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We investigate the effect of certain natural connectivity constraints on the parameterized 
complexity of two fundamental graph covering problems, namely Vertex Cover and Edge 
Cover. Specifically, we impose the additional requirement that each connected component 
of a solution have at least t vertices (resp. edges from the solution) for a fixed positive 
integer t, and call the problem t-Total Vertex Cover (resp. t-Total Edge Cover). In both 
cases the parameter k is the size of the solution. We show that

• both problems remain fixed-parameter tractable with these restrictions, with running 
times of the form O�(ck) for some constant c > 0 in each case, where the O� notation 
hides polynomial factors;

• for each fixed t ≥ 2, t-Total Vertex Cover has no polynomial kernel unless CoNP ⊆
NP/poly;

• for each fixed t ≥ 2, t-Total Edge Cover has a linear vertex kernel of size t+1
t k.

These results significantly improve earlier work on these problems. We illustrate the 
utility of the technique used to solve t-Total Vertex Cover, by applying it to derive an 
O�(ck)-time FPT algorithm for the t-Total Edge Dominating Set problem.
Our no-poly-kernel result for t-Total Vertex Cover, and the known NP-hardness result for 
t-Total Edge Cover, are in stark contrast to the fact that Vertex Cover has a 2k vertex 
kernel, and that Edge Cover is solvable in polynomial time. This illustrates how even 
the slightest connectivity requirement results in a drastic change in the tractability of 
problems—the curse of connectivity!

© 2014 Elsevier B.V. All rights reserved.
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version, the current article also includes an FPT algorithm for the t-Total Edge Dominating Set problem which was not discussed in the shorter version.
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1. Introduction

Given a graph G and a positive integer k as input, the Vertex Cover problem asks whether G has a set of at most k
vertices—a vertex cover of G—such that every edge of G has at least one of these vertices as an end-point. The Edge Cover

problem is quite similar: given (G, k) as input, the question here is whether G has a set of at most k edges—an edge cover
of G—such that every vertex in G is an end-point of at least one of these edges.

Vertex Cover is a classical NP-hard problem [2] whose parameterized version with k as the parameter is arguably 
the most investigated problem in parameterized algorithmics. The fastest known FPT algorithm for Vertex Cover runs in 
O�(1.2738k) time [3], and the problem has a kernel with at most 2k vertices [4]. The parameterized complexity of Vertex 
Cover—with various parameterizations—continues to be actively investigated. Recent results of this nature include faster FPT 
algorithms for certain “above-guarantee” versions of Vertex Cover [5–7]. In contrast, the Edge Cover problem is solvable in 
polynomial time [8].

We investigate the parameterized complexity of variants of Vertex Cover and Edge Cover where additional connectivity 
constraints are imposed on the solution set S . More specifically, for each fixed integer t; 1 ≤ t ≤ k we define variants of the 
two problems, named t-Total Vertex Cover and t-Total Edge Cover, respectively, as follows.

t-Total Vertex Cover

Input: A graph G = (V , E), and a non-negative integer k.
Parameter: k
Question: Does G have a vertex cover S of size at most k such that each connected component of the subgraph of G

induced by S contains at least t vertices?

t-Total Edge Cover

Input: A graph G = (V , E), and a non-negative integer k.
Parameter: k
Question: Does G have an edge cover T of size at most k such that each connected component of the subgraph of G

induced by T contains at least t edges?

Observe that for t = 1, these problems are identical to Vertex Cover and Edge Cover, respectively. Observe also that if 
k < t then the answer is trivially No for both the problems. Hence the interesting values of t are those in the range 1 ≤ t ≤ k. 
A vertex cover satisfying the conditions specified in the first problem is called a t-total vertex cover of the graph G; an edge 
cover satisfying the conditions of the second problem is called a t-total edge cover of G .

The underlying classical problems were first investigated by Fernau and Manlove [9], who showed that t-Total Vertex 
Cover is NP-hard for each fixed t ∈ N; 1 ≤ t ≤ k, and that t-Total Edge Cover is NP-hard for each fixed t ∈ N; 2 ≤ t ≤ k. 
They also initiated the study of the parameterized variants of these problems.

Małafiejski and Żylinski studied 2-Total Edge Cover as a model of weak cooperation of guards in an art gallery prob-
lem [10]. Both Fernau and Manlove [9] and Małafiejski and Żylinski [10] derived a Gallai type identity which says that under 
certain conditions, the sum of (i) the cardinality of the largest possible packing of a graph with vertex-disjoint copies of a 
path of length two and (ii) the size of the smallest 2-total edge cover, equals the number of vertices of the graph. Fernau 
and Manlove also derived a generalization of this result to every fixed integer t ≥ 2 [9]. Combining this with the result 
of Kirkpatrick and Hell [11], who proved that finding a packing of vertex-disjoint copies of trees on t edges in a graph is 
NP-hard, they showed that t-Total Edge Cover is NP-complete for each fixed t ≥ 2.

Besides the art gallery problem mentioned above, further motivation for studying these problems can be drawn from 
certain models of fault-tolerant computing [12]. These problems are interesting from the point of view of computational 
biology as well, due to the close relation that these problems have to variants of the so-called Test Cover Problem [13].

Fernau and Manlove [9] derived a number of results for these problems. Apart from the NP-hardness results men-
tioned above, they showed that for each fixed t ∈ N; 2 ≤ t ≤ k the t-Total Vertex Cover problem has a polynomial-time 
2-approximation, but cannot be approximated within a factor of 10

√
5 − 21 − ε for any ε > 0 in polynomial time unless 

P = NP. They further showed that for each fixed t ∈ N; 2 ≤ t ≤ k the t-Total Edge Cover problem has a polynomial-time 
2-approximation, and that there exists a constant δ > 1 such that 2-Total Edge Cover cannot be approximated within a fac-
tor of δ in polynomial time unless P = NP. As for the parameterized versions of these problems, they showed that (i) 2-Total 
Vertex Cover is FPT and can be solved in O�(2.3655k) time, and that (ii) for each fixed t ∈N; 2 ≤ t ≤ k, t-Total Edge Cover

is FPT and can be solved in O�((2k)2k) time. They also claimed to prove that the t-Total Vertex Cover problem has a 
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kernel of size O(k(k + t)) for each fixed t ∈ N; 2 ≤ t ≤ k. However, as we show in this paper, such is not the case unless 
CoNP ⊆ NP/poly, which is considered unlikely.1

1.1. Our results

We advance the study of the parameterized complexity of t-Total Vertex Cover and t-Total Edge Cover initiated by 
Fernau and Manlove [9]. We significantly improve their results and obtain several new results; in particular, we complete 
the picture on how even the slightest connectivity requirement dramatically changes the complexity of these problems. As 
noted above, Edge Cover has been known to be solvable in polynomial time for over half a century, and it was recently 
shown [9] that the least possible connectivity requirement on the solution set T , namely that each connected component 
of the graph induced by T have at least 2 edges from T , makes the problem NP-hard.

