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Exploring the Subexponential Complexity of Completion Problems

PÅL GRØNÅS DRANGE, FEDOR V. FOMIN, MICHAŁ PILIPCZUK,
and YNGVE VILLANGER, Department of Informatics, University of Bergen

Let F be a family of graphs. In the F-COMPLETION problem, we are given an n-vertex graph G and an
integer k as input, and asked whether at most k edges can be added to G so that the resulting graph does
not contain a graph from F as an induced subgraph. It was shown recently that two special cases of F-
COMPLETION, namely, (i) the problem of completing into a chordal graph known as MINIMUM FILL-IN (SIAM
J. Comput. 2013), which corresponds to the case of F = {C4, C5, C6, . . .}, and (ii) the problem of completing
into a split graph (Algorithmica 2015), that is, the case of F = {C4, 2K2, C5}, are solvable in parameterized
subexponential time 2O(

√
k log k)nO(1). The exploration of this phenomenon is the main motivation for our

research on F-COMPLETION.
In this article, we prove that completions into several well-studied classes of graphs without long induced

cycles and paths also admit parameterized subexponential time algorithms by showing that:

—The problem TRIVIALLY PERFECT COMPLETION, which is F-COMPLETION for F = {C4, P4}, a cycle and a path on
four vertices, is solvable in parameterized subexponential time 2O(

√
k log k)nO(1).

—The problems known in the literature as PSEUDOSPLIT COMPLETION, the case in which F = {2K2, C4}, and
THRESHOLD COMPLETION, in which F = {2K2, P4, C4}, are also solvable in time 2O(

√
k log k)nO(1).

We complement our algorithms for F-COMPLETION with the following lower bounds:

—For F = {2K2}, F = {C4}, F = {P4}, and F = {2K2, P4}, F-COMPLETION cannot be solved in time 2o(k)nO(1)

unless the Exponential Time Hypothesis (ETH) fails.

Our upper and lower bounds provide a complete picture of the subexponential parameterized complexity
of F-COMPLETION problems for any F ⊆ {2K2, C4, P4}.
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1. INTRODUCTION

Let F be a family of graphs. In this article, we study the following F-COMPLETION

problem.

F-COMPLETION

Input: A graph G = (V, E) and a nonnegative integer k.
Parameter: k
Question: Does there exist a supergraph H = (V, E ∪ S) of G, such that

|S| ≤ k and H contains no graph from F as an induced subgraph?

F-COMPLETION problems form a subclass of graph modification problems for which one
is asked to apply a bounded number of changes to an input graph to obtain a graph with
some specified property. Graph modification problems arise naturally in many branches
of science and have been studied extensively during the past 40 years. Interestingly
enough, despite the long history of the problem, there is no known classification of
graph classes F-free into those for which F-COMPLETION is solvable in polynomial time
and those for which the problem is NP-complete [Yannakakis 1981b; Mancini 2008;
Burzyn et al. 2006].

One of the motivations for studying algorithms for completion problems in graphs
comes from their intimate connections to different width parameters. For example, the
treewidth of a graph, one of the most fundamental graph parameters, is the minimum,
over all possible completions into a chordal graph, of the maximum clique size minus
one [Bodlaender 1998]. The treedepth of a graph—also known as the vertex ranking
number, the ordered chromatic number, and the minimum elimination tree height—
plays a crucial role in the theory of sparse graphs developed by Nešetřil and Ossona
de Mendez [2012]. Mirroring the connection between treewidth and chordal graphs,
the treedepth of a graph can be defined as the largest clique size in a completion to
a trivially perfect graph. This can be observed by recalling that the definition of the
treedepth of G is the minimum height of a rooted forest whose closure contains G as
a subgraph. Similarly, the vertex cover number of a graph is equal to the minimum of
the largest clique size taken over all completions to a threshold graph, minus one.

Recent developments have led to subexponential parameterized algorithms for the
problems INTERVAL COMPLETION [Bliznets et al. 2014a] and PROPER INTERVAL COMPLETION

[Bliznets et al. 2014b]. Both problems have strong connections to width parameters
just like the ones mentioned earlier: The pathwidth of a graph is the minimum of the
maximum clique size over all interval completions of the graph, minus one, whereas the
bandwidth mirrors this relation for proper interval completions of the graph [Kaplan
and Shamir 1996].

Parameterized algorithms for completion problems. For a long time in parameterized
complexity, the main focus of studies in F-COMPLETION was for the case when F was an
infinite family of graphs, for example, MINIMUM FILL-IN or INTERVAL COMPLETION [Kaplan
et al. 1999; Natanzon et al. 2000; Villanger et al. 2009]. This was mainly due to the fact
that when F is a finite family, F-COMPLETION is solvable on an n-vertex graph in time
f (k) · nO(1) for some function f by a simple branching argument; this was first observed
by Cai [1996]. More precisely, if the maximum number of nonedges in a graph from F
is d, then the corresponding F-COMPLETION is solvable in time dk · nO(1). The interest
in F-COMPLETION problems started to increase with the advance of kernelization. It
appeared that from the perspective of kernelization, even for the case of finite fami-
lies F , the problem is far from trivial. Guo [2007] initiated the study of kernelization
algorithms for F-COMPLETION in the case when the forbidden set F contains the graph
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Fig. 1. Forbidden induced subgraphs. Trivially perfect graphs are {C4, P4}-free, threshold graphs are
{2K2, P4, C4}-free, and cographs are P4-free.

C4; see Figure 1. (In fact, Guo considered edge deletion problems, but they are poly-
nomial time equivalent to completion problems to the complements of the forbidden
induced subgraphs.) In the literature, the most studied graph classes containing no
induced C4 are the split graphs, that is, {2K2, C4, C5}-free graphs, threshold graphs,
that is, {2K2, P4, C4}-free graphs, and {C4, P4}-free graphs, that is, trivially perfect
graphs [Brandstädt et al. 1999]. Guo obtained polynomial kernels for the completion
problems for chain graphs, split graphs, threshold graphs, and trivially perfect graphs,
concluding that, as a consequence of his polynomial kernelization, the corresponding F-
COMPLETION problems: CHAIN COMPLETION, SPLIT COMPLETION, THRESHOLD COMPLETION, and
TRIVIALLY PERFECT COMPLETION are solvable in times O(2k+mnk), O(5k+m4n), O(4k+kn4),
and O(4k + kn4), respectively.

The work on kernelization of F-COMPLETION problems was continued by Kratsch
and Wahlström [2013], who showed that there exists a set F consisting of one graph on
seven vertices for which F-COMPLETION does not admit a polynomial kernel unless NP ⊆
coNP/poly. Guillemot et al. [2013] showed that COGRAPH COMPLETION, that is, the case
F = {P4}, admits a polynomial kernel, while for F = {P13}, the complement of a path on
13 vertices, F-COMPLETION has no polynomial kernel. These results were significantly
improved by Cai and Cai [2015]: For F = {P�} or F = {C�}, the problems F-COMPLETION

and F-EDGE DELETION admit a polynomial kernel if and only if the forbidden graph has
at most three edges.

It was shown recently that for some choices of F , the F-COMPLETION problem is solv-
able in subexponential time. The exploration of this phenomenon is the main motivation
for our research on this problem. The last chapter of Flum and Grohe’s textbook on
parameterized complexity theory [Flum and Grohe 2006, Chapter 16] concerns subex-
ponential fixed-parameter tractability and the complexity class SUBEPT, which, loosely
speaking—we skip here some technical conditions—is the class of problems solvable in
time 2o(k) · nO(1), where n is the input length and k is the parameter. Until recently, the
only notable examples of problems in SUBEPT were problems on planar graphs, and
more generally, on graphs excluding some fixed graph as a minor [Demaine et al. 2005].
In 2009, Alon et al. [2009] used a novel application of color coding, dubbed chromatic
coding, to show that parameterized FEEDBACK ARC SET IN TOURNAMENTS is in SUBEPT.
As Flum and Grohe [2006] observed, for most natural parameterized problems, already
the classical NP-hardness reductions can be used to refute the existence of subexponen-
tial parameterized algorithms unless the following well-known complexity hypothesis
formulated by Impagliazzo et al. [2001] fails.

EXPONENTIAL TIME HYPOTHESIS (ETH). There exists a positive real number s such that
3-CNF-SAT with n variables cannot be solved in time 2sn.

Thus, it is very likely that the majority of parameterized problems are not solvable in
subexponential parameterized time, and until very recently no natural parameterized
problem solvable in subexponential parameterized time on general graphs was known.
A subset of the authors recently showed that MINIMUM FILL-IN, also known as CHORDAL

COMPLETION, which is equivalent to F-COMPLETION with F consisting of cycles of length
at least four, is in SUBEPT [Fomin and Villanger 2013], simultaneously establishing
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Fig. 2. Known subexponential complexity of F-COMPLETION for different sets F . All problems in this table
are NP-hard and in FPT. The entry SUBEPT means that the problem is solvable in subexponential time
2o(k) · nO(1), whereas E means that the problem is not solvable in subexponential time unless ETH fails.

that CHAIN COMPLETION (completing to a chain graph) is solvable in subexponential time.
Later, Ghosh et al. [2015] showed that SPLIT COMPLETION is solvable in subexponential
time. In contrast, Komusiewicz and Uhlmann [2012] showed that an edge modification
problem known as CLUSTER DELETION does not belong to SUBEPT unless ETH fails. Note
that CLUSTER DELETION is equivalent to F-COMPLETION when F = {P3}, the complement
of the path P3. However, it is interesting to note that by a result of Fomin et al. [2014],
CLUSTER DELETION INTO t CLUSTERS, that is, the complement problem for F-COMPLETION

for F = {P3, Kt}, can be solved in time 2O(
√

tk) · nO(1), thus is in SUBEPT for t = o(k).

Our results. In this work, we extend the class of F-COMPLETION problems admitting
subexponential time algorithms (see Figure 2). Our main algorithmic result is the
following:

TRIVIALLY PERFECT COMPLETION is solvable in time 2O(
√

k log k) · nO(1) and is thus in
SUBEPT.

This problem is the F-COMPLETION problem for F = {C4, P4}.
At a very high level, our algorithm is based on the same strategy as the algorithm

for completion into chordal graphs [Fomin and Villanger 2013]. As in that algorithm,
we enumerate subexponentially many special objects, here called trivially perfect po-
tential maximal cliques; these are the maximal cliques in some minimal completion
into a trivially perfect graph. Once we enumerate these objects, we apply dynamic pro-
gramming in order to find an optimal completion. Here the similarities end, however.
To enumerate trivially perfect potential maximal cliques (henceforth referred to as
only potential maximal cliques) for trivially perfect graphs, we have to use completely
different structural properties from those used for the case of chordal graphs.

We also show that, within the same running time, the F-COMPLETION problem is
solvable for F = {2K2, C4} and F = {2K2, P4, C4}. This corresponds to completion into
threshold and pseudosplit graphs, respectively. Combined with the results of Fomin and
Villanger [2013] and Ghosh et al. [2015], this implies that all four problems considered
by Guo [2007] are in SUBEPT, in addition to admitting a polynomial kernel. We finally
complement our algorithmic findings by showing the following:

For F = {2K2}, F = {C4}, F = {P4}, and F = {2K2, P4}, the F-COMPLETION problem
cannot be solved in time 2o(k) · nO(1) unless ETH fails.

Thus, we obtain a complete classification for all F ⊆ {2K2, P4, C4}.
ACM Transactions on Computation Theory, Vol. 7, No. 4, Article 14, Publication date: August 2015.
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Organization of the article. In Section 2, we present some structural results about
trivially perfect graphs and their completions, and describe the main result of the
article: an algorithm that solves TRIVIALLY PERFECT COMPLETION in subexponential time.
This section also contains some structural results on trivially perfect graphs that
might be interesting on their own. In Sections 3 and 4, we present subexponential time
algorithms for THRESHOLD COMPLETION and PSEUDOSPLIT COMPLETION, respectively.

In Section 5, we present lower bounds on F-COMPLETION when F is {2K2}, {C4}, {P4},
and {2K2, P4}. In Section 6, we give some concluding remarks and state some interesting
remaining questions and future directions.

Notation and preliminaries on parameterized complexity. We consider only finite
simple undirected graphs. We use nG to denote the number of vertices and mG the
number of edges in a graph G. If G = (V, E) is a graph, and A, B ⊆ V , we write E(A, B)
for the set of edges with one endpoint in A and the other in B. We write E(A) = E(A, A)
for the set of edges with both endpoints in A. We denote by mA = mG[A] the number of
edges inside A, that is, mA = |E(A)|. By G[A] for a set A ⊆ V (G), we mean the induced
subgraph G′ of G on vertex set A, where for u and v in A, we have that uv ∈ E(G′) when
uv ∈ E(G). If a graph is a bipartite graph, we use G = (A, B, E) to denote that G has
bipartitions A and B.

Given a graph G = (V, E), we use NG(v) for a vertex v ∈ V to denote the set of
neighbors of v in G. We write NG[v] to mean the set NG(v) ∪ {v}. For sets of vertices
U ⊆ V , we write NG(U ) to denote the open neighborhood

⋃
v∈U (NG(v))\U , and NG[U ] =

NG(U ) ∪ U to denote the closed neighborhood. For a set of pairs of vertices S, we write
G + S = (V, E ∪ S) and if U ⊆ V is a set of vertices, then G − U = G[V \ U ]. We will
skip the subscripts when this will not cause any confusion. We will write G ∼= H to
denote that G is isomorphic to H. For a natural number n ∈ N, we write [n] to denote
the set [n] = {1, 2, 3, . . . }.

A universal vertex in a graph G is a vertex v such that N[v] = V (G). Let (G) denote
the set of universal vertices of G. Observe that (G), when nonempty, is always a clique,
and we will refer to it as the (maximal) universal clique. Maximal universal cliques in
trivially perfect graphs play an important role in the design of our algorithm; they are
the main building blocks that we will use to achieve the algorithm.

We state here a simplified definition of parameterized problems, kernels, and the
class of parameterized subexponential time algorithms. A parameterized problem � is
a problem whose input is a pair (x, k), where k ∈ N. The problem � is fixed-parameter
tractable, thus belongs to the class FPT if there is an algorithm that solves this problem
in time f (k) ·xO(1) for some function f that depends only on k. A kernelization algorithm
for � is a polynomial time algorithm that on input (x, k) gives an output (x′, k′) such
that |x′| ≤ g(k) and k′ ≤ g(k) for some function g that depends only on k, and such that
(x, k) is a yes instance for � if and only if (x′, k′) is a yes instance for �. We call the
output the kernel. We say a problem admits a polynomial kernel if the function g is
polynomial. We refer to the seminal book on parameterized complexity theory of Flum
and Grohe [2006] for more on parameterized complexity.

