithm is based on a novel combinatorial result on the treewidth of
minimal connected odd graphs with even amount of edges.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

One of the oldest theorems in Graph Theory is attributed to Euler, and it says that a graph admits an Euler walk, i.e.
a walk visiting every edge exactly once, if and only if the graph is connected and all its vertices are of even degrees. While
checking if a given graph is Eulerian, i.e. is connected and has no vertices of odd degrees, is easily done in polynomial time,
the problem of finding k edges in a graph to form an Eulerian subgraph is NP-hard. We refer to the book of Fleischner [7]
for a thorough study of Eulerian graphs and related topics.

An even graph (respectively, odd graph) is a graph with each vertex of an even (odd) degree. Thus an Eulerian graph is
a connected even graph. Let Π be one of the following four graph classes: Eulerian graphs, even graphs, odd graphs, and
connected odd graphs. In [4], Cai and Yang initiated the study of parameterized complexity of subgraph problems motivated
by Eulerian graphs. For each Π , they defined the following parameterized subgraph and induced subgraph problems:

✩ A preliminary version of this paper appeared as an extended abstract in the proceedings of STACS 2012.
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Table 1
Parameterized complexity of k-Edge Π Subgraph and k-Vertex Π Subgraph.

Eulerian Even Odd Connected Odd

k-Edge FPT [4] FPT [4] FPT [4] FPT Theorem 2
k-Vertex W[1]-hard Theorem 3 FPT [4] FPT [4] FPT [4]

k-Edge Π Subgraph (resp. k-Vertex Π Subgraph)

Instance: A graph G and non-negative integer k.
Parameter: k.

Question: Does G contain a subgraph with k edges from Π

(resp. an induced subgraph on k vertices from Π )?

Cai and Yang established the parameterized complexity of all variants of the problem except k-Edge Connected Odd

Subgraph and k-Vertex Eulerian Subgraph, see Table 1. It was conjectured that k-Edge Connected Odd Subgraph is FPT
and k-Vertex Eulerian Subgraph is W[1]-hard. We resolve these open problems and confirm both conjectures.

The remaining part of the paper is organized as follows. In Section 2, we provide definitions and give preliminary results.
In Section 3, we show that k-Edge Connected Odd Subgraph is FPT. Our algorithmic result is based on an upper bound for
the treewidth of a minimal connected odd graphs with an even number of edges. We show that the treewidth of such
graphs is always at most 3. The proof of this combinatorial result, which we find interesting in its own, is non-trivial and
is given in Section 4. The bound on the treewidth is tight—complete graph on four vertices K4 is a minimal connected odd
graph with an even number of edges and its treewidth is 3. In Section 5, we prove that k-Vertex Eulerian Subgraph is
W[1]-hard and observe that the problem remains W[1]-hard if we ask about (not necessarily induced) Eulerian subgraph
on k vertices. We conclude the paper in Section 6 with some open problems.

2. Definitions and preliminary results

Graphs. We consider finite undirected graphs without loops or multiple edges. The vertex set of a graph G is denoted by
V (G) and its edge set by E(G). A set S ⊆ V (G) of pairwise adjacent vertices is called a clique. For a vertex v , we denote
by NG(v) its (open) neighborhood, that is, the set of vertices which are adjacent to v . The distance between two vertices
u, v ∈ V (G) (i.e., the length of the shortest (u, v)-path in the graph) is denoted by distG(u, v). For a vertex v ∈ V (G) and a
set of vertices S ⊆ V (G), the distance between v and S is distG(v, S) = min{distG(v, u)|u ∈ S}. For a vertex v and a positive
integer k, N(k)

G [v] = {u ∈ V (G) | distG(u, v) � k}. The degree of a vertex v is denoted by dG (v), and �(G) is the maximum
degree of G . For a set of vertices S ⊆ V (G), G[S] denotes the subgraph of G induced by S , and by G − S we denote the
graph obtained form G by the removal of all the vertices of S , i.e. the subgraph of G induced by V (G) \ S .

Parameterized complexity. Parameterized complexity is a two dimensional framework for studying the computational com-
plexity of a problem. One dimension is the input size n and another one is a parameter k. It is said that a problem is fixed
parameter tractable (or FPT), if it can be solved in time f (k) · nO (1) for some function f . One of basic assumptions of the
Parameterized Complexity theory is the conjecture that the complexity class W[1] �= FPT, and it is unlikely that a W[1]-hard
problem could be solved in FPT-time. We refer to the books of Downey and Fellows [6], Flum and Grohe [8], and Nieder-
meier [9] for detailed introductions to parameterized complexity.

Treewidth. A tree decomposition of a graph G is a pair (X, T ) where T is a tree and X = {Xi | i ∈ V (T )} is a collection of
subsets (called bags) of V (G) such that:

1.
⋃

i∈V (T ) Xi = V (G),
2. for each edge {x, y} ∈ E(G), x, y ∈ Xi for some i ∈ V (T ), and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ){|Xi | − 1}. The treewidth of a graph G (denoted as tw(G))
is the minimum width over all tree decompositions of G .

Minimal odd graphs with even number of edges. Let r be a vertex of G . We assume that G is rooted in r. Let G be
a connected odd graph with an even number of edges. We say that G is a minimal if G has no proper connected odd
subgraph with an even number of edges containing r.

The importance of minimal odd subgraphs with even numbers of edges is crucial for our algorithm because of the
following combinatorial result.

Theorem 1. Let G be a minimal connected odd graph with an even number of edges with a root r. Then tw(G) � 3.
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For non-rooted graphs, we also have the following corollary.

Corollary 1. For any minimal connected odd graph G with an even number of edges, tw(G) � 3.

Let us remark that the bound in Theorem 1 is tight—complete graph K4 with a root vertex r is a minimal odd graph
with even number of edges and of treewidth 3. The proof of Theorem 1 is given in Section 4. This proof is non-trivial and
technical, and we find the combinatorial result of Theorem 1 to be interesting in its own. From the algorithmic perspective,
Theorem 1 is a cornerstone of our algorithm; combined with color-coding technique of Alon, Yuster and Zwick from [1] it
implies that k-Edge Connected Odd Subgraph is FPT. We give this algorithm in the next section.

3. Algorithm for k-Edge Connected Odd Subgraph

To give an algorithm for k-Edge Connected Odd Subgraph, in addition to Theorem 1, we also need the following result
of Alon, Yuster and Zwick from [1] obtained by the color-coding technique.

Proposition 1. (See [1].) Let H be a graph on k vertices with treewidth t and let G be an n-vertex graph. A subgraph of G isomorphic
to H, if one exists, can be found in O (2O (k) · nt+1) expected time and in O (2O (k) · nt+1 · log n) worst-case time.

We are ready to prove the main algorithmic result of this paper.

Theorem 2. k-Edge Connected Odd Subgraph can be solved in time O (2O (k log k) · n4 · log n) for n-vertex graphs.

Proof. Let (G,k) be an instance of the problem. We apply the following algorithm.

Step 1. If k is odd and the maximum vertex degree �(G) � k, then return Yes. Else if k is odd but �(G) < k, then go to
Step 3.

Step 2. If k is even and �(G) � k, then we enumerate all odd connected graphs H with k edges of treewidth at most 3.
For each odd graph H of treewidth at most 3 and with k edges, we use Proposition 1 to check whether G has a subgraph
isomorphic to H . The algorithm returns Yes if such a graph H exists. Otherwise, we construct a new graph G by removing
from the old graph G all vertices of degree at least k.

Step 3. Let us remark that at this step all vertices of the input graph G are of degree at most k − 1. For each vertex v , check
whether there is a connected odd subgraph H of G with k edges containing v . The algorithm returns Yes if a connected
odd subgraph H with k edges exists for some vertex v , and it returns No otherwise.

In what follows we discuss the correctness of the algorithm and evaluate its running time.
If k is odd and �(G) � k, then the star K1,k is a subgraph of G . Hence, G has a connected odd subgraph with k edges.
Let k be even and let r ∈ V (G) be a vertex with dG(r) � k. If G has a connected odd subgraph with k edges containing r,

then G has a minimal connected odd subgraph H with even number of edges rooted in r. Let � = |E(H)|. Graph H contains
at most � vertices in NG(r). It follows that there are k − � vertices v1, . . . , vk−� ∈ NG(r) \ V (H). Denote by H ′ the subgraph
of G with the vertex set V (H) ∪ {v1, . . . , vk−�} and the edge set E(H) ∪ {rv1, . . . , rvk−�}. Since k and � are even, we have
that H ′ is an odd graph. By Theorem 1, tw(H) � 3. Graph H ′ is obtained from H by adding some vertices of degree 1, and,
therefore, tw(H ′) � 3. This means that when G has a connected odd subgraph H with k edges containing r, then there is a
connected odd subgraph H ′ with k edges containing r and of treewidth at most three. But then in Step 2, we find such a
graph H ′ with k edges.

If no connected odd subgraph with k edges was found in Step 2, then if such a graph exist, it contains no vertex of
degree (in G) at least k. Therefore all such vertices can be removed from G without changing the solution. Finally, in Step 3,
trying all possible connected subgraphs with k edges in the obtained graph of maximum degree at most k − 1, we can
deduce if G contains an odd subgraph with k edges.

We now analyze the running time of the algorithm. Because a connected graph with k edges has at most k + 1 vertices,

there are at most
( k(k+1)

2
k

)
pairwise non-isomorphic connected graphs with k edges, and we can find all connected odd graphs

with k edges in time 2O (k log k) and check in time O (k) if the treewidth of each of the graphs is at most three by making
use of Bodlaender’s algorithm [3]. The running time of this part can be reduced to 2O (k) , see e.g. [2]. Then for each graph
H of this type, to check whether H is a subgraph of G , takes time O (2O (k) · n4 · log n) by Proposition 1.

When we arrive at Step 3, we have that �(G) � k − 1. For each vertex v , to check whether the graph G[N(k)
G [v]] induced

by the vertices within distance k from v has a connected odd subgraph H with k edges, one can use a brute-force algorithm.
This will take time O (2O (k2 log k) · n). A smarter way of implementing Step 3, suggested to us by an anonymous STACS 2012
referee, is the following. We enumerate all connected subgraphs with p = 0, . . . ,k edges containing v by making use of the
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Fig. 1. The set H.

following observation. For every connected subgraph H of G with p � 1 edges such that v ∈ V (H), there is a connected
subgraph H ′ with p − 1 edges such that v ∈ V (H ′) and H ′ is a subgraph of H . Hence, given all connected subgraphs with
p − 1 edges, we can enumerate all subgraphs with p edges by a brute-force algorithm.

We show by induction that for any p � 1, there are at most p!(k − 1)p connected subgraphs with p edges in a graph G
with �(G) � k − 1 that contain a given vertex v . Clearly, the claim holds for p = 1. Let p > 1. Any connected subgraph of
G with p − 1 edges has at most p vertices. Since there are at most p�(G) � p(k − 1) possibilities to add an edge to this
subgraph to obtain a connected subgraph with p edges, the claim follows. Therefore, for each vertex v , we can enumerate all
connected subgraphs H with k edges that include v in time O (k!(k−1)k). Hence, Step 3 can be done in time O (2O (k log k) ·n).
We conclude that the total running time of the algorithm is O (2O (k log k) · n4 · log n). �
4. Minimal connected odd graphs with even number of edges

In this section we give the proof of Theorem 1, the main combinatorial result of this paper. It is inductive, and for the
inductive step we identify specific structures in a minimal connected odd graph with an even number of edges.

To proceed with the inductive step, we need a stronger version of Theorem 1. Let G be a graph and let x ∈ V (G). We say
that a graph G ′ is obtained from G by splitting x into x1, x2, if G ′ is constructed as follows: for a partition X1, X2 of NG(x),
we replace x by two non-adjacent vertices x1, x2, and join x1, x2 with the vertices of X1, X2 respectively. The following
claim implies Theorem 1.

Claim 1. Let G be a minimal connected odd graph with an even number of edges with a root r. Then tw(G) � 3.
Moreover, if dG(r) = 1 and z is the unique neighbor of r, then at least one of the following holds:

i) there is a tree decomposition (X, T ) of G of width at most three such that for any bag Xi ∈ X with z ∈ Xi , |Xi | � 3; or
ii) for any graph G ′ obtained from G − r by splitting z into z1, z2 , tw(G ′) � 3 and there is a tree decomposition (X, T ) of G ′ of width

at most three such that there is a bag Xi ∈ X containing both z1 and z2 .

To describe the structures in the graph, we need a notion of a subgraph with terminals. Roughly speaking, a subgraph
with terminals is connected to the remaining part of the graph only via terminals. More formally, let H be a subgraph of
graph G , and let s1, . . . , sr ∈ V (H). We say that H is a subgraph of G with terminals s1, . . . , sr if there is a subgraph F of G
such that

• G = F ∪ H ;
• V (F ) ∩ V (H) = {s1, . . . , sr}; and
• E(F ) ∩ E(H) = ∅.

Thus every edge of G having at least one endpoint in a non-terminal vertex of H , should be an edge of H . In particular,
terminal vertices of H separate non-terminal vertices of H from other vertices of G . Notice also that H and F are not
required to be induced, i.e., if G has an edge si s j , then si s j is either in H or F . We also say that a subgraph H with a
given set of terminals is separating if the graph obtained from G by the removal of all non-terminal vertices of H and all
the edges of H (denoted G − H) is not connected. If it does not create confusion, we write that H is a subgraph of G or G
contains H as a subgraph omitting the terminals.

