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Abstract A multicast game is a network design game modelling how selfish non-
cooperative agents build and maintain one-to-many network communication. There
is a special source node and a collection of agents located at corresponding terminals.
Each agent is interested in selecting a route from the special source to its terminal
minimizing the cost. The mutual influence of the agents is determined by a cost
sharing mechanism, which evenly splits the cost of an edge among all the agents
using it for routing. In this paper we provide several algorithmic and complexity
results on finding a Nash equilibrium minimizing the value of Rosenthal potential.
Let n be the number of agents and G be the communication network. We show that
for a given strategy profile s and integer k ≥ 0, there is a local search algorithmwhich
in time nO(k) · |G|O(1) finds a better strategy profile, if there is any, in a k-exchange
neighbourhood of s. In other words, the algorithm decides if Rosenthal potential can
be decreased by changing strategies of at most k agents. The running time of our local
search algorithm is essentially tight: unless FPT = W [1], for any function f (k),
searching of the k-neighbourhood cannot be done in time f (k) · |G|O(1). We also
show that an equilibrium with minimum potential can be found in 3n · |G|O(1) time.
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1 Introduction

Modern networks are often designed and used by non-cooperative individuals with
diverse objectives. A considerable part of Algorithmic Game Theory focuses on
optimization in such networks with selfish users [2, 6, 9, 13, 14, 17, 22, 23].

In this paper we study the conceptually simple but mathematically rich cost-
sharing model introduced by Anshelevich et al. [3, 4], see also [16, Chapter 12].
In a variant of the cost-sharing game, which was called by Chekuri et al. the mul-
ticast game [5], the network is represented by a weighted directed graph with a
distinguished source node r , and a collection of n agents located at corresponding
terminals. Each agent is trying to select a cheapest route from r to its terminal. The
mutual influence of the players is determined by a cost sharing mechanism identi-
fying how the cost of each edge in the network is shared among the agents using
this edge. When h agents use an edge e of cost ce, each of them has to pay ce/h.
This is a very natural cost sharing formula which is also the outcome of the Shapley
value.

The multicast game belongs to the widely studied class of congestion games. This
class of games was defined by Rosenthal [21], who also proved that every conges-
tion game has a Nash equilibrium. Rosenthal showed that for every congestion game
it is possible to define a potential function which decreases if a player improves its
selfish cost. Best-response dynamics in these games always lead to a set of paths that
forms a Nash equilibrium. Furthermore, every local minimum of Rosenthal poten-
tial corresponds to a Nash equilibrium and vice versa. However, while we know that
the multicast game always has a Nash equilibrium, the number of iterations in best-
response dynamics achieving an equilibrium can be exponential (see [3, Theorem
5.1]), and it is an important open question if any Nash equilibrium can be found
in polynomial time. The next step in the study of Rosenthal potential was done by
Anshelevich et al. [3], who showed that Rosenthal potential can be used not only for
proving the existence of a Nash equilibrium but also to estimate the quality of equi-
librium. Anshelevich et al. defined the price of stability, as the ratio of the best Nash
equilibrium cost and the optimum network cost, the social optimum. In particular, the
cost of a Nash equilibrium minimizing Rosenthal potential is within log n-factor of
the social optimum, and thus the global minimum of the potential brings to a cheap
equilibrium. The computational complexity of finding a Nash equilibrium achieving
the bound of log n relative to the social optimum is still open, while computing the
global minimum of the Rosenthal potential is NP-hard [3, 5].

Our results. In this paper we analyze the following local search problem. Given a
strategy profile s, we ask whether a profile with a smaller value of Rosenthal potential
can be found in a k-exchange neighbourhood of s, which is the set of all profiles that
can be obtained from s by changing strategies of at most k players. Our motivation
to study this problem is two-fold.

• If we succeed in finding some Nash equilibrium, say by implementing best-
response dynamics, which is still far from the social optimum, it is an important
question if the already found equilibrium can be used to find a better one
efficiently. Local search heuristic in this case is a natural approach.
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• Since the number of iterations in best-response dynamics scenario can be expo-
nential (see [3, Theorem 5.1]), it can be useful to combine the best-response
dynamics with a heuristic that at some moments tries to make “larger jumps”,
i.e., instead of decreasing Rosenthal potential by changing strategy of one player,
to decrease the potential by changing in one step strategies of several players.

Let us remark that the number of paths, and thus strategies, every player can select
from, is exponential, so the size of the search space also can be exponential. Since the
size of k-exchange neighbourhood is exponential, it is not clear a priori, if searching
of a smaller value of Rosenthal potential in a k-exchange neighbourhood of a given
strategy profile can be done in polynomial time. We show that for a fixed k, the local
search can be performed in polynomial time. The running time of our algorithm is
nO(k) · |G|O(1), where n is the total number of players1. As a subroutine, our algo-
rithm uses a fixed-parameter algorithm computing in time 3k · |G|O(1) the minimum
value of Rosenthal potential that can be achieved by changing strategies of at most
k agents if a set of k agents whose strategies could be modified is given. We find
this auxiliary algorithm to be interesting in its own because it implies that an equilib-
rium with minimum potential can be found in 3n · |G|O(1) time. It is known that for a
number of local search algorithms, exploration of the k-exchange neighbourhood can
be done by fixed-parameter tractable (in k) algorithms [10, 18, 24]. We show that,
unfortunately, this is not the case for the local search of Rosenthal potential mini-
mum. We use tools from Parameterized Complexity, to show that the running time of
our local search algorithm is essentially tight: unless FPT = W [1], searching of the
k-neighbourhood cannot be done in time f (k) · |G|O(1) for any function f (k).

