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LARGE INDUCED SUBGRAPHS VIA TRIANGULATIONS AND
CMSO∗

FEDOR V. FOMIN† , IOAN TODINCA‡ , AND YNGVE VILLANGER†

Abstract. We obtain an algorithmic metatheorem for the following optimization problem. Let
ϕ be a counting monadic second order logic (CMSO) formula and t ≥ 0 be an integer. For a given
graph G = (V, E), the task is to maximize |X| subject to the following: there is a set F ⊆ V such
that X ⊆ F , the subgraph G[F ] induced by F is of treewidth at most t, and the structure (G[F ],X)
models ϕ, i.e., (G[F ],X) |= ϕ. We give an algorithm solving this optimization problem on any n-
vertex graph G in time O(|ΠG| ·nt+4 ·f(t, ϕ)), where ΠG is the set of all potential maximal cliques in
G and f is a function of t and ϕ only. Pipelined with the known bounds on the number of potential
maximal cliques in different graph classes, there are a plethora of algorithmic consequences extending
and subsuming many known results on polynomial-time algorithms for graph classes. We also show
that all potential maximal cliques of G can be enumerated in time O(1.7347n). This implies the
existence of an exact exponential algorithm of running time O(1.7347n) for many NP-hard problems
related to finding maximum induced subgraphs with different properties.
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1. Introduction. We provide a generic algorithmic result concerning induced
subgraphs with properties expressible in some logic. Our main algorithmic result is
based on developments from two research areas: the theory of minimal triangulations
and logic.

Minimal triangulations. A triangulation of a graph G is a chordal (no induced
cycle of length at least four) supergraph of G. A triangulation H of G is minimal, if
no proper subgraph of H is a triangulation of G. Triangulations are closely related
to fundamental problems arising in sparse matrix computations which were studied
intensively in the past [58, 66]. The survey of Heggernes [49] gives an overview of tech-
niques and applications of minimal triangulations. It was observed in the 1990s that
minimal separators play an important role in obtaining minimal triangulations with
certain properties. Techniques based on minimal separators were used to obtain poly-
nomial algorithms computing the treewidth and minimum fill-in for different classes of
graphs [10, 51, 50]. These results were extended by Bouchitté and Todinca in [12, 13],
introducing the notion of a potential maximal clique, which is a set of vertices of a
graph that is a clique in some minimal triangulation. Potential maximal cliques ap-
peared to be a handy tool for computing the treewidth of a graph [33, 37]. Recently
potential maximal clique based machinery was used to obtain a subexponential pa-
rameterized algorithm finding a minimum fill-in of a graph [38]. In the present paper
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we provide completely new algorithmic applications of potential maximal cliques for
problems of finding induced subgraphs with different properties.

Algorithmic applications of logic. Algorithmic metatheorems are algorithmic re-
sults which can be applied to large families of combinatorial problems, instead of
just specific problems. Such theorems provide a better understanding of the scope
of general algorithmic techniques and the limits of tractability. Usually metatheo-
rems are based on deep relations between logic and combinatorial structures, which
is a fundamental issue of computational complexity [46, 54]. A typical example of a
metatheorem is the celebrated Courcelle’s theorem [22] which states that all graph
properties definable in monadic second order logic (MSO) can be decided in linear
time on graphs of bounded treewidth. More recent examples of such metatheorems
state that all first-order definable properties on planar graphs can be decided in lin-
ear time [39], that all first-order definable optimization problems on classes of graphs
with excluded minors can be approximated in polynomial time to any given approx-
imation ratio [27], and that all parameterized problems with finite integer index and
additional “compactness” or “bidimensional” combinatorial properties, admit linear
kernels on planar graphs [9, 35]. As it often happens with metatheorems, a combi-
nation of logic and graph theory not only gives a uniform explanation to tractability
of many algorithmic problems but also provides a variety of new results. There are
several extensions of Courcelle’s theorem known in the literature; in particular, for a
counting variant of MSO, counting monadic second order logic (CMSO), where one
is allowed to have sentences testing if a set is equal to q modulo r, for some inte-
gers q and r. Analogues and generalizations of Courcelle’s theorem were obtained by
Borie, Parker, and Tovey [11], Arnborg, Lagergren, and Seese [3], and Courcelle and
Mosbah [25]. Our proof is using the framework of Borie, Parker, and Tovey [11].

1.1. Our results. A property P(G,X) on graphs associates with each graph
G and each vertex subset X of G a boolean value. Borie, Parker, and Tovey [11]
defined regular properties, whose definition we postpone till the next section. For all
our applications, we need only the fact from Borie, Parker, and Tovey [11] that every
property P(G,X) expressible by a CMSO formula is regular. Then our result can be
stated as follows. Let ϕ be a CMSO formula, G = (V,E) be a graph, and t ≥ 0 be an
integer. We consider the following optimization problem

(1.1)

Max |X |
subject to there is a set F ⊆ V such that X ⊆ F ;

the treewidth of G[F ] is at most t;
(G[F ], X) |= ϕ.

For example, Maximum Independent Set can be encoded by (1.1) by taking t = 0,
and ϕ expressing that X = F and the absence of edges in G[F ]. Similarly, Maximum

Induced Forest
1 is encoded by taking t = 1, and ϕ expressing thatX = F and there

is no cycle in G[F ]. For another example, consider Independent Cycle Packing,
where the task is to find an induced subgraph with maximum number of connected
components such that each component is a cycle. In this case, t = 2 and ϕ expresses
the property that each connected component is a cycle and that X is a set of vertices
containing exactly one vertex from each cycle.

1In the literature, the complementary minimization problem of deleting the minimum number
of vertices such that the remaining graphs has no cycles, is known as Minimum Feedback Vertex

Set. Since from the point of view of exact algorithms the two versions are equivalent, we choose to
discuss the maximization problem.
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Fig. 1. Graph classes with a polynomial number of potential maximal cliques.

Let ΠG be the set of all potential maximal cliques in G. Our main result is that
(1.1) is solvable in time O(|ΠG| · |V |t+4 ·f(t, ϕ)) for some function f . Moreover, within
the same running time one can find the corresponding sets X and F . Also it is easy to
extend our algorithm to solve within the same running time weighted and annotated
versions of (1.1).

The main applications of our result can be found in two areas of graph algorithms:
polynomial-time algorithms on special graph classes and exponential time algorithms.

Many well-studied graph classes have the following property: there is a polynomial
function p, depending only on the graph class, such that for every graph G from the
class, the number of potential maximal cliques in G is at most p(n); see Figure 1 for
examples of such classes. Moreover, if the number of potential maximal cliques in a
graph is bounded by some polynomial of n, then all potential maximal cliques can
be enumerated in polynomial time [13]. Our algorithm implies directly that every
problem expressible in the form of (1.1) is solvable in polynomial time on such graph
classes. We discuss in detail the bounds on the number of potential maximal cliques
for different graph classes in section 6. Interestingly enough, while recognition of
several of the graph classes, like polygon circle or d-trapezoid, can be NP-complete,
our algorithm is still able either to solve the problem, or to report that the input graph
does not belong to the specified graph class. Such algorithms were called robust by
Raghavan and Spinrad [60]. To the best of our knowledge, very few robust algorithms
were known in the literature prior to our work.

Concerning exact exponential algorithms, most of the exact algorithms on max-
imum induced subgraph problems, like Maximum Independent Set or Maximum

Induced Forest are so-called branching algorithms (a variation of Davis–Putnam-
style exponential time backtracking [26]). In this work we make a step aside the
“branching” path and use a completely new approach for problems related to find-
ing induced subgraphs. It is worth noting that our approach is not only applicable
to many problems where branching does not seem to work, but already for Maxi-

mum Induced Forest our algorithm provides a better running time than any of
the previous (branching) algorithms. To demonstrate this, we give a new exponential
algorithm enumerating potential maximal cliques. We prove the following theorem.
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Theorem 1.1. The potential maximal cliques of an n-vertex graph can be listed
in O(1.7347n) time.

Combined with Theorem 1.1, another direct consequence of our algorithm is that
many intractable problems concerning maximum induced subgraphs with different
properties expressible in the form of (1.1), can be solved in time O(1.7347n). We are
not aware of any such algorithmic metaresult in the area of exact algorithms showing
that a wide range of problems can be solved significantly faster than by the trivial
O(2n)-time brute-force algorithm. We remark that our framework not only captures a
wide class of optimization problems, for most of the optimization problems including
Maximum Induced Forest, it provides the fastest exponential algorithms known
so far. Further implications are discussed in the next subsection.

1.2. Comparison with previous work.
Graph classes. The algorithmic study of graphs with particular structure can be

traced to the introduction of perfect graphs by Berge in the beginning of the 1960s.
Most of the research in this area focuses on graph algorithms exploiting the struc-
ture of the input graph. Many problems intractable on general graphs were shown to
be solvable in polynomial time on different classes of graphs like interval or chordal
graphs. The book of Golumbic [44] provides algorithmic studies of fundamental classes
of perfect graphs while the book of Brandstädt, Le, and Spinrad et al. [15] gives an
extensive overview of different classes of graphs. By the seminal work of Grötschel,
Lovász, and Schrijver [47], the weighted versions of Maximum Independent Set,
Maximum Clique, Coloring, and Minimum Clique Cover are solvable in poly-
nomial time on perfect graphs. There are two natural research directions in this area
extending the limits of tractability. One direction is to identify graph classes beyond
perfect graphs, where a specific problem like Maximum Independent Set can still
be solved efficiently. The second direction is to identify more general problems which
still can be solved in polynomial time on subclasses of perfect graphs.

As an example, let us take Maximum Induced Forest, which can be seen as
a natural extension of Maximum Independent Set, where instead of a maximum
edgeless graph one is seeking for a maximal acyclic graph. It easy to notice that the
problem is NP-complete being restricted to bipartite, and thus to perfect, graphs.
On the other hand, for other classes of graphs the problem is solvable in polynomial
time. Yannakakis and Gavril [73] have shown how to find in polynomial time a max-
imum induced forest and tree on chordal graphs. In fact, they show polynomial-time
solvability of the more general problem of finding maximum and connected maximum
k-colorable subgraphs in chordal graphs, where k is a constant. When k is a part
of the input, they showed that on chordal graphs both problems are NP-compete.
Other graph classes where Maximum Induced Forest was known to be solvable
in polynomial time include circle n-gon graphs, circle trapezoid, circle graphs, and
bipartite chordal graphs [41, 42, 52]. The containment relations between these classes
of graphs is given in Figure 1.

According to the database at http://www.graphclasses.org on special graph classes
the complexity of (weighted) Maximum Induced Forest on weakly chordal graphs
is open.

Another example of a well-studied problem on special graph classes is Maximum

Induced Matching. Here the task is to find a maximum induced subgraph such that
every connected component of this graph is an edge. The complexity of this problem
on different graph classes was investigated in [16, 18, 19, 45]. Cameron and Hell in [17]
introduced the following generalization of Maximum Induced Matching. Let H be

http://www.graphclasses.org
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a finite set of connected graphs. An H-packing of a given graph G is a pairwise vertex-
disjoint set of subgraphs of G, each isomorphic to a member of H. An independent
H-packing of a given graph G is an H-packing, i.e., a set of pairwise vertex-disjoint
sets of subgraphs of G, each isomorphic to a member ofH, such that no two subgraphs
of the packing are joined by an edge of G. The task is to find the maximum number
of graphs contained in an independent H-packing. For example, when H consists of
K1 this is Maximum Independent Set, and when H = {K2}, this is Maximum

Induced Matching. It has been shown in [17] that for many graph classes including
weakly chordal and polygon-circle graphs, H-packing is solvable in polynomial time.
Let us note that Maximum Induced Forest and H-packing can be easily encoded
as problem (1.1).

Exact exponential algorithms. The second application of our results can be found
in the area of exact exponential algorithms. The area of exact exponential algorithms
is about solving intractable problems faster than the trivial exhaustive search, though
still in exponential time [32]. While for any graph property π testable in polynomial
time, the problem of finding a maximum induced subgraph with property π is trivially
solvable in time 2nnO(1), for several fundamental problems much faster algorithms are
known. A longstanding open question in the area is if Maximum Induced Subgraph

with Property π can be solved faster than the trivial 2nnO(1) for every hereditary
property π testable in polynomial time.