The complexity class SUBEPT is a subset of FPT; it is the class of problems � for
which there exists an algorithm with running time 2o(k) · nO(1). That is, the parameter
function f is subexponential. Note that if the exponential time hypothesis is true, then
SUBEPT � FPT.

2. COMPLETION TO TRIVIALLY PERFECT GRAPHS

In this section, we study the TRIVIALLY PERFECT COMPLETION problem, which is F-
COMPLETION for F = {C4, P4}. The decision version of this problem was shown to be
NP-complete by Yannakakis [1981a]. Since trivially perfect graphs are characterized
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by a finite set of forbidden induced subgraphs, it follows from Cai [1996] that the
problem also is fixed-parameter tractable, that is, it belongs to the class FPT.

The main result of this section is the following theorem:

THEOREM 2.1. For an input (G, k), TRIVIALLY PERFECT COMPLETION is solvable in time
2O(

√
k log k) + nO(1), where n = |V (G)|.

Throughout this section, an edge set S is called a completion for G if G+ S is trivially
perfect. Furthermore, a completion S is called a minimal completion for G if no proper
subset of S is a completion for G. An outline of our algorithm for TRIVIALLY PERFECT

COMPLETION is

Step A: On input (G, k), we first apply a kernelization algorithm to obtain in polynomial
time an equivalent instance with kO(1) vertices. Due to this preprocessing step,
we may assume without loss of generality that we work on an instance (G, k)
with |V (G)| = kO(1).

Step B: Assuming that our input instance has kO(1) vertices, we show how to generate
all special vertex subsets of the kernel, which we call vital potential maximal
cliques in time 2O(

√
k log k). A vital potential maximal clique � ⊆ V (G) is a vertex

subset that is a maximal clique in some minimal completion of size at most k.
Step C: Using dynamic programming, we show how to compute an optimal solution or

to conclude that (G, k) is a no instance, in time polynomial in the number of
vital potential maximal cliques.

2.1. Structure of Trivially Perfect Graphs

Apart from the aforementioned characterization by forbidden induced subgraphs,
which is an inherently local characterization, several other equivalent definitions of
trivially perfect graphs are known. These definitions reveal more structural properties
of this graph class that are essential for developing our algorithm. Therefore, before
proceeding with the proof of Theorem 2.1, we establish a number of results on the
global structure of trivially perfect graphs and minimal completions.

Trivially perfect graphs have a rooted decomposition tree, which we call a universal
clique decomposition, in which each node corresponds to a maximal set of vertices that
are all universal for the graph induced by the vertices in the subtree rooted at this
node. This decomposition is similar to that of a treedepth decomposition. We refer to
Figure 3 for an example of the concepts that we introduce next. The following recursive
definition is often used as an alternative definition of trivially perfect graphs.

PROPOSITION 2.2 [JING-HO ET AL. 1996]. The class of trivially perfect graphs can be
defined recursively as follows:

—K1 is a trivially perfect graph.
—Adding a universal vertex to a trivially perfect graph results in a trivially perfect

graph.
—The disjoint union of two trivially perfect graphs is a trivially perfect graph.

Let T be a rooted tree and t be a node of T . We denote by Tt the maximal subtree of
T rooted in t. We can now use the universal clique uni(G) of a trivially perfect graph
G = (V, E) to make a decomposition structure.

Definition 2.3 (Universal Clique Decomposition). A universal clique decomposition
of a connected trivially perfect graph G = (V, E) is a pair (T = (VT , ET ),B = {Bt}t∈VT ),
where T is a rooted tree and B is a partition of the vertex set V into disjoint nonempty
subsets, such that

ACM Transactions on Computation Theory, Vol. 7, No. 4, Article 14, Publication date: August 2015.



Exploring the Subexponential Complexity of Completion Problems 14:7

Fig. 3. In the first figure, we have a trivially perfect graph, and in the second, the universal clique decom-
position of the graph with bags as labels. Finally, we have a table of the bags as well as corresponding blocks
and tails. Notice that for a block (B, D) and tail Q, B ⊆ D and B ⊆ Q. Furthermore, for any leaf block, it
holds that B = D, and for the root block it holds that D = V .

—if vw ∈ E(G) and v ∈ Bt and w ∈ Bs, then s and t are on a path from a leaf to the root,
with possibly s = t, and

—for every node t ∈ VT , the set of vertices Bt is the maximal universal clique in the
subgraph G[

⋃
s∈V (Tt) Bs].

We call the vertices of T nodes and the sets in B bags of the universal clique decompo-
sition (T ,B). By slightly abusing the notation, we often do not distinguish between a
node and its corresponding bag. Note that, in a universal clique decomposition, every
nonleaf node t has at least two children, since otherwise the universal clique contained
in the bag corresponding to t would not be maximal.

LEMMA 2.4. A connected graph G admits a universal clique decomposition if and only
if it is trivially perfect. Moreover, such a decomposition is unique up to isomorphisms.

PROOF. In the reverse direction, we proceed by induction on the structure of trivially
perfect graphs using Proposition 2.2. The base case is when we have one vertex K1,
which is a trivially perfect graph and also admits a unique universal clique decompo-
sition. The induction step is when we add a vertex v, and by the structure of trivially
perfect graphs, v is a universal vertex. Either we add a universal vertex to a connected
trivially perfect graph, in which case we simply add the vertex to the root bag, or we
add a universal vertex to the disjoint union of two or more trivially perfect graphs. In
the latter case, we create a new tree, with rv being the root connected to the root of
each of the trees for the disjoint union, and with Bv = {v} its corresponding bag. Since
v is the only universal vertex in the graph, the constructed structure is a universal
clique decomposition. Observe that the constructed decompositions are unique (up to
isomorphisms).

In the forward direction, we proceed by induction on the height of the universal
clique decomposition. Suppose (T ,B) is a universal clique decomposition of a graph
G. Consider the case when T has height 1, that is, we have only one single tree node
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(and one bag). Then this bag, by Proposition 2.2, is a clique (every vertex in the bag is
universal), and since a complete graph is trivially perfect, the base case holds. Consider
now the case when T has a height of at least 2. Let r be the root of T , and let x1, x2, . . . , xp
be children of r in T . Observe that the tree Txi is a universal clique decomposition for
the graph G[

⋃
t∈V (Txi ) Bt] for each i = 1, 2, . . . , p. Hence, by the induction hypothesis,

we have that G[
⋃

t∈V (Txi ) Bt] is trivially perfect. To see that G is trivially perfect as well,
observe that G can be obtained by taking the disjoint union of graphs G[

⋃
t∈V (Txi ) Bt]

for i = 1, 2, . . . , p, and adding |Br| universal vertices.

We define the following notion for use in describing the dynamic programming
procedure.

Definition 2.5 (Block). Let (T = (VT , ET ),B = {Bt}t∈VT ) be the universal clique
decomposition of a connected trivially perfect graph G = (V, E). For each node t ∈ VT ,
we associate a block Lt = (Bt, Dt), where

—Bt is the subset of V contained in the bag corresponding to t, and
—Dt is the set of vertices of V contained in the bags corresponding to the nodes of the

subtree Tt.
—The tail of a block Lt is the set of vertices Qt contained in the bags corresponding to

the nodes of the path from t to the root r of T , including Bt and Br.

When t is a leaf of T , we have that Bt = Dt, and we call the block Lt = (Bt, Dt) a leaf
block. If t is the root, we have that Dt = V (G), and we call Lt the root block. Otherwise,
we call Lt an internal block. Observe that for every block Lt = (Bt, Dt) with tail Qt, we
have that Bt ⊆ Qt, Bt ⊆ Dt, and Dt ∩ Qt = Bt (see Figure 3). Note also that Qt is a clique
and the vertices of Qt are universal to Dt \ Bt. The following lemma summarizes the
properties of universal clique decompositions, maximal cliques, and blocks used in our
proof.

LEMMA 2.6. Let (T ,B) be the universal clique decomposition of a connected trivially
perfect graph G and let L = (B, D) be a block with Q as its tail.

(i) The following are equivalent:
(1) L is a leaf block,
(2) D = B,
(3) Q is a maximal clique of G, and
(4) Q = NG[v] for every v ∈ B.

(ii) If L is a nonleaf block, then for every two vertices u, v from different connected
components of G[D \ B], we have that Q = NG(u) ∩ NG(v).

(iii) For every maximal clique Q′ of G, there exists a leaf block L′ in (T ,B) with tail Q′.

PROOF. (i) We first prove the chain (1) → (2) → (3) → (1). If L is a leaf block and D is
the set of vertices in all the bags of the subtree rooted at L, then B = D. If D = B, we
have that NG[v] = Q for any v ∈ B (thus also (2) → (4)). Hence, Q is maximal. If L is
not a leaf block, then there is a vertex v that belongs to a child node of L, and for any
such vertex v the set Q ∪ {v} is a clique; thus Q is not a maximal clique. Hence, if Q is
a maximal clique, then L is a leaf block.

Finally, we show that (4) → (2): Since Q is a clique and v ∈ Q, we have that Q ⊆ NG[v].
On the other hand, since v ∈ B and L is a leaf block, we have that Q ⊇ NG[v] by the
definition of universal clique decomposition.

(ii) Suppose that L = (B, D) is a nonleaf block and D1 and D2 are two connected
components of G′ = G[D \ B]. Let v ∈ D1 and u ∈ D2, and observe that since they are in
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different connected components of G[D \ B], NG′(v) ∩ NG′(u) = ∅. By the universality of
Q, the result follows: Q = NG(v) ∩ NG(u).

(iii) Let (T ,B) be a UCD and consider the following construction of a tail of a block
Lt. Obviously, uni(G) ⊆ Q′. Let L1 = (uni(G), V (G)). Consider the disconnected trivially
perfect graph G − uni(G). This has exactly one component containing vertices from Q′.
Let G2 be the connected component of G − uni(G) containing a vertex from Q′. Again
uni(G2) ⊆ B′, thus let L2 = (uni(G2), V (G2)). Continue until Lt is a leaf bag. Since
uni(Gt) = V (Gt) and since uni(Gt) ⊆ Q′ (again by maximality of Q′), we have that
Q′ = ⋃

1≤1≤t uni(Gi), which is exactly the tail of Lt. Since (T ,B) is unique, Lt is a leaf
bag of (T ,B), which proves the claim.

2.2. Structure of Minimal Completions

Before we proceed with the algorithm, we prove some properties of minimal comple-
tions. The following lemma gives insight to the structure of a yes instance.

LEMMA 2.7. Let G = (V, E) be a connected graph, S a minimal completion of G, and
let H = G + S. Suppose L = (B, D) is a block in the universal clique decomposition of H
and let D1, D2, . . . , D� be the connected components of H[D] − B.

(i) If L is not a leaf block, then � > 1;
(ii) If � > 1, then even in the original graph, G, every vertex v ∈ B has at least one

neighbor in each of the sets D1, D2, . . . , D�;
(iii) The graph G[Di] is connected for every i ∈ {1, . . . , �};
(iv) For every i ∈ {1, . . . , �}, B ⊆ NG(D \ (B∪ Di)).

PROOF. (i) Let (B, D) be a nonleaf block. Recall that, by the definition of a universal
clique decomposition, B is the maximal universal clique of H[D]. From Lemma 2.6 (i),
we get that B = D. Since B = uni(H[D]), there must be two nonadjacent vertices in
D \ B and no universal vertex in D \ B. Since H[D \ B] is trivially perfect, it must have
several connected components, that is, � > 1.

(ii) Suppose, without loss of generality, that there exists a vertex v ∈ B such that
NG(v) ∩ D1 = ∅. Let S′ = S \ ({v} × V (D1)). Note that, since v is universal to V (D1)
in H and is completely nonadjacent to V (D1) in G, it follows that {v} × V (D1) ⊆ S
and that S′ is a proper subset of S. We claim that H′ = G + S′ is also a trivially
perfect graph, which contradicts the minimality of S. Indeed, consider a universal
clique decomposition obtained from the universal clique decomposition of H by (a), in
the case � = 2, moving v from B to the root bag of D2, or (b), in the case � > 2, moving v
from B to a new bag B′ = {v} attached below B, with all the root bags of D2, D3, . . . , D�

reattached from below B to below B′. It can easily be seen that this new universal
clique decomposition is a universal clique decomposition of H′, which proves that H′ is
trivially perfect.

(iii) For the sake of contradiction, suppose that G[Da] was disconnected. Let (Da1 , Da2 )
be a partition of Da such that there is no edge between Da1 and Da2 in G. Clearly, H[Da1 ]
and H[Da2 ] are trivially perfect graphs as they are induced subgraphs of H, hence they
admit some universal clique decompositions. Since H[Da] is connected, we infer that S
contains some edges between Da1 and Da2 . Now, let S′ = S \ {uv | u ∈ Da1 , v ∈ Da2 , uv ∈
S}; by the previous argument, we have that S′ � S. Modify now the given universal
clique decomposition of H by removing the subtree below B that corresponds to Da,
and attaching instead two subtrees below B that are universal clique decompositions
of H[Da1 ] and H[Da2 ]. Observe that thus we obtain a universal clique decomposition of
G + S′, which shows that G + S′ is trivially perfect. This contradicts the minimality
of S.
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(iv) It follows directly from (i) and (ii): if � > 0, then � > 1 and every vertex of B has
edges in G to all the different connected components of D \ B.

2.3. The Algorithm

As has been already mentioned, the following concept is crucial for our algorithm.
Recall that, when � is a set of vertices in a graph G, by m� we mean the number of
edges in G[�].

Definition 2.8 (Vital Potential Maximal Clique). Let (G, k) be an input instance to
TRIVIALLY PERFECT COMPLETION. A vertex set � ⊆ V (G) is a trivially perfect potential
maximal clique, or simply potential maximal clique, if � is a maximal clique in some
minimal trivially perfect completion of G. Moreover, if this trivially perfect completion
contains at most k edges, then the potential maximal clique is called vital.

Observe that, given a yes instance (G, k) of TRIVIALLY PERFECT COMPLETION and a
minimal completion S of size at most k, every maximal clique in G + S is a vital
potential maximal clique in G. Note also that, in particular, any vital potential maximal
clique contains at most k nonedges. The following definition will be useful:

Definition 2.9 (Fill Number). Let G = (V, E) be a graph, S a completion of G, and
H = G + S. We define the fill number of a vertex v, denoted by fnG

H(v), as the number
of edges incident to v in S.

