
SIAM J. DISCRETE MATH. c© 2015 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1961–1987

A SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR
PROPER INTERVAL COMPLETION∗

IVAN BLIZNETS† , FEDOR V. FOMIN‡ , MARCIN PILIPCZUK§ , AND

MICHA�L PILIPCZUK§

Abstract. In the Proper Interval Completion problem we are given a graph G and an
integer k, and the task is to turn G using at most k edge additions into a proper interval graph, i.e.,
a graph admitting an intersection model of equal-length intervals on a line. The study of Proper

Interval Completion from the viewpoint of parameterized complexity has been initiated by Kaplan,
Shamir, and Tarjan [SIAM J. Comput., 28 (1999), pp. 1906–1922], who showed an algorithm for the
problem working in O(16k · (n +m)) time. In this paper we present an algorithm with running time

kO(k2/3) + O(nm(kn + m)), which is the first subexponential parameterized algorithm for Proper

Interval Completion.

Key words. fixed-parameter tractability, proper interval graphs, proper interval completion,
subexponential algorithm

AMS subject classifications. 68Q25, 68R10, 68W40, 05C85

DOI. 10.1137/140988565

1. Introduction. A graph G is an interval graph if it admits a model of the
following form: each vertex is associated with an interval on the real line, and two
vertices are adjacent if and only if the associated intervals overlap. If moreover the
intervals can be assumed to be of equal length, then G is a proper interval graph;
equivalently, one may require that no associated interval is contained in another [18].
Interval and proper interval graphs appear naturally in molecular biology in the prob-
lem of physical mapping, where one is given a graph with vertices modeling contiguous
intervals (called clones) in a DNA sequence, and the edges indicate which intervals
overlap. Based on this information one would like to reconstruct the layout of the
clones. We refer to [11, 12, 14] for further discussion on biological applications of
(proper) interval graphs.

The biological motivation was the starting point of the work of Kaplan, Shamir,
and Tarjan [14], who initiated the study of (proper) interval graphs from the point
of view of parameterized complexity. It is natural to expect that some information
about overlaps will be lost, and hence the model will be missing a small number
of edges. Thus we arrive at the problems of Interval Completion and Proper

Interval Completion: given a graph G and an integer k, one is asked to add at

∗Received by the editors September 23, 2014; accepted for publication (in revised form) August
18, 2015; published electronically October 22, 2015. The research leading to these results received
funding from the European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013)/ERC grant agreement 267959 as well as from the government of the Russian
Federation (grant 14.Z50.31.0030) and a grant from the president of the Russian Federation (MK-
6550.2015.1). This research was done while the third and fourth authors were at the Department of
Informatics, University of Bergen, Norway. A preliminary version of this work was presented at ESA
2014.

http://www.siam.org/journals/sidma/29-4/98856.html
†Steklov Institute of Mathematics at St. Petersburg, Russian Academy of Sciences, St. Peters-

burg, Russia (iabliznets@gmail.com).
‡Department of Informatics, University of Bergen, Bergen, Norway (fomin@ii.uib.no).
§Institute of Informatics, University of Warsaw, Warsaw, Poland (marcin.pilipczuk@mimuw.

edu.pl, michal.pilipczuk@mimuw.edu.pl).

1961

http://www.siam.org/journals/sidma/29-4/98856.html
mailto:iabliznets@gmail.com
mailto:fomin@ii.uib.no
mailto:marcin.pilipczuk@mimuw.edu.pl
mailto:marcin.pilipczuk@mimuw.edu.pl
mailto:michal.pilipczuk@mimuw.edu.pl

1962 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

Fig. 1. Small forbidden induced subgraphs for proper interval graphs: a claw, a tent, and a net.

most k edges to G to obtain a (proper) interval graph. Both problems are known
to be NP-hard [20], and hence it is natural to ask for a fixed-parameter tractable
(FPT) algorithm parameterized by the expected number of additions k. For Proper
Interval Completion Kaplan, Shamir, and Tarjan [14] presented an algorithm with
running time O(16k · (n + m)), while fixed-parameterized tractability of Interval
Completion was resolved much later by Villanger et al. [19]. Recently, Liu et al.
[16] obtained an O(4k + nm(n+m))-time algorithm for PIC.

The approach of Kaplan, Shamir, and Tarjan [14] is based on a characterization
by forbidden induced subgraphs, also studied by Cai [5]: proper interval graphs are
exactly graphs that are chordal, i.e., do not contain any induced cycle C� for � ≥ 4,
and moreover exclude three special structures as induced subgraphs: a claw, a tent,
and a net (see Figure 1). Therefore, when given a graph which is to be completed
into a proper interval graph, we may apply a basic branching strategy. Whenever
a forbidden induced subgraph is encountered, we branch into several possibilities of
how it is going to be destroyed in the optimal solution. A cycle C� can be destroyed
only by triangulating it, which requires adding exactly � − 3 edges and can be done
in roughly 4�−3 different ways. Since for special structures there is only a constant
number of ways to destroy them, the whole branching procedure runs in cknO(1) time
for some constant c.

The approach via forbidden induced subgraphs has driven the research on the pa-
rameterized complexity of graph modification problems ever since the work of Cai [5].
Of particular importance was the work on polynomial kernelization; recall that a poly-
nomial kernel for a parameterized problem is a polynomial-time preprocessing routine
that shrinks the size of the instance at hand to polynomial in the parameter. While
many natural completion problems admit polynomial kernels, there are also exam-
ples where no polynomial kernel exists under plausible complexity assumptions [15].
In particular, Proper Interval Completion admits a kernel with O(k3) vertices
which can be computed in O(nm(kn+m)) time [2], while the kernelization status of
Interval Completion remains a notorious open problem.

The turning point came recently, when Fomin and Villanger [9] proposed an
algorithm for Fill-in, i.e., Chordal Completion, that runs in subexponential pa-

rameterized time, more precisely, kO(
√
k)nO(1). As observed in [14], the approach via

forbidden induced subgraphs leads to an FPT algorithm for Fill-in with running
time 16knO(1). Observe that in order to achieve a subexponential running time one
needs to completely abandon this route, as even branching on encountered obstacles
as small as, say, induced C4-s leads to running time at least 2knO(1). To circumvent
this, Fomin and Villanger proposed the approach of gradually building the struc-

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1963

ChordalInterval

Trivially perfect

Proper interval

Threshold ⊂
⊂

⊂

⊂

TreewidthPathwidth

Treedepth

Bandwidth

Vertex cover ≥
≥

≥

≥

Fig. 2. Graph classes and corresponding graph parameters. Inequalities on the bottom diagram
are with ±1 slackness.

ture of a chordal graph in a dynamic programming manner. The crucial observation
was that the number of “building blocks” (in their case, potential maximal cliques)
is subexponential in a YES-instance, and thus the dynamic program operates on a
subexponential space of states.

This research direction was continued by Ghosh et al. [10] and by Drange et
al. [7], who identified several more graph classes for which completion problems have
subexponential parameterized complexity: threshold graphs, split graphs, pseudo-
split graphs, and trivially perfect graphs (we refer to [7, 10] for respective definitions).
Let us remark that problems admitting subexponential parameterized algorithms are
very scarce, since for most natural parameterized problems existence of such algo-
rithms can be refuted under the exponential time hypothesis (ETH) [13]. Until very
recently, the only natural positive examples were problems on specifically constrained
inputs, like H-minor free graphs [6] or tournaments [1]. Thus, completion prob-
lems admitting subexponential parameterized algorithms can be regarded as “singular
points on the complexity landscape.” Indeed, Drange et al. [7] complemented their
work with a number of lower bounds excluding (under ETH) subexponential param-
eterized algorithms for completion problems to related graphs classes, for instance,
cographs.

Interestingly, threshold graphs, trivially perfect graphs, and chordal graphs, which
are currently our main examples, correspond to graph parameters vertex cover, treedepth,
and treewidth in the following sense: the parameter is equal to the minimum possible
maximum clique size in a completion to the graph class (±1); see Figure 2. It is there-
fore natural to ask if Interval Completion and Proper Interval Completion,
which likewise correspond to pathwidth and bandwidth, also admit subexponential
parameterized algorithms.

Our results. In this paper we answer the question about Proper Interval

Completion in the affirmative by proving the following theorem.

Theorem 1.1. Proper Interval Completion can be solved in kO(k2/3) +
O(nm(kn+m)) time.

In case of a positive answer, our algorithm can provide a feasible solution (a set
of edges to add to the graph) in the same asymptotic running time.

In a companion paper [3] we also present an algorithm for Interval Completion

with running time kO(
√
k)nO(1), which means that the completion problems for all the

classes depicted in Figure 2 in fact do admit subexponential parameterized algorithms.
We now describe briefly our techniques employed to prove Theorem 1.1 and main

1964 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

differences with the work on interval graphs [3].

From a space-level perspective, the approach of both this paper and [3] follows the
route laid out by Fomin and Villanger in [9]. That is, we enumerate a subexponential
family of potentially interesting building blocks and then try to arrange them into a
(proper) interval model with a small number of missing edges using dynamic program-
ming. In both cases, a natural candidate for this building block is the concept of a
cut: given an interval model of a graph, imagine a vertical line placed at some position
x that pins down intervals containing x. A potential cut is then a subset of vertices
that becomes a cut in some minimal completion to a (proper) interval graph of cost
at most k. The starting point of both this work and [3] is enumeration of potential
cuts. Using different structural insights into the classes of interval and proper inter-
val graphs, one can show that in both cases the number of potential cuts is at most

nO(
√
k), and they can be enumerated efficiently. Since in the case of proper interval

graphs we can start with a cubic kernel given by Bessy and Perez [2], this immediately

gives kO(
√
k) potential cuts for the Proper Interval Completion problem. In the

interval case the question of existence of a polynomial kernel is wide open, and the
need for circumventing this obstacle causes severe complications in [3].

Afterward the approaches diverge completely, as it turns out that in both cases
the potential cuts are insufficient building blocks to perform dynamic programming,
although for very different reasons. For Interval Completion the problem is that
the cut itself does not define what lies on the left and on the right of it. Even worse,
there can be an exponential number of possible left/right alignments when the graph
contains many modules that neighbor the same clique. To cope with this problem,
the approach taken in [3] remodels the dynamic programming routine so that, in some
sense, the choice of left/right alignment is taken care of inside the dynamic program.
The dynamic programming routine becomes thus much more complicated, and a lot
of work needs to be put into bounding the number of its states, which can be very
roughly viewed as quadruples of cuts enriched with an “atomic” left/right choice (see
the definition of a nested terrace in [3]).

Curiously, in the proper interval setting the left/right choice can be easily guessed
along with a potential cut at basically no extra cost. Hence, the issue causing the most
severe problems in the interval case is simply nonexistent. The problem, however, is in
the ordering of intervals in the cut: while performing a natural left-to-right dynamic
program that builds the model, we would need to ensure that intervals participating
in a cut begin in the same order as they end. Therefore, apart from the cut itself
and a partition of the other vertices into left and right, we would need to include in
a state also the ordering of the vertices of the cut; as the cut may be very large, we
cannot afford constructing a state for every possible ordering.

Instead we remodel the dynamic program, this time by introducing two layers. We
first observe that the troublesome ordering may be guessed expeditiously providing
that the cut in question has only a sublinear in k number of incident edge additions.
Hence, in the first layer of dynamic programming we aim at chopping the optimally
completed model using such cheap cuts, and to conclude the algorithm we just need
to be able to compute the best possible completed model between two border cuts
that are cheap, assuming that all the intermediate cuts are expensive. This task is
performed by the layer-two dynamic program. The main observation is that since
all the intermediate cuts are expensive, there cannot be many disjoint such cuts and
consequently the space between the border cuts is in some sense “short.” As the border
cuts can be large, it is natural to start partitioning the space in between “horizontally”

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1965

instead of “vertically”— shortness of this space guarantees that the number of sensible
“horizontal” separations is subexponential. The horizontal partitioning method that
we employ resembles the classic O�(10n) exact algorithm for bandwidth of Feige [8].

2. Preliminaries.

Graph notation. In most cases, we follow standard graph notation.
An ordering of a vertex set of a graphG is a bijection σ : V (G) → {1, 2, . . . , |V (G)|}.