The specific structures we are looking for in the inductive step are the subgraphs isomorphic to graphs with terminals
from the set H = {H1, H2, H3, H4, H5, H6} shown in Fig. 1. Whenever we say that Hi ∈H is contained in graph G (or G
has Hi ), it always means that if G has a subgraph isomorphic to Hi with the terminals shown in Fig. 1. Notice that H6 is a
subgraph of H4 and H5, and throughout the paper we are looking for H6 only if we cannot find H4 or H5.

The proof of Claim 1 is by induction on the number of edges. As the proof is very technical, we first give a high level
description.

The basis case is a graph with 6 edges. Then we assume that a minimal connected odd graph G with an even number
of edges has at least 8 edges and make an inductive step.
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Fig. 2. Graphs Sl, Sl,t .

Fig. 3. Replacement of R .

If G contains a subgraph R with terminals s1, s2 shown in Fig. 3 such that r /∈ V (R) \ {s1, s2} and s1s2 /∈ E(G), then the
inductive step is done by replacing R by the edge s1s2. If G has no such subgraphs, then we say that G is R-free, and
furthermore we assume that G has this property.

The next step is to prove that if G has no subgraph from H, then G is one of the graphs G1, G2, G3 shown in Fig. 5. For
each of these graphs, the theorem holds trivially. Actually, we will need a stronger result, saying that if G has no subgraph
from H2, . . . , H6 and every subgraph of G isomorphic to H1 is of specific form, namely, this subgraph is not separating and
r is not a non-terminal vertex of H1, then even in this case, G is one of the graphs G1, G2, G3 shown in Fig. 5. With this
claim we can proceed further with an assumption that G contains at least one graph from H.

For the case when r is a non-terminal vertex of a subgraph H ∈H, we prove that H = H1. We remove non-terminal
vertices of H , identify terminals s1, s2, and add a new root vertex r′ adjacent to the vertex obtained from s1, s2. Then we
prove that this graph is a minimal connected odd graph with an even number of edges, and then we can apply the induction
assumption on this graph, and derive our claim for G . The difficulty here is to ensure that the treewidth of the graph G
does not increase when we make the inductive step. This requires the assumptions i) and ii) in Claim 1 on the structure of
tree decompositions. From this point, it can be assumed that r is not a non-terminal vertex of a subgraph from H with the
corresponding set of terminals.

All graphs H2, . . . , H6 have even number of edges and every terminal vertex of such a graph is of even degree. This
means that G cannot contain a non-separating graph H from {H2, . . . , H6}, because removing edges and non-terminal
vertices of H , would result in a connected odd subgraph of G with even number of edges, which is a contradiction to the
minimality of G . Hence, if G contains subgraphs from H but they are non-separating, G can contain only H1. Then as we
already have shown, G is one of the graphs G1, G2, G3 shown in Fig. 5. Thus we can assume that G contains a separating
subgraph H from H. Among all such separating subgraphs, we select H such that the number of edges of the component
F1 of the graph G ′ = G − H containing r is minimum. We prove that G ′ has exactly two components F1, F2, where F1 is a
tree, and this fact is used to make the inductive step.

In what follows, we give the detailed proof of Claim 1. We start with several technical lemmas.

4.1. Technical lemmas

Let l � 3 be an integer. The graph Sl is obtained from a cycle with l vertices by attaching a vertex of degree one
to each vertex of the cycle. More formally, Sl is the graph with the vertex set {u1, . . . , ul} ∪ {v1, . . . , vl} and the edge
set {v1u1, . . . , vlul} ∪ {v1 vl, v1 v2, . . . , vl−1 vl}. For positive integers t > l � 3, by Sl,t is denoted the graph obtained from
a cycle of length l and a path of length t − l attached to a vertex of the cycle, by attaching to every vertex of degree
two a vertex of degree 1. Formally, Sl,t has the vertex set {u1, . . . , ul−1, ul+1, . . . , ut−1} ∪ {v1, . . . , vt} and the edge set
{v1u1, . . . , vl−1ul−1, vl+1ul+1, . . . , vt−1ut−1} ∪ {v1 vl, v1 v2, . . . , vt−1 vt}. It is assumed that Sl and Sl,t are rooted in r = vl
and r = vt respectively. The graphs Sl and Sl,t are shown in Fig. 2. Clearly, these graphs are minimal connected odd graphs
with en even number of edges rooted in r.

The following lemma describes minimal connected odd graphs with an even number of edges containing no induced
cycles of length at most four.

Lemma 1. Let G be a connected odd graph with a root r that contains cycles but has no induced cycles on three or four vertices. Then
G contains either Sl for l � 5 or Sl,t for t > l � 5 rooted in r.
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Fig. 4. Construction of G S .

Fig. 5. Graphs G1, G2, G3.

Proof. Let C = v1 . . . vl be an induced cycle on l vertices such that t = l + distG(r, V (C)) is minimum. Suppose first that r ∈
V (C). Because G is odd, there are vertices u1, . . . , ul adjacent to v1, . . . , vl respectively such that ui /∈ NC (vi) for i ∈ {1, . . . , l}.
Since G has no C3, C4 and t is chosen to be minimum, u1, . . . , ul are pairwise distinct and are distinct from v1, . . . , vl . Then
we have that G contains Sl . Assume now that r /∈ V (C). Let vl . . . vt where vt = r be a shortest path between V (C) and r.
By the same arguments, there are vertices u1, . . . , ul−1, ul+1, . . . , ut adjacent to v1, . . . , vl−1, vl+1, . . . , vt−1 respectively such
that u1, . . . , ul are pairwise distinct and are distinct from v1, . . . , vl . Then we conclude that Sl,t is a subgraph of G . �

The next lemma is a straightforward observation.

Lemma 2. Let G be a minimal connected odd graph with a root r that has an even number of edges. Suppose that G has a subgraph R
shown in Fig. 3 with the terminals s1, s2 such that r /∈ V (R) \ {s1, s2} and s1s2 /∈ E(G). Then the graph G ′ obtained by the removal of
all the non-terminal vertices of R and the addition of s1s2 is a minimal connected odd graph with the root r that has an even number
of edges and tw(G) � tw(G ′). Moreover, if tw(G ′) � 2, then a tree decomposition of G of width at most tw(G ′) can be obtained from
a tree decomposition of G ′ of width tw(G ′) by the addition of bags of size at most three.

Let G be a connected odd graph with a root r and with an even number of edges. Let also S = {x1, x2}, r /∈ S , be a minimal
cut-set of G . Denote by U the set of vertices of the component of G − S that contains r, and let W = V (G)\ (S ∪ U ). Suppose
that the following holds:

• each of the vertices x1, x2 is adjacent to exactly two vertices in U ∪ S ,
• x1, x2 have a common neighbor y ∈ U such that y is not a cut-vertex,
• the number of edges of G[W ] be odd, and
• (NG(x1) ∩ NG(x2)) ∩ W = ∅.

Denote by G S the graph obtained from G[W ] as follows: we add a vertex x and join it with the vertices (NG (x1)∪ NG(x2))∩
W by edges and then add a vertex r′ and join it with x (see Fig. 4). The vertex r′ is a root of G S .

Lemma 3. If G is a minimal connected odd graph with an even number of edges, then the rooted graph G S is a minimal connected odd
graph with an even number of edges.

Proof. Clearly, G S is a connected graph. For each xi ∈ S , dG (xi) is odd. Since xi is adjacent to exactly two vertices in U ∪ S ,
|NG(xi) ∩ W | is also odd. It follows that G S an odd graph with an even number of edges, and it remains to prove that G S is
minimal. To obtain a contradiction, assume that G S has a proper connected odd subgraph H with an even number of edges,
and r′ ∈ V (H). Observe, that the edge r′x ∈ E(H). Hence, the number of edges that join x and the vertices of W should
be even. Let Xi ⊆ W ∩ NG(xi) be the set of vertices of H from V (H) ∩ W that are adjacent to x for i = 1,2. Notice that
|X1| + |X2| is even, i.e. either |X1|, |X2| are even or |X1|, |X2| are odd. Consider the graph G[U ∪ S] ∪ H[W ∩ V (H)] and join
xi with the vertices of Xi for i = 1,2. Denote the obtained graph by H ′ . The graph H ′ is a proper connected subgraph of G ,
r ∈ V (H ′), and the number of edges of H ′ is even. If |X1| and |X2| are odd, then H ′ is odd, and we get a contradiction with
the minimality of G . Assume that |X1| and |X2| are even. Recall that x1, x2 have a common neighbor y ∈ U such that y is
not a cut-vertex. We consider H ′′ obtained from H ′ by the removal of x1 y, x2 y. The graph H ′′ is a proper connected odd
subgraph of G , r ∈ V (H ′′), and the number of edges of H ′′ is even. We arrive at contradiction. �



Author's personal copy

F.V. Fomin, P.A. Golovach / Journal of Computer and System Sciences 80 (2014) 157–179 163

Fig. 6. Case 1.

Recall that a graph G is R-free if G has no subgraph isomorphic to the graph R with the two terminals that adjacent in
G such that r is not a non-terminal vertex of this copy of R .

Lemma 4. Let G be a minimal connected odd graph with an even number of edges rooted in r. Suppose that

i) G is R-free;
ii) G has no subgraph from H2, . . . , H6 with the corresponding terminals; and

iii) if G contains H1 as a subgraph, then this subgraph is not separating and r is not a non-terminal vertex of H1 .

Then G is one of the graphs G1, G2, G3 shown in Fig. 5.

Proof. Observe that every connected odd graph with an even number of edges contains a cycle. If G has no cycles on three
or four vertices, then by Lemma 1, G contains either Sl for l � 5 or Sl,t for t > l � 5 rooted in r. By the minimality of G ,
either G = Sl or G = Sl,t . But these graphs are not R-free; a contradiction. From now we assume that G contains induced
cycles on three or four vertices. We choose a cycle C of length three of four such that the distance between V (C) and r
is minimum. If there are cycles of length three and four at the minimum distance from r, we assume that C is a cycle of
length three.

Case 1. Suppose that C = C4. We want to show that this case cannot occur. Let C = v1 v2 v3 v4 and assume that v4 . . . vt

where vt = r is a shortest path between V (C) and r. We consider two subcases.

Case 1.a. r �= v4. Since G is odd, we have that there are (not necessarily distinct) vertices u1, u2, u3, u5, . . . , ut−1 adjacent
to v1, v2, v3, v5, . . . , vt−1 respectively such that u1 �= v2, v4 and ui �= vi−1, vi+1 for i ∈ {2, . . . , t − 1}. By the choice of the
cycle, ui �= v j for i ∈ {1,2,3,5, . . . , t − 1} and j ∈ {1, . . . , t}. If it is possible to choose pairwise distinct vertices ui , then the
subgraph G ′ of G with V (G ′) = {u1, u2, u3, u5, . . . , ut−1} ∪ {v1, . . . , vt} and E(G ′) = {v1u1, v2u2, v3u3, v5u5, . . . , vt−1ut−1} ∪
{v1 v4, v1 v2, . . . , vt−1 vt} is an odd graph with an even number of edges, and by minimality, G = G ′ . But this graph is not
R-free; a contradiction. Hence, for any choice of u1, u2, u3, u5, . . . , ut−1, some of these vertices are same.

Observe that because C is a closest to r cycle with three or four vertices, u5, . . . , ut−1 are pairwise distinct. The set of
edges {v1 v2, v2 v3, v3 v4, v4 v1} is a cut-set in G because G is minimal. Let G ′ be the graph obtained from G by the removal
of these edges. Denote by F1 the component that contains r and v4. Notice that F1 should have an odd number of edges
due the minimality of G .

If there is a component F ′ with an odd number of edges that contains a single vertex from {v1, v2, v3} (see Fig. 6a),
then by the minimality of G , F ′ = K2 and G is not R-free. This is a contradiction. If G ′ has four components, or G ′ has three
components and F1 contains two vertices from {v1, v2, v3, v4}, or G ′ has two components and F1 contains three vertices
from {v1, v2, v3, v4}, then such a component F ′ should exist. Suppose that G ′ has three components, and a component
F ′′ �= F1 contains two vertices from {v1, v2, v3}. Then there is a component that contains a single vertex of this set, and it
should have an even number of edges. Hence, F ′′ has an odd number of edges. If F ′′ contains either v1, v2 or v2, v3 (see
Fig. 6b), then since G has no H2, it is possible to choose the vertices u1, u2, u3 in such a way that they are distinct and,
therefore, we have distinct u1, u2, u3, u5, . . . , ut−1. If F ′′ contains v1, v3 (see Fig. 6c), then since G does not contain H3, it is
possible to find distinct vertices u1, u3 and u1, u2, u3, u5, . . . , ut−1 would be distinct. Hence, G ′ has exactly two components
F1 and F2, the numbers of edges F1, F2 are odd, and F1 contains at most two vertices of the set {v1, v2, v3, v4}.

Suppose that F1 includes two adjacent vertices from this set. Without loss of generality, let v1, v4 ∈ V (F1) and v2, v3 ∈
V (F2). Then we consider the subgraph of G obtained by the removal of the vertices of F2 except v2 and v3, and the removal
of the edge v2 v3, see Fig. 7a. This graph is an odd graph with an even number of edges but this contradicts the minimality
of G .