OBSERVATION 2.10. If (G, k) is a yes instance of TRIVIALLY PERFECT COMPLETION, S a
completion of G with|S| ≤ k, and H = G + S, then there are at most 2

√
k vertices v in G

such that fnG
H(v) >

√
k.

It follows that for such a graph G = (V, E) and every set U ⊆ V such that |U | > 2
√

k,
there is a vertex u ∈ U with fnG

H(u) ≤ √
k. Any vertex u such that fnG

H(u) ≤ √
k will be

referred to as a cheap vertex. If u is not cheap, we call it expensive.
We are now ready to begin the proof of Theorem 2.1. Our algorithm for TRIVIALLY

PERFECT COMPLETION consists of three steps. We first compress, in polynomial time, the
instance to an instance of size O(k3). We then enumerate all the (subexponentially
many) vital potential maximal cliques in this new instance. Finally, we do a dynamic
programming procedure on these objects.

Step A. Kernelization. We start from one of the known polynomial kernelization
algorithms for the problem. For a given input (G, k), we want to construct in polynomial
time an equivalent instance (G′, k′), where G′ has kO(1) vertices and k′ ≤ k. Such a
kernelization algorithm producing in time O(kn4) an equivalent instance with graph G′
on O(k3) vertices was announced by Guo [2007]. The existence of a larger polynomial
kernel with O(k7) vertices also follows from the work on editing to trivially perfect
graphs by Drange and Pilipczuk [2015, Theorem 3]. Let us note that, for our algorithm,
any polynomial kernel will work fine. From now on, we assume that the input graph G
has O(k3) vertices. (Replacing O(k3) by any other polynomial of k will not change our
proof.) Without loss of generality, we will also assume that G is connected, since we can
treat each connected component of G separately.

Step B. Enumeration. In this step, we describe an algorithm that in time 2O(
√

k log k)

outputs a family C of vertex subsets of G such that

—the size of C is 2O(
√

k log k), and
—every vital potential maximal clique belongs to C.
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Fig. 4. Illustration of the different neighborhoods of the maximal clique that we use to find the maximal
cliques of Types 3 and 4. A universal clique decomposition of a completed graph is shown, where � =
B0 ∪ . . . ∪ Bq is a maximal clique. Observe that the leaf block is Lq = (Bq, Bq) and that its tail is �.

We identify four different types of vital potential maximal cliques. For each type i,
1 ≤ i ≤ 4, we list a family Ci of 2O(

√
k log k) subsets containing all vital potential maximal

cliques of that type. Finally, we set C = C1 ∪ · · · ∪ C4. We show that every vital potential
maximal clique of (G, k) is of at least one of these types and that all objects of each type
can be enumerated in 2O(

√
k log k) time.

Let � be a vital potential maximal clique of G. By the definition of �, there exists
a minimal completion of G with at most k edges into a trivially perfect graph H such
that � is a maximal clique in H. Let (T = (VT , ET ),B = {Bt}t∈VT ) be the universal
clique decomposition of H. Recall that, by Lemma 2.6, � corresponds to a path Prt =
Bt0 Bt1 · · · Btq in T from the root r = t0 to a leaf t = tq. Then, for the corresponding leaf
block (Bt, Dt) with tail Qt, we have that � = Qt. To simplify the notation, we use Bi
for Bti .

Note that the algorithm knows neither the clique � nor the completed trivially
perfect graph H. However, in the analysis, we may partition all the vital potential
maximal cliques � with respect to structural properties of � and H, then provide simple
enumeration rules ensuring that all vital potential maximal cliques of each type are
indeed enumerated. We now proceed to the description of the types and enumeration
rules and refer to Figure 4 for a visualization of these concepts. Henceforth, whenever
we are referring to cheap or expensive vertices, we mean being cheap/expensive with
respect to a fixed completion to H.

Type 1. Potential maximal cliques of the first type are such that |V \ �| ≤ 2
√

k. The
family C1 consists of all sets W ⊆ V such that |V \ W | ≤ 2

√
k. There are at most

(2
√

k+1) · (O(k3)
2
√

k ) such sets, and using the fact that ( a
b ) = aO(b) = 2O(b log a), we enumerate

all of them in time 2O(
√

k log k) by trying all vertex subsets of size at least |V |−2
√

k. Thus,
every Type 1 vital potential maximal clique is in C1.

Type 2. By Lemma 2.6 (i), we have that � = Qt = NH[v] for each vertex v ∈ Dt = Bt.
Vital potential maximal cliques of the second type are those of the form NH[v] for
some v ∈ Bt, where Bt is a leaf bag in the universal clique decomposition of H, and
|Bt| > 2

√
k. We generate the family C2 as follows. Every set in C2 is of the form W1 ∪ W2,

where W1 = NG[v] for some v ∈ V , and |W2| ≤ √
k. There are at most (O(k3)√

k ) ·O(k3) such
sets. They can be enumerated by computing for every vertex v the set W1 = NG[v] and
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adding to each such set all possible subsets of size at most
√

k. Hence, every Type 2
vital potential maximal clique is in C2.

Thus, if � is not of Types 1 or 2, then |V \�| > 2
√

k; for the corresponding leaf block,
we have |Bt| ≤ 2

√
k. Since |V \ �| > 2

√
k, it follows that V \ � contains at least one

cheap vertex, that is, a vertex with fill number at most
√

k.
We partition the nodes of T that are not on the path B0, B1, . . . , Bq into q disjoint sets

Z0, Z1, . . . , Zq−1 according to the nodes of the path Prt. Node x /∈ V (Prt) belongs to Zi,
i ∈ {0, . . . , q − 1}, if i is the largest integer such that ti is an ancestor of x in T . In other
words, Zi consists of bags of subtrees outside Prt attached below ti (see Figure 4(b)). For
integers p1, p2, we shall denote Bp1,p2 = ⋃p2

j=p1
Bj .

For the remaining two types of vital potential maximal cliques, we distinguish cases
depending on whether all cheap vertices in V \ � are located in exactly one set Zi or
not. Recall that all vital potential maximal cliques for which V \ � does not contain
any cheap vertex are already contained in Type 1.

Type 3. Vital potential maximal cliques � of the third type are the ones that do not
belong to Types 1 or 2, but for which there exists an index i ∈ {0, 1, . . . , q − 1} such
that all cheap vertices of V \ � belong to Zi. Since � is not of Type 1, Zi is nonempty.
Also, since � is not of Type 2, we have that |Bq| ≤ 2

√
k. Let us denote Z<i = ⋃i−1

j=0 Zj

and Z>i = ⋃q−1
j=i+1 Zj (see Figure 4(a)). By our assumption, we have that Z<i and Z>i

contain only expensive vertices, hence |Z<i|, |Z>i| ≤ 2
√

k. Let u be any cheap vertex
belonging to Zi, and observe that the following equalities and inclusions are implied
by Lemma 2.7 (ii):

—B0,i−1 = NG(Z<i) ⊆ �;
—Bi+1,q−1 ⊆ NG(Z>i) ⊆ �;
—Bi ⊆ NG(Bq ∪ (NG[Z>i] \ NH(u))) ⊆ �.

It follows that

� = NG(Z<i) ∪ NG(Z>i) ∪ NG
(
Bq ∪ (

NG[Z>i] \ NH(u)
)) ∪ Bq. (1)

Given (1), we may define family C3. Family C3 comprises all the sets that can be con-
structed as follows:

—Pick three disjoint sets W1, W2, W3 ⊆ V of size at most 2
√

k each. This corresponds
to the choice of Z<i, Z>i, and Bq, respectively.

—Pick a vertex v ∈ V and a set A ⊆ V of size at most
√

k. This corresponds to the
choice of u and fill-in edges adjacent to u. Let Nv = NG(v) ∪ A.

—Put the set NG(W1) ∪ NG(W2) ∪ NG(W3 ∪ (NG[W2] \ Nv)) ∪ W3 into the family C3.

Observe that since |V | = O(k3), and since we enumerate all possible collections of
four sets of size O(

√
k) and one vertex, the number of sets included in C3 is at most

( O(k3)
O(

√
k) )

4 ·O(k3) = 2O(
√

k log k). Furthermore, this family can also be enumerated within the
same asymptotic running time. From Equation (1), it follows immediately that each
vital potential maximal clique of Type 3 is contained in C3.

Type 4. Vital potential maximal cliques � of the fourth type are the ones that do not
belong to Types 1 or 2, but there exist at least two indices i1 and i2 such that Zi1 and
Zi2 both contain a cheap vertex. Let i1, i2 be the two largest such indices, where i1 > i2.
Let Z<i1,>i2 = ⋃i1−1

j=i2+1 Zj and Z>i1 = ⋃q−1
j=i1+1 Zj (see Figure 4(b)). By the maximality

of i1, i2, we have that Z<i1,>i2 and Z>i1 contain only expensive vertices, and hence that
|Z<i1,>i2 |, |Z>i1 | ≤ 2

√
k. Again, since � is not of Type 2, we have that |Bq| ≤ 2

√
k. Let
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u1 ∈ Zi1 and u2 ∈ Zi2 be two cheap vertices. Observe that the following equalities and
inclusions are implied by Lemma 2.7 (ii):

—B0,i2 = NH(u1) ∩ NH(u2);
—Bi2+1,i1−1 ⊆ NG(Z<i1,>i2 ) ⊆ �;
—Bi1+1,q−1 ⊆ NG(Z>i1 ) ⊆ �;
—Bi1 ⊆ NG(Bq ∪ (NG[Z>i1 ] \ NH(u1))) ⊆ �.

It follows that

� = (
NH(u1) ∩ NH(u2)

) ∪ NG(Z<i1,>i2 ) ∪ NG(Z>i1 )

∪ NG
(
Bq ∪ (

NG[Z>i1 ] \ NH(u1)
)) ∪ Bq .

(2)

Given Equation (2), we may define the family C4. This family comprises all the sets
that can be constructed as follows:

—Pick three disjoint sets W1, W2, W3 ⊆ V of size at most 2
√

k each. This corresponds
to the choice of Z<i1,>i2 , Z>i1 , and Bq, respectively.

—Pick two vertices v1, v2 ∈ V and two sets A1, A2 ⊆ V , each of size at most
√

k. This
corresponds to the choice of u1 and u2, and of the neighbors in H adjacent to u1 and
u2. Let Nvi = NG(vi) ∪ Ai, for i = 1, 2.

—Put the set (Nv1 ∩ Nv2 ) ∪ NG(W1) ∪ NG(W2) ∪ NG(W3 ∪ (NG[W2] \ Nv1 )) ∪ W3 into the
family C4.

Observe that, since |V | = O(k3), and by the same analysis as for Type 3, the number of
sets included in C4 is at most 2O(

√
k log k), and that this family can be enumerated within

the same asymptotic running time. From Equation (2), it follows immediately that each
vital potential maximal clique of Type 4 is contained in C4.

Summarizing, every vital potential maximal clique of Types 1, 2, 3, and 4 is included
in the family C1, C2, C3, and C4, respectively. Since every vital potential maximal clique
is of Types 1, 2, 3, or 4, by taking C = C1 ∪ C2 ∪ C3 ∪ C4 we can infer the following lemma
that formalizes the result of Step B.

LEMMA 2.11 (ENUMERATION LEMMA). Let (G, k) be an instance of TRIVIALLY PERFECT

COMPLETION such that |V (G)| = O(k3). Then, in time 2O(
√

k log k), we can construct a family
C consisting of 2O(

√
k log k) subsets of V (G) such that every vital potential maximal clique

of (G, k) is in C.

Step C. Dynamic programming. We first give an intuitive idea of the dynamic pro-
gramming procedure. We start off by assuming that we have the family C containing
all vital potential maximal cliques of (G, k). We start by generating in time 2O(

√
k log k) a

family S of pairs (X, Y ), where X, Y ⊆ V (G), such that for every minimal completion
S of size at most k, and the corresponding universal clique decomposition (T ,B) of
H = G + S, it holds that every block (B, D) is in S, and the size of S is 2O(

√
k log k). (See

Definition 2.5 for the definition of a block.)
The construction of S is based on the following observations about blocks and vital

potential maximal cliques: Let G be a graph, S a minimal completion, and L = (B, D)
a block of the universal clique decomposition of H = G + S, where H is not a complete
graph, with Q being its tail. Then, the following hold, as we prove later:

—If L is a leaf block, then B = �1 \ �2 for some vital potential maximal cliques �1 and
�2, and D = B.

—If L is the root block, then the tail of L is B, B = �1 ∩ �2 for some vital potential
maximal cliques �1 and �2, and D = V .
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—If L is an internal block, then Q is the intersection of two vital potential maximal
cliques �1 and �2 of G, B = Q \ �3 for some vital potential maximal clique �3, and
D is the connected component of G − (Q \ B) containing B.

From this observation, we can conclude that by going through all triples �1,�2,�3
of elements of C, we can compute the set S consisting of all blocks (B, D) of minimal
completions. We now define the value dp(B, D) as follows: dp(B, D) is equal to the
minimum number of edges needed to be added to G[D] to make it a trivially perfect
graph with B being the universal clique contained in the root of its universal clique
decomposition, unless this minimum number is larger than k; in this case, we put
dp(B, D) = +∞. We later derive recurrence equations that enable us to compute all
the relevant values of dp(·, ·) using dynamic programming. Finally, the minimum cost
of completing G to a trivially perfect graph is equal to min(B,V (G))∈S dp(B, V (G)). If this
minimum is equal to +∞, then no completion of size at most k exists and we can
conclude that (G, k) is a no-instance.

We now proceed to a formal proof of the correctness of the dynamic programming
procedure. Suppose that we have the family C containing all vital potential maximal
cliques of (G, k). We start by generating in time 2O(

√
k log k) a family S of pairs (X, Y ),

where X, Y ⊆ V , where V = V (G), such that

—for every minimal completion H that adds at most k edges, every block (B, D) of the
universal clique decomposition of H belongs to S, and

—the size of S is 2O(
√

k log k).

The construction of S is based on the following lemmata.

LEMMA 2.12. Let G be a graph, S a minimal completion of G of size at most k, and
(B, D) a nonleaf and nonroot block of the universal clique decomposition of H = G + S,
with Q being its tail. Then

(i) Q is the intersection of two vital potential maximal cliques �1 and �2 of G,
(ii) B = Q \ �3 for some vital potential maximal clique �3, and

(iii) D is the connected component of G − (Q \ B) containing B.

