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Abstract The MINIMUM FILL-IN problem is to decide if a graph can be triangulated
by adding at most k edges. The problem has important applications in numerical alge-
bra, in particular in sparse matrix computations. We develop kernelization algorithms
for the problem on several classes of sparse graphs. We obtain linear kernels on pla-
nar graphs, and kernels of size O(k3/2) in graphs excluding some fixed graph as a
minor and in graphs of bounded degeneracy. As a byproduct of our results, we obtain
approximation algorithms with approximation ratios O(log k) on planar graphs and
O(

√
k logk) on H -minor-free graphs. These results significantly improve the pre-

viously known kernelization and approximation results for MINIMUM FILL-IN on
sparse graphs.
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1 Introduction

A graph is chordal (or triangulated) if every cycle of length at least four has a chord,
i.e. an edge between nonadjacent vertices of the cycle. In the MINIMUM FILL-IN

problem (also known as MINIMUM TRIANGULATION and CHORDAL GRAPH COM-
PLETION) the task is to check if at most k edges can be added to a graph such that
the resulting graph is chordal. That is

MINIMUM FILL-IN

Input: A graph G = (V ,E) and a non-negative integer k.
Question: Is there F ⊆ [V ]2, |F | ≤ k, such that graph H = (V ,E ∪F) is chordal?

This is a classical computational problem motivated by, and named after, a fun-
damental issue arising in sparse matrix computations. During Gaussian eliminations
of large sparse matrices, new non-zero elements—called fill—can replace original
zeros, thus increasing storage requirements, the time needed for the elimination, and
the time needed to solve the system after the elimination. The problem of finding the
right elimination ordering minimizing the amount of fill elements can be expressed as
the MINIMUM FILL-IN problem on graphs [27]. Besides sparse matrix computations,
applications of MINIMUM FILL-IN can be found in database management, artificial
intelligence, and the theory of Bayesian statistics. The survey of Heggernes [19] gives
an overview of techniques and applications of minimum and minimal triangulations.

Unfortunately, the problem is notoriously difficult to analyze from the algorithmic
perspective. MINIMUM FILL-IN (under the name CHORDAL GRAPH COMPLETION)
was one of the 12 open problems presented at the end of the first edition of Garey
and Johnson’s book [15] and it was proved to be NP-complete by Yannakakis [31].
Due to its importance the problem has been studied intensively, and many heuristics,
without performance guarantees, have been developed [24, 27].

Very few approximation and FPT algorithms for MINIMUM FILL-IN are known.
Chung and Mumford [8] proved that every planar, and more generally, H -minor-
free, n-vertex graph has a fill-in with O(n logn) edges, thus yielding an O(n logn)-
approximation on these classes of graphs. Agrawal et al. [1] gave an algorithm with
the approximation ratio O(m1.25 log3.5 n/k + √

m log3.5 n/k0.25), where m is the
number of edges and n the number of vertices in the input graph. For graphs of degree
at most d , they obtained a better approximation factor O(((nd + k)

√
d log4 n)/k).

Natanzon et al. [22] provided another type of approximation algorithms for MINI-
MUM FILL-IN. For an input graph with a minimum fill-in of size k, their algorithm
produces a fill-in of size at most 8k2 , i.e., within a factor of 8k of optimal. For
graphs with maximum degree d , they gave another approximation algorithm achiev-
ing the ratio O(d2.5 log4 (kd)). Kaplan et al. proved that MINIMUM FILL-IN is fixed
parameter tractable (FPT) for the parameter k by giving an algorithm which runs
in O(k616k + k2mn) time [20]. Following this, faster FPT algorithms were devised
for the problem, with running times that have smaller constants in the base of the
exponent [6, 7]. Very recently, the first and third authors of this paper developed a
subexponential FPT algorithm for the problem which runs in O(2O(

√
k log k) + k2nm)

time [13].
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In this paper we study kernelization algorithms for MINIMUM FILL-IN on differ-
ent classes of sparse graphs. Kernelization can be regarded as systematic mathemat-
ical investigation of preprocessing heuristics within the framework of parameterized
complexity. In parameterized complexity each problem instance comes with a param-
eter k and the parameterized problem is said to admit a polynomial kernel if there is a
polynomial time algorithm (the degree of the polynomial is independent of k), called
a kernelization algorithm, that reduces the input instance down to an instance with
size bounded by a polynomial p(k) in k, while preserving the answer. This reduced
instance is called a p(k) kernel for the problem. If p(k) = O(k), then we call it a
linear kernel. For example, for the instance (G, k) of PLANAR MINIMUM FILL-IN,
where G is a planar graph and k is the parameter, the pair (G′, k′) is a linear kernel if
G′ is planar, the size of G′, i.e., the number of edges and vertices, is O(k), and there
is a fill-in of G with at most k fill edges if and only if there is a fill-in of G′ with at
most k′ fill edges. Kernelization has been extensively studied, resulting in polynomial
kernels for a variety of problems. In particular, it has been shown that many problems
have polynomial and linear kernels on planar and other classes of sparse graphs [2,
5, 26].

There are several known polynomial kernels for the MINIMUM FILL-IN prob-
lem [20] on general (not sparse) graphs. The best known kernelization algorithm
is due to Natanzon et al. [22], which for a given instance (G, k) outputs in time
O(k2nm) an instance (G′, k′) such that k′ ≤ k, |V (G′)| ≤ 2k2 + 4k, and (G, k) is a
YES instance if and only if (G′, k′) is. Note that not every kernelization algorithm
for fill-in in general graphs produces a sparse kernel, even if the input is a sparse
graph. For example, the algorithm of Natanzon et al. [22], while reducing the number
of vertices in the input graph G, introduces new edges. Thus the resulting kernel G′
can be very dense. In order to obtain kernels on classes of sparse graphs, we have to
design new kernelization algorithms which preserve the sparsity of the kernel.

Our Results We provide kernelization algorithms for three important and increas-
ingly general classes of graphs. For planar graphs, we obtain an O(k) kernel, and for
graphs excluding a fixed graph as a minor and graphs of bounded degeneracy, kernels
of size O(k3/2). Our reduction rules are easy to implement. Small kernels for sparse
graphs can be used as an argument explaining the successful behavior of several
heuristics for sparse matrix computations. As a byproduct of our results, we obtain
an approximation algorithm that, for an input planar graph with minimum fill-in of
size k, produces a fill-in of size O(k logk), which is within factor O(log k) of opti-
mal. For H -minor-free graphs our kernelization yields an approximation algorithm
with the ratio O(

√
k logk).

It is natural to ask why such kernelization algorithms, which preserve the graph
class, might be worth the trouble involved in developing them. We offer three rea-
sons to justify this effort. Our first reason is purely theoretical. Observe that one can
think of a kernelization algorithm as a polynomial-time encoding of an arbitrarily-
sized input instance to a “small” instance, where the encoding preserves the YES/NO
answer. Given a graph problem and, say, a planar instance of the problem, it is not a
priori clear why there must exist a polynomial-time algorithm which can encode the
answer for this instance as a small planar graph. It is eminently possible that for cer-
tain problems, reducing the total size—in terms of, say, the number of bits required
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to represent the reduced instance—while preserving the answer necessarily entails
creating so many edges that the resulting graph is, in general, non-planar. Our results
show that such is not the case for the MINIMUM FILL-IN problem, for the three graph
classes mentioned above.

