
44

(Meta) Kernelization

HANS L. BODLAENDER, Utrecht University and Eindhoven University of Technology
FEDOR V. FOMIN and DANIEL LOKSHTANOV, University of Bergen
EELKO PENNINKX, Utrecht University
SAKET SAURABH, Institute of Mathematical Sciences and University of Bergen
DIMITRIOS M. THILIKOS, National & Kapodistrian University of Athens and AlGCo Project Team,
CNRS, LIRMM

In a parameterized problem, every instance I comes with a positive integer k. The problem is said to admit a
polynomial kernel if, in polynomial time, one can reduce the size of the instance I to a polynomial in k while
preserving the answer. In this work, we give two meta-theorems on kernelization. The first theorem says
that all problems expressible in counting monadic second-order logic and satisfying a coverability property
admit a polynomial kernel on graphs of bounded genus. Our second result is that all problems that have finite
integer index and satisfy a weaker coverability property admit a linear kernel on graphs of bounded genus.
These theorems unify and extend all previously known kernelization results for planar graph problems.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.2 [Graph Theory]: Graph Algorithms

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Monadic second-order logic, parameterized complexity, embedded
graphs, preprocessing, kernelization, treewidth, protrusions, finite integer index

ACM Reference Format:
Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M.
Thilikos. 2016. (Meta) kernelization. J. ACM 63, 5, Article 44 (November 2016), 69 pages.
DOI: http://dx.doi.org/10.1145/2973749

A preliminary version of this article appeared in Proceedings of the 2009 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’09), IEEE, Los Alamitos, CA, 629–638. The first author was
partially supported by the NETWORKS project, funded by the Netherlands Organization for Scientific
Research NWO. The work of the second author was supported by the European Research Council (ERC) via
grant Rigorous Theory of Preprocessing, reference 267959. The work of the fifth author was supported by
funding from the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant 306992. The work of the last author was co-financed by the E.U. European
Social Fund and Greek national funds through the operational program Education and Lifelong Learning of
the National Strategic Reference Framework Research Funding Program: “Thales. Investing in Knowledge
Society Through the European Social Fund.”
Authors’ addresses: H. L. Bodlaender and E. Penninkx, Department of Information and Computing Sci-
ences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, Netherlands; email: h.l.bodlaender@uu.nl,
eelko@koningshuis.org; F. V. Fomin, D. Lokshtanov, Department of Informatics, University of Bergen, N-5020
Bergen, Norway; email: {fomin|daniello}@ii.uib.no; S. Saurabh, Institute of Mathematical Sciences, Chennai
600113, India; email: saket@imsc.res.in; D. M. Thilikos, Department of Mathematics, National and Kapodis-
trian University of Athens, Panepistimioupolis, GR-15784, Athens, Greece; email: sedthilk@thilikos.info.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0004-5411/2016/11-ART44 $15.00
DOI: http://dx.doi.org/10.1145/2973749

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

http://dx.doi.org/10.1145/2973749
http://dx.doi.org/10.1145/2973749

44:2 H. L. Bodlaender et al.

1. INTRODUCTION

Preprocessing (data reduction or kernelization) as a strategy of coping with hard prob-
lems is universally used in almost every implementation. The history of preprocessing,
like applying reduction rules to simplify truth functions, can be traced back to the 1950s
[Quine 1952]. A natural question in this regard is how to measure the quality of the
preprocessing rules proposed for a specific problem. For a long time, the mathematical
analysis of polynomial time preprocessing algorithms was neglected. The basic reason
for this anomaly was that if we start with an instance I of an NP-hard problem and
can show that, in polynomial time, we can replace this with an equivalent instance
I′ with |I′| < |I| that then would imply P = NP in classical complexity. The situation
changed drastically with advent of parameterized complexity. Combining tools from
parameterized and classical complexities, it has become possible to derive upper and
lower bounds on the sizes of reduced instances, or so-called kernels.

Kernelization. In parameterized complexity, each problem instance comes with a
parameter k, and the parameterized problem is said to admit a polynomial kernel if
there is a polynomial time algorithm (the degree of polynomial is independent of k),
called a kernelization algorithm, that reduces the input instance down to an instance
with size bounded by a polynomial p(k) in k while preserving the answer. This reduced
instance is called a p(k) kernel for the problem. If p(k) = O(k), then we call it a
linear kernel (for a more formal definition, see Section 2.1.1). Kernelization has been
extensively studied in the realm of parameterized complexity, resulting in polynomial
kernels for a variety of problems. Notable examples of kernelization include a 2k-sized
vertex kernel for VERTEX COVER [Chen et al. 2001]; a 355k vertex kernel for DOMINATING

SET on planar graphs [Alber et al. 2004], which later was improved to a 67k vertex
kernel [Chen et al. 2007]; and an O(k2) kernel for FEEDBACK VERTEX SET [Thomassé
2010] parameterized by the solution size.

One of the most important results in the area of kernelization was given by Alber
et al. [2004]. They gave the first linear-size kernel for the DOMINATING SET problem on
planar graphs. Their work triggered an explosion of papers on kernelization, particu-
larly on kernelization of problems on planar graphs. Combining the ideas of Alber et al.
[2004] with problem-specific data reduction rules, kernels of linear sizes were obtained
for a variety of parameterized problems on planar graphs, including CONNECTED VERTEX

COVER, MINIMUM EDGE DOMINATING SET, MAXIMUM TRIANGLE PACKING, EFFICIENT EDGE DOM-
INATING SET, INDUCED MATCHING, FULL-DEGREE SPANNING TREE, FEEDBACK VERTEX SET, CY-
CLE PACKING, and CONNECTED DOMINATING SET [Alber et al. 2004, 2006a; Bodlaender and
Penninkx 2008; Bodlaender et al. 2008; Chen et al. 2007; Guo and Niedermeier 2007b;
Guo et al. 2010; Kanj et al. 2011; Lokshtanov et al. 2011; Moser and Sikdar 2009].
DOMINATING SET has received special attention from kernelization view point, leading
to a linear kernel on graphs of bounded genus [Fomin and Thilikos 2004] and a poly-
nomial kernel on graphs excluding a fixed graph H as a minor and on d-degenerated
graphs [Alon and Gutner 2008; Philip et al. 2012]. We refer to several surveys [Guo
and Niedermeier 2007a; Fomin and Saurabh 2014; Lokshtanov et al. 2012] and books
[Cygan et al. 2015; Downey and Fellows 2013; Flum and Grohe 2006; Niedermeier
2006] for a detailed treatment of the area of kernelization.

Most of the works on linear kernels on planar graphs have the following idea in com-
mon: find an appropriate region decomposition (essentially a partitioning of the vertex
set into graphs of small diameter) of the input planar graph based on the problem in
question, then perform problem-specific rules to reduce the part of the graph inside
each region. The first step toward the general abstraction of all of these algorithms was
initiated by Guo and Niedermeier [2007b], who proved a general decomposition theo-
rem for all problems with a specific distance property. Combining this decomposition

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:3

theorem with problem-specific reduction rules yields linear kernels for various prob-
lems on planar graphs. Thus, all previous work on kernelization was strongly based on
the design of reduction rules particular to the problem in question. In this article, we
step aside and find properties of problems, such as expressibility in counting monadic
second-order (CMSO) logic, which allows these reduction rules to be automated.

Algebraic reduction techniques. The idea of graph replacement for algorithms dates
back to Fellows and Langston [1989]. Arnborg et al. [1993] proved that every set
of graphs of bounded treewidth that is definable by a monadic second-order (MSO)
logic formula is also definable by reduction. By making use of algebraic reductions,
Arnborg et al. [1993] obtained a linear time algorithm for MSO-expressible problems
on graphs of bounded treewidth. Bodlaender and de Fluiter [1996], Bodlaender and
van Antwerpen-de Fluiter [2001], and de Fluiter [1997] generalized these ideas in
several ways—in particular, they applied it to several optimization problems. It is
also important to mention the work of Bodlaender and Hagerup [1998], who used the
concept of graph reduction to obtain parallel algorithms for MSO-expressible problems
on graphs of bounded treewidth.

Algorithmic meta-theorems. Our results can be seen as what Grohe and Kreutzer
call algorithmic meta-theorems [Grohe 2007; Kreutzer 2011]. Meta-theorems bring out
the deep relations between logic and combinatorial structures, which is a fundamental
issue of computational complexity. Such theorems also yield a better understanding
of the scope of general algorithmic techniques and the limits of tractability. A typical
example of meta-theorem is the celebrated Courcelle’s theorem [Courcelle 1992], which
states that all graph properties definable in MSO can be decided in linear time on
graphs of bounded treewidth. More recent examples of such meta-theorems state that
all first-order definable properties on planar graphs can be decided in linear time [Frick
and Grohe 2001] and that all first-order definable optimization problems on classes of
graphs with excluded minors can be approximated in polynomial time to any given
approximation ratio [Dawar et al. 2007]. Our meta-theorems not only give a uniform
and natural explanation for a large family of known kernelization results but also
provide a variety of new results. In what follows, we build up toward our theorems. We
first give necessary definitions needed to formulate our results.

Parameterized graph problems. A parameterized graph problem � in general can be
seen as a subset of �∗×Z

+ where, in each instance (x, k) of �, x encodes a graph and k is
the parameter (we denote by Z

+ the set of all nonnegative integers). In this article, we
extend this definition by permitting the parameter k to be negative with the additional
constraint that either all pairs with nonpositive value of the parameter are in � or
that no such pair is in �. Formally, a parametrized problem � is a subset of �∗ × Z

where for all (x1, k1), (x2, k2) ∈ �∗ ×Z with k1, k2 < 0 it holds that (x1, k1) ∈ � if and only
if (x2, k2) ∈ �. This extended definition encompasses the traditional one and is being
adopted for technical reasons (see Section 2.3). In many cases, in the pair (x, k), x will
encode an annotated graph—that is, a pair (G, S), where S is a subset of the vertices
of G (i.e., S contains the annotated vertices of G). In this article, we mostly work on
problems restricted to certain graph classes. For this reason, given a graph class G, we
use notation ��G for the set of instances of � minus the instances (x, k), where x does
not encode a graph in G. That way, the new problem �′ = � � G is a subset of �∗ × Z

that corresponds to the restriction of � to graphs in G. In this work, we mostly apply
such restrictions to bounded genus graphs. We denote by Gr the class of graphs that
are 2-cell embeddable in some surface of Euler genus at most r.

r-coverable problems. Let G = (V, E) be a graph embedded without crossings in a
surface. (For more details on graph embeddings, see Section 6.) The radial distance

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:4 H. L. Bodlaender et al.

between two vertices x, y of G in this embedding is one less than the minimum length
of an alternating sequence of vertices and faces starting from x and ending in y such
that every two consecutive elements of this sequence are incident with each other.
Given a set S ⊆ V, we define Rr

G(S) to be the set of all vertices of G whose radial
distance from some vertex of S is at most r.

Let r be a nonnegative integer. We say that a parameterized graph problem � has
the radial r-coverability property if all YES-instances (G, k), G = (V, E), of � encode
graphs embeddable in some surface of Euler genus at most r and there exist such an
embedding and a set S ⊆ V such that |S| ≤ r ·k and Rr

G(S) = V . We say that a problem
� is radially r-coverable if either � or its “complement in Gr,” namely � ∩ Gr, has the
radial r-coverability property (here, � = �∗\�). Every problem � that has the radial
r-coverability property is radially r-coverable. However, the converse is not necessarily
true. In particular, the p-INDEPENDENT SET problem can easily be seen to be radially
r-coverable, but it does not have the radial r-coverability property.

r-quasi-coverable problems. A parameterized graph problem � has the radial r-
quasi-coverability property if all YES-instances of � encode graphs embeddable in
some surface of Euler genus at most r and there exist such an embedding and a
set S ⊆ V such that |S| ≤ r · k and tw(G\Rr

G(S)) ≤ r (by tw(G), we denote the
treewidth of G; for the formal definition, see Section 2.1.2). We say that a problem �
is radially r-quasi-coverable if either � or � ∩ Gr has the radial r-quasi-coverability
property. Every problem � that has the radial r-quasi-coverability property is radially
r-quasi-coverable. Again, the converse is not necessarily true. For example, the p-CYCLE

PACKING problem is radially r-quasi-coverable, but it does not have the radial r-quasi-
coverability property.

Thus, for a coverable problem, we are able to cover the whole graph with O(k)
balls of constant radius, whereas in a quasi-coverable one, we can cover with O(k)
balls of constant radius an “essential” part of the graph. Of course, if a problem is
r-coverable, then it is also r-quasi-coverable. From now on, for simplicity, we drop the
terms radial and radially and simply use the terms r-quasi-coverability property or
r-quasi-coverable.

CMSO Logic. We use CMSO logic [Arnborg et al. 1991; Courcelle 1990, 1997], an
extension of MSO logic, as a basic tool to express properties of vertex/edge sets in
graphs. Considering that in this section our aim is to define a series of CMSO-based
problem properties, we avoid the formal definitions of CMSO and postpone them for
Section 2.6.

Our first result concerns a parameterized analogue of graph optimization problems
where the objective is to find a maximum- or minimum-size vertex or edge set satisfying
a CMSO-expressible property. We now define a class of parameterized problems, called
p-MIN-CMSO problems,1 with one problem for each CMSO sentence ψ on graphs, where
ψ has a free vertex set variable S. The p-MIN-CMSO problem defined by ψ is denoted
by p-MIN-CMSO[ψ] and defined as follows.

p-MIN-CMSO[ψ]
Input: A graph G = (V, E) and an integer k
Parameter: k
Question: Is there a subset S ⊆ V such that |S| ≤ k and (G, S) |= ψ?

1We follow the notation given in the book by Flum and Grohe [2006] and add “p” in front of names of problems
to emphasize that these are parameterized problems.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:5

In other words, p-MIN-CMSO[ψ] is a subset � of �∗×Z where for every (x, k) ∈ �∗×Z
+,

(x, k) ∈ � if and only if there exists a set S ⊆ V where |S| ≤ k such that the graph G
encoded by x together with S satisfy ψ (i.e., (G, S) |= ψ). For (x, k) ∈ �∗ × Z

−, we know
that (x, k) /∈ �. In this case, we say that � is definable by the sentence ψ and that � is
a p-MIN-CMSO[ψ].

The definition of a p-EQ-CMSO[ψ] (respectively, p-MAX-CMSO[ψ]) problem is the
same as the one for a p-MIN-CMSO[ψ] problem with the difference that now we ask
that |S| = k (respectively, |S| ≥ k) and that for any (x, k) ∈ �∗ × Z

− we have that
(x, k) ∈ �. We can also extend the notion of a p-MIN/EQ/MAX-CMSO[ψ] problems to edge
versions. In these problems, S is a subset of edges instead of a subset of vertices. All of
our results can be straightforwardly extended to this alternate setting. In particular,
an edge set problem on graph G = (V, E) can be transformed to a vertex subset problem
on the edge-vertex incidence graph I(G) of G, which is is a bipartite graph with vertex
bipartitions V and E with edges between vertices v ∈ V and e ∈ E if and only if v is
incident with e in G. Observe that if G can be embedded in surface �, then so does
I(G), and even the treewidth of these graphs only differ by a factor of 2. To make the
translation work throughout the article, it is sufficient to use the fact that the property
of being an incidence graph of a graph G is expressible in MSO. To avoid complications
in our proof, we omit the details for this.

The annotated version �α of a p-MIN/EQ/MAX-CMSO[ψ] problem � is the parameterized
graph problem whose instances are pairs of the form ((G, Y), k), where (G, Y) is an
annotated graph and k is a nonnegative integer. In the annotated version of a p-MIN/EQ-
CMSO[ψ] problem, S is additionally required to be a subset of Y. For the annotated
version of a p-MAX-CMSO[ψ] problem, S is not required to be a subset of Y, but instead of
|S| ≥ k, we demand that |S ∩Y | ≥ k. A problem is an annotatedp-MIN/EQ/MAX-CMSO[ψ]
problem if it is the annotated version of some p-MIN/EQ/MAX-CMSO[ψ] problem.

Our results. Our first result is the following theorem (the proofs of Theorems 1.1, 1.2,
and 1.3 are given in Section 4).

THEOREM 1.1. If � is an r-coverable p-MIN/MAX-CMSO[ψ] (respectively, p-EQ-CMSO[ψ])
problem, then the annotated version �α admits a quadratic (respectively, cubic) kernel.

Let us remark that although a parameterized graph problem is a special case of
its annotated version where all vertices are annotated, the existence of a polynomial
kernel for the annotated version does not imply directly that the corresponding (nonan-
notated) parameterized graph problem admits a polynomial kernel. Indeed, a polyno-
mial kernelization for an annotated parameterized graph problem �α is a polynomial
time algorithm that, given an input (G = (V, E), Y, k) of �α, computes an equivalent
instance (G′ = (V ′, E′), Y ′, k′) of �α such that max{|V ′|, k′} = kO(1). The point here is
that even when Y = V, we cannot guarantee that Y ′ = V ′. However, there is a simple
trick resolving this issue, given some additional complexity conditions. In particular,
Theorem 1.1 can be used to prove the following.

THEOREM 1.2. If � is an NP-hard r-coverable p-MIN/EQ/MAX-CMSO[ψ] problem and
�α is in NP, then � admits a polynomial kernel.

Theorems 1.1 and 1.2 provide polynomial kernels for a variety of parameterized
graph problems. However, many parameterized graph problems in the literature are
known to admit linear kernels on planar graphs. Our next theorem unifies and gener-
alizes all known linear kernels for parametrized graph problems on surfaces. To this
end, we make use of the notion of having finite integer Index (FII). This term first ap-
peared in the works of Bodlaender and van Antwerpen-de Fluiter [2001] and de Fluiter
[1997] and is similar to the notion of finite state [Abrahamson and Fellows 1993; Borie

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:6 H. L. Bodlaender et al.

et al. 1992; Courcelle 1990]. As the definition of the property of having FII is long, we
defer it to Section 2.3. Out next result is the following.

THEOREM 1.3. If � is an r-quasi-coverable parameterized graph problem that has FII,
then � admits a linear kernel.

Our theorems are similar in spirit, yet they have a few differences. In particular, not
every p-MIN/EQ/MAX-CMSO[ψ] problem has FII. For example, the INDEPENDENT DOMINAT-
ING SET problem is a p-MIN-CMSO[ψ] problem, but it does not have FII. In addition,
the class of parameterized graph problems that have FII does not have a syntactic
characterization, and hence it may take some more work to apply Theorem 1.3 than
Theorem 1.1. On the other hand, Theorem 1.3 applies to r-quasi-coverable problems
and yields linear kernels. That way, it unifies and implies results presented in Alber
et al. [2004, 2006b], Bodlaender and Penninkx [2008], Bodlaender et al. [2008], Chen
et al. [2007], Fomin and Thilikos [2004], Guo and Niedermeier [2007b], Guo et al.
[2010], Kanj et al. [2011], Lokshtanov et al. [2011], and Moser and Sikdar [2009] as a
corollary.

At high level, the proofs of our theorems consist of combinatorial decomposition and
algebraic reductions. The combinatorial part shows how a graph can be decomposed into
pieces with specific properties, and the algebraic reductions part explains how these
pieces can be reduced. The important tool in both parts is the notion of protrusion—that
is, a subset of vertices of a graph, inducing a graph of constant treewidth and separated
from the remaining part of the graph by a constant number of vertices. In the algebraic
reductions part of the proof, we show that sufficiently large protrusions can be replaced
by equivalent protrusions of smaller size. For CMSO problems, the algebraic reduction
step is much more technical and involved than for FII. Here we work with annotated
problems and perform replacements in several stages.

In the combinatorial part, the result concerning quasi-coverable problems is roughly
as follows. Suppose that after deleting k constant radius balls from a bounded genus
graph G the remaining part of G has constant treewidth. Then either G has a pro-
trusion of sufficiently large size (in which case we can apply protrusion reduction to
reduce the instance) or G has O(k) vertices. The proof of this result is based on a new
treewidth obstruction lemma for graphs embedded on a surface of bounded genus,
which is interesting in its own right. More precisely, the lemma states that if a graph of
bounded genus has two vertices that are far apart (in the radial distance) and cannot
be separated by a small separator, then the treewidth of the graph is large. Concerning
coverable problems, we show that every bounded genus graph G whose vertices can be
covered by k balls of constant radius admits a protrusion decomposition. A protrusion
decomposition is a partition of the vertex set into O(k) sets: one of these sets is a set S of
size O(k), and the other sets are protrusions separated from each other by S. Combined
with protrusion replacement rules for CMSO problems, such a decomposition implies
the existence of a polynomial kernel for every coverable CMSO problem.

The remainder of this article is organized as follows. In Section 2, we give a series of
definitions on basic notions that are necessary to describe our results. In Section 3, we
give a proof of a variant of the classical Courcelle’s theorem, which we use in the proofs
of our results. In Section 4, we present our meta-algorithmic framework for kernel-
ization and explain how our main results are derived from a series of algorithmic and
combinatorial properties. The algorithmic properties are proved in Section 5, whereas
our combinatorial results are proven in Section 6. Some criterion for proving that a
problem in graphs has FII are given in Section 7, and in Section 8 we give an extended
exposition of how our results can be applied to concrete problems. In Section 9, we
conclude with some open problems and further research directions. At the end of the

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:7

article, we append a short compendium of problems for which linear or polynomial
kernels are consequences of our results.

2. DEFINITIONS AND NOTATIONS

In this section, we give necessary definitions, set up notations, and derive some pre-
liminary results that we make use of in proving the main results of the article.

2.1. Preliminaries

We now define some concepts that we use in the rest of this work. Given a graph
G = (V, E), we use the notation V (G) and E(G) for V and E, respectively. Given a set
S ⊆ V (G), we define ∂G(S) as the set of vertices in S that have a neighbor in V \S. For
a set S ⊆ V (G), the neighborhood of S in G is NG(S) = ∂G(V (G)\S). We also define the
closed neighborhood of S in G as NG[S] = S ∪ ∂G(V (G)\S). When it is clear from the
context, we omit the subscripts.

Let G = (V, E) be a graph. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆
E. The subgraph G′ is called an induced subgraph of G if E′ = {{u, v} ∈ E | u, v ∈ V ′}. In
this case, G′ is also called the subgraph induced by V ′ and is denoted by G[V ′]. Given
a graph G and a set S ⊆ V, we denote by G\S the graph G[V \S]. If S ⊆ E, we denote
G\S = (V, E\S). We also use the term (x, y)-path for a path in G that has x and y as
endpoints.

Throughout this article, we use Z, Z
+, and Z

− for the sets of integers, nonnegative
integers, and nonpositive integers, respectively. Finally, we use N for the set of positive
integers.

2.1.1. Parameterized Algorithms and Kernels. An instance of a parameterized problem
consists of (x, k), where k is called the parameter. Thus, a parameterized problem � is
a subset of �∗ × Z for some finite alphabet � such that for all (x1, k1), (x2, k2) ∈ �∗ × Z

with k1, k2 < 0, it holds that (x1, k1) ∈ � ⇐⇒ (x2, k2) ∈ �. A central notion in
parameterized complexity is fixed parameter tractability, which means, for a given
instance (x, k), solvability in time f (k) · p(|x|), where f is an arbitrary function of k and
p is a polynomial in the input size. The notion of kernelization is formally defined as
follows.

Definition 2.1 [Kernelization]. Let � ⊆ �∗ × Z be a parameterized problem and g
be a computable function. We say that � admits a kernel of size g if there exists an
algorithm K, called the kernelization algorithm (or, in short, a kernelization) that, given
(x, k) ∈ �∗ × Z

+, outputs, in time polynomial in |x| + k, a pair (x′, k′) ∈ �∗ × Z
+ such

that

(a) (x, k) ∈ � if and only if (x′, k′) ∈ � and
(b) max{|x′|, k′} ≤ g(k).

For every (x, k) ∈ �∗ × Z
−, the algorithm outputs a trivial equivalent instance. When

g(k) = kO(1) or g(k) = O(k), we say that � admits a polynomial or linear kernel,
respectively.

In this article, we study parameterized problems on graphs. However, in many cases,
we have to deal with annotated graph problems whose input is a pair (G, S), where
S is a set of annotated vertices of G. For such problems, the task is to find a solution
that is contained in S. For this reason, we use the term parameterized graph problem
for every subset � of �∗ × Z, where in each instance I = (x, k) ∈ �∗ × Z the string x
is encoding either a graph G = (V, E) or a pair (G, S) with S ⊆ V and the integer k
encodes the parameter.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:8 H. L. Bodlaender et al.

2.1.2. Treewidth. Let G = (V, E) be a graph. A tree decomposition of G is a pair (T ,X =
{Xt}t∈V (T)), where T is a tree and X is a collection of subsets of V such that

—∀e = {u, v} ∈ E, ∃t ∈ V (T) : {u, v} ⊆ Xt and
—∀v ∈ V , T [{t | v ∈ Xt}] is nonempty and connected.

We call the vertices of T nodes and the sets in X bags of the tree decomposition (T ,X).
The width of (T ,X) is equal to max{|Xt|−1 | t ∈ V (T)}, and the treewidth of G = (V, E)
is the minimum width over all tree decompositions of G. We denote the treewidth of a
graph G by tw(G).

A nice tree decomposition is a triple (T ,X , r), where (T ,X) is a tree decomposition
in which the tree T is rooted on some vertex r ∈ V (T) and the following conditions are
satisfied:

—every node of the tree T has at most two children;
—if a node t has two children t1 and t2, then Xt = Xt1 = Xt2 (we call t a join node); and
—if a node t has one child t1, then either |Xt| = |Xt1 | + 1 and Xt1 ⊂ Xt (in this case, we

call t1 the introduce node) or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (in this case, we call t1 the
forget node).

It is possible to transform a given tree decomposition (T ,X) into a nice tree decompo-
sition (T ′,X ′, r), where the root r is any vertex of T in time O(|V | + |E|) [Bodlaender
1996].

2.2. Boundaried Graphs

Here we define the notion of boundaried graphs and various operations on them.

Definition 2.2 [Boundaried Graphs]. A boundaried graph is a graph G with a set
B ⊆ V (G) of distinguished vertices and an injective labeling λ from B to the set Z

+. The
set B is called the boundary of G, and the vertices in B are called boundary vertices
or terminals. Given a boundaried graph G, we denote its boundary by δ(G), denote its
labeling by λG, and define its label set by 	(G) = {λG(v) | v ∈ δ(G)}. Given a finite
set I ⊆ Z

+, we define FI to denote the class of all boundaried graphs whose label
set is I. Similarly, we define F⊆I = ⋃

I′⊆I FI′ . We also denote by F the class of all
boundaried graphs. Finally, we say that a boundaried graph is a t-boundaried graph if
	(G) ⊆ {1, . . . , t}.

Definition 2.3 [Gluing by ⊕]. Let G1 and G2 be two boundaried graphs. We denote
by G1 ⊕ G2 the graph (not boundaried) obtained by taking the disjoint union of G1 and
G2 and identifying equally labeled vertices of the boundaries of G1 and G2. In G1 ⊕ G2,
there is an edge between two labeled vertices if there is either an edge between them
in G1 or in G2.

Definition 2.4. Let G = G1 ⊕G2, where G1 and G2 are boundaried graphs. We define
the glued set of Gi as the set Bi = λ−1

Gi
((G1) ∩ 	(G2)), i = 1, 2. For a vertex v ∈ V (G1),

we define its heir h(v) in G as follows: if v �∈ B1, then h(v) = v; otherwise, h(v) is the
result of the identification of v with an equally labeled vertex in G2. The heir of a vertex
in G2 is defined symmetrically. The common boundary of G1 and G2 in G is equal to
h(B1) = h(B2), where the evaluation of h on vertex sets is defined in the obvious way.
The heir of an edge {u, v} ∈ E(Gi) is the edge {h(u), h(v)} in G.

Let G be a class of (not boundaried) graphs. By slightly abusing notation, we say that
a boundaried graph belongs to a graph class G if the underlying graph belongs to G.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:9

2.3. Finite Integer Index

Definition 2.5 [Canonical Equivalence on Boundaried Graphs]. Let � be a parame-
terized graph problem whose instances are pairs of the form (G, k). Given two bound-
aried graphs G1, G2 ∈ F , we say that G1 ≡� G2 if 	(G1) = 	(G2) and there exist a
transposition constantc ∈ Z such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ � ⇔ (G2 ⊕ F, k+ c) ∈ �.

Note that the relation ≡� is an equivalence relation. Observe that c could be negative in
the preceding definition. This is the reason we extended the definition of parameterized
problems to include negative parameters.

Next we define a notion of “transposition-minimality” for the members of each equiv-
alence class of ≡�.

Definition 2.6 [Progressive Representatives]. Let � be a parameterized graph prob-
lem whose instances are pairs of the form (G, k), and let C be some equivalence class
of ≡�. We say that J ∈ C is a progressive representative of C if for every H ∈ C there
exists c ∈ Z

− such that

∀(F, k) ∈ F × Z (H ⊕ F, k) ∈ � ⇔ (J ⊕ F, k+ c) ∈ �. (1)

The following lemma guaranties the existence of a progressive representative for
each equivalence class of ≡�.

LEMMA 2.7. Let � be a parameterized graph problem whose instances are pairs of the
form (G, k). Then each equivalence class of ≡� has a progressive representative.

PROOF. We first examine the case in which every instance of � with a negative valued
parameter is a NO-instance.

Let C be an equivalence class of ≡�. We distinguish the following two cases.

Case 1. Suppose first that for every H ∈ C, every F ∈ F , and every integer k ∈ Z,
it holds that (H ⊕ F, k) �∈ �. Then we set J to be an arbitrary chosen graph in C and
c = 0. In this case, it is obvious that (1) holds for every (F, k) ∈ F × Z.

Case 2. Suppose now that for some H0 ∈ C, F0 ∈ F , and k0 ∈ Z, it holds that
that (H0 ⊕ F0, k0) ∈ �. Among all such triples, choose the one where the value of k0
is minimized. Since every instance of � with a negative-valued parameter is a NO-
instance, it follows that k0 is well defined and nonnegative. We claim that H0 is a
progressive representative.

Let H ∈ C. As H0 ≡� H, there is a constant c such that

∀(F, k) ∈ F × Z (H ⊕ F, k) ∈ � ⇔ (H0 ⊕ F, k+ c) ∈ �.

It suffices to prove that c ≤ 0. Assume for a contradiction that c > 0. Then by taking
k = k0 − c and F = F0, we have that

(H ⊕ F0, k0 − c) ∈ � ⇔ (H0 ⊕ F0, k0 − c + c) ∈ �.

Since (H0 ⊕ F0, k0) ∈ �, it follows that (H ⊕ F0, k0 − c) ∈ �, contradicting the choice of
H0, F0, k0.

Suppose now that every instance of � with a negative-valued parameter is a YES-
instance. The proof of this case is symmetric to the previous one: just replace every
occurrence of “∈ �” with a “�∈ �” and every occurrence of “ �∈ �” with “∈ �” and the
“NO-instance” with “YES-instance.”

