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Abstract A connected graph has tree-depth at most k if it is a subgraph of the closure
of a rooted tree whose height is at most k. We give an algorithm which for a given
n-vertex graph G, in time O∗(1.9602n) computes the tree-depth of G. Our algorithm
is based on combinatorial results revealing the structure of minimal rooted trees whose
closures contain G.
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1 Introduction

The tree-depth of a graph G, denoted td(G), is the minimum number k such that there
is a rooted forest F , not necessarily a subgraph of G, with the following properties.

– V (G) = V (F),
– Every tree in F is of height at most k, i.e. the longest path between the root of the
tree and any of its leaves contains at most k vertices,

– G is a subgraph of the closure of F , which is the graph obtained from F by adding
all edges between every vertex of F and the vertices contained in the path from
this vertex to the root of the tree that it belongs to.
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This parameter has increasingly been receiving attention since it was defined by
Nešetřil and Ossona de Mendez in [13] and played a fundamental role in the theory of
classes of bounded expansion [14–17]. Tree-depth is a very natural graph parameter,
and due to different applications, was rediscovered several times under different names
as the vertex ranking number [2], the ordered coloring [10], and the minimum height
of an elimination tree of a graph [20].

From the algorithmic perspective, it has been known that the problem of computing
tree-depth isNP-hard even when restricted to bipartite graphs [2,13]. However, it also
admits polynomial time algorithms for specific graph classes [6,12]. For example,
when the input graph is a tree its tree-depth can be computed in linear time [20].
Moreover, as tree-depth is closed under minors, the results of Robertson and Sey-
mour [18,19] imply that the problem is in FPT when parameterized by the solution
size. In [2], Bodlaender et al. showed that the computation of tree-depth is also in XP
when parameterized by treewidth. From the point of view of approximation, tree-depth
can be approximated in polynomial time within a factor of O(log2 n) [4], where n is
the number of vertices of the input graph. Moreover, there is a simple approximation
algorithm that, given a graph G, returns a forest F such that G is contained in the
closure of F and the height of F is at most 2td(G) [17]. Finally, it is easy to see (and
will be described in Sect. 3) that there exists an exact algorithm for the computation
of tree-depth running in O∗(2n) time.1

We are interested in tree-depth from the perspective of exact exponential time
algorithms. Tree-depth is intimately related to another two well studied parameters,
treewidth and pathwidth. The treewidth of a graph can be defined as theminimum taken
over all possible completions into a chordal graph of the maximum clique size minus
one. Similarly, path-width can be defined in terms of completion to an interval graph.
One of the equivalent definitions of tree-depth is that it is the size of the largest clique
in a completion to a trivially perfect graph. These graph classes form the following
chain

trivially perfect ⊂ interval ⊂ chordal,

corresponding to the parameters tree-depth, pathwidth, and treewidth.
However, while for the computation of treewidth and pathwidth there existO∗(cn),

c < 2, time algorithms [7,8,11,21], to the best of our knowledge no such algorithm
for tree-depth has been known prior to our work. In this paper, we construct the first
exact algorithm which for any input graph G computes its tree-depth in timeO∗(cn),
c < 2. The running time of the algorithm is O∗(1.9602n). The approach is based on
the structural characteristics of the minimal forest that defines the tree-depth of the
graph.

The rest of the paper is organized as follows. InSect. 2wegive somebasic definitions
and preliminary combinatorial results on theminimal trees for tree-depth and in Sect. 3,
based on the results from Sect. 2, we present theO(1.9602n) time algorithm for tree-
depth. Finally, in Sect. 4 we conclude with open problems.

1 The O∗(·) notation suppresses factors that are polynomial in the input size.
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2 Minimal Rooted Forests for Tree-Depth

2.1 Preliminaries

For a graphG = (V, E), we useV (G) to denoteV and E(G) to denote E . If S ⊆ V (G)

we denote by G \ S the graph obtained from G after removing the vertices of S. In the
case where S = {u}, we abuse notation andwriteG\u instead ofG\{u}.We denote by
G[S] the subgraph of G induced by the set S. For S ⊆ V (G), the open neighborhood
of S in G, NG(S), is the set {u ∈ G \ S | ∃v ∈ S : {u, v} ∈ E(G)}. Again, in the case
where S = {v} we abuse notation and write NG(v) instead of NG({v}). Given two
vertices v and u we denote by distG(v, u) their distance in G. We use C(G) to denote
the set of connected components of G.

2.2 Tree-Depth

A rooted forest is a disjoint union of rooted trees. The height of a vertex x in a rooted
forest F is the number of vertices of the path from the root (of the tree to which x
belongs) to x and is denoted by height(x, F). The height of F is the maximum height
of the vertices of F and is denoted by height(F). Let x, y be vertices of F . The vertex
x is an ancestor of y if x belongs to the path linking y and the root of the tree to which
y belongs. The closure clos(F) of a rooted forest F is the graph with vertex set V (F)

and edge set {{x, y} | x is an ancestor of y in F, x �= y}. For every vertex y of F we
denote by Py the unique path linking y and the root of the tree to which y belongs,
and denote by p(y) the parent of y in F , i.e. the neighbor of y in Py . Vertices whose
parent is y are called the children of y. We call a vertex x of F a branching point if
x is not a root of F and degF (x) > 2 or if x is a root of F and degF (x) ≥ 2. For a
vertex v of a rooted tree T , we denote by Tv the maximal subtree of T rooted in v. For
example, if v is the root of T , then Tv = T .