For the simplest property π, being edgeless, the corresponding maximum induced
subgraph problem is Maximum Independent Set. A significant amount of research
was also devoted to algorithms for this problem starting from the classical work of
Moon and Moser [57] (see also Miller and Muller [56]) from the 1960s [68, 65, 31,
14, 70]. To the best of our knowledge, the fastest known algorithm of running time
O(1.2002n) is due to Xiao and Namagochi [70]. However, breaking the 2n-barrier
even for the case when π is being acyclic, i.e., of treewidth 1 or Maximum Induced

Forest also known as Minimum Feedback Vertex Set, was an open problem in
the area for some time. The first exact algorithm breaking the trivial 2n-barrier is due
to Razgon [61]. The running time O(1.8899n) of the algorithm from [61] was improved
in [29] to O(1.7548n). Very recently, Xiao and Nagamochi [71] claimed an algorithm
with running timeO(1.7356n). All these algorithms forMaximum Independent Set

and Maximum Induced Forest are so-called branching algorithms (a variation of
Davis–Putnam-style exponential-time backtracking [26]). There is also a relevant work
of Gupta, Raman, and Saurabh [48] who gave algorithms for Maximum Induced

Matching and Maximum 2-Regular Induced Subgraph, with running times
O(1.695733n) and O(1.7069n), respectively.

Potential maximal cliques. The notion of potential maximal cliques is due to
Bouchitté and Todinca who used these objects to design polynomial-time algorithms
computing treewidth and minimum fill-in of graphs with a polynomial number of min-
imal separators. Fomin et al. [33] have shown that the number of potential maximal
cliques in an n-vertex graph is O(1.8135n) and showed how to enumerate all poten-
tial maximal cliques in time O(1.8899n). They also have shown how to compute the
treewidth and the fill-in of a graph in time, up to polynomial of n, proportional to
the time required to enumerate potential maximal cliques. The running time of the
enumeration algorithm was improved by Fomin and Villanger in [37] to O(1.7549n).
Recall that in this article we further improve it to O(1.7347n).

To sum up. Altogether we prove that the problems of the next table can be
solved in O(1.7347n) time for arbitrary graphs, and in polynomial time for all classes
of graphs of Figure 1.
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Problem Previous results

Treewidth, Minimum Fill-In O(1.7549n) [37]
Maximum Induced Forest=Minimum Feedback Vertex Set O(1.7356n) [71]
Independent H-packing

Maximum Induced Subgraph excluding a planar minor

k-in-a-Path, k-in-a-Tree

Maximum Induced Matching O(1.6958n) [48]
Maximum Independent Set O(1.2002n) [70]

Further applications are discussed in section 5 for arbitrary graphs, and in sec-
tion 6 for graph classes.

The remaining part of this paper is organized as follows. Section 2 provides
definitions and preliminary results. In section 3, we provide in detail our main result,
the algorithm solving problem (1.1), i.e., computing an optimal induced subgraph
for regular property P and of treewidth at most t. Section 4 contains the improved
algorithm enumerating potential maximal cliques. In section 5, we discuss different
applications of our main results and show how various problems can be expressed
in the form of the main optimization problem. For some special graph classes the
optimization problem (1.1) can be used to capture even more problems; how to do it
is discussed in section 6. We conclude in section 7 with open problems.

2. Preliminaries. We denote by G = (V,E) a finite, undirected, and simple
graph with |V | = n vertices and |E| = m edges. We also use V (G) for the vertex
set of G and E(G) for its edge set. For a vertex set S ⊆ V , we use G[S] to denote
the subgraph of G induced by S, and G − S denotes the graph G[V \ S]. A clique
K in G is a set of pairwise adjacent vertices of V (G). The neighborhood of a vertex
v is N(v) = {u ∈ V : {u, v} ∈ E}. For a vertex set S ⊆ V we denote by N(S)
the set

⋃
v∈S N(v) \ S. We say that a vertex set C is connected, if it induces a

connected subgraph. A connected component of a graph G is a maximal connected
vertex subset.

The notion of treewidth is due to Robertson and Seymour [62]. A tree decompo-
sition of a graph G = (V,E), denoted by TD(G), is a pair (X,T ), where T is a tree
and X = {Xi | i ∈ V (T )} is a family of subsets of V , called bags, such that

(i)
⋃

i∈V (T ) Xi = V ,

(ii) for each edge e = {u, v} ∈ E(G) there exists i ∈ V (T ) such that both u and
v are in Xi, and

(iii) for all v ∈ V , the set of nodes {i ∈ V (T ) | v ∈ Xi} induces a connected
subtree of T .

The maximum of |Xi| − 1, i ∈ V (T ), is called the width of the tree decomposition.
The treewidth of a graph G, denoted by tw(G), is the minimum width taken over all
tree decompositions of G.

Counting monadic second order logic. We use CMSO, an extension of MSO,
as a basic tool to express properties of vertex/edge sets in graphs.

The syntax of MSO of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒,
variables for vertices, edges, sets of vertices, and sets of edges, the quantifiers ∀, ∃
that can be applied to these variables, and the following five binary relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable;
2. d ∈ D, where d is an edge variable and D is an edge set variable;
3. inc(d, u), where d is an edge variable, u is a vertex variable, and the inter-

pretation is that the edge d is incident with the vertex u;
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4. adj(u, v), where u and v are vertex variables and the interpretation is that u
and v are adjacent;

5. equality of variables representing vertices, edges, sets of vertices, and sets of
edges.

In addition to the usual features of MSO, if we have atomic sentences testing
whether the cardinality of a set is equal to q modulo r, where q and r are integers
such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO is called the CMSO.
So essentially CMSO is MSO with the following atomic sentence for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).
We refer to [3, 21, 23] and the book of Courcelle and Engelfriet [24] for a detailed
introduction to CMSO. In [24], CMSO is referred to as CMS2.

2.1. t-terminal recursive graphs and regular properties. We also use one
of the (many) alternative definitions of treewidth, based on terminal graphs. A t-
terminal graph G = (V, T,E) is a graph with an ordered set T ⊆ V of at most t
distinguished vertices, called terminals. Denote by τ(G) the number of terminals of
graph G.

A t-terminal graph (V, T,E) is a base graph if V = T . We define composition
operations over the set of t-terminal graphs. A composition operation f is of arity 1
or 2. When f is of arity 2, it acts on two t-terminal graphs G1, G2 and produces a
t-terminal graph G = f(G1, G2) as follows. It first makes disjoint copies of the two
graphs, then “glues” some terminals of graphs G1 and G2. Operation f is represented
by a matrix m(f). The matrix has 2 columns and τ(G) ≤ t lines; its values are
integers between 0 and t. At line i of the matrix, elements mij(f) indicate which
terminals of graphs Gj are identified to terminal number i of G. If mij(f) = 0 it
means that no terminal of Gj was identified to terminal number i of G. A terminal
of Gj can be identified to at most one terminal of G (a column j cannot contain two
equal nonzero values). Note that if mi1(f) = 0 and mi2(f) = 0 it means that terminal
i of G is a new vertex.

When f is of arity 1, its matrix m(f) has only one column. The t-terminal graph
G = f(G1) is obtained from graph G1 and matrix m(f) as above, by identifying
terminal mi1(f) to terminal number i in G.

Observe that the number of possible composition operations over t-terminal graphs
is bounded by some function of t. We say that a t-terminal graph G is t-terminal
recursive if it can be obtained from t-terminal base graphs through a sequence of
composition operations. This sequence is called the t-expression of graph G.

Proposition 2.1 (see [8]). For any (t + 1)-terminal recursive graph H =
(V, T,E), there is a tree decomposition of (V,E) of width at most t, with a bag con-
taining T . Conversely, for any tree decomposition of width t of graph G = (V,E) and
any bag W of the decomposition, (V,W,E) is a (t+ 1)-terminal recursive graph.

Proof. Assume that (V, T,E) can be obtained recursively, through composition
operations, from (t+1)-terminal base graphs. The expression constructing this graph
can be represented as a tree, the leaves being the base graphs, each internal node
corresponding to a composition operation. The tree decomposition of G is simply
obtained by following this tree and putting, in each node, a bag corresponding to the
terminals of the graph represented by the corresponding subexpression. The bags are
clearly of size at most t + 1. One can easily check that the set of bags satisfies the
conditions of a tree decomposition.

The other direction is proved in [8, Theorem 40].
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Consider a property P(G,X) on graphs depending on a vertex subset X . That
is, property P associates with each graph G and each vertex subset X of G a boolean
value. By the celebrated results of [21, 3, 11], it is well known that if the property can
be expressed by a CMSO formula, there exists a linear-time algorithm taking as input
a (t+1)-terminal recursive graph G = (V, T,E) and computing a maximum (or min-
imum) size vertex set X such that P(G,X). Many natural problems like Maximum

Independent Set or Minimum Dominating Set can be expressed in this setting.
Typical algorithms for such problems proceed by dynamic programming. When

browsing the (t + 1)-expression of G, the algorithm stores in each node a table of
classes (sometimes called characteristics) depending on the branch of the current
subexpression and the partial solutions (i.e., possible subsets of X) encountered so
far. Let G1 be such a subexpression and let X1 be a subset of vertices that we aim to
extend into the solution X . The intuition is that if the class of (G1, X1) is the same
as the class of some other pair (G2, X2), then we can replace the branch of G1 by
an expression of G2, and the new graph G′ is such that X1 extends into a solution
X1 ∪ Y of G if and only if X2 extends into a solution X2 ∪ Y of G′.

In order to efficiently solve our problem, we need an efficient computation of
classes for base graphs, as well as an efficient computation of the classes for compo-
sitions of graphs and partial solutions. We give a formal definition of these “good”
properties; the vocabulary is inspired by Borie, Parker, and Tovey [11].

Let G = (V, T,E) be a (t+1)-terminal recursive graph. For a composition opera-
tion f , let ◦f denote the composition operation over pairs (G,X), where f extends in
a natural way over the values of vertex sets. If G = f(G1) then ◦f((G1, X)) = (G,X).
If G = f(G1, G2) then ◦f((G1, X1), (G2, X2)) = (G,X), the operation being valid only
if, for each terminal of G, either we have mapped terminals from both G1 and G2,
contained in both X1 and X2, or we have not mapped any terminal belonging to X1

or X2. Then X is obtained from X1 and X2 by merging those vertices corresponding
to terminals that have been mapped on a same terminal of G.

Definition 2.2 (regular property). Consider a property P(G,X) over graphs
and corresponding vertex subsets. Property P is called regular if, for every t, there
exists a finite set C, a homomorphism h associating to each (t+1)-terminal recursive
graph G and every X ⊆ V (G) a class h(G,X) ∈ C, and an update function �f :
C × C → C for each composition operation f of arity 2 (resp., �f : C → C for each
composition operation f of arity 1), satisfying the following:

• (property P is preserved) If h(G1, X1) = h(G2, X2) then P(G1, X1) =
P(G2, X2).

• (integrity of operations) For any composition operation f , we have that

h(◦f((G1, X1), (G2, X2))) = �f(h(G1, X1), h(G2, X2))

if f is of arity 2, and

h(◦f(G1, X1)) = �f (h(G1, X1))

if f is of arity 1.
We point out that the homomorphism class h(G,X) depends on G and on the

value of X . Typically the class of h(G,X) encodes, among other information, the
intersection of X with the set of terminals. For example, if the composition operation
◦f ((G1, X1), (G2, X2)) is not valid, then �f (c1, c2), where c1 and c2 are the respective
homomorphism classes of (G1, X1) and of (G2, X2), is also undefined.

Note that for any fixed t and any regular property P , the number of classes
is constant. Nevertheless, this constant depends on t and on the property P . For
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algorithmic purposes, given t and P , we need an explicit algorithm computing the
homomorphism class of a given base graph, and an algorithm computing the update
functions �f , i.e., we need an algorithm that takes as input a composition opera-
tion f and one or two classes c1, c2 ∈ C and computes the class �f (c1, c2) if f is
of arity 2 (resp., �f (c1) if f is of arity 1). Eventually, we must know the set of
accepting classes, that is, the set of classes c such that h(G,X) = c implies that
P(G,X).

As an example, consider the property 3COL(G,X) which is true if and only
if G[X ] is 3-colorable. We show that it is regular. Let P3(t) be the set of par-
titions of subsets of {1, 2 . . . , t + 1} into three parts. The set C of homomor-
phism classes is P3(t). Consider a (t + 1)-terminal recursive graph G = (V, T,E)
and let X ⊆ V . For each 3-partition (X1, X2, X3) of the vertex subset X into
three independent sets, let p(X1, X2, X3) ∈ P3(t) be the 3-partition of T ∩ X
corresponding to (T ∩ X1, T ∩ X2, T ∩ X3); here, for T ∩ Xi, we only keep the
ranks of the terminals of T ∩ Xi in the ordered set T . The class h(G,X) will
be {p(X1, X2, X3) | (X1, X2, X3) is a partition of V into three independent sets}. In
particular, the unique nonaccepting class is ∅. It is not hard to see that, for fixed
t, the class of every base graph can be computed in constant time, and that for any
composition operation f the update function �f exists and can also be computed in
constant time. The number of classes is constant even though the number of subsets
X is arbitrarily large. When solving the problem max |X | : 3COL(G,X) on a (t+1)-
terminal recursive graph G, we must store, in each node u of the (t+1)-expression, for
each class c, the size of the maximum vertex subset Xu of the current graph Gu such
that h(Gu, Xu) = c. The overall solution is the maximum one among the accepting
classes of the root node.