A second justification for preserving planarity (or the other two properties) is
somewhat more practical. It is well-known that a number of graph problems be-
come significantly easier to solve on planar graphs and their sparse generalizations, as
compared to the same problems on general graphs. Thus, many NP-hard graph prob-
lems become polynomial-time solvable in these classes, while others become eas-
ier to approximate. More pertinently, a host of graph problems have subexponential
FPT algorithms—which run in time O(co(k)nO(1)) for some constant c—on planar,
H -minor free, and bounded-degeneracy graphs, while the best known algorithms for
these problems on general graphs take time O(cO(k)nO(1)) or worse. Reducing to a
planar kernel (or a kernel of the other two kinds), even at the expense of some in-
crease in the instance size, could thus be justified, since it may allow us to apply
significantly faster algorithms to solve the reduced instance.

As a third justification, we present the approximation algorithms which we obtain
using our kernels—see Sect. 6. These algorithms depend critically on the fact that
the kernels belong to the respective graph classes—it is not sufficient that the kernel
sizes are small.

2 Preliminaries

All graphs in this paper are finite and undirected. In general we follow the graph
terminology of Diestel [9]. For a vertex v in graph G, NG(v) is the set of neighbours
of v, and for two non-adjacent vertices u,v, NG(u, v) ≡ NG(u) ∩ NG(v). We drop
the subscript G where there is no scope for confusion. For S ⊆ V (G), we use N(S)

for the set of neighbours in V (G) \ S of the vertices in S, and N [S] ≡ N(S) ∪ S. We
also use G[S] to denote the subgraph of G induced by S, and G \ S to denote the
subgraph G[V \ S].

The operation of contracting an edge {u,v} of a graph consists of replacing its
endpoints u,v with a single vertex which is adjacent to all the former neighbours of
u and v in G. A graph H is said to be a contraction of a graph G if H can be obtained
from G by contracting zero or more edges of G. Graph H is a minor of G if H is a
contraction of some subgraph of G. A family F of graphs is said to be H -minor free
if no graph in F has H as a minor. For d ∈ N, a graph G is said to be d-degenerate if
every subgraph of G has a vertex of degree at most d . A family F of graphs is said
to be of bounded degeneracy if there is some fixed d ∈ N such that every graph in the
family is d-degenerate. Note that all graph properties discussed in this paper (being
chordal, planar, H -minor free, and d-degenerate) are hereditary, i.e., are closed under
taking induced subgraphs.

Minimal Separators Let u,v be two vertices in a graph G. A set S of vertices of G

is said to be a u,v-separator of G if u and v are in different components in the graph
G \ S. The set S is said to be a minimal u,v-separator if no proper subset of S is a
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u,v-separator of G. A set S of vertices of G is said to be a (minimal) separator of G

if there exist two vertices u,v in G such that S is a (minimal) u,v-separator of G.
Let S be a separator of a graph G. A connected component C of G \ S is said to

be associated with S, and is said to be a full component if N(C) = S.
The following proposition is an exercise in Golumbic’s book on perfect graphs [16].

Proposition 1 A set S of vertices of a graph G is a minimal u,v-separator if and
only if u and v are in different full components of G \ S.

A set S of vertices of a graph G is said to be a clique separator of G if S is a
separator of G, and G[S] is a clique.

Minimal and Minimum Fill-in Chordal or triangulated graphs are graphs contain-
ing no induced cycles of length more than three. In other words, every cycle of length
at least four in a chordal graph contains a chord. Let F be a set of edges which, when
added to a graph G, makes the resulting graph chordal. Then F is called a fill-in of G,
and the edges in F are called fill edges. A fill-in F of G is said to be minimal if no
proper subset of F is a fill-in of G, and F is a minimum fill-in if no fill-in of G con-
tains fewer edges. Notice that every minimum fill-in is also minimal, and so to find a
minimum fill-in it is sufficient to search the set of minimal fill-ins.

The following proposition relates minimal separators of a certain kind with mini-
mum fill-ins of the graph.

Proposition 2 [6] Let G be a graph, and let S be a minimal separator of G such
that G[S] is a complete graph minus one edge, and there is a vertex v in V (G) \ S

which is adjacent to every vertex in S. Then there exists a minimum fill-in of G which
contains the single missing edge in G[S] as a fill edge.

The following proposition is folklore; for a proof see, e.g., Bodlaender et al.’s
recent article on faster FPT algorithms for the MINIMUM FILL-IN problem [6].

Proposition 3 Let 〈v1, v2, v3, v4, . . . , vt 〉 be a chordless cycle in a graph G, and let
F be a minimal fill-in of G. If {v1, v3} /∈ F , then {v2, v} ∈ F for some v ∈ {v4, . . . , vt }.

The following proposition relates minimal fill-ins of a graph with minimal fill-ins
of the components of the graph obtained by deleting a minimal separator.

Proposition 4 [21] Let S be a minimal separator of G, let G′ be the graph obtained
by completing S into a clique, and let ES = E(G′) \E(G). Let C1,C2, . . . ,Cr be the
connected components of G \ S. Then ES ∪ F is a minimal fill-in of G if and only if
F = ⋃r

i=1 Fi , where Fi is the set of fill edges in a minimal fill-in of G′[N [Ci]].

If S is a minimal clique separator of G and F is any minimal fill-in of G, then
the above proposition implies that no edge of F has its end points in two distinct
components of G \ S. Since every clique separator S of G contains a minimal clique
separator S′, and since all the vertices of S \ S′ belong to the same component of
G S′, we have
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Corollary 1 Let S be a clique separator of G, and let F be a minimal fill-in of G.
Then no edge in F has its end vertices in two distinct components of G \ S.

Parameterized Complexity Parameterized algorithms [11, 12, 23] constitute one ap-
proach towards solving NP-hard problems in “feasible” time. A parameterized prob-
lem Π is a subset of Γ ∗ × N for some finite alphabet Γ . An instance of a parameter-
ized problem is of the form (x, k), where k is called the parameter. A central notion
in parameterized complexity is fixed parameter tractability (FPT) which means, for a
given instance (x, k), solvability in time f (k) ·p(|x|) where f is an arbitrary function
of k, and p is a polynomial in the input size whose degree is independent of k.

Kernelization A kernelization algorithm for a parameterized problem Π ⊆ Γ ∗ × N

takes a pair (x, k) ∈ Γ ∗ ×N as input, and runs in time polynomial in |x|+k. It outputs
a pair (x′, k′) ∈ Γ ∗ ×N, called the kernel, such that (x, k) ∈ Π if and only if (x′, k′) ∈
Π . Further, there exist computable functions f,g such that max{k′, |x′|} ≤ g(k) and
k′ ≤ f (k). The function g is referred to as the size of the kernel. If g(k) = O(k), then
we say that Π admits a linear kernel.