2 Preliminaries

Graphs. We consider finite directed and undirected graphs without loops or multiple
edges. The vertex set of a (directed) graph G is denoted by V (G), the edge set of
an undirected graph and the arc set of a directed graph G is denoted by E(G). To
distinguish edges and arcs, the edge with two end-vertices u, v is denoted by uv, and
we write (u, v) for the corresponding arc. Let G be a directed graph. For a vertex
v ∈ V (G), we say that u is an in-neighbor of v if (u, v) ∈ E(G). The set of all in-
neighbors of v is denoted by N−

G(v). The in-degree d−
G(v) = |N−

G(v)|. Respectively,
u is an out-neighbor of v if (v, u) ∈ E(G), the set of all out-neighbors of v is
denoted by N+

G(v), and the out-degree d+
G(v) = |N+

G(v)|. For a directed graph G, a
(directed) walk is sequence v0, e1, v1, e2, . . . , ek, vk of vertices and arcs of G such
that v0, . . . , vk ∈ V (G), e1, . . . , ek ∈ E(G), and for i ∈ {1, . . . , k}, ei = (vi−1, vi).
A walk is a (directed) path if all its edges and all its vertices (with possible exception
that v0 = vk) are pairwise distinct. The vertices v0 and vk are called end-vertices.
We say that a walk (path) with end-vertices u and v is a (u, v)-walk (path). We say
that a subdigraph T of G is an out-tree if T is a directed tree with only one vertex

1The number of arithmetic operations used by our algorithms does not depend on the size of the input
weights, i.e. the claimed running times are in the unit-cost model.
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r of in-degree zero (called the root). The vertices of T of out-degree zero are called
leaves.

Multicast game and Rosenthal potential. A network is modeled by a directed G =
(V , E) graph. There is a special root or source node r ∈ V . There are n multicast
users, players, and each player has a specified terminal node ti (several players can
have the same terminals). A strategy si for player i is a path Pi from r to ti in G. We
denote by � the set of players and by Si the finite set of strategies of player i, which
is the set of all paths from r to ti . The joint strategy space S = S1 × S2 × · · · × Sn

is the Cartesian product of all the possible strategy profiles. At any given moment,
a strategy profile (or a configuration) of the game s ∈ S is the vector of all the
strategies of the players, s = (s1, . . . , sn). Notice that for a given strategy profile s,
several players can use paths that go through the same edge. For each edge e ∈ E and
a positive integer h, we have a cost ce(h) ∈ R of the edge e for each player who uses
a path containing e, provided that exactly h players share e. With each player i, we
associate the cost function ci mapping a strategy profile s ∈ S to real numbers, i.e.,
ci : S → R. For a strategy profile s ∈ S, let ne(s) be the number of players using the
edge e in s. Then the cost the i-th player has to pay is

ci(s) =
∑

e∈E(Pi)

ce(ne(s)),

and the total cost of s is

c(s) =
n∑

i=1

ci(s).

Rosenthal [21] proposed the study of the following potential function as a way of
showing that a wide class of noncooperative games posess pure Nash equilibria. A
potential of a strategy profile s ∈ S, or equivalently, the set of paths (P1, . . . , Pn), is
defined as:

�(s) =
∑

e∈∪n
i=1E(Pi)

ne(s)∑

h=1

ce(h). (1)

In this paper, we are especially interested in the case where the cost of every edge
is split evenly between the players sharing it, i.e, the payment of player i for edge e is
ce(h) = ce

h
for ce ∈ R. Respectively, Rosenthal potential of a strategy profile s ∈ S is

�(s) =
∑

e∈∪n
i=1E(Pi)

ce · H(ne(s)),

where H(h) = 1 + 1/2 + 1/3 + · · · + 1/h is the h-th Harmonic number.
For a strategy profile s ∈ S and i ∈ {1, 2, . . . , n}, we denote by s−i the strategy

profile of the players j �= i, i.e. s−i = (s1, . . . , si−1, si+1, . . . sn). We use (s−i , s̄i )

to denote the strategy profile identical to s, except that the ith player uses strategy
s̄i instead of si . Similarly, for a subset of players �0, we define s−�0 , the profile
of players j �∈ �0. For a strategy profile σ of players in �0, i.e., for an element of
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Cartesian product of Si for i ∈ �0, we denote by (s−�0 , σ ) the strategy profile of n

players obtained from s by changing the strategies of players in �0 to σ .
A strategy profile s ∈ S is a Nash equilibrium if no player i ∈ � can benefit from

unilaterally deviating from his action to another action, i.e.,

∀i ∈ � and ∀s̄i ∈ Si, ci(s−i , s̄i ) ≥ ci(s).