We show a similar result for t-Total Vertex Cover, not in the context of classical complexity, but within the ambit of 
parameterized complexity. It is a well-known result in parameterized complexity that Vertex Cover has a kernel on at most 
2k vertices [4]. We show that adding a connectivity constraint results in a dramatic change in kernelizability: we show that 
for any fixed 2 ≤ t ≤ k, the t-Total Vertex Cover problem has no polynomial-size kernel unless CoNP ⊆ NP/poly, which is 
deemed unlikely in complexity theory. We complement this no-polynomial-kernel result with results on the fixed-parameter 
tractability of t-Total Vertex Cover and t-Total Edge Cover. Specifically, we show the following for each fixed integer 
2 ≤ t ≤ k:

• t-Total Vertex Cover can be solved in O(16.1k+O(log2 k) × nO(1)) time. To obtain this result we combine the classical 
result of Otter [14] on the number of unlabelled trees with a modification of the colour-coding technique of Alon et 
al. [15];

• t-Total Edge Cover has a kernel on at most t+1
t k vertices;

• t-Total Edge Cover can be solved in O(2
t+1

t k+O(
√

k) × nO(1)) time. To obtain this result, we combine kernelization 
techniques with a classical result of Hardy and Ramanujan [16] and the Fast Fourier Transform [17].

The techniques used to derive the FPT algorithm for t-Total Vertex Cover can be used to solve the “t-total” versions of 
other problems which share a certain structural similarity with t-Total Vertex Cover. To illustrate this point, we use these 
techniques to derive an FPT algorithm for t-Total Edge Dominating Set.

1.2. Organization of the rest of the paper

In Section 2 we set down some basic definitions related to graph theory and parameterized complexity, and describe 
the results which we use to obtain kernel lower bounds. We take up the t-Total Vertex Cover problem in Section 3. In 
Section 3.1 we show that the problem does not admit polynomial kernels unless CoNP ⊆ NP/poly. In Section 3.2 we present 
our FPT algorithm for the problem. In Section 4 we turn to the t-Total Edge Cover problem. We present our improved 
kernel for this problem in Section 4.1. In Section 4.2 we describe our FPT algorithm for the problem. We describe an FPT 
algorithm for t-Total Edge Dominating Set in Section 5. We conclude in Section 6.

2. Preliminaries

In this section we state some basic definitions related to graph theory and parameterized complexity, and give an 
overview of the notation used in this paper. We use G = (V , E) to refer to a graph with vertex set V (with n := |V |). 
A graph G ′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E . The subgraph G ′ is called an induced subgraph of G if 
E ′ = {uv ∈ E | u, v ∈ V ′}. In this case, G ′ is also called the subgraph induced by V ′ and is denoted G[V ′]. For a set S ⊆ E of 
edges of G , we use V (S) to denote the set of all vertices which are end-points of at least one edge in S , and G(S) to denote 
the subgraph (V (S), S) of G; this is called the subgraph induced by S . Let X, Y be two vertex subsets of graph G . We say 
that the set X dominates the set Y if for every vertex y ∈ Y , there is a vertex x ∈ X such that {x, y} is an edge in graph G . 
A vertex subset D of graph G = (V , E) is a dominating set of G if D dominates V .

To describe running times of algorithms we sometimes use the O� notation. Given f : N → N, we define O�( f (n)) to 
be O ( f (n) · p(n)), where p(·) is some polynomial function. That is, the O� notation suppresses polynomial factors in the 
expression for the running time.

1 The flaw in the proof of Fernau and Manlove [9, Proof of Theorem 7] is in the sentence “But |E2| ≥ |V 2|, since each vertex in V 2 has degree at least 2”. 
Specifically: while each vertex in the set V 2 does have degree at least 2 in the graph G ′ , the set E2 is the set of edges in the induced subgraph G ′[V 2], 
and it is not necessarily the case that each vertex in the set V 2 has degree at least 2 in this subgraph. Hence their upper bound on |V 2| in terms of 
|E2| is fallacious. To see a concrete instance of this bug, consider an input instance (G = (V , E), k) of t-Total Vertex Cover where (i) n = |V | 
 k > 2, 
(ii) V = A � B , (iii) |A| = k and G[A] is connected, (iv) B is an independent set in G , and (v) every vertex in B has all of A as its neighbourhood. Then 
(G, k) is a Yes instance and A is a t-total vertex cover of G of size at most k. The three reduction rules in the proof of Fernau and Manlove mark all of A
and none of B and set k′ = 0, and do nothing else. Further, V 2 = B and E2 = ∅ and so the inequality |E2| ≥ |V 2| does not hold, although each vertex in V 2

does have degree k > 2 in G ′ = G .
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A parameterized problem Π is a subset of Σ∗ ×N, where Σ is a finite alphabet. An instance of a parameterized problem 
is a tuple (x, k), where k is called the parameter. A central notion in parameterized complexity is fixed-parameter tractability 
(FPT) which means, for a given instance (x, k), decidability in time f (k) · p(|x|), where f is an arbitrary function of k and p
is a polynomial in the input size. The notion of kernelization is formally defined as follows.

Definition 1 (Kernelization). (See [18,19].) A kernelization algorithm for a parameterized problem Π ⊆ Σ∗×N is an algorithm 
that, given (x, k) ∈ Σ∗ × N, outputs, in time polynomial in |x| + k, a pair (x′, k′) ∈ Σ∗ × N such that (a) (x, k) ∈ Π if and 
only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable function. The output instance x′ is called the kernel, 
and the function g is referred to as the size of the kernel. If g(k) = kO (1) (resp. g(k) = O (k)) then we say that Π admits a 
polynomial (resp. linear) kernel.

2.1. Kernel lower bound machinery

We now describe the notions and results from the recently developed theory of kernel lower bounds [20–22] which are 
used to prove lower bounds on the size of kernels. We begin by associating a classical decision problem with a parameter-
ized problem in a natural way, as follows:

Definition 2 (Derived classical problem). (See [21].) Let Π ⊆ Σ∗ × N be a parameterized problem, and let 1 /∈ Σ be a new 
symbol. We define the derived classical problem associated with Π to be {x1k|(x, k) ∈ Π}.

That is, to obtain the “unparameterized”, classical version of a parameterized problem instance, we merely write the 
parameter out in unary.

Definition 3. (See [21].) Let P and Q be parameterized problems. We say that P is polynomial parameter reducible to Q , 
written P ≤ppt Q , if there exists a polynomial time computable function f : Σ∗ ×N → Σ∗ ×N and a polynomial p : N →N

such that for all x ∈ Σ∗ and k ∈ N,

• (x, k) ∈ P ⇐⇒ f (x, k) ∈ Q , and,
• f (x, k) = (x′, k′) �⇒ k′ ≤ p(k)

We call f a polynomial parameter transformation (or a PPT) from P to Q .

The following theorem captures the reason why this notion of a reduction is useful in showing kernel lower bounds:

Theorem 1. (See [21, Theorem 3].) Let P and Q be parameterized problems whose derived classical problems are P c, Q c, respectively. 
Let P c be NP-complete, and Q c ∈ NP. Suppose there exists a PPT from P to Q . Then, if Q has a polynomial kernel, then P also has a 
polynomial kernel.

As a consequence, to show that the problem Q (conditionally) has no polynomial kernels, it is sufficient to show that 
the problem P —again, conditionally—has no polynomial kernels, and then exhibit a PPT from P to Q . Observe that this is 
quite similar to the way in which polynomial-time reductions are used in classical complexity to propagate NP-hardness 
results.

