
29

Efficient Computation of Representative Families with Applications
in Parameterized and Exact Algorithms

FEDOR V. FOMIN and DANIEL LOKSHTANOV, University of Bergen, Norway
FAHAD PANOLAN, Institute of Mathematical Sciences, India
SAKET SAURABH, Institute of Mathematical Sciences, India, and University of Bergen, Norway

Let M = (E, I) be a matroid and let S = {S1, . . . , St} be a family of subsets of E of size p. A subfamily Ŝ ⊆ S
is q-representative for S if for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with
X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. By the classic result of Bollobás, in a
uniform matroid, every family of sets of size p has a q-representative family with at most (p+q

p) sets. In his
famous “two families theorem” from 1977, Lovász proved that the same bound also holds for any matroid
representable over a field F. We give an efficient construction of a q-representative family of size at most
(p+q

p) in time bounded by a polynomial in (p+q
p), t, and the time required for field operations.

We demonstrate how the efficient construction of representative families can be a powerful tool for de-
signing single-exponential parameterized and exact exponential time algorithms. The applications of our
approach include the following:

—In the LONG DIRECTED CYCLE problem, the input is a directed n-vertex graph G and the positive integer k.
The task is to find a directed cycle of length at least k in G, if such a cycle exists. As a consequence of our
6.75k+o(k)nO(1) time algorithm, we have that a directed cycle of length at least log n, if such a cycle exists,
can be found in polynomial time.

—In the MINIMUM EQUIVALENT GRAPH (MEG) problem, we are seeking a spanning subdigraph D′ of a given
n-vertex digraph D with as few arcs as possible in which the reachability relation is the same as in the
original digraph D.

—We provide an alternative proof of the recent results for algorithms on graphs of bounded treewidth
showing that many “connectivity” problems such as HAMILTONIAN CYCLE or STEINER TREE can be solved in
time 2O(t)n on n-vertex graphs of treewidth at most t.

For the special case of uniform matroids on nelements, we give a faster algorithm to compute a representative
family. We use this algorithm to provide the fastest known deterministic parameterized algorithms for k-
PATH, k-TREE, and, more generally, k-SUBGRAPH ISOMORPHISM, where the k-vertex pattern graph is of constant
treewidth.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.2 [Graph Theory]: Graph Algorithms

General Terms: Algorithms, Design, Theory

Preliminary versions of this article appeared in the proceedings of SODA 2014 and ESA 2014. This work is
supported by Rigorous Theory of Preprocessing, ERC Advanced Investigator Grant 267959, and Parameter-
ized Approximation, ERC Starting Grant 306992.
Authors’ addresses: F. V. Fomin and D. Lokshtanov, Department of Informatics, University of Bergen, Post-
boks 7803 5020 Bergen, Norway; emails: {fomin, daniello}@ii.uib.no; F. Panolan and S. Saurabh, Theoretical
Computer Science, Institute of Mathematical Sciences, Chennai, India; emails: fahad.panolan@gmail.com,
saket@imsc.res.in.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0004-5411/2016/09-ART29 $15.00
DOI: http://dx.doi.org/10.1145/2886094

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

http://dx.doi.org/10.1145/2886094

29:2 F. V. Fomin et al.

Additional Key Words and Phrases: Matroids, representative families, linear independence, hash functions,
parameterized algorithms

ACM Reference Format:
Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2016. Efficient computation of
representative families with applications in parameterized and exact algorithms. J. ACM 63, 4, Article 29
(September 2016), 60 pages.
DOI: http://dx.doi.org/10.1145/2886094

1. INTRODUCTION

The theory of matroids provides deep insight into the tractability of many fundamental
problems in Combinatorial Optimization like MINIMUM WEIGHT SPANNING TREE or PER-
FECT MATCHING. Marx [2009] was the first to apply matroids to design fixed-parameter
tractable algorithms. The main tool used by Marx was the notion of representative
families. Representative families for set systems were introduced by Monien [1985].

Let M = (E, I) be a matroid and let S = {S1, . . . , St} be a family of subsets of E of size
p. A subfamily Ŝ ⊆ S is q-representative for S if for every set Y ⊆ E of size at most q,
if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint
from Y and X̂∪ Y ∈ I. In other words, if a set Y of size at most q can be extended to an
independent set of size |Y | + p by adding a subset from S, then it also can be extended
to an independent set of size |Y | + p by adding a subset from Ŝ as well.

The Two-Families Theorem of Bollobás [1965] for extremal set systems and its gen-
eralization to subspaces of a vector space of Lovász [1977] (see also Frankl [1982])
imply that every family of sets of size p has a q-representative family with at most
(p+q

p) sets. These theorems are the cornerstones in extremal set theory with numer-
ous applications in graph and hypergraph theory, combinatorial geometry, and theo-
retical computer science. We refer to Section 9.2.2 of Jukna [2011], surveys of Tuza
[1994, 1996], and Gil Kalai’s blog1 for more information on the theorems and their
applications.

For set families, or equivalently for uniform matroids, Monien provided an algorithm
computing a q-representative family of size at most

∑q
i=0 pi in time O(pq ·∑q

i=0 pi · t)
[Monien 1985]. Marx [2006] provided another algorithm, also for uniform matroids,
for finding q-representative families of size at most (p+q

p) in time O(pq · t2). For linear
matroids, Marx [2009] has shown how Lovász’s proof can be transformed into an algo-
rithm computing a q-representative family. However, the running time of the algorithm
given in Marx [2009] is f (p, q)(||AM||t)O(1), where f (p, q) is a polynomial in (p+q)p and
(p+q

p), that is, f (p, q) = 2O(p log(p+q)) · (p+q
p)O(1), and AM is the matroid’s representation

matrix. Thus, when p is a constant, which is the way this lemma has been recently
used in the kernelization algorithms [Kratsch and Wahlström 2012], we have that
f (p, q) = (p + q)O(1). However, for unbounded p (for an example when p = q = k

2), the
running time of this algorithm is bounded by 2O(k log k)(||AM||t)O(1).

Our results. We give two faster algorithms computing representative families and
show how they can be used to obtain improved parameterized and exact exponential
algorithms for several fundamental and well-studied problems.

Our first result is the following.

THEOREM 1.1. Let M = (E, I) be a linear matroid of rank p + q = k given together
with its representation matrix AM over a field F. Let S = {S1, . . . , St} be a family of
independent sets of size p. Then a q-representative family Ŝ ⊆ S for S with at most (p+q

p)

1http://gilkalai.wordpress.com/2008/12/25/lovaszs-two-families-theorem/.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

http://dx.doi.org/10.1145/2886094
http://gilkalai.wordpress.com/2008/12/25/lovaszs-two-families-theorem/

Representative Families with Applications 29:3

sets can be found in O((p+q
p)tpω + t(p+q

q)ω−1) operations over F. Here, ω < 2.373 is the
matrix multiplication exponent.

Actually, we will prove a variant of Theorem 1.1 that allows sets to have weights.
This extension will be used in several applications. This theorem uses the notion of
weighted representative families and computes a weighted q-representative family
of size at most (p+q

p) within the running time claimed in Theorem 1.1. The proof of
Theorem 1.1 relies on the exterior algebra-based proof of Lovász [1977] and exploits
the multilinearity of the determinant function.

For the case of uniform matroids, we provide the following theorem.

THEOREM 1.2. Let S = {S1, . . . , St} be a family of sets of size p over a universe of size
n and let 0 < x < 1. For a given q, a q-representative family Ŝ ⊆ S for S with at most
x−p(1 − x)−q · 2o(p+q) sets can be computed in time O((1 − x)−q · 2o(p+q) · t · log n).

As in the case of Theorem 1.1, we prove a more general version of Theorem 1.2 for
weighted sets. The proof of Theorem 1.2 is essentially an algorithmic variant of the
“random permutation” proof of the Bollobás Lemma (see Jukna [2011, Theorem 8.7]).
A slightly weaker variant of the Bollobás Lemma can be proved using random parti-
tions instead of random permutations, the advantage of the random partitions proof
being that it can be de-randomized using efficient constructions of universal sets [Naor
et al. 1995]. To obtain our results, we define separating collections and give efficient
constructions of them.

Separating collections can be seen as a variant of universal sets. In its simplest
form, an n-p-q-separating collection C is a pair (F , χ), where F is a family of sets over
a universe U of size n and χ is a function from (U

p) to 2F such that the following two

properties are satisfied: (1) for every A ∈ (U
p) and every F ∈ χ (A), A ⊆ F, and (2) for

every A ∈ (U
p) and B ∈ (U\A

q), there is an F ∈ χ (A) such that A ⊆ F and F ∩ B = ∅. The
size of (F , χ) is |F |, whereas the max degree of (F , χ) is maxA∈(U

p) |χ (A)|. Here 2S for a

set S is the family of all subsets of S, while (S
p) is the family of all subsets of S of size p.

An efficient construction of separating collections is an algorithm that given n, p,
and q, outputs the family F of a separating collection (F , χ) and then allows queries
χ (A) for A ∈ (U

p). We give constructions of separating collections of optimal (up to
subexponential factors in p+ q) size and degree, and construction and query time that
is linear (up to subexponential factors in p + q) in the size of the output.

In the conference version of the article [Fomin et al. 2014a], we only proved The-
orem 1.2 for x = p

p+q . That is, let S = {S1, . . . , St} be a family of sets of size p over
a universe of size n. Then, for a given q, a q-representative family Ŝ ⊆ S for S with
at most (p+q

p) · 2o(p+q) · log n sets can be computed in time O((p+q
q)q · 2o(p+q) · t · log n).

Later we observed that our proof works for every 0 < x < 1 and allows an interesting
tradeoff between the size of the computed representative families and the time taken
to compute them [Fomin et al. 2014b], and that this tradeoff can be exploited algorith-
mically to speed up “representative-families-based” algorithms. Theorem 1.2 improves
the one in Fomin et al. [2014a] by shaving off a multiplicative factor of log n from the
upper bound on the output family size. Independently, at the same time, Shachnai and
Zehavi [2014b] also observed that our initial proof could be generalized in essentially
the same way as what is stated in Theorem 1.2, and that this generalization used to
speed up some of the algorithms given in the preliminary version of the article [Fomin

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:4 F. V. Fomin et al.

Table I. We Use O∗() Notation that Hides Factors Polynomial
in the Number of Vertices n and the Parameter k in Cases

When the Authors Do Not Specify the Power of Polynomials

Reference Randomized Deterministic
Monien [1985] - O(k!nm)

Bodlaender [1993] - O(k!2kn)
Alon et al. [1995] O(5.44kn) O(ckn log n) for a large c

Hüffner et al. [2008] O(4.32km)
Kneis et al. [2008] O∗(4k) O∗(16k)
Chen et al. [2009] O(4kk2.7m) 4k+O(log3 k)nm

Koutis [2008] O∗(2.83k) -
Williams [2009] O∗(2k) -

Björklund et al. [2010] O∗(1.66k) -
Conference version - O(2.851kn log2 n)

This article - O(2.619kn log n)

et al. 2014a]. In particular, they obtain the same dependence on k in the running time
bounds as in this article for k-PATH and LONG DIRECTED CYCLE.
Applications. Here we provide the list of main applications that can be derived from
our algorithms that compute representative families together with a short overview of
previous work on each application.
k-Path. In the k-PATH problem, we are given an undirected n-vertex graph G and
integer k. The question is if G contains a path of length k. k-PATH was studied in-
tensively within the parameterized complexity paradigm [Downey and Fellows 1999].
For n-vertex graphs, the problem is trivially solvable in time O(nk). Monien [1985] and
Bodlaender [1993] showed that the problem is fixed-parameter tractable. Monien [1985]
used representative families for set systems for his k-PATH algorithm, and Plehn and
Voigt [1991] extended this algorithm to SUBGRAPH ISOMORPHISM. This led Papadimitriou
and Yannakakis [1996] to conjecture that the problem is solvable in polynomial time for
k = log n. This conjecture was resolved in a seminal paper of Alon et al. [1995], who in-
troduced the method of color-coding and obtained the first single exponential algorithm
for the problem. Actually, the method of Alon et al. can be applied for more general
problems, like finding a k-path in directed graphs, or to solve the SUBGRAPH ISOMORPHISM

problem in time 2O(k)nO(t), when the treewidth of the pattern graph is bounded by t.
There has been a lot of effort in parameterized algorithms to reduce the base of the
exponent of both deterministic and the randomized algorithms for the k-PATH problem
(see Table I). After the work of Alon et al. [1995], there were several breakthrough
ideas leading to faster and faster randomized algorithms. We refer to Fomin and Kaski
[2013], Koutis and Williams [2016], and Cygan et al. [2015, Chapter 10] for an extensive
overview of parameterized randomized algorithms for k-PATH. Concerning determinis-
tic algorithms, no improvements occurred since 2007, when Chen et al. [2007] showed
a clever way of applying universal sets to reduce the running time of color-coding the
algorithm to O∗(4k+o(k)).

k-PATH is a special case of the k-SUBGRAPH ISOMORPHISM problem, where for given n-
vertex graph G and k-vertex graph F, the question is whether G contains a subgraph
isomorphic to F. In addition to k-PATH, parameterized algorithms for two other variants
of k-SUBGRAPH ISOMORPHISM, when F is a tree, and more generally, a graph of treewidth
at most t, were studied in the literature. Alon et al. [1995] showed that k-SUBGRAPH

ISOMORPHISM, when the treewidth of the pattern graph is bounded by t, is solvable
in time 2O(k)nO(t). Cohen et al. [2010] gave a randomized algorithm that for an input
digraph D decides in time 5.704knO(1) if D contains a given out-tree with k vertices. They

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:5

also showed how to de-randomize the algorithm in time 6.14knO(1). Amini et al. [2012]
introduced an inclusion-exclusion-based approach in the classic color-coding and gave
a randomized 5.4knO(t) time algorithm and a deterministic 5.4k+o(k)nO(t) time algorithm
for the case when F has treewidth at most t. Koutis and Williams [2009] generalized
their algebraic approach for k-PATH to k-TREE and obtained a randomized algorithm
running in time 2knO(1) for k-TREE. Fomin et al. [2012] extended this result by providing
a randomized algorithm for k-SUBGRAPH ISOMORPHISM running in time 2k(nt)O(t), when
the treewidth of F is at most t. However, the fastest known deterministic algorithm for
this problem prior to this article was the time 5.4k+o(k)nO(t) algorithm from Amini et al.
[2012]. In this article, we give deterministic algorithms for k-PATH and k-TREE that run
in time O(2.619kn log n) and O(2.619knO(1)). The algorithm for k-TREE can be generalized
to k-SUBGRAPH ISOMORPHISM for the case when the pattern graph F has treewidth at most
t. This algorithm will run in time O(2.619knO(t)). Our approach can also be applied to
find directed paths and cycles of length k in time O(2.619kmlog n) and O(2.619knO(1)),
respectively.

Another interesting feature of our approach is that due to using weighted representa-
tive families, we can handle the weighted version of the problem as well. The weighted
version of k-PATH is known as SHORT CHEAP TOUR. Let G be a graph with maximum
edge cost W , and then the problem is to find a path of length at least k where the total
sum of costs on the edges is minimized. The algorithm of Björklund et al. [2010] can
be adapted to solve SHORT CHEAP TOUR in time O(1.66knO(1)W); however, their approach
does not seem to be applicable to obtain algorithms with polylogarithmic dependence on
W . Williams [2009] observed that a divide-and-color approach from Chen et al. [2009]
can be used to solve SHORT CHEAP TOUR in time O(4knO(1) log W). No better algorithm
for SHORT CHEAP TOUR was known prior to our work. As it was noted by Williams, the
O(2knO(1)) algorithm of his paper does not appear to extend to weighted graphs. Our
approach provides a deterministic O(2.619knO(1) log W) time algorithm for SHORT CHEAP

TOUR and partially resolves an open question asked by Williams.

Long Directed Cycle. In the LONG DIRECTED CYCLE problem, we are interested in
finding a cycle of length at least k in a directed graph. For this problem, we give an
algorithm of running time O(6.75k+o(k)mn2 log n).

While at first glance the problem is similar to the problem of finding a cycle or a path
of length exactly k, it is more tricky. The reason is that the problem of finding a cycle
of length ≥ k may entail finding a much longer, potentially even a Hamiltonian cycle.
This is why color-coding and other techniques applicable to k-PATH do not seem to work
here. Even for undirected graphs, color-coding alone is not sufficient, and one needs an
additional clever trick to make it work. The first fixed-parameter tractable algorithm
for LONG DIRECTED CYCLE is due to Gabow and Nie [2008], who gave algorithms with
expected running time k2k2O(k)nm and worst-case times O(k2k2O(k)nmlog n) or O(k3knm).
These running times allow them to find a directed cycle of length at least log n/ log log n
in expected polynomial time, if it exists. Let us note that our algorithm implies that
one can find in polynomial time a directed cycle of length at least log n if there is
such a cycle. On the other hand, Björklund et al. [2004] have shown that assuming the
Exponential Time Hypothesis (ETH) of Impagliazzo et al. [2001], there is no polynomial
time algorithm that finds a directed cycle of length �(f (n) log n), for any nondecreasing,
unbounded, polynomial time computable function f that tends to infinity. Thus, our
work closes the gap between the upper and lower bounds for this problem.

Minimum Equivalent Graph. Our next application is from exact exponential time
algorithms; we refer to Fomin and Kratsch [2011] for an introduction to the area of

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:6 F. V. Fomin et al.

exact algorithms. In the MINIMUM EQUIVALENT GRAPH (MEG) problem, we are seeking a
spanning subdigraph D′ of a given digraph D with as few arcs as possible in which the
reachability relation is the same as in the original digraph D. In other words, for every
pair of vertices u, v, there is a path from u to v in D′ if and only if the original digraph
D has such a path. We show that this problem is solvable in time O(24ωnmn), where n
is the number of vertices and m is the number of arcs in D.

MEG is a classic NP-hard problem generalizing the HAMILTONIAN CYCLE problem;
see Chapter 12 of the book by Bang-Jensen and Gutin [2009] for an overview of com-
binatorial and algorithmic results on MEG. The algorithmic studies of MEG can be
traced to the work of Moyles and Thompson [1969] from 1969, who gave a (nontriv-
ial) branching algorithm solving MEG in time O(n!). In 1975, Hsu [1975] discovered a
mistake in the algorithm of Moyles and Thompson and designed a different branch-
ing algorithm for this problem. Martello [1978] and Martello and Toth [1982] gave
another branching-based algorithm with running time O(2m). No single-exponential
exact algorithm, that is, of running time 2O(n), for MEG was known prior to our
work.

As it was already observed by Moyles and Thompson [1969], the hardest instances
of MEG are strong digraphs. A digraph is strong if for every pair of vertices u
= v,
there are directed paths from u to v and from v to u. MEG restricted to strong digraphs
is known as the MINIMUM SCSS (strongly connected spanning subgraph) problem. It
is known that the MEG problem reduces in linear time to MINIMUM SCSS (see, e.g.,
Cormen et al. [2001]).
Treewidth Algorithms. We show that efficient computation of representative families
can be used to obtain algorithms solving “connectivity” problems like HAMILTONIAN

CYCLE or STEINER TREE in time 2O(t)n, where t is the treewidth of the input n-vertex
graph. It is well known that many intractable problems can be solved efficiently when
the input graph has bounded treewidth. Moreover, many fundamental problems like
MAXIMUM INDEPENDENT SET or MINIMUM DOMINATING SET can be solved in time 2O(t)n.
On the other hand, it was believed until very recently that for some “connectivity”
problems such as HAMILTONIAN CYCLE or STEINER TREE, no such algorithm exists. In
their breakthrough paper, Cygan et al. [2011] introduced a new algorithmic framework
called Cut&Count and used it to obtain 2O(t)nO(1) time Monte Carlo algorithms for
a number of connectivity problems. Recently, Bodlaender et al. [2015] obtained the
first deterministic single exponential algorithms for these problems. Bodlaender et al.
presented two approaches, one based on rank estimations in specific matrices and the
second based on matrix-tree theorem and computation of determinants. Our approach,
based on representative families in matroids, can be seen as an alternate path to
obtain similar results. The main idea behind our approach is that all the relevant
information about “partial solutions” in bags of the tree decomposition can be encoded
as an independent set of a specific matroid. Here efficient computation of representative
families comes into play.