We say that a vertex v is to the left of or before a vertex w if σ(v) < σ(w) and to the
right of or after w if σ(v) > σ(w). We also extend these notions to orderings of sub-
sets of vertices: for any X ⊆ V (G), any injective function σ : X → {1, 2, . . . , |V (G)|}
is called an ordering. We sometimes treat such σ as an ordering of the vertex set of
G[X] as well, implicitly identifying σ(X) with {1, 2, . . . , |X |} in the monotonous way.

For any graph G we shall speak about, we implicitly fix one arbitrary ordering σ0

on V (G). We shall use this ordering to break ties and canonize some objects (order-
ings, completion sets, solutions, etc.). That is, assume that X = {x1, x2, . . . , x|X|} ⊆
V (G) with σ0(x1) < σ0(x2) < · · · < σ0(x|X|). Then with every ordering σ : X →
{1, 2, . . . , |V (G)|} we associate a sequence (σ(x1), σ(x2), . . . , σ(x|X|)) and sort the or-
derings of X according to this sequence lexicographically. In many places we consider
some family of orderings for a fixed choice of X ; if we pick the lexicographically
minimum ordering of this family, we mean the one with lexicographically minimum
associated sequence.

Observe that an ordering σ of V (G) naturally defines a graph σ(G) with vertex
set {1, 2, . . . , |V (G)|} and pq ∈ E(σ(G)) if and only if σ−1(p)σ−1(q) ∈ E(G). Clearly,
σ(G) and G are isomorphic with σ being an isomorphism between them.

For any integers a, b we denote [a, b] = {a, a+ 1, . . . , b}.
We use n and m to denote the number of vertices and edges of the input graph.

Proper interval graphs. A graph G is a proper interval graph if it admits an
intersection model, where each vertex is assigned a closed interval on a line such that
no interval is a proper subset of another one, and two vertices are adjacent if and
only if their intervals intersect. In our work it is more convenient to use an equivalent
combinatorial object, called an umbrella ordering.

Definition 2.1 (umbrella ordering). Let G be a graph and σ : V (G) → {1, 2, . . . , n}
be an ordering of its vertices. We say that σ satisfies the umbrella property for a triple
a, b, c ∈ V (G) if ac ∈ E(G) and σ(a) < σ(b) < σ(c) implies ab, bc ∈ E(G). Further-
more, σ is called an umbrella ordering if it satisfies the umbrella property for any
a, b, c ∈ V (G). The following result is due to Looges and Olariu.

Theorem 2.2 (see [17]). A graph is a proper interval graph if and only if it
admits an umbrella ordering.

Observe that we may equivalently define an umbrella ordering σ as an ordering
such that for every ab ∈ E(G) with σ(a) < σ(b) the subgraph σ(G)[[a, b]] is a complete
graph. Alternatively, σ is an umbrella ordering of G if and only if for any a, a′, b′, b ∈
V (G) such that σ(a) ≤ σ(a′) < σ(b′) ≤ σ(b) and ab ∈ E(G), it also holds that
a′b′ ∈ E(G). We will use these alternative definitions implicitly in what follows. See
also Figure 3 for an illustration.

Observe also the following simple fact that follows immediately from the definition
of an umbrella ordering.

Lemma 2.3. Let G1, G2 be two proper interval graphs with V (G1) = V (G2) = V .
Assume further that some ordering σ of V is an umbrella ordering of both G1 and
G2. Then σ is also an umbrella ordering of H↓ := (V,E(G1) ∩ E(G2)) and H↑ :=
(V,E(G1) ∪ E(G2)), and in particular H↓ and H↑ are proper interval graphs.

1966 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

.

a b c

Fig. 3. An umbrella property for triple a, b, c. The existence of an edge ac implies the existence
of edges ab and bc.

We use the assumed fixed ordering σ0 to canonize umbrella orderings: for a proper
interval graph G, the canonical umbrella ordering of G is the one with its associated
sequence being lexicographically minimum.

Proper interval completion. For a graph G, a completion of G is a set F ⊆(
V (G)

2

)
\ E(G) such that G + F := (V (G), E(G) ∪ F) is a proper interval graph.

The Proper Interval Completion problem asks for a completion of G of size not
exceeding a given budget k.

However, in our paper it is more convenient to work with orderings as a ba-
sic notion, instead of completions. Moreover, for technical reasons, we also need a
slightly more general sandwich version of the Proper Interval Completion prob-
lem, henceforth called Sandwich Proper Interval Completion (SPIC). Here,
apart from a graph G and budget k, we are given

1. for each u ∈ V (G) a set of allowed positions Σu ⊆ {1, 2, . . . , |V (G)|};
2. two graphs G↓ and G↑ with vertex set {1, 2, . . . , |V (G)|} satisfying

(a) G↓ is a subgraph of G↑;
(b) both G↓ and G↑ are proper interval graphs, and the identity is an um-

brella ordering for both of them.
The SPIC problem asks for a completion F of G, together with an ordering σ of V (G),
such that

1. σ is an umbrella ordering of G+ F ;
2. σ(u) ∈ Σu for each u ∈ V (G);
3. E(G↓) ⊆ E(σ(G + F)) ⊆ E(G↑);
4. the cost of the ordering σ and completion F , defined as c(σ, F) = |F |, is at

most k.
We now observe that an ordering σ in fact yields a unique “best” completion F .

Formally, for any ordering σ of V (G) we define F σ to be the set of such unordered
pairs xy /∈ E(G) for which one of the following holds:

1. σ(x)σ(y) ∈ E(G↓) or
2. there exist x′, y′ ∈ V (G) such that x′y′ ∈ E(G) and σ(x′) ≤ min(σ(x), σ(y)) ≤

max(σ(x), σ(y)) ≤ σ(y′).
We need the following property of F σ.

Lemma 2.4. Set F σ as a completion of G, σ an umbrella ordering of G+F σ, and
G↓ a subgraph of σ(G + F σ). Furthermore, F σ is the unique inclusionwise minimal
completion of G for which σ is an umbrella ordering of G+F σ and G↓ is a subgraph
of σ(G+ F σ).

Proof. The claim that G↓ is a subgraph of σ(G + F σ) is straightforward from
the definition, as we explicitely add the edges of E(G↓). We now show that σ is
an umbrella ordering of G + F σ. To this end, consider a triple a, b, c ∈ V (G) with
σ(a) < σ(b) < σ(c) and ac ∈ E(G+ F σ). We consider three cases, depending on the
reason why ac ∈ E(G+ F σ).

If ac ∈ E(G), then, by the second criterion of belonging to F σ, we have that
ab ∈ F σ unless ab ∈ E(G) and bc ∈ F σ unless bc ∈ E(G). Similarly, if ac ∈ F σ

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1967

because of the second criterion for belonging to F σ, then there exist a′, c′ ∈ V (G)
with a′c′ ∈ E(G) and σ(a′) ≤ σ(a) < σ(c) ≤ σ(c′); clearly a′, c′ also witness that
ab, bc ∈ E(G) ∪ F σ. Finally, if σ(a)σ(c) ∈ E(G↓), then the assumption that G↓ is a
proper interval graph with identity being an umbrella ordering implies that σ(a)σ(b) ∈
E(G↓) and σ(b)σ(c) ∈ E(G↓). Consequently, the umbrella property is satisfied for
the triple a, b, c, and σ is an umbrella ordering for G+ F σ.

To show the second claim of the lemma, simply observe that every completion F
of G for which G↓ is a subgraph of σ(G+F σ) contains the edges of F σ falling into the
first criterion, whereas every completion F of G for which σ is an umbrella ordering
contains the edges of F σ that fall into the second criterion.

Hence, Lemma 2.4 allows us to use the notion of the cost of an ordering σ (instead
of the cost of a pair (σ, F) or completion F), where we use the completion F σ. That
is, we denote c(σ) = |F σ|.

We say that an ordering σ is feasible if σ(u) ∈ Σu for each u ∈ V (G) and
additionally E(σ(G)) ⊆ E(G↑). It is straightforward to verify using Lemma 2.3,
minimality of F σ, and the fact that σ is an umbrella ordering of G↑ that the second
condition for σ being feasible is equivalent to E(σ(G + F σ)) ⊆ E(G↑). Hence, by
Lemma 2.4, the SPIC problem may equivalently ask for a feasible ordering σ of cost
at most k.

Finally, observe that SPIC is a generalization of Proper Interval Comple-

tion, as we may take Σu = {1, 2, . . . , |V (G)|} for each u ∈ V (G), G↓ to be edgeless
and G↑ to be a complete graph. Note that for such an instance, any ordering of V (G)
is feasible. In this way, given a Proper Interval Completion instance (G, k)
and an ordering σ of V (G), the notions of F σ and c(σ) are well-defined. Hence, the
Proper Interval Completion problem equivalently asks for an ordering σ of cost
at most k, that is, for which |F σ| ≤ k.

We now set up a few more notions. For a completion F ofG and a vertex v ∈ V (G)
by F (v) we denote the set of edges e ∈ F that are incident with v. We extend this
notion to vertex sets X ⊆ V (G) by F (X) =

⋃
v∈X F (v).

For a SPIC instance (G, k, (Σu)u∈V (G), G↓, G↑) and a feasible ordering σ we
denote Gσ := G + F σ. We extend the notion of feasibility and of F σ to order-
ings σ of subsets of V (G) in the following natural manner. If X ⊆ V (G) and
σ : X → {1, 2, . . . , |V (G)|} is injective, then σ is feasible if and only if σ(u) ∈ Σu

for each u ∈ X and E(σ(G[X])) ⊆ E(G↑). The set F σ is defined as follows: xy ∈ F σ

if and only if x, y ∈ X , xy /∈ E(G), but either σ(x)σ(y) ∈ E(G↓) or there exists
an edge x′y′ ∈ E(G[X]) with σ(x′) ≤ min(σ(x), σ(y)) < max(σ(x), σ(y)) ≤ σ(y′).
Again, the same argument shows that the second condition of feasibility is equivalent
to E(σ(G[X] + F σ)) ⊆ E(G↑).

We use the assumed fixed ordering σ0 to canonize a solution of a SPIC instance
(G, k, (Σu)u∈V (G), G↓, G↑). An ordering σ of V (G) is called the canonical umbrella
ordering of (G, k, (Σu)u∈V (G), G↓, G↑) if σ is feasible, its cost is minimum possible, and
σ is lexicographically smallest with this property. This notion projects to the notion
of a canonical umbrella ordering of a graph G by taking again Σu = {1, 2, . . . , n} for
any u ∈ V (G), G↓ to be edgeless, and G↑ to be a complete graph. Observe that
this notion thus extends the notion of canonical umbrella ordering for proper interval
graphs, and as in the case of a proper interval graph the unique minimum completion
is empty.

The associated completion F σ with the canonical umbrella ordering σ is called
the canonical completion. If additionally the cost of σ is at most k, we call σ the

1968 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

canonical solution to the SPIC instance (G, k, (Σu)u∈V (G), G↓, G↑) or, in the special
case, to a Proper Interval Completion instance (G, k).

A polynomial kernel. Our starting point for the proof of Theorem 1.1 is the
polynomial kernel for Proper Interval Completion due to Bessy and Perez.

Theorem 2.5 (see [2]). Proper Interval Completion admits a kernel with
O(k3) vertices computable in time O(nm(kn+m)).

That is, in time O(nm(kn + m)) we can construct an equivalent instance of
Proper Interval Completion with O(k3) vertices.

The algorithm of Theorem 1.1 starts with applying the kernelization algorithm
of Theorem 2.5. This step contributes O(nm(kn +m)) to the running time, and all

further computation will take kO(k2/3) time, yielding the promised time bound.

In case of a positive answer, our algorithm also finds a canonical ordering of the
(reduced, kernelized) instance. We remark here that, although it is not stated explic-
itly in the work of Bessy and Perez [2], all the reduction rules of [2] are straightfoward
to reverse. More precisely, apart from Rule 2.3 of [2], which just greedily adds some
edges to the solution, all other reduction rules of [2] remove a vertex from the input
graph, providing (in the proof of safeness) a way of inserting it back after a solution to
the reduced instance is found. A direct implementation of the aforementioned method
of inserting back a single deleted vertex works in time O(nm), allowing us to lift a
solution of the reduced instance to the original one in O(n2m) total time.

Hence, in the rest of the paper we may assume that we are given a Proper In-

terval Completion instance (G, k) with n = |V (G)| = O(k3), and we are targeting
the canonical umbrella ordering of G provided that it yields a completion of size at
most k. Moreover, we assume that G is connected, as we may otherwise solve each
connected component of G independently, determining in each component the size of
minimum possible solution.