3. Computing total vertex covers

We now consider the t-Total Vertex Cover problem. The problem is NP-complete for all each fixed integral value of t; 
1 ≤ t ≤ k. For t = 1, t-Total Vertex Cover is the Vertex Cover problem, and for instances which have t = k the problem be-
comes identical to the Connected Vertex Cover problem2; these are two classical NP-complete problems [23, Problem GT1]. 
For any fixed t ∈ N; 2 ≤ t ≤ k, the t-Total Vertex Cover problem has been shown to be NP-hard by a reduction from Vertex 
Cover [9, Theorem 3]; we give an alternate proof of NP-hardness in Proposition 1 below.

2 It is not very rigorous to talk about setting t = k in t-Total Vertex Cover, and to refer to the resulting problem as Connected Vertex Cover. This is 
because in t-Total Vertex Cover, t is a fixed number and is not part of the input (so we cannot set it equal to k), while in Connected Vertex Cover the 
number k is part of the input. However, every instance of t-Total Vertex Cover for which k happens to be equal to t can be thought of as an instance of
Connected Vertex Cover. Hence for illustrative purposes alone, we slightly abuse the notation and terminology; we talk about setting t = k in a t-Total 
Vertex Cover instance, and refer to the resulting problem as Connected Vertex Cover.
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3.1. Kernelization complexity

Recall that when t = 1, t-Total Vertex Cover is just Vertex Cover, and for instances which satisfy t = k it becomes 
identical to Connected Vertex Cover. The former problem has a vertex kernel of size at most 2k [4], and the latter problem 
does not have a polynomial kernel [22]. It turns out that this change in polynomial kernelizability occurs at the smallest 
possible value of t .

Theorem 2. For each fixed t ≥ 2, t-Total Vertex Cover has no kernel of size bounded by kc, for any fixed constant c, unless CoNP ⊆
NP/poly and the Polynomial Hierarchy collapses to the third level.

As we show later in this section, the derived classical problem—the “unparameterized” version—of t-Total Vertex Cover

is NP-complete for each fixed t ∈ N; 2 ≤ t ≤ k (Proposition 1). To obtain our lower bound on the kernel size, we introduce 
an intermediate problem named Red Blue Dominating Set. As we show below, the unparameterized version of this problem 
is NP-complete, and it is known that the problem does not admit polynomial kernels. For each fixed t; 2 ≤ t ≤ k, we give a 
polynomial parameter transformation from Red Blue Dominating Set to t-Total Vertex Cover, which implies, by Theorem 1, 
that the latter problem has no polynomial kernel. We start off by defining the intermediate problem:

Red Blue Dominating Set

Input: An undirected bipartite graph G = (R � B, E), and a positive integer k.
Parameter: k + |B|
Question: Does there exist a set D ⊆ R of at most k vertices of G such that D dominates B?

The derived classical problem corresponding to Red Blue Dominating Set, defined below, is NP-complete.

Padded Red Blue Dominating Set

Input: An undirected bipartite graph G = (R � B, E), a positive integer k, and the number k + |B| written in unary.
Question: Does there exist a set D ⊆ R of at most k vertices of G such that D dominates B?

Fact 1. (See [24].) The Padded Red Blue Dominating Set problem is NP-complete.

It has been shown that the parameterized version of this problem does not admit polynomial kernels:

Fact 2. (See [22, Theorem 2].) Red Blue Dominating Set does not admit a polynomial kernel unless CoNP ⊆ NP/poly.

We are now ready to show that t-Total Vertex Cover has no polynomial kernel for each fixed t ∈N; 2 ≤ t ≤ k.

Proof of Theorem 2. By Fact 1, the derived classical problem corresponding to Red Blue Dominating Set is NP-complete. 
Also, the derived classical problem corresponding to t-Total Vertex Cover is evidently in NP. Now suppose t-Total Vertex 
Cover has a polynomial kernel for any fixed value of t; 2 ≤ t ≤ k, and that there is a polynomial parameter transformation 
from Red Blue Dominating Set to t-Total Vertex Cover. Then by Theorem 1, Red Blue Dominating Set has a polynomial 
kernel, and hence by Fact 2 CoNP ⊆ NP/poly; it follows that t-Total Vertex Cover does not have a polynomial kernel unless 
CoNP ⊆ NP/poly. Hence to prove the theorem, it suffices to show that there is a polynomial parameter transformation from
Red Blue Dominating Set to t-Total Vertex Cover for each fixed t; 2 ≤ t ≤ k. We now proceed to give such a transformation.

Given an instance (G = (R � B, E), k) of Red Blue Dominating Set and a fixed t; 2 ≤ t ≤ k, we construct an instance of 
t-Total Vertex Cover as follows: If B contains isolated vertices then (G, k) is a NO instance, and in this case we construct 
a trivial NO instance of t-Total Vertex Cover. Otherwise, we add a distinct path of length (number of edges) t − 1 starting 
from each vertex v ∈ B . Thus, if t = 2, then we attach a new, distinct pendant vertex wi to each vi ∈ B; if t = 3, then we 
add a path (vi, u1

i , wi) to each vi ∈ B . In general, for a fixed t ∈ N; 2 ≤ t ≤ k, we add a path (vi, u1
i , u

2
i , . . . , u

t−2
i , wi) to 

each vi ∈ B , where the vertices u j
i and wi are all new and distinct: see Fig. 1 for an illustration. We call the resulting graph 

H , and (H, k + (t − 1)|B|) is the constructed instance of t-Total Vertex Cover. To complete the proof, we show:

Proposition 1. Let (G = (R � B, E), k) be an instance of Red Blue Dominating Set, and t a fixed positive integer. Let H be the graph 
constructed from G as described above. Then (G, k) is a YES instance of Red Blue Dominating Set if and only if (H, k + (t − 1)|B|) is 
a YES instance of t-Total Vertex Cover.
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Fig. 1. Polynomial parameter transformation from Red Blue Dominating Set to t-Total Vertex Cover, for the case t = 4. The construction appends a path 
with t − 1 = 3 edges to each vertex in the set B; the new parameter is k + 3|B|.

Proof. Let (G = (R � B, E), k) be a YES instance of Red Blue Dominating Set. Then there is an inclusion-minimal set D ⊆ R,

|D| ≤ k, that dominates B . Let S be the set of all new vertices added by the construction to H , except for the pendant vertex 
wi in each new path. Thus, e.g., S = ∅ when t = 2, and in general |S| = (t − 2)|B|. Define C = D ∪ B ∪ S . Now,

1. |C | = |D| + |B| + |S| ≤ k + |B| + (t − 2)|B| ≤ k + (t − 1)|B|.
2. C is a vertex cover of H : B ⊆ C covers all original edges, and all new edges adjacent to vertices in B; S covers the rest 

of the new edges, if any.
3. Each connected component of H[C] contains at least t vertices:

(a) Since D dominates B in G , any vertex vi ∈ B has at least one neighbour w ∈ D ⊆ C in H[C]. Then vi, w , and the 
t − 2 new vertices {u1

i , u
2
i , . . . , u

t−2
i } ⊆ S are all part of the same component in H[C], as witnessed by the path 

w, vi, u1
i , u

2
i , . . . , u

t−2
i . Thus each vertex vi ∈ B is part of a connected component of size at least t in H[C].

(b) D is an inclusion-minimal dominating set of B and D ∪ B ⊆ C , and so each w ∈ D has at least one neighbour vi ∈ B
in the graph H[C]. It follows that each vertex w ∈ D is part of a connected component of size at least t in H[C], 
namely the component to which vi belongs.