Notice that two boundaried graphs with different label sets belong to different equiv-
alence classes of ≡�. Hence, for every equivalence class C of ≡�, there exists some finite
set I ⊆ Z

+ such that C ⊆ FI . We are now in position to give the following definition.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:10 H. L. Bodlaender et al.

Definition 2.8 [Finite Integer Index]. A parameterized graph problem � whose in-
stances are pairs of the form (G, k) has finite integer index (or simply has FII) if and only
if for every finite I ⊆ Z

+, the number of equivalence classes of ≡� that are subsets of
FI is finite. For each I ⊆ Z

+, we define SI to be a set containing exactly one progressive
representative of each equivalence class of ≡� that is a subset of FI . We also define
S⊆I = ⋃

I′⊆I SI′ .

2.4. An Alternate Way to Define Extended Formulation of a Parameterized Problem

Parameterized problems usually have been defined as subsets of �∗ × Z
+. In other

words, a parameterized problem � is a subset of �∗ × Z
+. However, in this article, we

define a parameterized problem � to be a subset of �∗ × Z, thus allowing negative
parameters. An alternate route to obtain all results in this work without changing
the classical notion of a parameterized problem would be to define an extension of a
parameterized problem as follows. For � ⊆ �∗ × Z

+, we say that �ext ⊆ �∗ × Z is an
extension of � if

—for all k ≥ 0, (x, k) ∈ �ext if and only if (x, k) ∈ �, and
—for all (x1, k1), (x2, k2) ∈ �∗ × Z with k1, k2 < 0, it holds that (x1, k1) ∈ � if and only if

(x2, k2) ∈ �.

Observe that a parameterized problem � ⊆ �∗ × Z
+ has two extensions based on

whether all (x, k), k < 0, is a NO-instance or a YES-instance. For an extension �ext, we
could now use the definition of FII used in this article. For a parameterized problem �
(i.e., a subset of �∗×Z

+), we say that � has FII if at least one of the two extensions of �
has FII. These simple modifications will allow us to work with the traditional definition
of a parameterized problem. However, for the clarity of presentation and to avoid going
between � and �ext throughout the article, we decided to modify the definition of a
parameterized problem to allow negative parameters.

2.5. Structures and Its Properties

We first define the notions of structure and arity of a structure.

Definition 2.9 [Structure and Arity]. A structure is a tuple where the first element
of the tuple is a graph G and the remaining elements of the tuple are either subsets of
V, subsets of E, vertices in G, or edges in G. The arity of the structure is the number
of elements in the tuple.

Given a structure α of arity p and an integer i ∈ {1, . . . , p}, we let α[i] denote the
i-th element of α. The graph of a structure α is denoted by Gα, and it appears as the
first element of the structure—that is, Gα = α[1]. Appending a subset S of V (Gα) to a
structure α of arity p produces a new structure, denoted by α′ = α � S, of arity p + 1
with the first p elements of α′ being the elements of α and α′[p+ 1] = S. Appending an
edge set, a vertex, or an edge to a structure is defined similarly. For example, consider
the structure α = (Gα, S, e) of arity 3, where S ⊆ V (Gα) and e ∈ E(Gα). In addition,
let S′ be some subset of V (Gα), and let u ∈ V (Gα). Appending S′ to α results in the
structure α′ = α � S′ = (Gα, S, e, S′), whereas appending u to α′ results in the structure
α′′ = α′ � u = (Gα, S, e, S′, u).

Next we define the notions of type of a structure and property of structures.

Definition 2.10 [Type of Structure]. The type of a structure of arity p is another tuple
of arity p, denoted by type(α), where the first element type(α)[1] is graph, whereas for
every i ∈ {2, . . . , p}, type(α)[i] is vertex, edge, vertex set, or edge set according to what
the i-th element of α is. Note that we distinguish between a set containing a single
vertex or edge from just a single vertex or edge.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:11

Definition 2.11 [Properties of Structures]. A property of structures is a function σ
that assigns to each structure a value in {true, false}.

2.6. CMSO Logic and Its Properties

The syntax of MSO logic of graphs includes the logical connectives ∨, ∧, ¬,⇔, ⇒;
variables for vertices, edges, sets of vertices, and sets of edges; the quantifiers ∀, ∃ that
can be applied to these variables; and the following five binary relations:

(1) u ∈ U, where u is a vertex variable and U is a vertex set variable;
(2) d ∈ D, where d is an edge variable and D is an edge set variable;
(3) inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation

is that the edge d is incident with the vertex u;
(4) adj(u, v), where u and v are vertex variables and the interpretation is that u and v

are adjacent; and
(5) equality of variables representing vertices, edges, sets of vertices, and sets of edges.

In addition to the usual features of MSO logic, if we have atomic sentences testing
whether the cardinality of a set is equal to q modulo r, where q and r are integers such
that 0 ≤ q < r and r ≥ 2, then this extension of MSO logic is called CMSO logic. Thus,
CMSO is MSO with the following atomic sentence for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

We refer to Arnborg et al. [1991] and Courcelle [1990, 1997] for a detailed introduction
on CMSO.

A CMSO sentence ψ where some of the variables are free can be evaluated on a
structure α by instantiating the free variables of ψ by the elements of α. To determine
which variables of ψ are instantiated by which elements of α, we need to introduce
some conventions.

In a CMSO sentence ψ, each free variable x has a rank rx ∈ N\{1} associated to it.
Thus, a CMSO sentence ψ can be seen as a string accompanied by a tuple of integers
containing one integer rx for each free variable x of ψ .

We say that type(α) matches ψ if the arity of α is at least max rx, where the maximum
is taken over each free variable x of ψ and for each free variable x of ψ , type(α)[rx]
corresponds to the kind of the variable x. For example, if x is a vertex set variable, then
type(α)[rx] = vertex set. Finally, we say that α matches ψ if type(α) matches ψ . For
each free variable x of ψ and a structure α that matches ψ, the corresponding element
of x in α is α[rx].

Definition 2.12 [Property σψ]. Each CMSO sentence ψ defines a property σψ on
structures as follows. For every structure α that does not match ψ, the value of σψ (α)
is equal to false; otherwise, the value of σψ (α) is the result of the evaluation of ψ with
each free variable x of ψ instantiated by α[rx].

Note that it is not necessary that every element of α corresponds to some variable of
ψ . However, it is still possible that the sentence ψ can be evaluated on the structure
α; in this case, the evaluation of the sentence does not depend on all elements of the
structure.

A property σ is CMSO definable if there exists a sentence ψ such that σ = σψ . In
this case, we say that the CMSO sentence ψ defines σ .

OBSERVATION 1. For every CMSO-definable property σ, there exists a CMSO sentence
ψ that defines σ and has the following additional features:

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:12 H. L. Bodlaender et al.

(1) each variable of ψ has a unique name,
(2) ψ does not use the adj operator,
(3) ψ does not have conjunctions, and
(4) ψ does not have universal quantifiers.

PROOF. Let ψ ′ be a CMSO sentence defining σ . We construct another CMSO sentence
ψ defining σ so that ψ satisfies Properties (1) through (4). For Property (1), we rename
each variable so that it has a unique name. When we rename a free variable x of ψ of
rank rx to x′, we let x′ have rank rx′ = rx in ψ ′.

For Property (2), we replace each occurrence of adj(x, x′) by ∃x′′ ∈ E : inc(x′′, x) ∧
inc(x′′, x′). For Properties (3) and (4), just use the fact that ∧ and ∀ can be expressed
using ∨, ∃, and ¬ by De Morgan’s laws.

We call CMSO sentences satisfying Properties (1) through (4) of Observation 1 normal-
ized CMSO sentences.

2.7. Boundaried Structures

In this subsection we extend the notion of boundaried graphs to boundaried structures.

Definition 2.13 [Boundaried Structure]. A boundaried structure is a tuple where the
first element is a boundaried graph G and the remaining elements are either subsets of
V (G), subsets of E(G), vertices in V (G), edges in E(G), or the symbol �. For a boundaried
structure α, α[i] is the i-th element of α and Gα = α[1] is always a boundaried graph.

Definition 2.14 [Type of a Boundaried Structure]. The type of a boundaried structure
is defined similarly to the type of a structure; for a boundaried structure α of arity p,
type(α) is a tuple of arity p, where the first element of type(α) is boundaried graph,
whereas for every i ∈ {2, . . . , p}, type(α)[i] is vertex, edge, �, vertex set, or edge set
according to what α[i] is.

Definition 2.15 [Type Matching]. Given a CMSO formula ψ, we say that type(α)
matches ψ if the arity of α is at least max rx, where the maximum is taken over each
free variable x of ψ and for every free variable x of ψ

—if x is a vertex variable, then type(α)[rx] ∈ {�, vertex},
—if x is a edge variable, then type(α)[rx] ∈ {�, edge},
—if x is a vertex set variable, then type(α)[rx] = vertex set, and
—if x is a edge set variable, then type(α)[rx] = edge set.

We say that α matches ψ if type(α) matches ψ .

We denote by A the set of all boundaried structures. Given some p ∈ N, we denote
by Ap the set of all boundaried structures of arity p, and given a finite set I ⊆ Z

+,
we denote by Ap

I the set of all boundaried structures of arity p whose boundaried
graph has label set I. Notice that according to this definition, A1

I is essentially the
same as FI . Finally, we say that a boundaried structure α is a t-boundaried structure
if 	(Gα) ⊆ {1, . . . , t}.

Definition 2.16 [Compatibility]. For two boundaried structures α and β, we say
that α and β are compatible. We denote this by α ∼c β if the following conditions are
satisfied:

—α and β have the same arity p.
—For every i ≤ p, type(α)[i] = type(β)[i] �= � or exactly one out of type(α)[i], type(β)[i]

is a vertex or edge and exactly one of them is a �.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:13

—For every i ∈ {2, . . . , p} such that both α[i] and β[i] are vertices, α[i] ∈ δ(Gα), β[i] ∈
δ(Gβ) and λGα

(α[i]) = λGβ
(β[i]).

—For every i such that both α[i] and β[i] are edges, α[i] ∈ E(Gα[δ(Gα)]), β[i] ∈
E(Gβ[δ(Gβ)]) and λGα

(α[i]) = λGβ
(β[i]) (here we extend the function λ to sets in the

obvious way).

Definition 2.17 [Gluing of Boundaried Compatible Structures]. When two bound-
aried structures α and β are compatible, the operation of gluing α and β is defined as
follows:

—α ⊕ β is a structure γ with the same arity, say p, as α and β.
—Gγ = Gα ⊕ Gβ.
—For every i ∈ {2, . . . , p} such that both α[i] and β[i] are both vertex sets or both edge

sets, we define γ [i] = h(α[i]) ∪ h(β[i]).
—For every i ∈ {2, . . . , p} such that both α[i] and β[i] are vertices or both are edges,

we have h(α[i]) = h(β[i]) (by compatibility), and we set γ [i] = h(α[i]) = h(β[i]).
If α[i] = �, we set γ [i] = h(β[i]), whereas if β[i] = �, we set γ [i] = h(α[i]). By
compatibility, exactly one of these cases applies for every i.

3. A VARIANT OF COURCELLE’S THEOREM

In this section, we give a proof of a variant of the classical Courcelle’s theorem [Courcelle
1990, 1992, 1997] (see also Courcelle and Engelfriet [2012], which we use in the proofs
of our results).

We define the compatibility equivalence relation ≡c on boundaried structures as
follows. We say that α ≡c β if for every boundaried structure γ,

α ∼c γ ⇐⇒ β ∼c γ.

Clearly, ≡c is an equivalence relation. We now make the following observation.

OBSERVATION 2. For every arity p and finite set I ⊆ Z
+, the relation ≡c has a finite

number of equivalence classes when restricted to Ap
I .

PROOF. Define the compatibility signature of a boundaried structure α to be a string
s(α) that encodes the following information about α:

—	(Gα).
—type(α).
—For every i such that α[i] is a vertex, s(α) encodes whether α[i] ∈ δ(Gα), and if so, it

encodes λGα
(α[i]).

—For every i such that α[i] is an edge, s(α) encodes whether α[i] ∈ E(Gα[δ(Gα)]), and if
so, it also encodes λGα

(α[i]).

Clearly, for every fixed I and p, the compatibility signature s(α) can be encoded by a
number of bits that depends only on I and p, and hence there are only finitely many
different compatibility signatures for boundaried structures in Ap

I . It is easy to verify
whether a boundaried structure α ∈ Ap

I is compatible with a boundaried structure
γ ∈ Ap can be deduced solely from γ and the compatibility signature of α. Thus, if two
boundaried structures α and β have the same compatibility signatures, then α ≡c β.
This completes the proof.

Definition 3.1 [Canonical Equivalence on Structures]. For a property σ of struc-
tures, we define the corresponding canonical equivalence relation ≡σ on boundaried
structures. For two boundaried structures α and β we say that α ≡σ β if α ≡c β and for

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:14 H. L. Bodlaender et al.

all boundaried structures γ compatible to α (and thus also to β) we have

σ (α ⊕ γ) = true ⇔ σ (β ⊕ γ) = true.

It is easy to verify that ≡σ is an equivalence relation. We say that a property σ of
structures is finite state if, for every p ∈ N and I ⊆ Z

+, the equivalence relation ≡σ has
a finite number of equivalence classes when restricted to Ap

I . Given a CMSO sentence
ψ, we say that ≡σψ

is the canonical equivalence relation corresponding to ψ, and we
simply denote this relation by ≡ψ .

In our arguments, the following lemma will be crucial. Although it is an im-
plicit consequence of the results [Arnborg et al. 1991; Courcelle 1990, 1997, 1992;
Abrahamson and Fellows 1993; Borie et al. 1992; Downey and Fellows 1998], in the
rest of this section we give a complete and self-contained proof.

LEMMA 3.2. Every CMSO-definable property on structures has finite state.

PROOF. Our aim is to prove that for every p ∈ N and finite I ⊆ Z
+, and CMSO-

definable property σ , the equivalence relation ≡σ has a finite number of equivalence
classes when restricted to Ap

I . For this, we will define, for every normalized CMSO
sentence ψ, a function sgnψ that takes as input a boundaried structure and outputs a
string in {0, 1}∗. To prove the result, it suffices to show the following two properties of
the function sgnψ :

(i) For all p ∈ N, J ⊆ Z
+, the set sgnψ (Ap

I) is finite.
(ii) For every two boundaried structures α and β, if sgnψ (α) = sgnψ (β), then α ≡σ β.

We need the following claim:

Decoder Claim: To prove Property (ii), it is enough to prove that for every CMSO
sentence ψ defining a property σ , there exist two functions,

decc : {0, 1}∗ ×Ap → {true, false}
decψ : {0, 1}∗ ×Ap → {true, false},

such that for every pair α ∈ Ap
I and γ ∈ Ap, we have that

decc(sgnψ (α), γ) = true ⇐⇒ α ∼c γ, (2)

and for every pair α ∈ Ap
I and γ ∈ Ap with α ∼c γ, it holds that

decψ (sgnψ (α), γ) = true ⇐⇒ σ (α ⊕ γ) = true. (3)

PROOF OF DECODER CLAIM: For the proof of the preceding claim, assume that for some
α, β ∈ Ap

I , it holds that

sgnψ (α) = sgnψ (β). (4)

Then for all γ ∈ Ap, it holds that

α ∼c γ ⇔(2) decc(sgnψ (α), γ) = true ⇔(4) decc(sgnψ (β), γ) = true ⇔(2) β ∼c γ,

and hence α ≡c β. Further, for all γ ∈ Ap such that α ∼c γ, it holds that

σ (α ⊕ γ) = true ⇔(3) decψ (sgnψ (α), γ) = true

⇔(4) decψ (sgnψ (β), γ) = true

⇔(3) σ (β ⊕ γ) = true,

and thus α ≡σ β, as required. This completes the proof of the decoder claim.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:15

We start by partially defining the outputs of sgnψ as follows. If α does not match ψ,

then sgnψ (α) is the null string, denoted by ε; otherwise, sgnψ encodes the compatibility
signature of α (as defined in the proof of Observation 2) and additional information
about α that will be specified later in the proof.

The existence of a function decc satisfying (2) follows directly from the proof of
Observation 2.

We define the function decψ such that decψ (ε, γ) = false for every boundaried struc-
ture γ . In addition, decψ (sgnψ (α), γ) = false whenever type(α ⊕ γ) does not match ψ .
Observe that this can be checked using the compatibility signature of α (that is already
encoded in sgnψ (α)) and γ . Thus, decψ satisfies (3) for all pairs α, γ such that α ⊕ γ

does not match ψ.
In the remainder of the proof, we will complete the definition of sgnψ and will define

decψ for all pairs sgnψ (α), γ such that α ⊕ γ match ψ. This should be done in a way
such that (i) holds for sgnψ and (3) holds for decψ .

We now define sgnψ and decψ and prove that they have the claimed properties for
the case where α matches ψ and ψ is an atomic CMSO sentence. An atomic CMSO
sentence is a sentence of the form “u ∈ S,” “e ∈ S,” “u = v,” “e = d,” “inc(d, u),” or
“cardq,r(S),” where S is a set variable, u and v are vertex variables, e and d are edge
variables, and r ∈ N\{1} and q ∈ {0, . . . , r−1}. In this case, we append to sgnψ (α) certain
information about α that

(i) encodes G[δ(Gα)],
(ii) encodes λGα

,
(iii) for every vertex variable x encodes whether α[rx] = � or not (recall that rx is the

rank of x), and if α[rx] �= �, then sgnψ (α) encodes whether α[rx] ∈ δ(Gα), and, if
this is the case, also encodes λGα

(α[rx]),
(iv) for every edge variable x encodes whether α[rx] = � or not, and if α[rx] �= �,

sgnψ (α) also encodes whether α[rx] ⊆ δ(Gα), and, if this is the case, also encodes
λGα

(α[rx]),
(v) for every vertex set variable x encodes λGα

(α[rx] ∩ δ(Gα)),
(vi) for every edge set variable x encodes λGα

(α[rx] ∩ E(δ(Gα))) (here λGα
is extended

to sets of unordered pairs in the natural way),
(vii) for every vertex variable x, such that α[rx] �= �, and every vertex set variable x′,

encodes whether α[rx] ∈ α[rx′],
(viii) for every edge variable x, such that α[rx] �= �, and every edge set variable x′,

encodes whether α[rx] ∈ α[rx′],
(ix) for every pair of vertex variables x, x′, where α[rx] �= � �= α[rx′], encodes whether

{α[rx], α[rx′]} ∈ E(Gα),
(x) for every vertex variable x and every edge variable x′, where α[rx] �= � �= α[rx′],

encodes whether α[rx] ∈ α[rx′] (i.e., whether α[rx′] is incident to α[rx]),
(xi) if ψ is “cardq,r(x),” where x is either a vertex set or an edge set variable, encodes

|α[rx]| (mod r),
(xii) for every pair of vertex variables x, x′, where α[rx] �= � �= α[rx′], encodes whether

α[rx] = α[rx′], and
(xiii) for every pair of edge variables x, x′, where α[rx] �= � �= α[rx′], encodes whether

α[rx] = α[rx′].

To see that sgnψ (α) satisfies Property (i), it is enough to verify that for every α ∈ Ap
I ,

the length of sgnψ (α) is upper bounded by a function depending only the atomic formula
ψ , the integer p, and the set I.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:16 H. L. Bodlaender et al.

Table I. Procedure of Case 1 in the Proof of Lemma 3.2

if α[rx] �= � (using the compatibility signature of α)
then if α[rx] ∈ α[rx′] (using (vii))

then return true
else if α[rx] ∈ δ(Gα) (using (iii))

then if λ−1
Gγ

(λGα
(α[rx])) ∈ γ [rx′] (using (iii))

then return true
else return false

else return false
else if γ [rx] ∈ γ [rx′] (notice that γ [rx] �= �, since α ∼c γ)

then return true
else if γ [rx] ∈ δ(Gγ)

then if λ−1
Gα

(λGγ
(γ [rx])) ∈ α[rx′] (using (iii) and (v))

then return true
else return false

else return false

We now define decψ (sgnψ (α), γ) for the case where ψ is an atomic CMSO formula and
α ⊕ γ matches ψ and prove that decψ satisfies (3) for this case. For this, we distinguish
cases depending on the kind of ψ . During our case analysis, we use quotation marks
to delimit the string that corresponds to a formula and use the symbol ◦ to denote the
concatenation operation between strings. For example, if ψ = “∃x∀y ¬φ(x, y), ” then
ψ = “∃x∀y” ◦ “¬φ(x, y).”

We give a detailed proof in the case where ψ = “x ∈ x′.” We also provide a brief
description of the proofs for the remaining cases that can all be formalized in a similar
fashion.

Case 1. ψ = “x ∈ x′,” where x is a vertex variable and x′ is a vertex set variable. Then
decψ (sgnψ (α), γ) is computed by the procedure in Table I.

It can be easily verified that the procedure in Table I outputs true if and only if
(α ⊕ γ)[rx] ∈ (α ⊕ γ)[rx′]—that is, if and only if σ (α ⊕ γ) = true. Furthermore, every
query of the procedure can be answered by inspecting sgnψ (α) and γ . The numbers in
the parentheses in the procedure correspond to the items of the encoding of sgnψ (α)
that are used to answer each query about α. This completes the proof of Case 1.

Case 2. ψ = “x ∈ x′,” where x is an edge variable and x′ is a edge set variable. Here
the function decψ should decide whether σ (α⊕γ) is true, which in this case is the same
as asking whether (α ⊕ γ)[rx] ∈ (α ⊕ γ)[rx′] is true. This last question is equivalent to
asking whether one of the following holds:

α[rx] ∈ α[rx′] (5)
γ [rx] ∈ γ [rx′] (6)

α[rx] ∈ E(Gα[δ(Gα)]) and λGα
(α[rx]) ∈ λGγ

(γ [rx′] ∩ E(Gγ [δ(Gγ)])) (7)

γ [rx] ∈ E(Gγ [δ(Gγ)]) and λGγ
(γ [rx]) ∈ λGα

(γ [rx′] ∩ E(Gα[δ(Gα)])). (8)

Each query in (5) through (8) can be answered given γ and sgnψ (α) (but no access to α

itself).

Case 3. ψ = “x = x′,” where both x and x′ are vertex variables. Here the function
decψ should decide whether σ (α ⊕ γ) is true, which in this case is the same as asking
whether (α ⊕ γ)[rx] = (α ⊕ γ)[rx′] is true. This last question is equivalent to asking

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:17

whether one of the following holds:

α[rx] = α[rx′] �= � (9)
γ [rx] = γ [rx′] �= � (10)

α[rx] ∈ δGα
and γ [rx′] ∈ δGγ

and λGα
(α[rx]) = λGγ

(γ [rx′]) (11)

α[rx′] ∈ δGα
and γ [rx] ∈ δGγ

and λGα
(α[rx′]) = λGγ

(γ [rx]). (12)

The preceding is correct because α ∼c γ implies that at most one of α[rx] and γ [rx] is
a �, and whenever neither of them are �’s, it holds that α[rx] ∈ δGα

, γ [rx] ∈ δGγ
, and

λGα
(α[rx]) = λGγ

(γ [rx]) and the same holds for α[rx′] and γ [rx′]. Again, each query in (9)
through (12) can be answered given γ and sgnψ (α).

Case 4. ψ = “x = x′, ” where both x and x′ are edge variables. This case is very similar
to Case 3 and is omitted.

Case 5. ψ = “inc(x, x′), ” where x is an edge variable and x′ is a vertex variable. Again,
here the function decψ should decide whether σ (α ⊕ γ) is true and this is equivalent to
(α ⊕ γ)[rx′] ⊆ (α ⊕ γ)[rx]. This last question is equivalent to asking whether one of the
following holds:

� �= α[rx′] ⊆ α[rx] (13)
� �= γ [rx′] ⊆ γ [rx] (14)

α[rx′] ∈ δ(Gα) and λGα
(α[rx′]) ∈ λGγ

(γ [rx]) (15)

γ [rx′] ∈ δ(Gγ) and λGγ
(γ [rx′]) ∈ λGα

(α[rx]). (16)

As in Case 3, the preceding is correct because α ∼c γ, and it is enough to verify that
each query in (13) through (16) can be answered given γ and sgnψ (α).

Case 6. ψ = “cardq,r(x),” where x is a vertex set variable. The function decψ should
decide whether σ (α ⊕ γ) is true, which in this case means that

|(α ⊕ γ)[rx]| ≡ q (mod r).

This, in turn, is equivalent to

|α[rx]| + |γ [rx]| − |λGα
(α[rx] ∩ δ(Gα)) ∩ λGγ

(γ [rx] ∩ δ(Gγ))| ≡ q (mod r). (17)

It is easy to see that (17) can be evaluated given γ and sgnψ (α). This proves Property (ii),
and therefore the statement of the lemma holds when ψ is an atomic sentence.

To complete the proof, we now complete the definition of sgnψ for every nonatomic
normalized CMSO sentence ψ, and we will define decψ for all pairs sgnψ (α), γ such
that α ⊕ γ match ψ. As in the case of atomic formulas, this should be done in a way
such that (i) holds for sgnψ and (3) holds for decψ .

By using induction, we assume that sgnψ ′ and decψ ′ have been defined such that sgnψ ′

satisfies Property (i) and decψ ′ satisfies (3) for every normalized CMSO sentence ψ ′ and
has length smaller than ψ . This together with the decoder claim implies Property (ii)
for ψ ′, namely that

∀α′, β ′ ∈ A sgnψ ′(α′) = sgnψ ′(β ′) ⇒ α′ ≡ψ ′ β ′. (18)

One of the following cases applies.

Case 1. ψ = “¬” ◦ ψ ′, where both ψ and ψ ′ have the same free variables whose rank
is the same in ψ and ψ ′. From the induction hypothesis, we know that there exist sgnψ ′

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:18 H. L. Bodlaender et al.

and decψ ′ such that sgnψ ′ satisfies Property (i) and decψ ′ satisfies (3). We define

sgnψ (α) = sgnψ ′(α). (19)

We also define

decψ (sgnψ (α), γ) = ¬decψ ′(sgnψ ′(α), γ). (20)

Notice that in (20), decψ is indeed a function of sgnψ (α) and γ because of the definition
of sgnψ (α) in (19). By the induction hypothesis, for every p ∈ N and I ⊆ Z

+, sgnψ (Ap
I) =

sgnψ ′(Ap
I) is finite, yielding that sgnψ satisfies Property (i).

To prove that decψ satisfies (3), let α ∈ Ap
I and γ ∈ Ap with α ∼c γ . Then

σψ (α ⊕ γ) = ¬σψ ′(α ⊕ γ) = ¬decψ ′(sgnψ ′(α)) =(20) decψ (sgnψ (α), γ),

where the second equation holds because of the induction hypothesis.

Case 2. ψ = ψ1 ◦ “ ∨ ” ◦ ψ2, where ψ1 and ψ2 have the same free variables and the
free variables have the same rank in ψ, ψ1, and ψ2. From the induction hypothesis,
we know that there exist sgnψ1

, sgnψ2
, decψ1 , and decψ2 such that sgnψ1

and sgnψ2
both

satisfy Property (i), whereas decψ1 and decψ2 both satisfy (3).
We define

sgnψ (α) = encode(sgnψ1
(α), sgnψ2

(α)), (21)

where encode is a function that receives two strings and encodes them as a single
string. We also define two functions, decode1 and decode2, such that

decodei(encode(s1, s2)) = si, for i ∈ {1, 2}.
We now define

decψ (sgnψ (α), γ) = decψ1 (decode1(sgnψ (α)), γ)

∨ decψ2 (decode2(sgnψ (α)), γ).

From (21), we have that for every p ∈ N and I ⊆ Z
+,

sgnψ

(
Ap

I

) ⊆ encode(sgnψ1

(
Ap

I

)
, sgnψ2

(
Ap

I

)) ∪ {ε}. (22)

By the induction hypothesis, sgnψi
(Ap

I) is finite, for i ∈ {1, 2}. This, together with (22),
implies that sgnψ satisfies Property (i).

To prove that decψ satisfies (3), observe that for all α ∈ Ap
I , γ ∈ Ap such that α ∼c γ,

σψ (α ⊕ γ) = true ⇐⇒ (σψ1 (α ⊕ γ) = true)
∨

(σψ2 (α ⊕ γ) = true)

⇐⇒ (decψ1 (sgnψ1
(α), γ) = true)

∨
(decψ2 (sgnψ2

(α), γ) = true)

⇐⇒ (decψ1 (decode1(sgnψ (α)), γ) = true)∨
(decψ2 (decode2(sgnψ (α)), γ) = true)

⇐⇒ decψ (sgnψ (α), γ) = true.

The first equivalence holds because of the definition of ψ , the second by the induction
hypothesis, the third by the definition of decodei, and the last one by the definition of
decψ .

Case 3. ψ = “∃x ⊆ V (G)” ◦ ψ ′, where ψ has p free variables and ψ ′ has p + 1 free
variables, the ranks of the free variables of ψ and ψ ′ are the same, except for the

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:19

variable x, which is a free variable in ψ ′ but is not free in ψ and the rank of x in ψ ′ is
p + 1. From the induction hypothesis, we know that there exist sgnψ ′ and decψ ′ such
that sgnψ ′ satisfies Property (i) and decψ ′ satisfies (3). We define

sgnψ (α) = encode({sgnψ ′(α � x) | x ⊆ V (Gα)}), (23)

where given a set W of signatures, the string encode(W) encodes all members of W. We
also define the function decode that receives as an entry a string s and outputs the set
of strings that are encoded to it, particularly decode(encode(W)) = W. We now define

decψ (sgnψ (α), γ) =
∨

s∈decode (sgnψ (α))
y ⊆ V (Gγ)

such that invsgnψ ′(s) ∼c (γ � y),

σψ ′(invsgnψ ′(s) ⊕ (γ � y)) (24)

where given a string s encoding a signature, invsgnψ ′(s) returns the lexicographically
smallest boundaried structure α� such that sgnψ ′(α�) = s. First observe that the func-
tion decψ is indeed a function of sgnψ (α) and γ . By the construction of sgnψ, for all
p ∈ N and every finite I ⊆ N, it holds that

sgnψ

(
Ap

I

) ∈ encode
(
2sgnψ ′ (Ap+1

I)) ∪ {ε},
which proves that sgnψ satisfies Property (i) (given a set X, we denote by 2X the set of
all of its subsets). It remains to prove that decψ satisfies (3), namely that for all α ∈ Ap

I
and γ ∈ AI such that α ∼c γ , the following hold:

decψ (sgnψ (α), γ) = true ⇒ σψ (α ⊕ γ) = true (25)

decψ (sgnψ (α), γ) = true ⇐ σψ (α ⊕ γ) = true. (26)

To prove (25), assume that decψ (sgnψ (α), γ) = true. Thus, there exist some y ⊆ V (Gγ)
and s ∈ decode(sgnψ (α)) such that invsgnψ ′(s) ∼c (γ � y) and

σψ ′(invsgnψ ′(s) ⊕ (γ � y)) = true. (27)

As decode(sgnψ (α)) = {sgnψ ′(α � x) | x ⊆ V (Gα)}, we may select an x ⊆ V (Gα)
such that s = sgnψ ′(α � x). Therefore, the construction of invsgnψ ′ ensures that
sgnψ ′(invsgnψ ′(s)) = s = sgnψ ′(α � x). From (18), invsgnψ ′(s) ≡ψ ′ α � x. This means
that (α � x) ∼c (γ � y); σψ ′(invsgnψ ′(s) ⊕ (γ � y)) = σψ ′((α � x) ⊕ (γ � y)); and, from (27), it
follows that

σψ ′((α � x) ⊕ (γ � y)) = true.