The crucial property of Rosenthal potential � is that each step performed by a player
improving his payoff also decreases � (see [16, 21]). Consequently, if � admits a
minimum value in a strategy profile, this strategy profile is a Nash equilibrium.

We say that a strategy profile s∗ is optimal if it gives the minimum value of the
potential, i.e., for any other strategy profile s, �(s) ≥ �(s∗).

Parameterized complexity. We briefly review the relevant concepts of parameterized
complexity theory that we employ. For deeper background on the subject see the
books by Downey and Fellows [7], Flum and Grohe [12], and Niedermeier [20].

In the classical framework of P vs NP, there is only one measurement (the overall
input size) that frames the distinction between efficient and inefficient algorithms,
and between tractable and intractable problems. Parameterized complexity is essen-
tially a two-dimensional sequel, where in addition to the overall input size n, a
secondary measurement k (the parameter) is introduced, with the aim of capturing
the contributions to problem complexity due to such things as typical input structure,
sizes of solutions, goodness of approximation, etc. Here, the parameter is deployed
as a measurement of the amount of current solution modification allowed in a local
search step. The parameter can also represent an aggregate of such bounds.

The central concept in parameterized complexity theory is the concept of fixed-
parameter tractability (FPT), that is solvability of the parameterized problem in time
f (k) · nO(1). The importance is that such a running time isolates all the exponential
costs to a function of the parameter only.

The main hierarchy of parameterized complexity classes is

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP.

The formal definition of classes W [t] is technical, and, in fact, irrelevant to the
scope of this paper. For our purposes it suffices to say that a problem is in a class
if it is FPT-reducible to a complete problem in this class. Given two parameterized
problems � and �′, an FPT reduction from � to �′ maps an instance (I, k) of � to
an instance (I ′, k′) of �′ such that

(1) k′ = h(k) for some computable function h,
(2) (I, k) is a YES-instance of � if and only if (I ′, k′) is a YES-instance of �′,

and
(3) the mapping can be computed in FPT time.

Hundreds of natural problems are known to be complete for the aforementioned
classes, and W [1] is considered the parameterized analog of NP, because the k-STEP
HALTING PROBLEM for nondeterministic Turing machines of unlimited nondeter-
minism (trivially solvable by brute force in time O(nk)) is complete for W [1]. Thus,
the statement FPT �= W [1] serves as a plausible complexity assumption for proving
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intractability results in parameterized complexity. INDEPENDENT SET, parameter-
ized by solution size, is a more combinatorial example of a problem complete for
W [1]. We refer the interested reader to the books by Downey and Fellows [7] or Flum
and Grohe [12] for a more detailed introduction to the hierarchy of parameterized
problems.

Local Search. Local search algorithms are among the most common heuristics used
to solve computationally hard optimization problems. The common method of local
search algorithms is to move from solution to solution by applying local changes.
Books [1, 19] provide a nice introduction to the wide area of local search. Recall
that the k-exchange neighborhood of a strategy profile s is the set of all profiles
that can be obtained from s by changing strategies of at most k players, and the
best response is the strategy (or strategies) which produces the most favorable out-
come for a player, taking other players’ strategies as given. Respectively, the best
response dynamic is the following process. We start from an arbitrary strategy pro-
file s. Then each player i in turn is given a possibility to modify his strategy to
decrease the cost that he has to pay. We repeat this, giving all players a chance
to change. We stop once we go through an entire round of players and nobody
wants to change. Because each step performed by a player improving his payoff also
decreases the Rosenthal potential�, the best-response dynamics in congestion games
corresponds to local search in 1-exchange neighborhood minimizing Rosenthal
potential �.

For two strategy profiles s1, s2 ∈ S, we define the Hamming distance D(s1, s2) =
|s1 � s2| between s1 and s2, that is the number of players implementing different
strategies in s1 and s2. We define arena as a directed graph G with root vertex r , a
multiset of target vertices t1, . . . , t� and for every edge e of the graph a cost function
ce : Z+ → R

+ ∪ {0} such that ce(h) ≥ ce(h + 1) for h ≥ 1. We study the following
parameterized version of the local search problem for multicast.

3 Minimizing Rosenthal Potential

The aim of this section is to prove the following theorem.

Theorem 3.1 The p-LOCAL SEARCH ON POTENTIAL � problem is solvable in time
(|�|

k

)
· 3k · |G|O(1).
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Let us remark that in particular, if � is Rosenthal’s potential, and hence the cost
functions are of the special type ce(h) = ce

h
, the p-LOCAL SEARCH ON POTENTIAL

� problem can be solved within the running time of Theorem 3.1.
Recall that a strategy profile s∗ is optimal if it gives the minimum value of the

potential, i.e., for any other strategy profile s, �(s) ≥ �(s∗). If edge-sharing is
profitable, then we can make the following observation about the structure of optimal
strategies. Let G be a directed graph. Let also s = (P1, . . . , P|�|) be a strategy

profile. We say that s uses the arcs ∪|�|
i=1E(Pi), and for a positive integer C, s uses C

arcs if the union T of the paths Pi contains exactly C arcs.