PROOF. (i) Consider two connected components D1 and D2 of H[D\ B] and let �′
1 and

�′
2 be maximal cliques in D1 and D2. Observe that �1 = �′

1 ∪ Q and �2 = �′
2 ∪ Q are

maximal cliques in H. By definition, �1 and �2 are vital potential maximal cliques in
G, and �1 ∩ �2 = Q.

(ii) Let L̂ = (B̂, D̂) be the parent block of (B, D). Since L̂ is not a leaf-block, L̂ has at
least two children; thus, there is a block (B′, D′) = (B, D) that is also a child of L̂. By
the previous argument, Q̂, the tail of L̂ is exactly Q̂ = �1 ∩ �3 for some vital potential
maximal clique �3. It follows that B = Q \ �3.

(iii) It follows from Lemma 2.7 that G[D] is connected. It then follows immediately
that D is the unique connected component of G − (Q \ B) containing B.

LEMMA 2.13. Let G be a graph, S a minimal completion of G of size at most k, and
L = (B, D) a leaf block of the universal clique decomposition of H = G + S. If H is not
a complete graph, then

(i) B = �1 \ �2 for some vital potential maximal cliques �1 and �2, and
(ii) D = B.

PROOF. (i) Let L̂ = (B̂, D̂) be the parent block of L, which exists since L is not the
root block. Let L′ = (B′, D′) be a child of L̂, which is not L. If L′ = (B′, D′) is a leaf,
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then set L′′ = L′, and if not, then let L′′ = (B′′, D′′) be a leaf that has L′ as an ancestor.
The blocks L′ and L′′ exist since L̂ is not a leaf. Furthermore, let Q̂ be the tail of L̂,
and let �1 = NH[B] and �2 = NH[B′′]; �1 and �2 are then two maximal cliques in
H. From similar arguments as presented earlier, we get that Q̂ = �1 ∩ �2, hence that
B = �1 \ �2.

(ii) This follows immediately from Lemma 2.6.

LEMMA 2.14. Let G be a connected graph, S a minimal completion of G of size at most
k, and L = (B, D) the root block of the universal clique decomposition of H = G + S. If
H is not a complete graph, then

(i) the tail of L is B,
(ii) B = �1 ∩ �2 for some vital potential maximal cliques �1 and �2, and

(iii) D = V .

PROOF. (i) By definition, the tail is the collection of vertices from B to the root. Since
L is a root block, the tail is B itself.

(ii) This follows in the same manner as in the proof of Lemma 2.12 (i), since B is the
tail of block L.

(iii) From the definition of universal clique decompositions, we have that D is the
connected component of H[V \ (Q \ B)] containing B. But since Q \ B = ∅, we get that
D is the connected component of H containing B. Now, since H is connected, the result
follows.

By making use of Lemmata 2.12–2.14, one can construct the required family S by
going through all possible triples of elements of C. The size of S is at most |C|3 =
2O(

√
k log k) and the running time of the construction of S is 2O(

√
k log k). Note here that, by

Lemma 2.7 (iii) and the fact that G is connected, we may discard from S every pair
(B, D) where G[D] is not connected.

For every pair (X, Y ) ∈ S, with X ⊆ Y ⊆ V , we define dp (X, Y ) to be the minimum
number of edges required to add to G[Y ] to obtain a trivially perfect graph where X is the
maximal universal clique. If this minimum value exceeds k, we define dp (X, Y ) = +∞.
Thus, to compute an optimal solution, it is sufficient to go through the values dp (X, Y ),
where (X, Y ) ∈ S with Y = V . In other words, to compute the size of a minimum
completion, we find

min
(X,V )∈S

dp (X, V ), (3)

and if this value is +∞, then the size of a minimum completion exceeds k.
In the following, for a subset of vertices A we write mA to denote the number of edges

inside A, that is, mA = |E(A)|. We compute Equation (3) by making use of dynamic
programming over elements of S. For every pair (X, Y ) ∈ S that can be a leaf block for
some completion, that is, for all pairs with X = Y , we put

dp (X, X) =
(|X|

2

)
− mX.

Of course, if the computed value exceeds k, then we put dp (X, X) = +∞.
For (X, Y ) ∈ S with X � Y , if (X, Y ) is a block of some minimal completion H, then

in H, we have that X is a maximal universal clique in H[Y ], every vertex of X is
adjacent to all vertices of Y \ X, and the number of edges in H[Y \ X] is the sum of the
number of edges in the connected components of H[Y \ X]. By Lemma 2.7, the vertices
of every connected component Y ′ of H[Y \ X] induce a connected component in G[Y \ X].
Observe that each connected component Y ′ of H[Y \ X] corresponds to a block (X′, Y ′)
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in the decomposition of H. Now, since S contains all blocks of minimal trivially perfect
completions, it follows that (X′, Y ′) ∈ S.

Now, for (X, Y ) ∈ S, we use mX,Y\X = |E(X, Y \ X)| to denote the number of edges
between X and Y \ X in G. Let C be the set of connected components of G[Y \ X]. Then
we compute, in order of increasing size of Y ,

dp (X, Y ) =
(|X|

2

)
− mX + |X| · |Y \ X| − mX,Y\X +

∑
G[Y ′]∈C

min
(X′,Y ′)∈S

dp(X′, Y ′).

Again, if the value on the right-hand side exceeds k, then we set dp (X, Y ) = +∞.
Since the cardinality of Y ′ is less than |Y | and blocks are processed in increasing

cardinality of Y , the value for dp (X′, Y ′) has already been calculated when it is needed
to compute dp (X, Y ).

The running time required to compute dp (X, Y ) is, up to a polynomial factor in
k, proportional to the number of sets (X′, Y ′) ∈ S, which is O(|S|). Thus, the total
running time of the dynamic programming procedure is, up to a polynomial factor in
k, proportional to O(|S|2); hence, Equation (3) can be computed in time 2O(

√
k log k). This

concludes Step C and the proof of Theorem 2.1.

3. COMPLETION TO THRESHOLD GRAPHS

In this section, we present an algorithm that solves THRESHOLD COMPLETION, which is
F-COMPLETION for the case when F = {2K2, C4, P4}, in subexponential parameterized
time. More specifically, we show the following theorem:

THEOREM 3.1. THRESHOLD COMPLETION is solvable in time 2O(
√

k log k) + O(kn4).

The proof of Theorem 3.1 is a combination of the following known techniques: the
kernelization algorithm by Guo [2007]; the chromatic coding technique of Alon et al.
[2009], also used in the subexponential algorithm of Ghosh et al. [2015] for split graphs;
and the algorithm of Fomin and Villanger [2013] for chain completion. For the kernel-
ization part, we use the following result from Guo [2007]. Guo stated and proved it for
the complement problem THRESHOLD EDGE DELETION, but since the set of forbidden sub-
graphs F = {2K2, C4, P4} is self-complementary, the deletion and completion problems
are equivalent.

PROPOSITION 3.2 [GUO 2007, THEOREM 3]. THRESHOLD COMPLETION admits a kernel with
O(k3) vertices. The running time of the kernelization algorithm is O(kn4).

Universal sets. We start by describing the chromatic coding technique by Alon et al.
[2009]. Let f be a coloring (not necessarily proper) of the vertex set of a graph G = (V, E)
with t colors. We call an edge e ∈ Emonochromatic if its endpoints have the same color,
and we call a set of edges F ⊆ E colorful if no edge in F is monochromatic.

Definition 3.3. A universal (n, k, t)-coloring family is a family F of functions from [n]
to [t] such that for any graph G with vertex set [n], and k edges, there is an f ∈ F such
that f is a proper coloring of G, that is, E(G) is colorful.

PROPOSITION 3.4 [ALON ET AL. 2009]. For any n > 10k2, there exists an explicit universal
(n, k,O(

√
k))-coloring family F of size |F| ≤ 2O(

√
k log k) · log n.

Note that, by explicit, we mean here that the family F not only exists, but can also
be constructed in 2O(

√
k log k) · nO(1) time.
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3.1. Split, Threshold and Chain Graphs

Here,we give some known facts about split graphs, threshold graphs, and chain graphs
that we will use to obtain the main result.

Definition 3.5. Given a graph G = (V, E), a partition of its vertex set into sets C and
I is called a split partition of G if C is a clique and I is an independent set.

We denote by (C, I) a split partition of a graph.

Definition 3.6 (Split Graph). A graph is a split graph if it admits a split partitioning.

PROPOSITION 3.7 (THEOREM 6.2, [GOLUMBIC 1980]). A split graph on n vertices has at
most n + 1 split partitions; these partitions can be enumerated in polynomial time.

Definition 3.8. A chain graph is a bipartite graph G = (A, B, E) where the neigh-
borhoods of the vertices are nested, that is, there is an ordering of the vertices in A,
a1, a2, . . . , an1 , such that for each i < n1, we have that N(ai) ⊆ N(ai+1), where n1 = |A|.

We will use the following result, which is often used as an alternative definition of
threshold graphs.

PROPOSITION 3.9 [MAHADEV AND PELED 1995, THEOREM 1.2.4]. A graph G is a threshold
graph if and only if G has a split partition (C, I) and the neighborhoods of the vertices
of I are nested.

Thus, the class of threshold graphs is a subclass of split graphs, and by Proposition 3.7,
threshold graphs on n vertices have at most n + 1 split partitions.

3.2. The Algorithm

We now proceed to the details of the algorithm that solves THRESHOLD COMPLETION in
the time stated in Theorem 3.1. Fomin and Villanger [2013] show that the following
problem is solvable in subexponential time:

CHAIN COMPLETION

Input: A bipartite graph G = (A, B, E) and integer k.
Parameter: k
Question: Is there a set of edges S of size at most k such that (A, B, E ∪

S) is a chain graph?

Note that in the CHAIN COMPLETION problem, the resulting chain graph must have
the same bipartition as the input graph. Thus, despite the fact that chain graphs
are exactly the {2K2, C3, C4, P4}-free graphs, formally CHAIN COMPLETION is not an F-
COMPLETION problem according to our definition.

PROPOSITION 3.10 [FOMIN AND VILLANGER 2013]. CHAIN COMPLETION is solvable in
2O(

√
k log k) + O(k2nm) time.

We now have the results needed to give an algorithm for THRESHOLD COMPLETION, thus
proving Theorem 3.1.

PROOF OF THEOREM 3.1. Before giving the full algorithm and proof of correctness,
we start by giving an outline of the steps of the algorithm without proofs, the first
of which is starting from Proposition 3.2, thereby obtaining a polynomial kernel with
O(k3) vertices in time O(kn4). We will henceforth assume that the input graph G has
n = O(k3) vertices.
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Suppose that (G, k) is a yes instance of THRESHOLD COMPLETION. Then there is an
edge set S of size at most k such that G + S is a threshold graph. Without loss of
generality, we can assume that n > 10k2. By Proposition 3.4, we can construct in
2O(

√
k log k) · nO(1) = 2O(

√
k log k) time an explicit universal (n, k,O(

√
k))-coloring family F of

size |F| = 2O(
√

k log k) · log n = 2O(
√

k log k). Since |S| ≤ k, there is a vertex coloring f ∈ F

such that S is colorful.
We iterate through all the colorings f ∈ F. Let us examine one coloring f ∈ F, and

let V1, V2, . . . , Vt be the partitioning of V (G) according to f , where t = O(
√

k). Then,
since threshold graphs are hereditary and we assume S to be colorful, each Vi must
induce a threshold graph—we cannot add edges within a color class. Denote by G f

i the
graph G[Vi], where Vi is the ith partition according to f . We write Gi if f is clear from
context.

By Proposition 3.7, G+ S has O(k3) split partitions. Each such split partition of G+ S
induces a split partition of Gi, i ∈ {1, . . . , t}. Again, by Proposition 3.7, each Gi also
has O(k3) split partitions, which we can enumerate in polynomial time. We use brute
force to generate the set of O((k3)t) = 2O(

√
k log k) partitions of G, and the set of generated

partitions contains all split partitions of G + S. This will be proved in Step C to follow.
By Proposition 3.9, if (G, k) is a yes instance, then for at least one of the split partitions
(C, I) of G + S, the neighborhoods of I are nested. To check if a split partition can be
turned into a nested partition, we use Proposition 3.10.

We now describe the algorithm in detail:
Step A. Kernelization. Apply Proposition 3.2 to obtain in time O(kn4) a kernel with

O(k3) vertices. From now on, we assume that the number of vertices n in G is O(k3).
Step B. Generating universal families. If necessary, we add a set of isolated vertices

to G to guarantee that n > 10k2. We apply Proposition 3.4 to construct a universal
(n, k,O(

√
k))-coloring family F of size 2O(

√
k log k). For each generated coloring f and

the corresponding vertex partition V1, V2, . . . , Vt, t = O(
√

k), we perform the following
steps.

Step C. Generating split partitions. Let f ∈ F be fixed. We generate all potential
split partitions of G modulo f as follows, where Ci is the set of split partitions of
Gi, the graph induced on color class i. Recall here that we may assume that Gi is a
threshold graph, since S is assumed to be colorful, thus Gi has at most n + 1 = O(k3)
split partitions. Construct C by taking every combination of split partitions for each
Gi, hence a potential split partition (C, I) ∈ C has the property that for every i ≤ t,
(C ∩ V (Gi), I ∩ V (Gi)) ∈ Ci. Since S is assumed to be colorful, and we collected the
combination of every split partition of the color classes, G + S has a split partition
(C, I) ∈ C.

The time required to generate all the elements of C is O((k3)t) = 2O(
√

k log k). We
also perform a sanity check by excluding from C all pairs (C, I), where I is not an
independent set. It is important here to observe that there is a split partition such that
when (G, k) is a yes instance, then there is a partitioning Ci for which there is a colorful
solution S of size at most k. We perform the next step with each pair (C, I) ∈ C.

Step D. Computing nested split partitions. For a pair (C, I) ∈ C, such that I is an inde-
pendent set in G, we first compute the number of edges c needed to turn C into a clique,
that is, c = ( |C|

2 ) − mC . Finally, we use Proposition 3.10 to check if the neighborhood of
I in C can be made nested by adding at most k − c edges.

From the earlier discussions, if (G, k) is a yes instance of the problem, the solution
will be found after completing the algorithm. Let S be such that G + S is a threshold
graph and |S| ≤ k. Considering the graph G − E + S, that is, G but with edges only
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from S, we get that there is a proper coloring f ∈ F of G using O(
√

k) colors. Since we
iterate through each f ∈ F , in some iteration we will try with the correct one. Partition
the vertices according to f . This partition has the property that S will not have an
edge completely within one partition; hence, Gi must induce a split graph and has at
most |V (Gi)| + 1 split partitions. Trying every single combination of split partitions of
the different Gis gives every potential split partition of G. It then follows that running
the chain completion on each of the potential split partitions will find any threshold
completion of size at most k.