Suppose now that v2, v4 ∈ V (F1) and v1, v3 ∈ V (F2) (see Fig. 7b). Since G does not contain H3, we can choose u1 �= u3.
Since u1, u2, u3, u5, . . . , ut−1 are not distinct, by the choice of C , we have that dG(v2) = 3 and either u2 = u6 or u2 = u5.

Assume first that u2 = u6. There is a vertex w ∈ V (F1) adjacent to u2, w �= v2, v6. By the choice of C , w, u5, u7, . . . , ut−1
are distinct. Also by the choice of C , w �= v4, v5, v7, . . . , vt . Then F1 has the subgraph with the vertex set {v2, v4, . . . , vt , u5,
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Fig. 7. Case 1.

. . . , ut−1, w} and the edge set {v2u2, v4 v5, . . . , vt−1 vt , v5u5, . . . , vt−1ut−1, u2 w}, see Fig. 7b. This graph is an odd graph
with an odd number of edges, and by minimality, is equal to F1. But F1 is not R-free, which is a contradiction.

Now, let u2 = u5. There is a vertex w ∈ V (F1) adjacent to u2, w �= v2, v5. By the choice of C , w, u6, u8, . . . , ut−1 are
distinct, and w �= v4, v6, . . . , vt . If w �= u7, then F1 has the subgraph with the vertex set {v2, v4, . . . , vt , u5, . . . , ut−1, w}
and the edge set {v2u2, v4 v5, . . . , vt−1 vt , v5u5, . . . , vt−1ut−1, u2 w}, see Fig. 7c. This graph is an odd graph with an odd
number of edges, and by minimality, is equal to F1. But F1 is not R-free, which is a contradiction. Hence, w = u7 (see
Fig. 7d). Notice that v2u6u7 v7 . . . vt is a shortest path between r and C . By symmetry, we can assume now that dG(u4) = 3.
Let F ′

1 be the graph obtained from F1 by the removal of the edges v2u2, v4 v5, v5u5. It remains to observe that F ′
1 is an

odd graph with even number of edges; a contradiction.
Assume now that v1, v2, v3 ∈ V (F2) (see Fig. 7c). Because G does not contain H2 and H3, we again can find pairwise

distinct u1, u2, u3. Again, by minimality, in this case F2 is not R-free; a contradiction.

Case 1.b. r = v4. The arguments for this case are similar, and we prove that such graphs do not exist.
Observe that there are vertices u1, u2, u3, u4 adjacent to v1, v2, v3, v4 respectively, ui �= v j for i, j ∈ {1,2,3,4}. If it

is possible to choose pairwise distinct vertices ui , then the odd graph G ′ with V (G ′) = {u1, . . . , u4} ∪ {v1, . . . , v4} and
E(G ′) = {v1u1, . . . , v4u4} ∪ {v1 v4, v1 v2, . . . , v3 v4} has an even number of edges, and G ′ is a subgraph of G . By minimality,
G = G ′ , but this graph is not R-free, and we have a contradiction. Hence, for any choice of u1, u2, u3, u4, some of these
vertices are equal. The set of edges {v1 v2, v2 v3, v3 v4, v4 v1} is a cut-set in G . Let G ′ be the graph obtained from G by the
removal of these edges. Denote by F1 the component that contains r and v4. Notice that F1 should have an odd number
of edges. By the same arguments as for Case 1.a, G ′ has exactly two components F1 and F2 with odd number of edges,
v2, v4 ∈ V (F1) and v1, v3 ∈ V (F2). Since G does not contain H3, we can choose u1 �= u3 and u2 �= u4 and construct R in G ,
which is a contradiction with R-freeness.

Thus, within the assumptions of the lemma, Case 1 cannot occur.

Case 2. Let C = v1 v2 v3 and assume that v3 . . . vt where vt = r is a shortest path between V (C) and r. We consider two
subcases.

Case 2.a. r �= v3. Since G is odd, there are vertices u1, u2, u4, . . . , ut−1 adjacent to v1, v2, v4, . . . , vt−1 respectively such
that u1 �= v2, v3 and ui �= vi−1, vi+1 for i ∈ {2, . . . , t − 1}. By the choice of the cycle, ui �= v j for i ∈ {1,2,4, . . . , t − 1}
and j ∈ {1, . . . , t}. If it is possible to choose pairwise distinct vertices ui , then the subgraph G ′ of G with V (G ′) =
{u1, u2, u4, . . . , ut−1} ∪ {v1, . . . , vt} and E(G ′) = {v1u1, v2u2, v4u4, . . . , vt−1ut−1} ∪ {v1 v4, v1 v2, . . . , vt−1 vt} is an odd graph
with an even number of edges, and by minimality, G = G ′ . Since G is R-free, we have that t = 4 and G = G1. Assume
that G �= G1. Then for any choice of u1, u2, u4, . . . , ut−1, some of these vertices are equal. Observe that by the choice of C ,
u4, . . . , ut−1 are pairwise distinct.

Let G ′ be the graph obtained from G by removing E(C).
Suppose that G ′ is not connected. Denote by F1 the component containing r and v3. Notice that F1 should have an odd

number of edges. If G ′ has three components, then u1, u2, u4, . . . , ut−1 are pairwise distinct. Hence, G ′ has two components
F1, F2, and F2 has an even number of edges. Observe that if u1 = u2, then G contains H1 that separates G . This contradicts
condition iii) of the lemma. Therefore, we have that u1 = u2, but this is impossible, because it would imply that the ui ’s
are pairwise distinct. Therefore, F1 contains two vertices of C , and we assume without loss of generality that v1, v3 ∈ F1,
see Fig. 8b. Then u2 �= u1, u4, . . . , ut−1. We conclude that u1 = u5. There is a vertex w ∈ V (F1) adjacent to u1, w �= v2, v5.
By the choice of C , w, u4, u6, . . . , ut−1 are distinct. Then G has the subgraph with the vertex set V (F2) ∪ {v1, . . . , vt} ∪
{u4, . . . , ut−1} ∪ {w} and the edge set E(F2) ∪ {v1 v3, v1 v2, . . . , vt−1 vt} ∪ {v1u1, v4u4, . . . , vt−1ut−1} ∪ {u1 w} as it is shown
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Fig. 8. Case 2, G ′ is not connected.

in Fig. 8b. This graph is an odd graph with an even number of edges, and by the minimality of G , G equals it, but it is not
R-free and we get a contradiction. Thus we conclude that G ′ is connected.

If G ′ is a tree, then we claim that G = G3.
Observe that if x1, x2 are leaves of G ′ adjacent to the same neighbor w , then x1 ∈ {r, v1, v2, v3} or x2 ∈ {r, v1, v2, v3}.

Otherwise we can delete x1, x2 and obtain from G a smaller odd graph with even number of edges. Notice also that if x is
a leaf of G ′ adjacent to a vertex w of degree two in G ′ , then x ∈ {r, v1, v2, v3} or w ∈ {r, v1, v2, v3} because G is R-free.
Clearly, |V (G ′)| � 4.

Suppose that G ′ has exactly one inner, i.e., non-leaf vertex. It means that G ′ is a star K1,l . Clearly, l is an odd integer
and l � 3. If l = 3, then G = K4, but by item iii) in lemma’s assumptions, G cannot be isomorphic to K4. Hence, l � 5. Then
the vertices r, v1, v2, v3 are leaves of G ′ , but it contradicts the choice of C , since we have another cycle of length three at
distance one from r. We conclude that G ′ has at least two inner vertices.

Suppose that G ′ has two inner vertices w1, w2 such that each vertex wi is adjacent to exactly one inner vertex, and
let w1 be adjacent to at least four leaves x1, . . . , xl . At least l − 1 vertices of {x1, . . . , xl} are in {r, v1, v2, v3} and at least
one vertex of {x1, . . . , xl} is adjacent to w2. If r is adjacent to w2, then v1, v2, v3 ∈ {x1, . . . , xl}, but it contradicts the choice
of C . Hence, r ∈ {x1, . . . , xl} and exactly two vertices of {v1, v2, v3} are included in this set. Then the cycle induced by w1
and these two vertices is at distance one from r, and it contradicts the choice of C , since C is at distance two from r in this
case. We can claim now that each inner vertex w that is adjacent to one another inner vertex is adjacent to exactly two
leaves of G ′ .

Suppose that there are three inner vertices w1, w2, w3 such that each vertex wi is adjacent to exactly one inner vertex.
Let xi

1 and xi
2 be the leaves adjacent to wi . Then at least two vertices from the set {wi, xi

1, xi
2} are included in {r,v1, v2, v3}

by the minimality of G and R-freeness; a contradiction. It means that there are exactly two inner vertices w1, w2 such that
each vertex wi is adjacent to exactly one inner vertex. Let xi

1 and xi
2 be the leaves adjacent to wi .

Suppose now G ′ has another inner vertex w . Clearly w is adjacent to l leaves y1, . . . , yl where l is odd and dG1 (w) = l+2.
At least two vertices from each set {wi, xi

1, xi
2} are included in {r,v1, v2, v3}. It follows that w, y1, . . . , yl are not included

in {r,v1, v2, v3}. If l = 1, then we have a contradiction with the R-freeness of G , and if l � 3, then we have a contradiction
with the minimality of G .

Now we have that G ′ has exactly two inner vertices and each inner vertex is adjacent to exactly two leaves. Since G
does not contain H2, we conclude that G = G3.

If G ′ has cycles, but there are no cycles C3, C4, then by Lemma 1, we can find an odd subgraph of G ′ with an even
number of edges, but it contradicts the minimality of G . From now we assume that G ′ contains induced cycles on three or
four vertices. Let C ′ be a cycle on three or four such that the distance between V (C ′) and r is minimum.

Suppose that C ′ = C4. Let C ′ = w1 w2 w3 w4. The set of edges {w1 w2, w2 w3, w3 w4, w4 w1} is a cut-set in G because G
is minimal, and therefore, it is a cut-set in G ′ . Denote by G ′′ the graph obtained from G ′ by the removal of these edges. Let
F ′

1 be a component of G ′′ that contains r and assume that w1 ∈ V (F ′
1). Observe that v3 ∈ V (F ′

1) and F ′
1 has an odd number

of edges by the minimality of G . If v1, v2, v3 ∈ V (F ′
1), then the graph obtained from F ′

1 by the addition of the edges of C is
an odd subgraph of G with an even number of edges, but it contradicts the minimality of G . Hence, at least one vertex of
{v1, v2} is not included in F ′

1. Observe also that at least one component of G ′′ does not contain vertices from {v1, v2, v3},
since otherwise the graph obtained from G by the removal of E(G ′) is connected, but it is impossible by the minimality
of G .

First we consider the case when G ′′ has four components F ′
1, F ′

2, F ′
3, F ′

4, wi ∈ V (F ′
i ). Assume that exactly one component

F ′
i has no vertices from {v1, v2, v3} (see Fig. 9a). If F ′

i has an even number of edges, then the graph obtained from G
by removing V (F ′

i ) and edges w1 w2, w2 w3, w3 w4, w4 w1 is a connected odd subgraph of G with an even number of
edges, which contradicts to the minimality of G . If the number of edges of F ′

i is odd, then F ′
i = K2 and G is not R-free or

wi−1 wi+1 ∈ E(C) ⊆ E(G) (it is assumed that w5 = w1) and the graph obtained from G by the removal of V (F ′
i ) and the

edges wi−1 wi, wi wi+1, wi−1 wi+1 is a connected odd subgraph of G with an even number of edges; again a contradiction
to minimality. Suppose that exactly two components F ′

i , F ′
j have no vertices from {v1, v2, v3} (see Fig. 9b,c). If one of these

components, say F ′
i , has an odd number of edges, then F ′

i = K2 and G is not R-free or wi−1 wi+1 ∈ E(G) and the graph
obtained from G by the removal of V (F ′

i ) and the edges wi−1 wi, wi wi+1, wi−1 wi+1 is a connected odd subgraph of G
with an even number of edges; a contradiction. If F ′

i , F ′
j have even numbers of edges, then the graph obtained from G by
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Fig. 9. The graph G ′′ with four components.

Fig. 10. The graph G ′′ with three components.

Fig. 11. The case C = C3.

Fig. 12. The case u1 = u2.

the removal of V (F ′
i ) ∪ V (F ′

j) and the edges w1 w2, w2 w3, w3 w4, w4 w1 is a connected odd subgraph of G with an even
number of edges and we again get a contradiction to the minimality of G .

Now, let now G ′′ have three components F ′
1, F ′

2, F ′
3. Then exactly one component F ′

i has no vertices from {v1, v2, v3}.
If F ′

i has an even number of edges, then the graph obtained from G by the removal of V (F ′
i ) and the edges

w1 w2, w2 w3, w3 w4, w4 w1 is a connected odd subgraph of G with an even number of edges and thus G is not mini-
mal, a contradiction. Hence, the number of edges in F ′

i is odd. If F ′
i contains exactly one vertex wi ∈ {w2, w3, w4}, then

by the same arguments as above, we obtain a contradiction to the minimality of G . If F ′
i contains two adjacent vertices

wi, wi+1 (see Fig. 10a), then the graph obtained from G by the removal of V (F ′
i ) \ {wi, wi+1} and the edge wi wi+1 is a

connected odd subgraph of G with an even number of edges; a contradiction. It follows that F ′
i contains w2, w4. Since G

does not contain H3, there are z2, z4 ∈ V (F ′
i ), z2 �= z4, that are adjacent to w2, w4 respectively. Recall that the number of

edges of G ′ is odd. Therefore, the component F ′
j , j �= 1, i, has an odd number of edges. Hence, the subgraph of G with the

vertex set V (F ′
1) ∪ V (F ′

j) ∪ {w2, w4, z2, z4} and the edge set E(F ′
1) ∪ E(F ′

j) ∪ {w1 w2, w2 w3, w3 w4, w4 w1, w2z2, w4z4} (see
Fig. 10b) is an odd graph with an even number of edges; a contradiction.