We say that a CMSO formula ϕ expresses a property P(G,X) if P(G,X) is true
if and only if (G,X) models ϕ (i.e., the formula is true exactly on graphs G and vertex
subsets X such that P(G,X) is true).

Proposition 2.3 (Borie, Parker, and Tovey [11]). Any property P(G,X) ex-
pressible by a CMSO formula is regular.

Moreover, the result of Borie, Parker, and Tovey [11] is constructive in the sense
that, given a CMSO formula, it provides the homomorphism classes C, the subset
of accepting classes, and the algorithms computing the classes of base graphs as
well as the update functions for the regular property P on (t+ 1)-terminal recursive
graphs. The regularity is actually proven in [11] for all properties expressible by
CMSO formulas, which allows an arbitrary number of free variables over vertices,
edges, vertex sets, and edge sets. For our applications, it is sufficient to consider
properties over graphs and one vertex set, corresponding to formulas with a unique
free variable, which is a set of vertices. To our knowledge, the question whether all
regular properties are CMSO expressible is still open.

2.2. Minimal triangulations and potential maximal cliques.
Chordal graphs and triangulations. A graphH is chordal (or triangulated) if every

cycle of length at least four has a chord, i.e., an edge between two nonconsecutive
vertices of the cycle.

Minimal triangulations, potential maximal cliques, and minimal separators. A
triangulation of a graph G = (V,E) is a chordal graph H = (V,E′) such that E ⊆ E′.
Graph H is a minimal triangulation of G if for every edge set E′′ with E ⊆ E′′ ⊂ E′,
the graph F = (V,E′′) is not chordal.

We will use the following relation between treewidth and triangulations.
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Proposition 2.4 (Folklore). For any graph G, tw(G) ≤ k if and only if there is
a triangulation H of G with the maximum clique size at most k + 1.

Let u and v be two non adjacent vertices of a graph G. Given a vertex subset
S, recall that G − S denotes the graph G[V (G) \ S]. A set of vertices S ⊆ V is a
u, v-separator if u and v are in different connected components of the graph G−S. A
connected component G[C] of G−S is a full component associated with S if N(C) = S.
Separator S is aminimal u, v-separator ofG if no proper subset of S is a u, v-separator.
Notice that a minimal separator can be strictly included in another one, if they are
minimal separators for different pairs of vertices. The following proposition is an
exercise from the book of Golumbic [44].

Proposition 2.5 (folklore). Let G = (V,E) be a graph and S ⊆ V be a vertex
subset. Then S is a minimal separator of G if and only if there are two components
C and D of G− S such that N(C) = N(D) = S.

We will need the following result of Berry, Bordat, and Cogis [5].
Proposition 2.6 (see [5]). There is an algorithm listing the set ΔG of all min-

imal separators of an input graph G in time O(n3|ΔG|).
A set of vertices Ω ⊆ V (G) of a graph G is called a potential maximal clique if

there is a minimal triangulation H of G such that Ω is a maximal clique of H .
Let us give their main characterization obtained by Bouchitté and Todinca [12].
Proposition 2.7 (see [12]). Let Ω ⊆ V be a set of vertices of the graph G =

(V,E) and {C1, . . . , Cp} be the set of connected components of G − Ω. We define
S(Ω) = {S1, S2, . . . , Sp}, where Si = N(Ci), i ∈ {1, 2, . . . , p}, is the set of those
vertices of Ω which are adjacent to at least one vertex of the component Ci. Then Ω
is a potential maximal clique of G if and only if

1. each Si ∈ S(Ω) is strictly contained in Ω;
2. the graph on the vertex set Ω obtained from G[Ω] by completing each Si ∈ S(Ω)

into a clique is a complete graph.
Moreover, if Ω is a potential maximal clique, then S(Ω) is the set of minimal separa-
tors of G contained in Ω.

For example, when G is a cycle, the minimal separators of G are exactly the pairs
of nonadjacent vertices, and the potential maximal cliques are exactly the triples of
vertices. Let us note that by Proposition 2.7, for every pair of nonadjacent vertices
x, y ∈ Ω there is a connected component C of G− Ω such that x, y ∈ N(C).

We will use the following result from [13].
Proposition 2.8 (see [13]). Let ΠG denote the set of all potential maximal

cliques of graph G. Then |ΠG| ≤ n|ΔG|2 + n|ΔG|+1, and the set ΠG can be listed in
time O(n2m|ΔG|2).

Let us note that by Proposition 2.8, if graphs from some class have a polyno-
mial number of minimal separators, these graphs also have a polynomial number of
potential maximal cliques.

Let Ω be a potential maximal clique. By Proposition 2.7, a subset S ⊆ Ω is a
minimal separator of G if and only if S is the neighborhood of a connected component
of G − Ω. For a minimal separator S and a full connected component C of G − S,
we say that (S,C) is a full block associated with S. We sometimes use the notation
(S,C) to denote the set of vertices S ∪C of the block. It is easy to see that if X ⊆ V
corresponds to the set of vertices of a block, then this block (S,C) is unique: indeed,
S = N(V \X) and C = X \S. For convenience, the couple (∅, V ) is also considered as
a full block. For a minimal separator S, a full block (S,C), and a potential maximal
clique Ω, we call the triple (S,C,Ω) good if S ⊆ Ω ⊆ C ∪ S. By [33], the number of
good triples is at most n|ΠG|.
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Let F be a vertex subset of graph G and let TF be a triangulation of the subgraph
G[F ] induced by F . We say that a minimal triangulation TG of G respects TF if for
every clique K of TG, its intersection with F is either empty, or is a clique in TF .
The following lemma about the existence of respecting minimal triangulations is the
crucial part of our main algorithm.

Lemma 2.9 (respecting triangulation lemma). Let F be a vertex set of graph G
and let TF be a minimal triangulation of the subgraph G[F ] induced by F . Then there
exists a minimal triangulation TG of G which respects TF .

Proof. Let TF = (F,EF ) be a minimal triangulation of the subgraphG[F ] induced
by F . We show that there exists a minimal triangulation TG of such that TF is an
induced subgraph of TG. This would imply that TG respects TF .

First construct a graph H = (V,E′) with the same vertex set as G = (V,E),
such that H [F ] = TF and each vertex of V \ F is adjacent to all other vertices of H .
Therefore H is a supergraph of G, in which V \ F induces a clique and such that all
edges are present between F and V \ F . Let us first prove that H is a triangulation
of G, i.e., that H is chordal. By contradiction, assume there is a set of at least
four vertices C ⊆ V such that H [C] is a chordless cycle. Observe that C cannot
be contained in F because H [F ] = TF is chordal. Let x be a vertex of C \ F . By
construction of H , vertex x is adjacent to all other vertices of C, hence x is of degree
at least three in H [C]. This contradicts the assumption that H [C] is a chordless cycle.

Now the triangulationH = (V,E′) of G = (V,E) contains a minimal triangulation
TG = (V,E′′) of G such that E ⊆ E′′ ⊆ E′. It remains to prove that TG[F ] =
TF . Since TG[F ] is chordal, this graph is a triangulation of G[F ]. Moreover, by
construction TG[F ] is a subgraph of TF . By the fact that TF is aminimal triangulation
of G[F ] we conclude that TG[F ] = TF .

3. Optimal induced subgraph for P and t. Let t ≥ 0 be an integer and
P(G,X) be a property. We define the following generic problem.

Optimal Induced Subgraph for P and t
Input: A graph G
Task: Find sets X ⊆ F ⊆ V such that X is of maximum size, the induced
subgraph G[F ] is of treewidth at most t, and P(G[F ], X) is true.

Let us give two examples of problems that are particular cases of Optimal In-

duced Subgraph for P and t, when P(G,X) is a regular property.
1. Let F be a finite family of graphs containing at least one planar graph. The

problem Maximum induced F-minor free graph takes as input a graph
G and asks for an induced subgraph G[F ] such that G[F ] contains no minor
from F , and F is of maximum size for this property. As we shall see in
details in section 5, the property P(G[F ], X) expressing the fact that G[F ]
is F -minor free and X = F is the vertex set of G[F ] can be expressed by a
CMSO. Since F contains a planar graph, G[F ] must be of treewidth at most t
for some constant t depending only on F [63]. Therefore, this problem (or the
equivalent problem Minimum F-Deletion) is a particular case of Optimal

Induced Subgraph for P and t.
2. The problem Independent H-Packing was introduced by Cameron and

Hell [17]. Here H denotes a finite set of connected graphs, and the task is to
find, in an input graph G, a maximum number of disjoint copies of graphs
from H such that there are no edges between the copies. Clearly these copies
induce a subgraph G[F ] of bounded treewidth. We will give a CMSO formula
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expressing the property P(G[F ], X), which is true if and only if G[F ] is a
collection of copies of H, and X has exactly one vertex in each connected
component of G[F ]. This problem, generalizing the Maximum Induced

Matching, is again a particular case of Optimal Induced Subgraph for

P and t.
We prove here the main theorem of this article.
Theorem 3.1. For any fixed t and any regular property P, the problem Optimal

Induced Subgraph for P and t is solvable in |ΠG|nt+O(1) time, when ΠG is given
in the input.

Let us note that by Proposition 2.3, results of Theorem 3.1 hold for every prop-
erty P(G,X) expressible by a CMSO formula. Combined with Propositions 2.8 and
Theorem 1.1, we obtain the following application of Theorem 3.1.

Corollary 3.2. For any fixed t and regular property P, problem Optimal

Induced Subgraph for P and t can be solved in O(1.7347n) time for arbitrary
graphs, and in polynomial time for classes of graphs with a polynomial number of
minimal separators.

3.1. Notation and data structures. Our algorithm proceeds by dynamic pro-
gramming on blocks and on good triples. Recall that in our definition of
(t + 1)-terminal graphs, the set of terminals is ordered. The vertices of our graph
are numbered from 1 to n. An ordered set W of vertices corresponds to this natural
ordering over set W . Property P is regular, so notations C, h, and �f correspond to
Definition 2.2.

Let F be a vertex subset of vertices of G. By Proposition 2.4, if G[F ] is of
treewidth at most t, then there exists a (minimal) triangulation TF of G[F ] of width
at most t, and by Lemma 2.9, there is a minimal triangulation TG of G respecting TF .

In the algorithm we compute partial compatible solutions by dynamic program-
ming on blocks and good triples. The next definition and the following notation are
crucial for our algorithm.

Definition 3.3 (partial compatible solution). Let (S,C) be a full block and
(S,C,Ω) be a good triple of graph G. Let W ⊆ S (resp., W ⊆ Ω) be a vertex subset of
size at most t+ 1 and c ∈ C be a homomorphism class for property P. Let also X ⊆
F ⊆ V (G). We say that (G[F ], X) is a partial solution compatible with (S,C,W, c)
(resp., with (S,C,Ω,W, c)) if

1. F ⊆ S ∪ C and F ∩ S = W (resp., F ∩ Ω = W );
2. the (t+1)-terminal recursive graph H = (F,W,E(G[F ])) satisfies h(H,X) =

c;
3. there is a triangulation TF of G[F ] of width at most t and a minimal trian-

gulation TG of G respecting TF , such that S is a minimal separator (resp., Ω
is a maximal clique) of TG.

The third condition implies that W is a clique in the triangulation TF of G[F ].
The definitions are illustrated in Figure 2. For simplicity, the subset X of F is

not depicted on the figures.
Let α(S,C,W, c) (resp., β(S,C,Ω,W, c)) denote the size of a largest vertex sub-

set X such that (G[F ], X) is a partial solution compatible with (S,C,W, c) (resp.,
compatible with (S,C,Ω,W, c)). Observe that in the β function, W represents the
intersection between the partial solution and the potential maximal clique Ω, while
in the definition of the α function, W is the intersection of the partial solution with
the minimal separator S. If partial compatible solutions do not exist, we simply set
α or β to −∞.
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Fig. 2. Partial solutions compatible with (S, C,W, c) (left), and with (S, C,Ω,W, c) (right). Set
F is depicted in gray. Note that set W corresponds to F ∩ S in the first case, and to F ∩ Ω in the
second case.