Let G be a graph. The tree-depth of G, denoted td(G), is the least k ∈ N such that
there exists a rooted forest F on the same vertex set as G such that G ⊆ clos(F) and
height(F) = k. Note that ifG is connected then F must be a tree, and the tree-depth of
a disconnected graph is the maximum of tree-depth among its connected components.
Thus, when computing tree-depth we may focus on the case when G is connected and
F is required to be a rooted tree.

With every rooted tree T of height h we associate a sequence (t1, t2, t3, . . .), where
ti = |{v | height(v, T ) = i}|, i ∈ N, that is, ti is the number of vertices of the tree
T of height i , i ∈ N. Note that since T is finite, this sequence contains only finitely
many non-zero values.

Let T1 and T2 be two rooted trees with heights h1 and h2, and corresponding
sequences (t11 , t12 , t13 , . . .) and (t21 , t22 , t23 , . . .), respectively. We say that T1 ≺ T2 if and
only if there exists an i ∈ N such that t1i < t2i and t1j = t2j , for every j > i . Note in
particular that if h1 < h2, then taking i = h2 in this definition proves that T1 ≺ T2.

Definition 1 Let G be a connected graph. A rooted tree T is minimal for G if

1. V (T ) = V (G) and G ⊆ clos(T ), and
2. There is no tree T ′ such that V (T ′) = V (G), G ⊆ clos(T ′), and T ′ ≺ T .
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The next observation follows from the definitions of ≺ and of tree-depth.

Observation 1 Let G be a connected graph and T be a rooted tree for G such that
V (T ) = V (G), G ⊆ clos(T ), and height(T ) > td(G). Then there exists a rooted
tree T ′ such that V (T ′) = V (G), G ⊆ clos(T ′), and height(T ′) < height(T ), and
thus T ′ ≺ T .

The following combinatorial lemmata reveal the structures of minimal trees which
will be handy in the algorithm.

Lemma 1 Let T 1 be a rooted tree with root r , v ∈ V (T 1), and T ∗ be a rooted tree with
root r∗ such that T ∗ ≺ T 1

v . If T
2 is the rooted tree obtained from T 1 after considering

the union of T 1 \ V (T 1
v ) with T ∗ and adding an edge between r∗ and p(v) (if p(v)

exists), then T 2 ≺ T 1.

Proof Notice first that the claim trivially holds for the case where v = r as then
T 1

v = T 1 and T 2 = T ∗. Thus, from now on we prove the claim assuming that v �= r .
Let then h be the height of the vertex p(v) in T 1.

As T ∗ ≺ T 1
v , there exists an index i such that the number of vertices of height i

in T ∗ is strictly smaller than the number of vertices of height i in T 1
v , and for every

j > i , the number of vertices of height j is equal in both T ∗ and T 1
v . This implies

that the number of vertices of height h + i in T 2 is strictly smaller than the number
of vertices of height h + i in T 1, and for every j > h + i , the number of vertices of
height j is equal in both T 1 and T 2. Thus, we again conclude that T 2 ≺ T 1. ��
Lemma 2 Let G be a connected graph. If T is a minimal tree for G with root r then
for every v ∈ V (T ),

1. G[V (Tv)] is connected,
2. Tv is a minimal tree for G[V (Tv)], and
3. If v′ ∈ V (Tv) is a branching point with minimum distTv (v, v′) then NG(v) ∩

V (Tu) �= ∅, for every child u of v′.

Proof We first prove (1). Assume to the contrary that there exists a vertex v ∈ V (T )

such that the graph G[V (Tv)] is not connected. Notice that we may choose v in such
a way that distT (r, v) is maximum. We first exclude the case where v = r . Indeed,
notice that if v = r , then G[V (Tr )] = G is connected by the hypothesis. Thus, v �= r .
Notice also that if v is a leaf of T then Tv is the graph consisting of one vertex,
so it is again connected. Therefore, v is not a leaf of T . Let v1, v2, . . . , vp be the
children of v. The choice of v (maximality of distance from r ) implies that G[V (Tvi )]
is a connected component of G[V (Tv)] \ v, i ∈ [p]. Moreover, from the fact that
G[V (Tv)] is not connected, it follows that there exists at least one i0 ∈ [p] such that
NG(v) ∩ V (Tvi0

) = ∅. Let T ′ be the tree obtained from T by removing the edge
{v, vi0} and adding the edge {p(v), vi0}. Observe that G ⊆ clos(T ′). Moreover, notice
that by construction of T ′, we may consider T ′ as the tree obtained from the union of
T \V (Tp(v))with T ′

p(v) after adding the edge {p(v), p(p(v))} (if p(v) �= r ). It is easy
to see that T ′

p(v) ≺ Tp(v). Therefore, from Lemma 1, we end up with a contradiction
to the minimality of T .
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To prove (2), we assume to the contrary that there exists a vertex v ∈ V (T ) such
that Tv is not a minimal tree for G[V (Tv)]. By the hypothesis that T is a minimal tree
for G, it follows that v �= r . As Tv is not a minimal tree for G[V (Tv)], there exists
a rooted tree T ′ with root r ′ such that V (T ′) = V (Tv), G[V (Tv)] ⊆ clos(T ′), and
T ′ ≺ Tv . Let now T ∗ be the rooted tree obtained from the union of T \ V (Tv) with T ′
after adding an edge between p(v) and r ′. Notice then that G ⊆ clos(T ∗). Moreover,
from Lemma 1, we get that T ∗ ≺ T , a contradiction to the minimality of T .