Recall that (α � x) ⊕ (γ � y) = (α ⊕ γ) � (x ∪ y). Therefore,

σψ ′((α ⊕ γ) � (x ∪ y)) = true,

which, by the definition of ψ, implies that σψ (α ⊕ γ) = true and (25) follows.
It now remains to prove (26). Assume that the value of σψ (α ⊕ γ) = true. Thus,

by the definition of ψ , there exist some x ⊆ V (Gα) and some y ⊆ V (Gγ) such that
(α � x) ∼c (γ � y) and

σψ ′((α � x) ⊕ (γ � y)) = true. (28)

Let s = sgnψ ′(α � x), and observe, by (23), that s ∈ decode(sgnψ (α)). By the definition of
invsgnψ ′ , we have that sgnψ ′(invsgnψ ′(s)) = sgnψ ′(α�x) = s. By (18), invsgnψ ′(s) ≡ψ ′ α�x.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:20 H. L. Bodlaender et al.

Hence, from (28), we obtain that invsgnψ ′(s) ∼c (γ � y) and

σψ ′(invsgnψ ′(s) ⊕ (γ � y)) = true.

Notice that s and y certify, in (24), that decψ (sgnψ (α), γ) = true, yielding (26).

(Multi) case 4. ψ = “∃x ⊆ E(G)” ◦ ψ ′ or ψ = “∃x ∈ V (G)” ◦ ψ ′ or ψ = “∃x ∈ E(G)” ◦ ψ ′.
The proof of the first case is the same as the proof of Case 3. The proof for the remaining
two cases differs from the proof of Case 3 only in that when the variables of x and y in
the proof are quantified as vertices or edges of the vertex or edge set, respectively, of a
boundaried structure, they may also take the value �.

Considering that the preceding case analysis is complete, the proof follows.

4. DERIVATION OF OUR RESULTS

In this section, we give two master theorems from which all of our results will be
derived. We start with fundamental notions of our article. These are the notions of
protrusion, protrusion replacement, and protrusion decomposition.

Definition 4.1 [t-Protrusion]. Given a graph G, we say that a set X ⊆ V is a t-
protrusion of G if |∂(X)| ≤ t and tw(G[X]) ≤ t.

Definition 4.2 [(f, a)-Protrusion Replacement Family]. Let � be a parameterized
graph problem, let f : Z

+ → Z
+ be a nondecreasing function, and let a ∈ Z

+. An (f, a)-
protrusion replacement family for � is a collection A = {Ai | i ≥ 0} of algorithms such
that algorithm Ai receives as input a pair (I, X), where

—I is an instance of � whose graph and parameter are G and k ∈ Z, and
—X is an i-protrusion of G with at least f (i) · ka vertices,

and outputs an equivalent instance I∗ such that if G∗ and k∗ are the graph and the
parameter of I∗, then |V (G∗)| < |V (G)| and k∗ ≤ k. The running time of a (f, a)-
protrusion replacement family is the running time of Ai.

Definition 4.3 [(α, β)-Protrusion Decomposition]. An (α, β)-protrusion decomposition
of a graph G is a partition P = {R0, R1, . . . , Rρ} of V (G) such that

—max{ρ, |R0|} ≤ α,
—each R+

i = NG[Ri], i ∈ {1, . . . , ρ}, is a β-protrusion of G, and
—for every i ∈ {1, . . . , ρ}, NG(Ri) ⊆ R0.

We call the sets R+
i , i ∈ {1, . . . , ρ}, the protrusions of P.

4.1. Meta-Algorithmic Properties

We define the following two properties for a parameterized graph problem �.

A [Protrusion Replacement]: There exists an (f, a)-protrusion replacement family
A for �, for some function f : Z

+ → Z
+ and some a ∈ Z

+.
B [Protrusion Decomposition]: There exists a constant c such that if G and k ∈ Z

+
are the graph and the parameter of a YES-instance of �, then G admits a (c · k, c)-
protrusion decomposition.

We also consider the following weaker version of the combinatorial property:

B∗ [Weak Protrusion Decomposition]: There exist a constant c′ and a nondecreas-
ing function g : Z

+ → Z
+ such that for every x ∈ Z

+, if G and k ∈ Z
+ are the graph

and the parameter of a YES-instance of � such that all c′-protrusions of G are of
size at most x, then G has a (g(x) · k, g(x))-protrusion decomposition.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:21

To see that B implies B∗, set c′ = 1 and consider the function g, with g(x) = c, where
c is the constant in the definition of B.

4.2. The Meta-Algorithm

All of our kernelization algorithms are based on the following procedure, which makes
use of some (f, a)-protrusion replacement family A = {Ai | i ≥ 0}. In the procedure,
given a set R ⊆ V (G), we define CR as the set of connected components of G\R that
have treewidth at most |R|. Let XR be the set of vertices that are either in R or in some
of the connected components of CR.

Meta-kernelization(t)
Input: An instance I of a parameterized graph problem.
Output: An equivalent instance I′.

If k ≥ 0 and |I| ≤ k, we return I. Although there exists some R ⊆ V (G)
of size at most 2t such that|XR| ≥ f (2 · |R|) · ka, applyalgorithm A2·|R|
with the pair (I, XR) as input and replace I by the output I′ of this
algorithm. In case the parameter k′ of I′ is negative, then output a
trivial YES- or NO-instance of � depending on whether (I′,−1) ∈ �
or not.

LEMMA 4.4. Procedure Meta-kernelization(t) runs in |I|O(t) steps. Moreover, it outputs
an instance with a graph G such that for all i ∈ {0, . . . , t}, all i-protrusions of G have
size at most f (2i) · ka.

PROOF. Notice that the while-loop of the procedure will be applied less than n = |I|
times, as each iteration decreases the size of the graph by at least one. In each iteration
of the outer loop, we have to consider O(|I|2t) different choices for R. For each choice
of R, the set XR can be computed in linear time using the algorithm of Bodlaender
[1996]. That way, the procedure requires O(|I|2t+2) steps in total. To show that the
input specifications of the algorithm A2·|R| are satisfied when it is called, we argue
that every time the algorithm A2·|R| is applied to (I, XR), XR is a 2 · |R|-protrusion of
the graph G in the instance of I. For this, notice that ∂G(XR) ⊆ R and tw(G[XR]) ≤
tw(G[XR\R]) + |R| ≤ 2|R|.

Let I′ be the output of Meta-kernelization(t) and G be the graph of I′. Assume toward a
contradiction that for some j ∈ {0, . . . , t},G contains a j-protrusion X of size > f (2 j) · ka.
Let R = ∂G(X). Observe that |R| ≤ j and that every connected component C of G\R
that contains at least one vertex of X is contained in X. Thus, tw(C) ≤ j, and therefore
X ⊆ XR. But then XR is a 2 j-protrusion of G of size ≥ f (2 j) · ka, contradicting the fact
that I′ is the output of Meta-kernelization(t).

4.3. Two Master Theorems

Our results can be deduced from the following two master theorems. Although their
proofs are similar in spirit, we present them separately to illustrate the way properties
A, B, and B∗ are combined.

THEOREM 4.5. If a parameterized graph problem � has property A for some nonneg-
ative constant a and property B for some constant c, then � admits a kernel of size
O(ka+1).

PROOF. Let A = {Ai | i ≥ 0} be an (f, a)-protrusion replacement family for �. We
claim that the required kernelization algorithm is Meta-kernelization(c).

Suppose that I is a YES-instance of �. The Meta-kernelization(c) procedure trans-
forms I to a YES-instance I∗ of �. Assume that G∗ and k∗ respectively are the graph

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:22 H. L. Bodlaender et al.

and the parameter of I∗. First of all we, assume that k∗ ≥ 0, else Meta-kernelization(c)
returns a trivial YES- or NO-instance. Let P = {R0, R1, . . . , Rρ} be a (c ·k∗, c)-protrusion
decomposition of G∗ for some ρ ≤ c ·k∗, whose existence follows from property B. Notice
that k∗ ≤ k. Therefore, from Lemma 4.4, we have that

|V (G∗)| ≤ |R0| +
ρ∑

i=1

|Ri| ≤ c · k+ c · k · f (2c) · ka = c · k · (f (2c) · ka + 1).

Hence, if the preceding procedure outputs an instance whose graph has more than
c · k · (f (2c) · ka + 1) vertices, then the (I, k) is a NO-instance; in this case, the algorithm
outputs a trivial NO-instance of �. Otherwise, by Lemma 4.4, the algorithm outputs, in
O(|I|2c+2) steps, an equivalent instance with a graph on O(ka+1) vertices, as required.

When a = 0, we can use the weaker condition B∗ and have a linear kernel.

THEOREM 4.6. If a parameterized graph problem � has property A for a = 0 and
property B∗ for some constant c, then � admits a linear kernel.

PROOF. Let A = {Ai | i ≥ 0} be an (f, 0)-protrusion replacement family for �. (Notice
that in this proof, it is important that a = 0.)

Let also g : Z
+ → Z

+ be a function such that for every x ∈ Z
+, if G and k are the

graph and the parameter of a YES-instance of � such that all c-protrusions of G have
size at most x, then G has a (g(x) · k, g(x))-protrusion decomposition. We claim that the
required kernelization algorithm is Meta-kernelization(c). Let t = g(f (2c)).

Suppose now that I is a YES-instance of �. The Meta-kernelization(c) procedure trans-
forms I to a YES-instance I∗ of �. Assume that G∗ and k∗ respectively are the graph
and the parameter of I∗. First of all, we assume that k∗ ≥ 0, else Meta-kernelization(c)
returns a trivial YES- or NO-instance. By Lemma 4.4, I∗ has no c-protrusion of size at
least f (2c). By applying Condition B∗ for x = f (2c), we have that G∗ has a (t · k∗, t)-
protrusion decomposition P = {R0, R1, . . . , Rρ} for some ρ ≤ t · k∗. Notice that k∗ ≤ k.
By Lemma 4.4, we have that

|V (G∗)| ≤ |R0| +
ρ∑

i=1

|Ri| ≤ t · k + t · k · f (2c) = t · k · (f (2c) + 1).

Hence, if the preceding procedure outputs an instance whose graph has more than
t · k · (f (2c) + 1) vertices, then the algorithm outputs a trivial NO-instance of �.
Otherwise, by Lemma 4.4, the algorithm outputs, in O(|I|2t+2) steps, an equivalent
instance on O(k) vertices, as required.

We now have all necessary notions to present how the meta-algorithmic theorems
mentioned in Section 1 are derived from Master Theorems 4.5 and 4.6.

4.4. Problems Having the Algorithmic and Combinatorial Properties

Our meta-algorithmic results follow by combining the following six results. The first
four imply the protrusion replacement property A:

—Every annotated p-MIN-CMSO[ψ] problem has the protrusion replacement property
A for a = 1 (Lemma 5.8 in Section 5.2).

—Every annotated p-EQ-CMSO[ψ] problem has the protrusion replacement property
A for a = 2 (Lemma 5.12 in Section 5.3).

—Every annotated p-MAX-CMSO[ψ] has the protrusion replacement property A for
a = 1 (Lemma 5.17 in Section 5.4).

—Every parameterized graph problem � that has FII has the protrusion replacement
property A for a = 0 (Lemma 5.19 in Section 5.5).

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:23

The two last results imply the protrusion decomposition properties B and B∗:

—Every r-coverable problem has the protrusion decomposition property B (Lemma 6.1
in Section 6.2).

—Every r-quasi-coverable problem has the weak protrusion decomposition property B∗
(Lemma 6.4 in Section 6.3).

4.5. Derivation of Theorems 1.1, 1.2, and 1.3

All of our main results are consequences of Master Theorems 4.5 and 4.6. Theorem 1.1
follows from Master Theorem 4.5 and Lemmata 5.8, 5.12, 5.17, and 6.1. Moreover,
Theorem 1.3 follows from Master Theorem 4.6 and Lemmata 5.19 and 6.4. We conclude
this section with the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. Suppose that � is NP-hard and its annotated version �α

is in NP. Consider an algorithm that, given an instance I = (G, k) of �, applies first
the kernelization algorithm of Theorem 1.1 as a subroutine on the annotated instance
((G, V (G)), k)—that is, all vertices of G are set to be annotated. This subroutine outputs
an equivalent annotated instance I′ = ((G′, Y ′), k) of �α where the number of vertices in
G′ is a polynomial function of k. The next step of the algorithm is to apply a polynomial
time many-to-one reduction from �α to � on I′ and obtain an equivalent instance
I′′ = (G′′, k′′), where |I′′| is a polynomial function of |I′|. This reduction exists from the
Cook–Levin theorem, as �α ∈ NP and � is NP-hard. Then |I′′| is a polynomial function of
k, and this two-step polynomial time algorithm is the desired kernelization algorithm
for �. The reduction from �α to � might output an instance I′′ with parameter k′′,
where k′′ is exponential in |I′′| because k′′ could be encoded in binary. However, since
� is a p-MIN/EQ/MAX-CMSO[ψ] problem, (I′′, k′′) ∈ � if and only if (I′′, k′′′) ∈ �, where
k′′′ = min{k′′, |I′′| + 1}. The kernelization algorithm outputs (I′′, k′′′).

5. REDUCTION RULES

In this section, we prove the existence of protrusion replacement families for p-
MIN/EQ/MAX-CMSO[ψ] graph problems and for parameterized problems that have FII.

5.1. Model Checking on Structures

To prove our reduction rules, we consider an extension of p-MIN/EQ/MAX-CMSO problems
to a setting where the input is a structure rather than a graph. Specifically, we consider
the following problems.

MIN/MAX-CMSO ON STRUCTURES

Input: A structure α and a CMSO sentence ψ .
Output: A minimum/maximum size subset S of V (G) (or E(G)) such

that (α � S) |= ψ.

EQ-CMSO ON STRUCTURES

Input: A structure α, a CMSO sentence ψ, and an integer k.
Output: A subset S of V (G), (or E(G)) |S| = k such that (α � S) |= ψ.

Observe that in the preceding problems, the CMSO sentence is part of the input
and not fixed as in the case of p-MIN/EQ/MAX-CMSO[ψ] problems. We will repeatedly
apply the following result from Theorem 5 of Borie et al. [1992] (see also Arnborg et al.
[1991]).

PROPOSITION 5.1. There exists a computable function f : Z
+ × Z

+ → Z
+ and an

algorithm that solves MIN/MAX/EQ-CMSO ON STRUCTURES in f (tw(Gα), |ψ |)·|V (Gα)| steps.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:24 H. L. Bodlaender et al.

Proposition 5.1 is a slight strengthening of Theorem 5 of Borie et al. [1992]; what is
shown there explicitly is the corresponding version where the input is a graph rather
than a structure. Arnborg et al. [1991] show the variant of Proposition 5.1 for MSO
logic rather than CMSO logic. Either of these proofs can be made to work both on
structures and with CMSO logic.

The construction of each protrusion replacement family depends on whether we are
dealing with an annotated p-MIN-CMSO[ψ], p-EQ-CMSO[ψ], or p-MAX-CMSO[ψ] prob-
lem, or whether the problem in question has FII. For the case of annotated problems,
the constructions consist of three parts. In the first two parts, we focus on reducing
the set of annotated vertices, and in the last part, we reduce the set of vertices. In all
cases, we assume that we are given a sufficiently large t-protrusion. In the following
discussion, we deal with annotated p-MIN/EQ/MAX-CMSO[ψ] problems where the set S
in question is a set of vertices. The case where S is a set of edges can be dealt with in
an identical manner.

5.2. Protrusion Replacement Families for Annotated p-MIN-CMSO[ψ] Problems

We start from the existence of a protrusion replacement family for annotated p-MIN-
CMSO[ψ] problems. The technique employed in this section will act as a template
for other types of annotated problems. Recall that in an annotated p-MIN-CMSO[ψ]
problem �α, we are given a structure (G, Y) and an integer k. The objective is to
find a set S ⊆ Y of size at most k such that (G, S) models some CMSO sentence ψ.
For our reduction rule, we are also given a sufficiently large t-protrusion X. In the
first step of the reduction, we show that the set Y ∩ X can be substituted in O(|X|)
steps by a new set Z of O(k) vertices such that ((G, Y), k) is a YES-instance if and
only if ((G, Z ∪ (Y\X)), k) is a YES-instance. In the second step, we show that the
t-protrusion X can be partitioned into O(k) t′-protrusions, where t′ = O(t), such that
each t′-protrusion contains vertices from Z only in its (bounded size) boundary. In the
third and final step of the reduction rule, we replace the largest t′-protrusion with an
equivalent, but smaller, t′-boundaried graph. For the case of p-MIN-CMSO[ψ] problems,
these three reduction steps correspond to Lemmata 5.3, 5.4, and 5.6, respectively.

We start by proving a lemma that lets us analyze the interior of a protrusion without
bothering about the rest of the graph.

LEMMA 5.2. There is an algorithm that, given two boundaried structures (GX, YX) and
(GR, SR) of type (graph, vertex set) and a CMSO sentence ψ, finds a minimum size set
SX ⊆ YX, if such a set exists, such that (GX, SX) ⊕ (GR, SR) |= ψ in time |V (GX ⊕ GR)| ·
f (|ψ |, tw(GX ⊕ GR)).

PROOF. Let (G′, Y ′, S′
R) = (GX, YX,∅) ⊕ (GR,∅, SR). Finding the desired set SX ⊆ Y

now amounts to finding a minimum size set S′
X ⊆ Y ′ such that (G′, S′

X ∪ S′
R) |= ψ .

This is easily formulated as MIN-CMSO ON STRUCTURES and hence may be solved in the
desired running time by Proposition 5.1.

Reducing the set of annotated vertices. The first step of our reduction rule is
based on the following lemma.

LEMMA 5.3. Let �α be an annotated p-MIN-CMSO[ψ] problem, and let t be an integer.
Then there exists an algorithm that, given an instance ((G, Y), k) of �α and a t-protrusion
X of G, outputs, in time O(|X|), an equivalent instance ((G, Y ′), k) of �α, where |Y ′ ∩ X| =
O(k) and Y ′ ⊆ Y.

We remark that the constants hidden in the “O”-notation of the complexity of the
algorithm and the size of its output depend only on the length of the CMSO sentence ψ
defining �α and the constant t. From now onward, we will not explicitly mention this.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:25

PROOF. Let ψ be the CMSO sentence mentioned in the definition of �α. Lemma 3.2
implies that the canonical equivalence relation ≡σψ

has finitely many equivalence
classes on the set of boundaried structures of arity 2 with label set {1, . . . , t}. Let
MinRep(ψ, t) be a set containing a representative (a boundaried structure of arity 2)
for each equivalence class of ≡σψ

with the minimum number of vertices in the graph of
a structure. Given G, Y, and X, we define the sets B = ∂G(X), R = (V (G)\X) ∪ B, and
the boundaried structures (GX, YX) and (GR, YR) as follows. The boundaried graphs GX
and GR are just G[X] and G[R], respectively. Both have boundary B, with labels from
{1, . . . , t} such that GX ⊕ GR = G. Similarly, YX = Y ∩ X, whereas YR = Y\X, such that
(G, Y) = (GX, YX) ⊕ (GR, YR).

For every structure α = (Gα
R, Sα

R) ∈ MinRep(ψ, t), we find, using Lemma 5.2, a
minimum size set Sα

X ⊆ YX such that (GX, Sα
X) ⊕ α |= ψ . Since |MinRep(ψ, t)| and the

size of each structure in MinRep(ψ, t) depends only on |ψ | and t, and the treewidth of
G[X] is at most t, this takes time O(|X|). Now, define

Y ′
X =

⋃
α∈MinRep(ψ,t)

{
Sα

X if |Sα
X| ≤ k,

∅ otherwise.

We set Y ′ = Y ′
X ∪ YR (formally, Y ′

X and YR are vertex sets of different graphs, so actually
Y ′ is the second element of the 2-tuple of (GX, Y ′

X) ⊕ (GR, YR), i.e., Y ′ = ((GX, Y ′
X) ⊕

(GR, YR))[2], but this is just semantics). Since |MinRep(ψ, t)| depends only on |ψ | and
t, the construction of Y ′ implies that |Y ′ ∩ X| = O(k).

To complete the proof, it remains to show that ((G, Y ′), k) ∈ �α if and only if
((G, Y), k) ∈ �α. For the forward direction, we have that Y ′ ⊆ Y, and hence feasi-
ble solutions to ((G, Y ′), k) are also feasible for ((G, Y), k). We now turn to proving the
reverse direction. Let S ⊆ Y , |S| ≤ k be such that (G, S) |= ψ . Let SX = X ∩ S and
SR = S\X. Observe that (GX, SX) ⊕ (GR, SR) = (G, S) and that |SX| + |SR| = |S| ≤ k.
Choose α = (Gα

R, Sα
R) ∈ MinRep(ψ, t) such that α ≡σψ

(GR, SR). Let Sα
X ⊆ YX be the set

computed for α in the previous paragraph. Since

(GX, SX) ⊕ α |= ψ ⇐⇒ (GX, SX) ⊕ (GR, SR) |= ψ ⇐⇒ true,

it follows that |Sα
X| ≤ |SX| ≤ k. Thus, Sα

X ⊆ Y ′
X. Let S′ = Sα

X ∪ SR (again, formally, Sα
X

and SR are vertex sets of different graphs, so actually S′ = ((GX, Sα
X)⊕ (GR, SR))[2]). We

have that S′ ⊆ Y ′, |S′| ≤ |Sα
X| + |SR| ≤ |SX| + |SR| = |S| ≤ k. Finally, we observe that

(G, S′) |= ψ

⇐⇒ (GX, Sα
X) ⊕ (GR, SR) |= ψ

⇐⇒ (GX, Sα
X) ⊕ α |= ψ

⇐⇒ true.

This concludes the proof.

Partitioning protrusions. In the second step of the reduction rule, the t-protrusion
X is partitioned into O(k) smaller t′-protrusions for some t′ = O(t).

LEMMA 5.4. Let G be a graph, Y be a subset of its vertices, and k be an integer. In
addition, let X be a t-protrusion and Z = X ∩ Y such that |Z| ≤ k. There is time O(|X|)
algorithm that outputs a collection Q of (4t + 2)-protrusions such that X = ⋃

Q∈Q Q,

|Q| = O(k), and for every Q ∈ Q, Z ∩ Q ⊆ ∂G(Q).

PROOF. We assume that G[X] is connected; otherwise, we work independently on its
connected components. We find a nice tree decomposition of G[X] and then add ∂G(X)

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:26 H. L. Bodlaender et al.

to all its bags. We denote the resulting tree decomposition by (T ,X), and clearly it has
width at most 2t.

The decomposition (T ,X) can be constructed in time O(|X|) (e.g., see Bodlaender
[1996]). Now we mark a subset of the nodes of T . For each vertex z ∈ Z, we mark, if it
exists, the forget node tz with the property that {z} = Xtz\Xt′z, where tz is the child of t′z in
T . As each vertex is forgotten at most once in a nice tree decomposition, so far we have
marked at most |Z| + 1 nodes of T . Now, as long as this is possible, we keep marking
each bag that is the lowest common ancestor of two already marked nodes. Using a
standard counting argument for trees, it follows that, in the worst case, this operation
doubles the number of marked nodes. Hence, there are at most O(|Z|) marked nodes;
we denote this set by M. We say that two nodes t1, t2 ∈ M are linked if these nodes are
the only marked nodes of the (t1, t2)-path in T . We define the set

P = {(t1, t2) | t1 and t2 are linked nodes of M and t1 is a predecessor of t2}.
We observe that |P| = O(|Z|), and each marked node belongs to some pair in P. Let
C be the set of the connected components of G[X]\⋃

t∈M Xt. By the construction of M,
the neighborhood of a connected component C in C may intersect either a single bag
Xt of T or two bags Xt1 , Xt2 of T such that (t1, t2) ∈ P. In the first case, we define R(C)
to be some pair in P that contains t as an endpoint (if there are many such pairs, we
make an arbitrary choice). In the second case, we define R(C) = {t1, t2}. Given a pair
p of P, we use the notation L−1 to denote the union of the vertex sets of all connected
components of C that map to p. It is now easy to see that that R = {L−1(p) | p ∈ P} is
a partition of G[X]\⋃

t∈M Xt. As each vertex from Z is in some bag corresponding to a
marked node, none of the sets in R intersects Z. Moreover, the neighborhood in G of
each set in R is a subset of at most two bags of (T ,X), and thus its neighborhood has
at most 2(2t + 1) vertices. We now define the set Q = {V (R) ∪ ∂G(V (R)) | R ∈ R}. Then
each member Q of Q is an (4t + 2)-protrusion of G where Z ∩ Q ⊆ ∂G(Q). Moreover,⋃

Q∈Q = X, and the lemma follows as |Q| = |P| = O(k).

We will also need the following simple decomposition lemma for t-protrusions.

LEMMA 5.5. If a graph G contains a t-protrusion X where |X| > c > 0, then it
also contains a (2t + 1)-protrusion Y where c < |Y | ≤ 2c. Moreover, given a tree-
decomposition of X of width at most r, a tree decomposition of Y of width at most 2t can
be found in time O(|X|).

PROOF. If |X| ≤ 2c, we are done. Assume that |X| > 2c, and let

(T ,X = {Xx}x∈V (T), s)

be a nice tree-decomposition of G[X], rooted at some, arbitrarily chosen, node s of T .
Given a node x of the rooted tree T , we denote by D(x) the subset of V (T) containing
x and all of its descendants in T and by Tx the subtree of T rooted at x. Let B ⊆
V (T) be the set containing each node x of T with the property that the number of
vertices appearing in

⋃
y∈D(x) Xy (i.e., the vertices in the bags corresponding to x and

its descendants) is more than c. As |X| ≥ 2c, B is a nonempty set. We choose b to be a
member of Bwhose descendants in T do not belong to B. The choice of b and the fact that
T is a binary tree ensure that c < |⋃y∈D(b) Xy| ≤ 2c. We define Y = ∂G(X) ∪ ⋃

y∈D(b) Xy

and observe that

(Tb,X ′) = {∂G(X) ∪ Xt}t∈D(b), b) (29)

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:27

is a tree decomposition of G[Y]. As |∂G(X)| ≤ t, the width of the tree decomposition
in (29) is at most 2t. Moreover, it holds that ∂G(Y) ⊆ ∂G(X) ∪ Xb, and therefore Y is a
(2t + 1)-protrusion of G.

Reducing protrusions. In the third phase of our reduction rule, we find a protrusion
to replace and perform the replacement.

LEMMA 5.6. Let �α be an annotated p-MIN/EQ-CMSO[ψ] problem. Then for every
integer t, there is a c1 ∈ Z

+ (depending only on |ψ | and t) and an algorithm that,
given an instance ((G, Y), k) of �α and a t-protrusion X of G, where c1 < |X| ≤ 2c1 and
X ∩ Y ⊆ ∂G(X), outputs, in time O(|X|), an equivalent instance ((G∗, Y ∗), k) of �α such
that |V (G′)| < |V (G)|.

PROOF. We define an equivalence relation between boundaried structures of type
(graph, vertex set) as follows. Let α1 = (G1, Y1) and α2 = (G2, Y2) be two boundaried
structures with labeling functions λ1 : δ(G1) → {1, . . . , t} and λ2 : δ(G2) → {1, . . . , t},
respectively, such that Y1 ⊆ δ(G1) and Y2 ⊆ δ(G2).

We say that α1 ≈ α2 if the following conditions are satisfied:

(1) 	(G1) = 	(G2);
(2) λ1(Y1) = λ2(Y2); and
(3) for every S1 ⊆ Y1 and S2 ⊆ Y2 such that λ1(S1) = λ2(S2), it follows that (G1, S1) ≡σψ

(G2, S2).

Notice that ≈ is an equivalence relation. Because, in the preceding definition, the
sets S1 and S2 cannot have more than t vertices, the number of equivalence classes
of ≈ depends only on t and the number of equivalence classes of ≡σψ

on boundaried
structures of arity 2 whose label set is a subset of {1, . . . , t}. By Lemma 3.2, the number
of such equivalence classes is finite and upper bounded by a function of |ψ | and t. Thus,
the number of equivalence classes of ≈ is also upper bounded by a function of |ψ | and
t. Let S be a set of minimum size representatives of the equivalence classes of ≈, and
let c1 = maxα∈S |V (Gα)|.

Let G, Y, and X be a graph and vertex sets as in the statement of the lemma. We now
define the sets B = ∂G(X), R = (V (G)\X) ∪ B, and the boundaried structures (GX, YX)
and (GR, YR) as follows. The boundaried graphs GX and GR are just G[X] and G[R],
respectively. Both have boundary B, with labels from {1, . . . , t} such that GX ⊕ GR = G.
Similarly, YX = Y ∩ X, whereas YR = Y\X, such that (G, Y) = (GX, YX) ⊕ (GR, YR).
Observe that |V (GX)| = |X| > c1.

Hardwired in its source code, our algorithm has a table that for every boundaried
structure α of type (graph, vertex set) with label sets from {1, . . . , t} and |V (Gα)| ≤ 2c1
contains the β ∈ S such that β ≈ α. The size of this table is a constant that depends only
on |ψ | and t. The algorithm looks up in the table and finds the representative (G′

X, Y ′
X) ∈

S such that (G′
X, Y ′

X) ≈ (GX, YX). By construction, we have |V (G′
X)| ≤ c1 < |V (GX)|. The

algorithm outputs the instance ((G′, Y ′), k), where (G′, Y ′) = (G′
X, Y ′

X) ⊕ (GR, YR). Since
|V (G′

X)| < |V (GX)|, it follows that |V (G′)| < |V (G′)|, and it remains to argue that the
instances ((G, Y), k) and ((G′, Y ′), k) are equivalent.

Suppose that ((G, Y), k) is a YES-instance, and let S ⊆ Y , |S| ≤ k (|S| = k for p-
EQ-CMSO[ψ]) be such that (G, S) |= ψ . Let SX = X ∩ S and SR = S\X. Observe that
(GX, SX) ⊕ (GR, SR) = (G, S), SX = SX ∩ X ⊆ Y ∩ X ⊆ ∂(X) and that |SX| + |SR| = |S|.
Let S′

X be the subset of δ(G′
X) such that λG′

X
(S′

X) = λGX(SX). Since SX ⊆ YX ⊆ δ(GX), it
follows that |SX| = |S′

X|. Furthermore, property 3 of ≈ yields that (GX, SX) ≡σψ
(G′

X, S′
X).