3.2. The algorithm. Our algorithm proceeds by dynamic programming on full
blocks and good triples. By [33], the number of good triples is O(n|ΠG|). The blocks
are first sorted by size in an increasing order. For each block (S,C) by increasing
size, we first compute the values β(S,C,Ω,W, c) from values α(Si, Ci,Wi, ci) corre-
sponding to smaller blocks, then we compute the values α(S,C,W, c) from values
β(S,C,Ω,W ′, c′), as described in Algorithm 1.

Algorithm 1. Optimal induced subgraph for P and t.
Input: graph G and its potential maximal cliques ΠG

Output: sets X ⊆ F ⊆ V (G) such that G[F ] has treewidth at most t,
P(G[F ], X) is true, and subject to these constraints, X is of maximum
size

1 Order all full blocks by inclusion;
2 for all full blocks (S,C) in this order do
3 for all good triples (S,C,Ω), all W ⊆ Ω of size ≤ t+ 1 and all c ∈ C do
4 if Ω = S ∪ C then
5 Compute β(S,C,Ω,W, c) using (3.1);
6 else
7 Compute β(S,C,Ω,W, c) using (3.3), (3.4), (3.5), and (3.6);

8 for all W ⊆ S of size ≤ t+ 1 and all c ∈ C do
9 Compute α(S,C,W, c) using (3.2);

10 Compute an optimal solution using (3.7);

When computing partial solutions (G[F ], X) compatible with a quadruple
(S,C,W, c) or with a quintuple (S,C,Ω,W, c) we need to compute, from the class
c and the ordered set of terminals W , the intersection X ∩ W . Consider a (t + 1)-
terminal recursive graph D = (VD, T, ED) and let c be a homomorphism class for our
property P . Although this is not explicitly required by the definition of regular prop-
erties (Definition 2.2), we may assume without loss of generality that all sets Y such
that h(D,Y ) = c have the same intersection with the set T of terminals. (Otherwise,
if sets Y and Y ′ have different intersections with T but h(D,Y ) = h(D,Y ′) = c, we
can “split” class c in at most 2t+1 classes, one for each possible intersection between
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Fig. 3. Computing α form β (left), and β from α (right).

T and such a vertex subset Y .) Hence the class c encodes the intersection of Y with
the set of terminals of D, i.e., given the homomorphism class c, we can retrieve the
rank of the vertices of Y ∩ T .

Therefore we assume that we have a function term(c, T ), taking a class c and an
ordered set T of terminals, and returning the terminals that belong to Y , for every Y
such that h(D,Y ) = c.

The base case. In the base case we have a minimal full block (S,C). In this
case (see, e.g., [12]), we have that (S,C,Ω) is a good triple for Ω = S ∪ C. In this
situation, for any partial solution (G[F ], X) compatible with (S,C,Ω,W, c), we must
have F = W , hence G[W ] corresponds to a base (t + 1)-terminal graph. Also, we
must have X = term(c,W ), so X is unique (or might not exist). Hence for the base
case we have

(3.1) β(S,C,Ω,W, c) =

{ |X | if there is X ⊆ W such that h(G[W ], X) = c,
−∞ otherwise.

The computation of each value β(S,C,Ω,W, c) corresponding to every base case
takes O(n) time, because we have to store the value in a table indexed by (S,C,Ω, c).
For each good triple, we try at most nt+1 sets W . The number of good triples is
O(n|ΠG|), so altogether these computations take O(nt+3|ΠG|) time. (Actually, one
can prove by a more careful analysis that the number of good triples corresponding
to base cases is at most n.)

Computing α from β. Our goal is to compute α(S,C,W, c) from values
β(S,C,Ω,W ′, c′) such that (S,Ω, C) is a good triple and W = W ′ ∩ S.

Consider any partial solution (G[F ], X) compatible with (S,C,W, c); the situation
is depicted in Figure 3 (left). Let TF be a triangulation of G[F ] as in Definition 3.3 and
let TG be a minimal triangulation of G respecting TF . Let Ω be the maximal clique of
TG such that S ⊆ Ω ⊆ S∪C (this clique is unique by [12]) and take W ′ = Ω∩F . Note
that (G[F ], X) is also a partial compatible solution for (S,C,Ω,W ′, c′), where c′ is
the homomorphism class of h(H ′, X); here H ′ is the (t+ 1)-terminal recursive graph
(F,W ′, E(G[F ])). Also observe that the (t + 1)-terminal graph H = (F,W,G[F ])
is obtained from H ′ by the unary composition operation f(W ′,W ) that consists in
removing W ′ \W from the set of terminals, and possibly renumbering the remaining
terminals. Therefore �f(W ′,W )(c

′) = c.
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We claim the following.
Lemma 3.4.

(3.2) α(S,C,W, c) = maxβ(S,C,Ω,W ′, c′),

where the maximum is taken over potential maximal cliques Ω such that (S,C,Ω) is
a good triple, all subsets W ′ ⊆ Ω of size at most t+ 1 such that W ′ ∩ S = W , and all
classes c′ ∈ C such that �f(W ′,W )(c

′) = c.
Proof. By the above observation, α(S,C,W, c) is at most the right-hand side of the

equality. Conversely, let (S,C,Ω,W ′, c′) be the quintuple realizing the maximum value
of the right-hand side expression. Let (G[F ], X) be a partial solution compatible with
(S,C,Ω,W ′, c′). Observe that (G[F ], X) is also a partial solution compatible with
(S,C,W, c), hence α(S,C,W, c) ≥ |X |. This proves the correctness of the formula
computing α(S,C,W, c).

For computing all values α(S,C,W, c) from values β(S,C,Ω,W ′, c′), we proceed
in a slightly different and more efficient way than the one described in Algorithm 1.
When β(S,C,Ω,W ′, c′) is computed (lines 5 or 7 of the algorithm), if �f(W ′,W )(c

′) = c
we simply update the value of α(S,C,W, c) by taking the maximum between the
previous value and β(S,C,Ω,W ′, c′). This only costs an extra O(n) for each quintuple
(S,C,Ω,W ′, c′). The number of such quintuples is O(nt+2|ΠG|), thus the total cost
of these computations is O(nt+3|ΠG|).

Computing β from α. We now compute β(S,C,Ω,W, c) from values α(Si, Ci,Wi, ci),
where Ci, 1 ≤ i ≤ p, are the connected components of G[C \ Ω], Si = NG(Ci),
Wi = Ci ∩ Si, and ci are classes (still to be guessed). Recall that, by Proposition 2.7,
(Si, Ci) are full blocks; see also [12], and Figure 3 (right) for an illustration.

Intuitively, let (G[F ], X) be an optimal partial solution for β(S,C,Ω,W, c). We
denote by H = (F,W,EH ) the (t+1)-terminal recursive graph corresponding to G[F ]
with terminal set W , and let Hi = (Fi,Wi, Ei) be its “trace” on the smaller block
(Si, Ci). Hence Fi = F ∩ (Si ∪ Ci), Wi = W ∩ Si, and Ei = E(G[Fi]). Also denote
Xi = X ∩ (Si ∪ Ci). Observe that H is obtained from the smaller His as follows:

• on each Hi, we introduce the terminals of W \Wi, obtaining a graph H+
i =

(Fi∪W,W,E+
i ) with W as the set of terminals and with E+

i = E(G[Fi∪W ])
as the edge set;

• we perform a sequence of joins, gluing one by one H+
1 , H+

2 , . . . , H+
p on the

same set of terminals W .
Formally, let us first define δi(S,C,Ω,W, c+i ) to be the size of the largest partial

solution (G[F+
i ], X+

i ) compatible with (S,C,Ω,W, c+i ) such that F+
i ⊆ Ω∪Ci. (This

partial solution was denoted above by H+
i , F+

i corresponds to Fi ∪ W , and X+
i is

Xi∪(X∩W ).) Consider the composition operation in(Wi,W ) which takes two (t+1)-
terminal graphs, with terminal setsWi andW , respectively, and composes them into a
new (t+1)-terminal graph having W as the set of terminals. In the gluing operation,
terminal number j of Wi is glued on terminal number k of W if and only if they
correspond to the same vertex of G. Hence, this composition operation in(Wi,W )
only depends on Wi and W . Let XW ⊆ W , let G[W ] denote the base (t+1)-terminal
recursive graph having W as the set of terminals, and cW be the homomorphism class
h(G[W ], XW ).

Lemma 3.5.

(3.3) δi(S,C,Ω,W, c+i ) = maxα(Si, Ci,Wi, ci) + |term(cW ,W ) \ term(ci,Wi)|,
where the maximum is taken over all classes ci and cW such that �in(Wi,W )(ci, cW ) =

c+i and cW = h(G[W ], XW ) for some XW ⊆ W .
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Proof. Let (G[F+
i ], X+

i ) be a maximal partial solution compatible with
(S,C,Ω,W, c+i ) such that F+

i ⊆ Ω ∪ Ci. Denote Fi = F+
i ∩ (Si ∪ Ci), Xi = X+

i ∩
(Si ∪ Ci), and XW = X ∩W . Observe that (G[Fi], Xi) is a partial solution compati-
ble with (Si, Ci,Wi, ci) for some class ci, that cW = h(G[W ], XW ), and these classes
must satisfy �in(Wi,W )(ci, cW ) = c+i . Hence δi(S,Ω, C,W, c+i ) is at most equal to the

right-hand side of the equation (note that term(cW ,W ) \ term(ci,Wi) = X+
i \Xi).

Conversely, let ci, cW be the classes maximizing the right-hand side of the
equation. Take a maximum partial solution (G[Fi], Xi) contained in Si ∪ Ci,
compatible with (Si, Ci,Wi, ci), where �in(Wi,W )(ci, cW ) = c+i . Then the graph
(Fi ∪ W,W,E(G[Fi ∪ W ])) together with the vertex subset Xi ∪ term(cW ,W ) is a
partial solution compatible with (S,C,Ω,W, c+i ), and the equality follows.

We introduce another notation γi(S,C,Ω,W, c), corresponding to the largest par-
tial solution compatible with (S,C,Ω,W, c), contained in Ω ∪ C1 ∪ · · · ∪ Ci. It corre-
sponds to the gluing of some partial solutions (H+

1 , X+
1 ), . . . , (H+

i , X+
i ).

Lemma 3.6. Function γi is computed as follows. For i = 1,

(3.4) γ1(S,C,Ω,W, c) = δ1(S,Ω, C,W, c).

For each i ∈ {2, . . . , p},
(3.5) γi(S,C,Ω,W, c) = max γi−1(S,C,Ω,W, c′) + δi(S,Ω, C,W, c′′)− |term(c′,W )|,
where the maximum is taken over all characteristics c′, c′′ ∈ C such that �g(W )(c

′, c′′) =
c, where g(W ) is the composition operation corresponding to a join operation on W ,
i.e., the matrix m(g(W )) of g(W ) has |W | rows, and mj,1(g(W )) = mj,2(g(W )) = j
for each row j.

Proof. The proof is trivial for γ1.
Now for any F ⊆ Ω ∪ C1 ∪ · · · ∪ Ci, note that (G[F ], X) is a partial solution

compatible with (S,C,Ω,W, c) if and only if (G[F \ Ci], X \ Ci) is a partial solution
compatible with (S,Ω, C,W, c′′) and (G[F \ (C1 ∪ · · · ∪Ci−1)], X \ (C1 ∪ · · · ∪Ci−1)))
is a partial solution compatible with (S,C,Ω,W, c′) for some classes c′ and c′′ such
that �g(W )(c

′, c′′) = c. The term |term(c′,W )| corresponds to X ∩ W and avoids
overcounting of these vertices.

The following result is a direct consequence of the definitions of β and γ functions.
Lemma 3.7.

(3.6) β(S,C,Ω,W, c) = γp(S,C,Ω,W, c).

We claim that for a fixed quadruple (S,C,Ω,W ) computing the values
β(S,C,Ω,W, c) from values α, takes O(n2) time. Again by [33], the smaller blocks
(Si, Ci) can be listed in O(m) time. For each i, the computation of function
δi(S,Ω, C,W, c+i ) takes O(|Si| + |Ci|) = O(n) time, because we need to access the
values α(Si,Wi, Ci, ci). Computing γi(S,C,Ω,W, c) from values γi−1 and δi can be
done in O(n) time for each i.

Therefore the running time of the algorithm is the number of quintuples
(S,C,Ω,W, c) times n2, which is O(|ΠG|nt+4).

The global solution. It can be obtained by considering the (special) full block
(∅, V ).