Suppose now that C ′ = C3, and let C ′ = w1 w2 w3. Observe that since G does not contain H6, C and C ′ have a common
vertex. Recall that it was assumed that for any choice of u1, u2, u4, . . . , ut−1, some of these vertices are equal. Observe that
(up to symmetry) there are two possibilities: either u1 = u2 or u1 = u5 (see Fig. 11).

Suppose that u1 = u2. Notice that we can make another choice of these vertices unless dG (v1) = dG(v2) = 3, i.e., unless
G contains H1. It follows that v3 ∈ V (C ′). Assume that v3 = w3. Since G does not contains H6, C ′ and the cycle v1 v2u2
should have common vertices, we can assume that w1 = u1 = u2 (see Fig. 12a). By the choice of C , w2 �= v4, . . . , vt and
w2 �= u4, . . . , ut−1. Then the subgraph of G with the vertex set {v1, . . . , vt} ∪ {u1, u4, . . . , ut−1} ∪ {w2} and the edge set
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Fig. 13. The case u1 = u5.

Fig. 14. The case u1 = u5.

{u1 v1, u1 v2, u1 v3, v1 v3, v1 v2, . . . , vt−1 vt} ∪ {v4u4, . . . , vt−1ut−1} ∪ {w2 w3} (see Fig. 12b) is a connected odd graph with an
even number of edges and we have a contradiction.

Assume that u1 = u5. If dG (v1) > 3, then we can choose another vertex as u1. Hence, we can assume that dG(v1) = 3.
Notice that v1u1 v5 . . . vt is a shortest path between r and C . If dG(v3) > 3, then by using this path instead of v3 . . . vt we
obtain a contradiction. Hence, dG (v1) = dG(v3) = 3. Notice that v2 ∈ V (C ′) and we assume that v2 = w3. Since G is odd,
there are (not necessarily distinct) vertices x, y1, y2, z1 shown in Fig. 13a. Since C is a closest to r cycle with three or four
vertices and G has no triangles disjoint with C or C ′ , x �= z1, u4, y1 �= y2, z1 �= u4 and {x, y1, y2, z1} ∩ {u4, . . . , ut−1} = ∅.
If it is possible to choose y1, y2 in such a way that either u4 �= y1, y2 or z1 �= y1, y2, then G has a subgraph with
the vertex set {w1, w2, y1, y2} ∪ {v1, . . . , vt} ∪ {u4, . . . , ut−1} and the edge set {w1 v2, w1 y1, w1 w2, w2 v2, w2 y2, v1 v3} ∪
{v2 v3, . . . , vt−1 vt} ∪ {v4u4, . . . , vt−1ut−1} (Fig. 13b) or a symmetric subgraph shown in Fig. 13c, and we get a contradic-
tion. Therefore, it can be assumed that y1 = z1, y2 = u4 and dG (w1) = dG(w2) = 3 (see Fig. 14a). Now we can find a
vertex z2 �= u1, w1 adjacent to z1. The edge set E(C) ∪ E(C ′) has an even number of edges. Hence, this is a cut-set of G .
Let G ′ be the graph obtained from G by the removal of E(C) ∪ E(C ′). The graph G ′ has two components F1, F2, where
r, v1, v3, w1, w2 ∈ V (F1) and x, v2 ∈ V (F2). By the minimality of G , the number of edges of F1 is odd. It follows that the
number of edges of F2 is also odd. Then we have two possibilities. It can happen that G has a connected odd subgraph
with an even number of edges with the vertex set {v1, v2, w1, z1, u1} ∪ {v5, . . . , vt} ∪ {v3, x, w2, z2} ∪ {u6, . . . , ut−1} and
the edge set {u1 v1, v1 v2, v2 w1, w1z1, z1u1, u1 v5} ∪ {v5 v6, . . . , vt−1 vt} ∪ {v1 v3, vx, w1 w2, z1z2} ∪ {v6u6, . . . , vt−1ut−1} (see
Fig. 14b). Another possibility is that the graph obtained from G by the removal of V (F2) ∪ {v1, w1} and the set of edges
E(C)∪ E(C ′)∪{u1z} (see Fig. 14c) is a connected odd graph with an even number of edges. We have the first case if z2 �= u6,
and we have the second case otherwise. So, we get a contradiction.

Case 2.b. r = v3. The arguments are similar to the previous case. Since G is odd, there are vertices u1, u2, u3 adjacent to
v1, v2, v3 such that ui �= v j for i, j ∈ {1,2,3}. If it is possible to choose pairwise distinct vertices ui , then the subgraph G ′
of G with V (G ′) = {u1, u2, u3} ∪ {v1, v2, v3} and E(G ′) = {v1u1, v2u2, v3u3} ∪ {v1 v3, v1 v2, v2 v3} is an odd graph with an
even number of edges, and by minimality, G = G ′ . Hence, G = G2. Assume that G �= G2. Then for any choice of u1, u2, u3,
some of these vertices are equal.

Let G ′ be the graph obtained from G by the removal of E(C).
Suppose that G ′ is not connected. Denote by F1 the component that contains r. Notice that F1 should have an odd

number of edges. If G ′ has three components, then u1, u2, u3 are pairwise distinct. Hence, G ′ has two components F1, F2,
and F2 has an even number of edges. If v1, v2 ∈ V (F2), then we can choose u1 �= u2 unless G contains H1 that separates G .
Therefore, F1 contains two vertices of C , and we assume without loss of generality that v1, v3 ∈ F1. Then u2 �= u1, u3 and,
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therefore, for any choice, u1 = u3. It can happen only if dG (v1) = dG(v3) = 3, and it means that r is a non-terminal vertex
of H1; a contradiction.

We conclude that G ′ is connected.
Suppose that G ′ is a tree. We use the same arguments as in Case 2.a. Suppose that G ′ has exactly one inner vertex.

It means that G ′ is a star K1,l . Clearly, l is an odd integer and l � 3. If l = 3, then G = K4, but by item iii) in lemma’s
assumptions, G cannot be isomorphic to K4. Hence, l � 5. But then at least two leaves are not included in {v1, v2, v3}, and
we have a contradiction with the minimality of G . Hence, G ′ has at least two inner vertices. Suppose that G ′ has two inner
vertices w1, w2 such that each vertex wi is adjacent to exactly one inner vertex, and let w1 be adjacent to at least two
leaves x1

1, . . . , x1
l and let w2 be adjacent to at least two leaves x2

1, . . . , x2
l′ . Then at least two vertices from each of the sets

{w1, x1
1, . . . , x1

l } and {w2, x2
1, . . . , x2

l′ } are included in {v1, v2, v3}; a contradiction.
If G ′ has cycles, but there are no cycles C3, C4, then by Lemma 1, we can find an odd subgraph of G ′ with an even

number of edges, but it contradicts the minimality of G . From now we assume that G ′ contains induced cycles on three or
four vertices. Let C ′ be such a cycle that the distance between V (C ′) and r is minimum.

We use exactly the same arguments as in Case 2.a and prove that C ′ �= C4. Suppose that C ′ = C3, and let C ′ = w1 w2 w3.
Observe that since G does not contain H6, C and C ′ have a common vertex. Recall that it was assumed that for any choice
of u1, u2, u3, some of these vertices are equal. Because G does not contain H1 that has r as a non-terminal vertex, there is
only one possibility: u1 = u2, and we again use the same arguments as in Case 2.a to get a contradiction. �

Now we need two technical lemmas about odd graphs when the number of edges is odd.

Lemma 5. Let G be an odd graph with an odd number of edges rooted in r. Let also W = {w1, . . . , w p} ⊆ V (G). Suppose that

i) G is a minimal (not necessarily connected) odd graph with an odd number of edges such that r ∈ V (G), W ⊆ V (G), and each
component of G contains at least one vertex of W ;

ii) G has no connected odd subgraph with an even number of edges rooted in r;
iii) G is R-free;
iv) G does not contain H ∈ {H1, H2, H3} such that r is a non-terminal vertex of H.

Then one of the following holds:

a) G is a tree;
b) G contains a separating H ∈ {H1, H2, H3} such that for a component F of G − H with r ∈ V (F ), V (F ) ∩ W = ∅; or
c) G contains an induced cycle C on three vertices such that the graph obtained from G by the removal of E(C) has two components

F1, F2 and V (F1) ∩ W �= ∅, V (F2) ∩ W �= ∅.

Proof. If G has no cycles then the claim is trivial. Assume that G has cycles. If G contains no cycles on three or four vertices,
then by Lemma 1, G has connected odd subgraph with an even number of edges rooted in r. Hence, G contains induced
cycles on three or four vertices. Let C be such a cycle that the distance between V (C) and r is minimum. We consider two
cases.

Case 1. C = C4. Let C = v1 v2 v3 v4 and assume that v4 . . . vt where vt = r is a shortest path between V (C) and r. We
consider two subcases.

Case 1.a. r �= v4. Since G is odd, there are (not necessarily distinct) vertices u1, u2, u3, u5, . . . , ut−1 adjacent to v1, v2, v3, v5,

. . . , vt−1 respectively such that {u1, u2, u3, u5, . . . , ut−1} ∩ {v1, . . . , vt} = ∅. If it is possible to choose pairwise distinct ver-
tices ui , then the subgraph G ′ of G with V (G ′) = {u1, u2, u3, u5, . . . , ut−1}∪{v1, . . . , vt} and E(G ′) = {v1u1, v2u3, v3u3, v5u5,

. . . , vt−1ut−1} ∪ {v1 v4, v1 v2, . . . , vt−1 vt} is a connected odd graph with an even number of edges that contain r, but it con-
tradicts ii). Hence, for any choice of u1, u2, u3, u5, . . . , ut−1, some of these vertices are equal.

Observe that since C is a closest to r cycle with three or four vertices, u5, . . . , ut−1 are pairwise distinct. The set of edges
{v1 v2, v2 v3, v3 v4, v4 v1} is a cut-set in G because G is minimal. Let G ′ be the graph obtained from G by the removal of
these edges. Denote by F the component that contains r and v4. Notice that F should have an odd number of edges. By
condition i), W \ V (F ) �= ∅. Observe also that if V (F ) ∩ W �= ∅, then G ′ has a component F ′ such that V (F ′) ∩ W = ∅, since
otherwise we can remove E(G) and get an odd graph with an odd number of edges such that r and W are included in it,
and each component contains at least one vertex of W .

If G ′ has four components, then we always can find distinct u1, u2, u3 that are different from u5, . . . , ut−1. Suppose that
G ′ has three components. Let v4 be the unique vertex from V (C) in F . Unless G contains H ∈ {H2, H3} with a terminal in
v4 such that C is a part of H , we always can find pairwise distinct u1, u2, u3. Suppose that G contains such H ∈ {H2, H3},
but the component of G − H with r has at least one vertex from W . In this case G ′ has exactly one component F ′ such that
V (F ′) ∩ W = ∅. If the number of edges of F ′ is even, then the graph obtained from G by the removal of V (F ′) and E(C)

is an odd graph with an odd number of edges that r and W are included in it, and each component contains at least one



Author's personal copy

F.V. Fomin, P.A. Golovach / Journal of Computer and System Sciences 80 (2014) 157–179 169

Fig. 15. The case when G ′ has three components.

Fig. 16. The case when G ′ has two components.

vertex of W . It gives a contradiction with i). Hence, the number of edges of F ′ is odd. If F ′ contains exactly one vertex from
V (C), then by minimality, F ′ = K2 and we get a contradiction with iii). Let F ′ contain two vertices from V (C). Assume that
F ′ includes two adjacent vertices of C , say the vertices v1, v2 (see Fig. 15a). Then the graph obtained from G by the removal
of V (F ′) \ {v1, v2} and the edge v1, v2 is a connected odd graph with an even number of edges; a contradiction. Suppose
now that v1, v3 ∈ V (F ′) (see Fig. 15b). It follows that for any choice of u1, u3, it should be u1 = u3, but then H = H3 and
F ′ = R with the terminals v1, v3; a contradiction with R-freeness.

We now suppose that G ′ has two components F , F ′′ . In this case V (F ) ∩ W = ∅ and the number of edges of F ′′ is even.
If F contains the unique vertex from {v1, v2, v3, v4}, then we can find pairwise distinct u1, u2, u3 unless G contains

H ∈ {H2, H3} with a terminal in v4 such that C is a part of H and b) holds. Suppose that F contains three vertices of
this set. Then the component F ′′ �= F contains a vertex ui adjacent to the unique vertex of vi in {v1, v2, v3, v3} ∩ V (F ′′).
It remains to observe that the subgraph of G with the vertex set V (F ) ∪ {vi, ui} and the edge set E(F ) ∪ E(C) ∪ {viui} is a
connected odd graph with an even number of edges; a contradiction. We conclude that F contains exactly two vertices of
{v1, v2, v3, v4}.