Lexicographically minimum perfect matching. In a few places we need the follow-
ing greedy procedure to find some canonical object.

Lemma 2.6. Given two linearly ordered sets X = {x1 ≺ x2 ≺ · · · ≺ xs} and
Y = {y1 ≺ y2 ≺ · · · ≺ ys}, and allowed sets Ai ⊆ Y for each 1 ≤ i ≤ s, one can in
polynomial time either find a bijection f : X → Y that satisfies

(2.1) f(xi) ∈ Ai for any 1 ≤ i ≤ s

and, subject to (2.1), yields lexicographically minimum sequence (f(x1), f(x2), . . . , f(xs)),
or correctly conclude that such a bijection does not exist.

Proof. We model the task of satisfying the condition (2.1) as a problem of finding
a perfect matching in a bipartite graph, which can be solved in polynomial time. We
construct an auxiliary bipartite graph H with bipartition classes X and Y and make
each xi ∈ X adjacent to all yj ∈ Ai. Clearly, any perfect matching in H corresponds
to a bijection f satisfying (2.1).

To obtain the lexicographically minimum sequence (f(x1), f(x2), . . . , f(xs)), we
use the self-reducibility of the task of finding a perfect matching. That is, for each
i = 1, 2, . . . , s we try to match xi. When we consider xi, we try each j = 1, 2, . . . , s
and, whenever yj is yet unmatched and yj ∈ Ai, we temporarily match xi with yj and
compute whether the subgraph induced by the currently unmatched vertices contains
a perfect matching. If this is true, we fix the match f(xi) = yj , and otherwise we
proceed to the next vertex yj . It is straightforward to verify that this procedure
indeed yields f as desired.

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1969

.

pvpLv pRv

Fig. 4. The definition of values pv, pLv , and pRv for an expensive vertex v. The gray area
denotes NGσ [v].

3. Expensive vertices. Recall that we are given a Proper Interval Com-

pletion instance (G, k) and we want to reason about its canonical umbrella ordering,
denoted σ, provided that (G, k) is a YES-instance. In this section we deal with vertices
that are incident with many edges of F σ. Formally, we set a threshold τ := (2k)1/3

and say that a vertex v is expensive with respect to σ if |F σ(v)| > τ and cheap
otherwise. Note that there are at most (2k)2/3 = τ2 expensive vertices, and given
that |V (G)| is bounded polynomially in k, we may afford guessing a lot of informa-
tion about expensive vertices within the promised time bound. Our goal is to get
rid of expensive vertices, at the cost of turning our Proper Interval Completion

instance (G, k) into a SPIC instance.

More formally, we branch into kO(k/τ) = kO(k2/3) subcases, considering all possible
values for the following (see also Figure 4):

1. a set V$ ⊆ V (G) of all expensive vertices with respect to σ,
2. for every v ∈ V$, integers pv, pLv , and pRv satisfying pv = σ(v), pLv =

min{σ(w) : w ∈ NGσ [v]} and pRv = max{σ(w) : w ∈ NGσ [v]}.
In each branch, we look for the canonical minimum solution to the instance (G, k),
assuming that the aforementioned guess is a correct one. The correct branch is the
one where this assumption is indeed true.

We now perform some cleanup operations. First, observe that from the definition
of an umbrella ordering it follows that in the correct branch w ∈ NGσ [v] if and only
if pLv ≤ σ(w) ≤ pRv . In particular, pLv ≤ pv ≤ pRv . Consider now a pair v1, v2 ∈ V$

and observe the following. If pv1 ≤ pv2 , then the properties of an umbrella ordering
imply that pLv1 ≤ pLv2 and pRv1 ≤ pRv2 . Hence, we terminate all the branches where any
of these inequalities is not satisfied, or where pv1 = pv2 for some v1
= v2.

Furthermore, note that in the correct branch we have v1v2 ∈ E(Gσ) if and only
if pv2 ∈ [pLv1 , p

R
v1] and pv1 ∈ [pLv2 , p

R
v2], and v1v2 /∈ E(Gσ) if and only if neither of

the two aforementioned inclusions holds. Thus, we terminate the branch if exactly
one of these inclusions holds, or if v1v2 ∈ E(G) and at least one of them does not
hold.

Denote Σ$ = {pv : v ∈ V$} as the set of positions guessed to be used by the
expensive vertices and Σ = {1, 2, . . . , n} \ Σ$ as the set of the remaining positions.
For every 1 ≤ i ≤ |Σ|, by π(i) we denote the ith position of Σ. Define also σ$: V$ → Σ$

as σ$(v) = pv.
We compute a set F$ consisting of all (unordered) pairs v1, v2 ∈ V$ such that

v1v2 /∈ E(G), but pv2 ∈ [pLv1 , p
R
v1], that is, the guessed values imply that v1v2 ∈ E(Gσ)

and, consequently, F$ = F σ ∩
(
V$

2

)
in the correct branch. Observe the following.

Lemma 3.1. In all branches F$ is a completion of G[V$], and σ$, treated as an
ordering of V$, is an umbrella ordering of G[V$] + F$.

Proof. Consider any a, b, c ∈ V$ with σ$(a) < σ$(b) < σ$(c). If ac ∈ E(G) ∪ F$,
then it follows from the cleanup operations and the definition of F$ that σ$(c) ∈
[pLa , p

R
a] and σ$(a) ∈ [pLc , p

R
c]. Recall that σ$(a) ∈ [pLa , p

R
a] and σ$(c) ∈ [pLc , p

R
c].

Hence, σ$(b) ∈ [σ$(a), σ$(c)] ⊆ [pLa , p
R
a] ∩ [pLc , p

R
c] and ab, bc ∈ E(G) ∪ F$.

1970 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

Consider now a vertex u /∈ V$. For any v ∈ V$, if uv ∈ E(G), then in the correct
branch σ(u) ∈ [pLv , p

R
v]. This motivates us to define

Σu = π−1

⎛
⎝Σ ∩

⋂
v∈V$∩NG(u)

[pLv , p
R
v]

⎞
⎠ .

Observe that in the correct branch π−1(σ(u)) ∈ Σu.
Furthermore, observe that, in the correct branch, if uv /∈ E(G) for some u /∈ V$

and v ∈ V$, then exactly one of the following holds: uv ∈ F σ or σ(u) /∈ [pLv , p
R
v].

In other words, a vertex v ∈ V$ has degree exactly pRv − pLv in the graph Gσ. This
motivates us to define the following cost value for every branch:

c$ = −|F$|+
∑
v∈V$

((pRv − pLv)− degG(v)).

Observe that this cost function is actually meaningful for every branch.
Lemma 3.2. Let σ′ be an ordering of V (G) and F be a completion of G such that
(i) σ′ is an umbrella ordering of G+ F and
(ii) for every v ∈ V$ we have σ′(v) = pv and σ′(NG+F [v]) = [pLv , p

R
v]. Then there

are exactly c$ edges of F that are incident with V$.
Proof. Observe that the degree of v ∈ V$ in G + F is exactly pRv − pLv . Hence,

exactly pRv − pLv − degG(v) edges of F are incident with v and the sum
∑

v∈V$
((pRv −

pLv) − degG(v)) counts the edges of F incident with V$ but double-counts the edges
of F with both endpoints in V$. However, the set of double-counted edges is exactly
F ∩

(
V$

2

)
= F$. The lemma follows.

We define graphs G↓ and G↑ with vertex set {1, 2, . . . , |Σ|} as follows. For 1 ≤
i < j ≤ |Σ|, we set ij ∈ E(G↓) if and only if there is a witness vertex x ∈ V$ such that
either pLx ≤ π(i) < π(j) < px or px < π(i) < π(j) ≤ pRx . For G↑, we set ij /∈ E(G↑) if
and only if there exists a witness vertex y ∈ V$ such that either π(i) < pLy ≤ py < π(j)

or π(i) < py ≤ pRy < π(j).
The next lemma shows that G↓ and G↑ satisfy the requirements for being a part

of a SPIC instance.
Lemma 3.3. Both G↓ and G↑ are proper interval graphs and the identity is

an umbrella ordering of both of them. Moreover, in the correct branch E(G↓) ⊆
E(π−1((σ(Gσ))[Σ])) ⊆ E(G↑).

Proof. For the first claim, observe that in the case ofG↓, for every edge ij ∈ E(G↓)
with i < j, its witness x also witnesses that i′j′ ∈ E(G↓) for every i ≤ i′ < j′ ≤ j.
Similarly, in the case of G↑, for any nonedge ij /∈ E(G↑) with i < j, its witness y also
witnesses that i′j′ /∈ E(G↑) for each i′ ≤ i < j ≤ j′.

We now move to the second claim, so assume we are in the correct branch. For
G↓, observe that if ij ∈ E(G↓), then σ−1(π(i))σ−1(π(j)) ∈ E(Gσ) by the umbrella
property as σ−1(pLx)σ

−1(px) ∈ E(Gσ) and σ−1(px)σ−1(pRx) ∈ E(Gσ). For G↑, if i, j
are such that σ−1(π(i))σ−1(π(j)) ∈ E(Gσ) and π(i) < py < π(j) for some y ∈ V$,
then by the umbrella property we have that yσ−1(π(i)), yσ−1(π(j)) ∈ E(Gσ) and
consequently pLy ≤ π(i) < py < π(j) ≤ pRy . Since y was chosen arbitrarily, it follows
that ij ∈ E(G↑) and the lemma follows.

By Lemma 3.3, we may terminate the branches where G↓ is not a subgraph of
G↑.

Define W = V (G) \ V$, H = G[W] and � = k − c$. Recall that in the remain-
ing branches I := (H, �, (Σu)u∈V (G), G↓, G↑) is a valid SPIC instance. In the next
lemmata we show that it is sufficient to solve it instead of (G, k).

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1971

Lemma 3.4. If (G, k) is a YES-instance to Proper Interval Completion

with the canonical umbrella ordering σ, then in the correct branch the function σH :=
π−1 ◦σ|W is a feasible ordering of the SPIC instance I with F σH ⊆ F σ∩

(
W
2

)
=: FW ;

in particular, for any u ∈ W we have |F σH (u)| ≤ τ . Moreover, c(σH) = |F σ| − c$ −
|FW \ F σH | ≤ |F σ| − c$.

Proof. Observe that σH is indeed an ordering of W . We first verify that it is
feasible. Clearly, in the correct branch σH(u) = π−1(σ(u)) ∈ Σu for any u ∈ W .
Consider any pair u, v with σH(u) < σH(v) and σH(u)σH(v) /∈ E(G↑). Let y be
a witness that σH(u)σH(v) /∈ E(G↑). If σH(u) < pLy ≤ py < σH(v), then uy /∈
E(Gσ) and, by the umbrella property, uv /∈ E(Gσ), so in particular uv /∈ E(G).
Symmetrically, if σH(u) < py ≤ pRy < σH(v), then yv /∈ E(Gσ) and, by the umbrella
property, uv /∈ E(Gσ), so in particular uv /∈ E(G). Consequently, uv /∈ E(G) in both
cases and σH is feasible.

We now show that F σH ⊆ FW . Consider any uv ∈ F σH and without loss of gen-
erality assume σH(u) < σH(v). If there exist u′, v′ ∈ W with σH(u′) ≤ σH(u) <
σH(v) ≤ σH(v′) and u′v′ ∈ E(G), then σ(u′) ≤ σ(u) < σ(v) ≤ σ(v′) by the
monotonicity of π and hence uv ∈ F σ. Otherwise, by the definition of F σH , we
have that σH(u)σH(v) ∈ E(G↓). By the definition of G↓, there exists x ∈ V$ with
pLx ≤ π(σH(u)) = σ(u) < σ(v) = π(σH(v)) < px or px < π(σH(u)) = σ(u) <
σ(v) = π(σH(v)) ≤ pRx . In the first case, by the umbrella property we have that
uv ∈ F σ because σ−1(pLx)x ∈ E(Gσ). Similarly, in the second case, uv ∈ F σ since
σ−1(pRx)x ∈ E(Gσ).

We now compute the cost of σH . By Lemma 3.2, there are exactly c$ edges of
F σ incident with V$. Therefore |FW | = |F σ| − c$. The already proven inclusion
F σH ⊆ FW finishes the proof of the formula for the cost of σH .

Lemma 3.5. Let σH be a feasible ordering of the SPIC instance I in some
branch. Let also σ′ be an ordering of V (G) such that σ′(u) = π(σH(u)) for u ∈ W
and σ′(u) = σ$(u) for u
∈ W . Then |F σ′ | ≤ c(σH) + c$.