The kernels in this paper are obtained by applying a sequence of polynomial time
reduction rules. We use the following notational convention: for each reduction rule,
(G, k) denotes the instance on which the rule is applied, and (G′, k′) denotes the
resulting instance. We say that a rule is safe if (G′, k′) is a YES instance if and only
if (G, k) is a YES instance. We show that each rule is safe. We also show—in most
cases—that the resulting graph is in the same class as G.

The remaining part of the paper is organized as follows. Sections 3, 4, and 5 give
kernelization algorithms for planar, d-degenerate, and H -minor free graphs, respec-
tively. All the three kernels use Rule 2 of Sect. 3, and Rule 6 of Sect. 4 is used in
Sect. 5 as well. The kernels obtained are then used in Sect. 6 to get approximation
algorithms for planar and H -minor free graphs. Section 7 shows that the problem re-
mains NP-complete on 2-degenerated bipartite graphs. We conclude and state some
open problems in Sect. 8.

3 A Linear Kernel for Planar Graphs

In this section we show that the planar minimum fill-in problem has a linear kernel.
The kernel is obtained by applying four reduction rules. Rules 1, 2, and 3 are applied
exhaustively, while Rule 4 is only applied if none of the other three can be applied.
At the end of this process, the algorithm either solves the problem (giving either YES
or NO as the answer), or it yields an equivalent instance (G′, k′); k′ ≤ k where G is
of size O(k).

Reduction Rule 1 [29] Let S be a minimal clique separator in G and let C1, . . . ,Ct

be the connected components of G\S. We set G′ to be the disjoint union of the graphs
G1,G2, . . . ,Gt , where Gi is isomorphic to G[N [Ci]], 1 ≤ i ≤ t , and set k′ ← k.

By Proposition 4, we have the following lemma.

Author's personal copy
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Lemma 1 Rule 1 is safe.

Since each connected component of graph G′ produced by Rule 1 is an induced
subgraph of G, it follows that if G is planar, d-degenerate, or H -minor free, then G′
also has the same property.

Our next rule deletes vertices which are not part of any chordless cycle; as we
show later (Lemma 3), a vertex v satisfies the conditions of the rule if and only if it is
not part of any chordless cycle in the graph. This rule can be inferred from previous
work due to Tarjan [29] and Berry et al. [3].

Reduction Rule 2 For a vertex v of G, let C1,C2, . . . ,Ct be the connected compo-
nents of G \ N [v]. If for every 1 ≤ i ≤ t , the vertex set N(Ci) is a clique in G, then
set G′ ← G \ {v}, k′ ← k.

Lemma 2 Rule 2 is safe.

Proof Let H be a chordal graph obtained by adding k edges to G. Chordality is a
hereditary property, and thus the graph H ′ = H \ {v} is chordal. But H ′ is a triangu-
lation of G′ = G \ {v}, and since it is obtained by adding at most k edges, we have
that G′ has a fill-in of size at most k′ ≤ k.

For the opposite direction, let H ′ be a minimal triangulation obtained from G′ by
adding the set of fill edges F ′, where |F ′| ≤ k′. Then the graph H obtained by adding
F ′ to G is chordal. Indeed, if H was not chordal, it would contain a chordless cycle
A of length at least 4 passing through v. Let w be a vertex of A not adjacent to v and
let C be the connected component of G \ N [v] containing w. The set S = NG(C) is
a clique minimal separator in G and thus by Corollary 1, we can conclude that in H

every path from w to v should go through some vertex of S. Hence the set S contains
at least two non-consecutive (in A) vertices a and b of A. But S is a clique in G, and
thus is a clique in H . Hence, a and b form a chord in A, which is a contradiction.
Therefore, H is chordal. �

In Reduction Rule 2, we only remove a vertex, and thus this rule does not change
hereditary properties of graphs, like being H -minor free. We now state some useful
properties of graphs on which the above reduction rules cannot be applied.

Lemma 3 A vertex v in a graph G does not satisfy the conditions of Reduction Rule 2
if and only if v is part of a chordless cycle in G.

Proof Let v be a vertex in G which does not satisfy the conditions of Reduction
Rule 2. Then there exists a connected component C of G \ N [v] such that N(C)

contains two non adjacent vertices, say x, y ∈ N(v). Let P be a shortest path from x

to y in G[C ∪ {x, y}]. Since x and y are not adjacent, the path P is of length at least
two; let P = 〈x = v1, v2, . . . , v� = y〉. Since P is an induced path, 〈v, x = v1, v2, . . . ,

v� = y〉 is a chordless cycle containing v.
Conversely, let 〈v = v1, v2, v3, . . . , vr−2, vr−1, vr = v〉 be a chordless cycle in G

containing v, and let C be the connected component of G \ N [v] which contains v3
and vr−2. The vertex set N(C) does not contain the edge {v2, vr−1} and hence is not
a clique. �

Author's personal copy



8 Algorithmica (2015) 71:1–20

If Reduction Rule 2 does not apply to a graph, then every vertex in the graph has
at least one edge of every fill-in in its neighbourhood, in the following sense.

Lemma 4 Let G be a graph to which Rule 2 cannot be applied, and let F be an edge
set such that H = (V ,E ∪ F) is chordal. Then for every vertex v in G, there either
exists an edge {v, x} ∈ F , or an edge {u,w} ∈ F , where u,w ∈ N(v).

Proof From Lemma 3 it follows that every vertex v in G is part of at least one chord-
less cycle 〈v = v1, v2, v3, v4, . . . , vt 〉. From Proposition 3 it follows—by induction
on the length of the chordless cycle—that for every vertex v there is either a fill edge
{v, vi} ∈ F or an edge {v2, vt } ∈ F , for i ∈ {3, . . . , t − 1}. �

Our next reduction rule pertains to almost-clique separators.

Reduction Rule 3 [6] Let (G, k) be an input instance of MINIMUM FILL-IN. If G

has a minimal separator S such that adding exactly one edge to G[S] turns it into a
complete graph, and there exists a vertex v in V (G) \S such that all vertices of S are
adjacent to v, then

1. Turn G[S] into a complete graph by adding one edge,
2. Apply Rule 1 on the resulting minimal clique separator, and
3. Reduce k by one.

The correctness of this rule is evident from Proposition 2 and Lemma 1. We now
show that the rule preserves the planarity of the graph. Observe that if the input graph
G is planar, then |S| ≤ 4.

Claim 1 Reduction Rule 3 preserves the planarity of the graph.

Proof Let G,S be as in the statement of the rule, and let G′ be the graph obtained
by applying the rule to G. By Proposition 1, there are at least two full components,
say C1,C2, associated with S in G. Let {u,v} be the missing edge in G[S]. Notice
that for each i = 1,2, there is a uv-path in G with all internal vertices contained in
Ci . This implies that each of the connected components of the output graph G′ is a
minor of planar graph G, and thus is planar. �

Reduction Rule 4 Let (G, k) be an input instance of MINIMUM FILL-IN, where
none of the Rules 1, 2, and 3 can be applied. If |V (G)| > 6k − 4 then return a trivial
NO instance and stop.

Lemma 5 Reduction Rule 4 is safe.

Proof Let (G, k) be a YES instance where G = (V ,E) is planar and none of the
Rules 1, 2, and 3 can be applied. We now argue that |V | ≤ 6k − 4.