In all our applications, we first define a specific matroid and then show a combina-
torial relation between solutions to the problem and independent sets of the matroid.
Then we compute representative families using Theorem 1.1 or Theorem 1.2 and use
them to obtain a solution to the problem. We believe that expressing graph problems
in “matroid language” is a generic technique explaining why certain problems admit
single-exponential parameterized and exact exponential algorithms. Finally, for com-
pleteness, we would like to add that in the conference version of the article, the running
time for k-PATH and k-TREE were O(2.815knO(1)), for k-SUBGRAPH ISOMORPHISM for the case
when the pattern graph F has treewidth at most t was O(2.815knO(t)), and for LONG

DIRECTED CYCLE was 8k+o(k)nO(1).

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:7

Organization of the Paper. In Section 2, we give the necessary definitions and state
some of the known results that we will use. In Section 3, we prove Theorem 1.1 by
giving an efficient algorithm for the computation of representative families for linear
matroids. In Section 4, we prove Theorem 1.2 by giving an efficient algorithm for the
computation of representative families for uniform matroids. In Section 5, we give all
our applications of Theorems 1.1 and 1.2. Concluding remarks and new developments
can be found in Section 6. The proofs of Theorem 1.1 and Theorem 1.2 are independent
of each other and may be read independently. All of our applications use Theorems 1.1
and 1.2 as black boxes, and thus may be read independently of the sections describing
the efficient computation of representative families.

2. PRELIMINARIES

In this section, we give various definitions that we make use of in the article.

Graphs. Let G be a graph with vertex set V (G) and edge set E(G). A graph G′ is
a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph G′ is called an
induced subgraph of G if E(G′) = {uv ∈ E(G) | u, v ∈ V (G′)}; in this case, G′ is also
called the subgraph induced by V (G′) and denoted by G[V (G′)]. For a vertex set S, by
G \ S we denote G[V (G) \ S]. By N(u) we denote (open) neighborhood of u, that is, the
set of all vertices adjacent to u. Similarly, by N[u] = N(u) ∪ {u} we define the closed
neighborhood. The degree of a vertex v in G is |NG(v)| and is denoted by d(v). For a
subset S ⊆ V (G), we define N[S] = ∪v∈S N[v] and N(S) = N[S] \ S. By the length of
the path we mean the number of edges in it.

Digraphs. Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc
set of D, respectively. Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the
digraph induced by V ′. A digraph D is strong if for every pair x, y of vertices there are
directed paths from x to y and from y to x. A maximal strongly connected subdigraph
of D is called a strong component. A vertex u of D is an in-neighbor (out-neighbor) of
a vertex v if uv ∈ A(D) (vu ∈ A(D), respectively). The in-degree d−(v) (out-degreed+(v))
of a vertex v is the number of its in-neighbors (out-neighbors). We denote the set of in-
neighbors and out-neighbors of a vertex v by N−(v) and N+(v) correspondingly. A closed
directed walk in a digraph D is a sequence v0v1 · · · v� of vertices of D, not necessarily
distinct, such that v0 = v� and for every 0 ≤ i ≤ � − 1, vivi+1 ∈ A(D).

Sets, Functions, and Constants. We use the following notations: [n] = {1, . . . , n} and
([n]

i) = {X | X ⊆ [n], |X| = i}.
We use the following operations on families of sets.

Definition 2.1. Given two families of sets A and B, we define

(•) A • B = {X ∪ Y | X ∈ A and Y ∈ B and X ∩ Y = ∅}. Let A1, . . . ,Ar be r families.
Then

•∏
i∈[r]

Ai = A1 • · · · • Ar.

(◦) A ◦ B = {A∪ B : A ∈ A and B ∈ B}.
(+) For a set X, we define A + X = {A∪ X : A ∈ A}.

The first and second derivatives of a function f (x) of a variable x are denoted by
f ′(x) and f ′′(x), respectively. Throughout the article, we use ω to denote the exponent
in the running time of matrix multiplication, the current best-known bound for which
is ω < 2.373 [Williams 2012]. We use e to denote the base of natural logarithm.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:8 F. V. Fomin et al.

2.1. Randomized Algorithms

We follow the same notion of randomized algorithms as described in Marx [2009,
Section 2.3]. That is, some of the algorithms presented in this article are randomized,
which means that they can produce an incorrect answer, but the probability of doing
so is small. We assume that the algorithm has an integer parameter P given in unary,
and the probability of incorrect answer is 2−P .

2.2. Matroids

In the next few subsections, we give definitions related to matroids. For a broader
overview on matroids, we refer to Oxley [2006]; see also Cygan et al. [2015, Chapter 12].

Definition 2.2. A pair M = (E, I), where E is a ground set and I is a family of subsets
(called independent sets) of E, is a matroid if it satisfies the following conditions:

(I1) φ ∈ I.
(I2) If A′ ⊆ A and A ∈ I, then A′ ∈ I.
(I3) If A, B ∈ I and |A| < |B|, then there is e ∈ (B \ A) such that A∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property, and a pair (E, I) satisfying only
(I2) is called the hereditary family. An inclusion-wise maximal set of I is called a basis
of the matroid. Using axiom (I3), it is easy to show that all the bases of a matroid have
the same size. This size is called the rank of the matroid M and is denoted by rank(M).

2.3. Linear Matroids and Representable Matroids

Let A be a matrix over an arbitrary field F and let E be the set of columns of A. For
A, we define matroid M = (E, I) as follows. A set X ⊆ E is independent (i.e., X ∈ I)
if the corresponding columns are linearly independent over F. The matroids that can
be defined by such a construction are called linear matroids, and if a matroid can be
defined by a matrix A over a field F, then we say that the matroid is representable
over F. That is, a matroid M = (E, I) of rank d is representable over a field F if there
exist vectors in F

d corresponding to the elements such that linearly independent sets of
vectors correspond to independent sets of the matroid. A matroid M = (E, I) is called
representable or linear if it is representable over some field F.

2.4. Direct Sum of Matroids

Let M1 = (E1, I1), M2 = (E2, I2), . . . , Mt = (Et, It) be t matroids with Ei ∩ Ej = ∅
for all 1 ≤ i
= j ≤ t. The direct sum M1 ⊕ · · · ⊕ Mt is a matroid M = (E, I) with
E :=⋃t

i=1 Ei, and X ⊆ E is independent if and only if X ∩ Ei ∈ Ii for all i ≤ t. Let Ai be
the representation matrix of Mi = (Ei, Ii). Then,

AM =

⎛⎜⎜⎝
A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
...

...
...

0 0 0 · · · At

⎞⎟⎟⎠
is a representation matrix of M1 ⊕ · · · ⊕ Mt. The correctness of this construction is
proved in Marx [2009].

PROPOSITION 2.3 [MARX 2009, PROPOSITION 3.4]. Given representations of matroids
M1, . . . , Mt over the same field F, a representation of their direct sum can be found in
polynomial time.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:9

2.5. Uniform and Partition Matroids

A pair M = (E, I) over an n-element ground set E is called a uniform matroid if the
family of independent sets is given by I = {A ⊆ E | |A| ≤ k}, where k is some constant.
This matroid is also denoted as Un,k. Every uniform matroid is linear and can be
represented over a finite field by a k × n matrix AM the AM[i, j] = ji−1:

AM =

⎛⎜⎜⎜⎜⎝
1 1 1 · · · 1
1 2 3 · · · n
1 22 32 · · · n2

...
...

...
...

...
1 2k−1 3k−1 · · · nk−1

⎞⎟⎟⎟⎟⎠ .

Matrix AM is called a Vandermonde matrix. Observe that for Un,k to be representable
over a finite field F, the determinant of each k×k submatrix of AM must not vanish over
F. Observe that any k columns corresponding to xi1 , . . . , xik itself form a Vandermonde
matrix, whose determinant is given by∏

1≤ j<�≤k

(xij − xi�).

Combining this with the fact that x1, . . . , xn are n distinct elements of F, we conclude
that every subset of size at most k of the ground set is independent, while clearly each
larger subset is dependent. Thus, choosing a field F of size larger than n suffices. Note
that this means that a representation of the uniform matroid Un,k can be stored using
O(log n) bits.

A partition matroid M = (E, I) is defined by a ground set E being partitioned into
(disjoint) sets E1, . . . , E� and by � nonnegative integers k1, . . . , k�. A set X ⊆ E is inde-
pendent if and only if |X∩ Ei| ≤ ki for all i ∈ {1, . . . , �}. Observe that a partition matroid
is a direct sum of uniform matroids U|E1|,k1 , . . . ,U|E�|,k�

. Thus, by Proposition 2.3 and
the fact that a uniform matroid Un,k is representable over a field F of size larger than
n, we have the following.

PROPOSITION 2.4 [MARX 2009, PROPOSITION 3.5]. A representation over a field of size
O(|E|) of a partition matroid can be constructed in polynomial time.

2.6. Graphic Matroids

Given a graph G, a graphic matroid M = (E, I) is defined by taking elements as edges
of G (that is E = E(G)) and F ⊆ E(G) is in I if it forms a forest in the graph G. We
can get a representation of graphic matroid as follows. Consider the matrix AM with a
row for each vertex i ∈ V (G) and a column for each edge e = i j ∈ E(G). In the column
corresponding to e = i j, all entries are 0, except for a 1 in i or j (arbitrarily) and a −1 in
the other. This is a representation over reals. To obtain a representation over a field F,
one simply needs to take the representation given above over reals and simply replace
all −1 by the additive inverse of 1.

PROPOSITION 2.5 [OXLEY 2006]. Graphic matroids are representable over any field of
size at least 2.

2.7. Truncation of a Matroid

The t-truncation of a matroid M = (E, I) is a matroid M′ = (E, I ′) such that S ⊆ E is
independent in M′ if and only if |S| ≤ t and S is independent in M (i.e., S ∈ I).

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:10 F. V. Fomin et al.

PROPOSITION 2.6 [MARX 2009, PROPOSITION 3.7]. Given a matroid M with a representa-
tion A over a finite field F and an integer t, a representation of the t-truncation M′ can
be found in randomized polynomial time.

3. FAST COMPUTATION FOR REPRESENTATIVE FAMILIES FOR LINEAR MATROIDS

In this section, we give an algorithm to find a q-representative family of a given family.
We start with the definition of a q-representative family.

Definition 3.1 (q-Representative Family). Given a matroid M = (E, I) and a family S
of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative for S if the following
holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y
with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is
q-representative for S, we write Ŝ ⊆q

rep S.

In other words, if some independent set in S can be extended to a larger independent
set by adding q new elements, then there is a set in Ŝ that can be extended by the same
q elements. A weighted variant of q-representative families is defined as follows. It is
useful for solving problems where we are looking for objects of maximum or minimum
weight.

Definition 3.2 (Min/Max q-Representative Family). Given a matroid M = (E, I), a
family S of subsets of E, and a nonnegative weight function w : S → N, we say that
a subfamily Ŝ ⊆ S is min q-representative (max q-representative) for S if the following
holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with
X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with

(1) X̂ ∪ Y ∈ I; and
(2) w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).

We use Ŝ ⊆q
minrep S (Ŝ ⊆q

maxrep S) to denote a min q-representative (max q-
representative) family for S.

We say that a family S = {S1, . . . , St} of sets is a p-family if each set in S is of size p.
We start with three lemmata providing basic results about representative families.

These lemmata will be used in Section 5, where we provide algorithmic applications
of representative families. We prove them for unweighted representative families, but
they can be easily modified to work for weighted variant.

LEMMA 3.3. Let M = (E, I) be a matroid and S be a family of subsets of E. If S ′ ⊆q
rep S

and Ŝ ⊆q
rep S ′, then Ŝ ⊆q

rep S.

PROOF. Let Y ⊆ E of size at most q such that there is a set X ∈ S disjoint from Y
with X∪ Y ∈ I. By the definition of q-representative family, we have that there is a set
X′ ∈ S ′ disjoint from Y with X′ ∪ Y ∈ I. Now the fact that Ŝ ⊆q

rep S ′ yields that there
exists a X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I.

LEMMA 3.4. Let M = (E, I) be a matroid and S be a family of subsets of E. If
S = S1 ∪ · · · ∪ S� and Ŝi ⊆q

rep Si , then ∪�
i=1Ŝi ⊆q

rep S.

PROOF. Let Y ⊆ E of size at most q such that there is a set X ∈ S disjoint from Y
with X ∪ Y ∈ I. Since S = S1 ∪ · · · ∪ S�, there exists an i such that X ∈ Si. This implies
that there exists a X̂ ∈ Ŝi ⊆ ∪�

i=1Ŝi disjoint from Y with X̂ ∪ Y ∈ I.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:11

LEMMA 3.5. Let M = (E, I) be a matroid of rank k and S1 be a p1-family of independent
sets, S2 be a p2-family of independent sets, Ŝ1 ⊆k−p1

rep S1, and Ŝ2 ⊆k−p2
rep S2. Then Ŝ1 •

Ŝ2 ⊆k−p1−p2
rep S1 • S2.

PROOF. Let Y ⊆ E of size at most q = k − p1 − p2 such that there is a set X ∈ S1 • S2
disjoint from Y with X ∪ Y ∈ I. This implies that there exist X1 ∈ S1 and X2 ∈ S2 such
that X1 ∪ X2 = X and X1 ∩ X2 = ∅. Since Ŝ1 ⊆k−p1

rep S1, we have that there exists a X̂1 ∈ Ŝ1

such that X̂1 ∪ X2 ∪ Y ∈ I and X̂1 ∩ (X2 ∪ Y) = ∅. Now since Ŝ2 ⊆k−p2
rep S2, we have that

there exists a X̂2 ∈ Ŝ2 such that X̂1 ∪ X̂2 ∪ Y ∈ I and X̂2 ∩ (X̂1 ∪ Y) = ∅. This shows that
X̂1 ∪ X̂2 ∈ Ŝ1 • Ŝ2 and X̂1 ∪ X̂2 ∪ Y ∈ I and thus Ŝ1 • Ŝ2 ⊆k−p1−p2

rep S1 • S2.

The main result of this section is that given a representable matroid M = (E, I)
of rank k = p + q with its representation matrix AM, a p-family of independent sets
S, and a nonnegative weight function w : S → N, we can compute Ŝ ⊆q

minrep S and
Ŝ ⊆q

maxrep S of size (p+q
p) deterministically in time O((p+q

p)tpω + t(p+q
q)ω−1). The proof

for this result is obtained by making the known exterior algebra based proof of Lovász
[1977, Theorem 4.8] algorithmic. Although our proof is based on exterior algebra and
is essentially the same as the proof given in Lovász [1977], we give a proof here that
avoids the terminology from exterior algebra.

For our proof, we also need the following well-known generalized Laplace expansion
of determinants. For a matrix A = (aij), the row set and the column set are denoted by
R(A) and C(A), respectively. For I ⊆ R(A) and J ⊆ C(A), A[I, J] = (aij | i ∈ I, j ∈ J)
means the submatrix (or minor) of A with the row set I and the column set J. For
I ⊆ [n], let Ī = [n] \ I and

∑
I =∑i∈I i.

PROPOSITION 3.6 (GENERALIZED LAPLACE EXPANSION). For an n × n matrix A and J ⊆
C(A) = [n], it holds that

det(A) =
∑

I⊆[n],|I|=|J|
(−1)

∑
I+∑ J det(A[I, J]]) det(A[Ī, J̄]).

We refer to Murota [2000, Proposition 2.1.3] for a proof of the previous identity. We
always assume that the number of rows in the representation matrix AM of M over a
field F is equal to rank(M)=rank(AM). Otherwise, using Gaussian elimination, we can
obtain a matrix of the desired kind in polynomial time. See Marx [2009, Proposition 3.1]
for details. We will not give the proof of Theorem 1.1, but we give a proof of the following
generalization of Theorem 1.1.

THEOREM 3.7. Let M = (E, I) be a linear matroid of rank p + q = k, S = {S1, . . . , St}
be a p-family of independent sets, and w : S → N be a nonnegative weight function.
Then there exists Ŝ ⊆q

minrep S (Ŝ ⊆q
maxrep S) of size (p+q

p). Moreover, given a representation
AM of M over a field F, we can find Ŝ ⊆q

minrep S (Ŝ ⊆q
maxrep S) of size at most (p+q

p) in
O((p+q

p)tpω + t(p+q
q)ω−1) operations over F.

PROOF. We only show how to find Ŝ ⊆q
minrep S in the claimed running time. The proof

for Ŝ ⊆q
maxrep S is analogous, and for that case we only point out the places where the

proof differs. If t ≤ (k
p), then we can take Ŝ = S. Clearly, in this case, Ŝ ⊆q

minrep S. So from
now onward we always assume that t > (k

p). For the proof, we view the representation
matrix AM as a vector space over F and each set Si ∈ S as a subspace of this vector
space. For every element e ∈ E, let xe be the corresponding k-dimensional column in
AM. Observe that each xe ∈ F

k. For each subspace Si ∈ S, i ∈ {1, . . . , t}, we associate a

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:12 F. V. Fomin et al.

vector �si = ∧ j∈Si
xj in F

(k
p) as follows. In exterior algebra terminology, the vector �si is

a wedge product of the vectors corresponding to elements in Si. For a set S ∈ S and
I ∈ ([k]

p), we define s[I] = det(AM[I, S]).
We also define

�si = (si[I])I∈([k]
p) .

Thus, the entries of the vector �si are the values of det(AM[I, Si]), where I runs through
all the p sized subsets of rows of AM.

Let HS = (�s1, . . . , �st) be the (k
p) × t matrix obtained by taking �si as columns. Now we

define a weight function w′ : C(HS) → R
+ on the set of columns of HS . For the column

�si corresponding to Si ∈ S, we define w′(�si) = w(Si). Let W be a set of columns of HS
that are linearly independent over F. The size of W is equal to the rank(HS) and is of
minimum total weight with respect to the weight function w′. That is, W is a minimum
weight column basis of HS . Since the row rank of a matrix is equal to the column rank,
we have that |W| =rank(HS)≤ (k

p). We define Ŝ = {Sα | �sα ∈ W}. Let |Ŝ| = �. Because

|W| = |Ŝ|, we have that � ≤ (k
p). Without loss of generality, let Ŝ = {Si | 1 ≤ i ≤ �} (or

else we can rename these sets) and W = {�s1 . . . , �s�}. The only thing that remains to
show is that indeed Ŝ ⊆q

minrep S.
Let Sβ ∈ S be such that Sβ /∈ Ŝ. We show that if there is a set Y ⊆ E of size at most

q such that Sβ ∩ Y = ∅ and Sβ ∪ Y ∈ I, then there exists a set Ŝβ ∈ Ŝ disjoint from
Y with Ŝβ ∪ Y ∈ I and w(Ŝβ) ≤ w(Sβ). Let us first consider the case |Y | = q. Since
Sβ ∩ Y = ∅, it follows that |Sβ ∪ Y | = p+q = k. Furthermore, since Sβ ∪ Y ∈ I, we have
that the columns corresponding to Sβ ∪ Y in AM are linearly independent over F; that
is, det(AM[R(AM), Sβ ∪ Y])
= 0.