Proof. We define

F = F σH ∪ F$ ∪ {uv : u ∈ W ∧ v ∈ V$ ∧ uv /∈ E(G) ∧ π(σH(u)) ∈ [pLv , p
R
v]}.

We now show that σ′ is an umbrella ordering of G+ F . Observe that if this is true,
then Lemma 3.2 will yield that |F σ′ | ≤ |F | = |F σH | + c$, finishing the proof of the
lemma; the condition (ii) of Lemma 3.2 can be directly checked from the definitions
of σ′, F .

Consider then a triple a, b, c ∈ V (G) with σ′(a) < σ′(b) < σ′(c) and ac ∈ E(G)∪F .
We consider a few cases, depending on the intersection V$ ∩ {a, b, c}.

First, consider the case a, c ∈ V$. If b ∈ V$, then ab, bc ∈ E(G)∪F by Lemma 3.1.
Otherwise, observe that the cleanup operations imply that σ′(a) = pa ∈ [pLc , p

R
c] and

σ′(c) = pc ∈ [pLa , p
R
a] and we obtain σ′(b) = π(σH(b)) ∈ [pLa , p

R
a] ∩ [pLc , p

R
c]. Hence

ab, bc ∈ E(G) ∪ F directly from the definition of F .
Second, consider the case a ∈ V$ and c ∈ W . We claim that ac ∈ E(G)∪F implies

that σ′(c) = π(σH(c)) ∈ [pLa , p
R
a]. Indeed, if ac ∈ F , then this follows directly from

the definition of F . If ac ∈ E(G), however, then σ′(c) = π(σH(c)) ∈ π(Σc) ⊆ [pLa , p
R
a]

since σH is feasible. Now observe that since σ′(a) = pa ∈ [pLa , p
R
a], then we have also

that σ′(b) ∈ [pLa , p
R
a]. Since σ′(a) < σ′(b) < σ′(c), then in fact σ′(b), σ′(c) ∈ [pa, p

R
a].

Assume first that b ∈ V$. Then ab ∈ E(G)∪F$ by the definition of F$. Moreover,
as σ′(b) = pb > σ′(a) = pa, by the cleanup operations we have that pRb ≥ pRa and,
consequently, σ′(c) = π(σH(c)) ∈ [pLb , p

R
b]. Hence, in this case bc ∈ E(G) ∪ F by the

definition of F .

1972 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

Assume now b ∈ W . Clearly σ′(b) ∈ [pLa , p
R
a] implies that ab ∈ E(G) ∪ F by

the definition of F . Moreover, observe that as both σ′(b) = π(σH(b)) and σ′(c) =
π(σH(c)) belong to [pa, p

R
a], we have σH(b)σH(c) ∈ G↓ and hence bc ∈ E(G) ∪ F σH .

Third, observe that the case a ∈ W and c ∈ V$ is symmetrical to the previous
one.

Finally, consider the case a, c ∈ W , so ac ∈ E(G) ∪ F σH . If b ∈ W , then
ab, bc ∈ E(G) ∪ F σH as σH is an umbrella ordering of G[W] + F σH . Hence, assume
b ∈ V$. Observe that ac ∈ E(G) ∪ F σH implies that ac ∈ E(G↑). However, we
have that π(σH(a)) < pb < π(σH(c)). Thus, by the definition of G↑, we have pLb ≤
π(σH(a)) < π(σH(c)) ≤ pRb and, by the definition of F , ab, bc ∈ E(G) ∪ F . This
concludes the proof of the lemma.

Lemma 3.6. If (G, k) is a YES-instance to Proper Interval Completion

with the canonical umbrella ordering σ, then in the correct branch the function σH :=
π−1 ◦ σ|W is the canonical umbrella ordering of the SPIC instance I of cost at most
�. Moreover, F σH = F σ ∩

(
W
2

)
; in particular, for any u ∈ W we have |F σH (u)| ≤ τ .

Proof. We focus on the correct branch. By Lemma 3.4, there exists a feasible
ordering of the SPIC instance I. Let σ′H be the canonical ordering of this instance.
Define σ′ as in Lemma 3.5 for the ordering σ′H .

By Lemma 3.5 and the optimality of σ, we have that

|F σ| ≤ |F σ′ | ≤ c(σ′H) + c$.

On the other hand, by Lemma 3.4 and the optimality of σ′H , we have that

c(σ′H) ≤ c(π−1 ◦ σ|W) ≤ |F σ| − c$.

Hence, all aforementioned inequalities are in fact equalities, and F σH = F σ ∩
(
W
2

)
. In

particular, F σ′
is a minimum completion of G and π−1 ◦ σ|W is of minimum possible

cost. By the monotonicity of π, we infer that the lexicographical minimization in fact
chooses σ′H = σH and the lemma is proven.

In the next sections we will show the following.

Theorem 3.7. There exists an algorithm that, given a branch with a SPIC

instance I, runs in time nO(�/τ+τ2) and, if given the correct branch, computes the
canonical ordering of I.

The equivalence shown in Lemmata 3.4, 3.5, and 3.6, together with the bound
n = O(k3), allows us to solve the Proper Interval Completion instance (G, k)
by applying the algorithm of Theorem 3.7 to each branch separately. Observe that

we have kO(k2/3) branches, and for τ = (2k)1/3, � ≤ k, and n = O(k3) we have

nO(�/τ+τ2) = kO(k2/3); therefore, the running time will be as guaranteed in Theo-
rem 1.1.

Hence, it remains to prove Theorem 3.7. In its proof it will be clear that the
algorithm runs within the given time bound. Hence, we assume that we work in the
correct branch and we will mostly focus on proving that we indeed find the canonical
ordering of I.

4. Sections. We now proceed with the proof of Theorem 3.7. Assume we are
given the correct branch with a SPIC instance I = (H, �, (Σu)u∈V (G), G↓, G↑). Recall
that we look for the canonical ordering σH of I and we assume that σH is of cost at
most � and |F σH (u)| ≤ τ for every u ∈ V (H). The last assumption allows us to guess

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1973

.
a

b1 b2c1 c2
Λ

Fig. 5. The guessed vertices a, b1, b2, c1, and c2 with respect to a twin class Λ. The gray area
denotes NHσH (Λ).

edges F σH (u) for a set of carefully chosen vertices u ∈ V (H). In this section we use
this property to show the following statement.

Definition 4.1. A section is a subset A of V (H). A section A is consistent
with an ordering σH if σH maps A onto the first |A| positions.

Theorem 4.2. In kO(τ) time one can enumerate a family S of kO(τ) sections
that contains all sections consistent with the canonical ordering σH .

The proof of Theorem 4.2 is divided into two steps. First, we investigate true twin
classes in the graph HσH and show that we can efficiently enumerate a small family
of candidates for these twin classes. Then we use the twin class residing at position
|A| + 1 to efficiently “guess” a section A consistent with the canonical ordering σH .
Henceforth we assume that the canonical ordering σH is of cost at most k.

4.1. Potential twin classes. Recall that two vertices x and y are true twins if
N [x] = N [y]; in particular, this implies that they are adjacent. The relation of being
a true twin is an equivalence relation, and an equivalence class of this relation is called
a twin class. We make the following observation, straightforward from the definition
of an umbrella ordering.

Lemma 4.3. In an umbrella ordering of a proper interval graph, the vertices of
any twin class occupy consecutive positions.

The main result of this section is the following.
Theorem 4.4. In kO(τ) time one can enumerate a family T of kO(τ) triples

(L,Λ, σΛ) such that for any twin class Λ of HσH , if L is the set of vertices of H
placed to the left of Λ in the ordering σH , then (L,Λ, σH |Λ) ∈ T .

We describe the algorithm of Theorem 4.4 as a branching algorithm that pro-
duces kO(τ) subcases and, in each subcase, produces one tuple (L,Λ, σΛ). We fix one
twin class Λ of HσH and argue that the algorithm in one of the branches produces
(L,Λ, σH |Λ), where L is defined as in Theorem 4.4. We perform this task in two
phases: we first reason about L and Λ, and then we deduce the ordering σH |Λ.

4.1.1. Phase one: L and Λ. The algorithm guesses the following five vertices
(see also Figure 5):

1. a is any vertex of Λ;
2. b1 is the rightmost vertex outside NHσH [Λ] in σH that lies before Λ, or b1 = ⊥

if no such vertex exists;
3. c1 is the leftmost vertex of NHσH [Λ] in σH ;
4. c2 is the rightmost vertex of NHσH [Λ] in σH ;
5. b2 is the leftmost vertex outside NHσH [Λ] in σH that lies after Λ, or b2 = ⊥

if no such vertex exists.
Moreover, for each u ∈ {a, b1, b2, c1, c2}\{⊥} the algorithm guesses F σH (u). This

leads us to kO(τ) subcases. We now argue that if the guesses are correct, we can
deduce the pair (L,Λ). The crucial step is the following.

Lemma 4.5. In the branch where the guesses are correct, the following holds for
any u ∈ NHσH [a]:

1974 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

1. if u ∈ NHσH [b1] or u /∈ NHσH [c2], then u /∈ Λ and u lies before Λ in the
ordering σH ;

2. if u ∈ NHσH [b2] or u /∈ NHσH [c1], then u /∈ Λ and u lies after Λ in the
ordering σH ;

3. if none of the above happens, then u ∈ Λ.
Here we take the convention that NHσH [⊥] = ∅.

Proof. By the definition of b1, b2, c1, and c2, we have that every vertex u ∈ Λ lies
in NHσH [c1] and NHσH [c2], but not in NHσH [b1] nor in NHσH [b2]. Consequently, any
vertex of Λ falls into the third category of the statement of the lemma.

We now show that any other vertex of NHσH [a] falls into one of the first two
categories, depending on its position in the ordering σH . By symmetry, we may only
consider a vertex u ∈ NHσH [a] \ Λ that lies before Λ in σH . Note that the umbrella
property together with a /∈ NHσH [b2] implies that u /∈ NHσH [b2] and together with
ac1 ∈ E(HσH) implies uc1 ∈ E(HσH). Consequently, u does not fall into the second
category in the statement of the lemma. We now show that it falls into the first one.

As u /∈ Λ and u ∈ NHσH [a], either NHσH (u)\NHσH [a] is not empty or NHσH (a)\
NHσH [u] is not empty. In the first case, let uw ∈ E(HσH) but aw /∈ E(HσH). Since
also ua ∈ E(HσH), by the umbrella property it easily follows that w lies before u
in the ordering σH , so in particular before Λ. By the definition of b1, b1 exists and
σH(b1) ≥ σH(w). By the umbrella property, b1u ∈ E(HσH) and hence u ∈ NHσH [b1].

In the second case, assume uw /∈ E(HσH) but aw ∈ E(HσH). Again, since
ua ∈ E(HσH), by the umbrella property it easily follows that w lies after Λ in the
ordering σH , so in particular after u. By the definition of c2 and the existence of
w, c2 /∈ Λ and σH(c2) ≥ σH(w). By the umbrella property, c2u /∈ E(HσH) and
u /∈ NHσH [c2]. Hence, u falls into the first category and the lemma is proven.

The knowledge of a and F σH (a) allows us to compute NHσH [Λ] = NHσH [a]. By
making use of Lemma 4.5, we can further partition NHσH [Λ] into Λ, the vertices of
NHσH (Λ) that lie before Λ in the ordering σH , and the ones that lie after Λ. We are
left with the vertices outside NHσH [Λ].

We guess the position i such that the first vertex of Λ in the ordering σH is in
position i. Note that, by Lemma 4.3, the vertices of Λ occupy positions i, i+1, . . . , i+
|Λ| − 1 in σH .

Let C be a connected component of H \ NHσH [Λ]. Recall that by Lemma 3.6,
σH = π−1 ◦ σ|W and F σH = F σ ∩

(
W
2

)
. As no vertex of C is incident with Λ in

HσH , by the properties of an umbrella ordering we infer that all vertices of NG[C]
lie before position π(i) or all vertices of NG[C] lie after position π(i + |Λ| − 1) in
the ordering π ◦ σH = σ|W . As G is assumed to be connected, NG(C) contains a
vertex of NHσH [Λ] or of V$. Any such vertex allows us to deduce which of the two
aforementioned options is true for C in σ. This allows us to decide whether C ⊆ L or
L∩C = ∅, and consequently deduce the set L. Note that it must hold that |L| = i−1,
and otherwise we may discard the guess.