If no such completion is found, we conclude that (G, k) is a no instance. The running
time to perform Step A is O(kn4) and Step B is done in 2O(

√
k log k) time. For every f ∈ F,

in Step C we generate 2O(
√

k log k) partitions. The total number of times that Step C is
called is |F|, and the total number of partitions generated is |F| · 2O(

√
k log k) = 2O(

√
k log k).

In Step D, we run the algorithm with running time 2O(
√

k log k) on each of the 2O(
√

k log k)

partitions, resulting in a total running time of 2O(
√

k log k) + O(kn4).

4. COMPLETION TO PSEUDOSPLIT GRAPHS

In this section, we show that PSEUDOSPLIT COMPLETION, or F-COMPLETION for F =
{2K2, C4}, can be solved by first applying a polynomial-time and parameter-preserving
preprocessing routine, and then using the subexponential time algorithm of Ghosh
et al. [2015] for SPLIT COMPLETION.

The crucial property of pseudosplit graphs that will be of use is the following
characterization:

PROPOSITION 4.1 [MAFFRAY AND PREISSMANN 1994]. A graph G = (V, E) is pseudosplit
if and only if one of the following holds:

—G is a split graph, or
—V can be partitioned into a pseudosplit partition (C, I, X) such that G[C ∪ I] is a split

graph with C being a clique and I being an independent set, G[X] ∼= C5; moreover,
there is no edge between X and I and every edge is present between X and C.

In other words, a pseudosplit graph is either a split graph or constructed from a split
graph by adding a C5 that is completely nonadjacent to the independent set of the split
graph and completely adjacent to the clique set of the split graph. We call a graph that
falls into the latter category a proper pseudosplit graph.

In order to ease the argumentation regarding minimal completions, we call a split
partition (C, I) I-maximal if there is no vertex v ∈ C such that (C \ {v}, I ∪ {v}) is a split
partition. Our algorithm uses the subexponential algorithm of Ghosh et al. [2015] for
SPLIT COMPLETION as a subroutine. We therefore need the following result:

PROPOSITION 4.2 [GHOSH ET AL. 2015]. SPLIT COMPLETION is solvable in time 2O(
√

k log k) ·
nO(1).

Formally, in this section, we prove the following theorem:

THEOREM 4.3. PSEUDOSPLIT COMPLETION is solvable in time 2O(
√

k log k) · nO(1).

The algorithm whose existence is asserted in Theorem 4.3 is given as Algorithm 1.
We now proceed to prove that this algorithm is correct, and that its running time on
input (G, k) is 2O(

√
k log k) ·nO(1). In the following, we adopt the notation from Algorithm 1.

As in the algorithm, we denote by X the set of five vertices that will be used as the
set inducing a C5 (we try all possible subsets; note that their number is bounded by
O(n5)). Note here that since G[X] admits a supergraph isomorphic to a C5, it follows
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ALGORITHM 1: Algorithm Solving PSEUDOSPLIT COMPLETION

(1) Use the algorithm from Proposition 4.2 to check in time 2O(
√

k log k) · nO(1) if (G, k) is a yes
instance of SPLIT COMPLETION. If (G, k) is a yes instance of SPLIT COMPLETION, then return
that (G, k) is a yes instance of PSEUDOSPLIT COMPLETION. Otherwise, we complete to a proper
pseudosplit graph.

(2) For each X = {x1, x2, . . . , x5} ⊆ V (G) such that there is a supergraph GX ⊇ G[X] and
GX ∼= C5, we construct an instance (G′, k′) to SPLIT COMPLETION from (G, k) as follows:
(a) Let k′ = k + |E(G[X])| − 5.
(b) Add all possible edges between vertices of X, so that X becomes a clique.
(c) Add a set A of k + 2 vertices to G.
(d) Add every possible edge between A and NG[X].

(3) Use Proposition 4.2 to check if (G′, k′) is a yes instance of SPLIT COMPLETION. If (G′, k′) is a
yes instance of SPLIT COMPLETION, then return that (G, k) is a yes instance of PSEUDOSPLIT

COMPLETION.
(4) If for no set X the answer yes was returned, then return no.

that |E(G[X])| ≤ 5 and, consequently, k′ ≤ k. Similarly, by A we denote the set of k + 2
vertices we add that are adjacent only to NG[X]. Intuitively, this set will be used to
force that in any minimal split completion of size at most k it holds that NG[X] ⊆ C.
From now on, G′ is the graph as in the algorithm, that is, G′ is constructed from G by
making X into a clique, adding vertices A and all possible edges between A and NG[X].

The following lemma will be crucial in the proof of the correctness of the algorithm.

LEMMA 4.4. Assume that S is a minimal split completion of G′ of size at most k′, and
let (C, I) be an I-maximal split partition of G′ + S. Then:

(i) NG[X] ⊆ C,
(ii) A ⊆ I,

(iii) no edge of S has an endpoint in A,
(iv) C \ X is fully adjacent to X in G′ + S, and
(v) I \ A is fully nonadjacent to X in G′ + S.

PROOF. (i) Aiming towards a contradiction, suppose that some v ∈ NG[X] is in I.
Since A ⊆ N(v), we must then have that A ⊆ C. However, since A is independent in G′,
this demands adding at least ( k+2

2 ) > k′ edges.
(ii) Aiming towards a contradiction, assume that A ∩ C = ∅. Since NG′(A) ⊆ C and

A is independent in G′, it follows that G′ + S′, where S′ = S \ (A × A) is also a split
graph with partition (C ′, I′), where C ′ = C \ A and I′ = I ∪ (A∩ C). Since S′ ⊆ S holds,
we have that either |S′| < |S|, which contradicts the minimality of S, or that S′ = S,
which contradicts the assumption that partition (C, I) was I-maximal.

(iii) Suppose that there is an edge e ∈ S incident to a vertex of A. Since A ⊆ I, we
infer that S \ {e} is still a split completion, which contradicts the minimality of S.

(iv) C is a clique in G′ + S and X ⊆ C, thus this holds trivially.
(v) Suppose for the sake of a contradiction that some vi ∈ I \ A is adjacent to some

vx ∈ X. Since NG[X] ⊆ C, we have that vivx ∈ S. But then S \ {vivx} is also a split
completion, which contradicts the minimality of S.

The correctness of the algorithm is implied by the following lemma:

LEMMA 4.5. The instance (G, k) is a yes instance of PSEUDOSPLIT COMPLETION if and
only if Algorithm 1 returns yes on input (G, k).

PROOF. In the forward direction, let (G, k) be a yes instance for PSEUDOSPLIT COM-
PLETION. Observe that (G, k) is a yes instance for SPLIT COMPLETION if and only if our
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algorithm returns yes in the first test. We therefore assume that G has to be completed
to a proper pseudosplit graph.

Let S0 be a completion set with |S0| ≤ k such that G0 = G+ S0 is a proper pseudosplit
graph. Let (C, I, X) be the pseudosplit partition of G + S0; hence, G0[X] is isomorphic
to a C5. We claim that the algorithm will return yes when considering the set X in the
second step; then, let G′ be the graph constructed in the second step of the algorithm,
starting with the set X. Let S be equal to S0 with all the edges of G0[X] that were not
present in G[X] removed; note that |S| = |S0| + |E(G[X])| − 5 ≤ k′. We claim that G′ + S
is a split graph with split partition (C ∪ X, I ∪ A). Indeed, since G′[X] is a clique, X is
fully adjacent to C in G0 ⊆ G′ + S, and C is a clique in G0 ⊆ G′ + S, it follows that C ∪ X
is a clique in G′ + S. On the other hand, I ∪ A is independent in G′ and all the edges
of S have at least one endpoint belonging to C ∪ X, thus I ∪ A remains independent in
G′ + S. As a result, G′ + S is a split graph, therefore, the algorithm will return yes after
the application of Proposition 4.2 in the third step.

In the reverse direction, assume that Algorithm 1 returns yes on input (G, k). If it
returned yes already after the first test, then G may be completed into a split graph
by adding at most k edges; thus, in particular, (G, k) is a yes instance of PSEUDOSPLIT

COMPLETION. From now on, we assume that the algorithm returned yes in the third step.
More precisely, for some set X, the application of Proposition 4.2 has found a minimal
completion set S of size at most k′ such that G′ + S is a split graph, with I-maximal
split partition (C, I).

By Lemma 4.4, we have that (i) NG[X] ⊆ C, (ii) A ⊆ I, (iii) no edge of S has an
endpoint in A, (iv) C \ X is fully adjacent to X in G′ + S, and (v) I \ A is fully nonadjacent
to X in G′ + S. By the choice of X, there exists a supergraph GX of G[X] such that
GX ∼= C5. Now, let S0 be equal to S with all the edges of GX that were not present in
G[X] included. Observe that |S0| ≤ k and that by (iii) S0 contains only edges incident
to vertices of G. Consider now the partition (C \ X, I \ A, X) of V (G + S0). Since (C, I)
was a split partition of G′ + S, it follows that C \ X is a clique in G + S0 and I \ A is an
independent set in G+ S0. Moreover, from (iv) and (v) it follows that X is fully adjacent
to C \ X in G + S0 and fully nonadjacent to I \ A in G + S0. Finally, the graph induced
by X in G + S0 is GX ∼= C5. By Proposition 4.1, we infer that G + S0 is a pseudosplit
graph; thus, the instance (G, k) is a yes instance of PSEUDOSPLIT COMPLETION.

As for the time complexity of the algorithm, we try sets of five vertices for X, which is
O(n5) tries. For each such guess, we construct the graph G′, which has n+k+2 vertices.
Since k′ ≤ k, by Proposition 4.2 solving SPLIT COMPLETION requires time 2O(

√
k log k) · nO(1),

both in the first and the third steps of the algorithm. Therefore, the total running time
of Algorithm 1 is 2O(

√
k log k) · nO(1).

5. LOWER BOUNDS

In this section, we will give the promised lower bounds described in Figure 2, that is,
we will show that assuming ETH, F-COMPLETION is not solvable in subexponential time
for F being one of {2K2}, {C4}, {P4}, and {2K2, P4}.

Throughout this section, we will reduce to the problems presented earlier from 3SAT.
We will assume that the input formula ϕ is in 3-CNF, that is, it is a conjunction of a
number of clauses, each clause being a disjunction of at most three literals. By applying
standard regularizing preprocessing for ϕ (e.g., see Fomin et al. [2014, Lemma 13]),
we may also assume that each clause of ϕ contains exactly three literals, and that the
variables appearing in these literals are pairwise different.

If ϕ is a 3SAT instance, we denote by V(ϕ) the variables in ϕ and by C(ϕ) the clauses.
We assume that we have an ordering c1, c2, . . . , cm for the clauses in C(ϕ) and the same
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Fig. 5. Variable (left) and clause (right) gadgets used in the reduction.

for the variables, x1, x2, . . . , xn. For simplicity, we also assume that the literals in each
clause are ordered internally by the variable ordering.

We restate here the ETH, as that will be the crucial assumption for proving that the
problems mentioned earlier do not admit subexponential time algorithms.

EXPONENTIAL TIME HYPOTHESIS (ETH). There exists a positive real number s such that
3-CNF-SAT with n variables cannot be solved in time 2sn.

By the Sparsification Lemma of Impagliazzo et al. [2001], unless ETH fails, 3SAT

cannot be solved in time 2o(n+m)(n + m)O(1).
For each considered problem, we present a linear reduction from 3SAT, that is, a

reduction that constructs an instance whose parameter is bounded linearly in the size
of the input formula. Pipelining such a reduction with the assumed subexponential
parameterized algorithm for the problem would give a subexponential algorithm for
3SAT, contradicting ETH.

5.1. 2K2-Free Completion Is Not Solvable in Subexponential Time

For F = {2K2}, we refer to F-COMPLETION as to 2K2-FREE COMPLETION. We show the
following theorem.

THEOREM 5.1. The problem 2K2-FREE COMPLETION is NP-complete and not solvable in
2o(k)nO(1) time unless the Exponential Time Hypothesis (ETH) fails.

For the proof, however, instead of working directly on this problem, we find it more
convenient to show the hardness of the (polynomially) equivalent problem C4-FREE EDGE

DELETION. We will throughout this section write G − S for the graph (V (G), E(G) \ S)
when S ⊆ E(G).

Construction. We reduce from 3SAT using the gadgets in Figure 5. Let ϕ be an instance
of 3SAT. We construct the instance (Gϕ, kϕ) for C4-FREE EDGE DELETION and we begin by
defining the graph Gϕ . For every variable x ∈ V(ϕ), we construct a variable gadget
graph Gx. The graph Gx consists of six vertices: wx

0, wx
1, wx

2, nx (for negative), px (for
positive), and tx. The three vertices wx

0, wx
1, and wx

2 will induce a triangle, whereas nx

and px are adjacent to the vertices in the triangle and to tx. We can observe that the
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Fig. 6. The connections for a clause c = x ∨ ¬y ∨ z. For the negated variable, ¬y, we connect the clause
gadget to ny and ty, whereas for the variables in the nonnegated form, we have the clause connected to the t
and p vertices. Observe that a budget of five is sufficient and necessary for eliminating all occurrences of C4
in the depicted subgraph.

four vertices nx, tx, px, and wx
i induce a C4 for i = 0, 1, 2, and that no other induced C4

occurs in the gadget (see Figure 5(a)). It can also be observed that by removing either
one of the edges nxtx and pxtx, the gadget becomes C4-free. We will refer to the edge
tx px as the true edge and to txnx as the false edge. These edges are the thick edges in
Figure 5(a). This concludes the variable gadget construction.

For every clause c ∈ C(ϕ), we construct a clause gadget graph Gc as follows. The
graph Gc consists of two triangles, ac

0, ac
1, ac

2 and bc
0, bc

1, bc
2. We also add the edges ac

0bc
0,

ac
1bc

1, and ac
2bc

2. These three latter edges will correspond to the variables contained in c;
we refer to them as variable-edges (the thick edges in Figure 5(b)). No more edges are
added. The clause gadget can be seen in Figure 5(b). Observe that there are exactly
three induced C4s in Gc, all of the form ac

i , ac
i+1, bc

i+1, bc
i for i = 0, 1, 2, where the indices

behave cyclically are taken modulo 3. Moreover, removing any two edges of the form
ac

i bc
i for i = 0, 1, 2 eliminates all the induced C4s contained in Gc.