Recall that �sβ = (sβ[I])I∈([k]
p), where sβ[I] = det(AM[I, Sβ]). Similarly, we define y[L] =

det(AM[L, Y]) and

�y = (y[L])L∈([k]
q) .

Let
∑

J =∑ j∈Sβ
j. Define

γ (�sβ, �y) =
∑

I∈([k]
p)

(−1)
∑

I+∑ Jsβ[I] · y[Ī].

Since (k
p) = (k

k−p) = (k
q), the above formula is well defined. Observe that by Propo-

sition 3.6, we have that γ (�sβ, �y) = det(AM[R(AM), Sβ ∪ Y])
= 0. We also know that
�sβ can be written as a linear combination of vectors in W = {�s1, �s2, . . . , �s�}. That is,
�sβ =∑�

i=1 λi�si, λi ∈ F, and for some i, λi
= 0. Thus,

γ (�sβ, �y) =
∑

I

(−1)
∑

I+∑ Jsβ[I] · y[Ī]

=
∑

I

(−1)
∑

I+∑ J

(
�∑

i=1

λisi[I]

)
y[Ī]

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:13

=
�∑

i=1

λi

(∑
I

(−1)
∑

I+∑ Jsi[I]y[Ī]

)

=
�∑

i=1

λi det(AM[R(AM), Si ∪ Y]) (by Proposition 3.6).

Define

sup(Sβ) = {Si
∣∣ Si ∈ Ŝ, λi det(AM[R(AM), Si ∪ Y]))
= 0

}
.

Since γ (�sβ, �y)
= 0, we have that (
∑�

i=1 λi det(AM[R(AM), Si∪Y]))
= 0 and thus sup(Sβ)
=
∅. Observe that for all S ∈ sup(Sβ), we have that det(AM[R(AM), S ∪ Y])
= 0 and thus
S ∪ Y ∈ I. We now show that w(S) ≤ w(Sβ) for all S ∈ sup(Sβ).

CLAIM 3.1. For all S ∈ sup(Sβ), w(S) ≤ w(Sβ).

PROOF. For a contradiction, assume that there exists a set Sj ∈ sup(Sβ) such that
w(Sj) > w(Sβ). Let �sj be the vector corresponding to Sj and W ′ = (W ∪ { �sj}) \ { �sβ}.
Since w(Sj) > w(Sβ), we have that w(�sj) > w(�sβ) and thus w′(W) > w′(W ′). Now we
show that W ′ is also a column basis of HS . This will contradict our assumption that
W is a minimum weight column basis of HS . Recall that �sβ = ∑�

i=1 λi�si, λi ∈ F. Since
Sj ∈ sup(Sβ), we have that λ j
= 0. Thus, �sj can be written as a linear combination of
vectors in W ′. That is,

�sj = λβ�sβ +
�∑

i=1,i
= j

λ′
i�si. (1)

Also, every vector �sγ /∈ W can be written as a linear combination of vectors in W:

�sγ =
�∑

i=1

δi�si, δi ∈ F. (2)

By substituting Equation (1) into Equation (2), we conclude that every vector can be
written as a linear combination of vectors in W ′. This shows that W ′ is also a column
basis of HS , a contradiction proving the claim.

Claim 3.1 and the discussions preceding it show that we could take any set S ∈ sup(Sβ)
as the desired Ŝβ ∈ Ŝ. Also, since det(AM[R(AM), S ∪ Y])
= 0, we have that S ∩ Y = ∅.
This shows that indeed Ŝ ⊆q

minrep S for each Y of size q. This completes the proof for
the case |Y | = q.

Suppose that |Y | = q′ < q. Since M is a matroid of rank k = p + q, there exists a
superset Y ′ ∈ I of Y of size q such that Sβ ∩ Y ′ = ∅ and Sβ ∪ Y ′ ∈ I. This implies that
there exists a set Ŝ ∈ Ŝ such that det(AM[R(AM), Ŝ ∪ Y ′])
= 0 and w(Ŝ) ≤ w(S). Thus,
the columns corresponding to Ŝ ∪ Y are linearly independent.

We now consider the running time of the algorithm. To make the previous proof
algorithmic, we need to

(a) compute determinants and
(b) apply fast Gaussian elimination to find a minimum weight column basis.

It is well known that one can compute the determinant of an n × n matrix in time
O(nω) [Bunch and Hopcroft 1974]. For a rectangular matrix A of size d× n (with d ≤ n),
Bodlaender et al. [2015] outline an algorithm computing a minimum weight column

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:14 F. V. Fomin et al.

basis in time O(ndω−1). Thus, given a p-family of independent sets S, we can construct
the matrix HS as follows. For every set Si, we first compute �si. To do this, we compute
det(AM[I, Si]) for every I ∈ ([k]

p). This can be done in time O((p+q
p)pω). Thus, we can

obtain the matrix HS in time O((p+q
p)tpω). Given matrix HS , we can find a minimum

weight column basis W of HS in time O(t(p+q
p)ω−1). Given W, we can easily recover

Ŝ. Thus, we can compute Ŝ ⊆q
minrep S in O((p+q

p)tpω + t(p+q
q)ω−1) field operations. This

concludes the proof for finding Ŝ ⊆q
minrep S. To find Ŝ ⊆q

maxrep S, the only change we need
to do in the algorithm for finding Ŝ ⊆q

minrep S is to find a maximum weight column basis
W of HS . This concludes the proof.

In Theorem 3.7, we assumed that rank(M) = p+q. However, one can obtain a similar
result even when rank(M) > p + q in lieu of randomness. To do this, we first need
to compute the representation matrix of a k-restriction of M = (E, I). For that, we
make use of Proposition 2.6. This step returns a representation of a k-restriction of
M = (E, I) with high probability. Given this matrix, we apply Theorem 3.7 and arrive
at the following result.

THEOREM 3.8. Let M = (E, I) be a linear matroid, S = {S1, . . . , St} be a p-family of
independent sets, and w : S → N be a nonnegative weight function. Then there exists
Ŝ ⊆q

minrep S (Ŝ ⊆q
maxrep S) of size (p+q

p). Furthermore, given a representation AM of M over
a field F, there is a randomized algorithm computing Ŝ ⊆q

minrep S (Ŝ ⊆q
maxrep S) of size at

most (p+q
p) in O((p+q

p)tpω + t(p+q
q)ω−1 +||AM||O(1)) operations over F, where ||AM|| denotes

the length of AM in the input.

4. FAST COMPUTATION FOR REPRESENTATIVE FAMILIES FOR UNIFORM MATROIDS

In this section, we show that for uniform matroids, one can avoid matrix multiplication
computations in order to compute representative families. The section is organized as
follows. We start (Section 4.1, Theorem 4.1) from a relatively simple algorithm comput-
ing representative families over a uniform matroid. This algorithm is already faster
than the algorithm of Theorem 1.1 for general matroids. In Section 4.2, Theorem 4.15,
we give an even faster but more complicated algorithm. Throughout this section, a
subfamily A′ ⊆ A of the family A is said to q-represent A if for every set B of size q
such that there is an A ∈ A and A∩ B = ∅, there is a set A′ ∈ A′ such that A′ ∩ B = ∅.

4.1. Representative Families Using Lopsided Universal Sets

Our aim in this subsection is to prove the following theorem.

THEOREM 4.1. There is an algorithm that, given a family A of p-sets over a universe U
of size n and an integer q, computes in time |A| · (p+q

p) · 2o(p+q) · log n a subfamily A′ ⊆ A
such that |A′| ≤ (p+q

p) · 2o(p+q) · log n and A′ q-represents A.

The main tool in our proof of Theorem 4.1 is a generalization of the notion of n-k-
universal families. A family F of sets over a universe U is an n-k-universal family if for
every set A ∈ (U

k) and every subset A′ ⊆ A, there is some set F ∈ F whose intersection
F ∩ A is exactly A′. Naor et al. [1995] show that given n and k, one can construct an
n-k-universal family F of size 2k+o(k) · log n in time 2k+o(k) · n log n.

We tweak the notion of universal families as follows. We will say that a family F
of sets over a universe U of size n is an n-p-q-lopsided-universal family if for every
A ∈ (U

p) and B ∈ (U\A
q), there is an F ∈ F such that A ⊆ F and B ∩ F = ∅. An

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:15

alternative definition that is easily seen to be equivalent is that F is n-p-q-lopsided-
universal if for every subset A ∈ (U

p+q) and every subset A′ ∈ (A
p), there is an F ∈ F

such that F ∩ A = A′. From the second definition, it follows that an n-(p + q)-universal
family is also n-p-q-lopsided-universal. Thus, the construction of Naor et al. [1995] of
universal set families also gives a construction of an n-p-q-lopsided universal family of
size 2p+q+o(p+q) · log n, running in time 2p+q+o(p+q) · n log n. It turns out that by slightly
changing the construction of Naor et al. [1995], one can prove the following result.

LEMMA 4.2. There is an algorithm that given n, p and q, constructs an n-p-q-lopsided-
universal family F of size (p+q

p) · 2o(p+q) · log n in time O((p+q
p) · 2o(p+q) · n log n).

We do not give a stand-alone proof of Lemma 4.2; however, Lemma 4.2 is a direct
corollary of Lemma 4.4 proved in Section 4.2. We will now show how to use the lemma
to prove Theorem 4.1.

PROOF OF THEOREM 4.1. The algorithm starts by constructing an n-p-q-lopsided uni-
versal family F as guaranteed by Lemma 4.2. If |A| ≤ |F |, the algorithm outputs A
and halts. Otherwise, it builds the set A′ as follows. Initially A′ is equal to ∅ and all
sets in F are marked as unused. The algorithm goes through every A ∈ A and unused
sets F ∈ F . If an unused set F ∈ F is found such that A ⊆ F, the algorithm marks F
as used, inserts A into A′, and proceeds to the next set in A. If no such set F is found,
the algorithm proceeds to the next set in A without inserting A into A′.

The size of A′ is upper bounded by |F | ≤ (p+q
p) · 2o(p+q) · log n since every time a set

is added to A′, an unused set in F is marked as used. For the running time analysis,
constructing F takes time (p+q

p) · 2O(p+q
log log(p+q)) · n log n. Then we run through all of F for

each set A ∈ A, spending time |A|·|F |·(p+q)O(1), which is at most |A|·(p+q
p)·2o(p+q) ·log n.

Thus, in total, the running time is bounded by |A| · (p+q
p) · 2o(p+q) · log n.

Finally, we need to argue that A′ q-represents A. Consider any set A ∈ A and B such
that |B| = q and A∩ B = ∅. If A ∈ A′, we are done, so assume that A /∈ A′. Since F is
n-p-q-lopsided universal, there is a set F ∈ F such that A ⊆ F and F ∩ B = ∅. Since
A /∈ A′, we know that F has already been marked as used when A was considered by
the algorithm. When the algorithm marked F as used, it also inserted a set A′ into A′.
For the insertion to be made, F must satisfy A′ ⊆ F. But then A′ ∩ B = ∅, completing
the proof.

One of the factors that drives up the running time of the algorithm in Theorem 4.1
is that one needs to consider all of F for each set A ∈ A. Doing some computations, it is
possible to convince oneself that in an n-p-q-lopsided universal family F , the number
of sets F ∈ F containing a fixed set A of size p should be approximately |F | · (p

p+q)p.
Thus, if we could only make sure that this estimation is in fact correct for every A ∈ A
and we could make sure that for a given A ∈ A we can list all of the sets in F that
contain A without having to go through the sets that do not, then we could speed up
our algorithm by a factor (p+q

p)p. This is exactly the strategy behind the main theorem
of Section 4.2.

4.2. Representative Families Using Separating Collections

In this section, we design a faster algorithm to find a q-representative family. Our
main technical tool is a construction of an n-p-q-separating collection. We start with the
formal definition of an n-p-q-separating collection.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:16 F. V. Fomin et al.

Definition 4.3. An n-p-q-separating collection C is a tuple (F , χ, χ ′), where F is a
family of sets over a universe U of size n, χ is a function from

⋃
p′≤p(U

p′) to 2F , and χ ′ is

a function from
⋃

q′≤q(U
q′) to 2F such that the following properties are satisfied:

(1) For every A ∈⋃p′≤p(U
p′) and F ∈ χ (A), A ⊆ F.

(2) For every B ∈⋃q′≤q(U
q′) and F ∈ χ ′(B), F ∩ B = ∅.

(3) For every pairwise disjoint sets A1 ∈ (U
p1

), A2 ∈ (U
p2

), · · · , Ar ∈ (U
pr

) and B ∈ (U
q) such

that p1 + · · · + pr = p, ∃F ∈ χ (A1) ∩ χ (A2) · · · χ (Ar) ∩ χ ′(B).

The size of (F , χ, χ ′) is |F |, the (χ, p′)-degree of (F , χ, χ ′) for p′ ≤ p is

max
A∈(U

p′)
|χ (A)|,

and the (χ ′, q′)-degree of (F , χ, χ ′) for q′ ≤ q is

max
B∈(U

q′)
|χ ′(B)|.

We must remark that the definition of an n-p-q-separating collection in the prelim-
inary version of this article [Fomin et al. 2014a] was slightly more restricted than the
one given here. This new definition has already been used to obtain faster algorithms
for computing representative families for product families [Fomin et al. 2014b].

A construction of separating collections is a data structure that given n, p, and q
initializes and outputs a family F of sets over the universe U of size n. After the
initialization, one can query the data structure by giving it a set A ∈ ⋃p′≤p(U

p′) or

B ∈ ⋃q′≤q(U
q′), and the data structure then outputs a family χ (A) ⊆ 2F or χ ′(B) ⊆ 2F ,

respectively. Together the tuple C = (F , χ, χ ′) computed by the data structure should
form an n-p-q-separating collection.

We call the time the data structure takes to initialize and output F the initialization
time. The (χ, p′)-query time, p′ ≤ p, of the data structure is the maximum time the
data structure uses to compute χ (A) over all A ∈ (U

p′). Similarly, the (χ ′, q′)-query time,
q′ ≤ q, of the data structure is the maximum time the data structure uses to compute
χ ′(B) over all B ∈ (U

q′). The initialization time of the data structure and the size of C
are functions of n, p, and q. The initialization time is denoted by τI(n, p, q), and the size
of C is denoted by ζ (n, p, q). The (χ, p′)-query time and (χ, p′)-degree of C, p′ ≤ p, are
functions of n, p′, p, q and are denoted by Q(χ,p′)(n, p, q) and �(χ,p′)(n, p, q), respectively.
Similarly, the (χ ′, q′)-query time and (χ ′, q′)-degree of C, q′ ≤ q, are functions of
n, q′, p, q and are denoted by Q(χ ′,q′)(n, p, q) and �(χ ′,q′)(n, p, q), respectively. We are
now ready to state the main technical tool of this subsection.

LEMMA 4.4. Given 0 < x < 1, there is a construction of n-p-q-separating collection
with the following parameters:

—size, ζ (n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q · (p + q)O(1) · log n

—initialization time, τI(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q · (p + q)O(1) · n log n

—(χ, p′)-degree, �(χ,p′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp−p′ (1−x)q · (p + q)O(1) · log n

—(χ, p′)-query time, Q(χ,p′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp−p′ (1−x)q · (p + q)O(1) · log n

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:17

—(χ ′, q′)-degree, �(χ ′,q′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q−q′ · (p + q)O(1) · log n

—(χ ′, q′)-query time, Q(χ ′,q′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q−q′ · (p + q)O(1) · log n

We first give the road map that we take to prove Lemma 4.4. The proof of Lemma 4.4
uses three auxiliary lemmata.

(a) Existential Proof (Lemma 4.5). This lemma shows that there is indeed an n-p-q-
separating collection with the required sizes, degrees, and query time. Essentially,
it shows that if we form a family F = {F1, . . . , Ft} of sets of U such that each Fi is a
random subset of U where each element is inserted into Fi with probability x, then
F has the desired sizes, degrees, and query time. Thus, this also gives a brute-force
algorithm to design the family F by just guessing the family of desired size and
then checking whether it is indeed an n-p-q-separating collection.

(b) Universe Reduction (Lemma 4.8). The construction obtained in Lemma 4.5
has only one drawback that the initialization time is much larger than claimed in
Lemma 4.4. To overcome this lacuna, we do not apply the construction in Lemma 4.5
directly. We first prove Lemma 4.8, which helps us in reducing the universe size
to (p + q)2. This is done using the known construction of k-perfect hash families
of size (p + q)O(1) log n. However, Lemma 4.8 alone cannot reduce the universe size
sufficiently that we can apply the construction of Lemma 4.5.

(c) Splitting Lemma (Lemma 4.11). We give a splitter-type construction in
Lemma 4.11 that when applied with Lemma 4.8 makes the universe and other
parameters small enough that we can apply the construction given in Lemma 4.5.
In this construction, we consider all the “consecutive partitions” of the universe
into t parts; assume that the sets A∪ B, A = ∪r

i=1 Ai are distributed uniformly into
t parts; use this information to obtain a construction of separating collections in
each part; and then take the product of these collections to obtain a collection for
the original instance.

We start with the existential proof.

LEMMA 4.5. Given 0 < x < 1, there is a construction of n-p-q-separating collections
with

—size ζ (n, p, q) = O(1
xp(1−x)q · (p2 + q2 + 1) log n);

—initialization time τI(n, p, q) = O((2n

ζ (n,p,q)) · 1
xp(1−x)q · nO(p+q));

—(χ, p′)-degree for p′ ≤ p, �(χ,p′)(n, p, q) = O(1
xp−p′ · (p2+q2+1)

(1−x)q · log n);
—(χ, p′)-query time Q(χ,p′)(n, p, q) = O(1

xp(1−x)q · nO(1));
—(χ ′, q′)-degree �(χ ′,q′)(n, p, q) = O(1

xp(1−x)q−q′ · (p2 + q2 + 1) · log n); and

—(χ ′, q′)-query time Q(χ ′,q′)(n, p, q) = O(1
xp(1−x)q · nO(1)).

PROOF. We start by giving a randomized algorithm that with positive probability
constructs an n-p-q-separating collection C = (F , χ, χ ′) with the desired size and degree
parameters. We will then discuss how to deterministically compute such a C within the
required time bound. Set t = 1

xp(1−x)q · (p2 + q2 + 1) log n and construct the family
F = {F1, . . . , Ft} as follows. Each set Fi is a random subset of U , where each element of
U is inserted into Fi with probability x. Distinct elements are inserted (or not) into Fi
independently, and the construction of the different sets in F is also independent. For
each A ∈ ⋃p′≤p(U

p′), we set χ (A) = {F ∈ F : A ⊆ F}, and for each B ∈ ⋃q′≤q(U
q′), we set

χ ′(B) = {F ∈ F : F ∩ B = ∅}.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:18 F. V. Fomin et al.

The size of F is within the required bound by construction. We now argue that
with positive probability, (F , χ, χ ′) is indeed an n-p-q-separating collection, and that
the degrees of C are within the required bounds as well. For fixed sets A ∈ (U

p) and

B ∈ (U\A
q), and for integer i ≤ t, we consider the probability that A ⊆ Fi and B∩ Fi = ∅.

This probability is xp(1−x)q. Since each Fi is constructed independently from the other
sets in F , the probability that no Fi satisfies A ⊆ Fi and B∩ Fi = ∅ is(

1 − xp(1 − x)q)t ≤ e−(p2+q2+1) log n = 1
np2+q2+1

.