Lemma 3.8. The solution size is

(3.7) maxα(∅, V, ∅, c),
where the maximum is taken over all accepting classes c, i.e., classes such that
h(G,X) = c implies that P(G,X).
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Proof. By the definition of regular properties and of α(∅, V, ∅, c), our problem has
a solution of size at least maxc α(∅, V, ∅, c) over accepting classes c.

Let (G[F ], X) be a maximum size solution for our problem. By Lemma 2.9, this
solution is compatible with α(∅, V, ∅, c) for the class c of the (t + 1)-terminal graph
(F, ∅, E(G[F ])), which completes the proof of the lemma.

This latter computation takes constant time.
The total running time of the algorithm is O(|ΠG|nt+4). Note that, instead of

keeping the size of the largest solution (G[F ], X), we could explicitly store the vertex
subsets (F,X) of G.

3.3. Extensions. Theorem 3.1 can be extended to weighted and annotated ver-
sions of problem Optimal Induced Subgraph for P and t for any t ≥ 0 and any
regular property P .

Optimal Weighted Annotated Induced Subgraph for P and t
Input: A graph G = (V,E), a weight function w : V → Z, a set U ⊆ V of
annotated vertices, and a number t.
Task: Find sets X ⊆ F ⊆ V such that F contains U , the induced subgraph G[F ]
is of treewidth at most t, property P(G[F ], X) is true, and X is of maximum
weight under these conditions.

Observe that the weight function gives an integer weight to each vertex, thus
arithmetic operations can be performed in polynomial time in the input size.

Theorem 3.9. For any fixed t and any regular property P, the problem Op-

timal Weighted Annotated Induced Subgraph for P and t is solvable in
|ΠG|nO(1) logM time, where M is the maximum |w(v)|, v ∈ V (G), and when ΠG is
given in the input.

In particular the problem can be solved in O(1.7347n logM) time for arbitrary
graphs, and in polynomial time for classes of graphs with a polynomial number of
minimal separators.

For this purpose, we slightly adapt the definitions of α and β functions. In
order to force the annotated vertices to be in F , each value α(S,C,W, c) (resp.,
β(S,C,Ω,W, c)), such that U ∩ S �⊆ W (resp., U ∩ Ω �⊆ W ) is immediately set to
−∞, meaning that such a partial solution is rejected.

In order to maximize the weight of the solution, the values α(S,C,W, c) (resp.,
β(S,C,Ω,W, c)) will correspond to the maximum weight over partial solutions com-
patible with (S,C,W, c) (resp., (S,C,Ω,W, c)). In the algorithm, we simply replace
the cardinality of sets (e.g., |X | in (3.1), |term(c′,W )| in (3.5), and |term(cW ,W ) \
term(ci,Wi)| in (3.3)) by the weights of these sets.

We also point out that the weights can be negative. In particular, we can use
Theorem 3.9 to compute an induced subgraph G[F ] of treewidth at most t and a
subset X ⊆ F such that P(G[F ], X) is true, and X is of minimum size (or weight)
under these conditions.

One can imagine more extensions of Theorems 3.1 and 3.9. A natural one consists
in finding sets X and F such that the size of X is exactly an input value v. For
this purpose, we can adapt our definitions of α and β to store, for each possible
value v′ ≤ v, a boolean α(S,C,W, c, v′) (resp., β(S,C,Ω,W, c, v′)), set to true if and
only if there exists partial solution (G[F ′], X ′) compatible with (S,C,W, c) (resp.,
(S,C,Ω,W, c)) such that the size of X ′ is exactly v′. The computation of α and β
is quite straightforward, by adapting (3.1)–(3.7). The complexity of the algorithm is
multiplied by a polynomial factor.
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Even more involved, we can consider properties P(G,X1, . . . , Xp, E1, . . . , Eq),
where each Xi is a vertex subset and each Ej is an edge subset of graph G. The notion
of regularity extends in a very natural way to several variables. Recall that Borie,
Parker, and Tovey [11] proved that all properties expressible by CMSO formulas are
regular, so we are allowed to use any (fixed) number of free variables corresponding
to vertex sets and edge sets.

Let t ≥ 0 be an integer and P(G,X1, . . . , Xp, E1, . . . , Eq) be a regular property
on graphs and vertex subsets Xi and edge subsets Ej . We define the following generic
problem.

Constrained Induced Subgraph for P and t

Input: A graph G, integer values v1, . . . , vp ≤ n, and w1, . . . , wp ≤ n(n−1)
2 .

Task: Find F ⊆ V , sets Xi ⊆ F , and Ej ⊆ E(G[F ]) such that the induced
subgraph G[F ] is of treewidth at most t, P(G,X1, . . . , Xp, E1, . . . , Eq) is true,
each set Xi is of size vi, and each set Ej is of size wj .

Since property P is regular, we need to adapt the definition of partial solutions to
more variables (again, very naturally) and then we define as above boolean functions

α(S,C,W, c, v′1, . . . , v
′
p, w

′
1 . . . , w

′
q),

respectively,

β(S,C,Ω,W, c, v′1, . . . , v
′
p, w

′
1 . . . , w

′
q),

to be true if there exists a partial solution (G[F ′], X ′
1, . . . , X

′
p, E

′
1, . . . , E

′
q) compatible

with (S,C,W, c) (resp., (S,C,Ω,W, c)) such that each X ′
i is of size v

′
i and each E′

j is of
size w′

j . For computing the α and β values, we must again adapt (3.1)–(3.7). Basically,
for each class c, the function term(c,W ) used in the equations for a homomorphism
class c and an order set of terminals W must now return each intersection of type
X ′

i ∩W for vertex sets and E′
j ∩G[W ] for edge sets. These intersections will be used

to avoid overcounting when gluing partial solutions. The complexity of the algorithm
becomes larger by a factor of nO(p+q).

Therefore we can solve problems like finding, among the maximum induced sub-
graph of treewidth at most t, the one with minimum dominating set.

4. Listing potential maximal cliques. This section is devoted to the proof of
Theorem 1.1. Our enumeration algorithm is based on the characterization of potential
maximal cliques from Proposition 2.7 and the following “firefighters lemma.”

Proposition 4.1 (see [37]). Let G = (V,E) be a graph. For every vertex v and
a pair of integers b, f ≥ 0, the number of connected vertex subsets B ⊆ V such that

• v ∈ B,
• |B| = b+ 1, and
• |N(B)| = f

is at most
(
b+f
f

)
. Moreover, all these sets B can be listed in time O∗(

(
b+f
f

)
).

The enumeration of all potential maximal cliques is provided by Algorithm 2. We
start with a brief overview of this algorithm. The algorithm distinguishes five types of
potential maximal cliques. We shall prove that each of these types is listed within the
desired running time, and that altogether the five types cover all possible potential
maximal cliques. When we say that a potential maximal clique is “of the ith type”
we implicitly mean that it is not of the jth type for all j < i.

Let Ω be a potential maximal clique and let x ∈ Ω. We denote by Dx the union
of the vertex sets of all connected components G[C] of G− Ω such that x ∈ N(C).
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Algorithm 2. Enumerate all potential maximal cliques.

1 // Part (1), first type;
2 for each edge xy ∈ E do
3 let Gxy be graph G− xy;
4 for each minimal x, y-separator S of Gxy do
5 if S ∪ {x, y} is a potential maximal clique of G then
6 output S ∪ {x, y};

7 // Part (2), second type: α is a constant s.t. 0 < α < 1, it will be set to 0.239;
8 for each vertex set Z ⊂ V such that |Z| ≤ αn do
9 if N(Z) is a potential maximal clique then

10 output N(Z);

11 // Part (3), third type: β is a constant s.t. 0 ≤ β ≤ 1 and α+ β > 1; it will be
set to 0.794;

12 for each vertex z do
13 for each connected vertex set Z such that z ∈ Z and |N [Z]| ≤ βn do
14 if N(Z) ∪ {z} is a potential maximal clique then
15 output N(Z) ∪ {z};

16 // Part (4), fourth type: γ is a constant depending on α and β, it will be 7;
17 for each vertex set Z of size at most 3/5(n− |N(Z)|) do
18 if G[Z] has at most γ connected components and N(Z) is a potential

maximal clique then
19 output N(Z);

20 // Part (5), fifth type;
21 for all possible values c1, c2, c3, n̄1, n̄2, n̄3, a such that

c1 + c2 + c3 + n̄1 + n̄2 + n̄3 + a ≤ n do
22 select i, j, k ∈ {1, 2, 3}, i �= j �= k, minimizing the value of(

ci+a+n̄j+n̄k

ci

)(
cj+n̄i

cj

)
;

23 for each connected vertex set Ci such that |Ci| = ci and
|N(Ci)| = n̄j + n̄k + a do

24 for each connected vertex set Cj such that |Cj | = cj and
|N(Cj) \N(Ci)| = n̄i do

25 if N(Ci ∪ Cj) is a potential maximal clique then
26 output N(Ci ∪Cj);

We say that a potential maximal clique Ω is of the first type if for some x ∈ Ω,
set N(Dx) is strictly contained in Ω. In this case we simply guess x and a vertex y in
Ω but not in N(Dx), and show in Claim 1 that Ω− {x, y} is a minimal separator in
graph Gxy obtained from G by removing edge xy. Thus the enumeration of potential
maximal cliques of the first type boils down to enumeration of minimal separators in
graph Gxy.

Therefore, for each potential maximal clique Ω that is not of the first type, we
have that for every x ∈ Ω, Ω = N(Dx). Let now D̂x denote the union of vertex sets of
some connected components G[C] of G−Ω such that Ω = N(D̂x) and D̂x is minimal
under these constraints.
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We say that a potential maximal Ω is of the second type if D̂x is “small” for some
x ∈ Ω. By “small” we mean that |D̂x| ≤ αn for a constant α, that later will be set
to 0.239. In this case we enumerate sets D̂x by brute force and for each compute
Ω = N(D̂x).

The third type corresponds to potential maximal cliques Ω that for some x ∈ Ω,
set Dx ∪ Ω is “relatively small,” i.e. of size at most βn for some constant β, that
will be set to 0.794. In this case we shall see that Ω \ {x} = N(Dx ∪ {x}). Since
Dx ∪ {x} is connected, we will be able to use the firefighters lemma (Proposition 4.1)
to enumerate potential maximal cliques of this type.

We then prove (Claim 4) that for every potential maximal clique Ω that is not
of the first three types, for every x ∈ Ω, the vertex set D̂x is the union of vertex sets
of a constant number γ of connected components of G − Ω. Constant γ depends on
constants α and β, in our case it will be equal to 7.

For a potential maximal clique Ω of the fourth type, we have that for some x ∈ Ω,
there is a subset D̂′

x of D̂x such that N(D̂′
x) = Ω, G[D̂′

x] has at most γ connected
components, and |D̂′

x| ≤ 3/5(n− |Ω|). We use again the firefighters lemma to control
the running time in this case.

All other potential maximal cliques form the fifth type. We prove in Claim 7 that
in this case in graph G − Ω it is possible to select three connected components such
that for each two of them, the neighborhood of their union is exactly Ω. To enumerate
potential maximal cliques of the fifth type, we combine the firefighters lemma and sev-
eral observations on the possible sizes of these components and their neighborhoods.

We prove through a sequence of steps that our algorithm lists all potential max-
imal cliques of G and after that we analyze its running time. Recall that, given a
potential maximal clique Ω and a vertex x ∈ Ω, Dx denotes the union of the vertex
sets of all connected components of G− Ω “seeing” x.

Lemma 4.2 (see also [33]). Let Ω be a potential maximal clique of G = (V,E),
and let x ∈ Ω. Then N(Dx ∪ {x}) = Ω \ {x}.

Proof. By Proposition 2.7, for every y ∈ Ω \ {x}, we have that x and y are either
adjacent, or they are both in the neighborhood N(C) of some connected component
C of G − Ω. In the first case y ∈ N(x), in the second case y ∈ N(Dx). Recall that
N(Dx) ⊆ Ω and N(x) ⊆ Dx ∪ Ω by the definition of Dx. Thus N(Dx ∪ {x}) =
Ω \ {x}.

Claim 1. Let Ω be a potential maximal clique of the first type, i.e., there exist
x, y ∈ Ω such that y �∈ Dx. Then Ω \ {x, y} is an x, y-minimal separator in the graph
Gxy = G− xy obtained by removing edge xy from G.

Proof. Observe that x �∈ N(Dy). By Lemma 4.2, we have that NG(Dx ∪ {x}) =
Ω\{x} and NG(Dy∪{y}) = Ω\{y}. Thus, in the graph Gxy, the vertex sets Dx∪{x}
and Dy∪{y} are disjoint and connected (as in G) and their neighborhood is Ω\{x, y}.
By Proposition 2.5, Ω \ {x, y} is an x, y-minimal separator of Gxy.