Suppose that F includes two adjacent vertices from this set. Without loss of generality, let v1, v4 ∈ V (F ) and v2, v3 /∈
V (F ) (see Fig. 16a). Then we consider the subgraph of G with the vertex set V (F ) ∪ {v2, v3} and the edge set E(F ) ∪
{v1 v4, v1 v2, v3 v4}. This graph is an odd graph with an even number of edges, but this contradicts ii).

Suppose now that v2, v4 ∈ V (F ). We can find distinct u1, u3 adjacent to v1, u3 unless G contains H3 and b) holds.
Otherwise, since for any choice, not all u1, u2, u3, u5, . . . , ut−1 are not distinct, but u5, . . . , ut−1 are pairwise distinct, we
conclude that dG(v2) = 3 and either u2 = u6 or u2 = u5.

Suppose that u2 = u6 as is shown in Fig. 16b. There is a vertex z ∈ V (F ) adjacent to u2, z �= v2, v6. By the choice of C ,
z, u5, u7, . . . , ut−1 are distinct. Then F has the subgraph with the vertex set {v2, v4, . . . , vt} ∪ {u5, . . . , ut−1} ∪ {z} and the
edge set {v4 v5, . . . , vt−1 vt} ∪ {v2u4, v5u5, . . . , vt−1ut−1} ∪ {u2z} as in is shown in the figure. This graph is an odd graph
with an odd number of edges, and by the minimality of G , F = G , but it is not R-free and we get a contradiction.

Let u2 = u5. There is a vertex z ∈ V (F ) adjacent to u2, w �= v2, v5. By the choice of C , z, u6, u8, . . . , ut−1 are distinct, and
z �= v4, v6, . . . , vt . If z �= u7, then F has the subgraph with the vertex set {v2, v4, . . . , vt , u5, . . . , ut−1, z} and the edge set
{v2u2, v4 v5, . . . , vt−1 vt , v5u5, . . . , vt−1ut−1, u2z}, see Fig. 16c. This graph is an odd graph with an odd number of edges,
and by minimality, is equal to F . But F is not R-free, which is a contradiction. Hence, z = u7 (see Fig. 16d). Notice that
v2u6u7 v7 . . . vt is a shortest path between r and C . By symmetry, we can assume now that dG(u4) = 3. Let F ′ be the graph
obtained from F by the removal of the edges v2u2, v4 v5, v5u5. It remains to observe that F ′ is an odd graph with even
number of edges; a contradiction.

Case 1.b. r = v4. The arguments are similar. Since G is odd, there are (not necessarily distinct) vertices u1, u2, u3, u4 adjacent
to v1, v2, v3, v4 respectively such that {u1, u2, u3, u4} ∩ {v1, v2, v3, v4} = ∅. If it is possible to choose pairwise distinct
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Fig. 17. The case when G ′ has two components.

vertices ui , then the subgraph G ′ of G with V (G ′) = {u1, u2, u3, u4}∪ {v1, v2, v3, v4} and E(G ′) = {v1u1, v1u2, v3u3, v4u4}∪
{v1 v4, v1 v2, v2 v3, v3 v4} is an odd graph with an even number of edges that contain r, but it contradicts ii). Hence, for
any choice of u1, u2, u3, u4, some of these vertices are equal. The set of edges {v1 v2, v2 v3, v3 v4, v4 v1} is a cut-set in G
because G is minimal. Let G ′ be the graph obtained from G by the removal of these edges. Denote by F the component
that contains r. If G ′ has at least three components or G ′ has two components and F contains one or three vertices from
{v1, v2, v3, v4} or F contains two adjacent vertices from this set, then the arguments are the same as in Case 1.a. Suppose
that v2, v4 ∈ V (F ). We can find distinct u1, u3 adjacent to v1, u3 unless G contains H3, and we can find distinct u2, u4
adjacent to v2, u4 unless G contains H3 such that r is a non-terminal vertex of H3. If G contains H3, then b) holds, and the
second case is impossible because of iii).

Case 2. C = C3. Let C = v1 v2 v3 and assume that v3 . . . vt where vt = r is a shortest path between V (C) and r. We consider
two subcases.

Case 2.a. r �= v3. Since G is odd, there are (not necessarily distinct) vertices u1, u2, u4, . . . , ut−1 adjacent to v1, v2, v4,

. . . , vt−1 respectively such that {u1, u2, u4, . . . , ut−1}∩{v1, . . . , vt} = ∅. If it is possible to choose pairwise distinct vertices ui ,
then the subgraph G ′ of G with V (G ′) = {u1, u2, u4 . . . , ut−1} ∪ {v1, . . . , vt} and E(G ′) = {v1u1, v2u2, v4u4, . . . , vt−1ut−1} ∪
{v1 v4, v1 v2, . . . , vt−1 vt} is an odd graph with an even number of edges that contain r, but it contradicts ii). Hence, for any
choice of u1, u2, u4, . . . , ut−1, some of these vertices are equal.

Observe that since C is a closest to r cycle with tree or four vertices, u4, . . . , ut−1 are pairwise distinct. Let G ′ be the
graph obtained from G by the removal of the set of edges {v1 v2, v2 v3, v3 v1}. The graph G ′ is an odd subgraph with an
even number of edges. Hence, G ′ is not connected. Denote by F the component that contains r and v4. Notice that F should
have an odd number of edges.

If G ′ has three components, then we always can find distinct u1, u2, u3 that are different from u5, . . . , ut−1. Suppose that
G ′ has two components F , F ′ .

If V (F ) ∩ W �= ∅ and V (F ′) ∩ W �= ∅, then c) holds. If V (F ′) ∩ W = ∅, then F is a connected odd graph with an odd
number of edges such that r ∈ V (F ), W ⊆ V (F ), and we get a contradiction with i). Assume that V (F ) ∩ W = ∅.

If F contains the unique vertex from {v1, v2, v3}, then either G contains separating H1 or we can find pairwise dis-
tinct u1, u2. Let F contain two vertices of this set. Without loss of generality we assume that v1, v3 ∈ V (F ). Clearly,
u2 �= u1, u4 . . . , ut−1. Since for any choice, not all u1, u2, u3, u5, . . . , ut−1 are distinct, we conclude that u1 = u5 (see
Fig. 17). There is a vertex z ∈ V (F ) adjacent to u1, z �= v1, v5. By the choice of C , z, u4, u6, . . . , ut−1 are distinct and
z �= v2, . . . , vt . Then F has the subgraph with the vertex set {v1, v3, . . . , vt} ∪ {u4, . . . , ut−1} ∪ {z} and the edge set
{v3 v4 . . . , vt−1 vt} ∪ {v1u1, v4u4, . . . , vt−1ut−1} ∪ {u1z} as in is shown in Fig. 17. This graph is an odd graph with an odd
number of edges, and by the minimality of G , F equals it, but it is not R-free and we get a contradiction.

Case 2.b. r = v3. The arguments are similar. Since G is odd, there are (not necessarily distinct) vertices u1, u2, u3 adjacent to
v1, v2, v3 respectively such that {u1, u2, u3} ∩ {v1, v2, v3} = ∅. If it is possible to choose pairwise distinct vertices ui , then
the subgraph G ′ of G with V (G ′) = {u1, u2, u3} ∪ {v1, v2, v3} and E(G ′) = {v1u1, v1u2, v3u3} ∪ {v1 v3, v1 v2, v2 v3} is an odd
graph with an even number of edges that contain r, but it contradicts ii). Hence, for any choice of u1, u2, u3, some of these
vertices are equal. As in Case 2.a, the set of edges {v1 v2, v2 v3, v3 v1} is a cut-set in G . Let G ′ be the graph obtained from
G by the removal of these edges. Denote by F the component that contains r and v3. Notice that F should have an odd
number of edges.

If G ′ has three components or if G ′ has two components F , F ′ such that V (F ) ∩ W �= ∅ and V (F ′) ∩ W �= ∅, then we
argue exactly as in Case 2.a. Then we can assume that V (F ) ∩ W = ∅.

If F contains the unique vertex from {v1, v2, v3}, then either G has a separating H1 and b) holds, or we can find pairwise
distinct u1, u2. Suppose that F contains two vertices of this set. Without loss of generality we assume that v1, v3 ∈ V (F ).
But then we can find distinct v1, v3 unless if G contains H1 such that r is not a non-terminal vertex of H1, and we get a
contradiction with iii). �
Lemma 6. Let G be a connected odd graph with an odd number of edges, r1, r2 ∈ V (G). Suppose that

i) G is a minimal connected odd graph with an odd number of edges that contains r1, r2;
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Fig. 18. The case C = C4.

Fig. 19. The case C = C3.

ii) G is R-free;
iii) G has no connected odd subgraph with an even number of edges rooted in r1 or in r2 .

Then tw(G) � 2.

Proof. We prove the lemma by the induction on the number of edges. For the base case, when there is only one edge,
G = K2 and the claim holds trivially. If G is a tree, then tw(G) = 1. Assume that G contains cycles. If G has no cycles on
three or four vertices, then by Lemma 1, we get a contradiction with iii). We consider two cases.

Case 1. The graph G contains an induced C4.
Let C = v1 v2 v3 v4 be an induced cycle. The set of edges {v1 v2, v2 v3, v3 v4, v1 v4} is a cut-set in G . Let G ′ be the graph

obtained from G by the removal of these edges. Denote by F1 the component that contains r1 and assume that v1 ∈ V (F1).
Observe that F1 should have an odd number of edges. By condition i), r2 /∈ V (F1). Denote by F2 the component that
contains r2. By iii), F2 has an odd number of edges. Therefore, G ′ has at least three components and the total number of
edges in the remaining components is odd.

Suppose that |V (F1)∩ V (C)| = 1 and |V (F2)∩ V (C)| = 1. Let F2 contain a vertex of C adjacent with v1, say the vertex v2.
Then the subgraph obtained from G by the removal of the vertices V (G) \ (V (F1) ∪ V (F2) ∪ {v3, v4}) and the edge v3 v4
(see Fig. 18a) is a connected odd graph with an odd number of edges that contain r1, r2, and we get a contradiction with i).
Suppose that v3 ∈ V (F2). If there are distinct vertices u2, u4 �= v1, v4 adjacent to v2, v4 respectively, then the graph with
the vertex set V (F1) ∪ V (F2) ∪ {v2, v4, u2, u4} and the edge set E(F1) ∪ E(F2) ∪ E(C) ∪ {v2u2, v4u4} (see Fig. 18b) is a
connected odd graph with an even number of edges that contains r1, and we get a contradiction with iii). Otherwise,
dG(v2) = dG (v4) = 3 and there is the unique vertex u �= v1, v3 adjacent to v2, v4. Also there is a vertex z �= v2, v4 adjacent
to u. The graph with the vertex set V (F1) ∪ V (F2) ∪ {v2, v4, u, z} and the edge set E(F1) ∪ E(F2) ∪ E(C) ∪ {v2u, v4u, uz} is
a connected odd graph with an odd number of edges that contains r1, r2 (see Fig. 18c). By minimality, this graph equals G ,
but then G is not R-free; a contradiction.

Suppose now that either V (F1) ∩ V (C) = 2 or V (F2) ∩ V (C) = 2. Then there is the unique component F3 �= F1, F2 that
contains exactly one vertex vi ∈ {v2, v3, v4}, and this components contains an odd number of edges. By the minimality of G ,
F3 = K2, but then G is not R-free and we get a contradiction with ii).

We conclude that G cannot contain induced cycles on four vertices.

Case 2. The graph G contains a cycle C = v1 v2 v3. Let G ′ be the graph obtained from G by the removal of the set of
edges {v1 v2, v2 v3, v3 v1}. The graph G ′ is an odd graph with an even number of edges that contains r1. Hence, G ′ is not
connected. Denote by F1 the component that contains r1 and assume that v1 ∈ V (F1). Observe that F1 should have an odd
number of edges and by i), r2 /∈ V (F1). Let F2 be the component of G ′ that contain r2 and assume that v2 ∈ V (F2). If there
is the third component F3, then v3 ∈ V (F3), and F3 has a vertex u3 adjacent to v3. Since F2 contains a vertex u2 adjacent
to v2, the subgraphs of G with the vertex set V (F1) ∪ {v2, v3, u2, u3} and the edge set E(F1) ∪ E(C) ∪ {v2u2, v3u3} (see
Fig. 19a) is a connected odd graph with an even number of edges that contains r1, and we get a contradiction with iii).
Hence, either v3 ∈ V (F1) or v3 ∈ V (F2). Without loss of generality, we assume that v3 ∈ V (F2).

The graph F2 contains two (not necessarily distinct) vertices u2, u3 adjacent to v2, v3 respectively. If it is possible to
choose distinct u2, u3, then the subgraphs of G with the vertex set V (F1) ∪ {v2, v3, u2, u3} and the edge set E(F1) ∪
E(C) ∪ {v2u2, v3u3} (see Fig. 19b) is a connected odd graph with an even number of edges that contains r1, and we get a
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Fig. 20. The base of the induction: Minimal graphs with six edges.