Let S′ = S′
X ∪ SR (formally, S′

X and SR are vertex sets of different graphs, so we set
S′ = ((G′

X, S′
X) ⊕ (GR, SR))[2]). Since SR ∩ δ(GR) = ∅, we have that |S′| = |S′

X| + |SR| =
|SX|+|SR| = |S|. Thus, if |S| ≤ k, then |S′| ≤ k, whereas if |S| = k, then |S′| = k. Finally,

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:28 H. L. Bodlaender et al.

we observe that

(G′, S′) |= ψ

⇐⇒ (G′
X, S′

X) ⊕ (GR, SR) |= ψ

⇐⇒ (GX, SX) ⊕ (GR, SR) |= ψ

⇐⇒ (G, S) |= ψ ⇐⇒ true.

This concludes the forward direction of the proof. The reverse direction is symmetric.

Lemmata 5.3, 5.4, and 5.6 together yield a reduction rule for all annotated p-MIN-
CMSO[ψ] problems.

LEMMA 5.7. Let �α be an annotated p-MIN-CMSO[ψ] problem. Then for every t, there
is a constant c2 > 0 (depending only on |ψ | and t) and an algorithm that, given an
instance ((G, Y), k) of �α and a t-protrusion X with |X| > c2k, outputs, in time O(|X|),
an equivalent instance ((G∗, Y ∗), k) of �α such that |V ∗| < |V |.

PROOF. Let |∂G(X)| = t. The algorithm starts by applying Lemma 5.3 to X and
producing an equivalent instance ((G, Y ′), k), where |Y ′ ∩ X| ≤ ak for some constant a
depending only on |ψ | and t. Let Z = Y ′ ∩ X. The next step is to apply Lemma 5.4 and
construct a collection Q of (4t + 2)-protrusions such that X = ⋃

Q∈Q Q, Z ∩ Q ⊆ ∂G(Q)
for each Q ∈ Q, and |Q| ≤ bk for some constant b depending only on |ψ | and t. Let c1 be
the constant as guaranteed by Lemma 5.6 when applied on (8t + 4)-protrusions, and
set c2 = c1 · b. By the pigeon-hole principle, some (4t + 2)-protrusion Q in Q has size at
least |X|/bk > c1. We apply Lemma 5.5 and obtain a (8t + 4)-protrusion Q′ ⊆ Q such
that Z ∩ Q′ ⊆ ∂(Q′) and c1 < |Q′| ≤ 2c1. Finally, we apply the algorithm of Lemma 5.6
on Q′ and construct an equivalent instance of �α, as required.

We are now ready to prove the following result.

LEMMA 5.8. Every annotated p-MIN-CMSO[ψ] problem has the protrusion replacement
property A for a = 1.

PROOF. According to the terminology that we introduced in Section 4, we have to
prove that there exists an (f, 1)-protrusion replacement family A for �α. Indeed, this
directly follows from Lemma 5.7 if we define f : Z

+ → Z
+ such that for every r, f (r) is

the constant c2 of Lemma 5.7.

5.3. Protrusion Replacement for Annotated p-EQ-CMSO[ψ] Problems

In this section, we give a reduction rule for annotated p-EQ-CMSO[ψ] problems. The
rule is very similar to the one for the p-MIN-CMSO[ψ] problems described in the previous
section. The main difference between the two problem variants is that we now need to
keep track of solutions of every possible size between 0 and k, instead of just the smallest
one. Because of this, we require the protrusion to contain at least ck2 vertices instead
of ck vertices to be able to reduce it. We start by proving adaptations of Lemmata 5.2
and 5.3 to p-EQ-CMSO[ψ] problems.

LEMMA 5.9. There is an algorithm that, given two boundaried structures (GX, YX)
and (GR, SR) of type (graph, vertex set), a CMSO sentence ψ, and nonnegative integer k,
finds a SX ⊆ YX of size k such that (GX, SX) ⊕ (GR, SR) |= ψ or concludes that no such
set exists in time |V (GX ⊕ GR)| · f (|ψ |, tw(GX ⊕ GR)).

PROOF. Let (G′, Y ′, S′
R) = (GX, YX,∅) ⊕ (GR,∅, SR). Finding the desired set SX ⊆ Y

now amounts to finding a set S′
X ⊆ Y ′ of size k such that (G′, S′

X ∪ S′
R) |= ψ . This is

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:29

easily formulated as EQ-CMSO ON STRUCTURES and hence may be solved in the desired
running time by Proposition 5.1.

LEMMA 5.10. Let �α be an annotated p-EQ-CMSO[ψ] problem, and let t be an integer.
Then there exists an algorithm that, given an instance ((G, Y), k) of �α and a t-protrusion
Xof G, outputs, in time O(k|X|), an equivalent instance ((G, Y ′), k) of �α, where |Y ′ ∩ X| =
O(k2) and Y ′ ⊆ Y.

PROOF. The proof of the lemma starts exactly as in the proof of Lemma 5.3. For
a CMSO sentence ψ defining �α, Lemma 3.2 implies that the canonical equivalence
relation ≡σψ

has finitely many equivalence classes on the set of boundaried structures
of arity 2 with label set {1, . . . , t}. We denote by MinRep(ψ, t) a set containing a rep-
resentative (a boundaried structure of arity 2) for each equivalence class of ≡σψ

with
the minimum number of vertices in the graph of a structure. For given G, Y, and X, we
define the sets B = ∂G(X), R = (V (G)\X) ∪ B, and the boundaried structures (GX, YX)
and (GR, YR) as follows. The boundaried graphs GX and GR are just G[X] and G[R],
respectively. Both have boundary B, with labels from {1, . . . , t} such that GX ⊕ GR = G.
Similarly, YX = Y ∩ X, whereas YR = Y\X, such that (G, Y) = (GX, YX) ⊕ (GR, YR).

For every structure α = (Gα
R, Sα

R) ∈ MinRep(ψ, t) and every integer i ≤ k, we use
Lemma 5.9 to find a set Sα,i

X ⊆ YX such that |Sα,i
X | = i and (GX, Sα

X) ⊕ α |= ψ . If no
such set exists, we set Sα,i

X = ∅. Since |MinRep(ψ, t)| and the size of each structure
in MinRep(ψ, t) depends only on ψ and t, and the treewidth of G[X] is at most t, this
takes time O(k|X|). Now, define

Y ′
X =

⋃
α∈MinRep(ψ,t)

i≤k

Sα,i
X .

We set Y ′ = Y ′
X ∪ YR (formally, Y ′

X and YR are vertex sets of different graphs, so
actually Y ′ = ((GX, Y ′

X) ⊕ (GR, YR))[2]). Since |MinRep(ψ, t)| depends only on |ψ | and
t, the construction of Y ′ implies that |Y ′ ∩ X| = O(k2).

To complete the proof, it remains to show that ((G, Y ′), k) ∈ �α if and only if
((G, Y), k) ∈ �α. For the forward direction, we have that Y ′ ⊆ Y, and hence feasi-
ble solutions to ((G, Y ′), k) are also feasible for ((G, Y), k). We now turn to proving the
reverse direction. Let S ⊆ Y , |S| = k be such that (G, S) |= ψ . Let SX = X ∩ S and
SR = S\X. Observe that (GX, SX) ⊕ (GR, SR) = (G, S) and that |SX| + |SR| = |S| = k.
Choose α = (Gα

R, Sα
R) ∈ MinRep(ψ, t) such that α ≡σψ

(GR, SR). Set i = |SX|, and let
Sα,i

X ⊆ YX be the set computed for α and i in the previous paragraph. The existence of
Sα,i

X of size i is guaranteed by the fact that

(GX, SX) ⊕ α |= ψ ⇐⇒ (GX, SX) ⊕ (GR, SR) |= ψ ⇐⇒ true.

By construction, Sα,i
X ⊆ Y ′

X. Let S′ = Sα,i
X ∪ SR (again, formally, Sα,i

X and SR are vertex
sets of different graphs, so actually S′ = ((GX, Sα,i

X)⊕(GR, SR))[2]). We have that S′ ⊆ Y ′.
Further, since SR ∩ δ(GR) = ∅, we have that |S′| = |Sα,i

X | + |SR| = |SX| + |SR| = |S| = k.
Finally, we observe that

(G, S′) |= ψ

⇐⇒ (GX, Sα,i
X) ⊕ (GR, SR) |= ψ

⇐⇒ (GX, Sα,i
X) ⊕ α |= ψ

⇐⇒ true.

This concludes the proof.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:30 H. L. Bodlaender et al.

LEMMA 5.11. Let �α be an annotated p-EQ-CMSO[ψ] problem. Then for every t, there
is a constant c2 ∈ Z

+ (depending only on |ψ | and t) and an algorithm that, given an
instance ((G, Y), k) of �α and a t-protrusion X with |X| > c2k2, outputs, in time O(k· |X|),
an equivalent instance ((G∗, Y ∗), k) of �α such that |V ∗| < |V |.

PROOF. The algorithm starts by applying Lemma 5.10 to X and producing an equiv-
alent instance ((G, Y ′), k), where |Y ′ ∩ X| ≤ ak2 for some constant a depending only on
|ψ | and t. Let Z = Y ′ ∩X. The next step is to apply Lemma 5.4 and construct a collection
Q of (4t + 2)-protrusions such that X = ⋃

Q∈Q Q, Z ∩ Q ⊆ ∂G(Q) for each Q ∈ Q, and
|Q| ≤ bk2 for some constant b depending only on |ψ | and t. Let c1 be the constant as
guaranteed by Lemma 5.6 when applied on (8t + 4)-protrusions, and set c2 = c1 · b. By
the pigeon-hole principle, some (4t+2)-protrusion Q in Q has size at least |X|/bk2 > c1.
We apply Lemma 5.5 and obtain a (8t + 4)-protrusion Q′ ⊆ Q such that Z ∩ Q′ ⊆ ∂(Q′)
and c1 < |Q′| ≤ 2c1. Finally, we apply the algorithm of Lemma 5.6 on Q′ and construct
an equivalent instance of �α, as required.

We are now ready to prove the following result.

LEMMA 5.12. Every annotated p-EQ-CMSO[ψ] problem has the protrusion replacement
property A for a = 2.

PROOF. According to the terminology that we introduced in Section 4, we have to
prove that there exists an (f, 2)-protrusion replacement family A for �α. Indeed, this
directly follows from Lemma 5.11 if we define f : Z

+ → Z
+ such that for every r, f (r)

is the constant c2 in the proof of the same lemma.

5.4. Protrusion Replacement for Annotated p-MAX-CMSO[ψ] Problems

We now give a reduction rule for annotated p-MAX-CMSO[ψ] problems. The rule is still
similar to the ones described in the two previous sections but differs more from the
p-MIN-CMSO[ψ] problems than p-EQ-CMSO[ψ] did. We start by proving a variant of
Lemma 5.2 for p-MAX-CMSO[ψ] problems.

LEMMA 5.13. There is an algorithm that, given two boundaried structures (GX, YX)
and (GR, SR) of type (graph, vertex set) and a CMSO sentence ψ, finds a set SX ⊆ V (GX)
such that (GX, SX) ⊕ (GR, SR) |= ψ and |SX ∩ YX| is maximized. The running time of the
algorithm is |V (GX ⊕ GR)| · f (|ψ |, tw(GX ⊕ GR)).

PROOF. Let (G′, Y ′, S′
R, V ′) = (GX, YX,∅, V (GX)) ⊕ (GR,∅, SR,∅). Finding the desired

set SX now amounts to finding a set S′
X ⊆ V ′ such that (G′, S′

X ∪ S′
R) |= ψ and |S′

X ∩ Y ′|
is maximized. This is easily formulated as MAX-CMSO ON STRUCTURES and hence may
be solved in the desired running time by Proposition 5.1.

LEMMA 5.14. Let �α be an annotated p-MAX-CMSO[ψ] problem, and let t be an integer.
There exists an algorithm that, given an instance ((G, Y), k) of �α and a t-protrusion X of
G, outputs, in time O(|X|), an equivalent instance ((G, Y ′), k) of �α, where |Y ′∩X| = O(k)
and Y ′ ⊆ Y.

PROOF. By Lemma 3.2, for a CMSO sentence ψ defining �α, the canonical equivalence
relation ≡σψ

has finitely many equivalence classes on the set of boundaried structures
of arity 2 with label set {1, . . . , t}. As in proofs of Lemmata 5.3 and 5.10, we define
the following objects. We set MinRep(ψ, t) to be a set containing a representative (a
boundaried structure of arity 2) for each equivalence class of ≡σψ

with the minimum
number of vertices in the graph of a structure. In addition, for G, Y, and X, we define
sets B = ∂G(X), R = (V (G)\X)∪ B, and the boundaried structures (GX, YX) and (GR, YR)
as follows. Again, the boundaried graphs GX = G[X] and GR = G[R] have boundary

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:31

B with labels from {1, . . . , t} such that GX ⊕ GR = G. Similarly, YX = Y ∩ X, whereas
YR = Y\X, such that (G, Y) = (GX, YX) ⊕ (GR, YR).

By making use of Lemma 5.13, for every structure α = (Gα
R, Sα

R) ∈ MinRep(ψ, t), we
find a set Sα

X ⊆ V (GX) such that (GX, Sα
X) ⊕ α |= ψ and |SX ∩ YX| is maximized. Since

|MinRep(ψ, t)| and the size of each structure in MinRep(ψ, t) depends only on |ψ | and
t, and the treewidth of G[X] is at most t, this takes time O(|X|). If |Sα

X ∩ YX| ≤ k, let
Ŝα

X = Sα
X ∩ YX. On the other hand, if |Sα

X ∩ YX| > k, set Ŝα
X to be a set of arbitrarily

chosen k vertices from Sα
X ∩ YX. Now, define

Y ′
X =

⋃
α∈MinRep(ψ,t)

Ŝα
X.

We set Y ′ = Y ′
X ∪ YR (formally, Y ′

X and YR are vertex sets of different graphs, so
actually Y ′ = ((GX, Y ′

X) ⊕ (GR, YR))[2]). Since |MinRep(ψ, t)| depends only on |ψ | and
t, the construction of Y ′ implies that |Y ′ ∩ X| = O(k).

To complete the proof, it remains to show that ((G, Y ′), k) ∈ �α if and only if
((G, Y), k) ∈ �α. For the forward direction, we have that Y ′ ⊆ Y , and hence for any
set S ⊆ V (G) such that (G, S) |= ψ and |S ∩ Y ′| ≥ k, we also have that |S ∩ Y | ≥ k.
We now turn to proving the reverse direction. Let S ⊆ V (G), |S ∩ Y | ≥ k be such that
(G, S) |= ψ . Let SX = X ∩ S and SR = S\X. Observe that (GX, SX) ⊕ (GR, SR) = (G, S)
and that |SX ∩ YX| + |SR ∩ YR| = |S ∩ Y | ≥ k. Choose α = (Gα

R, Sα
R) ∈ MinRep(ψ, t)

such that α ≡σψ
(GR, SR). Let Sα

X ⊆ V (GX) be the set computed for α in the previous
paragraph. Since

(GX, SX) ⊕ α |= ψ ⇐⇒ (GX, SX) ⊕ (GR, SR) |= ψ ⇐⇒ true,

it follows that |Sα
X ∩ YX| ≥ |SX ∩ YX|. Furthermore, we have that |Sα

X ∩ Y ′
X| ≥ |Ŝα

X| ≥
min(|SX ∩ YX|, k).

Let S′ = Sα
X ∪ SR (again, formally, Sα

X and SR are vertex sets of different graphs, so
actually S′ = ((GX, Sα

X) ⊕ (GR, SR))[2]). We have that

|S′ ∩ Y ′| ≥ |Sα
X ∩ Y ′

X| + |SR ∩ YR| ≥ min(|SX ∩ YX|, k) + |SR ∩ YR| ≥ min(|S ∩ Y |, k) ≥ k.

Finally, we observe that

(G, S′) |= ψ

⇐⇒ (GX, Sα
X) ⊕ (GR, SR) |= ψ

⇐⇒ (GX, Sα
X) ⊕ α |= ψ

⇐⇒ true.

This concludes the proof.

LEMMA 5.15. Let �α be an annotated p-MAX-CMSO[ψ] problem. Then for every integer
t, there is a c1 ∈ Z

+ (depending only on |ψ | and t) and an algorithm, that given an
instance ((G, Y), k) of �α and a t-protrusion X of G, where c1 < |X| ≤ 2c1 and X ∩
Y ⊆ ∂G(X), outputs, in time O(|X|), an equivalent instance ((G∗, Y ∗), k) of �α such that
|V (G′)| < |V (G)|.

PROOF. Let ψ be the CMSO sentence mentioned in the definition of �α. By Lemma 3.2,
the canonical equivalence relation ≡σψ

has finitely many equivalence classes on the set
of boundaried structures of arity 2 with label set {1, . . . , t}. Let MinRep(ψ, t) be a set
containing a representative (a boundaried structure of arity 2) for each equivalence
class of ≡σψ

with the minimum number of vertices in the graph of a structure. We now
define an equivalence relation ≈ between boundaried structures α = (Gα, Yα) of type
(graph, vertex set) that satisfy Yα ⊆ δ(Gα). Let α1 = (G1, Y1) and α2 = (G2, Y2) be two

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:32 H. L. Bodlaender et al.

boundaried structures with labeling functions λ1 : δ(G1) → {1, . . . , t} and λ2 : δ(G2) →
{1, . . . , t}, respectively, such that Y1 ⊆ δ(G1) and Y2 ⊆ δ(G2). We say that α1 ≈ α2 if the
following conditions are satisfied:

(1) 	(G1) = 	(G2);
(2) λ1(Y1) = λ2(Y2);
(3) for every S1 ⊆ V (G1) there is an S2 ⊆ V (G2) such that λ1(S1 ∩ δ(G1)) = λ2(S2 ∩

δ(G2)), and (G1, S1) ≡σψ
(G2, S2); and

(4) for every S2 ⊆ V (G2) there is an S1 ⊆ V (G1) such that λ1(S1 ∩ δ(G1)) = λ2(S2 ∩
δ(G2)), and (G1, S1) ≡σψ

(G2, S2).

Notice that ≈ is an equivalence relation. Further, consider two boundaried structures
α1 = (G1, Y1) and α2 = (G2, Y2) such that 	(G1) = 	(G2), λ1(Y1) = λ2(Y2), and for each
subset L ⊆ {1, . . . , t}, the sets

{β ∈ MinRep(ψ, t) : ∃S1 ⊆ V (G1), λ1(S1 ∩ δ(G1)) = L∧ (G1, S1) ≡σψ
β}

and

{β ∈ MinRep(ψ, t) : ∃S2 ⊆ V (G2), λ2(S2 ∩ δ(G2)) = L∧ (G2, S2) ≡σψ
β}

are the same. It is easy to verify that in this case, (G1, Y1) ≈ (G2, Y2). Thus, the
number of equivalence classes of ≈ is upper bounded by a function of |ψ | and t. Let
S be a set of minimum size representatives of the equivalence classes of ≈, and let
c1 = maxα∈S |V (Gα)|.

Let G, Y and X be a graph and vertex sets as in the statement of the lemma. We now
define the sets B = ∂G(X), R = (V (G)\X) ∪ B, and the boundaried structures (GX, YX)
and (GR, YR) as follows. The boundaried graphs GX = G[X] and GR = G[R] have
boundary B with labels from {1, . . . , t} such that GX ⊕ GR = G. We define YX = Y ∩ X
and YR = Y\X such that (G, Y) = (GX, YX)⊕ (GR, YR). Observe that |V (GX)| = |X| > c1.

Hardwired in its source code, our algorithm has a table that for every boundaried
structure α of type (graph, vertex set) with label sets from {1, . . . , t} and |V (Gα)| ≤ 2c1
contains the β ∈ S such that β ≈ α. The size of this table is a constant that depends only
on |ψ | and t. The algorithm looks up in the table and finds the representative (G′

X, Y ′
X) ∈

S such that (G′
X, Y ′

X) ≈ (GX, YX). By construction, we have |V (G′
X)| ≤ c1 < |V (GX)|. The

algorithm outputs the instance ((G′, Y ′), k), where (G′, Y ′) = (G′
X, Y ′

X) ⊕ (GR, YR). Since
|V (G′

X)| < |V (GX)|, it follows that |V (G′)| < |V (G′)|, and it remains to argue that the
instances ((G, Y), k) and ((G′, Y ′), k) are equivalent.

Suppose that ((G, Y), k) is a YES-instance, and let S ⊆ V (G), |S∩Y | ≥ k be such that
(G, S) |= ψ . Let SX = X ∩ S and SR = S\X. Observe that (GX, SX) ⊕ (GR, SR) = (G, S),
SX ∩ YX ⊆ δ(GX), and that |SX ∩ YX|+ |SR ∩ YR| = |S∩Y |. Let S′

X be a subset of V (G′
X)

such that λG′
X
(S′

X ∩ δ(G′
X)) = λGX(SX ∩ δ(GX)) and (G′

X, S′
X) ≡σψ

(GX, SX). The existence of
such a set S′

X is implied by property (3) of ≈. Since YX ⊆ δ(GX), Y ′
X ⊆ δ(G′

X), 	GX(YX) =
	G′

X
(Y ′

X), and 	GX(SX ∩ δ(GX)) = 	G′
X
(S′

X ∩ δ(G′
X)), we have that |SX ∩ YX| = |S′

X ∩ Y ′
X|.

Let S′ = S′
X ∪ SR (formally, S′

X and SR are vertex sets of different graphs, so we
set S′ = ((G′

X, S′
X) ⊕ (GR, SR))[2]). Since SR ∩ δ(GR) = ∅, we have that |S′ ∩ Y ′| =

|S′
X ∩ Y ′

X| + |SR ∩ YR| = |SX ∩ YX| + |SR ∩ YR| = |S ∩ Y |. Thus, if |S ∩ Y | ≥ k, then
|S′ ∩ Y ′| ≥ k. Finally, we observe that

(G′, S′) |= ψ

⇐⇒ (G′
X, S′

X) ⊕ (GR, SR) |= ψ

⇐⇒ (GX, SX) ⊕ (GR, SR) |= ψ

⇐⇒ (G, S) |= ψ ⇐⇒ true.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:33

This concludes the forward direction of the proof. The reverse direction is symmetric
but uses property 4 of ≈ rather than property 3.

LEMMA 5.16. Let �α be an annotated p-MAX-CMSO[ψ] problem. Then for every t,
there is a constant c2 > 0 (depending only on ψ and t) and an algorithm that, given an
instance ((G, Y), k) of �α and a t-protrusion X with |X| > c2k, outputs, in time O(|X|),
an equivalent instance ((G, Y ∗), k) of �α such that |V ∗| < |V |.

PROOF. Let |∂G(X)| = t. The algorithm starts by applying Lemma 5.14 to X and
producing an equivalent instance ((G, Y ′), k) where |Y ′ ∩ X| ≤ ak for some constant a
depending only on |ψ | and t. Let Z = Y ′ ∩ X. The next step is to apply Lemma 5.4 and
construct a collection Q of (4t + 2)-protrusions such that X = ⋃

Q∈Q Q, Z ∩ Q ⊆ ∂G(Q)
for each Q ∈ Q, and |Q| ≤ bk for some constant b depending only on |ψ | and t. Let c1 be
the constant as guaranteed by Lemma 5.15 when applied on (8t + 4)-protrusions, and
set c2 = c1 · b. By the pigeon-hole principle, some (4t + 2)-protrusion Q in Q has size at
least |X|/bk > c1. We apply Lemma 5.5 and obtain a (8t + 4)-protrusion Q′ ⊆ Q such
that Z∩ Q′ ⊆ ∂(Q′) and c1 < |Q′| ≤ 2c1. Finally, we apply the algorithm of Lemma 5.15
on Q′ and construct an equivalent instance of �α, as required.

Now we show the following result.

LEMMA 5.17. Every annotated p-MAX-CMSO[ψ] has the protrusion replacement prop-
erty A for a = 1.

PROOF OF LEMMA 5.17. According to the terminology that we introduced in Section 4,
we have to prove that there exists an (f, 1)-protrusion replacement family A for �.
Indeed, this directly follows from Lemma 5.16 if we define f : Z

+ → Z
+ such that for

every r, f (r) is the constant c2 in the statement of the same lemma.

5.5. A Protrusion Replacement Family Based for Problems That Have FII

In the previous sections, we gave reduction rules for annotated p-MIN/EQ/MAX-CMSO[ψ]
problems. These reduction rules, together with the results proved later in this article,
will give quadratic or cubic kernels for the problems in question. However, for many
problems, a linear kernel is possible. In this section, we provide reduction rules for
graph problems that have FII. These reduction rules will yield linear kernels. The
main reduction lemma is presented next.

LEMMA 5.18. Let � be a problem that has FII. Then for every t ∈ Z
+, there exists a

c ∈ Z
+ (depending on � and t) and an algorithm that, given an instance (G, k) of �

and a t-protrusion X in G with |X| > c, outputs, in time O(|X|), an equivalent instance
(G∗, k∗) of � where |V (G∗)| < |V (G)| and k∗ ≤ k.

PROOF. Recall that we denote by S⊆[2t+1] a set of (progressive) representatives for ≡�

restricted to boundaried graphs with label sets from {1, . . . , 2t + 1}. Let

c = max
{|V (Y)| ∣∣ Y ∈ S⊆[2t+1]

}
.

Hardwired in its source code, our algorithm has a table that stores for each bound-
aried graph GY in F⊆[2t+1] on at most 2c vertices a boundaried graph G′

Y ∈ S⊆[2t+1] and
a constant μ ≤ 0 such that GY ≡� G′

Y , and specifically

∀(F, k) ∈ F × Z : (GY ⊕ F, k) ∈ � ⇐⇒ (G′
Y ⊕ F, k+ μ) ∈ �. (30)

The existence of such a constant μ ≤ 0 is guaranteed by the fact that S⊆[2t+1] is a set of
progressive representatives.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:34 H. L. Bodlaender et al.

We now apply Lemma 5.5 and find a (2t + 1)-protrusion Y of G where c < |Y | ≤ 2c.
Split G into two boundaried graphs GY = G[Y] and GR = G[(V (G)\Y) ∪ ∂(Y)] as
follows. Both GR and GY have boundary ∂(Y), and since |∂(Y)| ≤ 2t + 1, we may label
the boundaries of GY and GR with labels from [2t + 1] such that G = GY ⊕ GR. As
c < |V (GY)| ≤ 2c, the algorithm can look up in its table and find a G′

Y ∈ S⊆[2t+1] and a
constant μ such that GY ≡ G′

Y and GY , G′
Y and μ satisfy Equation (30). The algorithm

outputs

(G∗, k∗) = (G′
Y ⊕ GR, k+ μ).

Since |V (G′
Y)| ≤ c < |V (GY)| and k∗ ≤ k+μ ≤ k, it remains to argue that the instances

(G, k) and (G∗, k∗) are equivalent. However, this is directly implied by Equation (30).

We are now in position to prove the lemma.

LEMMA 5.19. Every parameterized graph problem � that has FII has the protrusion
replacement property A for a = 0.

PROOF. According to the terminology that we introduced in Section 4, we have to
prove that there exists an (f, 0)-protrusion replacement family A for �. Indeed, this
directly follows from Lemma 5.18 if we define f : Z

+ → Z
+ such that for each r, f (r) is

the constant c in the statement of the same lemma.

6. COMBINATORIAL RESULTS

We start this section with some necessary definitions from graph theory.

6.1. Definitions from Graph Theory

Let e = {u, v} be an edge of a graph G = (V, E). We obtain the graph G/e by contracting
e. This means that the edge e is removed and its endpoints u, v are merged into a new
vertex ve such that each edge incident with either u or v is incident with ve. Note that
loops and multiple edges can appear as a result of edge contractions. More formally,
let f be a function mapping u, v to ve and all remaining vertices in V \{u, v} to itself.
The contraction of e results in a new graph G/e = (V ′, E′), where V ′ = (V \{u, v}) ∪ {ve},
E′ = E\{e}, and for every w ∈ V , w′ = f (w) ∈ V ′ is incident with an edge e′ ∈ E′ if and
only if the corresponding edge e ∈ E is incident with w in G. When we have to remain
in the class of simple graphs, loops and multiple edges resulting by contractions are
deleted.

A graph H is a minor of a graph G; we write H � G if H can be obtained by contracting
some edges of a subgraph of G. A graph class C is minor closed if every minor of every
graph in C also belongs to C. A minor-closed graph class C is H-minor-free if H /∈ C.

Given a graph G = (V, E), we define the (normal) distance between two of its vertex
sets X and Y as the shortest path distance between them (i.e., the minimum length of
a path with endpoints in X and Y) and denote it by distG(X, Y). Given a set S ⊆ V of
vertices, we denote by Br

G(S) the set of all vertices that are within distance at most r
from some vertex of S in G.

We also need some notions from topological graph theory. All concepts that we do
not define here can be found in Mohar and Thomassen [2001]. The Euler genus eg(�)
of a nonorientable surface � is equal to the nonorientable genus g̃(�) (or the crosscap
number). The Euler genus eg(�) of an orientable surface � is 2g(�), where g(�) is
the orientable genus of �. We say that a graph G is �-embedded if it is accompanied
with an embedding of the graph into �. We also sometimes refer to an embedding as
to a drawing of G in �. We treat edges and loops (in some proofs, we will also allow
loops and multiple edges) as subsets of the surface � that are homeomorphic to the
open interval (0, 1). We define the endpoints of an edge e as the set of points of � that

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:35

are in the closure of e but not in e. We call a face of a �-embedded graph G = (V, E)
any connected component of �\(E ∪ V). All embeddings that we consider are 2-cell
embeddings, which are embeddings with each face being homeomorphic to a disk.

For a �-embedded connected graph G, the relation between the number of its vertices
n, the number of edges m, the number of faces f, and the Euler genus is given by the
Euler’s formula (e.g., see Section 4.4 in Mohar and Thomassen [2001]):

n− m+ f = 2 − eg(�). (31)

Given a �-embedded graph G, we define its radial graph RG as an embedded graph
whose vertices are the vertices and the faces of G (each face f of G is represented
by a point v f in it). Roughly, each point v f is adjacent to all vertices v incident to f .
However, a face can be incident “several times” with the same vertex, and RG can have
multiple edges. For a point v f in the face f and vertex v incident with f , we draw a
maximum number of multiple edges in f such that for every pair of multiple edges
e and e′, the open disc bounded by these edges intersects G. Thus, RG is a bipartite
multigraph embedded in the same surface as G. Radial graphs provide an alternative
way of viewing radial distance defined in Section 1: the radial distance of a pair of
vertices in G corresponds to their normal distance in RG. The relation between radial
and normal metrics is captured by the following observation.

OBSERVATION 3. If G is a �-embedded graph, then for every set S ⊆ V and every
r ∈ Z

+, it holds that Br
G(S) ⊆ R2r

G (S).

6.2. Decomposition Lemma for Coverable Problems

In this section, we show the following decomposition result.

LEMMA 6.1. Every r-coverable problem has the protrusion decomposition property B.

To prove Lemma 6.1, we have to show that every r-coverable problem satisfies com-
binatorial property B (i.e., admits a protrusion decomposition). Lemma 6.1 follows
directly from the following lemma.