(c) Each vertex u j
i ∈ S is in the same component in H[C] as the vertex vi ∈ B , and so u j

i is part of a connected 
component of size at least t in H[C], namely the component to which vi belongs.

Thus C is a t-total vertex cover of H , of size at most k + (t − 1)|B|. This proves the forward direction.
To prove the reverse direction, suppose (H, k + (t −1)|B|) is a YES instance of t-Total Vertex Cover, and let C be a t-total 

vertex cover of H of size at most k + (t − 1)|B|. Consider any path P = (u0
i = vi, u1

i , u
2
i , . . . , u

t−2
i , wi) in H consisting of a 

vertex vi ∈ B and new vertices added by the construction. Since C is a vertex cover such that each connected component 
of G[C] has at least t vertices, we have that |P ∩ C | ≥ t − 1. Now suppose there exists a vertex x ∈ P \ C . If x = u j

i for some 
0 ≤ j ≤ t − 2, then the vertices u j+1

i , u j+2
i , . . . , ut−2

i , wi form a connected component of H[C] of size strictly less than t , 
a contradiction. So one of the following holds:

1. All the t vertices of P are in C , or,
2. {vi, u1

i , u
2
i , . . . , u

t−2
i } ∈ C , and wi /∈ C .

Let pt be the number of paths of the first kind in H , and let pt−1 be the number of paths of the second kind in H . There is 
exactly one such path corresponding to each vertex of B , and so pt + pt−1 = |B|. The total number of vertices contributed to 
C by these paths is tpt + (t − 1)pt−1, and so the number of vertices in C ∩ R is at most k + (t − 1)|B| − (tpt + (t − 1)pt−1) =
k − pt . Now let P be a path of the second kind. By definition, |P ∩ C | = (t − 1), and since each connected component of 
G[C] has at least t vertices, there is at least one more vertex x in C that is adjacent in H to one of the vertices, say y, of 
P ∩ C . The only possibility is that x ∈ R and y ∈ B , and so at most k − pt vertices in C ∩ R dominate pt−1 = |B| − pt vertices 
in B . Since each vertex of B has a neighbour in R , at most k vertices in R dominate all of B . �

This completes the proof of the theorem. �
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The reduction employed in the above argument also implies:

Corollary 1. For each fixed t ≥ 2 the t-Total Vertex Cover problem is NP-hard on bipartite graphs, and the t-Total Vertex Cover 
problem does not admit a polynomial kernel on bipartite graphs unless CoNP ⊆ NP/poly.

3.2. Fixed parameter tractability

We now turn to the fixed-parameter tractability of t-Total Vertex Cover. Two special cases of the problem, for the two 
extreme values namely t = 1 (Vertex Cover) and t = k (Connected Vertex Cover), have been studied extensively from the 
perspective of parameterized algorithms. The Vertex Cover problem is perhaps the most well-studied problem in parame-
terized algorithmics. After a long series of improvements, the current fastest FPT algorithm for this problem runs in time 
O�(1.2738k) [3]. Similarly Connected Vertex Cover also has a history of improvements, and the current fastest FPT algo-
rithm for this problem runs in O�(2k) time [25]. We show in this section that t-Total Vertex Cover is FPT parameterized 
by the solution size k for each fixed t ∈ N; 2 ≤ t ≤ k, by deriving an O�(16.1k+O(log2 k)) time algorithm for these problems.

Let G = (V , E) be the input graph, and let |V | = n. Observe that the set V is a vertex cover of G . Therefore, if |V | ≤ k, 
then we can solve the problem in polynomial time by checking whether each component of G has at least t vertices. Also, 
deleting isolated vertices does not affect the solution. Hence we assume without loss of generality that |V | > k, and that G
has no isolated vertices. We start with a structural proposition which is useful later.

Proposition 2. Let G = (V , E), |V | > k be a graph without isolated vertices, and let t ∈ N; 2 ≤ t ≤ k be a fixed integer. Then G has a 
t-total vertex cover of size at most k if and only if G has a t-total vertex cover of size exactly k.

Proof. If G has a t-total vertex cover, say S , of size exactly k, then S itself is a t-total vertex cover of G of size at most k. 
For the other direction, let S be a t-total vertex cover of G size l < k. Consider any set of k − l vertices T ⊆ (V \ S). Since 
G has no isolated vertex, each v ∈ T has at least one edge incident on it; since S is a vertex cover of G , the other end of 
this edge, say w , is in S . Now notice that every connected component of G[S ∪ T ] has at least t vertices as each connected 
component of G[S] has at least t vertices and every vertex of T gets attached to one of the components of G[S]. �

The number of unlabelled trees on k vertices is known to be singly exponential in k, and all these trees can be enumer-
ated with polynomial delay:

Fact 3. (See [26,14].) The number of unlabelled trees on k vertices is at most 2.96k. Moreover, all non-isomorphic unlabelled trees on k
vertices can be enumerated in time O(2.96kkc) for some constant c independent of k.

From this we get:

Lemma 1. All unlabelled forests on k vertices can be enumerated in O�(2.96k) time.

Proof. Let F be a forest on k vertices. Add a new vertex v and one edge from v to an arbitrary vertex of each tree in F , to 
obtain a tree T on k + 1 vertices. Clearly, the forest F can be obtained by deleting one vertex (namely v) from T . It follows 
that a graph is a forest on k vertices if and only if it can be obtained by deleting a vertex from some tree on k + 1 vertices.

To enumerate all forests on k vertices, we first enumerate all trees on k + 1 vertices. From Fact 3, this can be done in 
O(2.96k+1(k + 1)c) time where c is a constant independent of k. For each tree T on k + 1 vertices obtained in this manner, 
we delete each of its k + 1 vertices, one at a time, to obtain a set of forests. By the above observation, this procedure yields 
every forest on k vertices (some of them perhaps many times). The procedure takes O((k + 1)2.96k+1(k + 1)c) = O�(2.96k)

time. �
We are now ready to prove the main result of this section.

Theorem 3. For every fixed integer t ≥ 1 the t-Total Vertex Cover problem is fixed-parameter tractable, and can be solved in time 
O�(16.1k).

Proof. Observe that any t-total vertex cover, say S , of G is also a vertex cover of G and hence contains an inclusion-minimal 
vertex cover S ′ ⊆ S of G . The idea of our proof is to enumerate all the inclusion-minimal vertex covers of G of size at most 
k and then try to expand each one to a t-total vertex cover of G . We will use Fact 3 and the colour-coding technique of 
Alon et al. [15] to do the expansion phase of our algorithm. Our algorithm is based on the following proposition.

Proposition 3. A graph G = (V , E) has a t-total vertex cover of size k if and only if there exists an inclusion-minimal vertex cover C
of G of size at most k, and a subset T ⊆ V \ C of size k − |C |, such that there exists a forest F on k vertices which is isomorphic to a 
spanning subgraph of G[C ∪ T ], and in which each connected component has at least t vertices.
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Proof. If G has a t-total vertex cover S of size k, then by definition S is a vertex cover of G . Let C be any inclusion-minimal 
vertex cover contained in S , and let T = S \ C . Then |T | = k − |C |, and each connected component of G[C ∪ T ] = G[S] has, 
from the definition of a t-total vertex cover, at least t vertices. Let F be a forest formed by picking one spanning tree from 
each connected component of G[S]. Then F satisfies the conditions of the proposition.