Fig. 21. Case 2, H = H1

contradiction with iii). Hence, dG(v2) = dG (v3) = 3 and F2 has the unique vertex u adjacent to v2, v3. If r2 = v2 or v3, then
the subgraphs of G with the vertex set V (F1) ∪ {v2, v3} and the edge set E(F1) ∪ {v1 v2, v1 v3} (see Fig. 19c) is a connected
odd graph with an odd number of edges that contains r1, r2, and we get a contradiction with i). It means that r2 �= v2, v3.
Denote by F ′

2 the graph obtained from F2 by the removal of v2, v3 (see Fig. 19d).
We apply the lemma inductively for F1 with the vertices r1, v1 and F ′

2 with the vertices u, r2. These graphs have tree

decompositions (T (1), X (1)) and (T (2), X (2)) respectively of width at most two. Let i be a node of T (1) with v1 ∈ X (1)
i where

X (1)
i is the bag of (T (1), X (1)) which corresponds to i. Let also j be a node of T (2) with u ∈ X (2)

j . We construct a tree

decomposition for G as follows. We consider the trees T (1) and T (2) and join the nodes by a path of length three with
the nodes i, i′, j′, j and let the bags Xi′ = {v1, v2, v2}, X j′ = {v2, v2, u} for the nodes i′, j′ . The bags for other nodes are
the same as in (T (1), X (1)) and (T (2), X (2)). It remains to observe that we get a tree decomposition for G of width at most
two. �
4.2. Induction

In this section we prove our inductive Claim 1 that yields Theorem 1.
Let G be a graph and let x ∈ V (G). Recall that we say that a graph G ′ is obtained from G by a splitting of x into x1, x2, if

G ′ is constructed as follows: for a partition X1, X2 of NG(x), we replace x by two vertices x1, x2, and join x1, x2 with the
vertices of X1, X2 respectively.

We prove the claim by the induction on the number of edges.
Observe that every connected odd graph with an even number of edges has at least 6 edges, and there are two graphs

shown in Fig. 20 with 6 edges that have these properties. It is straightforward to check that the claim holds for these graphs
for any choice of the root vertex. Assume now that G has at least 8 edges.

If G is not R-free, i.e., it contains a subgraph R with the terminals s1, s2 such that r /∈ V (R) \ {s1, s2} and s1s2 /∈ E(G),
then by Lemma 2, the graph G ′ obtained by the removal of all the non-terminal vertices of R and the addition of s1s2 is
minimal and tw(G) � tw(G ′). Since |E(G ′)| < |E(G)|, our claim holds by induction. From now we assume that G is R-free.

We proceed with the following case analysis.

Case 1. The graph G has no subgraphs H2, . . . , H6, and if G contains H1, then this subgraph is not separating and r is not a
non-terminal vertex of H1. Then by Lemma 4, G is one of the graphs G1, G2, G3 shown in Fig. 5 and the claim holds.

Case 2. The graph G contains a subgraph H ∈H and r is a non-terminal vertex of H . Clearly, we can assume that H = H1, H2
or H3. Indeed, all vertices of H6 are terminals, and H4 and H5 contain H1. Let F be the subgraph of G obtained by the
removal of the non-terminal vertices of H and all the edges of H .

Case 2.1. H = H1. We have two subcases here.

Case 2.1.a. F is connected. If s1 and s2 are adjacent in G , then, by minimality, G is the graph shown if Fig. 21a, but this
graph has six edges. If s1 and s2 have a common neighbor x ∈ V (F ), then since G is minimal and odd, G is the graph shown
in Fig. 21b, but it contradicts our assumption that G is R-free. Let NG(s1) ∩ NG(s2) ∩ V (F ) = ∅ (see Fig. 21c). Consider the
graph G S for S = {s1, s2} with the root r′ and the unique vertex x adjacent to r′ (see Fig. 4; x1 = s1, x2 = s2 and W = V (F )

here). By Lemma 3, G S is a minimal connected odd graph with an even number of edges. Because |E(G S )| � |E(G)| − 4, by
the induction hypothesis, tw(G S ) � 3 and conditions i) or ii) of Claim 1 hold for G S .
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Fig. 22. Case 2, H = H2.

We construct the tree decomposition of G as follows. If there is a tree decomposition (X, T ) of G of width at most three
such that for any bag Xi ∈ X with x ∈ Xi , |Xi | � 3, then we remove r′ from all the bags, replace x by s1, s2 in every bag,
and finally, choose a node of T with the bag Xi that contain s1, s2, add a leaf j adjacent to this node, and let X j = V (H1).
If for any graph G ′ obtained from G S − r′ by splitting x into x1, x2, tw(G ′) � 3 and there is a tree decomposition (X, T ) of
G ′ of width at most three such that there is a bag Xi ∈ X with x1, x2 ∈ Xi , then there is a tree decomposition (X, T ) of F of
width at most three such that there is a bag Xi ∈ X with s1, s2 ∈ Xi . We add a leaf j adjacent to i in T , and let X j = V (H1).
It is straightforward to check that we get a tree decomposition of width at most three.

Case 2.1.b. F is not connected. Let F1 and F2 be components of F such that s1 ∈ V (F1) and s2 ∈ V (F2). Since the number
of edges of G is even, by symmetry, without loss of generality, we assume that |E(F1)| is odd and |E(F2)| is even. Then
the graph obtained by the removal of the vertices F1 and the edge between non-terminal vertices of H1 (see Fig. 21d) is a
connected odd graph with an even number of edges, which contradicts the minimality of G .

Case 2.2. H = H2. We prove that this case cannot occur. We consider three subcases.

Case 2.2.a. F is connected. Then the graph obtained by the removal of the edges of the cycle with four vertices induced by
the non-terminal vertices of H5 and s2, s3 (see Fig. 22a) is a connected odd graph with an even number of edges, and it
contradicts the minimality of G .

Case 2.2.b. F has two components F1, F2. Since the number of edges of G is even, either both the graphs F1, F2 have odd
numbers of edges, or they have even numbers of edges. Observe that one of these graphs, say F1, contains exactly one
vertex of the set {s1, s2, s3}. Assume that the number of edges of F1 is odd. If s1 ∈ V (F1), then the graph obtained by
the removal of the vertices F1 and the edge between non-terminal vertices of H2 is a connected odd graph with an even
number of edges, and it contradicts the minimality of G (see Fig. 22b). If s2 ∈ V (F1) or s3 ∈ V (F1), then by the minimality
of G , F1 = K2 and the graph G is not R-free, but it contradicts our assumption. Suppose now that the number of edges of
F1 is even. If s1 ∈ V (F1), then the graph obtained by the removal of the vertices F2 and the edge between non-terminal
vertices of H1 (see Fig. 22c) is a connected odd graph with an even number of edges, and it contradicts the minimality
of G . Assume that rs2 ∈ E(G) and denote by z the second non-terminal vertex of H2. If s2 ∈ V (F1), then the subgraph of G
induced by V (F1) ∪ {r, s3} is a connected odd graph with an even number of edges (see Fig. 22d), but this is impossible.
If s3 ∈ V (F1), then the subgraph of G obtained by the removal of all vertices of V (F1) − {s1, s2} (see Fig. 22e), the edges of
F1, and the edges s1r, rs2 is a connected odd graph with an even number of edges; a contradiction.

Case 2.2.c. F has three components F1, F2, F3. Since the number of edges of G is even, one of these graphs, say F1, contains
an even number of edges. By using exactly the same arguments as in Case 2.2.b, we get a contradiction with the minimality
of G .

Case 2.3. H = H3. To show that this case cannot occur, we consider three subcases.

Case 2.3.a. F is connected. Denote by z the second non-terminal vertex of H3. Then the graph obtained by the removal of
the edges of the cycle with four vertices induced by r, s2, z, s3 is a connected odd graph with an even number of edges, and
it contradicts the minimality of G .

Case 2.3.b. F has two components F1, F2. Since the number of edges of G is even, either both the graphs F1, F2 have odd
numbers of edges, or they have even numbers of edges. Observe that one of these graphs, say F1, contains exactly one
vertex of the set {s1, s2, s3}. Let s1 ∈ V (F1). If the number of edges of F1 is odd, then by the minimality of G , F1 = K2 and
the graph G is not R-free, but it contradicts our assumption. If the number of edges of F1 is even, then the graph obtained
from G by the removal of the vertices of F2 is a connected odd graph with an even number of edges, and it contradicts the
minimality of G .
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Fig. 23. The case H = H2.

Case 2.3.c. F has three components F1, F2, F3. Since the number of edges of G is even, one of these graphs, say F1, contains
an even number of edges. By using exactly the same arguments as in Case 2.3.b, we get a contradiction with the minimality
of G .

From now we assume that the root r is not a non-terminal vertex of a graph from H. If G would contain a non-separating
subgraph H1, then as we already have shown in Case 1, G is one of the graphs G1, G2, G3 shown in Fig. 5. All graphs from
H2, . . . , H6 have even number of edges and every terminal vertex of such a graph is of even degree. This means, that G
cannot contain a non-separating graph H from H2, . . . , H6, because removing edges and non-terminal vertices of H , would
result in a connected odd subgraph of G with even number of edges, which is a contradiction to the minimality of G .

Case 3. The graph G has a separating subgraph from H.
We choose H ∈H in such a way that the number of edges of the component F1 with the root vertex r of G ′ = G − H is

minimum. By the minimality of G , the number of edges of F1 is odd. Now we consider the following cases.

Case 3.a. H = H1. Assume that s1 ∈ V (F1) and let F2 be the second components of G ′ , s2 ∈ V (F2). Since G has an even
number of edges, the number of edges of F2 is even. We apply Lemma 5 for W = {s1}. By the choice of H , F1 cannot
contain a separating H ′ ∈ {H1, H2, H3} such that for a component F ′ of F1 − H ′ with r ∈ V (F ′), V (F ′) ∩ W = ∅. Since
|W | = 1, G cannot contain an induced cycle C on three vertices such that the graph obtained from F1 by the removal
of E(C) has two components F ′

1, F ′
2 and V (F ′

1) ∩ W �= ∅, V (F ′
2) ∩ W �= ∅. It follows that F1 is a tree, and by minimality,

F1 = K2.
By the minimality of G , F2 is a minimal connected odd graph with an even number of edges with a root s2. By induction,

tw(F ′) � 3. Let (X, T ) be a tree decomposition of F ′ of width at most three, and assume that s2 ∈ Xi . Denote by x1, x2
the non-terminal vertices of H . We add a path of length three with the nodes i, i1, i2, i3 to T , and set Xi1 = {s2, x1, x2},
Xi2 = {s1, x1, x2}, and Xi3 = V (F1). We get a tree decomposition of G of width at most three. Notice that if dG(r) = 1, then
s1 is adjacent to r, and s1 is included in two bags of size at most three.

Case 3.b. H = H2. Denote by x1, x2 the non-terminal vertices of H5 adjacent to s2, s3 respectively.
Suppose that F1 contains two terminal vertices of H2. Then G ′ has two components, and we denote by F2 the second

component. The graph F2 has an odd number of edges, and by minimality, F2 = K2. Since G is R-free, s2, s3 ∈ F1. But then
the subgraph of G with the vertex set V (F1) ∪ {x1, x2} and the edge set E(F1) ∪ {s2x1, s3x2} (see Fig. 23a) is a connected
odd graph with an even number of edges; a contradiction. Hence, F1 contains exactly one vertex of H2. If s1 ∈ V (F1), then
the subgraph of G with the vertex set V (F1) ∪ V (H) and the edge set E(F1) ∪ {s1x1, s1x2, x1x2, x1s2, x2s3} (see Fig. 23b)
is a connected odd graph with an even number of edges; a contradiction. Therefore, we can assume that s2 ∈ V (F1) and
s1, s3 /∈ V (F1).

Suppose that s1, s3 are vertices of different components F2, F3 of G ′ respectively. If the number of vertices F3 is odd,
then F3 = K2 and we get a contradiction with R-freeness. Hence, the number of edges of F3 is even and the number
of edges of F2 is odd. Then the graph obtained from G by the removal of V (F2) and the edge x1x2 (see Fig. 23c) is a
connected odd graph with an even number of edges; a contradiction. It follows that s1, s3 are vertices of one component
of G ′ . We denote it by F2. Notice that the number of edges of F2 is odd.

By exactly the same arguments as in Case 3.a, we claim that F1 = K2 (see Fig. 23d).
If s1, s3 are adjacent then F2 = K2 and the claim of the lemma holds. If s1, s3 have a common neighbor u in F2, then

there is a vertex w ∈ V (F2), w �= s1, s3, adjacent to u. By minimality, V (F2) = {s1, s3, u, w} and E(F2) = {s1u, s3u, uw}, but
then G is not R-free; a contradiction. Otherwise we consider the graph G S for S = {s1, s3} with the root r′ and the unique
vertex x adjacent to r′ . By Lemma 3, G S is a minimal connected odd graph with an even number of edges. By the induction,
tw(G S ) � 3 and either i) or ii) holds for G S

Suppose that G S has a tree decomposition (X, T ) such that for any bag Xi ∈ X , if x ∈ Xi , then |Xi | � 3. We construct
the tree decomposition of G as follows. First we remove r′ from all the bags and replace x by s1, s3 in every bag. Let i be
a node of T with the bag Xi that contain s1, s3. We add a path of length three with the nodes i, i1, i2, i3 to T , and set
Xi1 = {s1, s3, x1, x2}, Xi2 = {s2, s3, x1}, and Xi3 = V (F1). We get a tree decomposition of G of width at most four. Notice that
if dG(r) = 1, then s2 is adjacent to r, and s2 is included in two bags of size at most three.
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Fig. 24. The case H = H4.