We now prove (3). Let v be a vertex of T and v′ be a branching point of Tv such
that distTv (v, v′) is minimum, that is, v′ is the highest branching point in Tv . Assume
to the contrary that there exists a child u of v′ such that NG(v) ∩ V (Tu) = ∅. Let T ′
be the tree obtained from T by switching the position of the vertices v and v′, where
T ′ = T if v = v′. Notice that clos(T ) = clos(T ′) and T and T ′ are isomorphic, hence
T ′ is also a minimal tree for G. Moreover, children of v in T ′ are exactly children
of v′ in T . Observe also that if w is a child of v′ in T , hence also a child of v in T ′,
then Tw = T ′

w and NG[V (T ′
v)](V (T ′

w)) ⊆ {v}. As NG(v) ∩ V (Tu) = ∅, we obtain
that G[V (T ′

v)] is not connected. However, T ′ is a minimal tree for G and therefore,
from (1), G[V (T ′

v)] is connected, a contradiction. This completes the proof of the last
claim and of the lemma. ��

3 Computing Tree-Depth

3.1 The Naive DP, and Pruning the Space of States

To construct our algorithm, we need an equivalent recursive definition of tree-depth.

Proposition 1 ([13]) The tree-depth of a connected graph G is equal to

td(G) =
⎧
⎨

⎩

1 if |V (G)| = 1

1 + min
v∈V (G)

max
H∈C(G\v)

td(H) otherwise (1)

Proposition 1 already suggests a dynamic programming algorithm computing tree-
depth of a given graph G inO∗(2n) time. Assume without loss of generality that G is
connected, as otherwise wemay compute the tree-depth of each connected component
of G separately. For every X ⊆ V (G) such that G[X ] is connected, we compute
td(G[X ]) using (1). Assuming that the tree-depth of all the connected graphs induced
by smaller subsets of vertices has been already computed, computation of formula (1)
takes polynomial time. Hence, if we employ dynamic programming starting with the
smallest sets X , we can compute td(G) in O∗(2n) time. Let us denote this algorithm
by A0.

The reason why A0 runs in pessimistic O∗(2n) time is that the number of subsets
of V (G) inducing connected subgraphs can be as large asO(2n). Therefore, if we aim
at reducing the time complexity, we need to prune the space of states significantly. Let
us choose some ε, 0 < ε < 1

6 , to be determined later, and let G be a connected graph
on n vertices. We define the space of states Sε as follows:
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Sε = {S ⊆ V (G) | 1 ≤ |S| ≤ ( 1
2 − ε

)
n and G[S] is connected, or

∃X ⊆ V (G) : |X | ≤ ( 1
2 − ε

)
n and G[S] ∈ C(G \ X)}.

Observe that thus all the sets belonging to Sε induce connected subgraphs of G.
The subsets S ∈ Sε considered in the first part of the definition will be called of the
first type, and the ones considered in the second part will be called of the second type.
Note that V (G) ∈ Sε since it is a subset of second type for X = ∅.

Lemma 3 If G is a graph on n vertices, then |Sε| = O∗
((

n
( 1
2 − ε

)
n

))

. Moreover,

Sε may be enumerated in O∗
((

n
( 1
2 − ε

)
n

))

time.

Proof For sets of the first type, there are at most n ·
(

n(
1
2 − ε

)
n

)

sets S of size at

most
( 1
2 − ε

)
n. Moreover, one can enumerate them in O∗

((
n

( 1
2 − ε

)
n

))

time, and

for each run a polynomial-time check whether it induces a connected subgraph. For
the sets of the second type, we can in the same manner enumerate all the vertex sets

X of size at most
( 1
2 − ε

)
n inO∗

((
n

( 1
2 − ε

)
n

))

time, and for each of them take all

of the at most n connected components of G \ X . ��
In our algorithms we store the family Sε as a collection of binary vectors of length

n in a prefix tree (a trie). Thus when constructing Sε we can avoid enumerating
duplicates, and then test belonging to Sε in O(n) time.

We now define the pruned dynamic programming algorithm Aε that for every
X ∈ Sε computes value td∗(G[X ]) defined as follows:

td∗(G[X ]) =
⎧
⎨

⎩

1 if |X | = 1

1 + min
v∈X max

H∈C(G[X ]\v), V (H)∈Sε

td∗(H) otherwise (2)

We use the convention that td∗(G[X ]) = +∞ if X /∈ Sε. The algorithm Aε can
be implemented in a similar manner as A so that its running time is O∗(|Sε|). We
consider sets from Sε in increasing order of cardinalities (sorting |Sε| with respect to
cardinalities takesO∗(|Sε|) time) and simply apply formula (2). Note that computation
of formula (2) takes polynomial time, since we need to consider at most n vertices v,
and for every connected component H ∈ C(G \ v) we can test whether its vertex set
belongs to Sε in O(n) time.