For a fixed A1, . . . , Ar and B (choices in condition 3), the probability that no Fi is in
χ (A1)∩χ (A2)∩· · ·∩χ (Ar)∩χ ′(B) is equal to the probability that no Fi is in χ (A1 ∪ A2 · · ·∪
Ar) ∩ χ ′(B) (since χ (A′) contains all the sets in F that contain A′ and χ ′(B) contains all
the sets in F that are disjoint from B). Hence, the probability that condition 3 fails is
upper bounded by

Y · 1
np2+q2+1

,

where Y is the number of choices for A1, . . . , Ar and B in condition 3. We upper bound
Y as follows. There are (n

p) choices for A1 ∪ · · · ∪ Ar and (n
q) choices for B. For each

choice of A1 ∪ · · · ∪ Ar, there are at most r p choices of making A1, . . . , Ar, with some of
them being empty as well. Note that r ≤ p. Therefore, the number of possible choices of
sets A1, A2, . . . , Ar and B in condition 3 is upper bounded by (n

p)(n
q)pp ≤ n2p+q ≤ np2+q2

.
Hence, the probability that condition 3 in Definition 4.3 fails is at most 1

n.
We also need to upper bound the maximum degree of C. For every A ∈ (U

p′), |χ (A)| is a

random variable. For a fixed A ∈ (U
p′) and i ≤ t, the probability that A ⊆ Fi is exactly xp′

.
Hence, |χ (A)| is the sum of t independent 0/1-random variables that each take value 1
with probability xp′

. Hence, the expected value of |χ (A)| is

E[|χ (A)|] = t · xp′ = 1
xp−p′ (1 − x)q · (p2 + q2 + 1) log n.

For every B ∈ (U
q′), |χ ′(B)| is also a random variable. For a fixed B ∈ (U

q′) and i ≤ t, the
probability that A∩ Fi = ∅ is exactly (1 − x)q′

. Hence, the expected value of |χ ′(B)| is

E[|χ ′(B)|] = t · (1 − x)q′ = 1
xp(1 − x)q−q′ · (p2 + q2 + 1) log n.

Standard Chernoff bounds [Mitzenmacher and Upfal 2005, Theorem 4.4] show that
the probability that for any A ∈ (U

p′), |χ (A)| is at least 6E[|χ (A)|] is upper bounded

by 2−6E[|χ(A)|] ≤ 1
np2+q2+1

. Similarly, the probability that for any B ∈ (U
q′), |χ ′(B)| is at

least 6E[|χ ′(B)|] is upper bounded by 2−6E[|χ ′(B)|] ≤ 1
np2+q2+1

. There are
∑

p′≤p(n
p′) ≤ np2

choices for A ∈ ⋃p′≤p(U
p′) and

∑
q′≤q(n

q′) ≤ nq2
choices for B ∈ ⋃q′≤q(U

q′). Hence, the

union bound yields that the probability that there exists an A ∈ ⋃p′≤p(U
p′) such that

|χ (A)| > 6E[|χ (A)|] or there exists B ∈⋃q′≤q(U
q′) such that |χ ′(B)| > 6E[|χ ′(B)|] is upper

bounded by 1
n. Thus, C is a family of n-p-q-separating collections with the desired size

and degree parameters with probability at least 1 − 2
n > 0. The degenerate case that

1 − 2
n ≤ 0 is handled by the family F containing all (at most four) subsets of U .

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:19

To construct F within the stated initialization time bound, it is sufficient to try all
families F of size t and, for each of the (2n

ζ (n,p,q)) guesses, test whether it is indeed a
family of n-p-q-separating collections in time O(t · nO(p+q)) = O(1

xp(1−x)q · nO(p+q)).
For the queries, we need to give an algorithm that, given A, computes χ (A) (or χ ′(A)),

under the assumption that F has already has been computed in the initialization step.
This is easily done within the stated running time bound by going through every set
F ∈ F , checking whether A ⊆ F (or A∩ F = ∅), and, if so, inserting F into χ (A) (χ ′(A)).
This concludes the proof.

We will now work toward improving the time bounds of Lemma 4.5. To that end, we
will need a construction of k-perfect hash functions by Alon et al. [1995].

Definition 4.6. A family of functions f1, . . . , ft from a universe U of size n to a
universe of size r is a k-perfect family of hash functions if for every set S ⊆ U such that
|S| = k, there exists an i such that the restriction of fi to S is injective.

Alon et al. [1995] give very efficient constructions of k-perfect families of hash functions
from a universe of size n to a universe of size k2.

PROPOSITION 4.7 (ALON ET AL. [1995]). For any universe U of size n, there is a k-perfect
family f1, . . . , ft of hash functions from U to [k2] with t = O(kO(1) · log n). Such a family
of hash functions can be constructed in time O(kO(1)n log n).

LEMMA 4.8. If there is a construction of n-p-q-separating collections (F̂ , χ̂ , χ̂ ′) with ini-
tialization time τI(n, p, q), size ζ (n, p, q), (χ̂ , p′)-query time Q(χ̂ ,p′)(n, p, q), (χ̂ ′, q′)-query
time Q(χ̂ ′,q′)(n, p, q), (χ̂ , p′)-degree �(χ̂ ,p′)(n, p, q), and (χ̂ ′, q′)-degree �(χ̂ ′,q′)(n, p, q), then
there is a construction of n-p-q-separating collections with the following parameters:

—ζ ′(n, p, q) ≤ ζ ((p + q)2, p, q) · (p + q)O(1) · log n,
—τ ′

I(n, p, q) = O(τI((p + q)2, p, q) + ζ ((p + q)2, p, q) · (p + q)O(1) · n log n),
—�′

(χ,p′)(n, p, q) ≤ �(χ̂ ,p′)((p + q)2, p, q) · (p + q)O(1) · log n,
—Q′

(χ,p′)(n, p, q) = O((Q(χ̂ ,p′)((p + q)2, p, q) + �(χ̂ ,p′)((p + q)2, p, q)) · (p + q)O(1) · log n),
—�′

(χ ′,q′)(n, p, q) ≤ �(χ̂ ′,q′)((p + q)2, p, q) · (p + q)O(1) · log n,
—Q′

(χ ′,q′)(n, p, q) = O((Q(χ̂ ′,q′)((p + q)2, p, q) + �(χ̂ ′,q′)((p + q)2, p, q)) · (p + q)O(1) log n).

PROOF. We give a construction of n-p-q-separating collections with initialization time,
query time, size, and degree of τ ′

I , Q′, ζ ′, and �′, respectively, using the construction
with initialization time, query time, size, and degree of τI , Q, ζ , and � as a black box.

We first describe the initialization of the data structure. Given n, p, and q, we
construct using Proposition 4.7 a (p+ q)-perfect family f1, . . . ft of hash functions from
the universe U to [(p + q)2]. The construction takes time O((p + q)O(1)n log n) and
t ≤ (p+q)O(1) · log n. We will store these hash functions in memory. We use the following
notations:

—For a set S ⊆ U and T ⊆ [(p + q)2],
fi(S) = { fi(s) : s ∈ S} and f −1

i (T) = {s ∈ U : f (s) ∈ T }.
—For a family Z of sets over U and family W of sets over [(p + q)2],

fi(Z) = { fi(S) : S ∈ Z} and f −1
i (W) = { f −1

i (T) : T ∈ W}.
We first use the given black-box construction for (p + q)2-p-q-separating collec-

tions (F̂, χ̂ , χ̂ ′) over the universe [(p + q)2]. We run the initialization algorithm of this

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:20 F. V. Fomin et al.

construction and store the family F̂ in memory. We then set

F =
⋃
i≤t

f −1
i (F̂).

We spent O((p + q)O(1)n log n) time to construct a (p + q)-perfect family of hash func-
tions, O(τI((p+ q)2, p, q)) to construct F̂ of size ζ ((p+ q)2, p, q), and O(ζ ((p+ q)2, p, q) ·
(p+ q)O(1) · n log n) time to construct F from F̂ and the family of perfect hash functions.
Thus, the upper bound on τ ′

I(n, p, q) follows. Furthermore, |F | ≤ |F̂ | · (p + q)O(1) · log n,
yielding the claimed bound for ζ ′.

We now define χ (A) for every A ∈ ⋃p′≤p(U
p′) and describe the query algorithm. For

every A ∈⋃p′≤p(U
p′), we let

χ (A) =
⋃
i≤t

| fi (A)|=|A|

f −1
i (χ̂(fi(A))).

Since for every F̂ ∈ χ̂(fi(A)), fi(A) ⊆ F̂, it follows that A ⊆ F for every F ∈ χ (A).
Furthermore, we can bound |χ (A)| for any A ∈⋃p′≤p(U

p′), as follows:

|χ (A)| ≤
∑
i≤t

| fi (A)|=|A|

|χ̂(fi(A))| ≤ �(χ̂ ,p′)((p + q)2, p, q) · (p + q)O(1) · log n.

Thus, the claimed bound for �′
(χ,p′) follows. Similarly, way can define χ ′(B) for every

B ∈⋃q′≤q(U
q′) as

χ ′(B) =
⋃
i≤t

| fi (A)|=|A|

f −1
i (χ̂ ′(fi(A))).

|χ ′(B)| ≤
∑
i≤t

| fi (A)|=|A|

|χ̂ ′(fi(A))| ≤ �(χ̂ ′,q′)((p + q)2, p, q) · (p + q)O(1) · log n.

To compute χ (A) for any A ∈ ⋃p′≤p(U
p′), we go over every i ≤ t and check whether fi is

injective on A. This takes time O((p + q)O(1) ·log n). For each i such that fi is injective on
A, we compute fi(A) and then χ̂ (fi(A)) in time O(Q(χ̂ ,p′)((p + q)2, p, q)). Then we compute
f −1
i (χ̂(fi(A))) in time O(| ˆ̂χ (fi(A))| · (p + q)O(1)) = O(�(χ̂ ,p′)((p + q)2, p, q) · (p + q)O(1))

and add this set to χ (A). As we need to do this O((p + q)O(1) · log n) times, the total time
to compute χ (A) is upper bounded by O((Q(χ̂ ,p′)((p + q)2, p, q) + �(χ̂ ,p′)((p + q)2, p, q)) ·
(p + q)O(1) · log n), yielding the claimed upper bound on Q′

(χ,p′). In a similar way we can
bound Q′

(χ ′,q′).
It remains to argue that (F , χ, χ ′) is in fact an n-p-q-separating collection. For any

r, consider pairwise disjoint sets A1 ∈ (U
p1

), . . . , Ar ∈ (U
pr

) and B ∈ (U
q) such that p1 +

· · · + pr = p. We need to show that there is F ∈ χ (A1) ∩ · · · ∩ χ (Ar) ∩ χ ′(B). Since
f1, . . . , ft is a (p + q)-perfect family of hash functions, there is an i such that fi is
injective on A1 ∪ · · · ∪ Ar ∪ B. Since (F̂, χ̂ , χ̂ ′) is a (p + q)2-p-q-separating collection,
∃F̂ ∈ χ̂ (fi(A1))∩· · · χ̂(fi(Ar))∩χ̂ ′(fi(B)). Since fi is injective on A1, . . . , Ar and B, f −1

i (F̂) ∈
χ (A1) ∩ · · · χ (Ar) ∩ χ ′(B). This concludes the proof.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:21

We now give a splitting lemma, which allows us to reduce the problem of finding n-
p-q-separating collections to the same problem, but with much smaller values for p
and q.

A partition of U is a family UP = {U1,U2, . . .Ut} of sets over U such that Ui ∩ U j = ∅
for every i
= j and U =⋃i≤t Ui. Each of the sets Ui are called the parts of the partition.
A consecutive partition of {1, . . . , n} is a partition UP = {U1,U2, . . .Ut} of {1, . . . , n} such
that for every integer i ≤ t and integers 1 ≤ x ≤ y ≤ z, if x ∈ Ui and z ∈ Ui, then y ∈ Ui
as well. In other words, in a consecutive partition, each part is a consecutive interval of
integers. For every integer t, let Pn

t denote the collection of all consecutive partitions
of {1, . . . , n} with exactly t parts. We do not demand that all of the parts in a partition
in Pt are nonempty. Simple counting arguments show that for every t, |Pn

t | = (n+t−1
t−1).

We will denote by Z p
s,t the set of all t-tuples (p1, p2, . . . , pt) of integers such that∑

i≤t pi = p and 0 ≤ pi ≤ s for all i. Clearly |Z p
s,t| ≤ (p+t−1

t−1), since this counts all the
ways of writing p as a sum of t nonnegative integers, without considering the upper
bound on each one. For ease of convenience, we summarize the aforementioned in the
next definition and the proposition.

Definition 4.9. A partition of U is a family UP = {U1,U2, . . .Ut} of sets over U such
that ∀i
= j, Ui ∩ U j = ∅, and U = ⋃i≤t Ui. Each of the sets Ui are called the parts of
the partition. A consecutive partition of {1, . . . , n} is a partition UP = {U1,U2, . . .Ut} of
{1, . . . , n} such that for every integer i ≤ t and integers 1 ≤ x ≤ y ≤ z, if x ∈ Ui and
z ∈ Ui, then y ∈ Ui as well.

PROPOSITION 4.10. Let Pn
t denote the collection of all consecutive partitions of {1, . . . , n}

with exactly t parts. Let Z p
s,t be the set of all t-tuples (p1, p2, . . . , pt) of integers such that∑

i≤t pi = p and 0 ≤ pi ≤ s for all i. Then, for every t, |Pn
t | = (n+t−1

t−1) and |Z p
s,t| ≤ (p+t−1

t−1).

LEMMA 4.11. For any p, q, let s = �(log(p+q))2� and t = � p+q
s �. If there is a construction

of n-p-q-separating collections (Fp, χp, χ
′
p) with

—size ζ (n, p, q) and initialization time τI(n, p, q),
—(χp, p′)-degree �(χp,p′)(n, p, q) and (χ ′

p, q′)-degree �(χ ′
p,q′)(n, p, q), and

—query times Q(χp,p′)(n, p, q) and Q(χ ′
p,q′)(n, p, q),

then there is a construction of n-p-q-separating collection with the following parameters:

—

ζ ′(n, p, q) ≤ |Pn
t | ·

∑
(p1,...,pt)∈Z p

s,t

∏
i≤t

ζ (n, pi, s − pi),

—

τ ′
I(n, p, q) = O

⎛⎜⎜⎝
⎛⎜⎜⎝ ∑

p̂≤s,p
s− p̂≤q

τI(n, p̂, s − p̂)

⎞⎟⎟⎠+ ζ ′(n, p, q) · nO(1)

⎞⎟⎟⎠ ,

—

�′
(χ,p′)(n, p, q) ≤ �∗

(χ,p′)(n, p, q) = |Pn
t | · |Z p

s,t| · max
(p1,...,pt)∈Z p

s,t
p′

1≤p1,...,p′
t≤pt

p′
1+···+p′

t=p′

∏
i≤t

�(χpi ,p′
i)(n, pi, s − pi),

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:22 F. V. Fomin et al.

—

Q′
(χ,p′)(n, p, q) = O

⎛⎜⎜⎜⎝�∗
(χ,p′)(n, p, q) · nO(1) + |Pn

t | · |Z p
s,t| · t ·

⎛⎜⎜⎜⎝ max
p̂′≤ p̂≤s

p̂− p̂′≤p−p′
s− p̂≤q

Q(χ p̂, p̂′)(n, p̂, s − p̂)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

—

�′
(χ ′,q′)(n, p, q) ≤ �∗

(χ ′,q′)(n, p, q) = |Pn
t | · |Z p

s,t| · max
(p1,...,pt)∈Z p

s,t
q′

1≤s−p1,...,q′
t≤s−pt

q′
1+···+q′

t=q′

∏
i≤t

�(χ ′
pi

,q′
i)(n, pi, s − pi),

—

Q′
(χ ′,q′)(n, p, q) = O

⎛⎜⎜⎜⎝�∗
(χ ′,q′)(n, p, q) · nO(1) + |Pn

t | · |Z p
s,t| · t ·

⎛⎜⎜⎜⎝ max
q̂′≤q̂≤s

q̂−q̂′≤q−q′
s−q̂≤p

Q(χ ′
s−q̂,q̂′)(n, s − q̂, q̂)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

PROOF. Set s = �(log(p + q))2� and t = � p+q
s �. We will give a construction of n-p-q-

separating collections with initialization time, query time, size, and degree within the
claimed bounds earlier. In this construction, we will use the given construction as a
black box. We may assume without loss of generality that U = {1, . . . , n}. Our algorithm
first runs for every p̂, 0 ≤ p̂ ≤ s, p̂ ≤ p, s − p̂ ≤ q, and initializes n- p̂-(s − p̂)-separating
collections,

(F p̂, χ p̂, χ
′
p̂).

These will be the building blocks of our construction.
We need to define a few operations on families of sets. For families of sets A, B over

U and subset U ′ ⊆ U , we define

A � U ′ = {A∩ U ′ : A ∈ A}
A ◦ B = {A∪ B : A ∈ A ∧ B ∈ B}.

We now define F as follows:

F =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Z p
s,t such that

∀i : s−pi≤q

(Fp1 � U1) ◦ (Fp2 � U2) ◦ . . . ◦ (Fpt � Ut). (3)

It follows directly from the definition of F that |F | is within the claimed bound for
ζ ′(n, p, q). For the initialization time, the algorithm spends O(

∑
p̂≤s,p

s− p̂≤q
τI(n, p̂, s − p̂))

time to initialize the constructions of the n- p̂-(s − p̂)-separating collections for all p̂ ≤ s
such that p̂ ≤ p and s − p̂ ≤ q together. Now the algorithm can output the entries of F
one set at a time by using Equation (3), spending nO(1) time per output set. Hence, the
time bound for τ ′

I(n, p, q) follows.
For every set A ∈⋃p′≤p(U

p′), we define χ (A) as follows:

χ (A) =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Z p
s,t such that

∀Ui : |Ui∩A|≤pi ,s−pi≤q

[
(χp1 (A∩ U1) � U1) ◦ (χp2 (A∩ U2) � U2) ◦ . . . (4)

... ◦ (χpt (A∩ Ut) � Ut)
]
.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:23

Now we show that χ (A) ⊆ F . From the definition of n-pi-(s− pi)-separating collections
(Fpi , χpi , χ

′
pi

), each family χpi (A ∩ Ui) in Equation (4) is a subset of Fpi . This implies
that χpi (A∩ Ui) � Ui ⊆ Fpi � Ui. Hence, χ (A) ⊆ F . Similarly, we can define χ ′(B) for any
B ∈⋃q′≤q(U

q′) as

χ ′(B) =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Z p
s,t such that

∀Ui : |Ui∩B|≤s−pi≤q

[
(χ ′

p1
(B∩ U1) � U1) ◦ (χ ′

p2
(B∩ U2) � U2) ◦ · · · (5)

· · · ◦ (χ ′
pt

(B∩ Ut) � Ut)
]
.