Lemma 3.2 Let C be an integer such that there is a strategy profile using at most C
arcs. Let s = (P1, . . . , P|�|) be a strategy profile using at most C arcs such that

(i) Among all profiles using at most C arcs, s is optimal. In other words, for any
profile s′ using at most C arcs, we have �(s′) ≥ �(s).

(ii) Subject to (i), s uses the minimum number of arcs.

Then the union T of the paths Pi , i ∈ {1, . . . , |�|}, is an out-tree rooted in r .

Proof Targeting towards a contradiction, let us assume that T = ∪|�|
i=1Pi is not an

out-tree. Then there are paths Pi, Pj , i, j ∈ {1, . . . , |�|}, that have a common vertex
v �= r such that the (r, v)-subpaths P v

i and P v
j of Pi and Pj respectively enter v by

different arcs.
We show first that

∑

e∈E(P v
i )

ce(ne(s)) >
∑

e∈E(P v
j )

ce(ne(s)). (2)

cannot occur. Assume that (2) holds. We claim that then the i-th player can improve
his strategy and, consequently, � can be decreased, which will contradict the opti-
mality of s. Denote by P the (r, ti)-walk obtained from Pi by replacing path P v

i by
P v

j . Notice that P is not necessarily a path as P v
j can contain vertices and arcs of the

(v, ti)-subpath of Pi . Let w be the first vertex of P v
j that is a vertex of the (v, ti)-

subpath of Pi . We denote by P ′ the (r, ti)-path obtained by the concatenation of the
(r, w)-subpath of P v

j and the (w, ti)-subpath of Pi . Notice that the set of arcs used
by P ′ is a subset of arcs used by P , i.e., P ′ is obtained from P by possibly removing
some loops. Let the strategy profile s′ = (s−i , P ′). This profile uses ares that were
used by s. Hence, it uses at most C arcs. By non-negativity of ce(h), the new cost for
the i-th player is equal to

∑

e∈E(P ′)
ce(ne(s

′)) =
∑

e∈E(P ′)∩E(Pi)

ce(ne(s)) +
∑

e∈E(P ′)\E(Pi)

ce(ne(s) + 1)

≤
∑

e∈E(P )∩E(Pi)

ce(ne(s)) +
∑

e∈E(P )\E(Pi)

ce(ne(s) + 1).
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Since for each e ∈ E and h ≥ 1, we have ce(h) ≥ ce(h + 1),
∑

e∈E(P )\E(Pi)

ce(ne(s) + 1) ≤
∑

e∈E(P )\E(Pi)

ce(ne(s)).

Therefore, ∑

e∈E(P ′)
ce(ne(s

′)) ≤
∑

e∈E(P )

ce(ne(s)).

By (2), we have ∑

e∈E(P )

ce(ne(s)) <
∑

e∈E(Pi)

ce(ne(s)),

and the claim that player i can improve follows.
Hence, ∑

e∈E(P v
i )

ce(ne(s)) ≤
∑

e∈E(P v
j )

ce(ne(s)).

By the same arguments as above, we can replace Pj by a (r, tj )-path P in the walk
obtained from Pj by the replacement of P v

j by P v
i without increasing �. Notice that

s can have many paths that enter v by arcs that are different from the arc in Pi and,
in particular, many paths can enter v via the same arc as Pj , But then we repeat
the described operation for each path Ph in s with with this property. The modified
strategy uses only arcs that were used in s. Therefore, this is a strategy profile that
uses at most C arcs, but at least one arc that enters v is not used. It contradicts the
choice of s. Hence, T is an out-tree rooted in r .

We use Lemma 3.2 to find an optimal strategy profile using the approach proposed
by Dreyfus and Wagner [8] for the STEINER TREE problem.

Theorem 3.3 Given an arena as input, the minimum value of a potential � can be
found in time 3|�| · |G|O(1). The algorithm can also construct the corresponding
optimal strategy profile s∗ within the same time complexity.

Proof We give a dynamic programming algorithm. For simplicity, we only describe
how to find the minimum of �, but it is straightforward to modify the algorithm to
obtain the corresponding strategy profile.

Let T = {t1, . . . , t|�|} be the multiset of terminals. We construct partial solu-
tions for subsets X ⊆ T . Also, while at the end we are interested in the answer for
the source r , our partial solutions are constructed for all vertices of G. For a ver-
tex u ∈ V (G) and a multiset X ⊆ T , let �X

u denote the version of the game, in
which only players associated with X build paths from u to their respective termi-
nals. Therefore, we are interested in the game �T

r . For a non-negative integer m,
we define �(u, X, m) as the minimum value of the potential �(s) in the game �X

u ,
taken over all strategy profiles s such that the union of paths in s contains at most
m arcs (we say that s uses arc e if it is contained in some path from s). We assume
that �(u, X, m) = +∞ if there are no feasible strategy profiles. Notice that by
Lemma 3.2, the number of arcs used in an optimal strategy in the original problem is
at most |V (G)| − 1. Hence, our aim is to compute �(r, T , |V (G)| − 1).
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Clearly, �(u, ∅, m) = 0 for all u ∈ V and m ≥ 0. For non-empty X and m = 0,
�(u, X, 0) = 0 if all terminals in X are equal to u, and �(u, X, 0) = +∞ otherwise.
We need the following claim.