For a set S ∈ Sε and T being a minimal tree for G[S], we say that T is covered by
Sε if V (Tv) ∈ Sε for every v ∈ S. The following lemma expresses the crucial property
of td∗.

Lemma 4 For any connected graph G and any subset S ⊆ V (G), it holds that
td∗(G[S]) ≥ td(G[S]). Moreover, if S ∈ Sε and there exists a minimal tree T for
G[S] that is covered by Sε, then td∗(G[S]) = td(G[S]).
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Proof We first prove the first claim by induction with respect to the cardinality of S.
If td∗(G[S]) = +∞ then the claim is trivial. Therefore, we assume that S ∈ Sε, there
exists some r ∈ S such that td∗(G[S]) = 1+maxH∈C(G[S]\r) td∗(H), and V (H) ∈ Sε

for each H ∈ C(G[S] \ r). By the induction hypothesis, since |V (H)| ≤ |S| for each
H ∈ C(G[S] \ r), we infer that td∗(H) ≥ td(H) for each H ∈ C(G[S] \ r). On the
other hand, by (1) we have that td(G[S]) ≤ 1 + maxH∈C(G[S]\r) td(H). Therefore,

td(G[S]) ≤ 1 + max
H∈C(G[S]\r)

td(H)

≤ 1 + max
H∈C(G[S]\r)

td∗(H) = td∗(G[S]),

and the induction step follows.
We now prove the second claim, again by induction with respect to the cardinality

of S. Let T be a minimal tree for G[S] that is covered by Sε. Let r be the root of
T and let v1, v2, . . . , vp be the children of r in T . By (2) of Lemma 2, we have
that Tvi is a minimal tree for G[V (Tvi )], for each i ∈ [p]. Moreover, since T was
covered by Sε, then so does each Tvi . By the induction hypothesis we infer that
td∗(G[V (Tvi )]) = td(G[V (Tvi )]) for each i ∈ [p], since |V (Tvi )| < |S|. Moreover,
since T and each Tvi are minimal, we have that

td(G[S]) = height(T ) = 1 + max
i∈[p] height(Tvi ) = 1 + max

i∈[p] td(G[V (Tvi )])
= 1 + max

i∈[p] td∗(G[V (Tvi )]) ≥ td∗(G[S]).

The last inequality follows from the fact that, by (1) of Lemma 2, G[V (Tvi )] are
connected components of G[S] \ r and moreover that their vertex sets belong to
Sε. Hence, vertex r was considered in (2) when defining td∗(G[S]). We infer that
td(G[S]) ≥ td∗(G[S]), and td(G[S]) ≤ td∗(G[S]) by the first claim, so td∗(G[S]) =
td(G[S]). ��

Lemma 4 implies that the tree-depth is already computed exactly for all connected
subgraphs induced by significantly less than half of the vertices.

Corollary 1 For any connected graph G on n vertices and any S ∈ Sε, if |S| ≤
( 12 − ε)n, then td∗(G[S]) = td(G[S]).
Proof If T is aminimal tree forG[S], then for every v ∈ V (T ),G[V (Tv)] is connected
by (1) of Lemma 2, and |V (Tv)| ≤ ( 12 − ε)n. Hence, for every v ∈ V (T ) it holds that
V (Tv) ∈ Sε and the corollary follows from Lemma 4. ��

Finally, we observe that for any input graph G the algorithm Aε already computes
the tree-depth of G unless every minimal tree for G has a very special structure.
Let T be a minimal tree for G. A vertex v ∈ V (G) is called problematic if (i)
|V (Tv)| > ( 12 − ε)n, and (ii) |V (Pp(v))| > ( 12 − ε)n. We say that a minimal tree
T for G is problematic if it contains some problematic vertex.

Corollary 2 For any connected graph G, if G admits a minimal tree that is not
problematic, then td∗(G) = td(G).
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Proof Weprove that anyminimal tree T forG that is not problematic, is in fact covered
by Sε. Then the corollary follows from Lemma 4.

Take any v ∈ V (G); we need to prove that V (Tv) ∈ Sε. First note that G[V (Tv)] is
connected by (1) of Lemma 2. Hence if |V (Tv)| ≤ ( 1

2 − ε
)
n, then it trivially holds that

V (Tv) ∈ Sε by the definition of Sε. Otherwise we have that |V (Pp(v))| ≤ ( 1
2 − ε

)
n,

since v is not problematic. Note then that NG(V (Tv)) ⊆ V (Pp(v)) and so G[V (Tv)]
is a connected component of V (G) \ V (Pp(v)). Consequently, V (Tv) is a subset of
second type for X = V (Pp(v)). ��

3.2 The Algorithm

Corollary 2 already restricts cases when the pruned dynamic program Aε misses the
minimal tree: this happens only when all the minimal trees for the input graph G are
problematic. Therefore, it remains to investigate the structure of problematic minimal
trees to find out, if some problematic minimal tree could have smaller height than the
minimal tree computed by Aε.