Suppose now that for any graph G ′ obtained from G S − r′ by splitting x into z1, z2, tw(G ′) � 3 and there is a tree
decomposition (X, T ) of G ′ of width at most three such that there is a bag Xi ∈ X with z1, z2 ∈ Xi . Then there is a tree
decomposition (X, T ) of F2 of width at most three such that there is a bag Xi ∈ X with s1, s3 ∈ Xi . We add a path of
length three with the nodes i, i1, i2, i3 to T , and set Xi1 = {s1, s3, x1, x2}, Xi2 = {s2, s3, x1}, and Xi3 = V (F1). We get a tree
decomposition of G of width at most four. Notice that if dG (r) = 1, then s2 is adjacent to r, and s2 is included in two bags
of size at most three.

Case 3.c. H = H3. Denote by x1, x2 the non-terminal vertices of H3.
Suppose that F1 contains two terminal vertices of H3. Then G ′ has two components, and we denote by F2 the second

component. The graph F2 has an odd number of edges, and by minimality, F2 = K2; a contradiction to the assumption
that the graphs are R-free. Therefore, we can assume that s1 ∈ V (F1) and s2, s3 /∈ V (F1). Suppose that s2, s3 are vertices
of different components F2, F3 of G ′ respectively. Then either F2 or F3 has an odd number of edges and we again get a
contradiction with R-freeness. It follows that s2, s3 are vertices of one component of G ′ . We denote it by F2. Notice that the
number of edges of F2 is odd.

By exactly the same arguments as in Case 3.a, F1 = K2.
If s2, s3 are adjacent then F2 = K2 and the claim of the lemma holds. If s2, s3 have a common neighbor u in F2, then

there is a vertex w ∈ V (F2), w �= s2, s3, adjacent to u. By minimality, V (F2) = {s2, s3, u, w} and E(F2) = {s2u, s3u, uw}, but
then G is not R-free; a contradiction. Otherwise we consider the graph G S for S = {s2, s3} with the root r′ and the unique
vertex x adjacent to r′ . By Lemma 3, G S is a minimal connected odd graph with an even number of edges. By the induction,
tw(G S ) � 3 either i) or ii) holds for G S .

Suppose that G S has a tree decomposition (X, T ) such that for any bag Xi ∈ X , if x ∈ Xi , then |Xi | � 3. We construct
the tree decomposition of G as follows. First we remove r′ from all the bags and replace x by s2, s3 in every bag. Let i be
a node of T with the bag Xi that contain s2, s3. We add a path of length three with the nodes i, i1, i2, i3 to T , and set
Xi1 = {s2, s3, x1, x2}, Xi2 = {s1, x1, x2}, and Xi3 = V (F1). We get a tree decomposition of G of width at most three. Notice
that if dG(r) = 1, then s1 is adjacent to r, and s1 is included in two bags of size at most three.

Suppose now that for any graph G ′ obtained from G S − r′ by splitting x into z1, z2, tw(G ′) � 3 and there is a tree
decomposition (X, T ) of G ′ of width at most three such that there is a bag Xi ∈ X with z1, z2 ∈ Xi . Then there is a tree
decomposition (X, T ) of F2 of width at most three such that there is a bag Xi ∈ X with s2, s3 ∈ Xi . We add a path of
length three with the nodes i, i1, i2, i3 to T , and set Xi1 = {s2, s3, x1, x2}, Xi2 = {s1, x1, x2}, and Xi3 = V (F1). We get a tree
decomposition of G of width at most three. Notice that if dG (r) = 1, then s1 is adjacent to r, and s1 is included in two bags
of size at most three.

Case 3.d. H = H4. Without loss of generality we assume that s1, s3 ∈ V (F1) and s2, s4 /∈ V (F1). Otherwise, either a copy of
H1 in H is a non-separating subgraph of F1 and F1 − H1 is a connected odd graph with an even number of edges, or we
can find a separating H = H1 with the same component F1. Denote by x1, x2 the non-terminal vertices of H adjacent to
s1, s2, and let y1, y2 be the non-terminal vertices of H adjacent to s3, s4.

Suppose that s2, s4 belong to different components F2, F3 of G ′ . Then one of these components, say F3, contains an odd
number of edges. Assume that s4 ∈ V (F3). Then the subgraph with the vertex set V (F1) ∪ V (F2) ∪ {x1, x2} and the edge set
E(F1) ∪ E(F2) ∪ {s1x1, s1x2, x1x2, x1s2, x2s2} (see Fig. 24a) is a connected odd graph with an even number of edges, and it
contradicts the minimality of G . Hence, s2, s4 are vertices of one component of G ′ with an odd number of edges, and we
denote it by F2 (see Fig. 24b).

We apply Lemma 5 for W = {s1, s3}. Since F2 is connected, F1 is a minimal (not necessarily connected) odd graph with
an odd number of edges such that r ∈ V (G), W ⊆ V (G), and each component of G contains at least one vertex of W . By
minimality, F1 has no connected odd subgraph with an even number of edges rooted in r. By the choice of H , F1 cannot
contain a separating H ′ ∈ {H1, H2, H3} such that for a component F ′ of F1 − H ′ with r ∈ V (F ′), V (F ′) ∩ W = ∅. Suppose
that F1 contains an induced cycle C on three vertices such that the graph obtained from F1 by the removal of E(C) has
two components F ′

1, F ′
2 and V (F1) ∩ W �= ∅, V (F2) ∩ W �= ∅. Let r, s1 ∈ V (F ′

1) and s3 ∈ V (F ′
2). Then the union of C and the

triangle x1x2s2 (see Fig. 24c) gives a copy of H6, for which we could get a smaller F1. It follows that F1 is a tree, and by
minimality and symmetry, F1 is one of the graphs F (1)

1 , F (2)
1 , F (3)

1 , F (4)
1 shown in Fig. 25.
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Fig. 25. The trees F (1)
1 , . . . , F (4)

1 .

We observe that F2 is a minimal connected odd graph with an odd number of edges containing s2, s4. Also F2 has
no connected odd subgraph with an even number of edges rooted in s2 or in s4. Indeed, if F2 contains a connected odd
subgraph F with an even number of edges rooted, say, in s2, then the graph with the vertex set V (F1)∪ V (F )∪ {x1, x2} and
the edge set E(F1) ∪ E(F ) ∪ {s1x1, s1x2, x1x2, x1s2, x2s2} is a connected odd subgraph of G with an even number of edges
that contains r; a contradiction.

By Lemma 6, tw(F2) � 2. Consider a tree decomposition (X, T ) of F2 of width at most two. Let i be a node of T such
that s2 ∈ Xi .

If F1 ∈ {F (1)
1 , F (2)

1 , F (3)
1 }, then we construct a tree decomposition for G from (X, T ) as follows. We include vertex s4 in all

the bags.
If F1 = F (1)

1 , then we add a path of length five with the nodes i, i1, i2, i3, i4, i5 to T , and set Xi1 = {s2, x1, x2, s4}, Xi2 =
{s1, x1, x2, s4}, Xi3 = {s1, s3, s4}, Xi4 = {s3, y1, y2, s4}, and Xi5 = {s4, y1, y2}.

If F1 = F (2)
1 or F1 = F (3)

1 , then we add a path of length six with the nodes i, i1, i2, i3, i4, i5, i6 and a node j adjacent

to i4 to T . If F1 = F (2)
1 then Xi1 = {s2, x1, x2, s4}, Xi2 = {s1, x1, x2, s4}, Xi3 = {s1, z, s4}, Xi4 = {s3, z, s4}, Xi5 = {s3, y1, y2, s4},

Xi6 = {s4, y1, y2}, and X j = {z, r}. If F1 = F (3)
1 then Xi1 = {s2, x1, x2, s4}, Xi2 = {s1, x1, x2, s4}, Xi3 = {s1, r, s4}, Xi4 = {s3, r, s4},

Xi5 = {s3, y1, y2, s4}, Xi6 = {s4, y1, y2}, and X j = {z, r}. We get a tree decomposition of G of width at most four. Notice that
if dG(r) = 1, then z is adjacent to r, and z is included in three bags of size at most three.

Now, let F1 = F (4)
1 . We prove that for any graph G ′ obtained from G − r by splitting s1 into w1, w2, tw(G ′) � 3 and there

is a tree decomposition of G ′ of width at most three such that there is a bag that includes w1, w2. Assume that the vertex
w2 is adjacent to s3 in G ′ . We consider (X, T ) and include the vertex s4 in all the bags. We add a path of length five with
the nodes i, i1, i2, i3, i4, i5 and then a path i2, j1, j2 to T . Then Xi1 = {s2, x1, x2, s4}, Xi2 = {w2, x1, x2, s4}, Xi3 = {w2, s3, s4},
Xi4 = {s3, y1, y2, s4}, Xi5 = {s4, y1, y2}, and X j1 = {w1, w2, x1, x2}, X j2 = {w1, w2, z}.

Case 3.e. H = H5. Denote by x1, x2 the non-terminal vertices of H2 adjacent to s2, and let y1, y2 be the non-terminal
vertices of H3 adjacent to s3. We assume without loss of generality that either s1 ∈ V (F1) and s2, s3 /∈ V (F1) or s1 /∈ V (F1)

and s2, s3 ∈ V (F1).
Suppose that s1 ∈ V (F1) and s2, s3 /∈ V (F1). Then by the same arguments as in Case 3.d, we prove that s2, s3 are vertices

of one component F2 and tw(F2) � 2. Then exactly as in Case 3.a we prove that F1 = K2. Let (X, T ) be a tree decomposition
of F2 of width at most two, and let i be a node of T such that s2 ∈ Xi .

If r = s1 then we construct a tree decomposition for G as follows. We consider (X, T ) and include the vertex s3 in all the
bags. We add a path of length four with the nodes i, i1, i2, i3, i4 and a node j adjacent to i2 to T . Let Xi1 = {s2, x1, x2, s3},
Xi2 = {s1, x1, x2, s3}, Xi3 = {s1, y1, y2, s3}, Xi4 = {s3, y1, y2}, and X j = V (F1). We get a tree decomposition of G of width at
most three.

Suppose that r �= s1. We prove that for any graph G ′ obtained from G − r by splitting s1 into w1, w2, tw(G ′) � 3 and
there is a tree decomposition of G ′ of width at most three such that there is a bag that includes w1, w2. We consider (X, T )

and include the vertex s4 in all the bags. By the symmetry, it is sufficient to consider three cases.

1. w1 is adjacent to x1 and w2 is adjacent to x2, y1, y2 (see Fig. 26a). We add a path of length four with the nodes
i, i1, i2, i3, i4 and a node j adjacent to i2 to T . Let Xi1 = {s2, x1, x2, s3}, Xi2 = {w2, x1, x2, s3}, Xi3 = {w1, y1, y2, s3},
Xi4 = {s3, y1, y2}, and X j = {w1, w2, x1, s3}.

2. w1 is adjacent to x1, x2 and w2 is adjacent to y1, y2 (see Fig. 26b). We add a path of length five with the nodes
i, i1, i2, i3, i4, i5 to T . Let Xi1 = {s2, x1, x2, s3}, Xi2 = {w1, x1, x2, s3}, Xi3 = {w1, w2, s3}, Xi3 = {w2, y1, y2, s3}, Xi4 =
{s3, y1, y2}.

3. w1 is adjacent to x1, y1 and w2 is adjacent to x2, y2 (see Fig. 26c). We add a path of length six with the nodes
i, i1, i2, i3, i4, i5, i6 to T . Let Xi1 = {s2, x1, x2, s3}, Xi2 = {w1, x1, x2, s3}, Xi3 = {w1, w2, x2, s3}, Xi4 = {w1, w2, y1, s3},
Xi5 = {w2, y1, y2, s3}, Xi6 = {s3, y1, y2}.

Assume now that s1 /∈ V (F1) and s2, s3 ∈ V (F1). Then we observe that by minimality F2 = K2, and by the same argu-
ments as in Case 3d we prove that G is one of the graphs shown in Fig. 26 It is straightforward to see that the claim of the
lemma holds in this case.
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Fig. 26. Splitting of s1.

Case 3.f. H = H6. By the previous cases, we can assume that G does not have a copy of H4 or H5 containing H . Suppose
that for one triangle in H , say s1s2s3, s1, s2, s3 ∈ V (F1). Then the set of edges {s1s2, s2s3, s1s3} is not a cut-set in F1, and
the graph obtained from F1 by the addition of these edges is a connected odd graph with an even number of edges;
a contradiction.

Suppose that for one triangle in H , say s4s5s6, s4, s5, s6 /∈ V (F1). Then let C = s1s2s3 and consider the graph G ′ obtained
from G by the removal of E(C). The graph G ′ is not connected and F1 is a component of G ′ .

Let F1 include the unique vertex from C and assume that s1 ∈ V (F1). If we can choose distinct vertices u1, u2 �= s1
adjacent to s2, s3 respectively, then the subgraph of G with the vertex set V (F1) ∪ {s2, s3, u1, u2} and the edge set E(F1) ∪
{s1s2, s2s3, s1s3, s2u1, s3u2} is a connected odd graph with an even number of edges; a contradiction. Hence, dG(s2) =
dG(s3) = 3 and s2, s3 have the unique neighbor u �= s1. But in this case we should choose H1 instead H6.