LEMMA 6.2. Let r be a positive integer, and let G = (V, E) be a graph embedded in a
surface � of Euler genus g that contains a set S of vertices, |S| ≤ k, such that Rr

G(S) = V .
Then G has an (αk, β)-protrusion decomposition for some constants α and β that depend
only on r and g.

Indeed, since a problem is r-coverable, there is a set S, |S| ≤ r·k, such that Rr
G(S) = V .

Then combinatorial property B holds for c = r · max{α, β}.
The rest of this section is devoted to the proof of Lemma 6.2. We start with definitions

and preliminary results. The first observation follows directly from the definition of
protrusion decomposition.

OBSERVATION 4. If G has an (αk, β)-protrusion decomposition, then the same holds for
every subgraph of G.

The following proposition is a consequence of the result from Eppstein [2000] on the
treewidth of graphs with bounded genus and diameter.

PROPOSITION 6.3. There exists function f1 : Z
+ × Z

+ → Z
+ such that if G = (V, E) is a

graph of Euler genus at most g such that V = Br
G(v) for some v ∈ V , then tw(G) ≤ f1(r, g).

For the purposes of the proof of the next lemma, we permit the existence of multiple
edges or loops in the embedding. Thus, contracting edges can create multiple edges or
loops that we do not delete. We call a face trivial if it is incident with at most two edges.
We call a loop empty if it is the boundary of some face of G.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:36 H. L. Bodlaender et al.

A walk of length λ in a multigraph G is a sequence C = v0e1v1 · · · eλvλ of alternating
vertices and edges of G such that for every i ∈ {1, . . . , λ}, the vertices vi−1 and vi are the
endpoints of edge ei. Thus, an edge or a vertex can appear many times in a walk. If in
the previous definition we additionally demand that v0 = vλ, then the walk is a closed
walk.

We are ready to proceed with the proof of the lemma.

PROOF OF LEMMA 6.2. We may assume that all faces in the embedding of G are
triangular, meaning that they are incident with at most three edges and that G is
connected. Indeed, if G is not triangulated, we can always triangulate it by adding
edges in such a way that it does not increase radial distances between the vertices of
G. Then, by Observation 4, we can obtain the required protrusion decomposition for G
from the decomposition of its triangulation.

For every v ∈ S, we construct a breadth-first search tree Tv of depth at most r rooted
at v. Because Br

G(S) = V , we have that every vertex of G is in some Tv for some v ∈ S.
Although some vertices can be within distance r from several vertices of S, by suitably
modifying these trees, we may assume that every vertex is assigned to exactly one tree.
That way, the vertex sets of the trees in T = {Tv | v ∈ S} form a partition of V .

We denote by H the graph obtained from G after contracting all edges of the trees
in T . Notice that V (H) = S, and as G is triangulated, every face of H is incident to at
most three edges. We further simplify H as follows:

—as long as there are two edges incident with a trivial face, we delete one of them, and
—As long as there is an empty loop, we delete it.

We denote the resulting graph by H̃. Again, every face of H̃ is incident to at most three
edges. In addition, V (H̃) = S.

By making use of Euler’s formula (31), we derive that H̃ has at most 2k + 2g − 4
faces and at most 3k+ 3g − 6 edges. The edges of H̃ can be seen as the edges of G that
were not contracted or deleted during the construction of H̃. For every edge ẽ of H̃, we
denote by e the corresponding edge of G.

Let ẽ be an edge of H̃ with endpoints u, v ∈ S. Let xu and xv be the endpoints of the
corresponding edge e in G. If u = v, then xu and xv are vertices of Tv. If u �= v, then xu
is a vertex of Tu and xv is a vertex of Tv. In both cases, there are unique paths Pu,xu in
Tu and Pv,xv

in Tv from u to xu, and from v to xv correspondingly. Each of these paths is
of length at most r. We set Pe = Pu,xu ∪ {e} ∪ Pv,xv

. Let us note that if u = v, then Pe is a
closed walk, and if u �= v, then it is a path. The length of Pe is at most 2r + 1.

We construct graph G̃ from G by contracting for every edge ẽ of H̃ all edges except e
in the corresponding walk Pe. Thus, besides S, the vertex set of G̃ contains all vertices
of G not covered by walks Pe. By construction, G̃[S] ⊇ H̃. We take the drawing of G̃ in
� and observe that G̃[S] contains the drawing of H̃ in �. In the drawings of G̃ and H̃,
every face f of H̃ covers a subset of vertices Xf of G̃. The set Xf is separated in G̃ by
the vertices incident with f from the remaining vertices of the graph G̃.

In G̃, every vertex v �∈ S belongs to some set Xf . Thus, in G, every vertex is either in
some Xf or belongs to some walk Pe. We define vertex subset R0 of G as the union of
the vertices of all walks corresponding to edges of H̃—that is,

R0 =
⋃

ẽ∈E(H̃)

V (Pe).

Sets R0 and Xf , f ∈ F̃, have the following properties.

CLAIM 1. |R0| ≤ k+ 2r(3k+ 3g − 6).

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:37

PROOF OF CLAIM. There are at most 3k+ 3g − 6 edges in H̃, and each edge corresponds
in G to a walk of length at most 2r + 1 connecting vertices of S. There are at most k
vertices in S, and thus |R0| ≤ k+ 2r(3k+ 3g − 6).

Let C1, C2, . . . , C� be the connected components of G\R0. We use the following prop-
erties of these connected components.

CLAIM 2. ∣∣{i : |NG(Ci)| ≥ 3}∣∣ ≤ 2|R0| + 2g − 4, (32)

∑
{i : |NG(Ci)|≥3}

|NG(Ci)| ≤ 6|R0| + 6g − 12. (33)

PROOF OF CLAIM. We construct a new graph G′ from G by deleting all components
Ci such that |N(Ci)| < 3, contracting each component Ci with |N(Ci)| ≥ 3 to a single
vertex, removing all edges between vertices in R0, and removing double edges and self
loops. Thus, G′ is a bipartite simple graph, and therefore every face of G′ is incident
with at least four edges.

Let c = ∣∣{i : |NG(Ci)| ≥ 3}∣∣ and r = |R0|. Additionally, let m be the number of edges
and f be the number of faces in G′. Since every face of G′ is incident with at least four
edges, we have that m≥ 2 f . This fact, together with Euler’s formula (31), yields that

c + r − m+ m
2

≥ 2 − g.

Hence,

m≤ 2(c + r) − 4 + 2g. (34)

On the other hand, since every vertex of G′ corresponding to Ci is incident with at least
three edges, we have that 3c ≤ m. Hence,

3c ≤ 2(c + r) − 4 + 2g, (35)

and thus (32) follows.
Since

∑
{i : |NG(Ci)|≥3} |NG(Ci)| ≤ m, (33) follows from (34) and (35).

CLAIM 3. For each connected component Ci of G\R0, the treewidth of G[N[Ci]] is at
most f1(4r + 2, g).

PROOF OF CLAIM. By construction of R0, the component Ci is a subset of Xf for some
face f of H̃. The face f is incident to at most three vertices, say x, y, and z. In the graph
G̃, the neighborhood of Xf is a subset of {x, y, z}. Hence, in the graph G, the set NG(Xf)
is a subset of vertices that were contracted to x, y, or z. Thus, also for Ci, it holds that
NG(Ci) is a subset of the vertices that were contracted to x, y, or z.

For every vertex u in Ci, there is a path on at most r vertices starting in u and ending
in S. This path must contain a vertex u′ ∈ NG(Ci). The distance from u′ to {x, y, z} is at
most r. Therefore, the distance from each vertex in Ci to {x, y, z} is at most 2r. Since
the distance from x to y and to z is at most 2r + 1, we have that N[Ci] is covered by a
ball of radius 4r + 2 centered at x. Then, by Proposition 6.3, the treewidth of G[N[Ci]]
is at most f1(4r + 2, g).

For each i ≤ �, define Gi = G[N(Ci)]. By Claim 3, we have that the treewidth of Gi is
at most t = f1(4r + 2, g). Next, we claim the following.

CLAIM 4. For every i, there exists a set Yi ⊆ V (Gi) such that

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:38 H. L. Bodlaender et al.

—NG(Ci) ⊆ Yi,
—|Yi| ≤ 2|NG(Ci)|(t + 1), and
—every connected component of Gi\Yi has at most 2(t + 1) neighbors in Yi.

PROOF OF CLAIM. The proof of this claim is almost identical to the proof of Lemma 5.4.
Here the role of the set Z is given to NG(Ci). We compute a nice tree decomposition of Gi
and mark all uppermost forget nodes of the decomposition forgetting vertices of N(Ci).
We keep marking each lowest common ancestor of marked nodes as long as possible.
The vertices contained in all marked bags form the set Yi.

We use Claim 4 to find sets Yi for every Gi and define the set

R = R0 ∪
⋃

{i : |N(Ci)|≥3}
Yi.

We partition the remaining set of vertices V (G)\R into sets Q1, Q2, . . . , Qq, where every
Qi is the union of connected components of G\R with the same neighborhood in R. We
claim that P = (R, {Qi}1≤i≤q) is the desired (αk, β)-protrusion decomposition of G.

First, we have the following bound on |R|.
|R| ≤ |R0| +

∑
{i : |N(Ci)|≥3}

|Yi| ≤ |R0| + 2(t + 1)
∑

{i : |N(Ci)|≥3}
|N(Ci)| = O(k)

Here the last bound follows from (33) together with the bound of Claim 1 that |R0| =
O(k).

There are at most |R| sets Qi such that |N(Qi)| = 1. By Euler’s formula, there are at
most 3|R| + 6g − 6 sets Qi with exactly two neighbors in R. Again, by Euler’s formula,
exactly as in (32), the number of sets Qi with at least three neighbors in R is at most
2|R| + 2g − 4. Hence, q ≤ 6|R| + 7g = O(k).

By Claim 4, we have that |N(Qi)| ≤ 2(t + 1) for every i. Furthermore, for every
i, we have that each connected component of G[Qi] is in fact Cj for some j, and
hence by Claim 3, G[Qi] has treewidth at most t. Thus, G[N[Qi]] is a protrusion with
treewidth at most 3t + 2 and boundary size at most 2(t + 1). This completes the proof
of Lemma 6.2.

6.3. Decomposition Lemma for Quasi-Coverable Problems

In this section, we prove the following decomposition lemma.

LEMMA 6.4. Every r-quasi-coverable problem has the weak protrusion decomposition
property B∗.

Given the definition of r-quasi-coverability, Lemma 6.4 is a direct consequence of the
following graph-theoretic result.

LEMMA 6.5. There exist functions ζ1 and ζ2 such that the following holds: let r, g, p,
and k be nonnegative integers, and let G = (V, E) be a graph embedded in a surface �
of Euler genus g such that

—G contains a set S of vertices, where |S| ≤ k and tw(G\Rr
G(S)) ≤ r, and

—for every λ ≤ ζ1(r, g), G has no λ-protrusion of size at least p.

Then G has a (ck, c)-protrusion decomposition, where c = ζ2(g, r, p).

Indeed, we set g = r in Lemma 6.5. Then combinatorial property B∗ holds for c′ =
ζ1(r, g) and g(x) = ζ2(r, r, x).

The rest of this section is devoted to the proof of Lemma 6.5. Let us outline first the
main ideas of the proof. Let S be a subset of V of size k such that removal of balls of

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:39

radius r (in radial distance) around vertices of S from G results in a graph of treewidth
at most r. We enlarge the set S by adding at most k new vertices, and we want the new
set S′ to satisfy the following property:

—Balls of radius μ (in radial distance) around vertices of S′ cover all vertices of G,
where μ is a constant depending on r, p and g.

If we succeed to find such a set S′, then we can use Lemma 6.2 to obtain a (ck, c)-
protrusion decomposition of G for some constant c. To find the required set S′, we
show how to construct a superset S′ of S of size at most 2k such that for every vertex
v at distance ≥ 2μ from S′ in the graph G\Bμ

G(v), there are at most two connected
components containing vertices of S′. This construction is given in Lemma 6.6. To
prove that S′ is the required set, we have to prove that every vertex of G is at radial
distance μ from some vertex of S′. The proof of this fact is based on the proof that in
graphs embedded in a surface of bounded genus, two connected sets embedded at a
large radial distance from each other and nonseparable by “small” separators form an
obstruction for having “small” treewidth (Lemma 6.11). Because the treewidth of the
graph G\Rr

G(S′) is at most r, we obtain that if there is a vertex v at distance > μ from
S′, then a ball of radius p around this vertex should be separated from the remaining
graph by a small separator. This yields that G has a protrusion containing a ball of
radius p around v and thus of size at least p. But by the assumption of the lemma,
there is no such a protrusion. Thus, every vertex v is within distance ≤ μ from S′.

We proceed with the proof of Lemma 6.5.

Constructing S′ from S. Let G be a graph, H be a subgraph of G, and S ⊆ V (G).
An S-component of H is a connected component of H containing some of the vertices of
S.

LEMMA 6.6. Let μ be a positive integer, G = (V, E) be a connected graph, and S be a
subset of V . Then there is a set S′ ⊇ S such that

—|S′| ≤ max{2|S| − 2, 1}, and
—for every v ∈ V \B2μ

G (S′), graph G\Bμ

G(v) has at most two S′-components.

PROOF. We use induction on |S|. As the lemma is obvious when |S| ≤ 2, we assume
that |S| = k > 2 and that the lemma holds for all sets S of smaller sizes. Suppose that G
contains a vertex u such that distG(u, S) ≥ 2μ+1 and G− = G\Bμ

G(u) has at least three
S-components. (If there is no such vertex u, we are done.) We denote these components
by C1, . . . , Ch, h ≥ 3, and we denote by Ch+1, . . . , C� the connected components of G−
not containing vertices from S. For i ∈ {1, . . . , �}, we define

Si = (S ∩ V (Ci)) ∪ {u}

and

Gi = G
[
Bμ

G(u) ∪ V (Ci)
]
.

Notice that each Si is a vertex subset of the connected graph Gi and that 1 ≤ |Si| ≤
|S| −1 = k−1. This means that the induction hypothesis holds for Gi and Si. Thus, for
every i ∈ {1, . . . , �}, there is a set S′

i ⊇ Si such that |S′
i| ≤ max{2|Si| − 2, 1}, and

∀v ∈ V (Gi)\B2μ

Gi
(S′

i), graph Gi\Bμ

Gi
(v) has at most two S′

i-components. (36)

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:40 H. L. Bodlaender et al.

We now set S′ = ⋃
1≤i≤� S′

i. Clearly, S′ ⊇ S. Notice also that u appears in every S′
i,

whereas every other vertex of S′ appears in exactly one of S′
1, . . . , S′

h. Therefore,

|S′| =
(

h∑
i=1

|S′
i|
)

− (h− 1)

≤ 2 ·
(

h∑
i=1

|Si|
)

− 2h− h+ 1

= 2 ·
(

h∑
i=1

|Si\{u}|
)

+ 2h− 3h+ 1

= 2|S| − h+ 1 ≤ 2k− 2.

(For the last inequality, we use the assumption that h ≥ 3.)
We claim that for every v ∈ V \B2μ

G (S′), the graph G\Bμ

G(v) has at most two S′-
components. Without loss of generality, let us assume that v belongs to the connected
component C1 of G− = G\Bμ

G(u). By (36), in the corresponding graph G1, the subgraph
G1\Bμ

G1
(v) has at most two S′

1-components, where S′
1 = V (G1) ∩ S′, and one of these

components contains u. The distance from u to v is at least 2μ+1, and hence the whole
ball Bμ

Gv
(v) is contained in C1. Therefore, every vertex w ∈ S′\S1 is connected with u in

G by a path avoiding Bμ

G(v). Thus, G\Bμ

G(v) has at most two S′-components.

Treewidth obstructions. The main result of this section is Lemma 6.11. It can be
seen as an extension of the following result: if a graph of bounded genus has two vertices
that are far apart (in the radial distance) and cannot be separated by a small separator,
then the treewidth of the graph is large [Mohar and Thomassen 2001]. However, for the
purposes of the proof, we need an extension of this result for two “radially” connected
and nonseparable vertex sets.

To prove Lemma 6.11, we need several combinatorial results. We use the following
proposition from Juvan et al. [1996] (see also Proposition 4.2.7 in Mohar and Thomassen
[2001].

PROPOSITION 6.7. Let G be a graph embedded in a surface � of Euler genus g, x, y ∈
V (G), and let P be a collection of pairwise internally vertex-disjoint paths from x to y
such that no two of them are homotopic. Then |P| ≤ h(g), where

h(g) =
{

g + 1 if g ≤ 1
3g − 2 if g ≥ 2.

Let G = (V, E) a graph, and let X, Y, and Z be pairwise disjoint subsets of V . We
say that Y separates X and Z if X and Z are in different connected components of G\Y.
We say that Y is a minimal (X, Z)-separator if no subset of Y separates X and Z. For
S ⊆ V, we say that S is connected in G if G[S] is a connected graph.

The following properties of minimal separators of connected vertex sets in triangu-
lated graphs are important for obtaining treewidth obstructions.

LEMMA 6.8. Let G be a triangulated graph embedded in a surface � with Euler genus
g, and let S be a minimal separator for connected vertex subsets X1 and X2 of G. Then
S has at most h(g) connected components.

PROOF. Let C1, C2, . . . , Cr be the connected components of G\S. Without loss of
generality, we assume that C1 contains X1 and C2 contains X2. For each component Ci,
we select a vertex xi ∈ Ci, i ∈ {1, . . . , r}. We call the vertices in S separation vertices

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:41

and the vertices {x1, x2, . . . , xr} satellite vertices. From G, we construct a graph H by
exhaustively contracting or removing edges according to the following rules:

—We contract all edges except the edges with one endpoint being a satellite vertex and
the other endpoint a separation vertex.

—We delete loops that are not boundaries of faces, and as long as possible, we delete
one of the multiple edges incident with trivial faces (i.e., faces incident with two
edges).

Notice that every connected component Ci is contracted to a single vertex xi and every
connected component of G[S] is also contracted to a single vertex. In addition, each
application of the preceding rules results in a triangulated graph, and thus H is tri-
angulated. Let S′ be the vertices of H that resulted in the contracting of G[S]. The
vertices of S′ form a minimal (x1, x2)-separator in H, and thus each of xi, i ∈ {1, 2},
is adjacent to all vertices of S′. Hence, there exist |S′| internally vertex-disjoint paths
of length two from x1 to x2 in H. Because H is triangulated, these (x, y)-paths are
pairwise nonhomotopic; otherwise, some edge in H[S′] could be further contracted or
deleted. Combining this with Proposition 6.7, we deduce that |S′| ≤ h(g). The lemma
now follows by observing that each connected component of S shrinks to a single vertex
of S′, and therefore S has |S′| ≤ h(g) connected components.

We say that two vertex subsets X, Y of graph G touch if either X ∩ Y �= ∅ or there
exist an edge of G with one endpoint in X and the other in Y. A bramble of G is a
collection B of mutually touching connected subsets of V (G). The order of a bramble B
is the minimum size of a set S that intersects all of its elements. The bramble number
of G is the maximum order that a bramble of G may have.

The following min-max characterization of treewidth was proved in Seymour and
Thomas [1993].

PROPOSITION 6.9. The treewidth of a graph is one less than its bramble number.

We define functions f1, f2 such that f1(x, y) = (x + 1)y and f2(x, y) = x(
((x+1)y

x+1

)
) + 1.

The following lemma can be seen as a generalization of (3.2) in Seymour and Thomas.

LEMMA 6.10. Let q, t be nonnegative integers, and let r1 = f1(t, q) and r2 = f2(t, q).
Let G be a graph, and let X = {X1, . . . , Xr1} be a collection of mutually disjoint connected
vertex sets of G. In addition, let Y = {Y1, . . . , Yr2} be a collection of mutually disjoint
vertex sets of G, each with at most q connected components and such that for every
i ∈ {1, . . . , r1} and j ∈ {1, . . . , r2}, Xi ∩ Yj �= ∅. Then tw(G) ≥ t.

PROOF. For every set Yj, j ∈ {1, . . . , r2}, we select its connected component Y ′
j inter-

secting the largest number of sets from X . Because every Yj has at most q connected
components, set Y ′

j intersects at least t + 1 = r1/q sets from X .

Now let R be the intersection graph of sets X and Y ′ = {Y ′
1, . . . , Y ′

r2
}. Then R is a

bipartite graph with bipartition (X ,Y ′), and every vertex from Y ′ has degree ≥ t + 1
in R. We remove edges from R such that in the resulting graph, all vertices of Y ′ have
degree exactly t + 1. In the new graph, the vertices from Y ′ have at most(|X |

t + 1

)
=

(
(t + 1)q

t + 1

)

distinct neighborhoods in X . Since

|Y ′| = |Y| = t
(

(t + 1)q
t + 1

)
+ 1,

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:42 H. L. Bodlaender et al.

Fig. 1. Visualization of the statement of Lemma 6.11.

we deduce that there should be at least t+1 vertices of Y ′ with the same neighborhood
in X . Let IY be the indices of these vertices in Y, and let IX be the indices of their
neighbors in X .

It follows that for every (i, j) ∈ IX × IY , Xi ∩ Y ′
j �= ∅, and, as both Xi and Y ′

j are
connected, Xi ∪ Y ′

j is also a connected set. Moreover, because |IX | = |IY | = t + 1, it
follows that for every set S of t vertices in G, there are i ∈ IX and j ∈ IY such that
S ∩ (Xi ∪ Y ′

j) = ∅. We can now conclude that the collection {Xi ∪ Y ′
j | (i, j) ∈ IX × IY}} is

a bramble in G of order t + 1. Therefore, the bramble number of G is at least t + 1, and
the lemma follows from Proposition 6.9.

Let G be a graph embedded in some surface �. We define the radial completion of G
as the graph obtained from drawing of G in � together with its radial graph RG. We
denote the radial completion of G by WG. Let us remark that WG is triangulated and
that RG is a spanning subgraph of WG. Notice that every two adjacent vertices in WG
have some common neighbor in RG. This implies the following observation.

OBSERVATION 5. Let G be a graph embedded in some surface �. Then for every pair
x, y ∈ V (RG), it holds that distWG(x, y) ≤ distRG(x, y) ≤ 2 · distWG(x, y).

Loosely speaking, the following lemma says that in a graph of small treewidth that
is embedded on a surface of fixed genus, every two connected sets will be either radially
close or separated by a small set. Let h be the function from Lemma 6.8, and let f1, f2
be the functions defined before Lemma 6.10.

LEMMA 6.11. Let G be a graph embedded in a surface � of Euler genus g, t be a
positive integer, and C, Z, Z1, C1 be disjoint subsets of V (WG) such that

—C and C1 are connected in WG,
—Z separates C from Z1 ∪ C1 and Z1 separates C ∪ Z from C1 in WG,
—distWG(Z, Z1) ≥ 3 · f2(t + 1, h(g)) + 3, and
—G contains f1(t + 1, h(g)) internally vertex-disjoint paths from C ∩ V (G) to C1 ∩ V (G).

Then tw(G[V (M) ∩ V (G)]) > t, where M is the union of all connected components of
WG\(Z ∪ Z1) that have at least one neighbor in Z and at least one neighbor in Z1
(Figure 1).

PROOF. We set μ = f1(t + 1, h(g)) and λ = f2(t + 1, h(g)). Let P1, . . . , Pμ be internally
vertex-disjoint paths in G from C ∩ V (G) to C1 ∩ V (G). Each of these paths Pi contains
at least one subpath with one endpoint in Z and the other in Z1, and with all internal
vertices in M. We denote by P ′

1, . . . , P ′
μ′ the set of such subpaths. Then μ′ ≥ μ.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:43

For j ∈ {1, . . . , 3λ + 2}, let Aj be the set of all vertices of WG that are within distance
exactly j from Z and belonging to M. Notice that each Aj is a (Z, Z1)-separator and
thus also a (C, C1)-separator of WG. Clearly, each Aj contains as a subset a minimal
(C, C1)-separator Yj of WG. As each Yj is also a (Z, Z1)-separator, it should contain at
least one internal vertex of every path in P ′

1, . . . , Pμ′ . Moreover, by its definition, Aj
should be a subset of M.

As WG is triangulated, by Lemma 6.8, each WG[Yj] contains at most h(g) connected
components. Recall that by the definition of WG, for each vertex x ∈ V (WG)\V (G), the
graph induced by its neighborhood is a connected subgraph of G. Using this fact, we
obtain that the subgraph of G induced by Y+

j = B1
WG

(Yj) ∩ V (G) also has at most h(g)
connected components for j ∈ {2, . . . , 3λ + 1}.

Let I = {1, . . . , λ}, and notice that for any two distinct h, l ∈ I, sets Y+
3h and Y+

3l
are disjoint. For j ∈ {1, . . . , μ′}, we define P ′′

j as the path obtained from P ′
j after

removing its endpoints. Observe now that P ′′
1 , . . . , P ′′

μ′ are connected vertex-disjoint
subgraphs of G[V (M)∩V (G)], and each of these graphs intersect all sets Y+

3 j . Applying
Lemma 6.10 for μ graphs from {P ′′

1 , . . . , P ′′
μ′ } and λ graphs from {Y+

3 j | j ∈ I}, we deduce
that tw(G[V (M) ∩ V (G)]) ≥ t + 1 > t, and the lemma follows.

Final step. To conclude the proof of the main result of this section, we need the
last lemma. The following lemma essentially says that if (G, k) is a YES-instance of a
quasi-coverable problem � where G has no big protrusion, then G has an r-dominating
set of size O(k) for some r that depends only on � and g. Therefore ,(G, k) can be treated
as a YES-instance of a coverable problem.

We define function f3(x, y) = 2 · f1(x + 1, h(y + 1)), where h is the function of
Lemma 6.8 and f1 is the function defined before Lemma 6.10.

LEMMA 6.12. Let G = (V, E) be a graph embedded in a surface � of Euler genus g,
and let p, t, and r be nonnegative integers such that

—there exists a set S ⊆ V such that tw(G\Rr
G(S)) ≤ t, and

—for λ ≤ f3(t, g), all λ-protrusions of G are of size less than p.

Then there exist a set S′ ⊆ V and a constant μ (depending on p, g, and r only) such
that

—|S′| ≤ 2|S| and
—Rμ

G(S′) = V .

PROOF. To prove the lemma, we prove a slightly different statement: under the
assumptions of the lemma, there is a set S′ ⊆ V (WG) such that |S′| ≤ 2|S| and
Bμ

WG
(S′) = V (WG). Then the statement of the lemma can be deduced from this al-

ternative statement by constructing set S′
new as follows: first set S′

new ← S′, and then
replace each vertex in S′ that does not belong to V (G) with one of its neighbors from
V (G). It remains to observe that Rμ+1

G (S′
new) ⊇ Bμ

WG
(S′).

We put μ = 2p + 2r + 2 + 2μ′, where μ′ = 3 · f2(t + 1, h(g)) + 3, and proceed with the
proof of the preceding alternative statement. We first apply Lemma 6.6 for WG and S to
obtain a set S′ ⊇ S of vertices, where |S′| ≤ 2|S| and such that for every v ∈ WG\B2μ

WG
(S′),

graph WG\Bμ

WG
(v) has at most two S′-components. If B2μ

WG
(S′) = V (WG), then we are

done. Otherwise, let v ∈ WG\B2μ

WG
(S′). Let C1, C2 be S′-components of WG\Bμ

WG
(v) (one

of these components can be an empty set), and let Si = Ci ∩ S′, i ∈ {1, 2}. We also
define subgraphs of WG as follows: W1 = WG\C2 and W2 = WG\C1.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:44 H. L. Bodlaender et al.

We claim that at least one of the sets Ci, i ∈ {1, 2}, cannot be separated in Wi from
C = B2p

WG
(v) by a separator of size at most λ/2. Indeed, if it was the case, then in WG,

C is separable from C1 ∪ C2 and thus from B2r
WG

(S′) ⊆ C1 ∪ C2 by a separator of size at
most λ. By Observation 5, this means that in G, vertices Rp

G(v) can be separated from
Rr

G(S′) by a separator of size at most λ. Because tw(G\Rr
G(S′)) ≤ t, this yields that

there is a λ-protrusion in G containing Rp
G(v). But |Rp

G(v)| ≥ p, and thus the size of this
protrusion is at least p in G, which contradicts to the assumption of the lemma.

Without loss of generality, let us assume that C1 is a S′-component of WG\Bμ

WG
(v) that

cannot be separated in W1 from C by a separator of size λ/2. By Menger’s theorem,
in graph W1 there are λ/2 internally vertex-disjoint paths from C to C1. We define
Z as the set of vertices at distance exactly 2p + 1 from v in W1, and Z1 as NW1 (C1).
Then Z separates C from Z1 ∪ C1 and Z1 separates C1 from Z ∪ C. The distance in
W1 between Z and Z1 is at least μ′. Let M be the union of connected components of
W1\(Z1 ∪ Z2) having at least one neighbor in Z and Z1. By Lemma 6.11, the treewidth
of the subgraph GM of G induced by M∩ V (G) is more than t. On the other hand, every
vertex of M is at distance more than r + 1 in WG, and thus at radial distance at least
r +1 in G, from each vertex of S′, and thus of S. Hence, tw(GM) ≤ tw(G\Rr

G(S)), which
is at most t by the assumption of the lemma. This contradiction concludes the proof of
the lemma.

PROOF OF LEMMA 6.5. By applying Lemma 6.12 for r = t and ζ1 = f3, we have
that G contains a set of vertices S′, where |S′| ≤ 2k such that Rμ

G(S′) = V (G) and
μ is the constant of Lemma 6.12. But then by Lemma 6.2, G has a (ck, c)-protrusion
decomposition for some c depending on g, r, and p, as required.

7. CRITERIA FOR PROVING FII

To apply Theorem 1.3, to prove that a specific parameterized problem on graphs admits
a linear kernel, we have to show that it has FII. This property is not always easy to prove
directly. In this section, we give some general criteria for establishing FII. These tools
are used in Section 8. Early results that establish that problems have FII were obtained
by Bodlaender and de Fluiter [1996], Bodlaender and van Antwerpen-de Fluiter [2001],
and de Fluiter [1997]; another criterion for FII was given in Section 11.2 of van Rooij
[2011].

7.1. Strong Monotonicity

We first give a sufficient condition that implies that a large class of p-MIN/MAX-CMSO[ψ]
problems has FII. We prove it here for vertex versions of p-MIN/MAX-CMSO[ψ] problems.
By UI , we denote the set of all boundaried structures of type (graph, vertex set), whose
boundaried graph has label set I.

Let � be a p-MIN-CMSO[ψ] problem definable by some sentence ψ. We say that a
boundaried structure (G′, S′) whose boundaried graph has label set I is ψ-feasible for
some boundaried graph G with label set I if there exist some S ⊆ V (G) such that
(G ⊕ G′, S ∪ S′) |= ψ. For a boundaried graph G with label set I, we define the function
ζG : UI → Z

+ ∪ {∞} as follows. For a structure α = (G′, S′) ∈ UI , we set

ζG(α)=
{
min{|S| |S ⊆ V (G) ∧ (G ⊕ G′, S ∪ S′) |= ψ} if α is ψ-feasible for G
∞ otherwise. (37)

Similarly, for � p-MAX-CMSO[ψ] problems, we define

ζG(α)=
{
max{|S| |S ⊆ V (G) ∧ (G ⊕ G′, S ∪ S′) |= ψ} if α is ψ-feasible for G
−∞ otherwise.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:45

Definition 7.1. A p-MIN-CMSO[ψ] problem � is strongly monotone if there exists a
function f : Z

+ → Z
+ such that the following condition is satisfied. For every bound-

aried graph G with label set I, there exists a subset W ⊆ V (G) such that for every
(G′, S′) ∈ UI such that ζG(G′, S′) is finite, it holds that (G ⊕ G′, W ∪ S′) |= ψ and
|W | ≤ ζG(G′, S′) + f (|I|).