Let F be an edge set such that |F | ≤ k and H = (V ,E ∪ F) is chordal, and let VF

be the set of at most 2k vertices that are incident to the edges in F . We then have:
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Claim 2 Each vertex v ∈ V \ VF is adjacent to at least three vertices of VF .

Proof Since Rule 2 cannot be applied on vertex v it follows that N [v] � V . Let C be
a connected component of G \N [v] and let S = N(C) be the minimal separator of G

separating vertices of C from v. Rules 1 and 3 cannot be applied on S, so the graph
G[S] is missing at least two edges {x1, y1} and {x2, y2}. By finding a shortest path
P from xj to yj in G[C ∪ {xj , yj }] we can create a chordless cycle consisting of P

and xj , v, yj for j ∈ {1,2}. By Proposition 3 every fill-in of a chordless cycle either
adds an edge incident to vertex v on the chordless cycle or adds a fill edge between
its two unique neighbours. By definition there is no fill edge in F incident to v, and
thus both {x1, y1} and {x2, y2} are contained in F . Two edges have to be incident to
at least three vertices, and the claim follows. �

We construct a new graph B = (V ,EB) whose edge set EB is a subset of E, such
that {u,w} ∈ EB if and only if {u,w} ∈ E, u ∈ VF , and w �∈ VF . The graph B is
planar since it is a subgraph of planar graph G, and is bipartite by construction with
the two partite sets being V1 = VF and V2 = V \ VF . As noted before, |V1| ≤ 2k;
we now bound |V2|. Let F be the set of faces in any fixed planar embedding of B .
Let s = ∑

f ∈F (number of edges on the face f ). Since B is bipartite, each face has at
least four sides, and so s ≥ 4|F |. Since each edge of B lies on at most two faces in the
embedding, it is counted at most twice in this process, and so s ≤ 2|EB |. Thus 4|F | ≤
2|EB |. From this and the well-known Euler’s formula for planar graphs applied to B

(namely, |V | − |EB | + |F | ≥ 2; observe that B may be a disconnected graph) we get
|EB | ≤ 2|V | − 4 = 2(|V1| + |V2|) − 4. By Claim 2 each vertex in V2 has degree at
least 3 in B , and so |EB | ≥ 3|V2|. Combining these we get |V2| ≤ 2|V1|−4 ≤ 4k −4,
and so |V | = |V1| + |V2| ≤ 6k − 4. �

We now argue that all executions of the rules can be performed in polynomial
time. By Proposition 4, a minimal clique separator is a clique separator in every
minimal triangulation of the given graph. A minimal triangulation can be constructed
in O(nm) time [28] and the minimal separators of the triangulation which are also
cliques in G can be enumerated in O(nm) time [4]. As a consequence Rule 1 can be
executed in polynomial time. For the remaining three rules it is not hard to see that
we can check, find an instance, and execute the rule in polynomial time.

The rules are applied exhaustively in the order they are described. Rule 1 is glob-
ally applied at most n− 1 times, since all minimal clique separators we split on, even
across connected components, are the so called “non-crossing” minimal separators in
the initial graph, and a graph on n vertices has at most n − 1 pairwise non-crossing
minimal separators [25]. Each time Rule 1 is applied, at most n connected compo-
nents are created, and each of them contains at most n vertices. Thus, Rule 2 is applied
at most O(n3) times. Rule 3 is applied at most k times as one fill edge is added each
time, and finally Rule 4 is applied only once. Thus we get

Theorem 1 MINIMUM FILL-IN has a planar kernel of size O(k) in planar graphs.
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4 A Subquadratic Kernel for d-Degenerate Graphs

We now describe two reduction rules for d-degenerate graphs. The second among
these is in fact an algorithm which specifies how to apply Rule 2 and the first rule of
this section in tandem. Given a problem instance (G, k) where G is a d-degenerate
graph, the second rule outputs an equivalent instance (G′, k′) such that k′ ≤ k and
|V (G′)| = O(k3/2). However, these rules do not guarantee that the resulting graph
G′ is d-degenerate. We will later show how to obtain an equivalent d-degenerate
graph from G′ while keeping the size bounded by O(k3/2).

The next reduction rule says that if two non-adjacent vertices in a d-degenerate
graph G have many common neighbours, then the missing edge between the two
vertices belongs to every small fill-in of G.

Reduction Rule 5 Let (G, k) be an instance where G is d-degenerate. Let u,w be
two non-adjacent vertices in G, and let b = |N(u,w)|. If (b/2)(b−1−2d) > k, then
set G′ ← (V (G),E(G) ∪ {{u,w}}), k′ ← k − 1.

Lemma 6 Rule 5 is safe.

Proof Let F be a fill-in of G of size at most k. We claim that {u,w} ∈ F . For, if
{u,w} /∈ F , then let H be the chordal graph obtained by adding the edges in F to the
graph G. Since u and w are non-adjacent in H , there exists an u,w-separator in H ,
and every minimal u,w-separator in H contains all the vertices in N(u,w). Since
H is chordal, every minimal separator in H is a clique [10], and so the vertex set
N(u,w) induces a clique in H . Hence the subgraph H [N(u,w)] contains (b−1)b/2
edges, where b = |N(u,w)|. Since G is d-degenerate, the subgraph G[N(u,w)] con-
tains at most db edges. Thus |F | ≥ (b − 1)b/2 − db = (b/2)(b − 1 − 2d) > k, a con-
tradiction, and so {u,w} ∈ F . It immediately follows that F \ {{u,w}} is a fill-in of
G′ of size at most k − 1.

Conversely, if G′ has a fill-in F ′ of size at most k −1, then F ′ ∪ {{u,w}} is a fill-in
of G of size at most k. �

Reduction Rule 6 Let (G, k) be an instance where G is d-degenerate. Set (G′, k′)
to be the instance output by Algorithm 1.

Lemma 7 Rule 6 is safe.

Proof By Rule 2 it is safe to delete vertex u in Line 3. Let e1, e2, . . . , e|F ′
0| be the

set of edges in F ′
0. By Rule 5 it is safe to add edge e1 to G and decrement k. Let

our induction hypothesis be that it is safe to add edges e1, e2, . . . , ei−1 to G and
reduce k by i − 1, and let us argue that it is also safe to add edges e1, e2, . . . , ei and
reduce k by i. Let ki−1 = k − (i − 1). Edge ei = {x, y} was added to F ′

0 because
(b/2)(b − 1 − 2d) > k where b = |NG(x, y)|. In the extreme case, all the edges
e1, e2, . . . , ei−1 are added between vertices in NG(x, y), but (b/2)(b − 1 − 2d) −
(i − 1) > k − (i − 1) = ki−1 and thus it is safe to add edge ei as well and reduce
ki−1 by 1. We can now conclude that (G′, k′) in Line 8 is a YES instance if and only
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Algorithm 1 Reduction Rule 6 for d-degenerate graphs
1: procedure RULE6(G, k) � G is assumed to be d-degenerate.
2: while (Rule 2 applies to (G, k) and a vertex u ∈ V (G)) do
3: G ← G \ {u}
4: F ′

0 ← ∅
5: for (each nonadjacent pair x, y ∈ V (G) ) do
6: if (Rule 5 applies to (G, k) and the non-adjacent vertices x, y) then
7: F ′

0 ← F ′
0 ∪ {{x, y}}

8: G′ ← (V (G),E(G) ∪ F ′
0), k

′ ← k − |F ′
0|

9: D0 ← ∅
10: while (Rule 2 applies to (G′, k′) and a vertex u ∈ V (G′)) do
11: G′ ← G′ \ {u},D0 = D0 ∪ {u}
12: F0 ← E(G′) ∩ F ′

0
13: if k′ < 0 or |V (G′)| > 2k + k(2

√
k + 2d + 1) then

14: return a trivial NO instance.
15: else
16: return (G′, k′)

if (G, k) is. Finally by the safeness of Rule 2, instance (G′, k′) at Line 16 is a YES
instance if and only if (G, k) is.