Now, let now F1 contain two vertices from C and assume that s1, s2 ∈ V (F1). There is a vertex u �= s1, s2 adjacent to s3.
We apply Lemma 5 for W = {s1, s2}. Clearly F1 is a minimal odd graph with an odd number of edges such that r ∈ V (G),
W ⊆ V (G), and each component of G contains at least one vertex of W . By minimality, F1 has no connected odd subgraph
with an even number of edges rooted in r. By the choice of H , F1 cannot contain a separating H ′ ∈ {H1, H2, H3} such that
for a component F ′ of F1 − H ′ with r ∈ V (F ′), V (F ′) ∩ W = ∅. Suppose that F1 contains an induced cycle C ′ on three
vertices such that the graph obtained from F1 by the removal of E(C ′) has two components F ′

1, F ′
2 and V (F1) ∩ W �= ∅,

V (F2) ∩ W �= ∅. Then the subgraph of G with the vertex set V (F ′
1) ∪ V (F ′

2) ∪ {s3, u} and the edge set E(F ′
1) ∪ E(F ′

2) ∪
{s1s2, s2s3, s1s3, s3u} is a connected odd graph with an even number of edges; a contradiction. Hence, F1 is a tree, but by
minimality, we can find a copy of H1 that should be chosen instead of H6.

From now we assume that each triangle in H has at least one vertex in F1 and at least one vertex not in F1.
Suppose that F1 contains a single vertex of each triangle in H . We assume that s1, s4 ∈ V (F1). The considered graph

H = H6 is not a subgraph of H4 or H5. Hence, there are distinct vertices u1, u2 /∈ V (F1) adjacent to either s2, s3 respectively
or to s5, s6 respectively. Assume that u1s2, u2s3 ∈ E(G). Then the subgraph of G with the vertex set V (F1) ∪ {s2, s3, u1, u2}
and the edge set E(F1) ∪ ∪{s1s2, s2s3, s1s3} ∪ {s2u1, s3u2} is an odd graph with en even number of edges; a contradiction.

Suppose that F1 contains a single vertex from {s1, s2, s3} and two vertices from {s4, s5, s6}. We assume that s1, s4, s5 ∈
V (F1).

If we can choose distinct vertices u1, u2 �= s1 adjacent to s2, s3 respectively, then the subgraph of G with the vertex set
V (F1) ∪ {s2, s3, u1, u2} and the edge set E(F1) ∪ {s1s2, s2s3, s1s3, s2u1, s3u2} is a connected odd graph with an even number
of edges; a contradiction. Hence, dG(s2) = dG (s3) = 3 and s2, s3 have the unique neighbor u �= s1.

Let F2 be the graph obtained from G by the removal of V (F1) ∪ {s2, s3}. Exactly as in Case 3.d we show that F2 is a
connected odd graph with an odd number of edges (see Fig. 27a).

Now we apply Lemma 5 for W = {s1, s4, s5}. Clearly F1 is a minimal odd graph with an odd number of edges such that
r ∈ V (G), W ⊆ V (G), and each component of G contains at least one vertex of W . By minimality, F1 has no connected odd
subgraph with an even number of edges rooted in r. By the choice of H , F1 cannot contain a separating H ′ ∈ {H1, H2, H3}
such that for a component F ′ of F1 − H ′ with r ∈ V (F ′), V (F ′) ∩ W = ∅.

Suppose that F1 contains an induced cycle C = z1z2z3 on three vertices such that the graph obtained from F1 by the
removal of E(C) has two components F ′

1, F ′
2 and V (F1) ∩ W �= ∅, V (F2) ∩ W �= ∅. Let r ∈ V (F ′

1). If s4 ∈ V (F ′
1), s5 ∈ V (F ′

2) or
s5 ∈ V (F ′

1), s4 ∈ V (F ′
2), then the subgraph obtained from G by the removal of s2, s3 and E(C) a connected odd graph with

an even number of edges (see Fig. 27b); a contradiction. Therefore, either s1 ∈ V (F ′
1) and s4, s5 ∈ V (F ′

2) or s4, s5 ∈ V (F ′
1)

and s1 ∈ V (F ′
2). If s1 ∈ V (F ′

1) and s4, s5 ∈ V (F ′
2), then we observe that the union of C and the triangle s2s3u could be

chosen instead of H (see Fig. 27c). Hence, s4, s5 ∈ V (F ′
1) and s1 ∈ V (F ′

2). If the triangles C and s4s5s6 are disjoint, then
their union could be chosen instead of H . It means that these triangles have a common vertex. Assume that z1 = s5 and
z2 ∈ V (F ′

2). Observe that F ′
1 is an odd graph with an odd number of edges. Then the subgraph of G with the vertex set

V (F ′
1) ∪ {s6, z2} and the edge set E(F ′

1) ∪ {s6s4, s4s5, s5z2} (see Fig. 27d) is a connected odd graph with an even number of
edges; a contradiction.

We conclude that F1 is a tree. By minimality, dG(s4) = dG (s5) = 3 and F1 has the unique vertex w adjacent to s4, s5. But
then we have the two copies of H1 induced by the sets s1, s2, s3, u and s4, s5, s6, u respectively. Hence, we should choose
either H = H4 or H = H5 instead of H6.

It remains to consider the final case when F1 contains two vertices from {s1, s2, s3} and two vertices from {s4, s5, s6}.
We assume that s1, s2, s4, s5 ∈ V (F1).

Let F2 be the graph obtained from G by the removal of V (F1). Exactly as in Case 3d we show that F2 is a connected
odd graph with an odd number of edges.
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Fig. 27. The case s1, s4, s5 ∈ V (F1).

Fig. 28. The case s1, s2, s4, s5 ∈ V (F1).

Now we apply Lemma 5 for W = {s1, s2, s4, s5}. Clearly F1 is a minimal odd graph with an odd number of edges
such that r ∈ V (G), W ⊆ V (G), and each component of G contains at least one vertex of W . By minimality, F1 has no
connected odd subgraph with an even number of edges rooted in r. By the choice of H , F1 cannot contain a separating
H ′ ∈ {H1, H2, H3} such that for a component F ′ of F1 − H ′ with r ∈ V (F ′), V (F ′) ∩ W = ∅.

Suppose that F1 contains an induced cycle C = z1z2z3 on three vertices such that the graph obtained from F1 by the
removal of E(C) has two components F ′

1, F ′
2 and V (F1) ∩ W �= ∅, V (F2) ∩ W �= ∅. Let r ∈ V (F ′

1). If s4 ∈ V (F ′
1), s5 ∈ V (F ′

2)

or s5 ∈ V (F ′
1), s4 ∈ V (F ′

2), then the subgraph obtained from G by the removal of E(C) ∪ {s1s2, s2s3, s1s3} (see Fig. 28a) is a
connected odd graph with an even number of edges; a contradiction. Similarly, if s1 ∈ V (F ′

1), s2 ∈ V (F ′
2) or s2 ∈ V (F ′

1),14 ∈
V (F ′

2), then the subgraph obtained from G by the removal of E(C) ∪ {s4s5, s5s6, s4s6} a connected odd graph with an even
number of edges; a contradiction. Therefore, we can assume that s1, s2 ∈ V (F ′

1) and s4, s5 ∈ V (F ′
2). If the triangles C and

s1s2s3 are disjoint, then their union could be chosen instead of H . It means that these triangles have a common vertex.
Assume that z1 = s2 and z2 ∈ V (F ′

2). Observe that F ′
1 is an odd graph with an odd number of edges. Then the subgraph

of G with the vertex set V (F ′
1) ∪ {s3, z2} and the edge set E(F ′

1) ∪ {s3s1, s1s2, s2z2} (see Fig. 28b) is a connected odd graph
with an even number of edges; a contradiction.

We conclude that F1 is a tree. By minimality and the choice of H , it should be a tree shown in Fig. 28c.
Observe that F2 is a minimal connected odd graph with an odd number of edges that contains s3, s6. Also F2 has

no connected odd subgraph with an even number of edges rooted in s3 or in s6. Indeed, if F2 had a connected odd
subgraph F with an even number of edges rooted, say, in s3, then the graph with the vertex set V (F1) ∪ V (F ) and the
edge set E(F1) ∪ E(F ) ∪ {s1s2, s2s3, s1s3} is a connected odd subgraph of G with an even number of edges that contains r;
a contradiction.

By Lemma 6, tw(F2) � 2. Consider a tree decomposition of F2 of width at most two. Let i a node of T such that
s3 ∈ Xi . We construct a tree decomposition for G as follows. We include the vertex s6 in all the bags. We add a path
of length six with the nodes i, i1, i2, i3, i4, i5, i6 and a path i3 j1 j2 to T , and set Xi1 = {s1, s2, s3, s6}, Xi2 = {s1, s2, z1, s6},
Xi3 = {s2, z1, z2, s6} Xi4 = {z1, z2, s4, s6} Xi5 = {z2, s4, s5, s6}, Xi5 = {s4, s5, s6}, and X j1 = {z1, z2, w}, X j2 = {w, r}. We get a
tree decomposition of G of width at most four. Notice that dG (r) = 1 and w is included in two bags of size at most three.

This completes the case analysis and the proof of Claim 1.

5. Complexity of k-Vertex Eulerian Subgraph

In this section we prove that k-Vertex Eulerian Subgraph is W[1]-hard.

Theorem 3. The k-Vertex Eulerian Subgraph is W[1]-hard.

Proof. We reduce from the well-known W[1]-complete k-Clique problem (see e.g. [6]):

k-Clique

Instance: A graph G and non-negative integer k.
Parameter: k.

Question: Does G contain a clique with k vertices?
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Notice that the problem remains W[1]-complete when the parameter k is restricted to be odd. It follows immediately
from the observation that the existence of a clique with k vertices in a graph G is equivalent to the existence of a clique
with k + 1 vertices in the graph obtained from G by the addition of a universal vertex adjacent to all the vertices of G . From
now it is assumed that k > 1 is an odd integer.

Let G be a graph. We construct the graph G ′ by subdividing edges of G by k2 vertices, i.e. each edge xy is replaced by an
(x, y)-path of length k2 + 1. We say that u ∈ V (G ′) is a branch vertex if u ∈ V (G), and u is a subdivision vertex otherwise.
We also say that u is a subdivision vertex for an edge xy ∈ E(G) if u is a subdivision vertex of the path obtained from xy.
We claim that G has a clique of size k if and only if G ′ has an induced Eulerian subgraph on k′ = 1

2 (k − 1)k3 + k vertices.
Suppose that G has a clique K with k vertices. Let H be the subgraph of G induced by K and the subdivision vertices

for all edges xy with x, y ∈ K . It is easy to see that H is a connected Eulerian graph on k′ = 1
2 (k − 1)k3 + k vertices.

Now, let H be an induced Eulerian subgraph of G ′ on k′ = 1
2 (k − 1)k3 +k vertices. Denote by U the set of branch vertices

of H , and let p = |U |. Let A = {xy ∈ E(G)|x, y ∈ U , and H has a subdivision vertex for xy} and let F = (U , A). Also, let q
denote |A|. Since H is connected, the graph F is connected as well. Observe that if u ∈ V (H) is a subdivision vertex for an
edge xy ∈ E(G), then all subdivision vertices for xy are vertices of H and x, y ∈ V (H). It follows that H has p + q · k2 = k′
vertices, and we have p − k = ( 1

2 (k − 1)k − q)k2. Since k2 is a divisor of p − k, p � k. Suppose that p > k. Then since
k2 is a divisor of p − k, p � k2 + k. Any connected graph with p vertices has at least p − 1 edges, and it means that
q � k2 + k − 1 > 1

2 (k − 1)k. We get that 0 < p − k = ( 1
2 (k − 1)k − q)k2 < 0; a contradiction. We conclude that p = k. Then

q = 1
2 (k − 1)k and U is a clique with k vertices. �

Recall that k-Vertex Eulerian Subgraph asks about an induced Eulerian subgraph on k vertices. For the graph G ′ in the
proof of Theorem 3, any Eulerian subgraph is induced. It gives us the following corollary.

Corollary 2. The following problem:

Instance: A graph G and non-negative integer k.
Parameter: k.

Question: Does G contain an Eulerian (not necessarily induced)
subgraph with k vertices?

is W[1]-hard.

6. Conclusion

We proved that k-Edge Connected Odd Subgraph is FPT and k-Vertex Eulerian Subgraph is W[1]-hard. This completes
the characterization of even/odd subgraph problems with exactly k edges or vertices from parameterized complexity per-
spective. While it is trivial to decide whether a graph G has a (connected) even or odd subgraph with at most k edges or
vertices, the question about a subgraph with at least k edges or vertices seems to be much more complicated. For At Least

k-Edge Odd Subgraph and At Least k-Vertex Odd Subgraph, following the lines of the proofs from [4] for k-Edge Odd Sub-

graph and k-Vertex Odd Subgraph, it is possible to show that these problems are in FPT. For other cases, the approaches
used in [4] and in our paper, do not seem to work.

Cai and Yang in [4] also considered dual problems where the aim is to find an even or odd subgraph of a graph G with
|V (G)|−k vertices or |E(G)|−k edges respectively. Recently, these results were complemented by Cygan et al. [5]. However,
the complexity of the dual problem to k-Edge Connected Odd Subgraph, namely, obtaining connected odd subgraph with
|E(G)| − k edges, remains open.
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