Similar to the proof of χ (A) ⊆ F , we can show that χ ′(B) ⊆ F . It follows directly from
the definition of χ (A) and χ ′(B) that |χ (A)| and |χ ′(B)| are within the claimed bound for
�′

(χ,p′)(n, p, q) and �′
(χ ′,q′)(n, p, q), respectively. We now describe how queries χ (A) can

be answered and analyze how much time it takes. Given A, we will compute χ (A) using
Equation (4). Let |A| = p′. For each {U1, . . . ,Ut} ∈ Pn

t and (p1, . . . , pt) ∈ Z p
s,t such that

p′
i = |Ui ∩ A| ≤ pi, s − pi ≤ q for all i ≤ t, we proceed as follows. First, we compute

χpi (A∩ Ui) for each i ≤ t, spending in total O(
∑

i≤t Q(χpi ,p′
i)(n, pi, s − pi)) time. Now we

add each set in

(χp1 (A∩ U1) � U1) ◦ (χp2 (A∩ U2) � U2) ◦ . . . ◦ (χpt (A∩ Ut) � Ut)

to χ (A), spending nO(1) time per set, yielding the following bound:

Q′
(χ,p′)(n, p, q) ≤ O

⎛⎜⎜⎜⎜⎜⎝�∗
(χ,p′)(n, p, q) · nO(1) +

∑
{U1,...,Ut}∈Pt

(p1,...,pt)∈Z p
s,t such that

∀Ui : p′
i=|Ui∩A|≤pi ,s−pi≤q

[∑
i≤t

Q(χpi ,p′
i)(n, pi, s − pi)

]⎞⎟⎟⎟⎟⎟⎠

≤ O

⎛⎜⎜⎜⎜⎝�∗
(χ,p′)(n, p, q) · nO(1) + |Pn

t | · |Z p
s,t| · max

(p1,...,pt)∈Z p
s,t

p′
1≤p1,··· ,p′

t≤pt such that
p′

1+···+p′
t=p′,∀i:s−pi≤q

(∑
i≤t

Q(χpi ,p′
i)(n, pi, s − pi)

)⎞⎟⎟⎟⎟⎠

≤ O

⎛⎜⎜⎜⎜⎝�∗
(χ,p′)(n, p, q) · nO(1) + |Pn

t | · |Z p
s,t| · t · max

(p1,...,pt)∈Z p
s,t

p′
1≤p1,··· ,p′

t≤pt such that
p′

1+···+p′
t=p′,∀i:s−pi≤q

(
Q(χpi ,p′

i)(n, pi, s − pi)
)
⎞⎟⎟⎟⎟⎠

≤ O

⎛⎜⎜⎜⎝�∗
(χ,p′)(n, p, q) · nO(1) + |Pn

t | · |Z p
s,t| · t ·

⎛⎜⎜⎜⎝ max
p̂′≤ p̂≤s

p̂− p̂′≤p−p′
s− p̂≤q

Q(χ p̂, p̂′)(n, p̂, s − p̂)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

For any (p1, . . . , pt) ∈ Z p
s,t and p′

1 ≤ p1, . . . , p′
t ≤ pt such that

∑t
i=1 p′

i = p′, we have that∑t
i=1 pi − p′

i = p − p′ and so pi − p′
i ≤ p − p′ for all i. This shows the correctness of the

last inequality in the previous query time analysis.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:24 F. V. Fomin et al.

By doing a similar analysis, we get the required bound for Q′
(χ ′,q′). We now need

to argue that (F , χ, χ ′) is in fact an n-p-q-separating collection. For any r, consider
pairwise disjoint sets A1 ∈ (U

b1
), . . . , Ar ∈ (U

br
) and B ∈ (U

q) such that b1 + · · · + br = p.
Let A = A1 ∪ · · · ∪ Ar. There exists a consecutive partition {U1, . . . ,Ut} ∈ Pn

t of U
such that for every i ≤ t, we have that |(A ∪ B) ∩ Ui| ≤ � p+q

t � = s. For each i ≤ t, set
pi = |A∩ Ui| and qi = |B∩ Ui| = s − pi. Note that pi ≤ p and qi ≤ q for all i. For every
i ≤ t, the tuple (Fpi , χpi , χ

′
pi

) forms an n-pi-qi-separating collection. Hence, there exists
a Fi ∈ χpi (A1 ∩Ui)∩ · · ·∩χpi (Ar ∩Ui)∩χ ′

pi
(B∩Ui) because |A1 ∩Ui|+ · · ·+ |Ar ∩Ui| = pi,

|B∩Ui| = qi and (Fpi , χpi , χ
′
pi

) is an n-pi-qi-separating collection. That is, Fi ∈ χpi (Aj∩Ui)
for all j ≤ r and Fi ∈ χ ′

pi
(B ∩ Ui). Let F = ⋃i≤t Fi ∩ Ui. By construction of χ and χ ′,

F ∈ χ (Aj) for all j ≤ r and F ∈ χ ′(B). Hence, F ∈ χ (A1) ∩ · · · ∩ χ (Ar) ∩ χ ′(B). This
completes the proof.

Now we are ready to prove Lemma 4.4. We restate the lemma for easiness of
presentation.

Lemma 4.4. Given 0 < x < 1, there is a construction of n-p-q-separating collection
with the following parameters:

—size: ζ (n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q · (p + q)O(1) · log n

—initialization time: τI(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q · (p + q)O(1) · n log n

—(χ, p′)-degree: �(χ,p′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp−p′ (1−x)q · (p + q)O(1) · log n

—(χ, p′)-query time: Q(χ,p′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp−p′ (1−x)q · (p + q)O(1) · log n

—(χ ′, q′)-degree: �(χ ′,q′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q−q′ · (p + q)O(1) · log n

—(χ ′, q′)-query time: Q(χ ′,q′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q−q′ · (p + q)O(1) · log n

PROOF. We first explain a brute-force construction of n-p-q-separating collection
when the value of x is close to 0 or close to 1. These are discussed in Cases 1 and 2 and
the result for all other values of x is explained in Case 3. Let U be the universe.

Case 1: x ≤ 1
n. In this case, the algorithm will output all subsets of size p of the universe

as the family F of sets in the n-p-q-separating collection. That is, F = {F ⊆ U | |F| = p}.
We define χ and χ ′ as follows. For any A ∈ ⋃p′≤p(U

p′), χ (A) = {F ∈ F | A ⊆ F}. For any

B ∈ ⋃q′≤q(U
q′), χ ′(B) = {F ∈ F | B ∩ F = ∅}. It is easy to see that (F , χ, χ ′) is an

n-p-q-separating collection. Note that |F | = (n
p) ≤ np. Since n ≤ 1

x , the size of the n-p-
q-separating collection is upper bounded by the claimed bound. Since we can list all
the elements in F in np time, the initialization time is upper bounded by the claimed
bound. For any A ⊆ U , |A| = p′, the cardinality of χ (A) is exactly equal to (n

p−p′), which
is upper bounded by 1

xp−p′ . Thus, the (χ, p′)-degree and (χ, p′)-query time is bounded
by the claimed bound. For any B ⊆ U , |B| = q′, the cardinality of χ ′(B) is at most
|F |, which is upper bounded by 1

xp . Thus, the (χ ′, q′)-degree and (χ ′, q′)-query time is
bounded by the claimed bound.

Case 2: 1 − x ≤ 1
n. In this case, the algorithm will output all subsets of size n − q

of the universe as the family F of sets in the n-p-q-separating collection. That is,
F = {F ⊆ U | |F| = n − q}. We define χ and χ ′ as follows. For any A ∈ ⋃p′≤p(U

p′),

χ (A) = {F ∈ F | A ⊆ F}. For any B ∈⋃q′≤q(U
q′), χ ′(B) = {F ∈ F | B∩ F = ∅}. It is easy to

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:25

see that (F , χ, χ ′) is an n-p-q-separating collection. Note that |F | = (n
n−q) ≤ nq. Since

n ≤ 1
1−x , the size of the n-p-q-separating collection is upper bounded by the claimed

bound. Since we can list all the elements in F in nq time, the initialization time is upper
bounded by the claimed bound. For any A ⊆ U , |A| = p′, the cardinality of χ (A) is at
most |F |, which is upper bounded by 1

(1−x)q . Thus, the (χ, p′)-degree and (χ, p′)-query
time is bounded by the claimed bound. For any B ⊆ U , |B| = q′, the cardinality of χ ′(B)
is exactly equal to (n

q−q′), which is upper bounded by 1
(1−x)q−q′ . Thus, the (χ ′, q′)-degree

and (χ ′, q′)-query time is bounded by the claimed bound.

Case 3: x, 1 − x > 1
n. The structure of the proof in this case is as follows. We first

create a collection using Lemma 4.5. Then we apply Lemma 4.8 and obtain another
construction. From here onward we keep applying Lemma 4.11 and Lemma 4.8 in
phases until we achieve the required bounds on size, degree, query, and initialization
time.

We first apply Lemma 4.5 and get a construction of n-p-q-separating collections with
the following parameters:

—size, ζ 1(n, p, q) = O(1
xp(1−x)q · (p2 + q2 + 1) log n)

—initialization time, τ 1
I (n, p, q) = O((2n

ζ (n,p,q)) · 1
xp(1−x)q · nO(p+q))

—(χ1, p′)-degree for p′ ≤ p, �1
(χ1,p′)(n, p, q) = O(1

xp−p′ · (p2+q2+1)
(1−x)q · log n)

—(χ1, p′)-query time Q1
(χ1,p′)(n, p, q) = O(1

xp(1−x)q · nO(1)) = O(2nnO(1))
—(χ ′

1, q′)-degree for q′ ≤ q, �1
(χ ′

1,q′)(n, p, q) = O(1
xp(1−x)q−q′ · (p2 + q2 + 1) · log n)

—(χ ′
1, q′)-query time, Q1

(χ ′
1,q′)(n, p, q) = O(1

xp(1−x)q · nO(1)) = O(2nnO(1))

We apply Lemma 4.8 to this construction to get a new construction with the following
parameters:

—size, ζ 2(n, p, q) = O(1
xp(1−x)q · (p + q)O(1) · log n)

—initialization time,

τ 2
I (n, p, q) = O

(
τ 1

I

(
(p + q)2, p, q

)+ ζ 1((p + q)2, p, q
) · (p + q)O(1) · n log n

)
= O
(

22(p+q)2

xp(1 − x)q · (p + q)O(p+q) +
(

1
xp(1 − x)q · (p + q)O(1) · n log n

))

= O
(

(p + q)O(p+q)

xp(1 − x)q

(
22(p+q)2 + n log n

))

—(χ2, p′)-degree, �2
(χ2,p′)(n, p, q) = O(1

xp−p′ (1−x)q · (p + q)O(1) · log n)

—(χ2, p′)-query time, Q2
(χ2,p′)(n, p, q) = O((2(p+q)2 + 1

xp−p′ (1−x)q)(p + q)O(1) · log n)

—(χ ′
2, q′)-degree, �2

(χ ′
2,q′)(n, p, q) = O(1

xp(1−x)q−q′ · (p + q)O(1) · log n)

—(χ2, q′)-query time, Q2
(χ ′

2,q′)(n, p, q) = O((2(p+q)2 + 1
xp(1−x)q−q′)(p + q)O(1) · log n)

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:26 F. V. Fomin et al.

We apply Lemma 4.11 to this construction. Recall that in Lemma 4.11 we set s =
�(log(p + q))2� and t = � p+q

s �:

ζ 3(n, p, q) ≤ |Pn
t | ·

∑
(p1,...,pt)∈Z p

s,t

∏
i≤t

ζ 2(n, pi, s − pi)

≤ nO(t) · |Z p
s,t| · max

(p1,...,pt)∈Z p
s,t

∏
i≤t

ζ 2(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) · 1
xp(1 − x)q+s · sO(t) · (log n)O(t)

≤ n
O(p+q

log2(p+q)
) · 1

xp(1 − x)q

(
Because

(
1

1 − x

)s

≤ ns ≤ nO(t)
)

τ 3
I (n, p, q) = O

⎛⎜⎜⎝
⎛⎜⎜⎝ ∑

p̂≤s,p
s− p̂≤q

τ 2
I (n, p̂, s − p̂)

⎞⎟⎟⎠+ ζ 3(n, p, q) · nO(1)

⎞⎟⎟⎠

= O

⎛⎜⎜⎝
⎛⎜⎜⎝ ∑

p̂≤s,p
s− p̂≤q

sO(s)

x p̂(1 − x)s− p̂

(
22s2 + n log n

)⎞⎟⎟⎠+ ζ 3(n, p, q) · nO(1)

⎞⎟⎟⎠
= O
(

(log(p + q))O(log2(p+q))

xp(1 − x)q

(
22log4(p+q) + n log n

)
+ n

O(p+q
log2(p+q)

) · 1
xp(1 − x)q

)

�3
(χ3,p′)(n, p, q) ≤ �∗3

(χ3,p′)(n, p, q)

= |Pn
t | · |Z p

s,t| · max
(p1,...,pt)∈Z p

s,t
p′

1≤p1,...,p′
t≤pt

p′
1+···+p′

t=p′

∏
i≤t

�2
(χ,p′)(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) · 1
xp−p′ (1 − x)q+s · sO(t) · (log n)O(t)

≤ n
O(p+q

log2(p+q)
) · 1

xp−p′ (1 − x)q

(
Because

(
1

1 − x

)s

∈ nO(t)
)

�3
(χ ′

3,q′)(n, p, q) ≤ �∗3
(χ ′

3,q′)(n, p, q)

= |Pn
t | · |Z p

s,t| · max
(p1,...,pt)∈Z p

s,t
q′

1≤s−p1,...,q′
t≤s−qt

q′
1+···+q′

t=q′

∏
i≤t

�2
(χ ′,q′

i)
(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) · 1
xp(1 − x)q+s−q′ · sO(t) · (log n)O(t)

≤ n
O(p+q

log2(p+q)
) · 1

xp(1 − x)q−q′

(
Because

(
1

1 − x

)s

∈ nO(t)
)

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:27

Q3
(χ3,p′)(n, p, q) ≤ O

⎛⎜⎜⎜⎝�∗3
(χ3,p′)(n, p, q) · nO(1) + |Pn

t | · |Z p
s,t| · t · max

p̂′≤ p̂≤s
p̂− p̂′≤p−p′

s− p̂≤q

Q2
(χ2, p̂′)(n, p̂, s − p̂)

⎞⎟⎟⎟⎠

≤ O

⎛⎜⎜⎜⎝�∗3
(χ3,p′)(n, p, q) · nO(1)+

nO(t) max
p̂′≤ p̂≤s

p̂− p̂′≤p−p′
s− p̂≤q

(
2s2 + 1

x p̂− p̂′ (1 − x)s− p̂

)
sO(1) log n

⎞⎟⎟⎟⎠
≤ O

⎛⎝ n
O(p+q

log2(p+q)
)

xp−p′ (1 − x)q + nO(t) · sO(1) · log n
(

2s2 + 1
xp−p′ (1 − x)q

)⎞⎠
≤ O

⎛⎝ n
O(p+q

log2(p+q)
)

xp−p′ (1 − x)q

⎞⎠
In a similar way, we can bound Q3

(χ ′
3,q′) as

Q3
(χ ′

3,q′)(n, p, q) ≤ O

⎛⎝ n
O(p+q

log2(p+q)
)

xp(1 − x)q−q′

⎞⎠ .

We apply Lemma 4.8 to this construction to get a new construction with the following
parameters:

—size, ζ 4(n, p, q) ≤ 2O(p+q
log(p+q)) · 1

xp(1−x)q · (p + q)O(1) · log n
—initialization time,

τ 4
I (n, p, q) ≤ O

(
τ 3

I

(
(p + q)2, p, q

)+ ζ 3((p + q)2, p, q
) · (p + q)O(1) · n log n

)
≤ 22log4(p+q) · (log(p + q))O(log2(p+q))

xp(1 − x)q + 2O(p+q
log(p+q))

xp(1 − x)q · (p + q)O(1)n log n

—(χ4, p′)-degree,

�4
(χ4,p′)(n, p, q) ≤ �3

(χ3,p′)

(
(p + q)2, p, q

) · (p + q)O(1) · log n

≤ 2O(p+q
log(p+q))

xp−p′ (1 − x)q · (p + q)O(1) · log n

—(χ ′
4, q′)-degree,

�4
(χ ′

4,q′)(n, p, q) ≤ �3
(χ ′

3,q′)

(
(p + q)2, p, q

) · (p + q)O(1) · log n

≤ 2O(p+q
log(p+q))

xp(1 − x)q−q′ · (p + q)O(1) · log n

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:28 F. V. Fomin et al.

—(χ4, p′)-query time,

Q4
(χ4,p′)(n, p, q) ≤ O

((
Q3

(χ3,p′)

(
(p + q)2, p, q

)+ �3
(χ3,p′)

(
(p + q)2, p, q

)) · (p + q)O(1) · log n
)

≤ 2O(p+q
log(p+q))

xp−p′ (1 − x)q · (p + q)O(1) log n

—(χ ′
4, q′)-query time,

Q4
(χ ′

4,q′)(n, p, q) ≤ 2O(p+q
log(p+q))

xp(1 − x)q−q′ · (p + q)O(1) log n

We apply Lemma 4.11 to this construction by setting s = �(log(p + q))2� and t = � p+q
s �:

—size,

ζ 5(n, p, q) ≤ |Pn
t | ·

∑
(p1,...,pt)∈Z p

s,t

∏
i≤t

ζ 4(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) · sO(t) · 2O(st
log s) · (log n)O(t) · 1

xp(1 − x)q+s

≤ n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q)) 1
xp(1 − x)q

(
Because

(
1

1 − x

)s

∈ nO(t)
)

—initialization time,

τ 5
I (n, p, q) ≤ O

⎛⎜⎜⎝
⎛⎜⎜⎝ ∑

p̂≤s,p
s− p̂≤q

τ 4
I (n, p̂, s − p̂)

⎞⎟⎟⎠+ ζ 5(n, p, q) · nO(1)

⎞⎟⎟⎠
≤ O
(

s
22log4 s · (log s)O(log2 s)

xp(1 − x)q + 2O(s
log s)

xp(1 − x)q · n log n+

n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q))

xp(1 − x)q

)

≤ O
(

s
22log4 s · (log s)O(log2 s)

xp(1 − x)q + n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q))

xp(1 − x)q

)

≤ O
(

22log4 s · (s)O(s)

xp(1 − x)q + n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q))

xp(1 − x)q

)

≤ O
(

22(2 log log(p+q))4 · (log(p + q))O((log(p+q))2)

xp(1 − x)q + n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q))

xp(1 − x)q

)

≤ O
(

n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q))

xp(1 − x)q

)
(
Because 22(2 log log(p+q))4

, (log(p + q))O(log2(p+q)) ≤ 2O(p+q
log log(p+q))

)
Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:29

—(χ5, p′)-degree,

�5
(χ5,p′)(n, p, q) ≤ �∗5

(χ5,p′)(n, p, q)

= |Pn
t | · |Z p

s,t| · max
(p1,...,pt)∈Z p

s,t
p′

1≤p1,...,p′
t≤pt

p′
1+···+p′

t=p′

∏
i≤t

�4
(χ4,p′

i)
(n, pi, s − pi)

≤ nO(t) · (p + q)O(t) · 2O(st
log s)

xp−p′ (1 − x)q+s · sO(t) · (log n)O(t)

≤ n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q)) · 1
xp−p′ (1 − x)q(

Because
(

1
1 − x

)s

∈ nO(t)
)

—(χ ′
5, q′)-degree,

�5
(χ ′

5,q′)(n, p, q) ≤ �∗5
(χ ′

5,q′)(n, p, q)

≤ n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q)) · 1
xp(1 − x)q−q′

—(χ5, p′)-query time,

Q5
(χ5,p′)(n, p, q) ≤ O

⎛⎜⎜⎜⎝�∗5
(χ5,p′)(n, p, q) · nO(1) + |Pn

t | · |Z p
s,t| · max

p̂′≤ p̂≤s
p̂− p̂′≤p−p′

s− p̂≤q

Q4
(χ4, p̂′)(n, p̂, s − p̂)

⎞⎟⎟⎟⎠
≤ n

O(p+q
log2(p+q)

) · 2O(p+q
log log(p+q)) · 1

xp−p′ (1 − x)q

—(χ ′
5, q′)-query time,

Q5
(χ ′

5,q′)(n, p, q) ≤ n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q)) · 1
xp(1 − x)q−q′

We apply Lemma 4.8 to this construction to get a new construction with the following
parameters:

—size,

ζ (n, p, q) ≤ ζ 5((p + q)2, p, q
) · (p + q)O(1) · log n

≤ 2O(p+q
log log(p+q)) · 1

xp(1 − x)q · (p + q)O(1) log n

—initialization time,

τI(n, p, q) ≤ O
(
τ 5

I

(
(p + q)2, p, q

)+ ζ 5((p + q)2, p, q
) · (p + q)O(1) · n log n

)
= O
(

2O(p+q
log log(p+q)) · 1

xp(1 − x)q · (p + q)O(1)n log n
)

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:30 F. V. Fomin et al.