Claim 1 For X �= ∅ and m ≥ 1, �(u, X, m) satisfies the following equation:

�(u, X, m) = min{ �(u, X, m − 1),

�(u, X \ Y, m1) + �(v, Y, m2) +
|Y |∑
h=1

c(u,v)(h)}, (3)

where the minimum is taken over all arcs (u, v) ∈ E(G), ∅ �= Y ⊆ X, and m1, m2 ≥
0 such that m1 + m2 = m − 1; it is assumed that �(u, X, m) = �(u, X, m − 1) if
the out-degree of u is zero.

Proof Let

ψ = min{�(u, X, m − 1), �(u, X \ Y, m1) + �(v, Y, m2) +
|Y |∑

h=1

c(u,v)(h)}.

We prove that �(u, X, m) = ψ by first showing that �(u, X, m) ≥ ψ , and then
that �(u, X, m) ≤ ψ . Without loss of generality assume that X = {t1, . . . , t�} ⊆ T ,
where � = |X|.

If �(u, X, m) = +∞, then �(u, X, m) ≥ ψ . Suppose that �(u, X, m) �= +∞
and consider a strategy s∗ = (P1, . . . , P�) in the game �X

u which is optimal among
those using at most m arcs and, subject to this condition, the number of used arcs is
minimum; in particular, s∗ has potential �(u, X, m). By Lemma 3.2, H = ∪�

i=1Pi

is an out-tree rooted in u. If |E(H)| < m, then �(u, X, m) = �(u, X, m − 1) ≥ ψ .
Assume that |E(H)| = m. As m ≥ 1, vertex u has an out-neighbor v in H . Denote
by H1 and H2 the components of H − (u, v), where H1 is an out-tree rooted in u

and H2 is an out-tree rooted in v. Let Y ⊆ X be the multiset of terminals in H2 and
let m1 = |E(H1)|, m2 = |E(H2)|. Notice that exactly |Y | players are using the arc
(u, v) in s∗ and Y is nonempty. Then �(u, X, m) ≥ �(u, X\Y, m1)+�(v, Y, m2)+∑|Y |

h=1 c(u,v)(h) ≥ ψ .
Now we prove that �(u, X, m) ≤ ψ . If ψ = �(u, X, m − 1) then the claim is

trivial, so let v, Y , m1 and m2 be such that ψ = �(u, X \ Y, m1) + �(v, Y, m2) +∑|Y |
h=1 c(u,v)(h). Assume without loss of generality that Y = {t1, . . . , t�′ } for some

�′ ≤ �. If �(u, X \ Y, m1) = +∞ or �(v, Y, m2) = +∞, then the inequality is
trivial. Suppose that �(u, X \ Y, m1) �= +∞ and �(v, Y, m2) �= +∞. Consider a
strategy s∗

1 in the game �
X\Y
u that is optimal among those using at most m1 arcs, and

a strategy s∗
2 in the game �Y

v that is optimal among those using at most m2 arcs. Of
course, the potential of s∗

1 is equal to�(u, X\Y, m1), while the potential of s∗
2 is equal

to �(u, Y, m2). We construct the strategy profile s in the game �X
u as follows. For

each terminal tj ∈ X \Y , the players use the (u, tj )-path from s∗
1 . For any tj ∈ Y , the

players use the (v, tj )-path from s∗
2 after accessing v from u via the arc (u, v), unless

u already lies on this (v, tj )-path, in which case they simply use the corresponding
subpath of the (v, tj )-path. Note that s uses at most m1 + m2 + 1 = m arcs. Because
for every e ∈ E(G) and every h ≥ 1, we have that ce(h) ≥ 0, and ce(h) ≥ ce(h+ 1),
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we infer that �(s) ≤ ψ , as possible overlapping of arcs used in s∗
1 , s∗

2 and the arc
(u, v) can only decrease the potential of s. Since �(u, X, m) ≤ �(s), this implies
that �(u, X, m) ≤ ψ .

In order to finish the proof of Theorem 3.3, we need to show that using the recur-
rence (3) one can compute the value �(r, T , |V (G)| − 1) in time 3|�| · |G|O(1). The
initial assignment for �(u, X, m) for the cases m = 0 or X = ∅ can be done in
time 2|�| · |G|O(1) because we have 2|�| subsets X of T . Given the table of values
of �(u, X, m − 1) for all X ⊆ T , we can compute the next table using (3) in time
3|�| ·|G|O(1) because the number of pairs of sets (X, Y ) such that Y ⊆ X is 3�. Since
the number of iterations is at most |V (G)|−1, the total running time is 3|�| · |G|O(1).

We use Theorem 3.3 to construct algorithm for p-LOCAL SEARCH ON POTEN-
TIAL � and to conclude with the proof of Theorem 3.1.