Conversely, suppose there exist (i) an inclusion-minimal vertex cover C of G , (ii) a set T ⊆ V \ C of size k − |C |, and 
(iii) a forest F on k vertices that is isomorphic to a spanning subgraph G ′ = (S = C ∪ T , E ′) of G[C ∪ T ], and in which each 
connected component has at least t vertices. Since C ⊆ S , S is a vertex cover of G . Also |S| = |C ∪ T | = k. Now since G ′ is a 
subgraph of G[S], and each connected component of G ′ contains at least t vertices, each connected component of G[S] has 
at least t vertices. It follows that S is a t-total vertex cover of G of size k. �

If G has a t-total vertex cover of size at most k, then from Proposition 2 we know that G has a t-total vertex cover of 
size exactly k. Let S be a fixed t-total vertex cover of G of size exactly k, if there exists one. From Proposition 3 we get that 
S contains an inclusion-minimal vertex cover C of G , of size at most k. A “colouring” of the vertex set V of G is a function 
from V to some specified set of “colours”. A “good” colouring of V is a colouring in which the vertices in S are all distinctly 
coloured.

Our algorithm tries to find S by mimicking Proposition 3. First we enumerate all inclusion-minimal vertex covers of G
of size at most k. This can be done in time O�(2k) by a simple 2-way branching on edges—for every edge at least one of its 
end-points should be in any vertex cover. For each such vertex cover C , we do the following:

1. Colour each v ∈ C with a distinct colour from {1, 2, . . . , |C |}.
2. Let � = k − |C |. Colour the vertices of the independent set V \ C uniformly at random with � new colours 1̃, ̃2, . . . , �̃.

Observe that |S \ C | = �. The number of ways of colouring the vertices in S \ C with � distinct colours is �!, and the total 
number of ways of colouring these vertices with these � colours is �� . The random colouring described above will therefore 
yield a good colouring of V with probability �!/�� ≥ e−� .

We now check if the random colouring is a good colouring. For this, we iterate through all unlabelled forests on k
vertices, and check if at least one of these forests is isomorphic to a spanning forest F of G[S], where each connected 
component of F has at least t vertices. By Lemma 1, we can iterate through all such forests in O�(2.96k) time. To check if 
a given forest F on k vertices is isomorphic with such a spanning forest F of G[S], we do the following:

1. We check if there is at least one tree in F that has less than t vertices. If yes, then we reject F .
2. Next we check if there is a colourful subgraph (one in which each vertex has a distinct colour) isomorphic to F in the 

coloured graph obtained above. Since F is of treewidth at most 1, this can be done in O(2k ·k ·n2) time [27, Corollary 6]. 
If such a subgraph is present, then F satisfies the requirements of Proposition 3, and so we return Yes; the underlying 
uncoloured graph of this colourful subgraph is a t-total vertex cover of G of size at most k. Otherwise we reject the 
forest F .

If the above check rejects all unlabelled forests on k vertices, then we return No: this colouring is not a good colouring.
Observe that if the input graph G has a t-total vertex cover of size k, then the above algorithm will discover this t-total 

vertex cover with probability at least e−� , and so will return Yes with probability at least e−� . If the input graph G is a No

instance, then the algorithm will always return No. The expected number of times the algorithm has to be repeated before 
it finds a t-total vertex cover of size k of G , if it exists, is thus e� . The expected running time of this procedure is thus

O�

(
k∑

�=0

2k−� × e� × 2.96k × 2k

)
= O�

(
(2 × 2.96 × 2)k ×

k∑
�=0

((
e

2

)�))

= O�
(
(5.92e)k) = O�

(
16.1k).

To obtain a deterministic algorithm we have to replace the randomized step of the algorithm—where we colour the 
vertices of G[V \ C] uniformly at random by � colours—with a deterministic procedure. We do this using the so-called 
(n, �, �)-perfect hash families.

An (n, �, �)-perfect hash family H is a set of functions from {1, . . . , n} to {1, . . . , �} such that for every subset S ⊆
{1, . . . , n} of size � there exists a function f ∈H such that f is injective on S . That is, such that for all i, j ∈ S , f (i) �= f ( j). 
There exists a construction of an (n, �, �)-perfect hash family of size O(e� · �O(log �) · log n) and one can produce this family 
in time linear in the output size [28].

Let ñ = |V \ C |. To derandomize our algorithm, we construct an (ñ, �, �)-perfect hash family H from {1, . . . , ̃n} to 
{1̃, . . . , �̃}. This has to be done only once during the algorithm. Now we replace the second step in the colouring process 
with the following:

2′ . Instead of colouring the vertices of V \ C uniformly at random with � colours and checking if this yields a good 
colouring, we “colour” the vertices of V \ C with each function in H, in turn. For each such colouring, we check if it is 
a good colouring as before.
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If G has a t-total vertex cover S of size k, then from the definition of an (ñ, �, �)-perfect hash family, it follows that 
at least one of the functions in H will result in a good colouring of V . Thus, if G has a t-total vertex cover S of size k, 
then this algorithm will always discover S and return Yes. If the input graph G is a No instance, then the algorithm will 
always return No. Instead of the multiplicative factor of e�—which came from repeating the randomized algorithm these 
many times—in the running time of the randomized procedure, the derandomized version incurs the following costs:

1. An additive cost of O(e� · �O(log �) · log ñ) to compute the hash family, and
2. A multiplicative factor of O(e� ·�O(log �) · log ñ) which arises from repeating the check for a good colouring once for each 

function in the hash family.

The running time of the derandomized algorithm is thus

O�

(
k∑

�=0

2k−� × e� × �O(log �) × 2.96k × 2k

)

= O�

(
(2 × 2.96 × 2)k ×

k∑
�=0

((
e

2

)�

× �O(log �)

))

= O�

(
(11.84)k × kO(log k) ×

(
e

2

)k)
= O�

(
16.1k).

This concludes the proof of the theorem. �
4. Computing total edge covers

We now consider the t-Total Edge Cover problem. For t = 1 this problem becomes the Edge Cover problem, which has 
long been known to be solvable in polynomial time [8]. The problem is NP-complete for each fixed 2 ≤ t ≤ k [9, Theorem 3]. 
In this section we investigate the parameterized complexity of the t-Total Edge Cover problem for 2 ≤ t ≤ k. We first study 
the kernelization complexity of the problem, and improve the size of the kernel for each fixed t ≥ 2. Then we take up the 
fixed parameter tractability of this problem, and obtain an FPT algorithm with a significantly improved running time.

In our analysis we make use of a different formulation of the problem, other than the one presented at the beginning 
of this paper. The following fact, culled from the proof of a theorem in the previous work due to Fernau and Manlove 
[9, Theorem 16], helps us show that the two formulations are equivalent.

Fact 4. (See [9].) In any connected graph G with n vertices, and for any fixed t < n, there exists a t-total edge cover of G of the smallest 
size—call it S—such that the graph G(S) induced by the edge set S is acyclic.