—(χ, p′)-degree,

�(χ,p′)(n, p, q) ≤ �5
(χ5,p′)

(
(p + q)2, p, q

) · (p + q)O(1) · log n

≤ O
(

2O(p+q
log log(p+q)) · 1

xp−p′ (1 − x)q · (p + q)O(1) · log n
)

—(χ, p′)-query time,

Q(χ,p′)(n, p, q) ≤ O
((

Q5
(χ5,p′)

(
(p + q)2, p, q

)+ �5
(χ5,p′)

(
(p + q)2, p, q

)) · (p + q)O(1) · log n
)

≤ O
(

2O(p+q
log log(p+q)) · 1

xp−p′ (1 − x)q · (p + q)O(1) · log n
)

—(χ ′, q′)-degree,

�(χ ′,q′)(n, p, q) = �5
(χ ′

5,q′)

(
(p + q)2, p, q

) · (p + q)O(1) · log n

≤ O
(

2O(p+q
log log(p+q)) · 1

xp(1 − x)q−q′ · (p + q)O(1) · log n
)

—(χ ′, q′)-query time,

Q(χ ′,q′)(n, p, q) = O
((

Q5
(χ ′

5,q′)

(
(p + q)2, p, q

)+ �5
(χ ′

5,q′)

(
(p + q)2, p, q

)) · (p + q)O(1) · log n
)

≤ O
(

2O(p+q
log log(p+q)) · 1

xp(1 − x)q−q′ · (p + q)O(1) · log n
)

The final construction satisfies all the claimed bounds. This concludes the proof.

LEMMA 4.12. There is an algorithm that, given a p-family A of sets over a universe U
of size n, an integer q, a 0 < x < 1, and a nonnegative weight function w : A → N with
maximum value at most W, computes in time

O(x−p(1 − x)−q · 2o(p+q) · n log n + |A| · log |A| · log W + |A| · (1 − x)−q · 2o(p+q) · log n)

a subfamily Â ⊆ A such that |Â| ≤ x−p(1 − x)−q ·2o(p+q) · log n and Â ⊆q
minrep A (Â ⊆q

maxrep

A).

PROOF. The algorithm first checks whether |A| ≤ x−p(1 − x)−q · 2o(p+q) · log n. If yes,
then it outputs A (as Â) and halts. So we assume that |A| > x−p(1 − x)−q · 2o(p+q) ·
log n. The algorithm starts by constructing a generalized n-p-q-separating collection
(F , χ, χ ′) as guaranteed by Lemma 4.4. If |A| ≤ |F |, the algorithm outputs A and halts.
Otherwise, it builds the set Â as follows. Initially, Â is equal to ∅ and all sets in F are
marked as unused. Now we sort the sets in A in the increasing order of weights, given
by w : A → N. The algorithm goes through every A ∈ A in the sorted order and queries
the separating collection to get the set χ (A). It then looks for a set F ∈ χ (A) that is not
yet marked as used. The first time such a set F is found, the algorithm marks F as
used, inserts A into Â, and proceeds to the next set in A. If no such set F is found, the
algorithm proceeds to the next set in A without inserting A into Â.

The size of Â is upper bounded by |F | ≤ x−p(1 − x)−q · 2o(p+q) · log n since every time
a set is added to Â, an unused set in F is marked as used. For the running time
analysis, the initialization of (F , χ) takes time x−p(1 − x)−q · (p + q)O(1) · 2o(p+q) · n log n.
Sorting A takes O(|A| · log |A| · log W) time. For each element A ∈ A, the algorithm first
queries χ (A), using time (1 − x)−q · 2o(p+q) · (p + q)O(1) · log n. Then it goes through all
sets in χ (A) and checks whether they have already been marked as used, taking time
(1 − x)−q · (p + q)O(1) · 2o(p+q) · log n. Thus, in total, the running time for these steps is

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:31

bounded by O(|A| · (1− x)−q ·2o(p+q) · log n+|A| · log |A| · log W). Adding the initialization
time to this gives the claimed running time.

Finally, we need to argue that Â ⊆q
minrep A. Consider any set A ∈ A and B such that

|B| = q and A ∩ B = ∅. If A ∈ Â, we are done, so assume that A /∈ Â. Since (F , χ, χ ′)
is an n-p-q-separating collection, we have that there exists F ∈ χ (A) ∩ χ ′(B), that is,
A ⊆ F and F ∩ B = ∅. Since A /∈ Â, we know that F was marked as used when A was
considered by the algorithm. When the algorithm marked F as used, it also inserted
a set A′ into Â, with the property that F ∈ χ (A′). Thus, A′ ⊆ F and hence A′ ∩ B = ∅.
Furthermore, A′ was considered before Aand thus w(A′) ≤ w(A). But A′ ∈ Â, completing
the proof.

Next we prove a “faster version of Lemma 4.12” that speeds up the running time to
compute the representative families.

LEMMA 4.13. There is an algorithm that, given a p-family A of sets over a universe U
of size n, an integer q, a 0 < x < 1, and a nonnegative weight function w : A → N with
maximum value at most W, computes in time

O
(
(p + q)O(1)n log n + |A| · log |A| · log W + |A| · (1 − x)−q · 2o(p+q) · log n

)
a subfamily Â ⊆ A such that |Â| ≤ x−p(1 − x)−q ·2o(p+q) · log n and Â ⊆q

minrep A (Â ⊆q
maxrep

A).

PROOF. The algorithm first checks whether |A| ≤ x−p(1 − x)−q · 2o(p+q) · log n. If yes,
then it outputs A (as Â) and halts. So we assume that |A| > x−p(1 − x)−q · 2o(p+q) · log n.

We start by constructing a (p + q)-perfect family f1, . . . , ft of hash functions from U
to [(p + q)2] with t = O((p + q)O(1) · log n) in time O(kO(1)n log n) using Proposition 4.7.
Now we sort the sets in A in the increasing order of weights, given by w : A → N.
For every f j , 1 ≤ j ≤ t, we construct a family Â j as follows. The algorithm starts by
constructing a generalized [(p+q)2]-p-q-separating collection (F j, χ j, χ

′
j) as guaranteed

by Lemma 4.4. It builds the set Â j as follows. Initially, Â j is equal to ∅ and all sets in
F are marked as unused. The algorithm goes through every A ∈ A in the sorted order
and does as follows:

—It first checks whether every element in A gets mapped to distinct integers by f j .
That is, |{ f j(a) | a ∈ A}| = |A|. If |{ f j(a) | a ∈ A}| < |A|, then the algorithm proceeds to
the next set in A without inserting A into Â. Otherwise, we move to the next step.

—It queries the separating collection to get the set χ (A). It looks for a set F ∈ χ j(A)
that is not yet marked as used. The first time such a set F is found, the algorithm
marks F as used, inserts A into Â j , and proceeds to the next set in A. If no such set
F is found, the algorithm proceeds to the next set in A without inserting A into Â j .

Finally, we return Â =⋃t
j=1 Â j .

The size of Â j is upper bounded by |F | ≤ x−p(1 − x)−q · 2o(p+q) · log(p + q) since
every time a set is added to Â, an unused set in F is marked as used. Thus, the size
of Â is upper bounded by |F | ≤ x−p(1 − x)−q · 2o(p+q) · log(p + q) · (p + q)O(1) · log n ≤
x−p(1 − x)−q ·2o(p+q) · log n. The running time analysis follows similarly to the one given
in Lemma 4.12.

Finally, we need to argue that Â ⊆q
minrep A. Consider any set A ∈ A and B such that

|B| = q and A∩ B = ∅. If A ∈ Â, we are done, so assume that A /∈ Â. By the properties
of (p+q)-perfect family f1, . . . , ft of hash functions from U to [(p+q)2], there exists an
integer j ∈ {1, . . . , t} such that f j is injective on A∪ B. We focus now on the construction

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:32 F. V. Fomin et al.

of Â j . Since (F j, χ j, χ
′
j) is a [(p+q)2]-p-q-separating collection, we have that there exists

F ∈ χ j(A) ∩ χ ′
j(B), that is, A ⊆ F and F ∩ B = ∅. Since A /∈ Â j (as A /∈ Â), we know that

F was marked as used when A was considered by the algorithm. When the algorithm
marked F as used, it also inserted a set A′ into Â, with the property that F ∈ χ (A′).
Thus, A′ ⊆ F and hence A′ ∩ B = ∅. Furthermore, A′ was considered before A and thus
w(A′) ≤ w(A). But A′ ∈ Â j ⊆ Â, completing the proof.

While applying Lemma 4.13, we can reduce the universe size to at most |A|p + q.
The next lemma formalizes this.

LEMMA 4.14. There is an algorithm that, given a p-family A of sets over a universe
U of size n, an integer q, and a nonnegative weight function w : A → N with maximum
value at most W, computes in time

O
(|A| · log |A| · log W + |A| · (1 − x)−q · 2o(p+q) · log n

)
a subfamily Â ⊆ A such that |Â| ≤ x−p(1 − x)−q · 2o(p+q) · log |A| and Â ⊆q

minrep A
(Â ⊆q

maxrep A).

PROOF. We first construct a new universe U ′ as follows. If n ≤ |A|p + q, then we
set U ′ = U ; otherwise, U ′ will consist of elements from U that are part of any set in
A and q new elements. The universe U ′ can be constructed in O(|A|p + q) time. Also,
note that |U ′| ≤ |A|p + q and |U ′| ≤ n. Now we claim that a q-representative family Â
of A with respect to the universe U ′ is also the required representative family over U .
Suppose X ∈ A and Y ⊆ U , |Y | ≤ q such that X ∩ Y = ∅. Let Y ′ = Y \ U ′ and let Y ′′ be
an arbitrary subset of size |Y ′| of U ′ \ U . Let Z = (Y \ Y ′) ∪ Y ′′. It is easy to see that
|Z| = |Y | and X ∩ Z = ∅. By the definition of a q-representative family, there exists
X̂ ∈ Â such that X̂ ∩ Z = ∅. Since Y ′ ∩ X̂ = ∅, we have that X̂ ∩ Y = ∅.

Thus, we apply Lemma 4.13 to compute the q-representative family Â of A with
respect to the universe U ′ and output it as the desired family. The claimed running
time and the size bound on the output representative family follow by substituting the
upper bound on |U ′| in the bounds coming from Lemma 4.13.

Finally, we give our main theorem.

THEOREM 4.15. There is an algorithm that, given a p-family A of sets over a universe
U of size n, an integer q, and a nonnegative weight function w : A → N with maximum
value at most W, computes in time

O
(|A| · log |A| · log W + |A| · (1 − x)−q · 2o(p+q) · log n

)
a subfamily Â ⊆ A such that |Â| ≤ x−p(1 − x)−q · 2o(p+q) and Â ⊆q

minrep A (Â ⊆q
maxrep A).

PROOF. Let A = A1. We compute a sequence of representative families

A2 ⊆q
minrep A1, . . . ,Am ⊆q

minrep Am−1

using Corollary 4.14, such that m is the least integer with the property that |Am| ≥
|Am−1|/2. In other words, for all i < m, we have that |Ai| ≤ |Ai−1|/2 and |Am| ≥ |Am−1|/2.
We output Am as the q-representative family for A. The correctness of this follows from
Lemma 3.3. By Corollary 4.14,

|Am| ≤ x−p(1 − x)−q · 2o(p+q) · log |Am−1|
≤ x−p(1 − x)−q · 2o(p+q) · log 2|Am|.

Thus,
|Am|

log |Am| ≤ x−p(1 − x)−q · 2o(p+q).

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:33

We know that for some number a and b, if a ≤ b, then a log2 a ≤ b log2 b. Applying this
identity, we get the following:

|Am|
log |Am| log2

(|Am|
log |Am|

)
≤ x−p(1 − x)−q · 2o(p+q).

The previous inequality implies that

|Am| ≤ |Am|
log |Am| log2

(|Am|
log |Am|

)
≤ x−p(1 − x)−q · 2o(p+q),

and thus, |Am| ≤ x−p(1 − x)−q · 2o(p+q). By Lemma 4.14, the total running time T to
compute Am is

T =
m−1∑
i=1

|Ai| · log |Ai| · log W + |Ai| · (1 − x)−q · 2o(p+q) · log n)

=
m−1∑
i=1

O
(|A|

2i−1 · log |A| · log W + |A|
2i−1 · (1 − x)−q · 2o(p+q) · log n

) (
since |Ai| ≤ |A|

2i−1

)
= O
(|A| · log |A| · log W + |A| · (1 − x)−q · 2o(p+q) · log n

)
.

This concludes the proof.

The size of the output representative family in Theorem 4.15 is minimized when
x = p

p+q . By substituting x = p
p+q in Theorem 4.15, we get the following corollary.

COROLLARY 4.16. There is an algorithm that, given a p-family A of sets over a universe
U of size n, an integer q, and a nonnegative weight function w : A → N with maximum
value at most W, computes in time

O
(

|A| · log |A| · log W + |A| ·
(

p + q
q

)q

· 2o(p+q) · log n
)

a subfamily Â ⊆ A such that |Â| ≤ (p+q
p) · 2o(p+q) and Â ⊆q

minrep A (Â ⊆q
maxrep A).

5. APPLICATIONS

In this section, we demonstrate how the efficient construction of representative families
can be used to design single-exponential parameterized and exact exponential time
algorithms. Our applications include the best-known deterministic algorithms for LONG

DIRECTED CYCLE, MINIMUM EQUIVALENT GRAPH, k-PATH, and k-TREE.
Let M = (E, I) be a matroid with the ground set of size n and S = {S1, . . . , St} be a

p-family of independent sets. Then, for specific matroids, we use the following notations
to denote the time required to compute the following q-representative families of S:

—Trm(t, p, q) is the time required to compute a family Ŝ ⊆q
rep S of size (p+q

q), when M is
a linear matroid.

—Tum(t, p, q) is the time required to compute a family Ŝ ⊆q
rep S of size (p+q

p) · 2o(p+q),
when M is a uniform matroid and x is chosen to be p

p+q .

Let us remind that, by Theorem 1.1, when the rank of M is p + q, Trm(t, p, q) is
bounded by O((p+q

p)tpω + t(p+q
q)ω−1) multiplied by the time required to perform opera-

tions over F. By Corollary 4.16, Tum(t, p, q)= O(t · (p+q
q)q · 2o(p+q) · log n).

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:34 F. V. Fomin et al.

5.1. Long Directed Cycle

In this section, we give our first application of algorithms based on representative
families. We study the following problem:

LONG DIRECTED CYCLE Parameter: k
Input: An n-vertex and m-arc directed graph D and a positive integer k.
Question: Does there exist a directed cycle of length at least k in D?

Observe that the LONG DIRECTED CYCLE problem is different from the well-known prob-
lem of finding a directed cycle of length exactly k. It is quite possible that the only
directed cycle that has length at least k is much longer than k, and possibly even is a
Hamiltonian cycle. Let D be a directed graph, k be a positive integer, and M = (E, I)
be a uniform matroid Un,2k, where E = V (D) and I = {S ⊆ V (D) | |S| ≤ 2k}. In this
subsection, whenever we talk about independent sets, these are independent sets of
the uniform matroid Un,2k. For a pair of vertices u, v ∈ V (D), we define

P i
uv = {X ∣∣ X ⊆ V (D), u, v ∈ X, |X| = i, and there is a directed uv-path in D

of length i − 1 with all the vertices belonging to X.
}

We start with a structural lemma providing the key insight to our algorithm.

LEMMA 5.1. Let D be a directed graph. Then D has a directed cycle of length at least k
if and only if there exists a pair of vertices u, v ∈ V (D) and X ∈ P̂k

uv ⊆k
rep Pk

uv such that D
has a directed cycle C and in this cycle vertices of X induce a directed path (i.e., vertices
of X form a consecutive segment in C).

PROOF. The reverse direction of the proof is straightforward—if cycle C contains a
path of length k, the length of C is at least k. We proceed with the proof of the forward
direction. Let C∗ = v1v2 · · · vrv1 be a smallest directed cycle in D of length at least k.
That is, r ≥ k and there is no directed cycle of length r′ where k ≤ r′ < r. We consider
two cases.

Case A: r ≤ 2k. If r ≤ 2k, then we take u = v1 and v = vk. We define paths P = v1v2 · · · vk
and Q = vk+1 · · · vr. Because |Q| ≤ k, by the definition of P̂k

uv ⊆k
rep Pk

uv, there exists a
directed uv-path P ′ such that X = V (P ′) ∈ P̂k

uv and X ∩ Q = ∅. By replacing P with P ′
in C∗, we obtain a directed cycle C of length at least k containing P ′ as a subpath.

Case B: r ≥ 2k + 1. In this case, we set u = v1 and v = vk and split C∗ into three
paths P = v1 · · · vk, Q = vk+1 · · · v2k, and R = v2k+1 · · · vr. Since |Q| = k and P̂k

uv ⊆k
rep Pk

uv,
it follows that there exists an uv-path P ′ such that X = V (P ′) ∈ P̂k

uv and X ∩ Q = ∅.
However, P ′ is not necessarily disjoint with R, and by replacing P with P ′ in C∗, we
can obtain a closed walk C ′ containing P ′ as a subpath. See Figure 1 for an illustration.

If X ∩ R = ∅, then C ′ is a simple cycle and we take C ′ as the desired C. We claim
that this is the only possibility. Let us assume targeting toward a contradiction that
X ∩ R
= ∅. We want to show that in this case, there is a cycle of length at least k but
shorter than C∗, contradicting the choice of C∗. Let vα be the last vertex in X∩ R when
we walk from v1 to vk along P ′. Let P ′[vα, vk] be the subpath of P ′ starting at vα and
ending at vk. If vα = v2k+1, we set R′ = ∅. Otherwise, we put R′ = R[v2k+1, vα−1] to be
the subpath of R starting at v2k+1 and ending at vα−1. Observe that since the arc vα−1vα

is present in D (in fact, it is an arc of the cycle C∗), we have that C = P ′[vα, vk]QR′

is a simple cycle in D. Clearly, |C| ≥ |Q| ≥ k. Furthermore, since v1 is not present in
P ′[vα, vk], we have that |P ′[vα, vk]| < |P ′| = |P|. Similarly, since vα is not present in R′,

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:35

Fig. 1. Illustration to the proof of Lemma 5.1.

we have that |R′| < |R|. Thus, we have

k ≤ |C| = |P ′[vα, vk]| + |Q| + |R′| < |P| + |Q| + |R| = |C∗|.
This implies that C is a directed simple cycle of length at least k and strictly smaller
than r. This is a contradiction. Hence, by replacing P with P ′ in C∗, we obtain a directed
cycle C containing P ′ as a subpath. This concludes the proof.

The next lemma provides an efficient computation of family P̂k
uv ⊆k

rep Pk
uv. It is pro-

vided to give a simple exposition of the representative-families-based dynamic pro-
gramming algorithm.

LEMMA 5.2. Let D be a directed/undirected graph with n vertices and m edges,
u ∈ V (D), and M = (E, I) be a uniform matroid Un,�, where E = V (D) and I = {S ⊆
V (D) | |S| ≤ �}. Then, for every p ≤ �, a collection of families P̂ p

uv ⊆�−p
rep P p

uv, v ∈ V (D)\{u},
of size at most (

�

p

)
· 2o(�)

each can be found in time

O
(

2o(�)mlog nmax
i∈[p]

{(
�

i − 1

)(
�

� − i

)�−i
})

.