Let G be the input graph on n vertices. Throughout this section we assume that
G admits some problematic minimal tree T . Let v be a problematic vertex in T . Let
moreover v′ be the highest branching point in Tv (possibly v′ = v if v is already
a branching point in T ), or v′ be the only leaf of Tv in case Tv does not contain
any branching points. Let Z = V (Pv′); observe that since v is problematic, we
have that |Z | >

( 1
2 − ε

)
n. Let Q1, Q2, . . . , Qa be all the subtrees of T rooted in

NT (Z \ {v′}), that is, in the children of vertices of Z \ {v′} that do not belong to
Z , and let R1, R2, . . . , Rb be the subtrees of T rooted in children of v′. Note that
trees Q1, Q2, . . . , Qa, R1, R2, . . . , Rb are pairwise disjoint, and by the definition of
a minimal tree we have that NG(V (Qi )), NG(V (R j )) ⊆ Z for any i ∈ [a], j ∈ [b].
See Fig. 1 for reference.

Let Q = ⋃a
i=1 V (Qi ) and R = ⋃b

j=1 V (R j ). For any problematic min-
imal tree T and a problematic vertex v in it, we say that v defines the sets
Z , Q1, Q2, . . . , Qa, R1, R2, . . . , Rb, Q, R in T .

Observation 2 If b > 0, then Z = NG(V (R j ) ∪ Q) for any j ∈ [b].
Proof As NG(V (Qi )), NG(V (R j )) ⊆ Z for any i ∈ [a], j ∈ [b], we have that
Z ⊇ NG(V (R j ) ∪ ⋃a

i=1 V (Qi )). We proceed to proving the reverse inclusion.
Take any z ∈ Z , and let z′ be the highest branching point in Tz ; note that z′ is always

defined since b > 0 and thus v′ is a branching point. If z′ = v′, then by (3) of Lemma 2
we infer that z ∈ NG(V (R j )), j ∈ [b]. Otherwise, we have that z′ ∈ Z \ {v′}. Since
z′ is a branching point, there exists some subtree Qi rooted in a child of z′. We can
again use (3) of Lemma 2 to infer that z ∈ NG(V (Qi )), so also z ∈ NG(Q). ��

Observe that if b = 0, then we trivially have that Z = V (G) \ Q.

Observation 3 |Q| < 2εn.

Proof Since v is problematic, we have that |V (Pp(v))| >
( 1
2 − ε

)
n and |V (Tv)| >

( 1
2 − ε

)
n. Observe also that V (Pp(v))∪ V (Tv) = Z ∪ R by the definition of Z . Since

V (Pp(v)) ∩ V (Tv) = ∅ we have that:
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Z

Q

. . .R1

R2

Rb
R

r

v

v

Q1

Q2

Qa

Fig. 1 A problematic minimal tree T rooted at r , the problematic vertex v, the branching vertex v′ in Tv ,
the set Z (the set consisting of white vertices), and the sets Qi , i ∈ [a], and R j , j ∈ [b]. We would like to
remark here that the figure only aims to facilitate identification of the above sets and that it is possible that,
for some such tree T , the vertices in Z \ v′ have more children or there exists a vertex q in Q such that
height(q, T ) > height(r, T ) for every vertex r ∈ R

|Z ∪ R| = |V (Pp(v)) ∪ V (Tv)| > (1 − 2ε)n.

Since Q = V (G) \ (Z ∪ R), the claim follows. ��
Observation 4 |R| <

( 1
2 + ε

)
n − |Q|.

Proof Since R = V (G) \ (Z ∪ Q) and |Z | >
( 1
2 − ε

)
n, we have that

|R| = |V (G) \ (Z ∪ Q)| = n − |Z | − |Q| <

(
1

2
+ ε

)

n − |Q|.

��

Observation 5 If b > 0, then b ≥ 2 and min
j∈[b] |V (R j )| <

(
1

4
+ ε

2

)

n − |Q|
2

.

Proof Ifb > 0 thenv′ is a branchingpoint and it has at least two children. It follows that
b ≥ 2. For the second claim, observe that since b ≥ 2we have that min j∈[b] |V (R j )| ≤
|R|/2 and the claim follows from Observation 4. ��

We can proceed to the description of our main algorithm, denoted further A. Simi-
larly as before, without loss of generality let us assume that G is connected. First, the
algorithm constructs the family Sε using Lemma 3, and runs the algorithm Aε on it.

Note that these steps can be performed in timeO∗
((

n
( 1
2 − ε

)
n

))

. We can therefore

assume that the value td∗(G[S]) is computed for every S ∈ Sε, and in particular for
S = V (G).

Now the algorithm proceeds to checking whether a better problematic minimal tree
T with problematic vertex v can be constructed. We adopt the notation introduced
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in the previous paragraphs for a problematic minimal tree T . We aim at identifying
set Z and sets V (Q1), V (Q2), . . . , V (Qa), V (R1), V (R2), . . . , V (Rb). Without loss
of generality assume that if b > 0, then V (R1) has the smallest cardinality among
V (R1), V (R2), . . . , V (Rb), i.e., |V (R1)| ≤ |V (R2)|, . . . , |V (Rb)|. Let then Y =
Q ∪ R1 if b > 0, and Y = Q if b = 0.