For completeness, in the following we give the maximization counterpart of Defini-
tion 7.1.

Definition 7.2. A p-MAX-CMSO[ψ] problem � is strongly monotone if there exists a
function f : Z

+ → Z
+ such that the following condition is satisfied. For every bound-

aried graph G with label set I, there exists a subset W ⊆ V (G) such that for every
(G′, S′) ∈ UI such that ζG(G′, S′) is finite, it holds that (G ⊕ G′, W ∪ S′) |= ψ and
|W | ≥ ζG(G′, S′) − f (|I|).
7.2. FII for p-MIN/MAX-CMSO[ψ] Problems

LEMMA 7.3. Every strongly monotone p-MIN-CMSO[ψ] and every strongly monotone
p-MAX-CMSO[ψ] problem has FII.

PROOF. We prove the lemma for a p-MIN-CMSO[ψ] problem; the proof for a p-MAX-
CMSO[ψ] problem is similar. Let � be a strongly monotone p-MIN-CMSO[ψ] problem,
and let I ⊆ Z

+. Let MinRep(ψ, I) be a set containing a representative (a boundaried
structure of arity 2) for each equivalence class of ≡σψ

with the minimum number of
vertices in the graph of a structure. For brevity, we denote MinRep(ψ, I) by S. From
Lemma 3.2, we know that |S| is bounded by some function of |ψ | and |I|.

Consider a boundaried graph G with label set I, and define ζ S
G : S → Z

+ ∪ {∞} to
be the function ζG with domain restricted to S. Let LS

G = {ζ S
G(α) | α ∈ S}\{∞}. We first

argue that if f is the function in the definition of the strong monotonicity of � (i.e.,
Definition 7.1) and LS

G �= ∅, then

max LS
G − min LS

G ≤ f (|I|). (38)

Since � is strongly monotone, there exists W ⊆ V (G) such that for every (G′, S′) ∈ UI
where ζG(G′, S′) �= ∞, it holds that

(G ⊕ G′, W ∪ S′) |= ψ and (39)

|W | ≤ ζG(G′, S′) + f (|I|). (40)

Let α = (G′, S′) ∈ S such that ζ S
G(α) �= ∞. Then (39) implies that ζ S

G(α) ≤ |W |. This,
together with (40), yields that |W | − f (|I|) ≤ ζ S

G(α) ≤ |W | and (38) holds. Hence, the
minimum and the maximum finite values of ζ S

G can differ by at most f (|I|).
We now assign for each boundaried graph G with label set I a signature χG : S →

{0, . . . , f (|I|),∞} in a way that for each α ∈ S,

χG(α) = ζ S
G(α) − min LS

G. (41)

In (41), we make the agreement that infinite values remain infinite after subtracting
an integer. Notice that it is possible that in (41), min LS

G may not exist, and this happens
in the extreme case where LS

G = ∅. In such a case, we set χG(α) = ∞ for all α ∈ S.
We say that G1 ∼ G2 if and only if χG1 = χG2 and observe that ∼ is an equivalence

relation. Observe that the number of different signatures of boundaried graphs with
label set I is bounded by some function of |ψ | and |I|. Therefore, the same holds for
the number of equivalent classes of ∼ . To prove that ≡� has FII, it is enough to prove
that ∼ is a refinement of ≡�, which means that if G1 ∼ G2, then G1 ≡� G2. For this,

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:46 H. L. Bodlaender et al.

we claim that if G1 ∼ G2, then there exists some constant c ∈ Z (depending on G1 and
G2) such that

∀(F, k) ∈ F × Z(G1 ⊕ F, k) ∈ � ⇔ (G2 ⊕ F, k+ c) ∈ �. (42)

To prove the preceding statement, we first determine the constant c. As G1 ∼ G2, we
have that χG1 = χG2 . In the extreme case where χG1 (α) = χG2 (α) = ∞ for all α ∈ S, (42)
holds trivially for c = 0, as ∀(F, k) ∈ F × Z

+ both sides of the equivalence are false
(for completeness, recall that according to the way we defined parameterized problems,
∀(F, k) ∈ F × Z

−, both sides of the equivalence in (42) have the same value). From now
onward, we assume that both min LS

G1
and min LS

G2
exist. Therefore, from (41), for each

α ∈ S, ζ S
G2

(α) = ζ S
G1

(α) − min LS
G1

+ min LS
G2

. We set c = min LS
G2

− min LS
G1

and conclude
that

∀α ∈ S ζ S
G2

(α) = ζ S
G1

(α) + c. (43)

Let (F, k) ∈ F ×Z, and assume that (G1 ⊕ F, k) ∈ �. This means that there exists a set
S ⊆ V (G1 ⊕ F) such that |S| ≤ k and

(G1 ⊕ F, S) |= ψ. (44)

Let SF = S ∩ V (F) and SG1 = S\SF , and observe that

|SG1 | + |SF | ≤ k. (45)

We rewrite (44) as follows:

(G1, SG1) ⊕ (F, SF) |= ψ. (46)

Let (F ′, S′
F) ∈ S be the representative of (F, SF). As (F, SF) ≡σψ

(F ′, S′
F), (46) implies

that

(G1, SG1) ⊕ (F ′, S′
F) |= ψ

⇐⇒ (G1 ⊕ F ′, SG1 ∪ S′
F) |= ψ. (47)

From (37), (47) implies that ζG1 (F
′, S′

F) ≤ |SG1 |. From (43), we get ζ S
G2

(F ′, S′
F) ≤ |SG1 |+c

which, again from (37), means that there exists SG2 , where

(G2 ⊕ F ′, SG2 ∪ S′
F) |= ψ and (48)

|SG2 | ≤ |SG1 | + c. (49)

We rewrite (48) as follows:

(G2, SG2) ⊕ (F ′, S′
F) |= ψ. (50)

As (F ′, S′
F) ≡σψ

(F, SF), (50) implies that

(G2, SG2) ⊕ (F, SF) |= ψ

⇐⇒ (G2 ⊕ F, SG2 ∪ SF) |= ψ.

Moreover, |SG2 ∪ SF | ≤ |SG2 | + |SF | ≤(49) |SG1 | + c + |SF | ≤(45) k + c. We conclude that
(G2 ⊕ F, k + c) ∈ �, and we proved the one direction of (42). The other direction is
symmetric.

Remark 7.4. In Definitions 7.1 and 7.2, we defined the notion of strong monotonicity
for p-MIN/MAX-CMSO[ψ] problems where S is a subset of the vertices of the input graph.
If instead we ask S to be an edge subset, then an analogue of Lemma 7.3 can be proved
in a similar manner.

Let G be a graph class. We say that G is CMSO definable if there exist a sentence ψ
on graphs such that G = {G | G |= ψ}, and in such a case, we say that ψ defines the

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:47

class G. Recall that, given a parameterized graph problem � and a graph class G, we
denote by � � G the problem obtained by removing from � all instances that encode
graphs that do not belong to G.

A necessary tool to adapt our results to problems on special graph classes is the
following. The proof follows directly by the definitions.

LEMMA 7.5. Let � be a parameterized problem on graphs, and let G be a CMSO-
definable graph class. Then if � has FII, so does � � G.

8. IMPLICATIONS OF OUR RESULTS

In this section, we mention a few parameterized problems for which we can obtain
either polynomial or linear kernel using Theorems 1.1, 1.2, and 1.3. In the appendix,
we provide a full list of the problems amenable to our approach.

8.1. Preliminary Tools

All of our results concern problems defined on graphs of bounded genus. Recall that
we denote by Gg the class of all graphs of Euler genus at most g. In this way, for
every parameterized problem � on graphs, we define the problem �g = � � Gg, which
contains only YES-instances of �, encoding graphs of Euler genus at most g. We need
to distinguish the two variants � and �g. The reason for this is that in many cases, for
some fixed value g, �g admits a polynomial kernel, whereas the general version � is not
even believed to be fixed parameter tractable. A typical example is PLANAR DOMINATING

SET, which admits a vertex kernel of size 67k, whereas the general DOMINATING SET

problem is W[2]-complete [Downey and Fellows 1998].
The following lemma is a direct consequence of the definition of coverability and

quasi-coverability.

LEMMA 8.1. Let �1,�2 be graph problems whose instances are of the form (G, k). Then
if �1 ⊆ �2 and �2 is r-(quasi)-coverable, then so is �1.

The next lemma is useful when we work on graphs of bounded genus.

LEMMA 8.2. Let � be a parameterized problem on graphs. If � has FII, then for every
g ∈ Z

+, �g has FII.

PROOF. Let Og be the set containing all minor-minimal elements of the class of graphs
with Euler genus more than g. According to the results of Mohar [1999], Og is finite
for each fixed g. Notice that Gg = {G | ∀H∈Og H � G}, and as minor checking can be
expressed in CMSO, the class Gg is CMSO definable. Therefore, the lemma follows from
Lemma 7.5.

8.2. Covering Minors

A minor model of a graph H in a graph G is a minimal subgraph F of G that contains
H as a minor. Notice that H � G if and only if G contains as a subgraph some minor
model of H.

Next we give a generic problem that subsumes many problems in itself. Let H be a
finite set of connected graphs containing at least one planar graph.

p-H-DELETION

Input: A graph G and k ∈ Z
+

Parameter: k
Question: Is there S ⊆ V (G) such that |S| ≤ k and G\S do

not contain any of the graphs from H as a minor?

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:48 H. L. Bodlaender et al.

LEMMA 8.3. If � =p-H-DELETION, then for every g ∈ Z
+, �g is quasi-coverable.

PROOF. Let (G, k) be a YES-instance for �g. This means that there exists a set
S ⊆ V (G) of cardinality at most k such that none of the graphs in H is a minor of G\S.
Let H be a planar graph in H. As G\S excludes H as a minor and H is planar, it follows
from Robertson et al. [1994] that tw(G\S) ≤ cH for some constant that depends only
on H. Set r = max{g, cH}, and take an embedding of G in a surface of genus at most
g. Observe that G\Rr

G(S) ⊆ G\S; therefore, tw(G\Rr
G(S)) ≤ tw(G\S). Thus, �g has the

r-quasi-coverability property for some r depending on H and g.

LEMMA 8.4. If � =p-H-DELETION, then for every g ∈ Z
+, �g has FII.

PROOF. Let ψ = [∀H ∈ H H � (G\S)]. As minor checking is CMSO definable, ψ can
be written as a CMSO sentence, and hence � is a p-MIN-CMSO[ψ] problem. We now
prove that � has FII. By Lemmata 7.3 and 8.2, it suffices to prove that � is strongly
monotone. Let G be a boundaried graph with label set I and the boundary δ(G) = B.
Let S− be a set of minimum size such that (G\B)\S− does not contain any of the graphs
from H as a minor, and let W = S− ∪ B.

Let (G′, S′) ∈ UI be a ψ-feasible structure. We first prove that (G ⊕ G′, W ∪ S′) |= ψ.
For this, assume on the contrary that R is a minor model of some H from H contained
in (G⊕G′)\(W ∪S′). As H is connected and B is a separator of G⊕G′,R should be either
a subgraph of G\W = (G\B)\S− or a subgraph of (G′\B)\S′. The first case contradicts
to the choice of S−. In the second case, R would be a subgraph of (G′\B)\S′, which
contradicts the feasibility of (G′, S′).

We next prove that |W | ≤ ζG(G′, S′) + f (|I|), where f (|I|) = |I|. For (G′, S′) ∈ UI, let
S∗ ⊆ V (G) be a set of minimum size such that (G⊕G′)\(S∗ ∪S′) contains no graph from
H as a minor. Thus, |S∗| = ζG(G′, S′). Notice that G\B does not contain vertices from
S′. Therefore, for every H ∈ H, every minor-model R of H in G\B should be intersected
by vertices from S∗; otherwise, R would also be a subgraph of (G ⊕ G′)\(S∗ ∪ S′),
which is a contradiction. By the choice of S−, we have |S−| ≤ |S∗|. We conclude that
|W | = |S− ∪ B| ≤ |S−| + |B| ≤ |S∗| + |B| = ζG(G′, S′) + f (|I|).

p-H-DELETION contains various problems as a special case. Some examples are pre-
sented next (all of them are parameterized by solution size k):

—p-VERTEX COVER: In this problem, given an input graph G and a k ∈ Z
+, the objective

is to test whether it is possible to remove at most k vertices from G and obtain an
edgeless graph. This problem is generated by taking H = {K2}.

—p-FEEDBACK VERTEX SET: In this problem, given an input graph G and a k ∈ Z
+, the

objective is to test whether it is possible to remove at most k vertices from G and
obtain an acyclic graph. This problem is generated by taking H = {K3}.

—p-DIAMOND HITTING SET: In this problem, given an input graph G and a k ∈ Z
+, the

objective is to test whether it is possible to remove at most k vertices from G and
obtain a graph where no edge is contained in more than one cycle. This problem
is generated by taking H = {K−

4 }, where K−
4 is the graph obtained from a K4 after

removing an edge.
—p-ALMOST OUTERPLANAR: In this problem, given an input graph G and a k ∈ Z

+, the
objective is to test whether it is possible to remove at most k vertices from G and
obtain an outerplanar graph. This problem is generated by taking H = {K4, K2,3}.

—p-ALMOST-t-BOUNDED TREEWIDTH: In this problem, given an input graph G and a k ∈ Z
+,

the objective is to test whether it is possible to remove at most k vertices from G
and obtain a graph of treewidth bounded by some fixed constant t. This problem is
generated by taking H to be the set of minor minimal graphs with treewidth > t

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:49

(from the results in Robertson et al. [1994], this set always contains a connected
planar graph).

—p-ALMOST-t-BOUNDED PATHWIDTH: In this problem, given an input graph G and a k ∈ Z
+,

the objective is to test whether it is possible to remove at most k vertices from G and
obtain a graph of pathwidth bounded by some fixed constant t. This problem is
generated by taking H to be the set of minor minimal graphs with pathwidth bigger
than t.

8.3. Packing Minors

We consider the following problem, which in a sense is dual to the one examined in
Section 8.2. Again, let H be a finite set of connected graphs containing at least one
planar graph.

p-H-PACKING

Input: A graph G and k ∈ Z
+

Parameter: k
Question: Does there exist k vertex-disjoint subgraphs G1, . . . , Gk of G such

that each of them contains some graph from H as a minor?

For proving the quasi-coverability of p-H-PACKING, we need to examine its relation to
p-H-DELETION.

LEMMA 8.5. If � =p-H-PACKING, then for every g ∈ Z
+, �g is quasi-coverable.

PROOF. Given two graphs G and H, we define covH(G) as the minimum size of a set
S ⊆ V (G) of vertices such that G\S does not contain any minor model of H.

We also define

packH(G) = max{k | ∃ partition V1, . . . , Vk of V (G) such that
∀i∈{1,...,k} G[Vi] is a minor model of H}.

Let H be a connected planar graph in H. To prove that �g is quasi-coverable, we
show that �g = ((�∗ × Z

+)\�g) � Gg has the quasi-coverability property. To do so, we
prove that if (G, k) ∈ �g (i.e., G ∈ Gg and has no H-packing into k sets), then (G, ck) is
a YES-instance for �hd

g , where �hd =p-H-DELETION for some constant c that depends
only on g and H. By Lemma 8.5, p-H-DELETION is r-quasi-coverable, and thus �g would
posses a quasi-coverability property.

Suppose that (G, k) ∈ �g. This implies that packH(G) < k. According to the Erdős-
Pósa type of result of Fomin et al. [2011], for every two graphs H and W, where H is
planar and W is any graph, there exists a constant cH,W depending only on H and W
such that for every graph G excluding W as a minor, covH(G) ≤ cH,W · packH(G). Let
W be a graph of Euler genus g + 1. As the class Gg is closed under taking of minors,
we have that every graph in Gg excludes W as a minor. Applying the aforementioned
result, we have that covH ≤ cH,W · k, and therefore (G, c · k) is a YES-instance for
�hd

g for some c depending only on H and g, as required. This implies that �g has a
quasi-coverability property, and hence �g is quasi-coverable.

Notice that when H = {K3}, p-H-PACKING is the p-CYCLE PACKING problem. Here, given
an input graph G and a k ∈ Z

+, the objective is to check whether G contains k vertex-
disjoint cycles. Although the general problem has FII for every choice of H, we present
the proof for this special case to clearly explain the machinery that we use for such
problems. After the end of the proof of Lemma 8.6, we outline how to extend the proof
for the general case.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:50 H. L. Bodlaender et al.

LEMMA 8.6. If � =p-CYCLE PACKING, then for every g ∈ Z
+, �g has FII.

PROOF. By Lemma 8.2, it is sufficient to prove that � has FII. Let G be a boundaried
graph with label set I and with boundary δ(G) = B∗. The proof proceeds in three stages.
The first stage defines some characteristic of the problem that depends on the boundary
of the input boundaried graph. The second stage uses this characteristic to define an
equivalence relation on boundaried graphs that will have finite index. The third stage
proves that this equivalence relation is a refinement of ≡� and therefore has finitely
many equivalence classes as well.

Characteristic. We define setR as the set of all matchings R (not necessarily maximal)
of a complete graph on the vertex set B∗. Let us remark that matching R ∈ R is not
necessarily a subgraph of G; each graph in R corresponds to a set of mutually disjoint
pairs from B∗. We define ζG : R → Z

+ so that for every R ∈ R, the value ζG(R) is the
maximum number of cycles that can be contained in a subgraph J of G such that

—�(J) ≤ 2, and
—for every edge {x, y} of R, J contains an (x, y)-path.

Let us remark that all (x, y)-paths of J are internally vertex disjoint. In case such a
graph J does not exist, we set ζG(R) = −∞. Function ζG can be seen as a way to encode
the tables of a dynamic programming for p-CYCLE PACKING on graphs of treewidth at
most |I|. The proof that follows can be seen as an alternate way to prove that such a
dynamic programming algorithm uses tables whose sizes depend only on |I|.

Definition of equivalence. Let x be the maximum number of vertex-disjoint cycles
in G. Thus, for every R ∈ R, we have ζG(R) ≤ x. We define the signature of G as the
function χG : R → {−|I|, . . . , 0} ∪ {−∞} such that

χG(R)=
{

ζG(R) − x if x − |I| ≤ ζG(R) ≤ x
−∞ otherwise.

Notice that the number of different signatures is bounded by some function of |I|. Given
two boundaried graphs G1 and G2, we say that G1 ∼ G2 if and only if 	(G1) = 	(G2) and
χG1 = χG2 . Clearly, for every I ⊆ Z

+, ∼ is an equivalence relation with finite number of
equivalence classes.

Refinement proof. The result will follow if we prove that ∼ is a refinement of ≡�. For
this, we claim that if G1 ∼ G2, then G1 ≡� G2, or, equivalently, there is some constant
c depending on G1 and G2 such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ � ⇔ (G2 ⊕ F, k+ c) ∈ �. (51)

Suppose that G1 ∼ G2. Let (F, k) ∈ F × Z such that (G1 ⊕ F, k) ∈ �. Our target is to
prove that (G2 ⊕ F, k + c) ∈ �. (The proof for other direction of (51) is symmetric and
thus omitted.) Let us also assume that G1 and G2 are boundaried graphs with label set
I and δ(G1) = B.

The fact that (G1 ⊕ F, k) ∈ � means that G1 ⊕ F contains a collection of k disjoint
cycles. Let C be such a collection of maximum size in G1 ⊕ F. Clearly, |C| ≥ k. We
partition C into four sets CG1 , CB, CB

F , and CF, where

—CG1 are the cycles that are entirely inside G1,
—CB are the cycles of C that are not entirely in G1 or F,
—CB

F are the cycles that are entirely inside F and intersect the boundary B, and
—CF are the cycles that are entirely inside F and do not intersect B.

Notice that |CB| + |CB
F | ≤ |I|. Graph G1 ∩ (

⋃
C∈CB

C) is a collection of internally disjoint
paths between pairs of terminals in B. By replacing each of these paths by edges, we

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:51

create graph R ∈ R. Graph R represents the possibility of linking the pairs correspond-
ing to the edges in R by disjoint paths inside G1 in a way that these paths are disjoint
from the disjoint cycles in CG1 .

For i ∈ {1, 2}, let C∗
i be a maximum size collection of cycles in Gi, and let xi = |C∗

i |.
Notice that x1 and x2 depend only on G1 and G2. We claim that x1 − |I| ≤ |CG1 |. Indeed,
C∗ = C∗

1 ∪ CF is also a cycle packing in G1 ⊕ F. If |CG1 | < x1 − |I| = |C∗
1| − |I|, then

|C∗| = |C∗
1| + |CF | > |CG1 | + |I| + |CF | ≥ |CG1 | + |CB| + |CB

F | + |CF | = |C|, contradicting the
maximality of C.

We set c = x2 − x1. By the definition of ζG, we have that |CG1 | ≤ ζG1 (R) ≤ x1. We
conclude that x1 − |I| ≤ ζG1 (R) ≤ x1, and thus χG1 (R) > −∞. As G1 ∼ G2, we have that
χG1 (R) = χG2 (R), and therefore ζG2 (R) = ζG1 (R) − x1 + x2 = ζG1 (R) + c ≥ |CG1 | + c. This
in turn means that G2 contains a collection of disjoint cycles CG2 and |CG2 | = ζG2 (R) ≥
|CG1 | + c and |E(R)| internally vertex-disjoint paths that are also disjoint from the
cycles in CG2 , one for each pair of vertices represented by the edges of R.

Notice now that if we take the union of these paths with the graph F ∩ (
⋃

C∈CB
C),

we obtain a collection C ′
B of |CB| vertex-disjoint cycles in G2 ⊕ F that are also disjoint

with the cycles from CG2 . The cycles from CG2 ∪ CB are disjoint from cycles CB
F and CF .

Therefore, CG2 ∪ C ′
B ∪ CB

F ∪ CF is a collection of cycles in G2 ⊕ F that has size at least
|CG1 |+ c+|CB|+ |CB

F |+ |CF | = k+ c. We conclude that (G2 ⊕ F, k+ c) ∈ �, as required.

The proof that, in general, p-H-PACKING has FII follows the same line as the proof
of Lemma 8.5. Instead of cycles, we have minor models of graphs in H, and instead
of paths between terminals of the border, we have partial models that are parts of
minor models of graphs in H that are cropped by G1. The signature χ now encodes
all of the ways such partial models might be “rooted” in the boundary. This can be
done by the “folio” structure introduced in Robertson and Seymour [1995] for doing
dynamic programming for the minor-checking problem and the disjoint paths problem
on graphs of bounded treewidth. Variants of folios have been used for similar purposes
in the work of Adler et al. [2008], Grohe et al. [2011], Kaminski and Thilikos [2012],
and Fomin et al. [2012b].

8.4. Subgraph Covering and Packing

Let S be a finite set of connected graphs. We define the following two general problems.

p-S-COVERING

Input: A graph G and k ∈ Z
+

Parameter: k
Question: Is there a S ⊆ V (G) such that |S| ≤ k and G\S contain

no subgraph isomorphic to a graph from S?

p-S-PACKING

Input: A graph G and k ∈ Z
+

Parameter: k
Question: Does there exist k vertex-disjoint subgraphs G1, . . . , Gk of G such

that each of them contains a subgraph isomorphic to a graph in S?

Let us remark that it is not true, in general, that if � = p-S-COVERING or � = p-S-
PACKING, then �g is coverable. However, the problems become coverable if we modify
instances by applying the following simple preprocessing rule:

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:52 H. L. Bodlaender et al.

Redundant Vertex Rule: For a graph G, although this is possible,
delete a vertex that does not belong to any subgraph of G isomor-
phic to any graph in S.

A graph G is RV-S-reduced if each its vertex belongs to a subgraph isomorphic to a
graph in S. We denote by R(S) the set of all RV-S-reduced graphs.

LEMMA 8.7. Let � be either p-S-COVERING or p-S-PACKING. There is a polynomial
time algorithm transforming (G, k) ∈ �g into an equivalent instance (G′, k) ∈ �RV

g =
�g � R(S).

PROOF. Let s be the maximum diameter of a graph in S, and let G be a graph of genus
g. We can perform the Redundant Vertex Rule in O(|V (G)|2) time by checking for every
vertex v ∈ V (G) if the subgraph Gs(v) induced by Bs

G(v) has a subgraph isomorphic to
a graph in S containing vertex v. By Proposition 6.3, the treewidth of Gs(v) is bounded
by some function of s and g only, and thus for every v, such a check can be performed
in time O(|V (G)|) (e.g., see Eppstein [2000]).

We are now ready to prove the following lemma.

LEMMA 8.8. Let � be p-S-COVERING or p-S-PACKING. Then �RV
g is coverable.

PROOF. Let s be the maximum diameter of a graph in S, and let ϒ = p-S-COVERING.
Let (G, k) be a YES-instance of ϒRV

g , and let S be a vertex set of size at most k, such
that each subgraph of G that is isomorphic to some graph in S intersects S. Consider
an embedding of G in some surface of Euler genus at most g. As G ∈ R(S), every vertex
in G is within distance at most s from S. Therefore, Bs

G(S) = V (G). By Observation 3,
R2s

G (S) ⊇ Bs
G(S), and thus ϒRV

g has the r-coverability property for r = 2s.
Assume now that � =p-S-PACKING. To prove the coverability of �RV

g , we will prove
that �̄RV

g = ((�∗ ×Z
+)\�RV

g) �Gg has the r-coverability property. Let c be the maximum
number of vertices in a graph of S. We claim that if (G, k) is a NO-instance for �RV

g ,

where G ∈ Gg, then (G, ck) is a YES-instance of ϒRV
g . Indeed, as (G, k) is a NO-instance,

G does not contain k vertex-disjoint subgraphs from S. A set S of vertices of size
≤ k · c “hitting” all subgraphs of G isomorphic to graphs in S can be constructed by the
following greedy procedure:

Initialize S = ∅ and, as long as G contains a subgraph that is isomorphic to some graph in S,
add all of its vertices to S and remove them from G.

Notice that the preceding procedure cannot be applied more than k− 1 times; otherwise,
the removed graphs would constitute a vertex packing of graphs of S in G. When the
procedure cannot be applied anymore, the set S intersects every subgraph of G that
is isomorphic to some graph from S and |S| ≤ c · (k − 1). Therefore, (G, ck) is a YES-
instance of ϒRV

g , which is already shown to be coverable. Now the coverability of �RV
g

follows from Lemma 8.1.

Using a modification of the proof of Lemma 8.4, it is possible to show that p-S-
COVERING has FII. The proof that p-S-PACKING has FII follows the same steps as in the
proof of Lemma 8.6. The only difference in all cases is that we work with subgraphs
instead of minors.

8.5. Domination and Its Variants

Given two integers r, q ∈ Z
+, a graph G, and a set S ⊆ V (G), we say that S is a (q, r)-

dominating set of G if for every vertex x in V (G)\S, there are at least q vertices in S

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:53

within distance at most r from x. We define a series of problems related to domination.
In all of them, the input is a graph G and a parameter k ∈ Z

+. In the following, we
mention the variants and the questions corresponding to each of them:

—p-r-DOMINATING SET: Is there a (1, r)-dominating set S of size at most k
in G? For r = 1, the problem is known as p-DOMINATING SET.

—p-q-THRESHOLD DOMINATING SET: Is there a (q, 1)-dominating set S of size at most k in
G?

—p-EFFICIENT DOMINATING SET: Is there a (1, 1)-dominating set S of size at most k in G
such that G[S] is edgeless (i.e., S is an independent set) and each vertex from V (G)\S
is adjacent to exactly one vertex in S? This problem is also known as p-PERFECT CODE.

—p-CONNECTED DOMINATING SET: Is there a (1, 1)-dominating set S of size at most k in
G such that G[S] is connected?

LEMMA 8.9. If � is one of the following problems, p-r-DOMINATING SET, p-q-THRESHOLD

DOMINATING SET, or p-EFFICIENT DOMINATING SET, then for every g ∈ Z
+, �g is coverable

and has FII.

PROOF. For all of these problems, �g is 2r-coverable by definition because if S is a
(q, r)-dominating set of G and G is embeddable in some surface of Euler genus at most
g, then by Observation 3, Br

G(S) ⊆ R2r
G (G).

By Lemma 8.2, it is enough to prove that each of the problems has FII. We start
from p-r-DOMINATING SET. Since p-r-DOMINATING SET is a p-MIN-CMSO[ψ] problem, then
by Lemma 7.3, it is enough to prove that it is strongly monotone. For a boundaried
graph G with label set I and boundary δ(G) = B, let S′′ ⊆ V (G) be a minimum-size
r-dominating set of G. We put W = S′′ ∪ B. For a boundaried structure (G′, S′) ∈ UI, let
S∗ ⊆ V (G) be a set of minimum size such that S∗ ∪ S′ is an r-dominating set of G⊕ G′.
Thus, ζG(G′, S′) = |S∗|. Observe that S∗ ∪ B is an r-dominating set of G, and hence
|S′′| ≤ |S∗| + |B|. Therefore, |W | = |S′′ ∪ B| ≤ |S′′| + |B| ≤ |S∗| + 2|I| = ζG(G′, S′) + 2|I|.
Additionally, observe that W ∪ B is an r-dominating set of G′, and thus W ∪ S′ is an
r-dominating set of G ⊕ G′. This implies that (G ⊕ G′, S ∪ S′) ∈ �, and the strong
monotonicity of p-r-DOMINATING SET follows.

The proof that p-q-THRESHOLD DOMINATING SET is strongly monotone is based on the
same observations as the proof for p-r-DOMINATING SET and thus omitted. To prove that
p-EFFICIENT DOMINATING SET has FII, we use the fact that

p-EFFICIENT DOMINATING SET = p-1-DOMINATING SET � Geds,

where Geds is the class of all graphs that have an efficient dominating set. The equality
follows from a theorem of Bange et al. [1988], asserting that if a graph G has an
efficient dominating set, then the size of the minimum efficient dominating set is equal
to the size of the minimum dominating set of G. As Geds is CMSO definable, p-EFFICIENT

DOMINATING SET has FII by Lemma 7.5.

In the remaining part of this section, we prove that when � is p-CONNECTED DOM-
INATING SET, then �g is coverable and has FII. For this, we first need some auxiliary
definitions and results on connected domination. Given a graph G and a set V (G), we
say that a dominating set S is a component-wise connected dominating set of G if for
every connected component C of G, C[S ∩ V (C)] is connected. In particular, if G is con-
nected, then every component-wise dominating set of G is also a connected dominating
set of G.