4.1. Kernelization complexity

Fernau and Manlove [9] observed the following simple vertex kernel of size at most 2k for t-Total Edge Cover: any edge 
in a graph covers exactly 2 vertices, and a YES instance of the problem has an edge cover of size (number of edges) at 
most k, and so such an instance cannot have more than 2k vertices. In other words, if the input instance has more than 2k
vertices, then the answer is NO. Otherwise, the input instance itself forms a kernel on at most 2k vertices. We can improve 
this bound on the kernel size for larger values of t by observing the following:

Lemma 2. Given a graph G = (V , E), a non-negative integer k, and a fixed integer t; 2 ≤ t ≤ k, solving the t-Total Edge Cover 
instance (G, k) is equivalent to solving the following problem: does there exist a partition of the vertex set V into q parts V 1, . . . , Vq, 
for some q, such that (i) G[V i] is connected, (ii) |V i| ≥ t + 1 for each 1 ≤ i ≤ q, and (iii)

∑q
i=1(|V i| − 1) ≤ k?

Proof. Let (G = (V , E), k) be a Yes instance of t-Total Edge Cover and let S be a t-total edge cover of G of the smallest size 
which satisfies the conditions of Fact 4. Let V 1, . . . , Vq be the vertex sets of the connected components of G(S) = (V , S). It 
directly follows from Fact 4 and the properties of S given in the definition of t-Total Edge Cover that V 1, . . . , Vq satisfy all 
the conditions in the statement of the lemma. For the reverse direction, observe first that the edges of a spanning tree of 
any connected graph form an edge cover of the graph. Now, if V 1, . . . , Vq satisfy all the conditions in the statement of the 
lemma, then let Si be the edges of a spanning tree of G[V i], for 1 ≤ i ≤ q, and let S = ⋃q

i=1 Si . Observe now that S has the 
properties stated in the definition of t-Total Edge Cover. �

We use this reformulation to get smaller bounds on the kernel size for t-Total Edge Cover.
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Theorem 4. t-Total Edge Cover admits a vertex kernel of size t+1
t k.

Proof. Let (G = (V , E), k) be a Yes instance of t-Total Edge Cover. By Lemma 2, there exists a partition of V into q parts of 
the kind stated in Lemma 2. Now |V i | ≥ t + 1 �⇒ |V i | − 1 ≥ t �⇒ ∑q

i=1(|V i| − 1) ≥ qt . By Lemma 2, 
∑q

i=1(|V i| − 1) ≤ k, and 
so qt ≤ k, and q ≤ k

t . Also, 
∑q

i=1(|V i | − 1) ≤ k �⇒ ∑q
i=1 |V i| ≤ k + q ≤ k + k

t = t+1
t k, and so G has at most t+1

t k vertices. �
Thus, if the input graph G has more than t+1

t k vertices, then the answer is No. Therefore we can assume without loss 
of generality that the input graph has at most t+1

t k vertices, and so any exact algorithm for the problem is in fact an FPT 
algorithm. In particular we have:

Corollary 2. If t-Total Edge Cover has an exact exponential time algorithm that runs in O�(c f (|V |)) time on an input instance 
(G = (V , E), k) for some constant c and function f (), then the problem has an FPT algorithm that runs in O�(c f ( t+1

t k)) time.

4.2. Fixed parameter tractability

We now present an exact exponential-time algorithm for t-Total Edge Cover which runs in O�(2n+O(
√

n)) time where 
n is the number of vertices in the input graph. By Corollary 2 this yields an FPT algorithm for the problem which runs in 
O�(ck) time for some fixed constant c < 3 (when t ≥ 2). This is a significant improvement over the previous best upper 
bound of O�((2k)2k) [9].

Let (G = (V , E), k) be an input instance of t-Total Edge Cover, and let |V | = n. We start by enumerating all unordered 
partitions of n. An unordered partition of a positive integer n is a way of writing n as a sum of positive integers, where the 
order of the summands is ignored. By the Hardy–Ramanujan asymptotic formula, n has at most 2O(

√
n) unordered parti-

tions [16]. The partitions of n can be generated with constant average delay [29], and so we can enumerate all unordered 
partitions of n in 2O(

√
n) time.

We consider those partitions of n of the form n = n1 + n2 + · · · + nq which satisfy the following conditions of Lemma 2:

1.
∑q

i=1(|ni | − 1) ≤ k
2. |ni | ≥ t + 1

For each such partition of n, we check if there exists a partition of the vertex set V into q parts V 1, . . . , Vq such that

1. |V i| = ni for 1 ≤ i ≤ q, and
2. each induced subgraph G[V i] is connected.

To do these latter checks, we construct the q lists

Li = {
V ′ ⊆ V

∣∣ ∣∣V ′∣∣ = ni and G
[
V ′] is connected

}
for 1 ≤ i ≤ q. For 1 ≤ i ≤ q we compute the polynomials

Pi =
∑

V ′∈Li

zχ(V ′)

where z is a formal variable and χ(V ′) is the (binary number represented by the) characteristic vector of V ′ ⊆ V . That is, 
let V = {v1, v2, . . . , vn}. Then χ(V ′) is a bit vector with |V | bits where, for 1 ≤ j ≤ |V |, the jth bit of χ(V ′) is 1 if and only 
if v j ∈ V ′ . We treat χ(V ′) as a binary number in all computations. The lists Li and the polynomials Pi can be computed in 
O�(2n) time, by enumerating all subsets of V . We now compute the product

Q = P1 × P2 × · · · × Pq

in the given order, with a small modification: at each step, given the partial product Q i of the first i terms, we first compute 
Q i × Pi+1. Then we delete all those terms αzβ in Q i × Pi+1 where (the binary representation of) β does not contain exactly ∑i+1

j=1 n j 1s, and set Q i+1 to be the resulting polynomial. This pruning operation ensures that the partial product Q i , for 
1 ≤ i ≤ q, represents exactly those sets of size 

∑i
j=1 n j that can be obtained by taking the union of one set each from 

L1, L2, . . . , Li . Observe that the product Q q = Q is non-zero if and only if there exists a partition of V into q parts satisfying 
the conditions stated above.

The degree of each polynomial involved in the multiplications is at most 2|V | − 1 = 2n − 1, and so, using the Fast Fourier 
Transform, we can multiply two of these polynomials in O(2n log 2n) = O(n2n) time [30, Chapter 30]. We have to perform 
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at most q ≤ n such multiplications to compute Q , and so given the Pi s we can compute Q in O(n22n) = O�(2n) time. The 
running time of this algorithm is thus 2O(

√
n) × (O�(2n) +O�(2n)) =O�(2n+O(

√
n)), and so we have:

Theorem 5. t-Total Edge Cover can be solved in O�(2n+O(
√

n)) time, where n is the number of vertices in the input graph.

From this theorem and Corollary 2 we get:

Theorem 6. t-Total Edge Cover can be solved in O�(2
t+1

t k+O(
√

k)) time.

The above algorithm uses exponential space, for constructing the lists Li . We can use an approach similar to the one used 
in Section 3.2 to get an FPT algorithm which runs in polynomial space. Specifically, we enumerate all unordered partitions 
(n1, . . . , nq) of n where n − k ≤ q ≤ n

t+1 , such that ni ≥ t + 1 and 
∑q

i=1(ni − 1) ≤ k. As mentioned above, this can be done in 
O�(2

√
n) time. For each such partition, we enumerate all trees with number of vertices ni; 1 ≤ i ≤ q. As mentioned above, 

this can be done in O�(2.96n) time. Then, for each enumerated q-tuple of trees (T1, . . . , Tq), we test whether the forest 
T1 � T2 � · · · � Tq is a subgraph of G . Since the forest has treewidth one and has the same number of vertices as G , this 
test for subgraph isomorphism can be done in O�(2n) time and polynomial space [31, Theorem 5]. Combining this with 
Corollary 2 we get:

Theorem 7. t-Total Edge Cover can be solved in O�(2c t+1
t k+O(

√
t+1

t k)
) time and using polynomial space, where c = (1 + log2 2.96).