The algorithmbranches into atmost (n+1) subbranches, in each fixing the expected
cardinality y of Y . Note that by Observations 3 and 5 and the fact that ε < 1

6 we may
assume that

y < |Q| +
(
1

4
+ ε

2

)

n − |Q|
2

= |Q|
2

+
(
1

4
+ ε

2

)

n <

(
1

4
+ 3ε

2

)

n. (3)

Then the algorithm branches into
(n
y

)
subbranches, in each fixing a different

subset of vertices of size smaller than y as the set Y . Note that sets V (Q1),
V (Q2), . . . , V (Qa), V (R1) are then defined as vertex sets of connected components
of G[Y ]. The algorithm branches further into (n + 1) cases. In one case the algorithm
assumes that b = 0 and therefore concludes that Q = Y . In other cases the algorithm
assumes that b > 0 and picks one of the components of G[Y ] assuming that its ver-
tex set is V (R1), thus recognizing Q as Y \ V (R1), i.e., the union of vertex sets of
remaining components of G[Y ].

In the case when b = 0 the algorithm concludes that Z = V (G) \ Q. In the cases
when b > 0, the algorithm concludes that Z = NG(Y ) using Observation 2. Having
identified Z , the sets V (R1), V (R2), . . . , V (R j ) can be recognized as vertex sets of
connected components of V (G) \ (Z ∪ Q). Observations 2, 3, and 5 ensure that for
every problematic minimal tree T for G, there will be at least one subbranch where
sets Z , V (Q1), V (Q2), . . . , V (Qa), V (R1), V (R2), . . . , V (Rb) are fixed correctly.
Observe also that in each of at most (n + 1) branches where y has been fixed, we
produced at most (n+ 1) · (ny

)
subbranches. We perform also sanity checks: whenever

any produced branch does not satisfy any of Observations 2, 3, 4 or 5, or the fact that
V (R1) is a smallest set among V (R1), V (R2), . . . , V (R j ), we terminate the branch
immediately.

The algorithm now computes td(G[V (Qi )]) and td(G[V (R j )]) for all i ∈ [a],
j ∈ [b]. Recall that by Corollary 1, for any set X ⊆ V (G) such thatG[X ] is connected
and |X | ≤ ( 12 − ε)n, we have that td(G[X ]) = td∗(G[X ]), and hence the value
td(G[X ]) has been already computed by algorithm Aε. Since |Q| ≤ 2εn and ε < 1

6 ,
we infer that this is the case for every set V (Qi ) for i ∈ [a], and values td(G[V (Qi )])
are already computed. The same holds for every R j assuming that |V (R j )| ≤ ( 12−ε)n.

Assume then that there exists some j0 such that |V (R j0)| > ( 12 − ε)n, i.e., we
have no guarantee that the algorithm Aε computed td(G[V (R j0)]) correctly. Note
that by Observation 4 and the fact that ε < 1

6 , there can be at most one such j0.
Furthermore, if this is the case, then by Observation 5 we have that b ≥ 2 and V (R j0)

cannot be the smallest among sets V (R1), V (R2), . . . , V (Rb); hence, j0 �= 1 and
V (R j0) ⊆ V (G) \ (Z ∪ Y ). Therefore, we must necessarily have that

y = |Y | ≤ |V (G)| − |Z | − |V (R j0)| < n −
(
1

2
− ε

)

n −
(
1

2
− ε

)

n = 2εn,
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and moreover

|V (R j0)| ≤ |V (G)| − |Z | − |Y | < n −
(
1

2
− ε

)

n − y =
(
1

2
+ ε

)

n − y.

Formally, if none of these assertions holds, the branch would be terminated by the
sanity check. To compute td(G[V (R j0)])we employ the naive dynamic programming
routine on G[V (R j0)], i.e., algorithm A0. Observe, however, that all subsets of R j0 of
size at most ( 12 − ε)n belong to Sε. Thus from Corollary 1 their values have already
been computed accurately by the algorithm Aε. Therefore, in this application we do
not need to recompute the values for subsets of size at most ( 12 − ε)n but only the
values for the subsets of R j0 of greater size. Hence, we need to compute the values

for at most
∑2εn−y

i=1

(
( 12 + ε)n − y

( 12 − ε)n + i

)

subsets of R j0 . As |R j0 | ≤ ( 1
2 + ε

)
n − y and

ε < 1
6 , the application of algorithm A takes at most O∗

((
( 12 + ε)n − y

( 12 − ε)n

))

time.

Summarizing, for every choice of y (recall that, from Eq. 3, y <
( 1
4 + 3ε

2

)
n), the

algorithmproduced atmost (n+1)·(ny
)
branches, and in brancheswith y < 2εn it could

have used extra O∗
((

( 12 + ε)n − y

( 12 − ε)n

))

time for computing values td(G[V (R j )])
whenever there was no guarantee that algorithm Aε computed them correctly.

We arrive at the situation where in each branch the algorithm already identi-
fied set Z , sets V (Q1), V (Q2), . . . , V (Qa), V (R1), V (R2), . . . , V (Rb), and values
td(G[V (Qi )]) and td(G[V (R j )]) for i ∈ [a], j ∈ [b]. Note, however, that the algo-
rithm does not have yet the full knowledge of the shape of tree T , because we have
not yet determined in which order the vertices of Z appear on the path Pv′ , and thus
we do not know where the trees Qi and R j are attached to this path. Fortunately, it
turns out that finding an optimum such ordering of vertices of Z is polynomial-time
solvable.