We need the following proposition attributed to Duchet and Meyniel [1982].

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:54 H. L. Bodlaender et al.

PROPOSITION 8.10. Let G be a connected graph, and let Q be a dominating set of G,
such that G[Q] has at most ρ connected components. Then there exists a set Z ⊆ V (G) of
size at most 2 · (ρ − 1) such that Q∪ Z is a connected dominating set in G.

LEMMA 8.11. Let G be a graph, and let B be a subset of G. In addition, let R be a
component-wise connected dominating set of G. Then there exists a set S ⊇ R ∪ B that
is also a component-wise connected dominating set of G and has at most |R| + 3|B|
vertices.

PROOF. Let C be the set of connected components of G. For C ∈ C, let BC = V (C) ∩ B
and RC = R∩V (C). Observe that C[BC ∪ RC] cannot have more than 1+|BC | connected
components. By Proposition 8.10, there exists a set ZC ⊆ V (C) such that ZC ∪ RC ∪ BC
induces a connected subgraph of C such that |ZC | ≤ 2|BC |. This means that |BC ∪ RC ∪
ZC | ≤ |RC | + 3|BC |. Moreover, as RC is a dominating set of C, the same holds for its
superset BC ∪ RC ∪ ZC . Therefore, the set S = ⋃

C∈C BC ∪ RC ∪ ZC is a component-wise
dominating set of G that contains B∪ R. It is now easy to check that |S| ≤ |R| + 3|B|.

LEMMA 8.12. Let G and G′ be boundaried graphs with label set I and boundary
δ(G) = B. In addition, let S∗ ⊆ V (G) and S′ ⊆ V (G′) such that S∗ ∪ S′ is a component-
wise connected dominating set of G ⊕ G′. Then G contains a component-wise connected
dominating set S+ of size at most 3|B| + |S∗|.

PROOF. We first prove the lemma under the assumption that H = G ⊕ G′ is a
connected graph. Let us remark that G is not necessarily connected. Notice that Q =
S∗ ∪ B is a dominating set of G. Let C1, . . . , Cμ be the connected components of G and,
for each i ∈ {1, . . . , μ}, let Q1

i , . . . , Qδi
i be the vertex sets of the connected components of

Ci[V (Ci) ∩ Q]. We claim that
∑

1≤i≤μ δi ≤ |B| + 1. Indeed, if S∗ ∪ S′ does not intersect
B, then since H[S∗ ∪ S′] is connected, we have that G[S∗ ∪ S′] is connected, and in this
case, Q may have at most |B| + 1 connected components; therefore,

∑
1≤i≤μ δi ≤ |B| + 1.

In case S∗ ∪S intersects B, then each connected component of Q should contain at least
one vertex of B, and, again, we have

∑
1≤i≤μ δi ≤ |B| < |B| + 1.

We now apply Proposition 8.10 for the sets Q1
i , . . . , Qδi

i of the graph Ci, for each
i ∈ {1, . . . , μ}. That way, we find, for every i ∈ {1, . . . , μ}, a collection of sets Z1, . . . , Zμ,
where Zi is a connected dominating set of Ci. This means that S+ = ⋃

1≤i≤μ Zi is a
component-wise connected dominating set of G. By Proposition 8.10, |Zi| ≤ 2(δi − 1) +
|V (Ci) ∩ Q|. We now have that

|S+| =
μ∑

i=1

|Zi|

≤
μ∑

i=1

2(δi − 1) +
μ∑

i=1

|V (Ci) ∩ Q|

≤ 2|B| + |Q| = 3|B| + |S∗|,
as required.

If G ⊕ G′ is not a connected graph, then the required component-wise connected
dominating set is the union of the component-wise connected dominating sets obtained
if we apply the preceding proof for each of the connected components of G ⊕ G′.

We also need the following lemma. The proof is based on the definition of a connected
dominating set and is omitted.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:55

LEMMA 8.13. Let G and G′ be boundaried graphs with label set I and boundary
δ(G) = B such that C = G ⊕ G′ is connected. In addition, let S∗ ⊆ V (G) and S′ ⊆ V (G′)
be such that S∗ ∪ S′ is a connected dominating set of C. Let S ⊆ V (G) be a component-
wise dominating set of G such that B ⊆ S. Then S ∪ S′ is a connected dominating set of
G ⊕ G′.

LEMMA 8.14. If � = p-CONNECTED DOMINATING SET, then for every g ∈ Z
+, �g is

coverable and has FII.

PROOF. The coverability of �g is trivial. To show that p-CONNECTED DOMINATING SET

has FII, we define the following auxiliary problem:

�′ = {(G, k) | G has a component-wise connected dominating set S}.
Notice that p-CONNECTED DOMINATING SET = �′ � Gcon, where Gcon is the class of all con-
nected graphs. Let us remark that Gcon is CMSO definable and �′ is a p-MIN-CMSO[ψ]
problem.

Let G be a boundaried graph with label set I and boundary δ(G) = B. Let R
be a minimum-size component-wise dominating set of G. By Lemma 8.11, G has a
component-wise connected dominating set W that contains the boundary of G (B ⊆ W)
as a subset and |W | ≤ |R| + 3|I|.

For a boundaried structure (G′, S′) ∈ UI, let S∗ ⊆ V (G) be a set of minimum-size
subset of G such that S∗ ∪ S′ is a component-wise connected dominating set of G ⊕ G′.
Thus, ζG(G′, S′) = |S∗|. From Lemma 8.12, G contains a component-wise connected
dominating set S+ of size at most |S∗| + 3|I|. By the definition of R, we have that
|R| ≤ |S+| ≤ |S∗|+3|I| = ζG(G′, S′)+3|I|, and therefore |S| ≤ |R|+3|I| ≤ ζG(G′, S′)+6|I|.

To prove that (G⊕G′, W ∪ S′) ∈ �′, we have to show that W ∪ S′ is a component-wise
connected dominating set of G ⊕ G′. Let C be the set of the connected components of
G ⊕ G′, and for every C ∈ C, we set GC = G[V (C)], G′

C = G′[V (C)], S∗
C = S∗ ∩ V (C),

WC = W ∩ V (C), S′
C = S′ ∩ V (C), and BC = B∩ V (C). Notice that C = GC ⊕ G′

C . As
S∗ ∪ S′ is a component-wise dominating set of G ⊕ G′, we have that the set S∗

C ∪ S′
C

is a connected dominating set of C. Moreover, the fact that S is a component-wise
dominating set of G implies that WC is also a component-wise dominating set of GC .
Recall that the boundary of G is contained in W, and therefore B ⊆ W, which implies
that BC ⊆ WC . From Lemma 8.13, WC ∪ S′

C is a connected dominating set of C.
Therefore, W ∪ S′ = ⋃

C∈C WC ∪ S′
C is a component-wise connected dominating set of

G ⊕ G′, as required.

Using ideas similar to those in the proof of Lemma 8.9, it is possible to prove that
other problems, such as p-CONNECTED VERTEX COVER, p-EDGE DOMINATING SET, or p- CYCLE

DOMINATION, have FII.

8.6. Scattered Sets

Given an r ∈ Z
+, a graph G, and a set S ⊆ V (G), we say that S is an r-independent set

if every two vertices in S have distance greater than r.
We consider the following problem.

p-r-SCATTERED SET

Input: A graph G and a k ∈ Z
+

Parameter: k
Question: Is there an r-independent set in G of size at least k?

LEMMA 8.15. For every positive integer r and every g ∈ Z
+, if �r = r-SCATTERED SET,

then �r
g is coverable.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:56 H. L. Bodlaender et al.

PROOF. To prove the coverability of �r
g, we will prove that �g = ((�∗ × Z

+)\�r
g) � Gg

has the r-coverability property for some constant c that depends on g and r. Let (G, k)
be a NO-instance of �r

g. This means that G does not contain any r-independent set of
size k. According to the result in Dvorak [2013], G has an r-dominating set of size c · k,
where c is a constant depending on the Euler genus of G (actually, the result of Dvorak
[2013] holds for much more general classes of sparse graphs that include graphs of
bounded Euler genus). Recall that from Observation 3, given an embedding of G in
a surface of Euler genus ≤ g, we have that R2r

G ⊆ Br
G(S), and therefore �g has the

c-coverability property for c = max{r, g}.
We present in detail the proof of the following lemma, as it is based on slightly

different ideas than the one used in Lemma 8.6.

LEMMA 8.16. For every positive integer r, if �r = p-r-SCATTERED SET, then �g has FII.

PROOF. Using Lemma 8.2, we prove instead that �r has FII. In the following, we
prove this fact by adapting the three-stage machinery of the proof of Lemma 8.6.

Characteristic. Let G be a boundaried graph with label set I and the boundary
δ(G) = B. Furthermore, let �G : I × I → {0, . . . , r} be a function that for i, j ∈ I defines

�G(i, j) = min
{
distG

(
λ−1(i), λ−1(j)

)
, r

}
.

In addition, let S be the set containing all functions mapping the integers of I to
integers in {0, . . . , r} ∪ {∞}. Given a σ ∈ S, we define ζG(σ) as the maximum size of
an r-independent set S in G with the property that for every i ∈ I, the distance in G
between λ−1(i) and every vertex in S is at least σ (i). As the empty set is always such a
set, it holds that ∀σ∈S ζG(σ) ≥ 0.

Definition of equivalence. Let σ (0) ∈ S such that ∀i∈λ(B) σ (0)(i) = 0. We also set xG =
ζG(σ (0)). We have that ∀σ∈S ζG(σ) ≤ xG. We define a function χG : S → {−∞}∪{−2t, . . . , 0}
as follows:

χG(σ)=
{

ζG(σ) − xG if xG − 2t ≤ ζG(σ) ≤ xG
−∞ otherwise.

Given two boundaried graphs G1 and G2, we say that G1 ∼ G2 if 	(G1) = 	(G2),
�G1 = �G2 , and χG1 = χG2 . Notice that for every finite I ⊆ Z

+, ∼ is an equivalence
relation with finitely many equivalence classes.

Refinement proof. The result will follow if we prove that ≡�r is a refinement of ∼ .
For this, we claim that if G1 ∼ G2, then G1 ≡�r G2, or, equivalently, that there is some
constant c, depending on G1 and G2, such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ �r ⇔ (G2 ⊕ F, k+ c) ∈ �r. (52)

Suppose that G1 ∼ G2. This implies that 	(G1) = 	(G2). Let 	(G1) = 	(G2) = I and
|I| = t. Let (F, k) ∈ F × Z such that (G1 ⊕ F, k) ∈ �r. Our target is to prove that
(G2 ⊕ F, k + c) ∈ �r (the other direction of (52) is symmetric).

The fact that (G1 ⊕ F, k) ∈ �r means that (G1 ⊕ F) contains an r-independent set S,
where |S| ≥ k. Let B be the boundary of G1 (i.e., δ(G1) = B), and let S1 = S ∩ V (G1)
and SF = S\S1. In addition, let λ1 and λ2 be the labelings of boundaries of G1 and G2,
respectively. We define σ as follows: for i ∈ I, set σ (i) to be the minimum distance of
a vertex of S1 from λ−1

1 (i) in G1. By the definition of ζG1 , we have that ζG1 (σ) ≥ |S1|.
Before we proceed, we need to prove the following claim:

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:57

Claim: |S1| ≥ xG1 − 2t. Let S′
1 be an r-independent set of G1 such that |S′

1| = xG1 .
Mark in S′

1 all vertices that are within distance at most � r
2 from B, and denote by S∗

1
the set of the nonmarked vertices of S′

1. Notice that S∗
1 is an r-independent set of G1.

The proof of the claim is a consequence of the following two subclaims:

Subclaim 1: |S∗
1| ≥ xG1 − t. For this, it is enough to prove that no more than |B|

vertices can be marked from S′
1. Indeed, if this is not the case, then there should exist

two vertices x and y in S′
1 that are within distance at most � r

2 from some vertex z of B.
Then the distance between x and y should be less than 2 · � r

2 ≤ r, a contradiction to
the fact that S′

1 is an r-independent set of G1.

Subclaim 2: |S1| ≥ |S∗
1 | − t. For this, we mark in S the vertices of G1 ⊕ F that are

within distance at most � r
2 from some vertex of B. As earlier, the marked vertices

cannot be more than |B|. Let S− be the set obtained from S after removing the marked
vertices. Notice that |S−| ≥ |S| − t, and therefore |S− ∩ V (G1)| + |S−\V (G1)| ≥ |S| − t.
Notice that S− ∩ V (G1) is an r-independent set of G1, and therefore |S− ∩ V (G1)| ≤ xG.
Notice that S∗

1 ∪ (S−\V (G1)) is an r-independent set of G1 ⊕ F. Indeed, if there are two
vertices x ∈ S∗

1 and y ∈ S−\V (G1) within distance r, then either x or y would be within
distance � r

2 from some vertex in B, a contradiction. We obtain that |S∗
1|+|S−\V (G1)| =

|S∗
1 ∪ (S−\V (G1))| ≤ |S| ≤ |S−| + t = |S− ∩ V (G1)| + |S−\V (G1)| + t, and therefore

|S∗
1| ≤ |S− ∩ V (G1)| + t ≤ |S1| + t.
We just proved that ζG1 (σ) ≥ |S1| ≥ xG1 − 2t. This means that χG(σ) > −∞. As

G1 ∼ G2, we have that �G1 = �G2 and χG1 (σ) = χG2 (σ). By the definition of χG, we
obtain that ζG2 (σ) = ζG1 (σ) − ζG1 (σ

(0)) + ζG2 (σ
(0)) = ζG1 (σ) + c ≥ |SG1 | + c, where c is a

constant depending only on G1 and G2. This implies that there exists an r-independent
set SG2 in G2 with least |SG1 | + c vertices, and for every i ∈ λ2(B), the distance in G2

between λ−1
2 (i) and the vertices in S2 is at least σ (i). The facts that �G1 = �G2 and

χG1 (σ) = χG2 (σ) together imply that SG2 ∪ SF is an r-independent set of G2 ⊕ F of size
|SG2 ∪ SF | = |SG2 | + |SF | ≥ |SG1 | + |SF | + c ≥ |S1| + |SF | + c ≥ k + c. We conclude that
(G2, k+ c) ∈ �r, as required.

8.7. Problems on Directed Graphs

Our results also apply to problems on directed graphs whose underlying undirected
graph is of bounded genus. In this direction, we mention three problems considered in
the literature. In all cases, the input is a directed graph D = (V, A), where V is the set
of its vertices and A is the set of its directed edges (i.e., A⊆ V × V):

—p-DIRECTED DOMINATION [Alber et al. 2006b]: Is there a subset S ⊆ V of size at most k
such that for very vertex u ∈ V \S there is a vertex v ∈ S such that (u, v) ∈ A? Such
a set S is called a directed dominating set of D.

—p-INDEPENDENT DIRECTED DOMINATION2 [Gutin et al. [2005]: Is there a subset S ⊆ V of
size at most k such that S is an independent set and for every vertex u ∈ V \S there
is a vertex v ∈ S such that (u, v) ∈ A?

—p-MAXIMUM INTERNAL OUT-BRANCHING [Gutin et al. 2009]: Does D contain a directed
rooted spanning tree, an out-branching, with at least k internal vertices?

To formally state our results, we extend the notion of coverability to directed graphs
by applying the definitions to their underlying undirected graphs.

LEMMA 8.17. The following statements hold:

2In the literature, it is known as p-KERNELS. We refer to it differently here to avoid confusion with problem
kernels.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:58 H. L. Bodlaender et al.

—Let � be either p-INDEPENDENT DIRECTED DOMINATION or p-MAXIMUM INTERNAL OUT-
BRANCHING. Then �g is a coverable p-MIN-CMSO[ψ] problem.

—Let � be p-DIRECTED DOMINATION. Then �g is a coverable problem and has FII.

PROOF. Problems p-INDEPENDENT DIRECTED DOMINATION and p-DIRECTED DOMINATION

can easily be seen to be p-MIN-CMSO[ψ] problems, whereas p-MAXIMUM INTERNAL OUT-
BRANCHING can be proved to be a p-MAX-CMSO[ψ] problem. The strong monotonicity
of p-DIRECTED DOMINATION can be proved using the same arguments as in the proof of
Lemma 8.9. This, together with Lemmata 7.3 and 8.2, implies that for �=p-DIRECTED

DOMINATION, �g has FII.
p-INDEPENDENT DIRECTED DOMINATION and p-DIRECTED DOMINATION are coverable by

definition. Let �=p-MAXIMUM INTERNAL OUT-BRANCHING. We claim that if (D, k) �∈ �,
then the underlying undirected graph of D has a dominating set of size at most k− 1.
For this, let k0 = max{k′ | (D, k′) ∈ �} and observe that k0 < k. Moreover, it also
holds that (D, k0) ∈ �, whereas (D, k0 + 1) �∈ �. These two facts together imply that
D has a rooted directed spanning tree with exactly k0 internal vertices and all other
vertices of D being its leaves. These internal vertices form a dominating set for the
underlying undirected graph of D. As k0 < k, the underlying undirected graph of D
has a dominating set of size at most k− 1. Then the coverability of �g follows from the
coverability of p-DOMINATING SET and Lemma 8.1.

8.8. A Direct Proof of FII for a Minimization Problem

Although Lemma 7.3 is very useful for showing that a concrete problem has FII,
sometimes a minimization problem may have FII even though it may not be strongly
monotone. For example, consider the following problem. Let s ≥ 3 be an integer.

s-CYCLE TRANSVERSAL

Input: A graph G and a k ∈ Z
+

Parameter: k
Question: Is there an edge subset S ⊆ E(G) such that G′ = G\S does not contain

any cycle of length at most s (i.e., G′ has girth more than s)?

Notice that for each integer s ≥ 3, the preceding problem is the edge deletion
counterpart of EDGE-S-COVERING when S contains the cycles of size at least 3 and at
most s.

LEMMA 8.18. If �s =s-CYCLE TRANSVERSAL, then �s
g has FII.

PROOF. Using Lemma 8.2, we prove instead that �s has FII. We present the proof in
three stages, as we did in the cases of Lemmata 8.6 and 8.16.

Characteristic. Let G be a boundaried graph with label set I and the boundary
δ(G) = B. Let |I| = t. We use the term s-cycle for a cycle of length at most s. Let X be the
set of unordered pairs of distinct indices in I and H be the set containing all functions
from X to {0, . . . , s}. We define the function ζG : H → Z

+ such that, given a function
f ∈ H, ζG(f) is the size of a minimum set of edges S in G such that the following hold:

—the graph G\S has girth > s, and
—for every {i, j} ∈ I, the distance in G′ = G\S between λ−1(i) and λ−1(j) is at least

f (i, j) + 1. In other words, distG′(λ−1(i), λ−1(j)) ≥ f (i, j) + 1.

In case a set satisfying the preceding conditions does not exist, we set ζG(f) = ∞.

Definition of equivalence. We denote by f min the function in H where for all {i, j} ∈ X,
f min({i, j}) = 0. Notice that ζG(f min) < ∞ (just take S = E(G)). We set xG = ζG(f min).

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:59

The definition of ζG implies that

∀ f ∈ H xG ≤ ζG(f). (53)

We now define the signature of G as the function χG : H → {0, . . . , 3
(t

2

)} ∪ {∞}, where

χG(f)=
{

ζG(f) − xG if xG ≤ ζG(f) ≤ xG + 3
(t

2

)
∞ otherwise. (54)

We say that G1 ∼ G2 if 	(G1) = 	(G2) and χG1 = χG2 . Notice that the number of
different signatures is bounded by some function of t and s. Clearly, for every I ⊆ Z

+,
∼ is an equivalent relation with finitely many equivalence classes.

Refinement proof. The result will follow if we prove that ∼ is a refinement of ≡�.
For this, we claim that if G1 ∼ G2, then G1 ≡� G2, or, equivalently, that there is some
constant c, depending on G1 and G2, such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ � ⇔ (G2 ⊕ F, k+ c) ∈ �. (55)

Suppose that G1 ∼ G2. Let (F, k) ∈ F × Z such that (G1 ⊕ F, k) ∈ �. Our target is to
prove that (G2 ⊕ F, k+ c) ∈ � (the other direction of (55) is symmetric and is omitted).

The fact that (G1 ⊕ F, k) ∈ � means that there is a set S ⊆ E(G1 ⊕ F) of edges such
that all cycles in (G1 ⊕ F)\S have length > s. Recall that λG is an injective labeling
from the boundary of the graph to I. We denote by λ1, λ2, and λF the labelings of
the boundaried graphs G1, G2, and F, respectively. Let B = λ−1

1 ((G1) ∩ 	(F)) and
B′ = λ−1

2 ((G2) ∩ 	(F)). Since G1, G2, and F are boundaried graphs with label set I,
we have that |B|, |B′| = |I| = t. In addition, let SG1 = E(G1) ∩ S and SF = E(F) ∩ S.
The set C of s-cycles in G1 ∪ F is partitioned into three sets:

—C1 are the cycles in C that are entirely inside G1,
—CF are the cycles in C that are entirely inside F, and
—CB are the cycles in C that contain both edges that are not in G1 and edges that are

not in F (i.e., CB = C\(CG1 ∪ CF)).

Observe that SF intersects all s-cycles in CF and the set SG1 intersects all s-cycles in
C1. Observe that SG1 ∩ SF contains only edges with both endpoints in B, and therefore
|SG1 ∩ SF | ≤

(t
2

)
. This implies that

|SG1 | + |SF | −
(

t
2

)
≤ |S|. (56)

Recall that xG1 = ζG1 (f min). We prove the following claim. Let xG1 denote the cardinality
of a minimum sized subset of E(G1) intersecting all s-cycles in G1:

Claim: |SG1 | ≤ xG1 + 3
(t

2

)
.

PROOF OF CLAIM: Let S∗
G1

be a minimum size subset of E(G1) intersecting all s-cycles
in G1. By definition, |S∗

G1
| = xG1 . Notice that the set S∗

G1
∪ SF meets all cycles in C1 ∪ CF .

Let C•
B be the cycles of CB that are not met by S∗

G1
∪ SF .

Our first aim is to find a set SB of at most 2
(t

2

)
edges that interest all cycles of C•

B.
Observe that each cycle in C•

B meets at least two vertices in B. Let W be the set of
pairs in X that are met by the cycles in C•

B. For each pair p = {x, y}, we denote by
Qleft

p (respectively, Qright
p) the set of all (x, y)-paths in G1 that belong to cycles in C•

B. We
claim that for each p = {x, y}, where x, y ∈ B, at most one of the (x, y)-paths in Qleft

p
can have length at most s/2. Suppose in contrary that P1, P2 are two (x, y)-paths of
G1 of length ≤ s/2. The union of P1 and P2 contains a cycle Cx,y that is entirely in G1.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:60 H. L. Bodlaender et al.

By the definition of C•
B, we have that Cx,y does not contain any edge e from S∗

G1
. This

contradicts the fact that S∗
G1

intersects all s-cycles in G1. Therefore, for each p = {x, y},
where x, y ∈ B, at most one, say Qright

p , of the (x, y)-paths in Qright
p can have length

at most s/2. Using the same arguments on F, instead of G1, it follows that for each
p = {x, y}, where x, y ∈ B, at most one, say Qleft

p , of the (x, y)-paths in Qleft
p can have

length at most s/2.
We now construct the set SB by adding to it, for each pair p ∈ X, one edge from

the Qright
p and one edge from Qleft

p . As there are at most
(t

2

)
pairs in X, we obtain that

|SB| ≤ 2
(t

2

)
. Next we prove that SB meets all cycles in C•

B. For this, let C be a cycle
in C•

B. Clearly, there are at least two internally vertex-disjoint paths contained in C
(these two paths may not contain all vertices on C) that are entirely inside G1 or F and
have their endpoints in B. Since C is an s-cycle, we have that at least one, say Q, of
these paths should have length ≤ s/2. Let x and y be the endpoints of Q and p = {x, y}.
Clearly, Q belongs in one of Qleft

p or Qright
p . Without loss of generality, suppose that Q

belongs in Qleft
p . As Q has length at most s/2, then Q is the unique path in Qleft

p that
has such a length. By its construction, SB intersects Q, and as Q is a path of C, SB
intersects C as well.

We just proved that SB intersects all s-cycles in C ′
B and contains at most 2

(t
2

)
edges.

This implies that S∗
G1

∪ SB ∪ SF is intersecting all s-cycles in C. By the definition of S,

we have that |S| ≤ |S∗
G1

∪ SB∪ SF | ≤ |S∗
G1

|+ |SB|+ |SF |. Therefore, |SG1 |+ |SF |−
(t

2

) ≤(56)

|S| ≤ |S∗
G1

| + |SB| + |SF | ≤ xG1 + 2
(t

2

) + |SF |. We conclude that |SG1 | ≤ xG1 + 2
(t

2

) + (t
2

)
,

and the claim follows.

For every pair {i, j} ∈ X, let s(i, j) be equal to s minus the distance between λ−1
F (i)

and λ−1
F (j) in F. We define the function f ∈ F as follows. For every pair {i, j} ∈ X, if

{λ−1
1 (i), λ−1

1 (j)} is an edge of SG1 ∩ SF , then define

f (i, j) = max{1, s(i, j), },
else define f (i, j) = s(i, j). The choice of f and the definition of ζG1 imply that

ζG1 (f) ≤ |SG1 |. (57)

From (53), we have that xG1 ≤ ζG1 (f). Moreover, from (57) and the preceding claim,
we obtain ζG1 (f) ≤ xG1 + 3

(t
2

)
. By (54), χG1 (f) = ζG1 (f) − xG1 . Recall now that G1 ∼ G2,

and hence χG2 (f) = χG2 (f). This means that ζG2 (f) = ζG1 (f) + c, where c = xG2 − xG1 ,
and clearly c depends only on G1 and G2.

Let SG2 be a subset of E(G2) such that ζG2 (f) = |SG2 |. By the definition of ζG2 ,SG2 has
the following properties:

(A) the graph G2\SG2 has girth > s, and
(B) for every {i, j} ∈ X, the distance in G2\SG2 between λ−1

2 (i) and λ−1
2 (j) is at least

f (i, j) + 1.

By the definition of f, and Properties (A) and (B), all s-cycles in G2 ⊕ F that are not
entirely in F are intersected by SG2 . Hence, S′ = SG2 ∪ SF intersects all cycles in
G2 ⊕ F. Moreover, by the definition of f, we obtain that SG1 ∩ SF ⊆ SG2 . This implies
that S′ = SG2 ∪ SF = SG2 ∪ (SG1 ∩ SF) ∪ (SF\(SG1 ∩ SF)) = SG2 ∪ (SF\(SG1 ∩ SF)).

We now have that |S′| ≤ |SG2 |+ |SF\(SG1 ∩ SF)| = ζG2 (f)+|SF\(SG1 ∩ SF)| = ζG1 (f) +
c + |SF\(SG1 ∩ SF)| ≤(57) |SG1 | + |SF\(SG1 ∩ SF)| + c = |SG1 ∪ SF | + c = |S|+c ≤ k+c.
Therefore, (G2 ⊕ F, k+ c) ∈ �, and the lemma follows.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:61

8.9. Summary of Consequences of Our Results

In this section, we discuss some of the consequences of our main meta-algorithmic
results, namely Theorems 1.1 and 1.3.

We start with the consequences of Theorem 1.3 to minimization problems that have
FII.

COROLLARY 8.19. If g ∈ Z
+ and if � is one of the following problems, p-VERTEX

COVER, p-FEEDBACK VERTEX SET, ALMOST OUTERPLANAR, p-DIAMOND HITTING SET, p-ALMOST-
t-BOUNDED TREEWIDTH, p-ALMOST-t-BOUNDED PATHWIDTH, p-H-DELETION, p-EDGE DOMINATING

SET, p-MINIMUM-VERTEX FEEDBACK EDGE SET, p-DOMINATING SET, p-r-DOMINATING SET, p-q-
THRESHOLD DOMINATING SET, p-EFFICIENT DOMINATING SET, p-CONNECTED DOMINATING SET,
p-CONNECTED VERTEX COVER, p-CYCLE DOMINATION, p-DIRECTED DOMINATION, p-S-COVERING,
p-MINIMUM PARTITION INTO CLIQUES, p-EDGE CLIQUE COVER, and p-s-CYCLE TRANSVERSAL,
then �g admits a linear kernel.

PROOF. The definitions of p-VERTEX COVER, p-FEEDBACK VERTEX SET, p-ALMOST OUTER-
PLANAR, p-DIAMOND HITTING SET, p-ALMOST-t-BOUNDED TREEWIDTH, and p-ALMOST-t-BOUNDED

PATHWIDTH have been given in Section 8.2, and all of them are special cases of the
p-H-DELETION problem. They all have FII because of Lemma 8.4, and the quasi-
coverability of �g follows from Lemma 8.3. We remark that not all of these problems are
coverable.

p-EDGE DOMINATING SET asks whether a graph G contains a set F of at most k edges
such that every other edge shares a common endpoint with some edge in F. The cover-
ability of �g follows by the fact that the endpoints of the edges in F form a dominating
set of G. Moreover, the p-EDGE DOMINATING SET problem can be easily expressed as a
p-MIN-CMSO[ψ] problem (with edge quantification), and the proof of its strong mono-
tonicity is similar to the one of Lemma 8.9. Therefore, it has FII as well. Using similar
arguments, one can prove that if �=MINIMUM-VERTEX FEEDBACK EDGE SET, given an
undirected graph G and a positive integer k, the task is to find a spanning tree T of G
in which at most k vertices have a degree smaller than in G, then �g is quasi-coverable
(however, it is not coverable). Moreover, MINIMUM-VERTEX FEEDBACK EDGE SET has FII
because it can be expressed as a p-MIN-CMSO[ψ] problem and can be proved to be
strongly monotone with a proof that uses the ideas of Lemma 8.9.

p-DOMINATING SET, p-r-DOMINATING SET, p-q-THRESHOLD DOMINATING SET, and p-
EFFICIENT DOMINATING SET are defined in Section 8.5. All of these problems are coverable
and have FII because of Lemma 8.9. Notice that for the first three problems, the FII
property follows by expressing them as p-MIN-CMSO[ψ] problems and proving that
they are are strongly monotone. However, p-EFFICIENT DOMINATING SET is not strongly
monotone, and the proof that it has FII uses a different idea.

p-CONNECTED DOMINATING SET is also defined in Section 8.5. The coverability of �g
and the FII property is proved in Lemma 8.14. Using similar ideas, the same results
can also be proved for CONNECTED VERTEX COVER.

The CYCLE DOMINATION problem asks whether a graph G contains a set S of at most
k vertices such that the removal of S together with its neighbors from G results in an
acyclic graph. This problem can be seen as a common extension of p-FEEDBACK VERTEX

SET and p-DOMINATING SET. �g can be proven to be quasi-coverable with arguments
similar to those in the case of p-FEEDBACK VERTEX SET (p-CYCLE DOMINATION is not a
coverable problem). The problem is easily expressible as a p-MIN-CMSO[ψ] problem,
and the proof that it is strongly monotone is a blend of the ideas of the proofs of
Lemmata 8.4 and 8.9.

p-DIRECTED DOMINATION is defined in Section 8.7. The coverability and the FII property
of �g are proved in Lemma 8.17.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:62 H. L. Bodlaender et al.

p-S-COVERING has been defined in Section 8.4. The existence of a linear kernel for
this problem makes use of the Redundant Vertex Rule (Lemma 8.7), Lemma 8.8 (for
coverability), and the ideas in the proof of Lemma 8.4 (for the FII property).