5. t-TOTAL EDGE DOMINATING SET

The techniques developed in the previous sections can be used to solve other problems with “total connectivity” con-
straints. As an illustration, we now show how to solve the t-total version of the NP-hard Edge Dominating Set problem.

An edge dominating set of a graph G = (V , E) is a set F ⊆ E of edges of G such that every edge in E \ F has at least 
one vertex in common with some edge in F ; the edges in F dominate all the other edges in G . The Edge Dominating Set

problem takes a graph G and a positive integer k as input, and asks whether the graph G has an edge dominating set of 
size at most k. This problem is NP-hard, even for planar bipartite graphs with maximum degree 3 [32]. When parameterized 
by k, the problem is FPT and has a quadratic kernel [33]. We investigate the t-total version of this problem, which is defined 
for each fixed t ∈N; 1 ≤ t ≤ k as follows:

t-Total Edge Dominating Set

Input: A graph G = (V , E), and a non-negative integer k.
Parameter: k
Question: Does G have an edge dominating set F of size at most k such that each component of the subgraph of G

induced by F contains at least t edges?

We call an edge dominating set which satisfies the conditions specified in the problem a t-total edge dominating set of G . 
If the input graph has a sufficient number of edges, then it suffices to look for a t-total edge dominating set of size exactly k.

Proposition 4. Let G = (V , E) be a graph such that |E| ≥ k, and let t ∈ N, 1 ≤ t ≤ k. Then G has a t-total edge dominating set of size 
at most k if and only if G has a t-total edge dominating set of size exactly k.

Proof. If G has a t-total edge dominating set, say F , of size exactly k, then F itself is a t-total edge dominating set of G of 
size at most k. For the other direction, let F be a t-total edge dominating set of G size l < k. Consider any set of k − l edges 
T ⊆ (E \ F ). Since F is an edge dominating set, every edge in T shares at least one vertex with some edge in F . It follows 
that F ∪ T is a t-total edge dominating set of G , of size exactly k. �

The vertices involved in an edge dominating set form a vertex cover of the graph. Also, if a vertex cover meets a simple 
connectivity requirement, then there exists a t-total edge dominating set which “contains” the vertex cover.

Proposition 5. Let G = (V , E) be a graph.

1. If F is an edge dominating set of G, then V (F ) is a vertex cover of G.
2. Let C be a vertex cover of G, and let t be a fixed integer; 1 ≤ t ≤ k. Let F̃ = (Ṽ , Ẽ) be a subgraph of G such that F̃ is a forest, C ⊆ Ṽ , 

and each tree in F̃ has at least t edges. Then Ẽ is a t-total edge dominating set of G.
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Proof.

1. Let e = {u, v} be an arbitrary edge in G . Since F is an edge dominating set of G , there exists an edge f = {x, y} ∈ F
such that e ∩ f �= ∅; so suppose u = x. Since x ∈ V (F ) we have that V (F ) covers the edge e, and since e was chosen 
arbitrarily we get that V (F ) covers all the edges in G .

2. Let e = {u, v} be an arbitrary edge in G . Since C is a vertex cover of G , e ∩ C �= ∅; so suppose u ∈ C . Let f ∈ F̃ be an 
edge such that u is incident with f . The lower bound on the component sizes of F̃ guarantees the existence of such 
an edge, and so we have that F̃ dominates the edge e. Since e was chosen arbitrarily we get that F̃ dominates all the 
edges in G . The component size lower bound implies that F̃ is a t-total edge dominating set. �

Edge dominating sets split cleanly across connected components, in the following sense:

Observation 1. An edge subset F of a graph G is a minimum-size t-total edge dominating set of G if and only if F is the disjoint union 
of minimum-size t-total edge dominating sets of the connected components of G.

This observation helps us get rid of small components in the input graph.

Lemma 3. Given an instance (G, k) of t-Total Edge Dominating Set one can, in polynomial time, either decide that (G, k) is a No 
instance, or compute an equivalent instance (G ′, k′) such that each component of the graph G ′ has more than (t + 1) vertices.

Proof. Let (G = (V , E), k) be an instance of t-Total Edge Dominating Set. Isolated vertices can safely be deleted from G , 
since they do not affect the solution. If any component of G has less than t edges then (G, k) is a No instance, and this can 
be detected in polynomial time. So we assume, without loss of generality, that each component of the graph G has at least 
t edges.

Let C = (V C , EC ) be a component of G with at most t + 1 vertices. Let F be a t-total edge dominating set of G , and let 
FC = F ∩ EC . Further, let F ′ be a connected subgraph of C , with t edges, obtained by adding sufficiently many edges to an 
arbitrary spanning tree of C . Since the component C has at least t edges such an F ′ always exists, and it can be found in 
polynomial time.

The set F ′ (i) induces a connected subgraph of C with exactly t edges, and (ii) dominates all the edges in C , and so F ′ is 
a minimum-size t-total edge dominating set of the component C . It follows from Observation 1 that (G, k) is a Yes instance 
of t-Total Edge Dominating Set if and only if G ′ = G[V \ V C ], k′ = k − t is a Yes instance. Hence we have the following 
reduction rule: Delete the component C and reduce k by t .

We repeatedly apply this reduction rule, till (i) there are no more components with at most t + 1 vertices, or (ii) the 
budget k becomes negative, whichever happens first. If the budget becomes negative, then the original input instance is a No

instance, and we would have found this in polynomial time. Otherwise we would have computed—in polynomial time—an 
equivalent instance which has the stated property. �

An advantage of working with a graph which does not have “small” components is that it is sufficient to look for a 
solution which induces a forest.

Lemma 4. Let G be a graph in which each component has more than t + 1 vertices. Then there exists a t-total edge dominating set F
of G such that (i) F is a minimum-size t-total edge dominating set, and (ii) F induces a forest in G.

Proof. Let F be the set all minimum-size t-total edge dominating sets of the graph G , and let F ∈ F be such that F
induces a subgraph of G with the smallest number of cycles. We show that the subgraph G(F ) is a forest. The argument is 
essentially the same as the one which Fernau and Manlove used to prove a similar claim [9, proof of Theorem 16].