Furthermore, within the same running time, every set in P̂ p
uv can be ordered in a way

that it corresponds to a directed (undirected) path in D.

PROOF. We prove the lemma only for digraphs. The proof for undirected graphs is
analogous and we only point out the differences with the proof for the directed case. We
describe a dynamic programming-based algorithm. Let V (D) = {u, v1, . . . , vn−1} and D
be a (p− 1) × (n− 1) matrix where the rows are indexed from integers in {2, . . . , p} and
the columns are indexed from vertices in {v1, . . . , vn−1}. The entry D[i, v] will store the
family P̂ i

uv ⊆�−i
rep P i

uv. We fill the entries in the matrix D in the increasing order of rows.
For i = 2, D[2, v] = {{u, v}} if uv ∈ A(D) (for an undirected graph we check whether u
and v are adjacent). Assume that we have filled all the entries until the row i. Let

N i+1
uv =

⋃
w∈N−(v)

P̂ i
uw • {v}.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:36 F. V. Fomin et al.

For undirected graphs, we use the following definition:

N i+1
uv =

⋃
w∈N(v)

P̂ i
uw • {v}.

CLAIM 5.1. N i+1
uv ⊆�−(i+1)

rep P i+1
uv .

PROOF. Let S ∈ P i+1
uv and Y be a set of size � − (i + 1) (which is essentially an

independent set of Un,�) such that S ∩ Y = ∅. We will show that there exists a set
S′ ∈ N i+1

uv such that S′ ∩ Y = ∅. This will imply the desired result. Since S ∈ P i+1
uv ,

there exists a directed path P = ua1 · · · ai−1v in D such that S = {u, a1, . . . , ai−1, v} and
ai−1 ∈ N−(v). The existence of path P[u, ai−1], the subpath of P between u and ai−1,
implies that X∗ = S \ {v} ∈ P i

uai−1
. Take Y ∗ = Y ∪ {v}. Observe that X∗ ∩ Y ∗ = ∅ and

|Y ∗| = � − i. Since P̂ i
uai−1

⊆�−i
rep P i

uai−1
, there exists a set X̂∗ ∈ P̂ i

uai−1
such that X̂∗ ∩ Y ∗ = ∅.

However, since ai−1 ∈ N−(v) and X̂∗ ∩{v} = ∅ (as X̂∗ ∩Y ∗ = ∅), we have X̂∗ •{v} = X̂∗ ∪{v}
and X̂∗ ∪ {v} ∈ N i+1

v . Taking S′ = X̂∗ ∪ {v} suffices for our purpose. This completes the
proof of the claim.

We fill the entry for D[i + 1, v] as follows. Observe that

N i+1
uv =

⋃
w∈N−(v)

D[i, w] • {v}.

We already have computed the family corresponding to D[i, w] for w ∈ N−(v). By Corol-
lary 4.16, |P̂ i

uw| ≤ (�

i)2o(�) and thus |N i+1
uv | ≤ d−(v)(�

i)2o(�). Furthermore, we can compute
N i+1

uv in time O(d−(v)(�

i)2o(�)). Now, using Corollary 4.16, we compute N̂ i+1
uv ⊆�−i−1

rep N i+1
uv

in time Tum(t, i + 1, � − i − 1), where t = d(v)(�

i)2o(�). By Claim 5.1, we know that
N i+1

uv ⊆�−i−1
rep P i+1

uv . Thus, Lemma 3.3 implies that N̂ i+1
uv = P̂ i+1

uv ⊆�−i−1
rep P i+1

uv . We as-
sign this family to D[i + 1, v]. This completes the description and the correctness of
the algorithm. We order the vertices of the sets in P̂ p

uv in the following way so that it
corresponds to a directed (undirected) path in D. We keep the sets in the order in which
they are built using the • operation. That is, we can view these sets as strings and the
• operation as concatenation. Then, every ordered set in our family represents a path
in the graph. The running time of the algorithm is bounded by

O

⎛⎝ p∑
i=2

n−1∑
j=1

Tum

(
d−(v j)

(
�

i − 1

)
2o(�), i, � − i

)⎞⎠
= O

⎛⎝ p∑
i=2

n−1∑
j=1

d−(v j)
(

�

i − 1

)(
�

� − i

)�−i

2o(�) log n

⎞⎠
= O

⎛⎝2o(�) log n
p∑

i=2

n−1∑
j=1

d−(v j)
(

�

i − 1

)(
�

� − i

)�−i
⎞⎠

= O
(

2o(�)mlog nmax
i∈[p]

{(
�

i − 1

)(
�

� − i

)�−i
})

This completes the proof.

Finally, we are ready to state the main result of this section.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:37

THEOREM 5.3. LONG DIRECTED CYCLE can be solved in time O(8k+o(k)mn2).

PROOF. Let D be a directed graph. We solve the problem by applying the structural
characterization proved in Lemma 5.1. By Lemma 5.1, D has a directed cycle of length
at least k if and only if there exists a pair of vertices u, v ∈ V (D) and a path P ′ with
V (P ′) ∈ P̂k

uv ⊆k
rep Pk

uv such that D has a directed cycle C containing P ′ as a subpath.
We first compute P̂k

uv ⊆k
rep Pk

uv for all u, v ∈ V (D). For that we apply Lemma 5.2 for
each vertex u ∈ V (D) with � = 2k and p = k. Thus, we can compute P̂k

uv ⊆k
rep Pk

uv for
all u, v ∈ V (D) in time O(2o(k)mlog nmaxi∈[k]{(2k

i−1)(2k
2k−i)

2k−i}). Both the functions (2k
i−1)

and (2k
2k−i)

2k−i on i in the domain [k] are maximized when i = k. Thus, the mentioned
running time is upper bounded by O(8k+o(k)mn log n). Moreover, for every X ∈ P̂k

uv, we
also compute a directed uv-path PX using vertices of X. Let

Q =
⋃

u,v∈V (D)

P̂k
uv.

Now, for every set X ∈ Q and the corresponding uv-path PX with an endpoint, we
check if there is a uv-path in D avoiding all vertices of X but u and v. This check can
be done by a standard graph traversal algorithm like BFS/DFS in time O(m + n). If
we succeed in finding a path for at least one X ∈ Q, we answer YES and return the
corresponding directed cycle obtained by merging PX and another path. Otherwise, if
we did not succeed to find such a path for any of the sets X ∈ Q, this means that there is
no directed cycle of length at least k in D. The correctness of the algorithm follows from
Lemma 5.1. By Corollary 4.16, the size of Q is upper bounded by n2(2k

k)2o(k) ≤ n24k+o(k).
Thus, the overall running time of the algorithm is upper bounded by

O
(
8k+o(k)mn log n + 4k+o(k)(n2m+ n3)

)
.

This concludes the proof.

5.2. Faster Long Directed Cycle

In this subsection, we design a faster algorithm for LONG DIRECTED CYCLE. In Section 5.1,
we saw an algorithm for LONG DIRECTED CYCLE where the running time mainly depends
on the computation of representative families P̂ p

uv ⊆q
rep P p

uv for 2 ≤ p ≤ k and q = 2k− p.
We used Theorem 4.12 with x = p

p+q (i.e., Corollary 4.16) to compute representative
families. The choice x = p

p+q minimizes the size of the representative family. But in
fact, we can choose x that minimizes the running time instead.

Now we find out the choice of x that minimizes the computation of P̂ p
uv ⊆q

rep P p
uv

for 2 ≤ p ≤ k and q = 2k − p. Let sp,q denote the size of P̂ p
uv. We know that the

computation of P̂ p
uv ⊆q

rep N p
uv ⊆q

rep P p
uv depends on |N p

uv|, which depends on the size of the
representative families P̂ p−1

uw . That is, |N p
uv| ≤ sp−1,q+1 · n. Thus, the values of sp−1,q+1

and sp,q are “almost equal” and we denote it by sp−1,q+1 ≈ sp,q. By Theorem 4.15, the
running time to compute P̂ p

uv ⊆q
rep N p

uv ⊆q
rep P p

uv is

O
(
|N p

uv| · (1 − x)−q · 2o(p+q) · log n
)

= O
(
sp,q · (1 − x)−q · 2o(p+q) · n log n

)
= O
(

x−p · (1 − x)−2q · 2o(p+q) · n log n
)

.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:38 F. V. Fomin et al.

To minimize the previous running time, it is enough to minimize the function f (x) =
x−p · (1 − x)−2q. Using methods from calculus, we know that the value x∗ of x for which
f ′(x∗) = 0 corresponds to a minimum value of the function f (x) if f ′′(x∗) > 0. The
derivative of f (x) is f ′(x) = −px−p−1(1 − x)−2q + 2q · x−p(1 − x)−2q−1. Now consider the
value of x for which f ′(x) = 0:

−px−p−1(1 − x)−2q + 2q · x−p(1 − x)−2q−1 = 0
−p(1 − x) + 2q · x = 0

x = p
p + 2q

.

Set x∗ = p
p+2q . To prove f (x) is minimized at x∗, it is enough to show that f ′′(x∗) > 0:

f ′(x) = −px−p−1(1 − x)−2q + 2q · x−p(1 − x)−2q−1

= x−p(1 − x)−2q(−p · x−1 + 2q · (1 − x)−1)
= f (x) · (−p · x−1 + 2q · (1 − x)−1)

f ′′(x) = f (x) · (p · x−2 + 2q · (1 − x)−2) + f ′(x) · (−p · x−1 + 2q · (1 − x)−1)
f ′′(x∗) = f (x∗) · (p · (x∗)−2 + 2q · (1 − (x∗))−2) > 0.

Hence, the runtime to compute P̂ p
uv ⊆q

rep P p
uv is minimized when x = p

p+2q .

LEMMA 5.4. Let D be a directed graph with n vertices and m edges, u ∈ V (D), and
M = (E, I) be a uniform matroid Un,�, where E = V (D) and I = {S ⊆ V (D) | |S| ≤ �}.
Then, for every v ∈ V (D) \ {u} and integer 2 ≤ p ≤ �, there is an algorithm that
computes a family P̂ p

uv ⊆�−p
rep P p

uv of size (2�−p
p)p(2�−p

2�−2p)�−p · 2o(�) in time O(2o(�) · mlog n ·
maxi∈[p]{(2�−i

i)i(2�−i
2�−2i)

2�−2i}).
PROOF. The proof is the same as the proof of Lemma 5.2, except for the choice of x

while applying Theorem 4.12 (instead of Corollary 4.16). As in the proof of Lemma 5.2,
we have a dynamic programming table D where the rows are indexed from integers in
{2, . . . , p} and the columns are indexed from vertices in {v1, . . . , vn−1}. The entry D[i, v]
will store the family P̂ i

uv ⊆�−i
rep P i

uv. We fill the entries in the matrix D in the increasing
order of rows. For i = 2, D[2, v] = {{u, v}} if uv ∈ A(D). Assume that we have filled all
the entries until the row i. Let

N i+1
uv =

⋃
w∈N−(v)

P̂ i
uw • {v}.

Due to Claim 5.1, we have that N i+1
uv ⊆�−(i+1)

rep P i+1
uv . Lemma 3.3 implies that N̂ i+1

uv =
P̂ i+1

uv ⊆�−i−1
rep P i+1

uv . We assign this family to D[i + 1, v].
Now we explain the computation of N̂ i+1

uv = P̂ i+1
uv . For any j, to compute N̂ j

uv = P̂ j
uv,

we apply Theorem 4.15 with the value xj for x, where

xj = j
j + 2(� − j)

= j
2� − j

.

Let sj,�− j be the size of the representative family N̂ j
uv = P̂ j

uv when we apply Theorem 4.15
with the value xj . That is, sj,�− j = (xj)− j(1−xj)�− j ·2o(�). Assume that we have computed
P̂ j

uw of size sj,�− j and stored it in D[j, w] for all j ≤ i and w ∈ {v1, . . . , vn−1}. Now consider
the computation of N̂ i+1

uv = P̂ i+1
uv . We apply Theorem 4.15 with value xi+1 for x to compute

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:39

N̂ i+1
uv ⊆�−(i+1)

rep N i+1
uv . Since N i+1

uv =⋃w∈N−(v) P̂ i
uw • {v}, we have that

|N i+1
uv | ≤ si,�−i · d−(v)

≤ (xi)−i(1 − xi)�−i · 2o(�)d−(v).

By Theorem 4.15, the running time to compute N̂ i+1
uv is

si,�−i · (1 − xi+1)�−(i+1) · 2o(�) · d−(v) · log n. (6)

To analyze the running time further, we need the following claim.

CLAIM 5.2. For any 3 < i < p, si,�−i ≤ e2 · (i + 1) · si+1,�−i−1.

PROOF. By applying the definition of si and xi+1, we get the following inequality:

si,�−i

si+1,�−i−1
= x−i

i (1 − xi)−�+i

x−(i+1)
i+1 (1 − xi+1)−�+(i+1)

=
(

2� − i
i

)i (2� − i
2� − 2i

)�−i (i + 1
2� − (i + 1)

)i+1 (2� − 2(i + 1)
2� − (i + 1)

)�−(i+1)

=
(

2� − i
2� − (i + 1)

)�

· (i + 1)i+1

ii · (2� − 2(i + 1))�−(i+1)

(2� − 2i)�−i

≤
(

1 + 1
2� − (i + 1)

)2�−(i+1)

· (i + 1) ·
(

1 + 1
i

)i

≤ e2 · (i + 1).

In the last transition, we used that (1 + 1/x)x < e for every x > 0.

From Equation (6) and Claim 5.2, we have that the running time for computing P̂ p
uv

is bounded by

O

⎛⎝ p∑
i=2

n−1∑
j=1

si,�−i · d−(v j) · (1 − xi)−�+i · 2o(�) · log n

⎞⎠
= O
(

2o(�) · mlog n · max
i∈[p]

{(
2� − i

i

)i (2� − i
2� − 2i

)2�−2i
})

.

The size of the family P̂ p
uv ⊆�−p

rep N p
uv ⊆�−p

rep P p
uv is

sp,�−p = (xp)−p(1 − xp)−�+p · 2o(�) =
(

2� − p
p

)p(2� − p
2� − 2p

)�−p

· 2o(�).

This completes the proof.

We now have a faster algorithm to compute the representative family P̂k
uv ⊆k

rep P p
uv.

Using Lemma 5.4, we can compute P̂k
uv for all v ∈ V (D) \ {u} in time

O
(

2o(k) · mlog n · max
i∈[p]

{(
4k − i

i

)i (4k − i
4k − 2i

)4k−2i
})

.

Simple calculus shows that the maximum is attained for i = k. Hence, the running time
to compute P̂k

uv for all u, v ∈ V (D) is upper bounded by O(6.75k+o(k)nmlog n). This yields
an improved bound for the running time of our algorithm for LONG DIRECTED CYCLE.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:40 F. V. Fomin et al.

We apply Lemma 5.4 for each u ∈ V (D) with � = 2k and p = k. Thus, we can compute
P̂k

uv ⊆k
rep P p

uv for all u, v ∈ V (D) in time O(6.75k+o(k)nmlog n). The size of the family P̂k
uv

for any u, v ∈ V (D) is upper bounded by O(4.5k+o(k)). Thus, if we now loop over every
set in the representative families and run a breadth-first search, just as in the proof
of Theorem 5.3, this will take at most O(6.75k+o(k)nmlog n + 4.5k+o(k)(n3 + n2m)) time.
Hence, we arrive at the following theorem.

THEOREM 5.5. There is a O(6.75k+o(k)mn2) time algorithm for LONG DIRECTED CYCLE.

5.3. Minimum Equivalent Graph

For a given digraph D, a subdigraph D′ of D is said to be an equivalent subdigraph of
D if for any pair of vertices u, v ∈ V (D), if there is a directed path in D from u to v,
then there is also a directed path from u to v in D′. That is, reachability of vertices in
D and D′ is the same. In this section, we study a problem where given a digraph D,
the objective is to find an equivalent subdigraph D′ of D with as few arcs as possible.
Equivalently, the objective is to remove the maximum number of arcs from a digraph
D without affecting its reachability. More precisely, the problem we study is as follows:

MINIMUM EQUIVALENT GRAPH (MEG)
Input: A directed graph D.
Task: Find an equivalent subdigraph of D with the minimum number of arcs.

The following proposition is due to Moyles and Thompson [1969] (see also Bang-
Jensen and Gutin [2009, Section 2.3]), who reduce the problem of finding a minimum
equivalent subdigraph of an arbitrary D to a strong digraph.

PROPOSITION 5.6. Let D be a digraph on n vertices with strongly connected components
C1, . . . , Cr. Given a minimum equivalent subdigraph C ′

i for each Ci, i ∈ [r], one can
obtain a minimum equivalent subdigraph D′ of D containing each C ′

i in O(nω) time.

Observe that for a strong digraph D, any equivalent subdigraph is also strong. By
Proposition 5.6, MEG reduces to the following problem:

MINIMUM STRONGLY CONNECTED SPANNING SUBGRAPH (MINIMUM SCSS)
Input: A strongly connected directed graph D.
Task: Find a strong spanning subdigraph of D with the minimum number of arcs.

There seems to be no established agreement in the literature on what to call these prob-
lems. MEG sometimes is also referred as MINIMUM EQUIVALENT DIGRAPH and MINIMUM

EQUIVALENT SUBDIGRAPH, while MINIMUM SCSS is also called MINIMUM SPANNING STRONG

SUBDIGRAPH (MSSS).
A digraph T is an out-tree (an in-tree) if T is an oriented tree with just one vertex s

of in-degree zero (out-degree zero). The vertex s is the root of T . If an out-tree (in-tree)
T is a spanning subdigraph of D, T is called an out-branching (an in-branching). We
use the notation B+

s (B−
s) to denote an out-branching (in-branching) rooted at s of the

digraph. A digraph F is an out-forest (an in-forest) if it is a disjoint union of out-trees
(in-trees).

It is known that a digraph is strong if and only if it contain an out-branching and an
in-branching rooted at some vertex v ∈ V (D) [Bang-Jensen and Gutin 2009, Proposi-
tion 12.1.1].

PROPOSITION 5.7. Let D be a strong digraph on n vertices, let v be an arbitrary vertex
of V (D), and let � ≤ n − 2 be a natural number. Then there exists a strong spanning

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:41

subdigraph of D with at most 2n− 2 − � arcs if and only if D contains an in-branching
B−

v and an out-branching B+
v with root v so that |A(B+

v) ∩ A(B−
v)| ≥ � (i.e., they have at

least � common arcs).

Proposition 5.7 implies that the MINIMUM SCSS problem is equivalent to finding,
for an arbitrary vertex v ∈ V (D), an out-branching B+

v and an in-branching B−
v that

maximizes |A(B+
v) ∩ A(B−

v)|. For our exact algorithm for MINIMUM SCSS, we implement
this equivalent version using representative families.

Let D be a strong digraph and s ∈ V (D) be a fixed vertex. For v ∈ V (D), we use
In(v) and Out(v) to denote the sets of incoming and outgoing arcs incident with v in
D, respectively. By D−

s we denote the digraph obtained from D by deleting the arcs in
Out(s). Similarly, by D+

s we denote the digraph obtained from D by deleting the arcs in
In(s).