To conclude the construction, we present the connections between variable gadgets
and clause gadgets that encode literals in the clauses (see Figure 6). If a variable x
appears in a nonnegated form as the ith (for i = 0, 1, 2) variable in a clause c, we add
the edges txac

i and pxbc
i . If it appears in a negated form, we add the edges txac

i and
nxbc

i . The connections can be seen in Figure 6. Observe that we get exactly one extra
induced C4 in the connection, and that this can be eliminated by removing either one
of the thick edges.

This concludes the construction. We have now obtained a graph Gϕ constructed from
an instance ϕ of 3SAT. We let kϕ = |V(ϕ)| + 2|C(ϕ)| be the allowed (and necessary)
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budget; the instance of C4-FREE EDGE DELETION is then (Gϕ, kϕ). This exposition, with
the tightness of the budget in mind, can be summarized in two observations.

OBSERVATION 5.2. In any solution S of an instance (Gϕ, kϕ),

—for each variable gadget Gx, exactly one of nxtx and tx px is contained in S, and
—for each clause gadget Gc, exactly two of the three edges {ac

0bc
0, ac

1bc
1, ac

2bc
2} are in S.

We now proceed to prove the following lemma, which will give the result.

LEMMA 5.3. A given 3SAT instance ϕ has a satisfying assignment if and only if (Gϕ, kϕ)
is a yes instance of C4-FREE EDGE DELETION.

PROOF. Let ϕ be satisfiable and Gϕ and kϕ be as before. We show that (Gϕ, kϕ) is a
yes instance for C4-FREE EDGE DELETION. Let α : V(ϕ) → {true, false} be a satisfying
assignment for ϕ. For every variable x ∈ V(ϕ), if α(x) = true, we remove from the
variable gadget Gx the edge corresponding to true, that is, the edge tx px; otherwise,
we remove the edge corresponding to false, that is, the edge txnx. Every clause c ∈ C is
satisfied by α; we pick an arbitrary variable x whose literal satisfies c and remove two
edges corresponding to the two other literals. If a clause is satisfied by more than one
literal, we pick any of the corresponding variables.

For every clause, we deleted exactly two edges; for every variable, we deleted exactly
one edge. Thus, the total number of edges removed is 2|C(ϕ)| + |V(ϕ)| = kϕ . We argue
now that the remaining graph G′

ϕ is C4-free. Since variables appearing in clauses are
pairwise different, it can be easily observed that every induced cycle of length four
in Gϕ is either

—entirely contained in some clause gadget,
—entirely contained in some variable gadget, or
—is of form txγ xbc

i ac
i , where x is the ith variable of clause c, and γ ∈ {n, p} denotes

whether the literal in c that corresponds to x is negated or nonnegated.

By the construction of G′
ϕ , we destroyed all induced 4-cycles of the first two types.

Consider a 4-cycle tx pxbc
i ac

i of the third type, where x appears positively in clause c. In
the case when the literal of variable x was not chosen to satisfy c, we have deleted the
edge ac

i bc
i , therefore this 4-cycle is removed. Otherwise, we have that α(x) = true, and

we have deleted the edge tx px, thus also removing the considered 4-cycle. The case of
a 4-cycle of the form txnxbc

i ac
i is symmetric.

We therefore get that all the induced 4-cycles that were contained in Gϕ have been
removed in G′

ϕ . Since vertex pairs (ac
i , bc

i ) and (γ x, tx) for γ ∈ {n, p} do not have common
neighbors, it follows that no new C4 could be created when obtaining G′

ϕ from Gϕ by
removing edges as described earlier. We infer that G′

ϕ is indeed C4-free.
We now prove the opposite direction. Let S be an edge set of Gϕ of size at most kϕ

such that G− S is C4-free. By the definition of the budget kϕ and from Observation 5.2,
that every variable gadget needs at least one edge to be in S and every clause gadget
needs at least two edges to be in S (note here that the edge sets of clause and variable
gadgets are pairwise disjoint), we have that S contains exactly one edge from each
variable gadget, exactly two edges from each clause gadget, and no other edges.

We construct an assignment α : V(ϕ) → {true, false} for the formula ϕ as follows.
For a variable x ∈ V(ϕ), we let α(x) = true if the true edge tx px of Gx is in S, and
α(x) = false otherwise. By Observation 5.2, it follows that if α(x) = false, then the
false edge, txnx of Gx, is in S. We claim that the assignment α satisfies ϕ.

Suppose for the sake of contradiction that a clause c ∈ C is not satisfied. Since
exactly two edges in the clause gadget Gc are in S, there is a variable x in c such
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that the corresponding variable edge of Gc is not in S. If α(x) = true, then because c
is not satisfied, we have that ¬x ∈ c. By the definition of α, we have that the false
edge of Gx does not belong to S. Then, in Gϕ , the false edge of Gx and the variable
edge of Gc corresponding to x form part of an induced C4 that is not destroyed by S,
a contradiction. The case α(x) = false is symmetric. This concludes the proof of the
lemma.

Finally, the proof of Theorem 5.1 follows from Lemma 5.3: Combining the presented
reduction with an algorithm solving C4-FREE EDGE DELETION in 2o(k)nO(1) time would
yield an algorithm that solves 3SAT in 2o(n+m) · (n + m)O(1) time, which contradicts ETH
by the results of Impagliazzo et al. [2001].

5.2. C4-Free Completion Is Not Solvable in Subexponential Time

For every F-COMPLETION problem that so far turned out to be solvable in subexponential
time, we had the graph C4 inF together with some other graphs: trivially perfect graphs
are the class excluding C4 and P4; threshold graphs are the class excluding 2K2, P4
and C4; and pseudosplit graphs are the class excluding 2K2 and C4. Previous known
subexponentiality results in the area of graph modifications are: completing to chordal
graphs and chain graphs [Fomin and Villanger 2013]; completing to split graphs [Ghosh
et al. 2015]; and, recently, completing to interval graphs [Bliznets et al. 2014a] and
proper interval graphs [Bliznets et al. 2014b]. All these graph classes have C4 as a
forbidden induced subgraph.

It is therefore natural to ask whether the C4 is the “reason” for the existence of
subexponential algorithms. However, in this section, we show that excluding C4 alone
is not sufficient for achieving a subexponential time algorithm. For F = {C4}, we refer
to F-COMPLETION as C4-FREE COMPLETION.

THEOREM 5.4. The problem C4-FREE COMPLETION is NP-complete and not solvable in
2o(k)nO(1) time unless the Exponential Time Hypothesis (ETH) fails.

To prove the theorem, we reduce from 3SAT, and similarly as before, we start with
a formula in which each clause contains exactly three literals corresponding to pair-
wise different variables. By duplicating clauses if necessary, we also assume that each
variable appears in at least two clauses.

We again need two types of gadgets: one gadget to emulate variables in the formula
and one gadget to emulate clauses. Let ϕ be the 3SAT instance and denote by V(ϕ) the
variables in ϕ and by C(ϕ) the clauses. We construct the graph Gϕ as follows.

For each variable x ∈ V(ϕ), we construct a variable gadget graph Gx as depicted in
Figure 7. Let px be the number of clauses in which x occurs; by our assumption, we
have that px ≥ 2. The graph Gx consists of a “tape” of 4px squares arranged in a cycle,
with additional vertices attached to the sides of the tape. The intuition is that every
fourth square in Gx is “reserved” for a clause in which x occurs. Formally, the vertex
set of Gx is

V (Gx) =
⋃

0≤i<4px

{
ux

i , tx
i , bx

i , dx
i

}
,

and its edge set is

E(Gx) =
⋃

0≤i<4px

{
ux

i tx
i , ux

i tx
i+1, tx

i ux
i+1, tx

i tx
i+1,

tx
i bx

i , bx
i bx

i+1, bx
i dx

i+1, bx
i dx

i , dx
i bx

i+1

}
,
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Fig. 7. Variable gadget Gx .

Fig. 8. The variable gadget Gx before completion, its two completions corresponding to assignments, and a
completion with differing orientations.

where the indices behave cyclically modulo 4px. The letters for the vertices are chosen
to correspond with top and bottom (tx and bx) of tape, and up and down (ux and dx).
The construction is visualized in Figures 7 and 8(a).

CLAIM 5.5. The minimum number of edges required to add to Gx to make it C4-
free is 4px. Moreover, there are exactly two ways of eliminating all C4s with 4px edges,
namely, adding an edge on the diagonal for each square. Furthermore, if we add one
edge to eliminate some cycle, the rest must have the same orientation, that is, either all
added edges are of the form tx

i bx
i+1 or of the form tx

i+1bx
i . See Figure 8.

PROOF OF CLAIM. A gadget Gx contains 4px induced C4s, and no two of them can
be eliminated by adding just one edge. Hence, to eliminate all C4s in Gx, we need at
least 4px edges. On the other hand, it is easy to verify that after adding 4px diagonals
to C4s of the same orientation, the resulting graph does not contain any induced C4
(see Figure 8 for examples). Whenever we have two consecutive cycles with completion
edges of different orientation, we create a new C4 consisting of the two completion edges,
and (depending on their orientation) either two edges incident to vertex ux

i above their
common vertex, or two edges incident to vertex dx

i below. See Figure 8(d).

COROLLARY 5.6. The minimum number of edges required to eliminate all C4s appear-
ing inside all the variable gadgets is 12|C(ϕ)|.

PROOF. Since each clause of C(ϕ) contains exactly three occurrences of variables,
it follows that

∑
x∈V(ϕ) px = 3|C(ϕ)|. The constructed variable gadgets are pairwise

disjoint; thus, by Claim 5.5, we infer that the minimum number of edges required in
all the variable gadgets is equal to

∑
x∈V(ϕ) 4px = 3 · 4|C(ϕ)| = 12|C(ϕ)|.

We now proceed to create the clause gadgets. For each clause c ∈ C(ϕ), we create the
graph Gc as depicted in Figure 9. It consists of an induced 4-cycle vc

1v
c
4v

c
2v

c
3 and induced

paths vc
2uc

1uc
2v

c
1 and vc

3uc
4uc

3v
c
4. We also attach a gadget consisting of kϕ internally disjoint-

induced paths of four vertices with endpoints in vc
4 and uc

4, where kϕ is the budget to
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Fig. 9. The clause gadget Gc. It contains one C4, and if we add either edge vc
1vc

2 or edge vc
3vc

4, we get a new
C4 that must be destroyed by adding one more edge. The kϕ K2 gadget makes sure that we cannot add edge
vc

4uc
4.

be specified later. This makes it impossible to add an edge between vc
4 and uc

4 in any
C4-free completion with at most kϕ edges.

By the i-th square, we mean a quadruple (tx
i , bx

i , tx
i+1, bx

i+1). If a clause c is the �-th
clause the variable x appears in, we will use the vertices of the 4(� − 1)st square for
connections to the gadget corresponding to c. For ease of notation, let j = 4(� − 1). We
also use pairs {vc

1, uc
1}, {vc

2, uc
2}, and {vc

3, uc
3} of Gc for connecting to the corresponding

variable gadgets. If a variable x appears in a nonnegated form as the ith (for i = 1, 2, 3)
literal of a clause c, then we add the edges tx

j+1v
c
i and bx

j u
c
i . If it appears in a negated

form, we add the edges tx
j v

c
i and bx

j+1uc
i (see Figure 10). This concludes the construction

of Gϕ . Finally, we set the budget for the instance to be kϕ = 14|C(ϕ)|.
CLAIM 5.7. For each clause gadget Gc for a clause c ∈ C(ϕ), we need to add at least

two edges between vertices of Gc to eliminate all induced C4s in Gc. Moreover, there are
exactly three ways of adding exactly two edges to Gc so that the resulting graph does not
contain any induced C4: by adding {vc

1v
c
2, v

c
1uc

1}, {vc
1v

c
2, v

c
2uc

2}, or {vc
3v

c
4, v

c
3uc

3}.
PROOF OF CLAIM. There is a four-cycle vc

1v
c
4v

c
2v

c
3 that needs to be eliminated, either by

adding the edge vc
1v

c
2 (Figure 11(b)) or vc

3v
c
4 (Figure 11(c)). In any case, we create a new

C4, vc
1uc

2uc
1v

c
2 in the former case and vc

4uc
3uc

4v
c
3 in the latter case. In the former case, we

can eliminate the created C4 by adding vc
1uc

1 or vc
2uc

2; in the latter case, we can eliminate
it by adding vc

3uc
3. Note that, in the latter case, we cannot add vc

4uc
4, since then we would

create kϕ new induced four-cycles. A direct check shows that all three aforementioned
completion sets lead to a C4-free graph.

LEMMA 5.8. Given a 3SAT instance ϕ, we have that (Gϕ, kϕ) is a yes instance for C4-FREE

COMPLETION for kϕ = 14|C(ϕ)| if and only if ϕ is satisfiable.

PROOF. In the backwards direction, suppose ϕ is satisfiable. Let α : V(ϕ) →
{true, false} be a satisfying assignment for ϕ. For every variable x ∈ V(ϕ), if
α(x) = true, we add the edges tx

i bx
i+1 to the completion set S for i ∈ {0, . . . , 4px − 1} and

if α(x) = false, we add the edges tx
i+1bx

i to S for i ∈ {0, . . . , 4px − 1}.
For a clause c in C(ϕ), if the first literal satisfies the clause, we add the edges vc

1v
c
2

and vc
1uc

1 to S. If the second literal satisfies the clause, we add vc
1v

c
2 and vc

2uc
2 to S. If it is

the third literal, we add vc
3v

c
4 and vc

3uc
3 to S. If more than one literal satisfies the clause,
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Fig. 10. The connections for a clause c = x ∨ ¬y ∨ z. In this example, c is the first clause of appearance for
x, thus x is connected to Gc via the 0th square. For y and z, we assume that c is the third clause in which
they appear, thus y and z use the 8th square.

Fig. 11. The clause gadget.

we pick any one. In total, this makes 12|C(ϕ)| edges added to the variable gadgets and
2|C(ϕ)| edges added to the clause gadgets.

Suppose now, for a contradiction, that Gϕ + S contains a cycle L of length four. From
Claims 5.5 and 5.7, we know that L is not completely contained in a variable or clause
gadget. Each vertex has at most one incident edge ending outside the gadget of the
vertex and such edges are there only between variable and clause gadgets. Thus L
consists of one edge from a variable gadget and one from a clause gadget and two edges
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between. We can observe that L then must contain either vc
1uc

1, vc
2uc

2 or vc
3uc

3 of the clause
gadget (see Figure 10). Let us assume without loss of generality that L contains the
edge vc

1uc
1. By the construction of the set S, this implies that the literal of the first

variable x of c satisfies c. If x is nonnegated in c, then we have that α(x) = true and
that vc

1tx
j+1 and uc

1bx
j are edges of L. To complete the cycle, tx

j+1bx
j must be an edge of L;

however, by the definition of S, we have added the edge tx
j bx

j+1 to S instead of tx
j+1bx

j ,
and we obtain a contradiction. The case in which x is negated is symmetric.