Therefore Part (1) of Algorithm 2 enumerates all potential maximal cliques of the
first type. From now on we assume that potential maximal clique Ω is not of the first
type; hence, N(Dx) = Ω for all x ∈ Ω. We define vertex set D̂x ⊆ Dx as the union of
an inclusion minimal set of connected component of G−Ω seeing Ω. In other words,
we define D̂x =

⋃r
i=1 Ci such that

• for each i ∈ {1, . . . , r}, Ci is a connected component of G− Ω;
• N(D̂x) = Ω;
• for each i ∈ {1, . . . , r}, N(D̂x \ Ci) �= Ω.

Claim 2. Let Ω be a potential maximal clique of the second type, i.e., such that
|D̂x| ≤ αn for some x ∈ Ω. Then Ω is listed in Part (2) of Algorithm 2.
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Proof. Part (2) of Algorithm 2 tests each vertex set Z of size at most αn and
outputs the set N(Z) if N(Z) is a potential maximal clique. Thus every potential
maximal clique of the second type is listed when Z = D̂x.

The following claim follows directly from Lemma 4.2.
Claim 3. Let Ω be a potential maximal clique of the third type, in particular

N [Dx ∪ {x}] ≤ βn for some x ∈ Ω. Then Ω is listed by Part (3) of Algorithm 2.
The next claim concerns connected components of potential maximal cliques not

listed during the first three steps of the algorithm.
Claim 4. Let Ω be a potential maximal clique that is not of the first three types.

Let γ = 1 + 1−β
α+β−1 . Then for each vertex x ∈ Ω, graph G[D̂x] contains at most γ

connected components.
Proof. Let C1, C2, . . . , Cr be the connected components of G[D̂x] given in the

ascending order according to their sizes. We first prove that |D̂x \ C1| ≤ n− βn. By
the minimality of D̂x, there is z ∈ N(C1) that does not belong to any other N(Ci)
for i ≥ 2. Therefore N [Dz]∩ (D̂x \C1) = ∅. In particular, if |D̂x \C1| > n− βn then
N [Dz] ≤ βn, contradicting the fact that Ω is not of the third type. Because Ω is not
of the second type, we have that |D̂x| > αn. We deduce that |C1| ≥ (α + β − 1)n.
Since |C1| ≥ (α+ β− 1)n and |D̂x \C1| ≤ n− βn, we have that r− 1 ≤ 1−β

α+β−1 . Thus
r ≤ γ.

From now on we focus on potential maximal cliques Ω that are not of the first
three types. By Proposition 2.7, for every pair of nonadjacent vertices x, y ∈ Ω there
is a connected component C of G−Ω such that x, y ∈ N(C). Because Ω is not of the
first type, we have that for every y ∈ Ω, there is a connected component C of G[D̂x]
such that x, y ∈ N(C). Let

C =
⋃
x∈Ω

D̂x.

The next claim shows that the connected components of G[C] are minimal subject to
pairs of nonadjacent vertices of Ω.

Claim 5. For every connected component C of graph G[C], there is a “private”
pair of nonadjacent vertices x, y ∈ Ω, i.e., a pair such that

• x, y ∈ N(C), and
• there is no connected component C ′ �= C of G[C] such that x, y ∈ N(C′).

Proof. Targeting towards a contradiction, suppose there is a connected component
C of graph G[C] without a private pair. By the minimality of each of the sets D̂x,
x ∈ Ω, the only reason why C contributes to G[C] is that there is y ∈ Ω, such that C
is the connected component of G[D̂y] and N(D̂y \ C) �= Ω. Let z ∈ Ω \ N(D̂y \ C).
Because C has no private pair, there is a connected component C′ of G[C] such
that y, z ∈ N(C′). Thus C′ is also a connected component of G[D̂y] and hence

z �∈ Ω \N(D̂y \ C), which is a contradiction.
Claim 6. For every connected component C of G[C], there are two vertices x and

y such that C = D̂x ∩ D̂y.
Proof. By Claim 5, C has a private pair x, y ∈ Ω∩N(C) such that for every other

connected component C′ of G[C], we have that at least one of x or y is not contained
in N(C′). Thus C = D̂x ∩ D̂y.

Claim 7. Let Ω be a potential maximal clique not of the first three types. Then
1. either there exists x ∈ Ω such that |D̂x| ≤ 3/5(n− |Ω|),
2. or G[C] contains at most 3 connected components, and for every pair of such

components Ci and Cj, we have that N(Ci ∪ Cj) = Ω.
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Fig. 4. Potential maximal cliques of the fifth type.

Proof. Let C1, C2, . . . , Cr be the connected components of G[C], and let us assume
that C1 is of minimum size. By Claim 6 applied to C1, there exist x, y ∈ Ω such that
C1 = D̂x ∩ D̂y.

Consider first the case when |C1| ≤ (1/5)(n − |Ω|). Then the size of one of the
sets D̂x, D̂y does not exceed

|C1|+ n− |Ω| − |C1|
2

=
n− |Ω|+ |C1|

2
,

which is at most (3/5)(n− |Ω|) for |C1| ≤ (1/5)(n− |Ω|).
For the case |C1| > (1/5)(n − |Ω|), because C1 is the connected component of

the smallest size, it follows that r ≤ 4. Towards the contradiction, let us assume
that r = 4. Observe that each of D̂x and D̂y is formed by the union of at least

two sets Ci. Indeed if D̂x = C1 then NG(C1) = Ω, contradicting Proposition 2.7.
Because C1 = D̂x∩D̂y, one of the sets D̂x, D̂y contains exactly two components. Say,

D̂x = C1∪C2. If |C1∪C2| ≤ (3/5)(n−|Ω|) then the first condition of the claim holds.
If |C1 ∪C2| > (3/5)(n− |Ω|), then at least one of C3 and C4 should be of size at most
(1/5)(n−|Ω|), and thus of size smaller than |C1| which is a contradiction. Thus r ≤ 3.

Also r > 2, because each of the sets D̂x and D̂y contains at least two connected

components and C1 = D̂x ∩ D̂y. Thus G[C] contains exactly three components C1,

C2, and C3. Thus D̂x contains exactly two of them, say C1 and C2, and D̂x contains
C1 and C3. Then N(C1 ∪ C2) = N(D̂x) = Ω and N(C1 ∪ C3) = N(D̂y) = Ω. It
remains to prove that N(C2 ∪ C3) = Ω. For component C2 there is a private pair
u, v ∈ Ω such that C2 = D̂u ∩ D̂v. Then either D̂u or D̂v is equal to C2 ∪ C3, and
thus N(C2 ∪ C3) = Ω.

All potential maximal cliques of the fourth type (corresponding to the first item
of the previous claim) are listed by Part (4) of Algorithm 2. It remains to prove that
the fifth case of the algorithm enumerates all remaining potential maximal cliques.

Claim 8. Let Ω be a potential maximal clique that is not of one of the first four
types. Then Ω is listed by Part (5) of Algorithm 2.

Proof. By Claim 7, there are three connected components C1, C2, C3 of G[C] such
that, for every two of them, their neighborhood is Ω (see also Figure 4). Now for each
i ∈ {1, 2, 3}, let ci = |Ci|, N i = Ω \N(Ci), n̄i = |N i|, A = N(C1) ∩N(C2) ∩N(C3),
and a = |A|. Observe that N1, N2, N3, and A form a partition of Ω. Moreover, for
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any bijective mapping {i, j, k} on {1, 2, 3}, we have that N [Ci] = Ci ∪N j ∪Nk ∪ A,
and N [Cj ] \ N(Ci) = Cj ∪ N i. Therefore the sizes of the corresponding sets are as
indicated in Part (5) of Algorithm 2. Hence the algorithm will enumerate two of the
sets C1, C2, C3 and generate the potential maximal clique Ω.

It remains to prove that the running time of the algorithm is O(1.7347n). We
argue about each of the five cases of the algorithm separately.

(1) Minimal x, y-separators in Gxy can be listed in time O(1.6181n); see [37, The-
orem 1]. Thus, cliques of the first type are enumerated in time O(1.6181n).

(2) This part runs inO∗(
(

n
αn

)
) time. For α = 0.239, this is bounded byO(1.7332n).

(3) By Proposition 4.1, enumerating all connected vertex sets Z with |N [Z]| ≤ βn
takes O∗(2βn) time. By putting β = 0.794, enumeration of potential maximal
cliques of the third type takes time O(1.7339n).

(4) With the previously fixed values α and β we have γ < 8 (see Claim 4), so
G[Z] will have at most 7 components. In order to produce all candidate sets
Z we proceed as follows. First we use O(n7) time to guess one vertex of
each component, that is we generate all vertex subsets Q of size at most 7.
For each such set Q, let G+ be obtained from G by adding edges between all
vertices of Q. In this graph G+, we enumerate all connected sets Z containing
Q and such that |Z| ≤ (3/5)(n− |N(Z)|); this is done using Proposition 4.1
over all possible values of |Z| and N(Z). The number of such vertex sets Z
can be bounded by O(1.7017n). It only remains to test for each computed
set Z that N(Z) is a potential maximal clique.

(5) Generating all values c1, c2, c3, n̄1, n̄2, n̄3, and a takes polynomial time. Note
that for each tuple of values, all sets Ci are generated in timeO∗(

(
ci+a+n̄j+n̄k

ci

)
)

using Proposition 4.1 (the binomial coefficient corresponds to
(|N [Ci]|

|Ci|
)
; see

also Figure 4). For each Ci we remove N [Ci] from graph G and then generate
all possible sets Cj , using again Proposition 4.1, in time O∗(

(
cj+n̄i

cj

)
); here

the binomial coefficient corresponds to
(|N [Cj]\N(Ci)|

|Cj|
)
. We point out that the

previous best upper bound given in [37] was based on a somehow similar con-

struction, but “guessing” the set Ci∪Cj in time
(|N [Ci∪Cj ]|

|Ci∪Cj|
)
. Our construction

is faster since we always have that
(|N [Ci]|

|Ci|
)(|N [Cj]\N(Ci)|

|Cj|
) ≤ (|N [Ci∪Cj ]|

|Ci∪Cj|
)
.

It remains to argue that the maximum value of
(
ci+a+n̄j+n̄k

ci

)(
cj+n̄i

cj

)
, over all

possible tuples, is at most 1.7347n. This upper bound has been obtained
using Stirling approximations and a computer program maximizing the func-
tion. The worst ratio occurs when a = 0, and for all i ∈ {1, 2, 3} we have
ci = 0.1768678n and n̄i = (n − 3ci)/3. In this case we obtain a maximum
value of type ηn, for η < 1.7347.

This concludes the proof of Theorem 1.1.

5. Applications. In this section we discuss several applications of Theorem 3.1.
We start by mentioning the most interesting special cases of the optimization problem
(1.1). Each of these special cases contains various problems as a special subcase, we
discuss subcases after introducing each of the problems. For some of these cases,
expressibility in the form of (1.1) is trivial but for some it is nonobvious and requires
deep results from graph theory. Our results are summarized in Theorem 5.1.

Let Fm be the set of cycles of length 0 (mod m). Let 
 ≥ 0 be an integer. Our
first example is the following problem.



LARGE INDUCED SUBGRAPHS VIA TRIANGULATIONS AND CMSO 77

Maximum Induced Subgraph with ≤ 
 copies of Fm-cycles

Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F ] contains at most 

vertex-disjoint cycles from Fm.

Maximum Induced Subgraph with ≤ 
 copies of Fm-cycles encompasses
several interesting problems. For example, when 
 = 0, the problem is to find a
maximum induced subgraph without cycles divisible by m. For 
 = 0 and m = 1 this
is Maximum Induced Forest.

For integers 
 ≥ 0 and p ≥ 3, the problem related to Maximum Induced Sub-

graph with ≤ 
 copies of Fm-cycles is the following.

Maximum Induced Subgraph with ≤ 
 copies of p-cycles
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F ] contains at most 

vertex-disjoint cycles of length at least p.

Next example concerns properties described by forbidden minors. Graph H is a
minor of graph G if H can be obtained from a subgraph of G by a (possibly empty)
sequence of edge contractions. A model M of minor H in G is a minimal subgraph
of G, where the edge set E(M) is partitioned into c-edges (contraction edges) and
m-edges (minor edges) such that the graph resulting from contracting all c-edges is
isomorphic to H . Thus, H is isomorphic to a minor of G if and only if there exists a
model of H in G. For an integer 
 a finite set of graphs F containing a planar graph,
we define he following generic problem.