For i ∈ [a + b] let Mi = Qi if i ≤ a and Mi = Ri−a otherwise, and let hi =
td(G[V (Mi )]). Note that since T is minimal, by (2) of Lemma 2 we have that hi =
height(Mi ) for each i ∈ [a + b]. Let also Zi = NG(V (Mi )); note that since G ⊆
clos(T ), we have that Zi ⊆ Z . Let σ be an ordering of Z , i.e., σ is a bijective function
from Z to [|Z |]. Finally, we define the weight of σ as follows:

μ(σ) = max

(

|Z |, max
i∈[a+b] (max(σ (Zi )) + hi )

)

. (4)

Lemma 5 Let G be the input graph, and let Z , {V (Mi )}i∈[a+b] be any partitioning
of vertices of G such that Zi = NG(V (Mi )) is a subset of Z for any i ∈ [a + b].
Moreover, let hi = td(G[V (Mi )]) and for σ being an ordering of Z, let μ(σ) be
defined by (4). Then td(G) ≤ μ(σ) for any ordering σ of Z. However, if G admits
a problematic minimal tree T and Z , {V (Mi )}i∈[a+b] are defined by any problematic
vertex in this tree, then td(G) = minσ μ(σ).
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Proof We first prove that td(G) ≤ μ(σ) for any such partitioning {V (Mi )}i∈[a+b], Z
of V (G) and ordering σ of Z . Construct a rooted tree T ′ as follows. First, create a
path on vertex set Z , where the vertices are ordered as in ordering σ and σ−1(1) is the
root of the tree. Then, for every i ∈ [a+b] construct a minimal tree Ti for G[V (Mi )],
and attach its root using one edge to the vertex σ−1(mi ), where mi = max(σ (Zi )).
Observe that every neighbor of V (Mi ) is before σ−1(mi ) in the ordering σ , and hence
it follows that G ⊆ clos(T ′). Consequently, td(G) ≤ height(T ′). However, by the
definition of T ′ and of μ(σ), we have height(T ′) = μ(σ). Thus td(G) ≤ μ(σ).

We proceed to the second claim. Assume that T is a problematic minimal tree
for G and assume that Z , {V (Mi )}i∈[a+b] are defined by any problematic vertex v

in this tree. We adopt the notation used for T in this section. Let σ0 be the order
of vertices of Z on the path Pv′ . For a tree Mi , for i ∈ [a + b], let zi ∈ Z be the
parent of the root of Mi ; hence, for i > a we have zi = v′. Observe that, then
td(G) = height(T ) = max(|Z |,maxi∈[a+b] σ0(zi ) + hi ). Since G ⊆ clos(T ), we
infer that σ0(zi ) ≥ σ0(w) for anyw ∈ Zi . Hence height(T ) ≥ μ(σ0) by the definition
of μ. Consequently, td(G) ≥ μ(σ0), and so td(G) = minσ μ(σ) by the first claim. ��

We are left with the following scheduling problem. Given a set Z of size at most
n, a family number of subsets Zi ⊆ Z for i ∈ [a + b] and corresponding integers
hi ≤ n, we would like to compute the minimum possible μ(σ) among orderings σ

of Z . Let this problem be called minimum ordering with independent delays (MOID,
for short).

Lemma 6 Minimum ordering with independent delays is polynomial-time solvable.

Proof Observe that since |Z | ≤ n and hi ≤ n, for any ordering σ we have that
μ(σ) ≤ 2n. We therefore iterate through all possible values M from |Z | to 2n, and
for each M we check whether there exists some σ with μ(σ) ≤ M . The first M for
which this test returns a positive outcome is equal to minσ μ(σ).

For a given M , construct an auxiliary bipartite graph H with Z on one side and
{1, 2, . . . , |Z |} on the other side. We put an edge between an element z and an index
j if and only if the following holds: for every Zi to which z belongs, it holds that
j + hi ≤ M . It is easy to verify that orderings σ of Z with μ(σ) ≤ M correspond
one-to-one to perfect matchings in H . Indeed, if we are given an ordering σ with
μ(σ) ≤ M , then we have that for every z ∈ Z and Zi to which z belongs, it holds
that σ(z) + hi ≤ M by the definition of μ(σ). Hence, {z, σ (z)} is an edge in H and
{{z, σ (z)} | z ∈ Z} is a perfect matching in H . On the other hand, if we are given a
perfect matching {{z, jz} | z ∈ Z} in H , then we may define an ordering σ of Z by
putting σ(z) = jz . Then for every z ∈ Z and Zi to which z belongs, we have that
{z, σ (z)} is an edge in H and, consequently, σ(z) + hi ≤ M . As we chose z and Zi

arbitrarily, it follows that maxi∈[a+b] (max(σ (Zi )) + hi ) ≤ M and so μ(σ) ≤ M .
Therefore, to solve theMOID problem it suffices to construct H in polynomial time

and run any polynomial-time algorithm for finding a perfect matching in H . ��
We remark that MOIDs can be also solved inO(n+∑a+b

i=1 |Zi |) time using greedy
arguments. Since we are not interested in optimizing polynomial factors, in the proof
of Lemma 6 we used the more concise matching argument to keep the description
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simple. We leave finding a faster algorithm for MOID to the reader as an interesting
exercise.