4.1.2. Phase two: The ordering σH|Λ. We are left with determining σH |Λ.
Note that we already know the domain Λ and the codomain {i, i+ 1, . . . , i+ |Λ| − 1}
of this bijection. We prove the following.

Lemma 4.6. The bijection σH |Λ is the lexicographically minimum bijection σΛ :
Λ → {i, i+ 1, . . . , i + |Λ| − 1} among those bijections σΛ that satisfy σΛ(u) ∈ Σu for
any u ∈ Λ.

Proof. Let σΛ : Λ → {i, i+ 1, . . . , i + |Λ| − 1} be the lexicographically minimum
bijection among those that satisfy σΛ(u) ∈ Σu for any u ∈ Λ; note that at least one

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1975

such bijection exists, since σH |Λ is one. Consider an ordering σ′ of V (H) defined as
follows: σ′(u) = σΛ(u) if u ∈ Λ and σ′(u) = σH(u) otherwise. Observe that σ′ is an
ordering of V (H). Moreover, as Λ is a twin class of HσH , we have σ′(HσH) = σ(HσH).
Hence σ′ is a feasible ordering of H and umbrella ordering of HσH . We infer that
F σ′ ⊆ F σH . On the other hand, as σH is the canonical solution, we have c(σH) ≤
c(σ′). Hence, both aforementioned inequalities are in fact tight and F σ′

= F σH .
Furthermore, the lexicographical minimization criterion implies that σΛ = σH |Λ and
σ′ = σH .

Finally, observe that the characterization of σH |Λ given by Lemma 4.6 fits into
the conditions of Lemma 2.6 and, consequently, σH |Λ can be computed in polynomial
time given L, Λ, and the index i. This concludes the proof of Theorem 4.4.

4.2. Proof of Theorem 4.2. Given Theorem 4.4, the proof of Theorem 4.2 is
now straightforward. We first compute the family T of Theorem 4.4. Then, for each
(L,Λ, σΛ) ∈ T and each position p ∈ {1, 2, . . . , |V (H)|} we output a set

A := L ∪ {u ∈ Λ : σΛ(u) < p}.

Additionally, we output a section V (H). Clearly, the algorithm outputs kO(τ) sections
and works within the promised time bound. It remains to argue that it outputs all
sections consistent with σH .

Consider a section A consistent with σH , that is, A = σ−1({1, 2, . . . , |A|}). If
A = V (H), the statement is obvious, so assume otherwise. Consider the position
p := |A|+ 1, let u = σ−1(p) and let Λ be the twin class of u in HσH . Moreover, let L
be the set of vertices of H placed before Λ in σH . By Theorem 4.4, (L,Λ, σH |Λ) ∈ T .
Moreover, note that the algorithm outputs exactly the set A when it considers the
triple (L,Λ, σH |Λ) and position p. This concludes the proof of Theorem 4.2.

5. Dynamic programming. In this section we conclude the proof of Theo-
rem 3.7 by showing the following.

Theorem 5.1. Given a SPIC instance I = (G, k, (Σu)u∈V (G), G↓, G↑) with

n = |V (G)|, a threshold τ , and a family S ⊆ 2V (G), one can in nO(k/τ+τ)|S|O(τ) time
find the canonical ordering σ of I, assuming that

1. c(σ) ≤ k;
2. for each u ∈ V (G), |F σ(u)| ≤ τ ;
3. each section consistent with σ belongs to S.

Observe that if we apply Theorem 5.1 to a branch with a SPIC instance I, the
threshold τ , and family S output by Theorem 4.2, then we obtain the algorithm
promised by Theorem 3.7.

The algorithm of Theorem 5.1 is a dynamic programming algorithm. Henceforth
assume that the instance I with threshold τ and family S is as promised in the
statement of Theorem 5.1, and let σ be the canonical ordering of I. We develop
two different ways of separating the graphs G and Gσ into smaller parts, suitable for
dynamic programming. Consequently, the dynamic programming algorithm has in
some sense “two layers” and two different types of states.

5.1. Layer one: Jumps and jump sets. We first develop a way to split the
graphs G and Gσ “vertically.” To this end, first denote for any position p the section
Ap = {v ∈ V (G) : σ(v) < p}; note that this definition also makes sense for p = ∞
and A∞ = V (G). Second, for any position p define

jump(p) = min{q : q > p ∧ σ−1(p)σ−1(q) /∈ E(Gσ)};

1976 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

.

p jump(p)Xp

Ap V (G) \ Ajump(p)

Fig. 6. A jump at position p and the corresponding jump set. The jump set Xp, denoted with
gray, is a clique in Gσ, and no edge of Gσ connects Ap with V (G) \Ajump(p).

G.

α2 α1 α ω ω1 ω2 ω3

Jσ(1) Jσ(n− 2)

Fig. 7. Augmentation of the input graph G.

in this definition we follow the convention that the minimum of an empty set is ∞.
Moreover, we define a jump set for position p as

Xp = σ−1([p, jump(p)− 1]) = Ajump(p) \Ap.

See also Figure 6 for an illustration.
The next two lemmata follow directly from the definition of a jump and the

properties of umbrella orderings.
Lemma 5.2. For any positions p and q, if p ≤ q, then jump(p) ≤ jump(q).
Lemma 5.3. Jump set Xp is a clique in Gσ, but no edge of Gσ connects a vertex

of Ap with a vertex of V (G) \Ajump(p).
We now slightly augment the graph G so that jump(p)
= ∞ for all interesting

positions; see also Figure 7. We take O(n2) branches, guessing the first and the
last vertex of G in the ordering σ, and denote them by α and ω. We introduce
new vertices α1, α2, ω1, ω2, ω3 and new edges α1α2, αα1, ω2ω3, ω1ω2, ωω1 in G. We
also introduce new positions −1, 0, n+ 1, n + 2, n+ 3, isolated in G↓ and connected
by edges {−1, 0}, {0, 1}, {n, n+ 1}, {n + 1, n + 2}, {n + 2, n + 3} in G↑. We define
Σα1 = {0}, Σα2 = {−1}, Σω1 = {n + 1}, Σω2 = {n + 2}, and Σω3 = {n + 3}.
Moreover, we put α2 and α1 before all vertices of G in the ordering σ0, and ω1, ω2,
and ω3 after them. Note that if we precede with all the vertices in the ordering σ with
α2, α1 and succeed with ω1, ω2, ω3 we obtain an ordering with no higher cost. Due to
the way we have extended σ0 to the new vertices, the extended ordering σ defined in
this way is the canonical ordering of the extended graph G. Hence, we may abuse the
notation and denote by G the graph after the addition of these five new vertices and
assume that V (G↓) = V (G↑) = {1, 2, . . . , |V (G)|} again.

Observe now that jump(1) = 3 and X1 = {α2, α1}, as σ−1(1) = α2 and σ−1(3) =
α. Moreover, jump(n−2) = n and Xn−2 = {ω1, ω2}, as σ−1(n−2) = ω1, σ

−1(n−1) =
ω2, and σ−1(n) = ω3

The main observation now is that a jump set, together with all edges of F σ

incident with it (i.e., F σ(Xp)) contains all sufficient information to divide the problem
into parts before and after a jump set.

Lemma 5.4. For any position p, the following holds:

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1977

1. For any u1, u2 ∈ Xp such that σ(u1) ≤ σ(u2) we have

NGσ(u1) ∩ Ap ⊇ NGσ(u2) ∩ Ap,(5.1)

NGσ(u1) \Ajump(p) ⊆ NGσ(u2) \Ajump(p).(5.2)

2. For any bijection σp : Xp → [p, jump(p) − 1] such that σp(u) ∈ Σu for any
u ∈ Xp and both inclusions (5.1) and (5.2) hold for any u1, u2 ∈ Xp with
σp(u1) ≤ σp(u2), if we define an ordering σ′ of V (G) as σ′(u) = σp(u) if

u ∈ Xp and σ′(u) = σ(u) otherwise, then σ′ is feasible and σ′(Gσ′
) is a

subgraph of σ(Gσ).

Proof. The first statement is straightforward from the properties of an umbrella
ordering. Let σp and σ′ be as in the second statement. Observe that inclusions (5.1)
and (5.2), together with the fact thatXp is a clique in σ(Gσ), imply that σ′ and σ differ
only on the internal order of twin classes of Gσ and consequently σ′(Gσ) = σ(Gσ).
Together with the fact that σ′(u) ∈ Σu for any u ∈ V (G), this means that σ′ is
a feasible ordering of G and an umbrella ordering of Gσ. Consequently F σ′ ⊆ F σ,
σ′(Gσ′

) is a subgraph of σ′(Gσ) = σ(Gσ), and the lemma is proven.

We use Lemma 5.4 to fit the task of computing σ|Xp into Lemma 2.6.

Lemma 5.5. Given a position p and the sets Xp, Ap and F σ(Xp), one can in
polynomial time compute the ordering σ|Xp .

Proof. First, observe that the data promised in the lemma statement allows us
to compute NGσ(u) ∩ Ap and NGσ(u) \ Ajump(p) for every u ∈ Xp. Define a binary
relation � on Xp as u1 � u2 if and only if both (5.1) and (5.2) hold for u1 and u2.
Lemma 5.4 asserts that � is a total quasi-order on Xp. That is, the set Xp can be
partitioned into sets U1, U2, . . . , Us such that u1 � u2 and u2 � u1 for any 1 ≤ j ≤ s
and u1, u2 ∈ Uj, and u1 � u2, u2
� u1 for any 1 ≤ j1 < j2 ≤ s and u1 ∈ Uj1 , u2 ∈ Uj2 .
(Formally, we terminate the current branch if � does not satisfy these properties.)

Observe that σ|Xp maps Xp onto [p, jump(p) − 1]. Lemma 5.4 asserts that all
vertices of U1 are placed by σ on the first |U1| positions of the range of σ|Xp , all
vertices of U2 are placed on the next |U2| positions, etc. We use Lemma 2.6 to find
a lexicographically minimum ordering σp that satisfies the above and additionally
σp(u) ∈ Σu for each u ∈ Xp. Define σ′ as in Lemma 5.4. By the minimality of σ,

we have c(σ′) ≥ c(σ), but Lemma 5.4 asserts that σ′(Gσ′
) is a subgraph of σ(Gσ).

Hence, σ′ is of minimum possible cost. By the lexicographical minimality of σp, we
have σp = σ|Xp and the lemma is proven.

With help of family S, Lemma 5.5 allows us to efficiently enumerate jump sets
with their surroundings.

Theorem 5.6. One can in nO(k/τ)|S|2 time enumerate a family J of at most
nO(k/τ)|S|2 tuples (A,X, σX) such that

1. in each tuple (A,X, σX) we have
(a) A,X ⊆ V (G) and A ∩X = ∅;
(b) G↓[[|A|+ 1, |A|+ |X |]] is a complete graph,
(c) σX is a bijection between X and [|A|+ 1, |A|+ |X |];

2. for any position p, if there are at most 2k/τ edges of F σ incident to Xp, then
the tuple Jσ(p) := (Ap, Xp, σ|Xp) belongs to J .

Proof. We provide a procedure of guessing at most nO(k/τ)|S|2 candidate tuples
that will constitute the family J . Since the promised properties of elements of J
can be checked in polynomial time, it suffices to argue that every triple of the form
(Ap, Xp, σ|Xp) will be among the guessed candidates.

1978 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

The number of choices for Ap and Ajump(p) is |S|2. Observe that then Xp =

Ajump(p)\Ap. Furthermore, there are nO(k/τ) ways to choose F σ(Xp) and, by Lemma 5.5,
we can further deduce σ|Xp . Finally, observe that by the definition of a jump it follows
that every triple (Ap, Xp, σ|Xp) satisfies the promised properties of the elements of
J .

We are now ready to describe the first layer of our dynamic programming algo-
rithm.