It remains to argue that we can safely return a trivial NO instance if |V (G′)| >

2k + k(2
√

k + 2d + 1), where G′ is the graph at Line 13. Let us assume that (G′, k′)
is a YES instance and let F be a set of edges such that H = (V (G′),E(G′) ∪ F) is
chordal and |F | ≤ k′. Let VF be the set of vertices incident to edges of F , and let VF0

be the set of vertices incident to edges of F0.
By Line 10 in Algorithm 1, Rule 2 is applied exhaustively, and thus by Lemma 4

every vertex of V (G′) \ (VF ∪ VF0) is contained in NG′(x, y) for some edge
{x, y} ∈ F . From the fact that G′ is reduced with respect to Rule 5 (See Line 6 of
Algorithm 1), we get that |NG(x, y)| = b < 2

√
k + 2d + 1. To see this, observe that

a clique on b vertices contains b(b − 1)/2 edges while G[NG(x, y)] contains at most
db edges. Thus if b ≥ 2

√
k + 2d + 1 then b(b − 1)/2 − db = b/2(b − 1 − 2d) ≥

((2
√

k + 2d + 1)/2)(2
√

k) > k which is a contradiction to the fact that {x, y} �∈ F ′
0.

Notice that |VF | + |VF0 | ≤ 2k, since (G′, k′) is a YES instance. In particular, no-
tice that NG′(x, y) \ (VF ∪ VF0) ⊆ NG(x, y). Summing over all edges in F , we get
|V (G′)| ≤ |VF ∪ VF0 | +

∑
{x,y}∈F |NG(x, y)| ≤ 2k + k(2

√
k + 2d + 1). �

Observe that Rule 5—which is applicable only when the input graph is d-degenerate
—adds an edge to the graph. The graph resulting from applying Rule 6—which adds
the edge set F ′

0 found by applying Rule 5—is thus not necessarily d-degenerate. The
graph output by Rule 6 can be modified to become d-degenerate while preserving
the bound on its size, and this gives an O(k3/2) kernel for MINIMUM FILL-IN in
d-degenerate graphs.
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Theorem 2 MINIMUM FILL-IN has a d-degenerate kernel of size O(k3/2) in
d-degenerate graphs.

Proof Since a 1-degenerate graph is a forest, and every forest has a fill-in of size
zero—since the forest is chordal—we can assume without loss of generality that d ≥
2. Let (G, k) be an instance of MINIMUM FILL-IN where G is a d-degenerate graph.
The kernelization algorithm applies Reduction Rule 6—Algorithm 1—to (G, k) to
obtain an equivalent instance (G′, k′). If (G′, k′) is the trivial NO instance returned
by Line 14, then it is d-degenerate and its size is a constant, and the kernelization
algorithm returns (G′, k′) itself as the kernel.

Now let (G′, k′) be a non-trivial instance returned by Line 16. Observe that G′
is obtained from G by (i) deleting some vertices—Line 3,—(ii) adding edges F ′

0—
Line 6,—and (iii) deleting vertices D0—Line 11. Edge set F0 is defined in Line 12
as the set of edges in F ′

0 with both endpoints in V (G′): these are the edges added in
Line 6 which survive in G′.

The kernelization algorithm constructs a new graph G′′ from G′ by doing the
following for each edge {u,v} ∈ F0 : remove the edge {u,v}, add two new vertices
auv, buv , and make both these vertices adjacent to both u and v. The algorithm returns
(G′′, k′′) as the kernel, where k′′ = k′ + |F0|. Let G1 be the graph G′ where edge set
F0 is removed.

To see that (G′′, k′′) satisfies all the requirements, note that G1 is d-degenerate by
the hereditary property of d-degenerate graphs, and G′ = (V (G′),E(G1) ∪ F0). The
graph G′′ is d-degenerate since it can be obtained from G1 by adding a sequence of
vertices, each of degree two. Since each edge in F0 corresponds to two new vertices
in G′′, |V (G′′)| = |V (G1)| + 2|F0| ≤ 4k + k(2

√
k + 2d + 1).

It remains to argue that (G′, k′) is a YES instance if and only if (G′′, k′′) is. If
(G′, k′) is a YES instance, then let F ′ be a fill-in of G′ of size at most k′, and let H ′
be the chordal graph obtained by adding the edges in F ′ to G′. Let F ′′ = F0 ∪F ′, and
let H ′′ be the graph obtained by adding the edges in F ′′ to the graph G′′. Observe that
H ′′ can be obtained from the chordal graph H ′ by adding a sequence of vertices of
degree two each, each of which is adjacent to the two end-points of some edge in F0.
It follows that H ′′ is chordal—any potential chordless cycle in H ′′ has to contain one
of these new vertices, but every cycle passing through such a vertex has the respective
edge in F0 as a chord. Thus F ′′ is a fill-in of G′′ of size at most |F0| + k′ = k′′.

Conversely, let (G′′, k′′) be a YES instance. Observe that for each {u,v} ∈ F0,
the vertex set S = {u,v} satisfies all the conditions of Proposition 2 in G′′—S is
a minimal auv, buv-separator, G′′[S] is missing the one edge which will make it a
clique, and the vertex auv ∈ V (G′′) \ S is adjacent to every vertex in S. So there
exists a minimum fill-in F ′′ of G′′ such that F0 ⊆ F ′′, and |F ′′| ≤ k′′. Let H ′′ be the
chordal graph obtained by adding the edges in F ′′ to the graph G′′, and let H ′ be the
graph obtained by deleting all the vertices {auv, buv | {u,v} ∈ F0} from H ′′. Then H ′
can be obtained by adding the edges in F ′ = F ′′ \ F0 to G′ , and H ′ is chordal by the
hereditary property of chordality. Thus F ′ is a fill-in of G′ of size at most k′. �
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5 A Subquadratic Kernel for H -Minor Free Graphs

It is known [30] that every H -minor free graph is d-degenerate for d ≤ αh
√

log h,
where h = |V (H)| and α > 0 is a constant. As we have already shown in Sect. 4,
the application of Rule 6 on an instance (G, k) of MINIMUM FILL-IN where G is a
d-degenerate graph results in an equivalent instance (G′, k′) where G′ has O(k3/2)

vertices. However, this G′ is not necessarily H -minor free or d-degenerate. In Theo-
rem 2, we show how to transform G′ into a d-degenerate graph without significantly
increasing its size. In this section, we show how to transform G′ to an H -minor free
graph, if the starting instance G is H -minor free.