Suppose G(F ) contains a cycle C . Let X F ⊆ F induce a connected component of G(F ), such that the cycle C belongs 
to the component G(X F ). Let e be an arbitrary edge in the cycle C , and let X ′

F = X F \ {e}. Consider the edge set F ′ =
(F \ X F ) ∪ X F ′ = F \ {e}. Since F ∈ F and |F ′| = |F | − 1, it cannot be the case that F ′ is a t-total edge dominating set of G . 
But X ′

F induces a connected subgraph, and dominates all the edges which are dominated by X F . So the only condition 
which can possibly be violated by F ′ is the lower bound on the number of edges in each component; thus |X ′

F | < t . But 
|X F | ≥ t and |X F ′ | = |X F | − 1, and so we get that |X F | = t and |X ′

F | = t − 1.
Let X be the component of G which contains G(X F ). Then X has more than t + 1 vertices by assumption, and G(X ′

F ) is 
a connected subgraph of X with exactly t − 1 edges. Therefore there is a vertex in X which is not in G(X ′

F ), and so there is 
an edge e′ in X which is incident on exactly one vertex in G(X ′

F ). The set (F \ {e}) ∪ {e′} then belongs to F and induces a 
subgraph of G which has a smaller number of cycles than G(F ), a contradiction. It follows that G(F ) contains no cycles. �
Lemma 5. Let G = (V , E) be a graph and let F be a t-total edge dominating set of G, of size at most k. Then V (F ) is a vertex cover 
of G, of size at most (t + 1)k/t.
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Proof. From Proposition 5 we get that V (F ) is a vertex cover of G . For the size bound, observe that F is a t-total edge cover
of the subgraph G[V (F )], and |F | ≤ k. Thus (G[V (F )], k) is a Yes instance of t-Total Edge Cover, and so from the proof of 
Theorem 4 we get that |V (F )| ≤ (t + 1)k/t . �

We are now ready to show that the t-Total Edge Dominating Set problem can be solved in FPT time.

Theorem 8. For every fixed t ≥ 1 the t-Total Edge Dominating Set problem is fixed-parameter tractable, and can be solved in time 
O�(16.1(t+1)k/t).

Proof. Let (G = (V , E), k) be an instance of t-Total Edge Dominating Set. Suppose |E| ≤ k. Observe that E itself is an edge 
dominating set of G , of size at most k. To solve the problem it is therefore enough to check if each connected component of 
G has at least t edges. This can be done in polynomial time, and so we assume without loss of generality that |E| > k. Then 
from Proposition 4 we know that it is sufficient to check if the graph G has a t-total edge dominating set of size exactly k.

Further, we know—from Lemma 3, Lemma 4, and Proposition 5—that if (G = (V , E), k) is a Yes instance of t-Total Edge 
Dominating Set, then there is a t-total edge dominating set F of G , of size at most k such that (i) G(F ) is a forest in which 
each tree has at least t edges, and (ii) V (F ) is a vertex cover of G of size at most (t + 1)k/t . Our algorithm looks for such 
an F , using exactly the same strategy as the one which we used in the proof of Theorem 3. We now briefly describe the 
algorithm.

We first guess an inclusion-minimal vertex cover C of G , of size at most (t + 1)k/t , such that C ⊆ V (F ). Then we guess 
the structure of a forest F which is isomorphic to G[F ]. We then use colour-coding, exactly as in the proof of Theorem 3, 
to find a subgraph F̃ of G which (i) contains all the vertices of C and (ii) is isomorphic to F . If (G, k) is a Yes instance, 
then by the above discussion there must exist a C and an F such that this procedure finds such a subgraph F̃ . Conversely, 
if the procedure finds such a forest F̃ , then from the second part of Proposition 5 we get that the edge set of F̃ is a t-total 
edge dominating set F of G of size at most k. This—together with the details in the proof of Theorem 3—shows that the 
algorithm is correct. Essentially the same analysis as in the proof of Theorem 3 yields the stated running time. �
6. Conclusion

In this paper we studied the effect of imposing some natural connectivity constraints on the subgraph induced by 
the solution set for two classical problems, namely Vertex Cover and Edge Cover. These problems exhibit contrasting 
behaviour with respect to classical complexity: Vertex Cover is NP-hard while Edge Cover is solvable in polynomial time. 
For both these problems, the additional constraint imposed is that each connected component of the subgraph induced by 
the solution set be at least as large as some specified number t; these problems were introduced by Fernau and Manlove [9], 
who named the problems t-Total Vertex Cover and t-Total Edge Cover, respectively. They showed that these problems are 
NP-hard for each fixed t ∈ N; 2 ≤ t ≤ k, and initiated the study of the parameterized complexity of these problems when 
the parameter is the solution size k. We take this study further, and improve on their results.

In both cases we showed that adding a connectivity constraint (each component of the solution must have at least 
a certain number of vertices/edges from the solution) causes a drastic change in the computational complexity of the 
problem. In the case of t-Total Edge Cover, the shift is from polynomial-time computability to NP-hardness, as had been 
observed earlier [9]. We showed that a similar shift occurs in the case of the parameterized version t-Total Vertex Cover

of the NP-hard problem t-Total Vertex Cover. As is well known, for t = 1 the problem has a linear vertex kernel [4]. In 
contrast, we showed that for any fixed 2 ≤ t ≤ k the t-Total Vertex Cover problem has no polynomial-size kernel unless 
CoNP ⊆ NP/poly, which is considered unlikely. We also showed that both these problems have FPT algorithms that run in 
time O�(ck) for different constants c. These results improve known bounds for these problems [9].

It has been shown [34] that the standard parameterization of the Dominating Set problem—which is W[2]-hard in 
general, and hence is unlikely to have FPT algorithms—is FPT in graphs of girth at least 5, and has a cubic vertex-kernel on 
graphs of girth at least 7. Similarly, it can be shown—and this is not difficult—that any “reasonable” variant of the Vertex 
Cover problem has kernels of size O(k2) on graphs which have no small cycles. In particular, t-Total Vertex Cover can be 
shown to have kernels of size O(k2) in graphs of girth at least 5, for fixed 1 ≤ t ≤ k. In other words, one can attribute the 
lower bound on kernel size for vertex cover problems with the slightest connectivity property, to the existence of small 
cycles in the input graph.

In his note titled “Measure & Conquer for Parameterized Branching Algorithms” in the “Parameterized Complexity News” 
of September 2009 [35], Serge Gaspers mentions that “... it would be very interesting to see a parameterized M&C analysis 
for a problem that does not have a linear kernel.” Our lower bound on the kernel size for t-Total Vertex Cover furnishes 
such an example; Fernau and Manlove’s algorithm for t-Total Vertex Cover [9] is essentially a “measure and conquer” 
(M&C) algorithm. Binkele-Raible and Fernau [36] give another example, when they derive a measure and conquer algorithm 
for Connected Vertex Cover which—conditionally—has no polynomial kernels.

As we illustrated in Section 5, the approach we used to solve t-Total Vertex Cover can be used to solve other t-total 
problems which share a certain characteristic with t-Total Vertex Cover, namely: any solution to the problem can be ex-
pressed as a minimal solution to the unrestricted problem, embedded in a graph of bounded treewidth. As another example, 
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the same technique can be used to derive an FPT algorithm for the standard parameterization of t-Total Dominating Set

when the input graph has girth at least 5. This is because in this case all inclusion-minimal dominating sets can be enu-
merated in FPT time [34]. One interesting direction of future research would be to examine the effect of such connectivity 
constraints on parameterized graph problems which are not known to have this property. Another open problem is to try 
to improve the base c of the exponent of the running times that we obtained for t-Total Vertex Cover and t-Total Edge 
Cover. Recall—Theorem 3—that our algorithm for the t-Total Vertex Cover problem runs in O�(16.1k) time. For the three 
special values t = 1, t = 2 and t = k, the t-Total Vertex Cover problem is known to be solvable in O�(ck) time for have 
much smaller values of c, namely c = 1.2738, c = 2.3655 and c = 2, respectively [3,9,25]. It will be interesting to see if the 
value of c for the general case can be brought closer to these smaller values.
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