Definition 5.7 (layer-one state). A layer-one state is a pair (J1, J2) of two
elements of J , J1 = (A1, X1, σ1

X), J2 = (A2, X2, σ2
X) such that A1 ⊆ A2 and (A1 ∪

X1) ⊆ (A2 ∪ X2). The value of a layer-one state (J1, J2) is a bijection f [J1, J2] :
(A2 ∪X2) \A1 → [|A1|+ 1, |A2 ∪X2|] satisfying the following:

1. f [J1, J2] is a feasible ordering of its domain, that is, for any u ∈ (A2∪X2)\A1

we have f [J1, J2](u) ∈ Σu and for any u1, u2 ∈ (A2 ∪ X2) \ A1 such that
u1u2 ∈ E(G), we have f [J1, J2](u1)f [J

1, J2](u2) ∈ E(G↑);
2. f [J1, J2](u) = σ1

X(u) for any u ∈ X1 and f [J1, J2](u) = σ2
X(u) for any

u ∈ X2;
3. among all functions f satisfying the previous conditions, f [J1, J2] minimizes

the cardinality of F f (where in the expression F f the function f is treated as
an ordering of the set (A2∪X2)\A1 in the SPIC instance (G, k, (Σu)u∈V (G),
G↓, G↑));

4. among all functions f satisfying the previous conditions, f [J1, J2] is lexico-
graphically minimum.

We first observe the following consequence of the above definition.
Lemma 5.8. For any p1 ≤ p2 such that Jσ(p1), Jσ(p2) ∈ J , we have that

(Jσ(p1), Jσ(p2)) is a layer-one state and

f [Jσ(p1), Jσ(p2)] = σ|Ajump(p2)\Ap1
.

In particular, σ = f [Jσ(1), Jσ(n− 2)] ∪ {(ω3, n)}.
Proof. LetM := Ajump(p2)\Ap1 . It is straightforward to verify that (Jσ(p1), Jσ(p2))

is a layer-one state and σ|M satisfies the first two properties of the value of a layer-one
state. Also, no edges of F σ are incident to X1 nor to Xn−2, and hence Jσ(1), Jσ(n−
2) ∈ J and (Jσ(1), Jσ(n− 2)) is a layer-one state.

Let f be any function satisfying the first three conditions of the definition of a
value of the layer-one state (Jσ(p1), Jσ(p2)). Let σ′ be an ordering of V (G) defined as
σ′(u) = f(u) if u is the domain of f , and σ′(u) = σ(u) otherwise. It is straightforward
to verify that σ′ is feasible, using the separation property provided by Lemma 5.3
and the fact that σ′|X1∪X2 = σ|X1∪X2 . For the same reasons, by the definition
of σ′ we have that F σ′

=
(
F σ \

(
M
2

))
∪ F f . By the optimality of f we have that

|F f | ≤ |F σ|M | ≤ |F σ ∩
(
M
2

)
|, and so |F σ′ | ≤ |F σ|. By the optimality of σ we infer

that |F σ′ | = |F σ|, and F σ′
is also a minimum completion of G. Since F σ is also

lexicographically minimum, it is easy to see that the last criterion of the definition of
the value of the layer-one state (Jσ(p1), Jσ(p2)) indeed chooses σ|M .

By Lemma 5.8, our goal is to compute f [Jσ(1), Jσ(n− 2)] by dynamic program-
ming. Observe that both Jσ(1) and Jσ(n − 2) are known, due to the augmentation
performed at the beginning of this section.

Our dynamic programming algorithm computes value g[J1, J2] for every layer-one
state (J1, J2), and we will ensure that g[Jσ(p1), Jσ(p2)] = f [Jσ(p1), Jσ(p2)] for any
p1 ≤ p2 with Jσ(p1), Jσ(p2) ∈ J ; we will not necessarily guarantee that the values
of f and g are equal for other states. (Formally, g[J1, J2] may also take value of ⊥,

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1979

which implies that either J1 or J2 is not consistent with σ; we assign this value to
g[J1, J2] whenever we find no candidate for its value.)

Consider now one layer-one state (J1, J2) with J1 = (A1, X1, σ1
X), J2 = (A2, X2,

σ2
X). The base case for computing g[J1, J2] is the case where A2 ⊆ A1 ∪X1. Then

σ1
X ∪σ2

X is the only candidate for the value f [J1, J2], provided that σ1
X and σ2

X agree
on the intersection of their domains.

In the other case, we iterate through all possible tuples J3 = (A3, X3, σ3
X), with

A1 ⊂ A3 ⊂ A2 such that both (J1, J3) and (J3, J2) are layer-one states, and try
g[J1, J3] ∪ g[J3, J2] as a candidate value for g[J1, J2]. That is, we temporarily pick
g[J1, J2] with the same criteria as for f [J1, J2], but taking into account only values
g[J1, J3] ∪ g[J3, J2] for different choices of J3.

Since the minimization for g[J1, J2] is taken over smaller set of functions than for
f [J1, J2], we infer that

1. the cardinality of F f [J1,J2] is not larger than the cardinality of F g[J1,J2];
2. even if these two sets are of equal size, f [J1, J2] is lexicographically not larger

than g[J1, J2].
However, observe that if J1 = Jσ(p1) and J2 = Jσ(p2) and there exists p3 such that
p1 < p3 < p2 and Jσ(p3) ∈ J , then g[J1, Jσ(p3)]∪ g[Jσ(p3), J2] is taken into account
when evaluating g[J1, J2]. If we compute the values for the states (J1, J2) in the
order of nondecreasing values of |A2 \A1|, then the values g[J1, Jσ(p3)], g[Jσ(p3), J2]
have been computed before, and moreover by the induction hypothesis they are equal
to f [J1, Jσ(p3)] and f [Jσ(p3), J2], respectively. Therefore,

f [J1, Jσ(p3)] ∪ f [Jσ(p3), J2] = σ|Ajump(p2)\Ap1

is taken as a candidate value for g[J1, J2] and, consequently, g[J1, J2] = f [J1, J2] =
σAjump(p2)\Ap1

.

Finally, we need to ensure that g[J1, J2] = f [J1, J2] in the case when such position
p3 does not exist. To this end, we take also more candidate values for g[J1, J2],
computed by the layer-two dynamic programming in the next section. We ensure
that if J1 = Jσ(p1), J2 = Jσ(p2) but for any p1 < q < p2 we have Jσ(q) /∈ J ,
then the layer-two dynamic programming actually outputs f [J1, J2] as one of the
candidates and runs in time (n|S|)O(τ) for any choice of J1, J2. By Theorem 5.6
there are at most nO(k/τ)|S|4 layer-one states. Hence by using (n|S|)O(τ) work for
each of them will give the running time promised in Theorem 5.1.

5.2. Layer two: Chains. In this section we are given a layer-one state (J1, J2)
with J1 = (A1, X1, σ1

X), J2 = (A2, X2, σ2
X); denote pα = |Aα|+1, rα = |Aα∪Xα|+1

for α = 1, 2. We are to compute, in time (n|S|)O(τ), the value f [J1, J2], assuming
J1 = Jσ(p1), J2 = Jσ(p2), and for no position p1 < q < p2 it holds that Jσ(q) ∈ J .
By Theorem 5.6, it implies that the number of edges of F σ incident to any set Xq for
p1 < q < p2 is more than 2k/τ . Observe that Xα = Ajump(pα) \Apα holds, and hence
rα = jump(pα) for α = 1, 2.

For any position q, consider the following sequence: zq(0) = q and zq(i + 1) =
jump(zq(i)) (with the convention that jump(∞) = ∞). Observe the following.

Lemma 5.9. For any q ≥ p1 it holds that zq(τ) ≥ p2.
Proof. Consider any q ≥ p1. For any i > 0 such that zq(i) < p2 we have that

there are more than 2k/τ edges of F σ incident to Xzq(i). However, the sets Xzq(i) are
pairwise disjoint for different values of i. Since |F σ| ≤ k, we infer that for less than τ
values i > 0 we may have zq(i) < p2, and the lemma is proven.

1980 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

.

Fig. 8. The separation property provided by Lemma 5.11. The sequences zc(i) and zd(i) are
denoted with rectangular and hexagonal shapes, respectively. The sets Ci and Di are denoted with
dots and lines, respectively.

By a straightforward induction from Lemma 5.2 we obtain the following.
Lemma 5.10. For any two positions c, d with c ≤ d ≤ jump(c) and for any i ≥ 0

it holds that

zc(i) ≤ zd(i) ≤ zc(i+ 1).

The next observation gives us the crucial separation property for the layer-two
dynamic programming (see also Figure 8).

Lemma 5.11. For any positions c, d with c ≤ d ≤ jump(c) define

Ci = σ−1([zc(i), zd(i)− 1]),

Di = σ−1([zd(i), zc(i+ 1)− 1]).

Then
1. sets Ci, Di form a partition of V (G) \Ac;
2. for any i ≥ 0, it holds that both Ci ∪Di and Di ∪ Ci+1 are cliques in Gσ;
3. for any j > i ≥ 0 there is no edge in Gσ between Ci and Dj;
4. for any i > j + 1 > 0 there is no edge in Gσ between Ci and Dj.

Proof. All statements follow from the definitions zc(i + 1) = jump(zc(i)) and
zd(i + 1) = jump(zd(i)), and from Lemmata 5.3 and 5.10.

Intuitively, Lemma 5.11 implies that we may independently consider the vertices
of

⋃
i≥0 Ci and of

⋃
i≥0 Di: the sequences zc(i) and zd(i) give us some sort of “hori-

zontal” partition of the graphs G and Gσ. We now formalize this idea.
Definition 5.12 (chain). A chain is a quadruple (s, z, u,B), where

s ∈ {0, 1, . . . , τ},
z : {0, 1, . . . , s} → [p1, r2],

u : {0, 1, . . . , s} → V (G),

B : {0, 1, . . . , s} → 2V (G)

with the following properties:
1. z(i) ∈ [p2, r2] if and only if i = s;
2. z(i) < z(i+ 1) for any 0 ≤ i < s;
3. |B(i)| = z(i)− 1 for any 0 ≤ i ≤ s;
4. B(i) ⊂ B(i+ 1), for any 0 ≤ i < s;
5. u(i) ∈ B(j) if and only if 0 ≤ i < j ≤ s;
6. no edge of G connects a vertex of B(i) with a vertex of V (G) \ B(i + 1) for

any 0 ≤ i < s.
A chain (s, z, u,B) is consistent with the ordering σ if s = min{i : zz(0)(i) ≥ p2} and
for all 0 ≤ i ≤ s,

1. z(i) = zz(0)(i);

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1981

2. σ(u(i)) = z(i);
3. B(i) = Az(i).

We remark here that if p2 ≤ n− 2, then jump(q) ≤ r2 for any q ≤ p2, and hence
zz(0)(s) ≤ r2 for any z(0) ≤ r2 in the definition above.

Our next lemma follows immediately from the definition of a chain.
Lemma 5.13. For q ∈ [p1, r2], let s = min{i : zq(i) ≥ p2}. For every 0 ≤ i ≤ s,

let

z(i) = zq(i),

u(i) = σ−1(z(i)),
B(i) = Az(i).

Then Iσ(q) := (s, z, u,B) is a chain consistent with σ.
Moreover, the bound of Lemma 5.9 gives us the following enumeration algorithm.
Theorem 5.14. In (n|S|)O(τ) time one can enumerate a family C of at most

(n|S|)O(τ) chains that contains all chains consistent with σ.
Proof. There are 1 + τ ≤ n possible values for s. For each 0 ≤ i ≤ s, there are at

most n choices for z(i), n choices for u(i), and |S| choices for B(i). The bound s ≤ τ
due to Lemma 5.9 yields the desired bound. Observe that the properties of a chain
can be verified in polynomial time.

We are now finally ready to state the definition of a layer-two state with its value.
Definition 5.15 (layer-two state). A layer-two state consists of two chains

I1 = (s1, z1, u1, B1), I2 = (s2, z2, u2, B2) with I1, I2 ∈ C such that
1. s2 ≤ s1 ≤ s2 + 1,
2. z1(i) ≤ z2(i), B1(i) ⊆ B2(i) for any 1 ≤ i ≤ s2 and z2(i) ≤ z1(i + 1),

B2(i) ⊆ B1(i+ 1) for any 1 ≤ i < s1;
3. u1(i) = u2(j) if and only if z1(i) = z2(j) for any 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2;

Furthermore, we denote

Ci[I
1, I2] = B2(i) \B1(i) for any 0 ≤ i ≤ s2,

Di[I
1, I2] = B1(i+ 1) \B2(i) for any 0 ≤ i < s1,

Zi[I
1, I2] = [z1(i), z2(i)− 1] for any 0 ≤ i ≤ s2,

Cs1 [I
1, I2] = (A2 ∪X2) \B1(s1) if s2 < s1,

Zs1 [I
1, I2] = [z1(s1), r2 − 1] if s2 < s1,

and we require that for any 0 ≤ i ≤ s1 all positions of Zi[I
1, I2] are pairwise adja-

cent in G↑. We define G∗↓ to be equal to G↓ with additionally [p2, r2 − 1] and each

Zi[I
1, I2] turned into a clique, for every 0 ≤ i ≤ s1. Note that by Lemma 2.3, G∗↓ is

a proper interval graph with identity being an umbrella ordering. Moreover, it holds
that E(G∗↓) ⊆ E(G↑) by the construction of E(G∗↓) and the fact that J2 ∈ J .