Maximum Induced Subgraph with ≤ 
 copies of Minor Models from F
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F ] contains at most 

vertex-disjoint minor models of graphs from F .

The assumption that F contains a planar graph is crucial, because it ensures (see
Proposition 5.7) that the solution subgraph G[F ] is of bounded treewidth.

Even the special case with 
 = 0, this problem and its complementary version
called the Minimum F-Deletion, encompasses many different problems. In the
literature, the case 
 = 0 was studied from parameterized and approximation per-
spectives [34].

When F = {K2}, a complete graph on two vertices, this is Maximum Indepen-

dent Set, the problem complementary to the Minimum Vertex Cover problem.
When F = {C3}, a cycle on three vertices, this is Maximum Induced Forest. Case
F = {K4} of Maximum Induced F-free Subgraph corresponds to maximum in-
duced serial-parallel graph, F = {K4,K2,3} to maximum induced outerplanar, and
the case when F consists of a diamond graph, which is K4 minus one edge, is to find
a maximum induced cactus subgraph. Maximum induced pseudoforest is the case
of F containing the diamond and butterfly graphs, which is obtained by identifying
one vertex of two triangles. Maximum Apollonian graph corresponds to the situa-
tion with F consisting of the complete graph K5, the complete bipartite graph K3,3,
the graph of the octahedron, and the graph of the pentagonal prism. A fundamental
problem, which is a special case of Minimum F-Deletion, is Minimum Treewidth

η-Deletion or η-Transversal which is to delete the minimum number of vertices
in order to obtain a graph of treewidth at most η. Since by the result of Robertson
and Seymour [62] every graph of treewidth η excludes a (η + 1) × (η + 1) grid as a
minor, we have that the set F of forbidden minors of treewidth η graphs contains a
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planar graph. Similarly, for 
 > 0, Maximum Induced Subgraph with ≤ 
 copies
of Minor Models from F generalizes problems like finding a maximum induced
subgraph containing at most 
 vertex-disjoint cycles, at most 
 vertex-disjoint outer-
planar graphs, at most 
 vertex-disjoint subgraphs of treewidth t, etc. For some graph
classes, like circular-arc and weakly chordal, we show that even more general cases of
Minimum F-Deletion, when F is not requested to contain a planar graph, are still
solvable in polynomial time.

Let t ≥ 0 be an integer and ϕ be a CMSO formula. Let G(t, ϕ) be a class of
connected graphs of treewidth at most t and with property expressible by ϕ. Our
next example is the following problem.

Independent G(t, ϕ)-Packing
Input: A graph G.
Task: Find a set F ⊆ V (G) with maximum number of connected components
such that each connected component of G[F ] is in G(t, ϕ).

In other words, the task is to find a maximum vertex-disjoint packing in G of
subgraphs from G(t, ϕ) such that no two subgraphs of the packing are joined by an edge
of G. This problem trivially generalizes several well-studied problems. For example,
Maximum Induced Matching is to find a maximum induced matching which was
studied intensively for different graph classes. Similarly, when class G(t, ϕ) consists of
one graphK3, thenMaximum Induced G(t,P)-Packing is induced triangle packing.
This problem, under the name Independent Triangle Packing was studied by
Cameron and Hell [17]. Recall that Cameron and Hell defined a more general problem,
namely, Independent H-Packing, where for a finite set of connected graphs H, the
task is to find a maximum number of disjoint copies of graphs from H such that
there are no edges between the copies. Since every finite set of graphs is trivially in
G(t,P) for some t and P , Independent H-Packing is a special case of Independent
G(t, ϕ)-Packing. Another studied variant of the problem is Induced Packing of

Odd Cycles introduced by Golovach et al. in [43], where the task is to find the
maximum number of odd cycles such that there is no edge between any pair of cycles.

The next problem is an example of an annotated version of optimization problem
(1.1). Note that k is not required to be a constant.

k-in-a-Graph From G(t, ϕ)
Input: A graph G, with k annotated vertices.
Task: Find an induced graph from G(t, ϕ) containing all k annotated vertices.

It is also easy to handle variants of this problem where the annotated vertices
have specific properties, like being the endpoints of the path if G(t, ϕ) is the class of
paths. Many variants of k-in-a-Graph From G(t, ϕ) can be found in the literature,
like k-in-a-Path, k-in-a-Tree, k-in-a-Cycle. k-in-a-Path is clearly solvable in
polynomial time for k = 2. For k = 3 the problem is NP-complete already on graphs
of maximum vertex degree at most three [28]. Bienstock [6] has shown that the
following cases of k-in-a-Graph From G(t, ϕ) are NP-hard: finding an induced odd
cycle of length greater than three, passing through a prescribed vertex, and finding an
induced odd path between two prescribed vertices. Polynomial-time algorithms for
the odd path problem are known for several graph classes, including chordal [1] and
circular-arc graphs [2]. Chudnovsky and Seymour have shown that k-in-a-Tree for
k = 3 is solvable in polynomial time [20]. The complexity of the case k = 4 is open.

Theorem 5.1. Let G be an n-vertex graph given together with the set of its
potential maximal cliques ΠG. Then
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• Maximum Induced Subgraph with ≤ 
 copies of Fm-cycles,
• Maximum Induced Subgraph with ≤ 
 copies of p-cycles,
• Maximum Induced Subgraph with ≤ 
 copies of Minor Models from

F , where F contains a planar graph,
• Independent G(t, ϕ)-Packing, and
• k-in-a-Graph From G(t, ϕ)

are solvable in time |ΠG| · nO(1). Here the hidden constants in O depend on m, p, 
,
F , t, and ϕ.

Combined with Theorem 1.1, Theorem 5.1 implies the following.
Corollary 5.2. Let G be an n-vertex graph. All problems from Theorem 5.1

are solvable in time O(1.7347n).
Theorem 5.1 follows from Theorem 3.1 and Lemmas 5.4, 5.6, 5.8, 5.9, and 5.10.
Let us remark that Theorem 5.1 also holds for different modifications of these

problems, like requirements of the maximum induced subgraph being connected, of
maximum vertex degree at most some constant D, etc. Such modifications easily
capture problems like computing a longest induced path, cycle, or an induced tree
with given maximum vertex degree.

Hitting and packing cycles of length 0 (mod m). We will need the follow-
ing result of Thomassen.

Proposition 5.3 (see [69]). For all integers 
,m > 0 there exists an integer
k(
,m) > 0 such that the treewidth of a graph with at most 
 vertex-disjoint cycles
from Fm is at most k(
,m).

With the help of Proposition 5.3, we obtain the following lemma.
Lemma 5.4. Maximum Induced Subgraph with ≤ 
 copies of Fm-cycles

is a special case of Optimal Induced Subgraph for P and t with t = f(
,m),
where f depends only on m and 
.

Proof. For a graph G let F be the maximum vertex set such that G[F ] has at
most 
 vertex-disjoint cycles from Fm. We put f(
,m) = k(
,m), where k(
,m) is
the integer from Proposition 5.3. By Proposition 5.3, the treewidth of GF is at most
f(
,m).

Then Maximum Induced Subgraph with ≤ 
 copies of Fm-cycles is to
maximize |X | for the following property

P(G[F ], X) = {F = X and G[F ] contains at most 
 vertex-disjoint cycles from Fm.}

To show that P(G[F ], X) is regular, we observe that it is expressible by a CMSO
formula. Indeed, this formula expresses that for every partition of V (GF ) into 
 + 1
subsets, there is a subset containing no cycle from Fm.

Hitting long cycles. We need the following result, which is due to Birmelé,
Bondy, and Reed.

Proposition 5.5 (see [7]). Graphs without 
 disjoint cycles of length at least p
are of treewidth O(
2p).

By making use of Proposition 5.5, it is easy to prove the following lemma.
Lemma 5.6. Maximum Induced Subgraph with ≤ 
 copies of p-cycles is

a special case of Optimal Induced Subgraph for P and t with t = O(
2p).
Proof. For a graph G let F be the maximum vertex set such that G[F ] has at

most 
 vertex-disjoint cycles of length at least p. By Proposition 5.5, the treewidth
of G[F ] is at most O(
2p). Then we are maximizing |X | for the following property

P(G[F ], X) = {F = X and G[F ] contains ≤ 
 vertex-disjoint cycles of length ≥ p}.
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To show that this property is regular, we observe that the property of not having a
cycle of length at least p is expressible in CMSO. Indeed, a property of a set C of
vertices to induce a cycle is CMSO, and because p is fixed, the formula expressing the
sentence that for every subset C inducing a cycle, the number of elements is at most
p, is of constant length. Because 
 is also fixed, it is possible to express by a constant
size CMSO formula the sentence that for every partition in 
 + 1 subsets there is a
subset inducing a subgraph without a cycle of length at least p.

Excluding planar minors. The following proposition follows almost directly
from the excluded grid theorem of Robertson and Seymour [63]; see also [64].

Proposition 5.7 (see [63]). For every integer 
 > 0 and family F containing
a planar graph, there exists an integer k(
,F) > 0 such that the treewidth of a graph
with at most 
 vertex-disjoint minor models from F is at most k(
,F).

Lemma 5.8. If F contains a planar graph, then Maximum Induced Subgraph

with ≤ 
 copies of Minor Models from F is a special case of Optimal Induced

Subgraph for P and t with t = k(
,F).
Proof. For a graph G let F be the maximum vertex set such that G[F ] has at

most 
 vertex-disjoint models of minors from F . By Proposition 5.7, the treewidth of
G[F ] is at most k(
,F). The property that a graph does not contain a fixed graph as
a minor is known to be expressible in CMSO. This implies that the property

P(G[F ], X) = {F = X and G[F ] has ≤ 
 vertex-disjoint minor models from F}

is regular.
Independent packing.
Lemma 5.9. Independent G(t, ϕ)-Packing is a special case of Optimal In-

duced Subgraph for P and t.
Proof. For a graphG let F be a vertex set such that GF = G[F ] has the maximum

number of connected components, and each of the components is in G(t, ϕ). Because
the treewidth of every component does not exceed t, the treewidth of G[F ] does
not exceed t. We use cc(G[F ]) to denote the set of connected components of G[F ].
Because the fact that a vertex set C belongs to cc(G[F ]) can be expressed by an MSO
formula (see, e.g., [11]), we have that the following property is regular:

P(G[F ], X) = {[X ⊆ V (GF )] ∧ [∀C ∈ cc(GF )(C ∈ G(t, ϕ) ∧ |X ∩C| = 1)].}

k-in-a-graph. Because in k-in-a-Graph From G(t, ϕ), k is part of the input
we need the annotated variant of the main theorem (Theorem 3.9). The following
lemma follows from the definition of the problems.

Lemma 5.10. k-in-a-Graph From G(t, ϕ) is a special case of Optimal

Weighted Annotated Induced Subgraph for P and t

6. Graph classes. In this section we discuss the consequences of Theorem 5.1
for special graph classes. In particular, by Proposition 2.8, every class of graphs with
polynomially many minimal separators also has polynomially many potential max-
imal cliques. For example, every n-vertex weakly chordal graph, i.e., a graph with
no induced cycle or its complement of length greater than four, has O(n2) minimal
separators [12]. This class of graphs is a generalization of many graph classes inten-
sively studied in the literature like chordal, split, and interval graphs. Another class
of graphs of this type is the class of circular-arc graphs, intersection graphs of a set
of arcs on the circle. Every circular arc with n vertices has at most 2n2− 3n minimal
separators [51]. The class of d-trapezoid graphs is defined as follows. Let L1, . . . , Ld
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be d parallel lines in the plane. A d-trapezoid is the polygon obtained by choosing an
interval Ii on every line Li and connecting the left, respectively, right endpoint of Ii
with the left, respectively, right endpoint of Ii+1. A graph is a d-trapezoid graph if it
has an intersection model consisting of d-trapezoids between d parallel lines. Every
d-trapezoid graph has at most (2n− 3)d−1 minimal separators [53]; see also [15]. An
intersection graph of polygons enclosed by a bounding circle is is know as a polygon-
circle graph. As was observed by Suchan in [67], every polygon circle with n vertices
has O(n2) minimal separators. See Figure 1 of the introduction for the relations be-
tween most known classes of graphs with polynomially many minimal separators. We
refer to the encyclopedia of graph classes [15] for definitions of different graphs from
Figure 1.