The actual transformation is somewhat involved, and so we first present an in-
formal overview of the procedure. Let (G, k) be an instance of MINIMUM FILL-IN

where G is H -minor free, and let (G′, k′) be the instance obtained by applying Al-
gorithm 1 on (G, k). For simplicity of explanation, we assume that no vertices are
deleted from G by Line 3 of Algorithm 1. Since the property of being H -minor free
is preserved when vertices are deleted, this assumption is harmless. So the graph G′
is obtained from G by (i) adding the set F ′

0 of edges, and (ii) deleting the set D0 of
vertices. Of these, the first operation is the only one which could possibly result in
G′ being not H -minor free. Thus, to convert G′ into an equivalent H -minor free in-
stance, we only need to take care of the edge set F ′

0. More specifically, we only need
to take care of the edges set F0, which is the subset of F ′

0 which survives in G′ after
the deletion of D0.

A first attempt at this would be to delete the edges in F0 from G′, and to increment
the parameter by |F0|. The motivation for this is that since the edges in F0 are forced
in any fill-in of G (See Rule 5 and Line 6 of Algorithm 1), it is sufficient to remember
their count. Unfortunately, this does not work since we delete vertices from G. Recall
that the edges in F0 are forced in any fill-in of G precisely because the end-points
of each such edge has sufficiently many common neighbours. It may so happen that
after deleting the set D0 of vertices, this property no longer holds for some (or all) of
the edges in F0, and so this naive strategy is not safe : we cannot just forget all of F0

and remember their count instead.
To deal with this, we use a somewhat more sophisticated, multi-step strategy. To

simplify the discussion, we use G̃ to denote the graph at any point during this pro-
cedure, and k̃ to denote the parameter. We start by setting G̃ = G′ \ F0, and k̃ = k′.
Observe that G̃ is H -minor free, but is not necessarily safe for the parameter k̃ (for
the reason mentioned above). First, we check if there are edges in F0 which still have
the above property which forces them into any fill-in of G̃. These can be safely “for-
gotten”, and to do this we increment k̃ by the number of such edges. We also remove
these edges from F0. Observe that the graph remains unchanged by this step. After
this, we check if we can find a distinct vertex in D0 for each edge in F0, such that the
vertex is a common neighbour of the end-points of the edge in G. If we can find such
a “matching” set of vertices in D0, then we add all the edges in F0 to G̃ and return
(G̃, k̃) as the kernel. This is clearly safe, and G̃ is H -minor free because each edge
in F0 can be thought of as replacing a path of length two (via a vertex of D0) which
was deleted from G.
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If we cannot find such a “matching”, then by Hall’s Matching Theorem there exists
a subset X of edges of the set F0 which “see” in G a strictly smaller subset—say Y —
of vertices from D0. We find such a pair of sets X,Y . We first add the vertices in Y

to G̃. Then we add to G̃ all those edges of G which are incident with vertices in Y

whose other end points are present in G̃. Finally, we delete the set X from F0 and the
set Y from D0, and set k̃ = k̃ +|X|. Observe that we restored in G̃ the neighbourhood
of the edges in X. Therefore all these edges again become forced in any fill-in of G̃,
and so this step is safe. Further, G̃ is a subgraph of G, and so is H -minor free.

We repeat the last two steps—finding a “matching” or a small neighbourhood—
till all of F0 is exhausted. This adds at most as many vertices to G̃ as the initial size
of F0. In the end we return (G̃, k̃) as the kernel.

We now make this more formal.

Theorem 3 Let H be a fixed graph. MINIMUM FILL-IN has an H -minor free kernel
of size O(k3/2) in H -minor free graphs.

Proof Let (G, k) be an instance of MINIMUM FILL-IN where G is H -minor free, and
let (G′, k0 = k′) be the instance obtained by applying Rule 6 on (G, k). If a trivial
NO instance is returned by Rule 6, then we also return NO. In the remaining part we
assume that Algorithm 1 returns from Line 16.

Let F0 be the set of edges defined in Line 12 of Algorithm 1, and let D0 be the
vertex set computed by the algorithm by the time it reaches Line 12. Let c1 be the
number |F ′

0| − |F0|. Recall that F ′
0 is the set of all fill edges which would be added

to G by Rule 5. D0 is the set of vertices which become eligibile for deletion as per
Rule 2 in the graph obtained by adding these fill edges (Line 8). F0 is the subset
of edges in F ′

0 which survive after the deletion of the vertices in D0, and c1 is the
number of edges in F ′

0 which are deleted along with the vertices of D0.
Recall that the property of being H -minor free is preserved by the deletion of

vertices (or edges). Therefore, we assume without loss of generality that no vertex
is deleted in Line 3 of Algorithm 1. Let M0 = (V0,E0) be the graph obtained from
G′ by removing all the edges in F0. For i ≥ 1, we create a sequence of graphs by
applying additional reduction rules, such that all the graphs in the sequence are H -
minor free and when none of the reduction rules applies, the resulting graph has size
O(k3/2) and so it is the desired kernel. We construct the sequence inductively, starting
from M0. To proceed, we prove that for each i ≥ 0 the tuple (Mi,Fi,Di, ki) has the
following properties:

1. Mi = (Vi,Ei) is H -minor free;
2. |Fi | = |F0| − i;
3. |Vi | = O(k3/2);
4. V (G) = Vi ∪ Di ;
5. graph Gi = (V (G),E(G) ∪ Ei) is H -minor free;
6. graph Ti = (Vi,Ei ∪ Fi) has a fill-in with ki edges if and only if G has a fill-in of

size at most k, and
7. k = c1 + |Fi | + ki .

Let us first argue that all seven properties hold for i = 0, which is the base case.
Indeed, 1: Graph M0 is obtained by deleting vertices D0 from G, and thus is H -minor
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free. 2: |F0| = |F0| − 0. 3: Since V0 is output by Rule 6 we have that |V0| = O(k3/2).
4: Because M0 = G[V \ D0], we have that V (G) = V0 ∪ D0. 5: Since E0 ⊆ E(G),
we get that the graph G0 = (V (G),E(G) ∪ E0) is H -minor free. 6: Since Rule 6 is
safe, it follows that T0 = (V0,E0 ∪ F0) has a fill-in with k0 = k′ edges if and only if
G has a fill-in with k edges. 7: Since Rule 6 is safe we have that c1 + |F0| + k0 =
|F ′

0| − |F0| + |F0| + k0 = |F ′
0| + k0 = k.

For the induction step, for i ≥ 0, we assume that all properties hold for (Mi,Fi,

Di, ki). We construct a new tuple (Mi+1,Fi+1,Di+1, ki+1) from (Mi,Fi,Di, ki) by
applying the three reduction rules below in the order they are given. The first rule
increments the value of i. The second rule is applied only if the first cannot be applied,
and recognizes kernels that can be returned directly. The third rule is applied only if
none of the previous two can be applied, and ensures that the first rule can be applied
again.