Concluding, in every subbranch algorithm A constructs an instance of MOID and
solves it in polynomial time using the algorithm of Lemma 6. Lemma 5 ensures
that none of the values found in subbranches will be larger than td(G), and that if
G admits a problematic minimal tree T then td(G) will be found in at least one
subbranch. Therefore, by Corollary 2 we can conclude the algorithm A by outputting
the minimum of td∗(G), computed by Aε, and the values returned by subbranches.

Algorithm 1 Computing the tree-depth of a connected graph
Enumerate Sε .
Run algorithm Aε on Sε .
for all i ≤ ( 14 + 3ε

2 )n do
for all Y ⊆ V (G) with y = |Y | = i do

for all R1 ⊆ Y with R1 = ∅ or R1 induces a connected component of G[Y ] do
if R1 �= ∅ then
Z ← NG (Y )

for all connected components C of V (G) \ (Z ∪ Y ) with |C | > ( 12 − ε)n
do
Compute td(C) by running A0 on the subsets of V (C) that have size greater than ( 12 − ε)n.

end for
else
Z ← V (G) \ Q

end if
Run the algorithm for the MOID problem to compute the correct order of the vertices in Z and
subsequently td(G).

end for
end for

end for

Let us proceed with the analysis of the running time of algorithm A. First, we have
enumerated Sε and run the algorithm Aε, which took

T1(n) = O∗
((

n
( 1
2 − ε

)
n

))

time. Then we created a number of subbranches. For every subbranch with y ≥ 2εn,
we have spent polynomial time (the algorithm will not enter the fourth for loop in
Algorithm 1), and the number of these subbranches is bounded by (n+1)2 ·( n(

1
4+ 3ε

2

)
n

)

since y <
( 1
4 + 3ε

2

)
n and ε < 1

6 . Hence, on these subbranches we spent

T2(n) = O∗
((

n
( 1
4 + 3ε

2

)
n

))

time in total. Finally, for every subbranch with y < 2εn, as the fourth for loop will be

entered at most once, we have spent at most O∗(
(( 12+ε)n−y

( 12−ε)n

)
) time. As the number of

such branches is bounded by (n + 1) · (n
y

)
, the total time spent on these branches is
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T3(n) = O∗
(

max
y<2εn

((
n

y

)

·
(

( 12 + ε)n − y

( 12 − ε)n

)))

.

If we now let ε = 1
10 , then T1(n), T2(n) = O∗

((
n
2
5n

))

= O∗(1.9602n). It can be

also easily shown that for any y < 1
5n, it holds that

(n
y

)·
( 3

5n − y
2
5n

)

= O∗(1.9602n). To

prove this, we can use the following simple combinatorial bound:
(n1
k1

) ·(n2k2
) ≤ (n1+n2

k1+k2

)
.

This inequality can be proved by combinatorial interpretation as follows: every choice
of k1 elements from a set of size n1 and of k2 elements from a set of size n2, defines
uniquely a choice of k1 + k2 elements from the union of these sets, which is of size
n1 + n2. Therefore, we obtain:

(
n

y

)

·
( 3

5n − y
2
5n

)

=
(
n

y

)

·
( 3

5n − y
1
5n − y

)

≤
( 8

5n − y
1
5n

)

≤
( 8

5n
1
5n

)

= O∗(1.828n).

Consequently, T1(n), T2(n), T3(n) = O∗(1.9602n), and the whole algorithm runs
in O∗(1.9602n) time.

4 Conclusion

In this work we gave the first exact algorithm computing the tree-depth of a graph
faster than O∗(2n). As Bodlaender et al. [3] observe, both pathwidth and treewidth
can be reformulated as vertex ordering problems and thus computed by a simple
dynamic programming algorithm similar to the classical Held–Karp algorithm in time
O∗(2n) [9]. For example, computing the optimum value of treewidth is equivalent to
finding an elimination ordering which minimizes the sizes of cliques created during
the elimination process. As far as tree-depth is concerned, Nešetřil and Ossona de
Mendez [17] give an alternative definition of tree-depth in terms of weak-colorings,
which in turn are defined also via vertex orderings; however, it is unclear whether this
definition can be used for an algorithm working inO∗(2n) time. Interestingly enough,
for many of vertex ordering problems, like Hamiltonicity, treewidth, or pathwidth, an
explicit algorithm working in time O∗(cn) for some c < 2 can be designed, see [1,7,
21]. On the other hand, for several other vertex ordering problems no such algorithms
are known. The two natural problems to attack are (i) the computation of cutwidth,
and (ii) the Minimum Feedback Arc Set in Digraph problem; see [3,5] for definitions
and details. It is known that the cutwidth of a graph can be computed in time O∗(2t ),
where t is the size of a vertex cover in the graph [5]; thus the problem is solvable in
timeO∗(2n/2) on bipartite graphs.We leave existence of faster exponential algorithms
for these problems as an open question.
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14. Nešetřil, J., de Mendez, P.O.: Grad and classes with bounded expansion I. Decompositions. Eur. J.
Comb. 29(3), 760–776 (2008)
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