Let us remark that the only information we need for our algorithms is the bound
on the number of minimal separators in the specific graph class. While many of
the algorithms from the literature for intersection classes of graphs strongly use the
intersection model this is not necessary for our algorithms—they produce correct
output regardless of whether the input actually belongs to the specific class of graphs.
If the number of minimal separators and thus potential maximal cliques is bounded,
our algorithm correctly solves the problem. Otherwise, the algorithm correctly reports
that the given input is not from the restricted domain. Such types of algorithms were
called robust by Raghavan and Spinrad [60]. For example, while recognition of d-
trapezoid and polygon-circle graphs is NP-complete [72, 59], our algorithm either
correctly solves the problem or outputs that the input graph is not d-trapezoid or
polygon-circle.

Corollary 6.1. All problems from Theorem 5.1 are solvable in polynomial time
on classes of graphs from Figure 1.

On several classes of graphs even more general problems can be solved. The
observation here is that for many classes of graphs from Figure 1, the treewidth of
a graph is upper bounded by some function of other parameters like the maximum
clique size or maximum degree.

For example, Yannakakis and Gavril [73] have shown that for every fixed χ, a
maximum induced subgraph of a chordal graph colorable in χ colors can be found in
polynomial time. To see why this result follows as a corollary of our theorem, let us
observe that for chordal graphs, as for all perfect graphs, the chromatic number is
equal to the maximum clique size; see, e.g., [44]. On the other hand, the treewidth of
a chordal graph is known to be equal to the maximum clique size minus one. Thus
every induced χ-colorable subgraph of a chordal graph is of treewidth at most χ− 1.
Since colorability in a constant number of colors is expressible in CMSO, the result
follows.

For other variants of colorings, we need the the following proposition due to
Gaspers et al.

Proposition 6.2 (see [40]). Let G be a graph of maximum vertex degree at most
D. Then the treewidth of G is at most

• 4D, if G is a circle graph,
• 2D, if G is a weakly chordal graph or a circular-arc graph.

Combined with Proposition 6.2, Theorem 5.1 allows us to show that on several
graph classes, in addition to problems encompassed by Corollary 6.1, an even larger
class of problems can be solved efficiently. For example, edge coloring of a graph is an
assignment of colors to the edges of the graph so that no two adjacent edges have the
same color. The chromatic index of a graph is the minimum number of colors required
for edge coloring. By Vizing’s theorem, for every graph with maximum vertex degree
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D, its chromatic index is either D or D+1. Since edge coloring in a constant number
of colors is expressible in CMSO, we conclude that the problem of finding a maximum
induced edge colorable in k colors subgraph (for a fixed constant k) is solvable in
polynomial time on circle, weakly chordal, and circular-arc graphs. Similarly, the
problems like for a fixed constant k finding a maximum induced (connected) subgraph
of maximum vertex degree at most k are also solvable in polynomial time on these
classes of graphs.

The next lemma provides a different set of applications of the main theorem for
special graph classes.

Lemma 6.3. Let G be a graph excluding some fixed graph H as a minor. Then
the treewidth of G is at most

• f(H) for some function f of H only, if G is a weakly chordal graph, and
• 3|V (H)| if G is a circular-arc graph.

Proof. Let G be a weakly chordal graph excluding H as a minor. By a theorem
from [30], there is a constant cH such that every H-minor-free graph of treewidth at
least cHk2 can be transformed by making only edge contractions either to a planar
triangulation Γk of a (k×k)-grid, or to Πk, which is a graph obtained from the (k×k)-
grid by adding a universal vertex. Since both Γk and Πk for k ≥ 3 contain an induced
cycle of length at least 6, we conclude that the treewidth of G does not exceed some
constant depending only on H . Indeed, otherwise a contraction of G, and hence G
too, would contain an induced cycle of length more than 4.

For circular-arc graphs, we can prove the statement of the lemma by using the
observation from [51] that every potential maximal clique of a circular-arc graph is
the union of at most of three cliques. Thus every circular-arc graph of treewidth at
least 3|V (H)| should contain a potential maximal clique of size at least 3|V (H)|, and
hence a clique of size at least |V (H)|. Thus every circular-arc graph of treewidth at
least 3|V (H)| contains H as a minor.

By combining Lemma 6.3 with Theorem 5.1, we obtain thatMinimum F-Deletion

is solvable in polynomial time on circular-arc and weakly chordal graphs for every fi-
nite family F of graphs. The requirement that F contains a planar graph can be
omitted in this case.

7. Conclusion. In this paper we have shown how the theory of minimal trian-
gulations combined with the power of CMSO logic can be used to obtain moderate
exponential and polynomial algorithms for various problems about induced subgraphs.

While regular properties and CMSO capture many interesting problems, it seems
that the approach based on minimal triangulations is not restricted by these settings.
Take for example the following problem.

Minimum Induced Disjoint Connected 
-Subgraphs
Input: A graph G, and a collection {T1, T2, . . . , Tp} of annotated vertices, Ti ⊆
V (G), of size at most 
.
Task: Find a set F ⊆ V (G) of minimum size such that G[F ] has connected
components C1, C2, . . . , Cp and for every 1 ≤ i ≤ p, Ti ⊆ Ci.

This problem is a generalization of the Induced Disjoint Paths, where for a
given set of p pairs of annotated vertices xi, yi, 1 ≤ i ≤ p, the task is to find a set
of paths connecting each xi to each yi such that the vertices from different paths
are not adjacent. Belmonte et al. [4] have shown that Induced Disjoint Paths is
solvable in polynomial time on chordal graphs. Because p is part of the input and
not fixed, this problem cannot be expressed by a CMSO formula of constant size. On



LARGE INDUCED SUBGRAPHS VIA TRIANGULATIONS AND CMSO 83

the other hand, by applying a modification of the dynamic programming algorithm
over potential maximal cliques and minimal separators, it is possible to show that this
problem is solvable in time proportional to the number of potential maximal cliques,
up to polynomial factor nt+O(1).

Another example can be the following problem. Let t be an integer.

Homomorphism from t-Treewidth Subgraph

Input: Graph G and H .
Task: Find a set F ⊆ V (G) of maximum size such that the treewidth of G[F ] is
at most t and there is a homomorphism from G[F ] to H .

By the classical result of Yannakakis and Gavril [73], for every fixed χ, a maximum
induced subgraph of a chordal graph colorable in χ colors can be found in polynomial
time. Because coloring into χ colors is homomorphism in a complete graph on χ
vertices, and because the treewidth of a χ-colorable chordal graph is at most χ − 1,
Homomorphism from t-Treewidth Subgraph extends this problem. However,
the property of having a homomorphism to H is not CMSO expressible because H is
part of the input. Moreover, it is easy to see that an already very special case of the
graph homomorphism problem, where we are asked for a homomorphism from a clique
of size k (and thus of treewidth k−1) to H is equivalent to deciding if H has a clique of
size at least k, which is W[1]-hard. Thus homomorphism from G to H parameterized
by the treewidth of G is W[1]-hard. But on the other hand, dynamic programming
over potential maximal cliques and minimal separators shows that Homomorphism

from t-Treewidth Subgraph is solvable in time proportional to the number of
potential maximal cliques, up to polynomial factor nO(t).

Both examples indicate that even more general frameworks capturing problems
solvable in time proportional to the number of potential maximal cliques can exist.
Building such a general framework is an interesting research direction.

Similarly, when it concerns exact exponential algorithms, in many cases the re-
quirements of Theorem 3.9 that the treewidth t of the induced subgraph is a con-
stant, can be relaxed. For example, if we want to find a maximum induced sub-
graph of treewidth at most t, the running time of the dynamic programming algo-
rithm used to prove this theorem would be O(1.7347nnt), which is O(1.7347n) for
t = o(n/ logn). This observation, combined with specific properties of planar poten-
tial maximal cliques and careful implementation of dynamic programming, was used
in [36] to obtain an O(1.7347n)-time algorithm computing a maximum induced planar
subgraph. Interestingly enough, no algorithm breaking the brute force O(2n)-barrier
for finding a maximum induced subgraph excluding some fixed graph H as a minor
is known in the literature.

Since the appearance of the preliminary version of this paper, several new applica-
tions of potential maximal cliques were discovered. For polynomial-time algorithms,
a nontrivial extension of our approach was used by Lokshtanov, Vatshelle, and Vil-
langer [55] to settle the long standing open problem about the complexity of Maxi-

mum Independent Set on P5-free graphs. In parameterized algorithms, potential
maximal cliques were used to obtain a subexponential parameterized algorithm for
the Minimum Fill-In problem [38].

Another open question concerns counting problems. Our approach does not work
for counting problems due to potential double counting in the process of computing
functions α and β. We do not exclude a possibility that with additional clever ideas
the main algorithm of the paper can also count maximum sets with regular properties
but we do not know how to do it, and leave it as an interesting open question.
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A problem which seems to be very much related but still cannot be handled
directly by our approach is Connected Feedback Vertex Set, where we are asked
to find a minimum feedback vertex set inducing a connected subgraph. Interestingly,
our approach works without a problem for Maximum Induced Tree, where the task
is to find a minimum feedback vertex set such that the remaining graph is connected,
i.e., a tree.

Another interesting question is how many potential maximal cliques can be in an
n-vertex graph? By Theorem 1.1, we know that it is at most O(1.7347n). The worst
case in the proof of Theorem 1.1 occurs in the enumeration of potential maximal
cliques of the fifth type, and this case can be improved as follows. Let us remind
ourselves that in this case, we have three connected components C1, C2, C3 of G− Ω
equal sizes. Also the sizes or neighborhoods N(Ci) are, for each i ∈ {1, 2, 3}, equal
to (2/3)|Ω|. In this situation, the set N(C1) ∩ N(C2) is “invisible” from C3, and
thus is internal to the graph N [C1 ∪ C2]. In this situation, by guessing a vertex
of u ∈ C1 and v ∈ C2, we can use the firefighters lemma in the graph G + uv
obtained from G by connecting u and v in order to enumerate all connected sets of
size |C1|+ |C2|+ |C1 ∩C2| with neighborhoods of size |C3|/2. By doing this, one can
compute component C3 in time better than O(1.7347n). Similarly, we can compute
C1, and thus Ω. Unfortunately, these arguments fall apart if Ω contains vertices which
can “see” three components. To make them work, we have to consider more detailed
balancing, by first guessing the vertices seeing the three components. By implementing
this idea accurately, and by the cost of more technical arguments, it is possible to
improve the running time of the algorithm slightly (in the third digit after the dot in
the base of the exponent). But how close is the bound O(1.7347n) to the truth? There
are graphs with roughly 3n/3 ≈ 1.442n potential maximal cliques [33]. Let us remind
ourselves that by the classical result of Moon and Moser [57] (see also Miller and
Muller [56]), the number of maximal cliques in a graph on n vertices is at most 3n/3.
Can it be that the right upper bound on the number of potential maximal cliques is
also of order 3n/3? Can we enumerate potential maximal cliques within this time? By
Theorem 3.9, this would yield a dramatic improvement for numerous exact algorithms.
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binatorica, 27 (2007), pp. 135–145.



LARGE INDUCED SUBGRAPHS VIA TRIANGULATIONS AND CMSO 85

[8] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput.
Sci., 209 (1998), pp. 1–45.

[9] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.

Thilikos, (Meta) kernelization, in Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009), Atlanta, Georgia, IEEE, Los Alamitos,
CA, 2009, pp. 629–638.

[10] H. L. Bodlaender, T. Kloks, and D. Kratsch, Treewidth and pathwidth of permutation
graphs, SIAM J. Discrete Math., 8 (1995), pp. 606–616.

[11] R. B. Borie, R. G. Parker, and C. A. Tovey, Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families,
Algorithmica, 7 (1992), pp. 555–581.
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[15] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes. A Survey, SIAM Monogr.
Discrete Math. Appl., SIAM, Philadelphia, 1999.

[16] K. Cameron, Induced matchings, Discrete Appl. Math., 24 (1989), pp. 97–102.
[17] K. Cameron and P. Hell, Independent packings in structured graphs, Math. Program., 105

(2006), pp. 201–213.
[18] K. Cameron, R. Sritharan, and Y. Tang, Finding a maximum induced matching in weakly

chordal graphs, Discrete Math., 266 (2003), pp. 133–142.
[19] J.-M. Chang, Induced matchings in asteroidal triple-free graphs, Discrete Appl. Math., 132

(2003), pp. 67–78.
[20] M. Chudnovsky and P. D. Seymour, The three-in-a-tree problem, Combinatorica, 30 (2010),

pp. 387–417.
[21] B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of finite graphs,

Inform. and Comput., 85 (1990), pp. 12–75.
[22] B. Courcelle, The monadic second-order logic of graphs. III. Tree-decompositions, minors

and complexity issues, RAIRO Inform. Théoret. Appl., 26 (1992), pp. 257–286.
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