Reduction Rule 7 For each edge {u,w} ∈ Fi define b = |NMi
(u,w)|. Let {u,w} be

an edge in Fi such that (b/2)(b−1−2d) > k, where d is the degeneracy of the input
graph G. Then Mi+1 = Mi , Fi+1 = Fi \ {{u,w}}, ki+1 = ki + 1, Di+1 = Di .

Claim 3 Rule 7 is safe; that is, it preserves all the seven properties.

Proof

1. Mi+1 is H -minor free, as Mi+1 = Mi ;
2. |Fi+1| = |F0| − (i + 1), as |Fi+1| = |Fi | − 1;
3. |Vi+1| is O(k3/2), as Vi+1 = Vi ;
4. V (G) = Vi+1 ∪ Di+1, as Vi+1 = Vi and Di+1 = Di ;
5. graph Gi+1 = (V (G),E(G) ∪ Ei+1) is H -minor free, as Ei+1 = Ei ;
6. graph Ti+1 = (Vi+1,Ei+1 ∪ Fi+1) can be triangulated by the adding ki+1 edges if

and only if G can be triangulated by the adding k edges, see the arguments below,
and

7. k = c1 + |Fi+1| + ki+1 as |Fi+1| = |Fi | − 1 and ki+1 = ki + 1.

The remaining claim (item 6) is that there is a fill-in of graph Ti+1 = (Vi+1,Ei+1 ∪
Fi+1) with ki+1 edges if and only if the fill-in of G is at most k. Notice that ki+1 ≤ k

and by Rule 5 there is no triangulation of Ti+1 with at most k fill edges that do not
add the edge {u,w}. Thus Ti+1 can be triangulated by adding ki+1 edges if and only
if Ti can be triangulated by adding ki edges and the claim holds. �

Let us assume that Rule 7 cannot be applied to the tuple (Mi,Fi,Di, ki). Then for
every edge {u,w} ∈ Fi there exists at least one vertex x ∈ Di such that x ∈ NG(u) ∩
NG(w).

Construct a bipartite graph Bi = (Pi,Qi,Zi), where there is a vertex vuw ∈ Pi for
each edge {u,w} ∈ Fi , there is a vertex x ∈ Qi for each vertex x ∈ Di , and there is
an edge {vuw, x} ∈ Zi if and only if u,w ∈ NG(x).

Reduction Rule 8 If Bi has a matching saturating Pi , then return the instance
(GH = (Vi,Ei ∪ Fi), ki).
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Claim 4 Rule 8 is safe. That is, (GH , ki) is a YES instance if and only if (G, k) is
a YES instance, graph GH is H -minor free if G is H -minor free, and |V (GH )| is
O(k3/2).

Proof Let Yi be a matching in Bi which saturates Pi . By the induction assumption
(item 3), |Vi | is O(k3/2), so |V (GH )| is O(k3/2). The fact that (GH , ki) is a YES in-
stance if and only if (G, k) is a YES instance, follows from the induction assumption
(point 6). Finally let us argue that GH is H -minor free if and only if G is H -minor
free.

Let (u1,w1, x1), (u2,w2, x2), . . . , (u|Fi |,w|Fi |, x|Fi |) be triples such that {uj ,wj } ∈
Fi and {vuj wj

, xj } is an edge of the matching Yi for 1 ≤ j ≤ |Fi |. By the induction
assumption (item 5), the graph Gi = (V (G),E(G) ∪ Ei) is H -minor free, where
V (G) = Vi ∪ Di . Then graph GH = (Vi,Ei ∪ Fi) is also H -minor free if we can
argue that GH is a minor of Gi .

To argue that GH is a minor of Gi , we delete every vertex in Di \{x1, x2, . . . , x|Fi |}
from Gi and delete all edges incident to xj except {wj ,xj } and {uj , xj } for 1 ≤ j ≤
|Fi |. Then we contract edge {uj , xj } for 1 ≤ j ≤ |Fi |. The obtained graph GH =
(Vi,Ei ∪ Fi) is a minor of Gi . �

By Hall’s Theorem [18], the bipartite graph Bi either has a matching saturating
Pi , or there is a vertex set P ′ ⊂ Pi such that |NBi

(P ′)| < |P ′| in Bi . Furthermore, the
set P ′ can be found in polynomial time. We now apply the following rule, and then
apply Reduction Rule 7 to the resulting tuple.

Reduction Rule 9 If there exists a subset P ′ of Pi such that |NBi
(P ′)| < |P ′|, define

X to be the set of vertices in V (G) such that x ∈ X if and only if x ∈ NBi
(P ′). Then

create a new tuple (M ′
i = Gi[Vi ∪ X],Fi,D

′
i = Di \ X,ki).

Claim 5 Rule 9 is safe, that is, all seven properties hold for the new tuple (M ′
i , Fi,

D′
i , ki).

Proof

1. M ′
i is H -minor free, as M ′

i is an induced subgraph of Gi which is H -minor free;
2. |Fi | = |F0| − i, as Fi is unchanged;
3. |V (M ′

i )| = O(k3/2), see the argument below;
4. V (G) = V (M ′

i ) ∪ D′
i , as V (G) = V (Mi) ∪ Di and V (M ′

i ) = V (Mi) ∪ X and
D′

i = Di \ X;
5. graph Gi = (V (G),E(G) ∪ Ei) is H -minor free, as E(G) ∪ Ei is unchanged;
6. graph T ′

i = (Vi ∪X,Ei ∪Fi) can be triangulated by the addition of ki edges if and
only if G can be triangulated by the addition of k edges—see the argument below;

7. and k = c1 + |Fi | + ki as Fi and ki are unchanged.

(item 3) Let FP ′ be the subset of Fi such that {u,w} ∈ FP ′ if and only if vuw ∈ P ′.
By adding vertex set X to M ′

i we obtain the property that NM ′
i
(u,w) = NG(u,w).

The subsequent application of Reduction Rule 7 will thus remove all edges of FP ′
from Fi . Since |X| < |P ′| at most |F0| vertices are added over all executions of this
rule.
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(item 6) Let x1, x2, . . . , x|X| be the vertices of X = V (M ′
i ) \ V (Mi) in the order

they were removed by Rule 2. This means that the graph (V (M ′
i ),E(M ′

i ) ∪ F0) is
an induced subgraph of the graph to which Rule 2 was applied when vertex x1 was
deleted. All edges in F0 \ Fi are contained in every minimum solution by Rule 7.
Thus, it is still safe by Rule 2 to delete vertex x1 from graph M ′

i . Using this argument
recursively on vertices x1, x2, . . . , x|X| and by deleting the edges of F ′

0, the graph Mi

is obtained again. Thus we can conclude that T ′
i can be triangulated by the addition

of ki edges if and only if Ti can be triangulated by the addition of ki edges. �

Observe that if Rule 9 adds back the vertex set X, then Rule 7 will be applied at
most |P ′| times where |X| < |P ′|. When tuple (Mj ,Fj ,Dj , kj ) where j = |F0| is
reached, then our desired kernel is also obtained, since Fj = ∅. We can now conclude
that a problem instance (GH = Mj,kH = kj ) is H -minor free, kH ≤ k, |V (GH )| =
O(k3/2), and (GH , kH ) is a YES instance if and only if (G, k) is, by the conditions
of the induction.