Proof of Theorem 3.1 Consider an instance of p-LOCAL SEARCH ON POTENTIAL

�. Let T = {t1, . . . , t|�|} be the multiset of terminals and let s be a strategy profile.
Recall that p-LOCAL SEARCH ON POTENTIAL � asks whether at most k players
can change their strategies in such a way that the potential decreases. Observe that
we can assume that exactly k players are going to change their strategies because
some of these players can choose their old strategies. There are

(|�|
k

)
possibilities to

choose a set of k players �0 ⊆ �. We consider all possible choices and for each set
�0, we check whether the players from this set can apply some strategy to decrease
�.

Denote by X ⊆ T the multiset of terminals of the players from �0, and let
s′ = s−�0 . We compute the potential �(s′) for this strategy profile. Now we redefine
the cost of edges as follows: for each e ∈ E(G) and h ≥ 1, c′

e(h) = ce(ne(s
′) + h).

Clearly, c′
e(h) ≥ 0 and c′

e(h) ≥ c′
e(h + 1). Let �′ be the potential for these edge

costs. We find the minimum value of �′(s∗) for the set of players �0 and the corre-
sponding terminals X. It remains to observe that �(s′)+�′(s∗) = min{�(s′′) | s′′ =
(s−�0 , σ ), σ ∈ ∏

i∈�0
Si}. By Theorem 3.3, we can find �′(s∗) in time 3k · |G|O(1)

and the claim follows.

4 Intractability of Local Search for Rosenthal Potential

This section is devoted to the proof of the following theorem.

Theorem 4.1 p-LOCAL SEARCH ON POTENTIAL �, where� is Rosenthal potential
for multicasting game, is W[1]-hard.

Before we give the proof, let us remind a classical inequality that will be useful.

Definition 4.2. Let a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn be sequences of real
numbers. We say that sequence (ai) majorizes sequence (bi), denoted (ai) � (bi), if∑n

i=1 ai = ∑n
i=1 bi and

∑k
i=1 ai ≥ ∑k

i=1 bi for all 1 ≤ k < n.
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Theorem 4.3 (Hardy-Littlewood-Polyá inequality, [15]) Let f be a convex function
on interval [a, b] and a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn be sequences of
real numbers from [a, b]. If (ai) � (bi), then

n∑

i=1

f (ai) ≥
n∑

i=1

f (bi).

Let us note that by changing the sign of f we obtain that for concave functions
the same result holds, but with inequality reversed.

We are now ready to prove Theorem 4.1.

Proof We provide an FPT reduction from the MULTICOLOURED CLIQUE problem,
which is known to be W[1]-hard [11].

Observe that by the assumption that each Vi is an independent set, the clique C

has to contain exactly one vertex from each part Vi .
We take an instance (H, k) of MULTICOLOURED CLIQUE and construct an

instance (G, s, k(k − 1)) of p-LOCAL SEARCH ON POTENTIAL �. First, we provide
the construction of the new instance; then, we prove that the constructed instance
is equivalent to the input instance of MULTICOLOURED CLIQUE. During the reduc-
tion we assume k to be large enough; for constant k we solve the instance (H, k) in
polynomial time by a brute-force search and output a trivial YES or NO instance of
p-LOCAL SEARCH ON POTENTIAL �.

Construction. First create the root vertex r . For every u ∈ Vi , we create k vertices: u
and u1, . . . , ui−1, ui+1, . . . , uk . Denote by Fu the set {u1, . . . , ui−1, ui+1, . . . , uk}.
We connect the created vertices in the following manner: we construct one arc (r, u)

with cost R = k2, and for all j ∈ {1, 2, . . . , i − 1, i + 1, . . . , k} we construct arc
(u, uj ) with cost 0. With every vertex uj for all u ∈ V (H) we associate a player that
builds a path from r to uj . In the initial strategy profile s, each of (k − 1)|V (H)|
players builds a path that leads to his vertex via the corresponding vertex u. Observe
that the potential of this strategy profile is equal to |V (H)| · R · H(k − 1).

We now construct the part of the graph that is responsible for the choice of the
clique. We create a pseudo-root r ′ and an arc (r, r ′) with cost

W = 1

H(k(k − 1))

(
k · R · H(k − 1) − 3

2

(
k

2

)
− ε

)
,

where ε = k−1
k5

. The value of W is tailored to separate cliques in H from subgraphs
that lack at least one edge using budget constraints; the meaning of every summands
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Fig. 1 Graph G

will become clear in the proof of correctness of the reduction. Note that W ≥ 1 for
sufficiently large k.

For every edge uv ∈ E(H), where u ∈ Vi and v ∈ Vj , i �= j , we create a vertex
xuv , arc (r ′, xuv) of cost 1, and arcs (xuv, uj ), (xuv, vi) of cost 0. This concludes the
construction shown in Fig. 1.

Before we proceed with the formal proof of the theorem, let us give some intuition
behind the construction. Given a clique C in H , we can construct a common strategy
of k(k − 1) players assigned to vertices from

⋃
u∈V (C) Fu, who can agree to jointly

rebuild their paths via the pseudo-root r ′. The “cost of entrance” for remodelling
the strategy in this manner is paying for the expensive arc (r, r ′); however, this can
amortised by sharing cheap arcs (r ′, xuv) for uv ∈ E(C). The costs have been chosen
so that only the maximum possibility of sharing, which corresponds to a clique in H ,
can yield a decrease of the potential.