The value of a layer-two state (I1, I2) is a bijection f [I1, I2] :
⋃s1

i=0 Ci[I
1, I2] →⋃s1

i=0 Zi[I
1, I2] such that

1. f [I1, I2] is a feasible ordering of its domain, that is, for any u in the domain
of f [I1, I2] we have f [I1, I2](u) ∈ Σu, and for any u1, u2 in the domain of
f [I1, I2] such that u1u2 ∈ E(G), it holds that f [I1, I2](u1)f [I

1, I2](u2) ∈
E(G↑);

2. f [I1, I2](u) ∈ Zi[I
1, I2] whenever u ∈ Ci[I

1, I2];
3. f [I1, I2](u1(i)) = z1(i) for all 0 ≤ i ≤ s1;

1982 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

.

q←

q1 q2

Fig. 9. The last case of the definition of a relevant pair (q1, q2). Both positions q1 and q2 need
to belong to the gray area.

4. f [I1, I2](u) = σ1
X(u) whenever u ∈ X1 and f [I1, I2](u) = σ2

X(u) whenever
u ∈ X2;

5. among all functions f satisfying the previous conditions, f [I1, I2] minimizes
the cardinality of F f,∗, where the set F f,∗ is defined as the unique minimal
completion for the ordering f of the subgraph of G induced by the domain of
f and SPIC instance (G, k, (Σu)u∈V (G), G

∗
↓, G↑);

6. among all functions f satisfying the previous conditions, f [I1, I2] is lexico-
graphically minimum.

Note that in the definition of a layer-two state we do not require that any of the
chains begins in [p1, r1], i.e., that z1(0) or z2(0) are in this interval. The values for the
states where these chains begin at arbitrary positions within [p1, r2] will be essential
for computing the final value we are interested in.

Similarly as in the case of layer-one states, we have the following claim.

Definition 5.16 (relevant pair). A pair (q1, q2) with p1 ≤ q1 ≤ q2 ≤ min
(jump(q1), r2) is called relevant if one of the following holds:

1. q2 ≤ r1,
2. q1 = q2, or
3. there exists a position q← ≥ p1 such that jump(q←) ≤ q1 ≤ q2 ≤ jump(q←+1)

(see also Figure 9).

Lemma 5.17. For any q1, q2 such that p1 ≤ q1 ≤ q2 ≤ min(jump(q1), r2), the
pair (Iσ(q1), Iσ(q2)) is a layer-two state. If moreover (q1, q2) is a relevant pair, then
f [Iσ(q1), Iσ(q2)] is a restriction of σ to the domain of f [Iσ(q1), Iσ(q2)]. In particular,
f [Iσ(p1), Iσ(r1)] = f [Jσ(p1), Jσ(p2)].

Proof. By somehow abusing the notation, we denote X1 = Xp1 and X2 = Xp2 .
It is straightforward to verify from the definition that (Iσ(q1), Iσ(q2)) is a layer-
two state and the restriction of σ to Y :=

⋃
iCi[I

σ(q1), Iσ(q2)] satisfies the first
four requirements of the definition of a value of a layer-two state, even if (q1, q2) is
not a relevant pair. Moreover, observe that Lemma 5.11 implies that F σ ∩

(
Y
2

)
is

a completion for the ordering σ|Y of Y in the instance (G, k, (Σu)u∈V (G), G
∗
↓, G↑).

Hence, F σ|Y ,∗ ⊆ F σ ∩
(
Y
2

)
.

Now assume that (q1, q2) is a relevant pair and denote f = f [Iσ(q1), Iσ(q2)]
and Iσ(qα) = (sα, zα, uα, Bα) for α = 1, 2. If q1 = q2, then observe that the sets
Ci[I

σ(q1), Iσ(q2)] are empty, and the state in question asks for an empty function.
Hence, assume q1 < q2. Define an ordering σ′ of V (G) so that σ′(u) = f(u) for any
u ∈ Y and σ′(u) = σ(u) otherwise.

Let us define F := (F σ \
(
Y
2

)
)∪F f,∗. In the subsequent claims we establish some

properties of the graph G+ F and ordering σ′.
Claim 1. σ′(G+ F)[[1, r1 − 1] ∪ [p2, n]] = σ(Gσ)[[1, r1 − 1] ∪ [p2, n]].

Proof. Note here that σ′ and σ agree on positions before r1 and after p2 − 1.
Observe also that [p1, r1 − 1] and [p2, r2 − 1] are cliques in σ(Gσ), and [p1, r1 − 1] can
have a nonempty intersection only with the first of the intervals Zi[I

σ(q1), Iσ(q2)].

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1983

Since
(
[p2,r2−1]

2

)
,
(
Zi[I

σ(q1),Iσ(q2)]
2

)
⊆ E(G∗↓) ∩

(
σ(Y)
2

)
⊆ E(σ′(G[Y] + F f,∗)), it follows

by the definition of F that that intervals [p1, r1 − 1] and [p2, r2 − 1] are cliques in
σ′(G+ F) as well. Since Y ⊆ σ−1([p1, r2 − 1]), the claim follows.

Claim 2. σ′ is a umbrella ordering of G+ F .
Proof. Consider any a, b, c ∈ V (G) with ac ∈ E(G+F) and σ′(a) < σ′(b) < σ′(c);

we want to show the umbrella property for the triple a, b, c in the graph G + F . We
consider a few cases, depending on the intersection {a, b, c} ∩ Y .

1. If a, b, c ∈ Y or a, b, c /∈ Y , then the umbrella property holds by the definition
of F σ and F f,∗.

2. If σ′(a) ≥ p2 or σ′(c) < r1, then recall that σ′(G + F)[[1, r1 − 1] ∪ [p2, n]] =
σ(Gσ)[[1, r1 − 1]∪ [p2, n]]. Then the umbrella property for a, b, c follows from
the fact that σ is an umbrella ordering of Gσ.
Hence, in the remaining cases we have in particular that a /∈ X2 and c /∈ X1.
Observe also that the assumption ac ∈ E(G + F) implies that p1 ≤ σ′(a) <
σ′(c) < r2, since r1 = jump(p1) and r2 = jump(p2).

3. If a, c ∈ Y and b /∈ Y , then, by the structure of Y , we have a ∈ Ci[I
σ(q1),

Iσ(q2)], c ∈ Cj [I
σ(q1), Iσ(q2)] for some 1 ≤ i < j ≤ s1. We claim that

j = i+ 1. Assume the contrary. Observe that if i+ 1 < j, then in particular
i < s2. By Lemma 5.11, no edge of Gσ connects Azq2 (i)

with V (G)\Azq2 (i+1),

so in particular there is no such edge either in G, which is a subgraph of Gσ.
Likewise, there is no edge between [1, zq2(i)] and [zq2(i + 1), n] in G∗↓. By

the construction of F f,∗ it follows that also no edge of F f,∗ connects Azq2 (i)

with V (G) \ Azq2 (i+1). As σ and σ′ differ only on the internal ordering of

each set Ci[I
σ(q1), Iσ(q2)], and ac ∈ E(G+F), we have a contradiction, and

hence c ∈ Ci+1[I
σ(q1), Iσ(q2)]. It follows that b ∈ Di[I

σ(q1), Iσ(q2)] and, by
Lemma 5.11, ab, bc ∈ E(Gσ). By the definition of F , ab, bc ∈ E(G) ∪ F .
In the remaining cases we have that either a or c does not belong to Y . Hence
ac ∈ E(Gσ) by the definition of F .

4. If a ∈ Y \X2 and c /∈ Y , then, by Lemma 5.11, we have a ∈ Ci[I
σ(q1), Iσ(q2)]

and c ∈ Di[I
σ(q1), Iσ(q2)] for some 0 ≤ i < s1. By Lemma 5.11, Ci

[Iσ(q1), Iσ(q2)] ∪ Di[I
σ(q1), Iσ(q2)] is a clique in Gσ, and, by the definition

of G∗↓, Ci[I
σ(q1), Iσ(q2)] is a clique in G + F . Hence, ab, bc ∈ E(G) ∪ F

regardless of whether b ∈ Y .
5. If a /∈ Y and c ∈ Ci[I

σ(q1), Iσ(q2)] for some i > 0, then, by Lemma 5.11,
a ∈ Di−1[Iσ(q1), Iσ(q2)]. As in the previous case, Lemma 5.11 asserts that
Di−1[Iσ(q1), Iσ(q2)] ∪ Ci[I

σ(q1), Iσ(q2)] is a clique in Gσ, and the definition
of G∗↓ gives us that Ci[I

σ(q1), Iσ(q2)] is a clique in G + F . Consequently,
ab, bc ∈ E(G) ∪ F regardless of whether b ∈ Y .

6. If a /∈ Y and c ∈ C0[I
σ(q1), Iσ(q2)] = σ−1([q1, q2 − 1]), then, as σ′(c) ≥ r1,

we have that pair (q1, q2) is a relevant pair due to the existence of some
position q←. Since ac ∈ E(Gσ), we have that σ′(a) = σ(a) ≥ q← + 1. As
jump(q← + 1) ≥ q2, we have that also ab ∈ E(Gσ) and bc ∈ E(Gσ). By the
definition of F we infer that ab ∈ E(G)∪ F and, additionally, bc ∈ E(G) ∪F
in the case b /∈ Y . If b ∈ Y , then b ∈ C0[I

σ(q1), Iσ(q2)] and bc ∈ E(G) ∪ F
by the definition of G∗↓.

7. If a, c /∈ Y and b ∈ Y , then let b ∈ Ci[I
σ(q1), Iσ(q2)] for some 0 ≤ i ≤ s1.

Since σ and σ′ differ only on internal ordering of sets Ci[I
σ(q1), Iσ(q2)] and

a, c /∈ Y , then the condition σ′(a) < σ′(b) < σ′(c) implies also σ(a) < σ(b) <
σ(c). Since ac ∈ E(Gσ) and σ is an umbrella ordering of Gσ, we infer that

1984 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

ab, bc ∈ E(Gσ). By the definition of F this implies that ab, bc ∈ E(G +
F).

Claim 3. E(G∗↓) ⊆ E(σ′(G+ F)).

Proof. Consider any pq ∈ E(G∗↓). Denote a = σ−1(p), b = σ−1(q) and similarly
denote a′ and b′ for the ordering σ′; we want to show that a′b′ ∈ E(G) ∪ F . As
E(G∗↓) ⊆ E(σ(Gσ)) we have ab ∈ E(Gσ). If p, q ∈

⋃
i Zi[I

σ(q1), Iσ(q2)], then a′b′ ∈
E(G) ∪ F f,∗ by the definition of F f,∗. Otherwise, without loss of generality assume
that q /∈

⋃
i Zi[I

σ(q1), Iσ(q2)], and hence b = b′. If additionally a = a′, then a′b′ ∈
E(G)∪F follows directly from the definition of F and the fact that ab ∈ E(Gσ). In the
remaining case, if a
= a′, we have p ∈ Zi[I

σ(q1), Iσ(q2)] and a, a′ ∈ Ci[I
σ(q1), Iσ(q2)]

for some 0 ≤ i ≤ s1. Moreover, from the assumption a
= a′ we infer that r1 ≤ p < p2,
and consequently i < s1. By the definition of F , we need to show that a′b ∈ E(Gσ).

We consider two cases, depending on the relative order of p and q. If p < q, then
we have z2(i) ≤ q < z1(i+1) by Lemma 5.11 and consequently b ∈ Di[I

σ(q1), Iσ(q2)].
By Lemma 5.11 again, b is adjacent to all vertices of Ci[I

σ(q1), Iσ(q2)] in the graph
Gσ, and a′b ∈ E(Gσ). A similar argument holds if q < p and i > 0: by Lemma 5.11,
we have first that b ∈ Di−1[Iσ(q1), Iσ(q2)] and second that b is adjacent in Gσ to
all vertices of Ci[I

σ(q1), Iσ(q2)], and hence a′b ∈ E(Gσ). In the remaining case, if
q < p and i = 0 (hence p ∈ [q1, q2 − 1]), from p ≥ r1 it follows that the reason
(q1, q2) is a relevant pair is existence of some position q←. Since ab ∈ E(Gσ), we infer
that q ≥ q← + 1. Hence, b is adjacent in Gσ to all vertices of C0[I

σ(q1), Iσ(q2)], in
particular to a′, and the claim is proven.