In the forward direction, suppose (Gϕ, kϕ) is a yes instance for kϕ = 14|C(ϕ)| and let S
be such that Gϕ + S is C4-free with |S| ≤ kϕ . By Corollary 5.6 and Claim 5.7, we know
that we need to use at least 12|C(ϕ)| edges to fix the variable gadgets and we need to
use at least 2|C(ϕ)| edges for the clause gadgets. Since |S| ≤ kϕ , we infer that |S| = kϕ ,
that we use exactly 4px edges to fix each variable gadget Gx (and that the orientation of
the added edges must be the same within each gadget), that we use exactly two edges
for each clause gadget Gc, and that S contains no edges other than those mentioned
earlier.

We now define an assignment α for V(ϕ) and prove that it is indeed a satisfying
assignment. If S contains the edge tx

0 bx
1, we let α(x) = true, and if S contains the edge

tx
1 bx

0, we let α(x) = false. Let c ∈ C(ϕ) be a clause and suppose that c is not satisfied
by the assignment α. We know by Claim 5.7 that the gadget for c contains {vc

1v
c
2, v

c
1uc

1},{vc
1v

c
2, v

c
2uc

2}, or {vc
3v

c
4, v

c
3uc

3}.
Without loss of generality, assume that Gc contains {vc

1v
c
2, v

c
1uc

1} and that x is the
first variable in c, and that it appears nonnegated. Since x does not satisfy c, we infer
that α(x) = false. This means that tx

1 bx
0 ∈ S, and since the orientation of the added

edges in the gadget Gx is the same, then also tx
i+1bx

i ∈ S. As a result, both edges tx
i+1bx

i
and vc

1uc
1 are present in Gϕ + S. But then we have an induced four-cycle vc

1uc
1bx

i tx
i+1v

c
1,

contradicting the assumption that Gϕ + S was C4-free. The cases for y, z and negative
literals are symmetric. This concludes the proof.

Similarly, as before, the proof of Theorem 5.4 can be completed as follows: combining
the presented reduction with an algorithm that solves C4-FREE COMPLETION in 2o(k) ·
nO(1) time would give an algorithm that solves 3SAT in 2o(n+m) · (n + m)O(1) time, which
contradicts ETH by the results of Impagliazzo et al. [2001].

5.3. P4-Free Completion Is Not Solvable in Subexponential Time

In this section, we show that there is no subexponential algorithm for F-COMPLETION for
F = {P4} unless the ETH fails. Let us recall that since P4 = P4, the problems P4-FREE

EDGE DELETION and P4-FREE COMPLETION are polynomial time equivalent, and that this
graph class more commonly goes under the name cographs. In other words, we aim to
convince the reader of the following.

THEOREM 5.9. The problem P4-FREE COMPLETION is NP-complete and not solvable in
2o(k)nO(1) time unless the Exponential Time Hypothesis (ETH) fails.

We reduce from 3SAT to the complement problem P4-FREE EDGE DELETION. Let ϕ be the
input 3SAT formula, for which we again assume that every clause of ϕ contains exactly
three literals corresponding to pairwise different variables. For a variable x ∈ V(ϕ),
we denote by px the number of clauses in ϕ containing x. Note that, since each clause
contains exactly three variables, we have that

∑
x∈V(ϕ) px = 3|C(ϕ)|. We construct a

graph Gϕ such that for kϕ = 4|C(ϕ)| + ∑
x∈V(ϕ) 4px = 16|C(ϕ)|, ϕ is satisfiable if and only

if (Gϕ, kϕ) is a yes instance of P4-FREE EDGE DELETION. Since the complement of P4 is P4,
this will prove the theorem.
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Fig. 12. Variable gadget Gx for a variable appearing in six clauses in ϕ, that is, px = 6. Deleting the leftmost
edge in each tower pair corresponds to setting x to false; deleting the rightmost edge in each tower pair
corresponds to setting x to true.

Variable gadget. For each variable x ∈ V(ϕ), we create a gadget Gx that looks like the
one given in Figure 12. Before defining the construction formally, let us first describe
it informally. We call a triangle with a pendant vertex a tower: the triangle will be
referred to as the base of the tower, and the pendant vertex the spike of the tower. In
the construction, the towers will always come in pairs, and they are joined in one of the
vertices in the bases (two vertices are identified; see Figure 12). Pairs of towers will
be separated by k′ (defined later) triangles sharing an edge. The vertices not shared
between the k′ triangles will be called the stack, whereas the edge shared among the
triangles will be called the shortcut.

The gadget Gx for a variable x consists of px pairs of towers arranged in a cycle,
one for each clause in which x appears; pairs of consecutive towers are separated
by a shortcut edge and a stack of vertices. The stack is chosen to be big enough
(k′ = kϕ + 3 vertices) so that we will never delete the edge that connects the two
towers on each side of the stack, nor any edge incident to a vertex from the stack. We
will refer to the two towers in the pairs as Tower 1 (the one with lower index) and
Tower 2.

Formally, let ϕ be an instance of 3SAT. The budget for the output instance will be
kϕ = 4|C(ϕ)| + ∑

x∈V(ϕ) 4px = 16|C(ϕ)|. Let k′ = kϕ + 3. For a variable x that appears
in px clauses, we create vertices sx

i, j for i ∈ {1, . . . , px} and j ∈ {1, . . . , k′}. These will be
the vertices for the stacks. For the spikes of the towers, we add vertices tx

i,1 and tx
i,2 for

i ∈ {1, . . . , px}. For the bases of the towers, we add vertices bx
i, j for j ∈ {1, . . . , 5} and

i ∈ {1, . . . , px}. These are all the vertices of the gadget Gx for x ∈ V(ϕ).
The vertices denoted by t are the two spikes in the tower, that is, tx

i,1 is the spike of
Tower 1 of the ith pair for variable x. The vertices denoted by b are for the bases (there
are five vertices in the bases of a pair of towers).

Now, we add edges to Gx (see Figure 13):

—For the stack, we add edges sx
i, jb

x
i,1 for all i ∈ {1, . . . , px} and j ∈ {1, . . . , k′} (right side

of the stack) and edges bx
i,5sx

i+1, j for i ∈ {1, . . . , px} and j ∈ {1, . . . , k′} (left side of the
next stack), where the indices behave cyclically modulo px.

—For the bases, we add the edges bx
i,1bx

i,2, bx
i,1bx

i,3, bx
i,2bx

i,3, bx
i,3bx

i,4, bx
i,3bx

i,5, and bx
i,4bx

i,5 for
i ∈ {1, . . . , px}. To attach the towers, we add the edges bx

i,2tx
i,1 and bx

i,4tx
i,2. The set of

these eight edges will be denoted by Rx
i .

—The last edges to add are the shortcut edges bx
i,5bx

i+1,1 for i ∈ {1, . . . , px}, where again
the indices behave cyclically modulo px.
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Fig. 13. Variable gadget Gx . The counter i ranges from 1 to px , the number of clauses x appears in. This
figure does not illustrate that the gadget is a cycle; see Figure 12 for a zoomed-out version.

Elimination from variable gadgets. We will now show that there are exactly two
ways of eliminating all P4s occurring in a variable gadget using at most 4px edges.
To state this claim formally, we need to control how the variable gadget is situated in
a larger construction of the whole output instance that will be defined later. We say
that a variable gadget Gx is properly embedded in the output instance Gϕ if Gx is an
induced subgraph of Gϕ . Moreover, the only vertices of Gx that are incident to edges
outside Gx are the spikes of the towers, that is, vertices tx

i,1 and tx
i,2 for i ∈ {1, 2, . . . , px}.

This property will be satisfied for gadgets Gx for all x ∈ V(ϕ) in the next steps of
the construction. Using this notion, we can infer properties of the variable gadget
irrespective of what the whole output instance Gϕ constructed later looks like.

We first show that an inclusion minimal deletion set S that has size at most kϕ cannot
touch the stacks or the shortcut edges.

CLAIM 5.10. Assume that gadget Gx is embedded properly in the output graph Gϕ ,
and that S is an inclusion minimal P4-free edge deletion set in Gϕ of size at most kϕ .
Then S does not contain any edge of type bx

i,5bx
i+1,1 (a shortcut edge), or any edge incident

to a vertex of the form sx
i, j .

PROOF OF CLAIM. Suppose first that a shortcut edge bx
i,5bx

i+1,1 belongs to S. (See
Figure 13 for indices.) Let S′ = S \ {bx

i,5bx
i+1,1}. Since S was inclusion minimal, the

graph Gϕ − S′ must contain an induced P4 that contains the edge bx
i,5bx

i+1,1; denote such
a P4 by L. By the assumption that Gx is properly embedded in Gϕ we have that L is
entirely contained in Gx. Since the stack between pairs of towers i and i + 1 has height
k′ = kϕ + 3, we know that there are at least three vertices of the form sx

i+1, j for some
j ≤ k′ that are not incident to an edge in S. Since L passes through 2 vertices apart
from bx

i,5 and bx
i+1,1, we infer that at least one of these three vertices, say sx

i+1, j0
, is not

incident to any edge of S, nor does it lie on L. Create L′ by replacing the edge bx
i,5bx

i+1,1
in L with the path bx

i,5 −sx
i+1, j0

−bx
i+1,1. We infer that L′ is an induced P5 in Gϕ − S, which

in particular contains an induced P4. This is a contradiction to the definition of S.
Second, without loss of generality, suppose now that the edge bx

i,5sx
i+1, j belongs to S

for some j ∈ {1, 2, . . . , k′}. Let S′ = S \ {bx
i,5sx

i+1, j, bx
i+1,1sx

i+1, j}; note here that the edge
bx

i+1,1sx
i+1, j might have not belonged to S, but if it had, then we remove it when con-

structing S′. Since S was inclusion minimal, the graph Gϕ −S′ must contain an induced
P4 that contains the vertex sx

i+1, j , thus also one of the vertices bx
i,5 or bx

i+1,1; denote such
a P4 by L. Again, by the definition of proper embedding, we have that L is entirely
contained in Gx. By the same argumentation as before, we infer that there exists a
vertex sx

i+1, j0
such that sx

i+1, j0
is not traversed by L and is not incident to an edge of S.
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Fig. 14. The four different ways of eliminating a tower pair in a variable gadget. Only Eliminations Aand B
yield optimum deletion sets in an entire variable gadget. They all use exactly four edges per pair of towers,
as is evident in the figure.

Since vertices sx
i+1, j0

and sx
i+1, j are twins in Gϕ − S′, it follows that the path L′ con-

structed from L by substituting sx
i+1, j with sx

i+1, j0
is an induced P4 in Gϕ − S. This is a

contradiction to the definition of S.

Now, we show that every minimal deletion set S must use at least 4 edges from each
pair of towers, and that if it uses exactly 4 edges, then there are exactly 4 ways that
the intersection of S with this pair of towers can look like.

CLAIM 5.11. Assume that the gadget Gx is embedded properly in the output graph Gϕ ,
and that S is an inclusion minimal P4-free edge deletion set in Gϕ of size at most kϕ .
Then, for each i ∈ {1, 2, . . . , px}, it holds that |Rx

i ∩ S| ≥ 4, and if |Rx
i ∩ S| = 4, then

either:

Elimination A: Rx
i ∩ S consists of the edges of the base of Tower 1 and the spike of

Tower 2, or
Elimination B: Rx

i ∩ S consists of the edges of the base of Tower 2 and the spike of
Tower 1, or
Elimination C: Rx

i ∩ S consists of the edges of both spikes and of the base of Tower 1
apart from the edge bx

i,1bx
i,2, or

Elimination D: Rx
i ∩ S consists of the edges of both spikes and of the base of Tower 2

apart from the edge bx
i,4bx

i,5.

We refer to Figure 14 for visualization of all four types of elimination. We will say
that Rx

i ∩ S realizes Elimination X for X being A, B, C, or D if Rx
i ∩ S is as described

in the statement of Claim 5.11. Similarly, we say that the ith pair of towers realizes
Elimination X if Rx

i ∩ S does.

PROOF OF CLAIM 5.11. By Claim 5.10, we infer that S does not contain any edge
incident to stacks i and i + 1, or any of the shortcut edges incident to the considered
pair of towers. We consider four cases, depending on what the set S ∩ {tx

i,1bx
i,2, tx

i,2bx
i,4}

looks like. In each case, we prove that |Rx
i ∩ S| ≥ 4, and that |Rx

i ∩ S| = 4 implies that
one of four listed elimination types is used.

First, assume that S ∩ {tx
i,1bx

i,2, tx
i,2bx

i,4} = ∅ and observe that sx
i,1 − bx

i,1 − bx
i,2 − tx

i,1 and
sx
i+1,1 −bx

i,5 −bx
i,4 − tx

i,2 are induced P4s in Gϕ . Since on each of these P4s there is only one
edge that is assumed to be not in S, it follows that both bx

i,1bx
i,2 and bx

i,4bx
i,5 must belong

to S. Suppose that bx
i,1bx

i,3 /∈ S. Then, we infer that bx
i,2bx

i,3, bx
i,3bx

i,4, bx
i,3bx

i,5 ∈ S, since
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otherwise any of these edges would form an induced P4 in Gϕ − S together with edges
bx

i,1bx
i,3 and bx

i,1sx
i,1. We infer that in this case |Rx

i ∩ S| ≥ 5, and a symmetric conclusion
can be drawn when bx

i,3bx
i,5 /∈ S. We are left with the case when bx

i,1bx
i,3, bx

i,3bx
i,5 ∈ S.