The p-MINIMUM PARTITION INTO CLIQUES problem asks whether the vertex set of a graph
G can be partitioned into at most k sets, each inducing a clique in G (in other words, we
are asking for a k coloring of the complement of G). Let S be a set containing a vertex
from each clique. Notice that S is a dominating set of G. Therefore, �g is a coverable
problem. To prove that it also has FII, one needs to express it as a p-MIN-CMSO[ψ]
problem and then use arguments similar to those of Lemma 8.9 to prove that it is
strongly monotone.

The p-EDGE CLIQUE COVER problem asks whether a graph G contains a collection of
at most k cliques such that for every edge of G, both its endpoints belongs to some of
those cliques. We observe first that �g is quasi-coverable. To see this, just notice that
if we consider a set with one vertex from each such clique, then the removal of the
closed neighborhood of this set from G results in an edgeless graph. The proof that the
problem has FII is omitted in this article.

Finally, p-s-CYCLE TRANSVERSAL has been defined in Section 8.8. Although this problem
is not strongly monotone, it has FII because of Lemma 8.18. To prove that it has a linear
kernel, first one needs to apply to its instances the following preprocessing routine:
remove each vertex that does not appear in some cycle of G of length ≤ s. This routine
can be seen as a special case of the Redundant Vertex Rule presented in Section 8.4, and
with a proof similar to the one of Lemma 8.7, one can show that it produces equivalent
instances. Under these circumstances, the coverability of �g can be proved following
the arguments of Lemma 8.8.

We continue with the consequences of Theorem 1.3 to maximization problems that
have FII.

COROLLARY 8.20. If g ∈ Z
+ and if � is one of the following problems, p-r-SCATTERED

SET, p-INDEPENDENT SET, p-INDUCED MATCHING, p-TRIANGLE EDGE PACKING, p-MAXIMUM

INTERNAL SPANNING TREE, p-MAXIMUM FULL-DEGREE SPANNING TREE, p-CYCLE PACKING, p-
H-PACKING, p-TRIANGLE VERTEX PACKING, p-S-PACKING, and p-EDGE CYCLE PACKING, then
�g admits a linear kernel.

PROOF. The p-r-SCATTERED SET problem has been defined in Section 8.6. The coverabil-
ity of �r

g is proved in Lemma 8.15, whereas the problem has FII because of Lemma 8.16.
We stress that the p-r-SCATTERED SET problem is, in general, not a strongly monotone
problem. The p-INDEPENDENT SET problem asks whether a graph G contains a set of at
least k mutually nonadjacent vertices. If �=p-INDEPENDENT SET, then �g is coverable
using an argument that is very similar to the one of Lemma 8.15. Likewise, one may
use the arguments of Lemma 8.16 to prove that the problem has FII. Alternatively, one
may express p-INDEPENDENT SET as a p-MAX-CMSO[ψ] problem and then prove that it
is strongly monotone.

The p-INDUCED MATCHING problem asks whether a graph G contains a set of at least
k edges such that no vertex in G has as neighbors endpoints of more than one edges in
this set. The problem is quasi-coverable because every NO-instance without isolated
vertices has a (1, 3)-dominating of size at most k. Moreover, the FII property uses ideas
of the proof of 8.16. We stress that p-INDUCED MATCHING is not a strongly monotone
problem.

The p-TRIANGLE EDGE PACKING problem asks whether a graph G contains at least k
triangles such that no two of them have any edge in common. The existence of a linear
kernel for this problem makes use of the Redundant Vertex Rule and is based on suitable

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:63

adaptations of the proofs of Lemma 8.8 (for coverability) and Lemma 8.4 (for the FII
property).

The p-MAXIMUM INTERNAL SPANNING TREE problem asks whether a graph G has a span-
ning tree with at least k internal vertices. The coverability of �g follows by observing
that a NO-instance has a connected dominating set of less than k vertices. The problem
is not strongly monotone, and proving that it has FII requires a direct proof that we
omit in this article.

The p-MAXIMUM FULL-DEGREE SPANNING TREE problem asks whether a graph G has a
spanning tree T containing at least k vertices of full degree (a vertex v of T has full
degree if NT (v) = NG(v)). Clearly, a NO-instance of �g cannot have a 2-independent set
of size at least k; otherwise, we can grow a spanning tree with ≥ k full-degree vertices
by starting from the neighborhoods of the vertices in such a set. But then, using the
arguments of the proof of Lemma 8.15, G has a dominating set of size c · k, where c is
a constant that depends on the Euler genus g of G. This implies the coverability of �g.
For the FII property, we only mention that the problem is not strongly monotone, and
a specialized proof is required that is omitted in this article.

The p-CYCLE PACKING problem asks whether a graph contains at least k mutually
vertex-disjoint cycles. This is a special case of the p-H-PACKING problem, where H =
{K3}. For both problems, the quasi-coverability of �g follows from Lemma 8.5. The FII
property of p-CYCLE PACKING follows from Lemma 8.6, and this proof can be extended
for the general case of the p-H-PACKING problem, as mentioned at the end of Section 8.3.
Notice that both problems are neither strongly monotone nor coverable.

The p-TRIANGLE VERTEX PACKING problem asks whether a graph G contains a set of at
least k triangles where no two such triangles share some common vertex. p-TRIANGLE

VERTEX PACKING is a special case of the p-S-PACKING problem, where S = {K3}. The
existence of a linear kernel for these problem makes use of the Redundant Vertex Rule
(Lemma 8.7), Lemma 8.8 (for coverability), and the ideas in the proof of Lemma 8.6
(for the FII property).

p-EDGE CYCLE PACKING asks whether a graph G contains a collection of at least k
mutually edge-disjoint cycles. To prove the quasi-coverability of �g, observe that a
NO-instance cannot contain a collection of k vertex-disjoint cycles. But then, by the
application of Erdős-Pósa property on bounded genus graphs (e.g., see Fomin et al.
[2011] and Kloks et al. [2002]), G contains a set of at most c · k vertices meeting all the
cycles of G, where c is a constant depending on the Euler genus g of G. The proof that
the problem has FII is omitted.

Corollaries 8.19 and 8.20 unify and generalize results presented in Alber et al. [2004,
2006b], Bodlaender and Penninkx [2008], Bodlaender et al. [2008], Chen et al. [2007],
Fomin and Thilikos [2004], Guo and Niedermeier [2007b], Guo et al. [2010], Kanj et al.
[2011], Lokshtanov et al. [2011], Moser and Sikdar [2009], and Xia and Zhang [2011].

We conclude this section with some consequences of Theorem 1.1 for problems that
do not have FII.

COROLLARY 8.21. If g ∈ Z
+ and if � is one of the following problems, p-INDEPENDENT

DOMINATING SET, p-ACYCLIC DOMINATING SET, p-INDEPENDENT DIRECTED DOMINATION, p-
MAXIMUM INTERNAL OUT-BRANCHING, p-ODD SET, and p-EDGE-S-COVERING, then �g admits
a polynomial kernel.

PROOF. The p-INDEPENDENT DOMINATING SET problem asks whether a graph G contains
a dominating set of at most k mutually nonadjacent vertices. The p-ACYCLIC DOMINATING

SET problem asks whether a graph G contains a dominating set S of at most k vertices
such that G[S] is acyclic. Although these problems do not have FII, they can be both
expressed as p-MIN-CMSO[ψ] problems and are obviously coverable.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:64 H. L. Bodlaender et al.

Problems p-INDEPENDENT DIRECTED DOMINATION and p-MAXIMUM INTERNAL OUT-
BRANCHING have been defined in Section 8.7, and they do not have FII. According to
Lemma 8.17, in both cases, �g is a coverable p-MIN-CMSO[ψ] problem.

The p-ODD SET problem asks whether a graph G contains a set S of at most k vertices
such that for every vertex of G, the number of its neighbors in S is odd. Clearly, such
a set is a dominating set, and therefore �g is coverable. p-ODD SET does not have FII.
However, it can be expressed as a p-MIN-CMSO[ψ] problem (notice that here we have
to use the “counting” expressive power of CMSO).

Given some fixed finite collection of graphs S, the p-EDGE-S-COVERING problem asks
whether a graph G contains a set of at most k edges meeting every subgraph of G that
is isomorphic to a graph in S. For this problem, a linear kernel requires the application
of the Redundant Vertex Rule. The coverability of �g follows similarly to the proof of
Lemma 8.8. EDGE-S-COVERING does not have, in general, FII (although it has FII if
S contains only cliques). However, it is possible to formulate it as a p-MIN-CMSO[ψ]
problem.

Concluding this section, we mention that there are several problems that do not
satisfy the conditions of Theorems 1.3 and 1.1.

Apart from the problems mentioned in Corollary 8.20, other examples of p-max-
CMSO problems that do not have FII include p-MAXIMUM CUT, p-LONGEST PATH, and
p-LONGEST CYCLE (see de Fluiter [1997]). Notice that p-MAXIMUM CUT is (trivially) quasi-
coverable, whereas p-LONGEST PATH and p-LONGEST CYCLE are not. In fact, p-MAXIMUM

CUT admits a trivial 2k kernel on general graphs, whereas p-LONGEST PATH, and p-
LONGEST CYCLE do not admit polynomial kernels unless coNP ⊆ NP/poly [Bodlaender
et al. 2009a].

As an example of a problem that has FII but is neither coverable or quasi-coverable,
we mention p-HAMILTONIAN PATH COMPLETION (asking whether the addition of at most
k edges in a graph can make it Hamiltonian). This problem can be expressed as a
p-MIN-CMSO[ψ], and it is possible to prove that it is strongly monotone. Therefore, it
has FII. However, none of our results apply to this problem, as it is not quasi-coverable.
In fact, p-HAMILTONIAN PATH COMPLETION cannot have a kernel, unless P=NP, as such a
kernelization algorithm, for k = 1, would be a polynomial algorithm for the HAMILTONIAN

PATH problem.

9. OPEN PROBLEMS AND FURTHER DIRECTIONS

This article gives the first meta-theorems on kernelization, where logical and com-
binatorial properties of problems lead to kernels of polynomial or linear sizes. Our
results are quite general in the sense that they can be applied to a large number of
combinatorial problems on graphs on fixed surfaces and generalize a large collection
of known results. Still, there are several directions in which our results could possibly
be extended. We conclude with some new problems and further research directions
opened by our results.

Further extensions. The first natural question for further research is if our logical and
combinatorial properties can be extended to larger classes of problems. The property
that problems should satisfy some kind of coverability or quasi-coverability cannot
be omitted. For instance, even though the problem of finding a path of length k is
expressible in first-order logic, it does not admit a polynomial kernel on planar graphs
unless coNP ⊆ NP/poly [Bodlaender et al. 2009a]. An interesting question for further
research is the following:

—Do all quasi-coverable CMSO problems admit a linear kernel on graphs of bounded
genus?

This question is interesting even restricting ourselves to planar graphs.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

(Meta) Kernelization 44:65

It is very natural to ask whether our results can be extended to more general classes
of graphs. The most natural candidates for such extensions are graphs of bounded local
treewidth [Frick and Grohe 2001] and graphs of bounded expansion [Nešetřil and de
Mendez 2008]. The first step in this direction is done in Fomin et al. [2010].

Practical considerations. Our meta-theorems provide simple criteria to decide
whether a problem admits a polynomial or linear kernel on graphs of bounded genus. It
is expected that for concrete problems, tailor-made kernels will have much smaller con-
stant factors than what would follow from a direct application of our results. However,
our approach might be useful for computer-aided design of kernelization algorithms:
a computer program can in some cases output a set of rules that transform each
protrusion to a minimum-size representative and estimate the obtained kernel size.
This seems to be an interesting and far from trivial algorithm-engineering problem.
In general, finding linear kernels with reasonably small constant factors for concrete
problems on planar graphs or graphs with small genus remains a worthy topic of
further research.

Some concrete open problems. We conclude with some concrete problems that cannot
be resolved by our approach. These include p-DIRECTED FEEDBACK VERTEX SET [Chen et al.
2008] and p-ODD CYCLE TRANSVERSAL [Reed et al. 2004], to name a few. These problems
are expressible in CMSO, but none of them are known to be quasi-coverable. For p-
DIRECTED FEEDBACK VERTEX SET, no polynomial kernel is known even on planar graphs.
For p-ODD CYCLE TRANSVERSAL, a randomized kernel for general graphs was obtained
recently in Kratsch and Wahlström [2014], but the existence of a deterministic kernel
even on planar graphs is open.

Impact. The protrusion replacement technique for kernelization was introduced in
the preliminary conference version of this article [Bodlaender et al. 2009b] and appears
to be useful in different algorithmic approaches. They were used to obtain kernels for a
wide set of bidimensional problems on H-minor-free graphs [Fomin et al. 2010, 2012],
vertex removal problems on general and unit disc graphs [Fomin et al. 2011a], and
problems on graphs excluding a fixed graph as a topological minor [Fomin et al. 2013;
Kim et al. 2016]. It was also used in the design of fast parameterized algorithms and
approximation algorithms [Fomin et al. 2011b, 2012a, 2012b; Joret et al. 2014; Kim
et al. 2015, 2016].

APPENDIX

A. PROBLEM COMPENDIUM

In this compendium, we present the kernelization status of all problems that have been
mentioned in this article.

A.1. Minimization Problems That Have FII and Are Quasi-Coverable—Linear Kernels for
Graphs of Bounded Genus.

p-VERTEX COVER, p-FEEDBACK VERTEX SET, p-ALMOST OUTERPLANAR, p-DIAMOND HIT-
TING SET, p-ALMOST-t-BOUNDED TREEWIDTH, p-ALMOST-t-BOUNDED PATHWIDTH, p-H-DELETION,
p-EDGE DOMINATING SET, p-MINIMUM-VERTEX FEEDBACK EDGE SET, p-DOMINATING SET,
p-r-DOMINATING SET, p-q-THRESHOLD DOMINATING SET, p-EFFICIENT DOMINATING SET∗,
p-CONNECTED DOMINATING SET, p-CONNECTED VERTEX COVER, p-CYCLE DOMINATION, p-
DIRECTED DOMINATION, p-S-COVERING, p-MINIMUM PARTITION INTO CLIQUES, p-EDGE CLIQUE

COVER∗, and p-s-CYCLE TRANSVERSAL∗.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

44:66 H. L. Bodlaender et al.

A.2. Maximization Problems That Have FII and Are Quasi-coverable—Linear Kernels for
Graphs of Bounded Genus.

p-r-SCATTERED SET∗, p-INDEPENDENT SET, p-INDUCED MATCHING∗, p-TRIANGLE EDGE

PACKING+, p-MAXIMUM INTERNAL SPANNING TREE∗, p-MAXIMUM FULL-DEGREE SPANNING

TREE∗, p-CYCLE PACKING∗, p-H-PACKING∗, p-TRIANGLE VERTEX PACKING+, p-S-PACKING+,
and p-EDGE CYCLE PACKING∗,

For all problems with an asterisk “∗”, a direct proof that they have FII is required.
For the rest, FII property follow by expressing them as a p-MIN/MAX-CMSO problem
and proving strong monotonicity. For the problems with a cross “+”, the linear kernel
assumes the application of some preprocessing routine.

A.3. Problems That Do Not Have FII and Are Coverable p-MIN/MAX-CMSO—Polynomial Kernels
for Graphs of Bounded Genus.

p-INDEPENDENT DOMINATING SET, p-ACYCLIC DOMINATING SET, p-INDEPENDENT DIRECTED

DOMINATION, p-MAXIMUM INTERNAL OUT-BRANCHING, p-ODD SET, and p-EDGE-S-COVERING.

A.4. A Problem That Has FII but Is Not Quasi-Coverable.

p-HAMILTONIAN PATH COMPLETION.

A.5. A Quasi-Coverable Problem That Has No FII.

p-MAXIMUM CUT.

A.6. Problems That Do Not Have FII and Are Not Quasi-Coverable.

p-LONGEST PATH and p-LONGEST CYCLE.

ACKNOWLEDGMENT

We thank Jiong Guo, Ge Xia, and Yong Zhang for sending us the full versions of Guo and Niedermeier
[2007b] and Xia and Zhang [2011]. We also thank the anonymous reviewers of FOCS ’09 and JACM for their
valuable comments on previous versions of this article.

REFERENCES

Karl Abrahamson and Michael Fellows. 1993. Finite automata, bounded treewidth and well-quasiordering.
In Proceedings of the AMS Summer Workshop on Graph Minors, Graph Structure Theory. 539–563.
DOI:http://dx.doi.org/10.1090/conm/147/01199

Isolde Adler, Martin Grohe, and Stephan Kreutzer. 2008. Computing excluded minors. In Proceed-
ings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’08). 641–650.
http://portal.acm.org/citation.cfm?id=1347082.1347153

Jochen Alber, Nadja Betzler, and Rolf Niedermeier. 2006a. Experiments on data reduction for optimal domi-
nation in networks. Annals of Operations Research 146, 1, 105–117.

Jochen Alber, Britta Dorn, and Rolf Niedermeier. 2006b. A general data reduction scheme for domination
in graphs. In SOFSEM 2006: Theory and Practice of Computer Science. Lecture Notes in Computer
Science, Vol. 3831. Springer, Berlin, 137–147.

Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. 2004. Polynomial-time data reduction for dominating
sets. Journal of the ACM 51, 363–384.

Noga Alon and Shai Gutner. 2008. Kernels for the Dominating Set Problem on Graphs With an Excluded
Minor. Technical Report TR08-066. Electronic Colloquium on Computational Complexity.

Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. 1993. An algebraic theory of
graph reduction. Journal of the ACM 40, 1134–1164.

Stefan Arnborg, Jens Lagergren, and Detlef Seese. 1991. Easy problems for tree-decomposable graphs.
Journal of Algorithms 12, 308–340.

D. W. Bange, A. E. Barkauskas, and P. J. Slater. 1988. Efficient dominating sets in graphs. In Applications
of Discrete Mathematics. SIAM, Philadelphia, PA, 189–199.

Hans L. Bodlaender. 1996. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
Journal on Computing 25, 6, 1305–1317.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

http://dx.doi.org/10.1090/conm/147/01199
http://portal.acm.org/citation.cfm?id$=$1347082.1347153

(Meta) Kernelization 44:67

Hans L. Bodlaender and Babette de Fluiter. 1996. Reduction algorithms for constructing solutions in graphs
with small treewidth. In Computing and Combinatorics. Lecture Notes in Computer Science, Vol. 1090.
Springer, 199–208.

Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. 2009a. On problems
without polynomial kernels. Journal of Computer and System Sciences 75, 8, 423–434.

Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M.
Thilikos. 2009b. (Meta) kernelization. In Proceedings of the 50th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’09). IEEE, Los Alamitos, CA, 629–638.

Hans L. Bodlaender and Torben Hagerup. 1998. Parallel algorithms with optimal speedup for bounded
treewidth. SIAM Journal on Computing 27, 1725–1746.

Hans L. Bodlaender and Eelko Penninkx. 2008. A linear kernel for planar feedback vertex set. In Param-
eterized and Exact Computation. Lecture Notes in Computer Science, Vol. 5018. Springer, 160–171.
http://dl.acm.org/citation.cfm?id=1789694.1789710

Hans L. Bodlaender, Eelko Penninkx, and Richard B. Tan. 2008. A linear kernel for the k-disjoint cycle prob-
lem on planar graphs. In Algorithms and Computation. Lecture Notes in Computer Science, Vol. 5369.
Springer, Berlin, 306–317.

Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. 2001. Reduction algorithms for graphs of small
treewidth. Information and Computation 167, 86–119.

Richard B. Borie, R. Gary Parker, and Craig A. Tovey. 1992. Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica
7, 555–581.

Jianer Chen, Henning Fernau, Iyad A. Kanj, and Ge Xia. 2007. Parametric duality and kernelization: Lower
bounds and upper bounds on kernel size. SIAM Journal on Computing 37, 1077–1106.

Jianer Chen, Iyad A. Kanj, and Weijia Jia. 2001. Vertex cover: Further observations and further improve-
ments. Journal of Algorithms 41, 2, 280–301. DOI:http://dx.doi.org/10.1006/jagm.2001.1186

Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. 2008. A fixed-parameter al-
gorithm for the directed feedback vertex set problem. Journal of the ACM 55, 5, Article No. 21.
DOI:http://dx.doi.org/10.1145/1411509.1411511

Bruno Courcelle. 1990. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and Computation 85, 12–75.

Bruno Courcelle. 1992. The monadic second-order logic of graphs. III. Tree-decompositions, minors and
complexity issues. RAIRO: Theoretical Informatics and Applications 26, 3, 257–286.

Bruno Courcelle. 1997. The expression of graph properties and graph transformations in monadic second-
order logic. In Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1. World
Scientific Publishing, River Edge, NJ, 313–400. DOI:http://dx.doi.org/10.1142/9789812384720_0005

Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-Order Logic: A Language-
Theoretic Approach. Cambridge University Press.

Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał
Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer.

Anuj Dawar, Martin Grohe, and Stephan Kreutzer. 2007. Locally excluding a minor. In Proceedings of the
22nd IEEE Symposium on Logic in Computer Science (LICS’07). IEEE, Los Alamitos, CA, 270–279.

Babette de Fluiter. 1997. Algorithms for Graphs of Small Treewidth. Ph.D. Dissertation. Utrecht University,
Utrecht, Netherlands.

Rodney G. Downey and Michael R. Fellows. 1998. Parameterized Complexity. Springer, Berlin, Germany.
Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer.
P. Duchet and H. Meyniel. 1982. On Hadwiger’s number and the stability number. In Graph Theory. North-

Holland Mathematics Studies, Vol. 62. North-Holland, Amsterdam, Netherlands, 71–73.
Zdenek Dvorak. 2013. Constant-factor approximation of the domination number in sparse graphs. European

Journal of Combinatorics 34, 5, 833–840.
David Eppstein. 2000. Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291.
Michael R. Fellows and Michael A. Langston. 1989. An analogue of the Myhill-Nerode theorem and its

use in computing finite-basis characterizations (extended abstract). In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science (FOCS’89). IEEE, Los Alamitos, CA, 520–525.

Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer-Verlag, Berlin, Germany.
Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh. 2011a.

Hitting forbidden minors: Approximation and kernelization. In Proceedings of the 8th International
Symposium on Theoretical Aspects of Computer Science (STACS’11). 189–200.

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

http://dl.acm.org/citation.cfm?id$=$1789694.1789710
http://dx.doi.org/10.1006/jagm.2001.1186
http://dx.doi.org/10.1145/1411509.1411511
http://dx.doi.org/10.1142/9789812384720_0005

44:68 H. L. Bodlaender et al.

Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2012b. Planar f-deletion: Approx-
imation, kernelization and optimal FPT algorithms. In Proceedings of the 53rd Annual Symposium on
Foundations of Computer Science (FOCS’12). IEEE, Los Alamitos, CA, 470–479.

Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. 2011b. Bidimensionality and
EPTAS. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’11).
748–759.

Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2012a. Bidimensionality and geometric graphs. In
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 1563–1575.

F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. 2010. Bidimensionality and kernels. In Proceed-
ings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). ACM, New York, NY,
503–510.

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2012. Linear kernels for
(connected) dominating set on H-minor-free graphs. In Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’12). 82–93.

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2013. Linear kernels
for (connected) dominating set on graphs with excluded topological subgraphs. In Proceedings of
the 30th International Symposium on Theoretical Aspects of Computer Science (STACS’13). 92–103.
DOI:http://dx.doi.org/10.4230/LIPIcs.STACS.2013.92

Fedor V. Fomin and Saket Saurabh. 2014. Kernelization methods for fixed-parameter tractability. In
Tractability. Cambridge University Press, Cambridge, MA, 260–282.

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos. 2011. Strengthening Erdős-Pósa property for
minor-closed graph classes. Journal of Graph Theory 66, 3, 235–240.

Fedor V. Fomin and Dimitrios M. Thilikos. 2004. Fast parameterized algorithms for graphs on surfaces:
Linear kernel and exponential speed-up. In Automata, Languages and Programming. Lecture Notes in
Computer Science, Vol. 3142. Springer, Berlin, 581–592.

Markus Frick and Martin Grohe. 2001. Deciding first-order properties of locally tree-decomposable struc-
tures. Journal of the ACM 48, 6, 1184–1206.

Martin Grohe. 2007. Logic, graphs, and algorithms. In Logic and Automata-History and Perspectives, J.
Flum, E. Gradel, and T. Wilke (Eds.). Amsterdam University Press, Amsterdam, Netherlands, 357–422.

Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. 2011. Finding topological subgraphs
is fixed-parameter tractable. In Proceedings of the 43rd ACM Symposium on Theory of Computing
(STOC’11). ACM, New York, NY, 479–488.

Jiong Guo and Rolf Niedermeier. 2007a. Invitation to data reduction and problem kernelization. ACM
SIGACT News 38, 1, 31–45.

Jiong Guo and Rolf Niedermeier. 2007b. Linear problem kernels for NP-hard problems on planar graphs.
In Automata, Languages and Programming. Lecture Notes in Computer Science, Vol. 4596. Springer,
375–386.

Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. 2010. Fixed-parameter tractability results for full-
degree spanning tree and its dual. Networks 56, 2, 116–130.

Gregory Gutin, Ton Kloks, Chuan Min Lee, and Anders Yeo. 2005. Kernels in planar digraphs. Journal of
Computer and System Sciences 71, 2, 174–184.

Gregory Gutin, Igor Razgon, and Eun Jung Kim. 2009. Minimum leaf out-branching and related problems.
Theoretical Computer Science 410, 45, 4571–4579.

Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh, and Stéphan Thomassé. 2014. Hit-
ting and harvesting pumpkins. SIAM Journal on Discrete Mathematics 28, 3, 1363–1390.
DOI:http://dx.doi.org/10.1137/120883736

M. Juvan, A. Malnič, and B. Mohar. 1996. Systems of curves on surfaces. Journal of Combinatorial Theory,
Series B 68, 1, 7–22. DOI:http://dx.doi.org/10.1006/J.∼Combin. Theory Ser. B.1996.0053

Marcin Kaminski and Dimitrios M. Thilikos. 2012. Contraction checking in graphs on surfaces. In Pro-
ceedings of the 29th International Symposium on Theoretical Aspects of Computer Science (STACS’12).
182–193. DOI:http://dx.doi.org/10.4230/LIPIcs.STACS.2012.182

Iyad A. Kanj, Michael J. Pelsmajer, Marcus Schaefer, and Ge Xia. 2011. On the induced matching problem.
Journal of Computer and System Sciences 77, 6, 1058–1070.

Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi Sau, and Somnath
Sikdar. 2016. Linear kernels and single-exponential algorithms via protrusion decompositions. ACM
Transactions on Algorithms 12, 2, 21. DOI:http://dx.doi.org/10.1145/2797140

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.92
http://dx.doi.org/10.1137/120883736
http://dx.doi.org/10.1006/J.protect $
elax sim $Combin. ignorespaces Theory ignorespaces Ser. ignorespaces B.1996.0053
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.182
http://dx.doi.org/10.1145/2797140

(Meta) Kernelization 44:69

Eun Jung Kim, Christophe Paul, and Geevarghese Philip. 2015. A single-exponential FPT algo-
rithm for the K4-minor cover problem. Journal of Computer and System Sciences 81, 1, 186–207.
DOI:http://dx.doi.org/10.1016/j.jcss.2014.05.001

T. Kloks, C. M. Lee, and J. Liu. 2002. New algorithms for k-face cover, k-feedback vertex set, and k-disjoint
cycles on plane and planar graphs. In Graph-Theoretic Concepts in Computer Science. Lecture Notes in
Computer Science, Vol. 2573. Springer, 282–295.

Stefan Kratsch and Magnus Wahlström. 2014. Compression via matroids: A randomized polyno-
mial kernel for odd cycle transversal. ACM Transactions on Algorithms 10, 4, 20:1–20:15.
DOI:http://dx.doi.org/10.1145/2635810

Stephan Kreutzer. 2011. Algorithmic meta-theorems. In Finite and Algorithmic Model Theory. London Math-
ematical Society Lecture Notes Series, Vol. 379. Cambridge University Press, Cambridge, England,
177–270.

Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2012. Kernelization–preprocessing with a guar-
antee. In The Multivariate Algorithmic Revolution and Beyond. Springer, 129–161.

Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. 2011. A linear kernel for a planar connected
dominating set. Theoretical Computer Science 412, 23, 2536–2543.

Bojan Mohar. 1999. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM Journal on
Discrete Mathematics 12, 1, 6–26.

Bojan Mohar and Carsten Thomassen. 2001. Graphs on Surfaces. Johns Hopkins University Press,
Baltimore, MD.

Hannes Moser and Somnath Sikdar. 2009. The parameterized complexity of the induced matching problem.
Discrete Applied Mathematics 157, 4, 715–727.

Jaroslav Nešetřil and Patrice Ossona de Mendez. 2008. Grad and classes with bounded expansion II. Algo-
rithmic aspects. European Journal of Combinatorics 29, 3, 777–791.

Rolf Niedermeier. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics
and Its Applications, Vol. 31. Oxford University Press, Oxford, England.

Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. 2012. Polynomial kernels for dominating set
in graphs of bounded degeneracy and beyond. ACM Transactions on Algorithms 9, 1, 11.

W. V. Quine. 1952. The problem of simplifying truth functions. American Mathematical Monthly 59, 521–531.
Bruce Reed, Kaleigh Smith, and Adrian Vetta. 2004. Finding odd cycle transversals. Operations Research

Letters 32, 4, 299–301. DOI:http://dx.doi.org/10.1016/j.orl.2003.10.009
N. Robertson and P. D. Seymour. 1995. Graph minors. XIII. The disjoint paths problem. Journal of Combi-

natorial Theory, Series B 63, 1, 65–110.
Neil Robertson, Paul D. Seymour, and Robin Thomas. 1994. Quickly excluding a planar graph. Journal of

Combinatorial Theory, Series B, 323–348.
Paul D. Seymour and Robin Thomas. 1993. Graph searching and a minimax theorem for tree-width. Journal

of Combinatorial Theory, Series B 58, 239–257.
Stéphan Thomassé. 2010. A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms 6, 2,

32:1–32.8.
Johan M. M. van Rooij. 2011. Exact Exponential-Time Algorithms for Domination Problems in Graphs. Ph.D.

Dissertation. Utrecht University, Utrecht, Netherlands.
Ge Xia and Yong Zhang. 2011. On the small cycle transversal of planar graphs. Theoretical Computer Science

412, 29, 3501–3509.

Received May 2010; revised March 2016; accepted July 2016

Journal of the ACM, Vol. 63, No. 5, Article 44, Publication date: November 2016.

http://dx.doi.org/10.1016/j.jcss.2014.05.001
http://dx.doi.org/10.1145/2635810
http://dx.doi.org/10.1016/j.orl.2003.10.009