Finally, it is easy to check that all the reduction rules can be implemented in poly-
nomial time. �

6 Approximation Algorithms

As a byproduct of our kernelization algorithms, we obtain improved approximation
algorithms for the MINIMUM FILL-IN problem on planar and H -minor free graphs.
We need the following result of Chung and Mumford [8].

Proposition 5 [8] Let H be a fixed graph, and let G be an n-vertex graph that is H -
minor free. Then there is a triangulation GT of G such that |E(GT )| = O(n logn),
and such a triangulation can be found in polynomial time.

Together with our improved kernels, this result yields approximate solutions for
MINIMUM FILL-IN, with ratio O(

√
k logk) for H -minor-free graphs, and with ratio

O(log k) for planar graphs.

Theorem 4 Let k be the minimum size of a fill-in of a graph G. There is a polynomial
time algorithm which computes a fill-in of G of size O(k logk) if G is planar and of
size O(k3/2 logk) if G is H -minor free for some fixed graph H .

Proof Let G be a planar graph. For each k ∈ {1,2, . . . , n2}, in this order, we run
the algorithm of Theorem 1 on (G, k), and compute the maximum value k� of the
parameter k for which the algorithm gives us a NO answer. This guarantees that there
is no fill-in of G of size k∗. We then run the same algorithm on the instance (G, k�+1)

to obtain a planar kernel G′ on at most 6(k� + 1) vertices. Using Proposition 5, we
obtain a fill-in of G′ with at most c(k� + 1) log (k� + 1) edges, for some constant c.
Using standard backtracking, the solution for G′ can be transformed into a fill-in of
G with O(k log k) fill edges.
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The arguments when G is an H -minor free graph are almost identical to the planar
case. The only difference is that we use Theorem 3 instead, which provides us with
an H -minor free kernel of size O(k3/2). �

It is not clear how to use the above technique to get a better approximation al-
gorithm for d-degenerate graphs. It is known that there are infinite recursively enu-
merable classes G of graphs such that for every G ∈ G , both the treewidth and the
number of edges are θ(|V (G)|): for example, explicit constructions of bounded-
degree expanders give such classes [17]. Thus, any minimal triangulation of such
a graph would have a clique of size θ(|V (G)|) and thus the number of fill edges
would be θ(|V (G)|2) for this graph. Let k be the minimum size of a fill-in of such
a d-degenerate graph. Then we can obtain a d-degenerate kernel of size O(k3/2) by
Theorem 2. Since the best upper bound we have on the number of edges in a min-
imum fill-in of this kernel is quadratic, the best solution obtained from this kernel
using the ideas in the proof of Theorem 4 would have O(k3) edges. But this is worse
than the best known approximate solution for general graphs, which has O(k2) edges.

7 NP-completeness

Before concluding we shows that the MINIMUM FILL-IN problem remains NP-
complete on bipartite 2-degenerate graphs.

Theorem 5 The MINIMUM FILL-IN problem is NP-complete on bipartite 2-degene-
rate graphs.

Proof Yannakakis [31] proved that deciding if a graph G can be triangulated by the
addition of k edges is NP-complete. We will reduce from the MINIMUM FILL-IN

problem on general graphs to MINIMUM FILL-IN on bipartite 2-degenerate graphs.
Let us define a new graph G′ from G, where G′ has one vertex vw for each ver-

tex w ∈ V (G) and two vertices auw, buw for each edge {u,w} ∈ E(G). For each
edge {u,w} ∈ E(G) edges {vw,auw}, {vw,buw}, {vu, auw}, {vu, buw} are contained in
E(G′). Let V1,V2 be a partitioning of V (G′) such that vw ∈ V1 for each w ∈ V (G)

and cuw ∈ V2 for each edge {u,w} ∈ E(G) and each c ∈ {a, b}. Notice that graphs
G[V1] and G[V2] are independent sets, and thus G′ is a bipartite graph, where every
vertex in V2 is of degree 2. We can conclude that G′ is bipartite 2-degenerate.

We will now argue that G can be triangulated by the addition of k edges if and
only if G′ can be triangulated by adding at most k + |E(G)| edges.

In the forward direction, let F be an edge set such that H = (V ,E ∪ F) is chordal
and |F | ≤ k. We will show that G′ can be triangulated by the addition of k + |E(G)|
fill edges. For each vertex auw of G′, add edge {vu, vw} as a fill edge. This makes
N(cuw) into a clique for each c ∈ {a, b}, and thus by Rule 2 it is safe to delete auw

and buw . Finishing this procedure results in graph G after adding |E(G)| fill edges.
By definition of edge set F , the graph H = (V ,E ∪ F) is chordal and thus G′ can be
triangulated by the addition of k + |E(G)| fill edges.

For the opposite direction we assume that G′ can be triangulated by an edge set F ′
of size k + |E(G)|. Observe that vu, vw is a minimal auw, buw-separator that can be
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completed into a clique by the addition of a single edge, for each edge {u,w} ∈ E(G).
Furthermore auw, buw ∈ NG′(vu), and thus by Proposition 2 there exists a minimum
triangulation of G′ where {vu, vw} is a fill edge. We can safely add the edge {vu, vw}
as a fill edge in G′ for each edge {u,w} ∈ E(G). By Rule 2 vertex cuw can safely
be deleted for each edge {u,w} ∈ E(G) and c ∈ {a, b} since NG′(cuw) is a clique.
By Proposition 2 and Rule 2 it follows that G can be triangulated by the addition
of (k + |E(G)|) − |E(G)| fill edges if and only if G′ can be triangulated by adding
k + |E(G)| edges, and the result follows. �

8 Conclusion and Open Questions

In this paper we obtained new algorithms for MINIMUM FILL-IN on several sparse
classes of graphs. Specifically, we obtained a linear kernel for the problem on planar
graphs and kernels of size O(k3/2) in H -minor free graphs and in graphs of bounded
degeneracy. Using these kernels, we obtained approximation algorithms with ratios
O(log k) for planar graphs, and O(

√
k logk) for H -minor free graphs. These results

significantly improve known kernelization and approximation results for this prob-
lem. We note that for any g ∈ N, the same set of reduction rules and essentially the
same argument as for the planar case shows that MINIMUM FILL-IN has a kernel of
size O(k) in graphs of genus at most g.

MINIMUM FILL-IN on general graphs is NP-complete [31]. However, it is a very
old open question if the problem is NP-complete on planar graphs [8]. In Sect. 7
we show that the proof of Yannakakis [31] can be extended to bipartite 2-degenerate
graphs.

We conclude with a number of open questions. The complexity of the problem on
planar and on H -minor free graphs is still open. From the approximation perspective,
we leave the possibility of obtaining an o(logk)-approximation on planar graphs as
an open problem.

From the perspective of kernelization, it would be very interesting to find out if
there is a linear kernel for MINIMUM FILL-IN on H -minor free graphs. We were
not able to find any evidence that the existence of an O(k/ logk) kernel on planar
graphs would contradict any complexity assumption. Can it be that the problem has
a sublinear kernel?
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