But then, S must include also one of the edges bx
i,2bx

i,3 or bx
i,3bx

i,4 so that the induced P4

tx
i,1 − bx

i,2 − bx
i,3 − bx

i,4 is destroyed. Hence, in all the considered cases, we conclude that
|Rx

i ∩ S| ≥ 5.
Second, assume that S ∩ {tx

i,1bx
i,2, tx

i,2bx
i,4} = {tx

i,2bx
i,4}. The same reasoning as in the

previous paragraph shows that bx
i,1bx

i,2 must belong to S. Again, if bx
i,1bx

i,3 /∈ S, then
all the edges bx

i,2bx
i,3, bx

i,3bx
i,4, bx

i,3bx
i,5 must belong to S, thus |Rx

i ∩ S| ≥ 5. Assume, then,
that bx

i,1bx
i,3 ∈ S. Note now that we have two induced P4s: tx

i,1 − bx
i,2 − bx

i,3 − bx
i,4 and

tx
i,1 −bx

i,2 −bx
i,3 −bx

i,5 that share the edge tx
i,1bx

i,2, about which we assumed that it does not
belong to S, and the edge bx

i,2bx
i,3. To remove both these P4s, we either remove at least

two more edges, which results in the conclusion that |Rx
i ∩ S| ≥ 5, or remove the edge

bx
i,2bx

i,3, which results in Elimination A.
The third case when S ∩ {tx

i,1bx
i,2, tx

i,2bx
i,4} = {tx

i,1bx
i,2} is symmetric to the second case,

and leads to a conclusion that either |Rx
i ∩ S| ≥ 5 or Rx

i ∩ S realizes Elimination B.
Finally, assume that tx

i,1bx
i,2, tx

i,2bx
i,4 ∈ S. Observe that we have an induced P4 sx

i,1−bx
i,1−

bx
i,3−bx

i,5 in Gϕ , thus one of the edges bx
i,1bx

i,3 or bx
i,3bx

i,5 must be included in S. Assume first
that bx

i,1bx
i,3 ∈ S. Consider now P4s sx

i,1 − bx
i,1 − bx

i,2 − bx
i,3 and bx

i,2 − bx
i,3 − bx

i,5 − sx
i+1,1. Both

these P4s need to be destroyed by S since after removing bx
i,1bx

i,3, the first P4 becomes
induced, while the second is induced already in Gϕ . Moreover, these P4s share only the
edge bx

i,2bx
i,3, which means that either |Rx

i ∩ S| ≥ 5 or bx
i,2bx

i,3 ∈ S and Rx
i ∩ S realizes

Elimination C. The case when bx
i,3bx

i,5 ∈ S is symmetric and leads to a conclusion that
either |Rx

i ∩ S| ≥ 5 or Rx
i ∩ S realizes Elimination D.

Finally, we prove that the variable gadget Gx requires at least 4px edge deletions, and
that there are only two ways of destroying all P4s by using exactly 4px edge deletions:
either by applying Elimination A or Elimination B to all the pairs of towers.

CLAIM 5.12. Suppose a gadget Gx is embedded properly in the output graph Gϕ , and
that S is an inclusion minimal P4-free edge deletion set in Gϕ of size at most kϕ . Then
|E(Gx) ∩ S| ≥ 4px, and if |E(Gx) ∩ S| = 4px, then either Rx

i ∩ S realizes Elimination A
for all i ∈ {1, 2, . . . , px} or Rx

i ∩ S realizes Elimination B for all i ∈ {1, 2, . . . , px}.
PROOF OF CLAIM. By Claims 5.10 and 5.11, we have that S does not contain any

shortcut edge or an edge incident to a stack vertex, and moreover that |Rx
i ∩ S| ≥ 4 for

all i ∈ {1, 2, . . . , px}. Since sets Rx
i are pairwise disjoint, it follows that |E(Gx)∩S| ≥ 4px.

Moreover, if |E(Gx) ∩ S| = 4px, then |Rx
i ∩ S| = 4 for all i ∈ {1, 2, . . . , px} and, by

Claim 5.11, for all i ∈ {1, 2, . . . , px} the set Rx
i ∩ S must realize Elimination A, B, C,

or D.
We say that one pair of towers is followed by another if the former has index i and

the latter has index i +1 (of course, modulo px). To obtain the conclusion that either all
the sets Rx

i ∩S realize Elimination Aor all realize Elimination B, we observe that when
some pair of towers realize Elimination A, C, or D, then the following pair must realize
Elimination A. Indeed, otherwise the graph Gϕ − S would contain an induced P4 of the
form bx

i,4 − bx
i,5 − bx

i+1,1 − bx
i+1,2, where the ith pair of towers is the considered pair that

realizes Elimination A, C, or D. Now, observe that since the pairs of towers are arranged
on a cycle, then either all pairs of towers realize Elimination B or at least one realizes
Elimination A, C, or D, which means that the following pair realizes Elimination A,
thus all pairs must realize Elimination A.

ACM Transactions on Computation Theory, Vol. 7, No. 4, Article 14, Publication date: August 2015.



14:34 P. G. Drange et al.

Fig. 15. For a clause c = x ∨ ¬y ∨ z, we obtain the connection in this figure. For negated variables, the
rightmost spike is attached to the gadgets; otherwise, the leftmost spike is attached. If x is given a value
satisfying c, the edge spike between Gx and Gc is deleted.

Clause gadget. We now move on to the construction of the clause gadget Gc for a clause
c ∈ C(ϕ). Assume that c = �x ∨ �y ∨ �z, where �r is a literal of variable r for r ∈ {x, y, z}.
We create seven vertices: one vertex uc and vertices ur

2 and ur
3 for r = x, y, z. We also

add the edges ucur
2, ucur

3 and ur
2ur

3. Now, for nonnegated r ∈ {x, y, z} in c, where c is
the ith clause r appears in, we add edges ur

2tr
i,1 and ur

3tr
i,1 (recall that tr

i,1 is the spike of
Tower 1 in tower pair i). If r appears negated, we add the edges ur

2tr
i,2 and ur

3tr
i,2 instead

(see Figure 15). Let Mc be the set comprising all 15 created edges, including the ones
incident to the spikes of the towers. By Mc,r for r ∈ {x, y, z}, we denote the subset of Mc

containing 5 edges that are incident to vertex ur
2 or ur

3.
This concludes the construction of the graph Gϕ ; note that all the variable gadgets

are properly embedded in Gϕ . Before showing the correctness of the reduction, we prove
the following claims about the number of edges needed for clause gadgets:

CLAIM 5.13. Assume that S is a P4-free deletion set of graph Gϕ . Let c be a clause
of ϕ, and assume that x, y, z are the variables appearing in c. Then |S ∩ Mc| ≥ 4, and
if |S ∩ Mc| = 4, then S ∩ Mc,r = ∅ for some r ∈ {x, y, z} (see Figure 16(b) for an example
where S ∩ Mc,z = ∅).

PROOF OF CLAIM. To simplify the notation, let tx, ty, tz be the corresponding vertices
of the variable gadgets that are incident to edges of Mc.

If |S∩ Mc,r| ≥ 2 for all r ∈ {x, y, z}, then |S∩ Mc| ≥ 6, and we are done. Assume, then,
without loss of generality that |S∩ Mc,x| ≤ 1. Hence, at least one of the paths tx −ux

2 −uc

and tx − ux
3 − uc does not contain an edge of S. Assume without loss of generality that

it is tx − ux
2 − uc. Now, observe that in Gϕ we have 4 induced P4s created by prolonging

this P3 by vertex uy
2, uy

3, uz
2, or uz

3. Since tx − ux
2 − uc is disjoint with S, it follows that all

the four edges connecting these vertices with uc must belong to S. Hence |S ∩ Mc| ≥ 4,
and if |S ∩ Mc| = 4, then Mc,x must actually be disjoint with S.

We are finally ready to prove the following lemma, which implies the correctness of
the reduction.
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Fig. 16. Clause gadget Gc for a clause c = x ∨ ¬y ∨ z. On the left it is before elimination, and on the right
after an optimal elimination when satisfied by z.

LEMMA 5.14. Given an input instance ϕ to 3SAT, ϕ is satisfiable if and only if the
constructed graph Gϕ has a P4 deletion set of size kϕ = 16|C(ϕ)|.

PROOF. In the forward direction, suppose that ϕ is satisfiable by an assignment α,
and let Gϕ and kϕ be as earlier. If a variable x is assigned false in α, we delete as in
Figure 14(a), that is, we apply Elimination A to all the pairs of towers in the variable
gadget Gx. Otherwise, we delete as in Figure 14(b), that is, we apply Elimination B
to all pairs of towers in the variable gadget Gx. In other words, if x is assigned false
(Elimination A), we delete the edges tx

i,2bx
i,4, bx

i,1bx
i,2, bx

i,1bx
i,3, and bx

i,2bx
i,3; otherwise, when x

is assigned true (Elimination B), we delete the edges tx
i,1bx

i,2, bx
i,3bx

i,4, bx
i,3bx

i,5, and bx
i,4bx

i,5,
for all i ∈ {1, . . . , px}.

Furthermore, for every clause c = �x ∨ �y ∨ �z, we choose an arbitrary variable
whose literal satisfies c, say r. We remove the edges ur′

2 uc and ur′
3 uc for r′ = r. We

have thus used exactly four edge removals per clause, 4|C(ϕ)| in total, and for each
x ∈ V(ϕ) we have removed 4px edges. This sums up exactly to 4|C(ϕ)| + ∑

x∈V(ϕ) 4px =
4|C(ϕ)| + 4

∑
x∈V(ϕ) px = 4|C(ϕ)| + 4 · 3|C(ϕ)| = 16|C(ϕ)| = kϕ edge removals.

We now claim that Gϕ is P4-free. A direct check shows that there is no induced P4 left
inside any variable gadget, nor inside any clause gadget. Therefore, any induced P4 left
must necessarily contain a vertex of the form tx

i,q for some x ∈ V(ϕ), i ∈ {1, 2, . . . , px},
and q ∈ {1, 2}, together with the edge of the spike incident to this vertex and one of
the edges of gadget Gc incident to this vertex, where c is the ith clause x appears in.
Assume without loss of generality that q = 1, thus x appears in c positively. Since we
did not delete the spike edge tx

i,1bx
i,2, we infer that α(x) = false. Therefore, x does not

satisfy c, thus we must have deleted edges ucux
2 and ucux

3. Therefore, in the remaining
graph Gϕ − S, the connected component of the vertex tx

i,q is a triangle with a pendant
edge, which is P4-free. We conclude that Gϕ − S is indeed P4-free.

ACM Transactions on Computation Theory, Vol. 7, No. 4, Article 14, Publication date: August 2015.



14:36 P. G. Drange et al.

In the reverse direction, suppose now that Gϕ is the graph constructed from a fixed ϕ
and that for kϕ as before, we have that (Gϕ, kϕ) is a yes instance of P4-FREE EDGE

DELETION. Let S be a P4 deletion set of size at most kϕ , and without loss of generality
assume that S is inclusion minimal. By Claims 5.12 and 5.13, set S must contain
at least 4px edges from each set E(Gx), and at least four edges from each set Mc.
Since 4|C(ϕ)| + ∑

x∈V(ϕ) 4px = kϕ , we infer that S contains exactly 4px edges from each
set E(Gx) and exactly four edges in each set Mc. By Claim 5.12, we infer that for each
variable x, all pairs of towers in Gx realize Elimination A, or all realize Elimination B.
Let α : V(ϕ) → {true, false} be an assignment that assigns value false if Elimination A
is used throughout the corresponding gadget, and value true otherwise. We claim that α
satisfies ϕ.

Consider a clause c ∈ C(ϕ) and assume that x, y, z are variables appearing in c. By
Claim 5.13, we infer that there exists r ∈ {x, y, z} such that S ∩ Mc,r = ∅. Assume
without loss of generality that r = x, and that x appears positively in c. Moreover,
assume that c is the ixth clause x appears in. We claim that α(x) = true, and thus c
is satisfied by x. Indeed, otherwise the edge tx

ix,1bx
ix,2 would not be deleted, thus bx

ix,2 −
tx
ix,1 − ux

2 − uc would be an induced P4 in Gϕ − S. This is a contradiction to the definition
of S.

Again, the proof of Theorem 5.9 follows: combining the presented reduction with an
algorithm that solves P4-FREE EDGE DELETION in 2o(k) ·nO(1) time would give an algorithm
that solves 3SAT in 2o(n+m) · (n + m)O(1) time, which contradicts ETH by the results of
Impagliazzo et al. [2001].

It is easy to verify that in the presented reduction, both the graph Gϕ and Gϕ − S
for S being the deletion set constructed for a satisfying assignment for ϕ are actually
C4-free. Thus, the same reduction also shows that {C4, P4}-FREE DELETION is not solvable
in 2o(k)nO(1) time unless ETH fails. Since P4 = P4 and C4 = 2K2, it follows that {2K2, P4}-
FREE COMPLETION is hard under ETH as well. In other words, we derive the following
result: CO-TRIVIALLY PERFECT COMPLETION is not solvable in subexponential time unless
ETH fails.

THEOREM 5.15. The problem {2K2, P4}-FREE COMPLETION is NP-complete and not solv-
able in 2o(k)nO(1) time unless ETH fails.

6. CONCLUSION AND FUTURE WORK

In this article, we provided several upper and lower subexponential parameterized
bounds for F-COMPLETION. The most natural open question would be to ask for a di-
chotomy characterizing for which sets F , F-COMPLETION problems are in P, in SUBEPT,
and not in SUBEPT (under ETH). Keeping in mind the lack of such characterization
concerning classes P and NP, an answer to this question can be very nontrivial. Even a
more modest task—deriving general arguments explaining what causes a completion
problem to be in SUBEPT—is an important open question.

Similarly, from an algorithmic perspective, obtaining generic subexponential algo-
rithms for completion problems would be a big step forwards. With current knowledge,
for different cases of F , the algorithms are built on different ideas such as chromatic
coding, potential maximal cliques, and k-cuts, and each new case requires special
treatment.

Another interesting property is that all graph classes for which subexponential algo-
rithms for completion problems are known are tightly connected to chordal graphs.
Indeed, all known algorithms exploit existence of a chordal-like decomposition of
the target completed graph. Are there natural NP-hard graph modification problems
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admitting subexponential time algorithms where the graph class target is not related
to chordal graphs?

Finally, in this article, we have presented SUBEPT lower bounds (under ETH) for F-
COMPLETION for several different cases of F , but we lack a method for proving tight lower
bounds on the running time for problems that actually are in SUBEPT. For instance, it
may be the case that TRIVIALLY PERFECT COMPLETION or CHORDAL COMPLETION can be solved
in time 2O(k1/4)nO(1). As Fomin and Villanger [2013] observed, in the case of CHORDAL

COMPLETION, known NP-hardness reductions provide lower bounds much weaker than
the current upper bound of 2O(

√
k log k) ·nO(1). However, we feel that a 2o(

√
k) ·nO(1) running

time should be impossible to achieve, since such an algorithm would immediately
imply the existence of an exact algorithm with running time 2o(n). Is it possible to
prove 2o(

√
k) · nO(1) lower bounds under ETH for TRIVIALLY PERFECT COMPLETION, CHORDAL

COMPLETION, and other completion problems to subclasses of chordal graphs known to
be contained in SUBEPT? These are intriguing questions to pursue in future work.
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