From a clique to a remodelled strategy profile. Assume that C is a clique in H with
k vertices. Let us remind, that in the initial strategy profile s each player is using
the corresponding arc (r, u) for his path. We construct the new strategy profile s′
by changing strategies of k(k − 1) players as follows. For every uv ∈ E(C), where
u ∈ Vi and v ∈ Vj , i �= j , the players associated with vertices uj and vi reroute their
paths so that in s′ they lead via r ′ and xuv to respective targets. In comparison to the
profile s, the new profile s′:
• has congestion withdrawn from arcs (r, u) for u ∈ V (C)—this decreases the

potential by k · R · H(k − 1);
• has congestion introduced to arcs (r, r ′) and (r ′, xuv) for uv ∈ E(C)—this

increases the potential by W · H(k(k − 1)) + 3
2

(
k
2

)
.

Therefore,�(s′) = �(s)−k·R·H(k−1)+W ·H(k(k−1))+ 3
2

(
k
2

) = �(s)−ε < �(s).

From a remodelled strategy profile to a clique. Recall that s is an initial strategy
profile each player uses the corresponding arc (r, u) for his path. Let s′ be a strategy

Author's personal copy



Theory Comput Syst (2015) 57:81–96 93

profile such that �(s′) < �(s) and D(s, s′) = � ≤ k(k − 1). Let L be the set of
players who have rebuilt their strategies in s′; then |L| = �. Let p be a player in L,
who is assigned to a vertex uj ∈ Fu for some u ∈ V (H). Observe, that the only
possibility of rebuilding the strategy for p is to choose a path leading through r ′ and
a vertex xuv for some uv ∈ E(H), v ∈ Vj . We now examine all the arcs of the graph
G with nonzero costs in order to provide a lower bound on 
� = �(s′) − �(s).
We partition the arcs into three classes: (i) arcs (r, u) for u ∈ V (H), (ii) arc (r, r ′),
and (iii) arcs (r ′, xuv) for uv ∈ E(H). For each of these classes we analyze the
contribution to the difference 
�; by this we mean the difference of contributions to
potentials �(s′) and �(s) from the corresponding arcs.

Firstly, consider arcs (r, u) for u ∈ V (H). In total, � players withdraw their paths
from these arcs. The contribution to s′ of these arcs is equal to

∑
u∈V (H) R · H(au),

where au is the number of players using the arc (r, u) in strategy profile s′. We
know that

∑
u∈V (H) au = (k − 1)|V (H)| − �, while 0 ≤ au ≤ k − 1 for all

u ∈ V (H). Observe that then the sequence (au) is majorized by a sequence consist-

ing of |V (H)| −
⌊

�
k−1

⌋
− 1 terms (k − 1), one term (k − 1) − (� mod (k − 1)),

and
⌊

�
k−1

⌋
zeroes. Therefore, since H can be extended to a concave function, by

Theorem 4.3 we infer that:

∑

u∈V (H)

H(au) ≥
(

|V (H)| −
⌈

�

k − 1

⌉)
H(k − 1) +H((k − 1) − (� mod (k − 1))).

(4)
Moreover, from concavity of functionH we infer that

H((k − 1) − (� mod (k − 1))) ≥ (k − 1) − (� mod (k − 1))

k − 1
H(k − 1). (5)

Using (4) and (5) we infer that

∑

u∈V (H)

H(au) ≥
(

|V (H)| − �

k − 1

)
H(k − 1). (6)

This implies that the contribution of these arcs to 
� is at least K1 = −R · �
k−1 ·

H(k − 1).
Now, consider the arc (r, r ′). There are exactly � players using this arc in s′, while

in s nobody was using it. Therefore, the contribution from this arc to 
� is equal to
K2 = W · H(�).

Finally, consider arcs (r ′, xuv) for uv ∈ E(H). All the � players which rebuild
their strategies in s′ use exactly one such arc. Moreover, each of these edges can be
shared by at most two players. Therefore, the contribution to 
� from these edges is
at least K3 = �

2 ·H(2) = 3
4�, and the contribution is larger by at least

1
2 if any player

does not share the arc with some other player.
Concluding, since �(s′) < �(s) we have that

0 > 
� ≥ K1 + K2 + K3 = 3

4
� + W · H(�) − R · �

k − 1
· H(k − 1).
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Therefore,

R · H(k − 1)

k − 1
>

3

4
+ W · H(�)

�
. (7)

Here we used values K1, K2 and K3 as lower bounds on the total contribution from
respective classes of arcs. Note that if at some point we infer that the contribution
from any of these classes is actually larger than the corresponding lower bound Kq ,
for q ∈ {1, 2, 3}, for instance because one of the arcs is contributing more than
assumed in the presented estimations, then we can add a corresponding term to the
right-hand side of equation (7).

We now prove three structural claims about the remodelled strategy s′, which lead
us to a conclusion that s′ have to originate in a clique in H .

Claim 1 It holds that � = k(k − 1).