Claim 4. E(σ′(G)) ⊆ G↑ and σ′ is a feasible ordering of G.

Proof. Observe that it follows directly from the definition of σ′ that σ′(u) ∈ Σu for
any vertex u. Hence, to show feasibility of σ′ it suffices to show that E(σ′(G)) ⊆ G↑.

Consider any ab ∈ E(G). If both a and b belong to Y or both do not belong, then
the claim is obvious by the feasibility of both σ and f . Assume then a ∈ Y and b /∈ Y .
If σ(a) = σ′(a), then clearly σ′(a)σ′(b) = σ(a)σ(b) ∈ E(G↑). Otherwise, a /∈ X2 and
a ∈ Ci[I

σ(q1), Iσ(q2)] for some 0 ≤ i < s1. If σ(b) ≥ zq2(i), then Lemma 5.11 implies
that b ∈ Di[I

σ(q1), Iσ(q2)]. By Lemma 5.11 again, [zq1(i), zq1(i+1)− 1] is a clique in
σ(Gσ) and hence in G↑ as well, so σ′(a)σ′(b) ∈ E(G↑). A similar situation happens
if σ(b) < zq1(i) and i > 0: b ∈ Di−1[Iσ(q1), Iσ(q2)] and again Lemma 5.11 together
with feasibility of σ proves the claim. In the remaining case i = 0 and σ(b) < q1.
As σ(a)
= σ′(a) we have a /∈ X1 and hence the reason (q1, q2) is a relevant pair
must be existence of some position q←. As ab ∈ E(G) we have σ(b) ≥ q← + 1. As
jump(q← + 1) ≥ q2, the position b is adjacent to all positions of [q1, q2 − 1] in σ(Gσ)
and hence σ′(a)σ′(b) ∈ E(σ(Gσ)) ⊆ E(G↑) as claimed.

From the above claims we infer that |F σ′ | ≤ |F f,∗|+ |F σ \
(
Y
2

)
|, whereas F σ|Y ,∗ ⊆

F σ∩
(
Y
2

)
. By the minimality of both f and σ, including the lexicographical minimality,

we have f = σ|Y and the lemma is proven.
The layer-two dynamic programming algorithm computes, for any layer-two state

(I1, I2), a function g[I1, I2] that satisfies the first four conditions of f [I1, I2], and we
will inductively ensure that g[Iσ(q1), Iσ(q2)] = f [Iσ(q1), Iσ(q2)] for any relevant pair
(q1, q2). We compute the values g[I1, I2] in the order of decreasing value of z1(0) and,
subject to that, increasing value of z2(0). (Formally, g[I1, I2] may also take value of
⊥, which implies that either I1 or I2 is not consistent with σ; we assign this value to
g[I1, I2] whenever we find no candidate for its value.)

Consider now a fixed layer-two state (I1, I2) with I1 = (s1, z1, u1, B1) and I2 =
(s2, z2, u2, B2). We start with the the base case when we have that either z1(0) =

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1985

z2(0) or z1(0) ≥ p2 − 1. Observe that in this situation we have that the domain of
g[I1, I2] is either X2 or X2 with an additional element u1(0) which must be mapped
to z1(0) = p2 − 1. Hence all the values of f [I1, I2] are fixed by σ2

X , u1, and z1, and
there is only one candidate for this value. It is straightforward to verify that, in the
case when I1 = Iσ(q1) and I2 = Iσ(q2), this unique candidate is indeed a restriction
of σ and hence equals f [I1, I2].

In the inductive step we have z1(0) < z2(0) and z1(0) < p2 − 1. We consider two
cases, depending on the value of z2(0)− z1(0).

First assume z2(0) − z1(0) > 1. In this case consider all possible chains I3 =
(s3, z3, u3, B3) such that both (I1, I3) and (I3, I2) are layer-two states, and z1(0) <
z3(0) < z2(0). We take as a candidate value for g[I1, I2] the union g[I1, I3]∪ g[I3, I2]
and pick g[I1, I2] using the criteria from the definition of the value f [I1, I2], but
taking only functions g[I1, I3] ∪ g[I3, I2] for all choices of I3 as candidates.

We claim that if I1 = Iσ(q1), I2 = Iσ(q2) and (q1, q2) is a relevant pair, then
g[I1, I2] = f [I1, I2]. Note that it suffices to show that f [I1, I2] is considered as a
candidate for g[I1, I2] in the aforementioned process for some choice of I3. Consider
any q1 < q3 < q2 and observe that if (q1, q2) is a relevant pair, then also (q1, q3) and
(q3, q2) are relevant pairs: this is clearly true for the case q2 ≤ r1 and, in the last
case of the definition of a relevant pair, notice that the same position q← witnesses
also that (q1, q3) and (q3, q2) are relevant. Denote I3 = Iσ(q3) and observe that we
consider a candidate g[I1, I3]∪g[I3, I2] for g[I1, I2]. By Lemma 5.17 and the inductive
assumption, this candidate is a restriction of σ and hence, again by Lemma 5.17, equals
f [I1, I2].

We are left with the case z2(0) = z1(0)+1. As z1(0) < p2−1, we have z2(0) < p2.
For α = 1, 2 define sα∗ = sα − 1, and zα∗ (i) = zα(i+1), uα∗ (i) = uα(i+1) and Bα∗ (i) =
Bα(i+1) for any 0 ≤ i ≤ sα∗ , and Iα∗ = (sα∗ , z

α
∗ , u

α
∗ , B

α
∗). In this case we consider only

one candidate for g[I1, I2], being g[I1∗ , I
2
∗], extended with g[I1, I2](u1(0)) = z1(0).

It remains to show that if I1 = Iσ(q1), I2 = Iσ(q2) and (q1, q2) is an rele-
vant pair, then g[I1, I2] = f [I1, I2]. Observe that I1∗ = Iσ(jump(q1)) and I2∗ =
Iσ(jump(q2)). Moreover, the position q1 witnesses that (jump(q1), jump(q2)) is a rele-
vant pair, and hence g[I1∗ , I

2
∗] = f [I1∗ , I

2
∗] by induction. This completes the proof that

g[Iσ(q1), Iσ(q2)] = f [Iσ(q1), Iσ(q2)] for all relevant pairs (q1, q2).
As candidates for the value f [J1, J2] of the layer-one state (J1, J2) we are cur-

rently processing, we take all the values g[I1, I2] for all the layer-two states (I1, I2) for
which the domain of f [I1, I2] is equal to the domain of f [J1, J2]. By Theorem 5.14,
there are at most (n|S|)O(τ) guesses for such states, and they can be enumerated in
(n|S|)O(τ) time. Observe also that if indeed J1 = Jσ(p1) and J2 = Jσ(p2), then the
layer-two state (I1, I2) = (Iσ(p1), Iσ(r1)) will be among the enumerated states. Since
(p1, r1) is a relevant pair, we have that g[Iσ(p1), Iσ(r1)] = f [Iσ(p1), Iσ(r1)], while
by Lemma 5.17 we have that f [Iσ(p1), Iσ(r1)] is equal to the restriction of σ to its
domain, which in turn is equal to the domain of g[J1, J2]. Hence, the restriction of
σ to the domain of g[J1, J2], which is exactly equal to f [J1, J2] by Lemma 5.8, will
be among the enumerated candidate values—this was exactly the property needed by
the layer-one dynamic program.

By Theorem 5.14 there are (n|S|)O(τ) layer-two states; thus the entire computa-
tion of f [J1, J2] takes (n|S|)O(τ) time, as was promised. This concludes the proof of
Theorem 5.1 and hence finishes the proof of Theorem 1.1.

6. Conclusions. We have presented the first subexponential algorithm for

Proper Interval Completion, running in time kO(k2/3) + O(nm(kn + m)). As

1986 BLIZNETS, FOMIN, PILIPCZUK, AND PILIPCZUK

many algorithms for completion problems in similar graph classes [3, 7, 9, 10] run

in time O�(kO(
√
k)), it is tempting to ask for such a running time also in our case.

The bottleneck in our approach is the trade-offs between the two layers of dynamic
programming.

Also, observe that every O�(2o(
√
k))-time algorithm for PIC would be in fact

also a 2o(n)-time algorithm. Since existence of such an algorithm seems unlikely, we

would like to ask for a 2Ω(
√
k) lower bound, under the assumption of the Exponential

Time Hypothesis. Note that no such lower bound is known for any other completion
problem for related graph classes.

REFERENCES

[1] N. Alon, D. Lokshtanov, and S. Saurabh, Fast FAST, in Proceedings of the 36th Colloquium
of Automata, Languages and Programming (ICALP), Lecture Notes in Comput. Sci. 5555,
Springer, New York, 2009, pp. 49–58.

[2] S. Bessy and A. Perez, Polynomial kernels for proper interval completion and related prob-
lems, Inform. Comput., 231 (2013), pp. 89–108.

[3] I. Bliznets, F. V. Fomin, M. Pilipczuk, and M. Pilipczuk, A Subexponential Parameterized
Algorithm for Interval Completion, CoRR, abs/1402.3473. 2014.

[4] I. Bliznets, F. V. Fomin, M. Pilipczuk, and M. Pilipczuk, A subexponential parameterized
algorithm for proper interval completion, in Algorithms, ESA 2014, 22th Annual European
Symposium, Wroclaw, Poland, A. S. Schulz and D. Wagner, eds., Lecture Notes in Comput.
Sci. 8737, Springer, New York, 2014, pp. 173–184.

[5] L. Cai, Fixed-parameter tractability of graph modification problems for hereditary properties,
Inform. Process. Lett., 58 (1996), pp. 171–176.

[6] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Subexponential parame-
terized algorithms on graphs of bounded genus and H-minor-free graphs, J. Assoc. Comput.
Mach., 52 (2005), pp. 866–893.

[7] P. G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger, Exploring subexponential
parameterized complexity of completion problems, in 31st International Symposium on
Theoretical Aspects of Computer Science (STACS 2014), Leibniz International Proceedings
in Informatics 25 Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2014, pp. 288–299.

[8] U. Feige, Coping with the NP-hardness of the graph bandwidth problem, in Proceedings of
SWAT, 2000, pp. 10–19.

[9] F. V. Fomin and Y. Villanger, Subexponential parameterized algorithm for minimum fill-in,
SIAM J. Comput., 42 (2013), pp. 2197–2216.

[10] E. Ghosh, S. Kolay, M. Kumar, P. Misra, F. Panolan, A. Rai, and M. S. Ramanu-

jan, Faster parameterized algorithms for deletion to split graphs, Algorithmica, 71 (2015),
pp. 989–1006.

[11] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir, Four strikes against physical
mapping of DNA, J. Comput. Biol., 2 (1995), pp. 139–152.

[12] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[13] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complex-
ity?, J. Comput. System Sci., 63 (2001), pp. 512–530.

[14] H. Kaplan, R. Shamir, and R. E. Tarjan, Tractability of parameterized completion problems
on chordal, strongly chordal, and proper interval graphs, SIAM J. Comput., 28 (1999),
pp. 1906–1922.

[15] S. Kratsch and M. Wahlström, Two edge modification problems without polynomial kernels,
Discrete Optim., 10 (2013), pp. 193–199.

[16] Y. Liu, J. Wang, C. Xu, J. Guo, and J. Chen, An effective branching strategy based on
structural relationship among multiple forbidden induced subgraphs, J. Combin. Optim.,
29 (2015), pp. 257–275.

[17] P. J. Looges and S. Olariu, Optimal greedy algorithms for indifference graphs, Comput.
Math. Appl., 25 (1993), pp. 15–25.

SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR PIC 1987

[18] F. S. Roberts, Indifference Graphs, in Proof Techniques in Graph Theory: Proceedings of
the Second Ann Arbor Graph Theory Conference, Academic Press, New York, 1969,
pp. 139–146.

[19] Y. Villanger, P. Heggernes, C. Paul, and J. A. Telle, Interval completion is fixed param-
eter tractable, SIAM J. Comput., 38 (2009), pp. 2007–2020.

[20] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete
Methods, 2 (1981), pp. 77–79.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