Proof Let us define g(t) = H(t)
t

. Observe that for t > 1 we have that

g(t) − g(t − 1) = H(t)

t
− H(t − 1)

t − 1
= H(t − 1)

(
1

t
− 1

t − 1

)
+ 1

t2

= 1

t2
− H(t − 1)

t (t − 1)
≤ 1

t2
− 1

t (t − 1)
≤ − 1

t3
.

Hence, function g is decreasing and H(�)
�

≥ H(k(k−1))
k(k−1) .

Assume that � < k(k − 1); then it follows that H(�)
�

≥ H(k(k−1))
k(k−1) + 1

k6
. We obtain

that

R · H(k − 1)

k − 1
>

3

4
+ W · H(k(k − 1))

k(k − 1)
+ W · 1

k6

= 3

4
+ 1

k(k − 1)

(
k · R · H(k − 1) − 3

2

(
k

2

)
− ε

)
+ W · 1

k6

= 3

4
+ R · H(k − 1)

k − 1
− 3

4
− ε

k(k − 1)
+ W · 1

k6

= R · H(k − 1)

k − 1
+ W − 1

k6
≥ R · H(k − 1)

k − 1
.

The last inequality follows from W ≥ 1, which is true for k large enough. This
contradiction shows that � = k(k − 1).

Claim 2 In strategy profile s′, every arc of the form (r ′, xuv) is used by zero players
or by exactly two players.

Proof Obciously, every arc of the form (r ′, xuv) can be used by at most two players.
Now we want to prove that no arc (r ′, xuv) can be used by exactly one player in the
strategy profile s′. For the sake of contradiction, we assume that at least one of the
arcs (r ′, xuv) is used by exactly one player in s′. Then the total contribution to 
�
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of the arcs of the form (r ′, xuv) is at least 3
4� + 1

2 . Similarly as before, we obtain that

R · H(k − 1)

k − 1
>

3

4
+ 1

2k(k − 1)
+ W · H(k(k − 1))

k(k − 1)

= R · H(k − 1)

k − 1
+ 1

2k(k − 1)
− ε

k(k − 1)

= R · H(k − 1)

k − 1
+

(
1

2
− ε

)
· 1

k(k − 1)
≥ R · H(k − 1)

k − 1

This contradiction shows that in strategy profile s′, all the arcs of the form (r ′, xuv)

are used by zero or by two players.

Claim 3 The sequence (au) contains exactly |V (H)|− k terms k −1 and k zeroes,
i.e., the set of players that did rebuild their strategies is concentrated on k vertices of
H .

Proof Suppose that this is not the case. Then the sequence (au) is majorized by a
sequence containing |V (H)|−k−1 terms k−1, one term k−2, one term 1 and k−1
zeroes. By Theorem 4.3, the contribution of arcs of the form (r, u) to 
� is at least

R · ((|V (H)| − k − 1) · H(k − 1) + H(k − 2) + H(1)) − R · |V (H)| · H(k − 1)

= R · (|V (H)| − k) · H(k − 1) + R ·
(
1 − 1

k − 1

)
− R · |V (H)| · H(k − 1)

= −R · k · H(k − 1) + R ·
(
1 − 1

k − 1

)
.

Similarly as before, we obtain that

R · H(k − 1)

k − 1
>

3

4
+ W · H(k(k − 1))

k(k − 1)
+ 1

k(k − 1)
· R ·

(
1 − 1

k − 1

)

= R · H(k − 1)

k − 1
+ R

k(k − 1)
·
(
1 − 1

k − 1

)
− ε

k(k − 1)

≥ R · H(k − 1)

k − 1
.

This contradiction proves the claim.

Claim 3 shows that we can distinguish k vertices u1, u2, . . . , uk such that
L is exactly the set of players assigned to vertices

⋃k
i=1 Fui . We claim that

H [{u1, u2, . . . , uk}] is a clique, which will conclude the proof.
Consider the vertex u1. Without loss of generality we assume that u1 ∈ V1. By

Claim 2, in strategy profile s′, the player associated with vertex u1j has to share an

arc (r ′, xu1v) for some v ∈ Vj , for j = 2, 3, . . . , k. Therefore, the set {u2, . . . , uk}
has to contain a vertex from each of the sets V2, V3, . . . , Vk . Assume then, without
loss of generality, that uj ∈ Vj for all j = 2, . . . , k.

Let us take ui and uj for i �= j ; we argue that uiuj ∈ E(H), which will finish
the proof. Consider players associated with vertices ui

j and u
j
i . Again by Claim 2,
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they have to share an arc outgoing from r ′, so there has to exist a vertex xuiuj and the
corresponding arc (r ′, xuiuj ). From the construction ofGwe infer that uiuj ∈ E(H).

Acknowledgments The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement n. 26795. This work is also supported by EPSRC (EP/G043434/1), Royal Society
(JP100692), and Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), project: ’Space and
Time Efficient Structural Improvements of Dynamic Programming Algorithms’. A preliminary version of
this paper appeared as an extended abstract in the proceedings of ICALP 2012.

References

1. Aarts, E.H.L., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton University Press
(1997)

2. Albers, S.: On the value of coordination in network design. SIAM J. Comput. 38, 2273–2302 (2009)
3. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of
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