We take two copies E1, E2 of A(D) (i.e., Ei = {ei | e ∈ A(D)}), a copy E3 of A(D+
s),

and a copy E4 of A(D−
s) and construct four matroids as follows. Let U (D) denote the

underlying undirected graph of D. The first two matroids M1 = (E1, I1), M2 = (E2, I2)
are the graphic matroids on U (D). Observe that

A(D+
s) =

⊎
v∈V (D+

s)\{s}
In(v) and A(D−

s) =
⊎

v∈V (D−
s)\{s}

Out(v).

Thus, the arcs of D+
s can be partitioned into sets of in-arcs and similarly the arcs of

D−
s into sets of out-arcs. The other two matroids are the following partition matroids

M3 = (E3, I3), M4 = (E4, I4), where

I3 = {I | I ⊆ A(D+
s), for every v ∈ V (D+

s) = V (D), |I ∩ In(v)| ≤ 1},
and

I4 = {I | I ⊆ A(D−
s), for every v ∈ V (D−

s) = V (D), |I ∩ Out(v)| ≤ 1}.
We define the matroid M = (E, I) as the direct sum M = M1 ⊕ M2 ⊕ M3 ⊕ M4. Since
each Mi is a representable matroid over the same field (by Propositions 2.4 and 2.5),
we have that M is also representable (Proposition 2.3). The reason we say that Mi is
representable over the same field F is that the graphic matroid is representable over
any field and the partition matroids defined here are representable over a finite field
of size nO(1). So if we take F as a finite field of size nO(1), then M is representable over
F. The rank of this matroid is 4n − 4.

Let us note that for each arc e ∈ A(D) that is not incident with s, we have four
elements in the matroid M, corresponding to the copies of e in Mi, i ∈ {1, . . . , 4}. We
denote these elements by ei, i ∈ {1, . . . , 4}. For every edge e ∈ A(D) incident with s, we
have three corresponding elements. We denote them by e1, e2, e3 or e1, e2, e4, depending
on the case when e is an in- or out-arc for s.

For i ∈ {1, . . . , n − 1}, we define

B4i = {W ∈ I | |W | = 4i, ∀ e ∈ A(D) either W ∩ {e1, e2, e3, e4} = ∅ or {e1, e2, e3, e4} ⊆ W
}
.

For W ∈ I, by AW we denote the set of arcs e ∈ A(D) such that {e1, e2, e3, e4} ∩ W
= ∅.
Now we are ready to state the lemma that relates representative families and the
MINIMUM SCSS problem.

LEMMA 5.8. Let D be a strong digraph on n vertices and � ≤ n−2 be a natural number.
Then there exists a strong spanning subdigraph D′ of D with at most 2n − 2 − � arcs
if and only if there exists a set F̂ ∈ B̂4� ⊆n′−4�

rep B4� such that D has a strong spanning
subdigraph D̄ with AF̂ ⊆ A(D̄) and |A(D̄)| ≤ 2n − 2 − �. Here, n′ = 4n − 4.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:42 F. V. Fomin et al.

PROOF. We only show the forward direction of the proof; the reverse direction is
straightforward. Let D′ be a strong spanning subdigraph of D with at most 2n − 2 − �
arcs. Thus, by Proposition 5.7, we have that for any vertex v ∈ V (D′), there exists
an out-branching B+

v and an in-branching B−
v in D′ such that |A(B+

v) ∩ A(B−
v)| ≥ �.

Observe that the arcs in A(B+
v) ∩ A(B−

v) form an out-forest (in-forest). Let F ′ be an
arbitrary subset of A(B+

v) ∩ A(B−
v) containing exactly � arcs. Take X = A(B+

v) \ F ′ and
Y = A(B−

v)\ F ′. Observe that X and Y need not be disjoint. Clearly, |X| = |Y | = n−1−�.
In matroid M, one can associate with D′ an independent set ID′ of size 4n − 4 as

follows:

ID′ =
⋃
e∈F ′

{e1, e2, e3, e4}
⋃
e∈X

{e1, e3}
⋃
e∈Y

{e2, e4}.

By our construction, we have that ID′ is an independent set in I and |ID′ | = 4� + 4(n −
1 − �) = n′. Let F = ⋃e∈F ′ {e1, e2, e3, e4}, X̄ = ⋃e∈X{e1, e3}, and Ȳ = ⋃e∈Y {e2, e4}. Then
notice that F ∈ B4� and F ⊂ ID′ . This implies that there exists a set F̂ ∈ B̂4� ⊆n′−4�

rep B4�

such that ID̄ = F̂ ∪ X̄ ∪ Ȳ ∈ I. We show that D has a strong spanning subdigraph
D̄ with AF̂ ⊆ A(D̄). Let D̄ be the digraph with the vertex set V (D) and the arc set
A(D̄) = X ∪ Y ∪ AF̂ . Notice that |A(D̄)| = |A(D′)| ≤ 2n − 2 − �. Consider the following
four sets:

(1) Let W1 = {e1 | e ∈ X ∪ AF̂}; then we have that W1 ⊆ ID̄ and thus W1 ∈ I1. This
together with the fact that |W1| = n − 1 implies that X ∪ AF̂ forms a spanning tree
in U (D).

(2) Let W2 = {e2 | e ∈ Y ∪ AF̂}. Similar to the first case, then Y ∪ AF̂ forms a spanning
tree in U (D).

(3) Let W3 = {e3 | e ∈ X ∪ AF̂}; then we have that W3 ⊆ ID̄ and thus W3 ∈ I3. This
together with the fact that |W1| = |W3| = n − 1 and that X ∪ AF̂ is a spanning tree
in U (D) implies that X ∪ AF̂ forms an out-branching rooted at s in D+

s .
(4) Let W4 = {e3 | e ∈ Y ∪ AF̂}. Similar to the previous case, then Y ∪ AF̂ forms an

in-branching rooted at s in D−
s .

We have shown that D̄ contains AF̂ and has an out-branching and in-branching rooted
at s. Also, |A(D̄)| ≤ 2n − 2 − �. This implies that D̄ is the desired strong spanning
subdigraph of D containing a set from B̂4�. This concludes the proof of the lemma.

LEMMA 5.9. Let D be a strong digraph on n vertices and � ≤ n−2 be a natural number.
Then, in time O(maxi∈[�](n′

4i)
ωmn2 log n), we can compute B̂4� ⊆n′−4�

rep B4� of size (n′
4�

). Here,
n′ = 4n − 4.

PROOF. We describe a dynamic programming-based algorithm. Let D be an array of
size �. The entry D[i] will store the family B̂4i ⊆n′−4i

rep B4�. We fill the entries in the array
D in the increasing order of its index, that is, from 0, . . . , �. For the base case, define
B̂0 = {∅} and let W = {{e1, e2, e3, e4}| e ∈ A(D)}. Given that D[i] is filled for all i′ ≤ i, we
fill D[i + 1] as follows. Define N 4(i+1) = (B̂4i • W) ∩ I.

CLAIM 5.3. For all 0 ≤ i ≤ � − 1, N 4(i+1) ⊆n′−4(i+1)
rep B4(i+1).

PROOF. Let S ∈ B4(i+1) and Y be a set of size n′ − 4(i + 1) such that S ∩ Y = ∅ and
S ∪ Y ∈ I. We will show that there exists a set Ŝ ∈ N 4(i+1) such that Ŝ ∩ Y = ∅ and
Ŝ ∪ Y ∈ I. This will imply the desired result.

Let e ∈ A(D) such that {e1, e2, e3, e4} ⊆ S. Define S∗ = S \ {e1, e2, e3, e4} and Y ∗ =
Y ∪ {e1, e2, e3, e4}. Since S ∪ Y ∈ I, we have that S∗ ∈ I and Y ∗ ∈ I. Observe that
S∗ ∈ B4i, S∗ ∪ Y ∗ ∈ I and the size of Y ∗ is n′ − 4i. This implies that there exists Ŝ∗ in

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:43

B̂4i ⊆n′−4i
rep B4� such that Ŝ∗ ∪Y ∗ ∈ I. Thus, Ŝ∗ ∪{e1, e2, e3, e4} ∈ I and also in B̂4i •W and

thus in N 4(i+1). Taking Ŝ = Ŝ∗ ∪ {e1, e2, e3, e4} suffices for our purpose. This completes
the proof of the claim.

We fill the entry for D[i + 1] as follows. Observe that N 4(i+1)
uv = (D[i] • W) ∩ I.

We already have computed the family corresponding to D[i]. By Theorem 1.1,
|B̂4i| ≤ (n′

4i) and thus |N 4(i+1)| ≤ 4m(n′
4i). Furthermore, we can compute N 4(i+1) in time

O(mn(n′
4i)). Now, using Theorem 1.1, we can compute N̂ 4(i+1) ⊆n′−4(i+1)

rep N 4(i+1) in time
Trm(t, 4i + 4, n′ − 4(i + 1)), where t = 4m(n′

4i).
By Claim 5.3, we know that N 4(i+1) ⊆n′−4(i+1)

rep B4(i+1). Thus, Lemma 3.3 implies that
N̂ 4(i+1) = B̂4(i+1) ⊆n′−4(i+1)

rep B4(i+1). We assign this family to D[i + 1]. This completes the
description and the correctness of the dynamic programming. The field size for uniform
matroids is upper bounded by nO(1) and thus we can perform all the field operations in
time O(log2 n). Thus, the running time of this algorithm is upper bounded by

O
(

�∑
i=1

Trm

(
4m
(

n′

4(i − 1)

)
, 4i, n′ − 4i

))
= O
(

max
i∈[�]

(
n′

4i

)ω

mlog2 n
)

.

This completes the proof.

LEMMA 5.10. MINIMUM SCSS can be solved in time O(24ωnmn).

PROOF. Let us fix n′ = 4n−4. Proposition 5.7 implies that the MINIMUM SCSS problem
is equivalent to finding, for an arbitrary vertex s ∈ V (D), an out-branching B+

v and an
in-branching B−

v that maximizes |A(B+
v) ∩ A(B−

v)|. We guess the value of |A(B+
v) ∩ A(B−

v)|
and let this be �. By Lemma 5.8, there exists a strong spanning subdigraph D′ of D
with at most 2n − 2 − � arcs if and only if there exists a set F̂ ∈ B̂4� ⊆n′−4�

rep B4� such
that D has a strong spanning subdigraph D̄ with AF̂ ⊆ A(D̄). Recall that for X ∈ I,
by AX, we denote the set of arcs e ∈ A(D) such that {e1, e2, e3, e4} ∩ X
= ∅. Now, using
Lemma 5.9, we compute B̂4� ⊆n′−4�

rep B4� in time O(maxi∈[�](n′
4i)

ωmlog2 n).
For every F̂ ∈ B̂4�, we test whether AF̂ can be extended to an out-branching in D+

s
and to an in-branching in D−

s . We can do it in O(n(n + m))-time by putting weights 0
to the arcs of AF̂ and weights 1 to all remaining arcs and then by running the classic
algorithm of Edmonds [1967]. Since � ≤ n − 2, the running time of this algorithm is
upper bounded by O(24ωnmn). This concludes the proof.

Finally, we are ready to prove the main result of this section.

THEOREM 5.11. MINIMUM EQUIVALENT GRAPH can be solved in time O(24ωnmn).

PROOF. Given an arbitrary digraph D, we first find its strongly connected components
C1, . . . , Cs. Now, on each Ci, we apply Lemma 5.10 and obtain a minimum equivalent
subdigraph C ′

i. After this we apply Proposition 5.6 and obtain a minimum equivalent
subdigraph of D. Since all the steps except Lemma 5.10 take polynomial time, we get
the desired running time. This completes the proof.

A weighted variant of MINIMUM EQUIVALENT GRAPH has also been studied in the liter-
ature. More precisely, the problem is defined as follows:

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:44 F. V. Fomin et al.

MINIMUM WEIGHT EQUIVALENT GRAPH (MWEG)
Input: A directed graph D and a weight function w : A(D) → N.
Task: Find a minimum weight equivalent subdigraph of D.

MWEG can be solved along the same lines as MEG, but to do this, we need to use the
notion of the min q-representative family and use Theorem 3.7 instead of Theorem 1.1.
We also need a proposition like Proposition 5.6 for the weighted case. If D is an arc
weighted graph, then one can get a proposition similar to Proposition 5.6 with a log W
multiplicative factor in the running time, where W is the largest arc weight in D. These
changes give us the following theorem.

THEOREM 5.12. MINIMUM WEIGHT EQUIVALENT GRAPH can be solved in time
O(24ωnmn log W). Here, W is the maximum value assigned by the weight function
w : A(D) → N.

5.4. Dynamic Programming Over Graphs of Bounded Treewidth

In this section, we discuss deterministic algorithms for “connectivity problems” such
as HAMILTONIAN PATH, STEINER TREE, and FEEDBACK VERTEX SET parameterized by the
treewidth of the input graph. The algorithms are based on Theorem 1.1 and use graphic
matroids to take care of connectivity constraints. The approach is generic and can be
used whenever all the relevant information about a “partial solution” can be encoded
as an independent set of a specific linear matroid. We exemplify the approach on the
STEINER TREE problem.

STEINER TREE

Input: An undirected graph G with a set of terminals T ⊆ V (G) and a weight
function w : E(G) → N.

Task: Find a subtree in G of minimum weight spanning all vertices of T .

5.4.1. Treewidth. Let G be a graph. A tree decomposition of a graph G is a pair (T,X =
{Xt}t∈V (T)) such that

—∪t∈V (T) Xt = V (G),
—for every edge xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and
—for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T) |Xt| − 1, and the treewidth of G is the
minimum width over all tree decompositions of G and is denoted by tw(G).

A tree decomposition (T,X) is called a nice tree decomposition if T is a tree rooted at
some node r where Xr = ∅, each node of T has at most two children, and each node is
of one of the following kinds:

(1) Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and |Xt| =
|Xt′ | + 1.

(2) Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1.
(3) Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
(4) Base node: a node t that is a leaf of T and is different than the root, and Xt = ∅.

Notice that, according to this definition, the root r of T is either a forget node or a
join node. It is well known that any tree decomposition of G can be transformed into
a nice tree decomposition maintaining the same width in linear time [Kloks 1994]. We
use Gt to denote the graph induced by the vertex set ∪t′ Xt′ , where t′ ranges over all
descendants of t, including t. By E(Xt) we denote the edges present in G[Xt]. We use Ht

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:45

to denote the graph on vertex set V (Gt) and the edge set E(Gt) \ E(Xt). For clarity of
presentation, we use the term nodes to refer to the vertices of the tree T.

5.4.2. STEINER TREE Parameterized by Treewidth. Let G be an input graph of the STEINER

TREE problem. Throughout this section, we say that E′ ⊆ E(G) is a solution if the
subgraph induced on this edge set is connected and it contains all the terminal vertices.
We call E′ ⊆ E(G) an optimal solution if E′ is a solution of the minimum weight. Let
S be the family of edge subsets such that every edge subset corresponds to an optimal
solution. That is,

S = {E′ ⊆ E(G) | E′ is an optimal solution}.
We start with a few definitions that will be useful in explaining the algorithm. Let
(T,X) be a tree decomposition of G of width tw. Let t be a node of V (T). By St we denote
the family of edge subsets of E(Ht), {E′ ⊆ E(Ht)}, that satisfies the following properties:

—either E′ is a solution (i.e., the subgraph formed by this edge set is connected and
contains all the terminal vertices) or

—every vertex of (T ∩V (Gt))\Xt is incident with some edge from E′, and every connected
component of the graph induced by E′ contains a vertex from Xt.

We call St a family of partial solutions for t. We denote by Kt a complete graph on
the vertex set Xt. For an edge subset E∗ ⊆ E(G) and a bag Xt corresponding to a node
t, we define the following:

(1) Set ∂ t(E∗) = Xt ∩ V (E∗), the set of endpoints of E∗ in Xt.
(2) Let G∗ be the subgraph of G on the vertex set V (G) and the edge set E∗. Let

C ′
1, . . . , C ′

� be the connected components of G∗ such that for all i ∈ [�], C ′
i ∩ Xt
= ∅.

Let Ci = C ′
i ∩ Xt. Observe that C1, . . . , C� is a partition of ∂ t(E∗). By F(E∗) we denote

a forest {Q1, . . . , Q�}, where each Qi is an arbitrary spanning tree of Kt[Ci]. For an
example, since Kt[Ci] is a complete graph, we could take Qi as a star. The purpose of
F(E∗) is to keep track for the vertices in Ci whether they are in the same connected
component of G∗.

(3) We define w(F(E∗)) = w(E∗).

Our description of the algorithm slightly deviates from the usual table lookup-based
expositions of dynamic programming algorithms on graphs of bounded treewidth. With
every node t of T, we associate a subgraph of G. In our case, it will be Ht. For every
node t, rather than keeping a table, we keep a family of partial solutions for the graph
Ht. That is, for every optimal solution L ∈ S and its intersection Lt = E(Ht) ∩ L with
the graph Ht, we have some partial solution in the family that is “as good as Lt.” More
precisely, we have some partial solution, say, L̂t, in our family such that L̂t ∪ LR is also
an optimum solution for the whole graph. Here, LR = L \ Lt. As we move from one
node t in the decomposition tree to the next node t′, the graph Ht changes to Ht′ , and
so does the set of partial solutions. The algorithm updates its set of partial solutions
accordingly. Here matroids come into play: in order to bound the size of the family of
partial solutions that the algorithm stores at each node, we employ Theorem 3.7 for
graphic matroids. More details are given in the proof of the following theorem, which
is the main result of this section.

THEOREM 5.13. Let G be an n-vertex graph given together with its tree decomposition
of width tw. Then STEINER TREE on G can be solved in time O((1 + 2ω+1)twtwO(1)n).

PROOF. We first outline an algorithm with running time O((1 + 2ω+1)twtwO(1)n2) for
a simple exposition. Later we point out how we can remove the extra factor of n at the
cost of a factor polynomial in tw.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:46 F. V. Fomin et al.

For every node t of T and subset Z ⊆ Xt, we store a family of edge subsets Ŝt[Z] of Ht
satisfying the following correctness invariant:

Correctness Invariant: For every L ∈ S we have the following. Let Lt = E(Ht)∩L,
LR = L \ Lt, and Z = ∂ t(L). Then there exists L̂t ∈ Ŝt[Z] such that w(L̂t) ≤ w(Lt),
L̂ = L̂t ∪ LR is a solution, and ∂ t(L̂) = Z. Observe that since w(L̂t) ≤ w(Lt) and
L ∈ S , we have that L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing the
dynamic programming. Throughout the process we maintain the correctness invariant,
which will prove the correctness of the algorithm. However, our main idea is to use
representative families to obtain Ŝt[Z] of small size. That is, given the set Ŝt[Z] that
satisfies the correctness invariant, we use Theorem 3.7 to obtain a subset Ŝ ′

t[Z] of Ŝt[Z]
that also satisfies the correctness invariant and has size upper bounded by 2|Z|. Thus,
we maintain the following size invariant:

Size Invariant: After node t of T is processed by the algorithm, for every Z ⊆ Xt,
we have that |Ŝt[Z]| ≤ 2|Z|.

The new ingredient of the dynamic programming algorithm for STEINER TREE is the
use of Theorem 3.7 to compute Ŝt[Z] maintaining the size invariant. The next lemma
shows how to implement it.

LEMMA 5.14 (SHRINKING LEMMA). Let t be a node of T, and let Z ⊆ Xt be a set of size
k. Furthermore, let Ŝt[Z] be a family of edge subsets of Ht satisfying the correctness
invariant. If |Ŝt[Z]| = �, then in time O(2k(ω−1)kO(1)� · n) we can compute Ŝ ′

t[Z] ⊆ Ŝt[Z]
satisfying correctness and size invariants.

PROOF. We start by associating a matroid with node t and the set Z ⊆ Xt as follows.
We consider a graphic matroid M = (E, I) on Kt[Z]. Here, the element set E of the
matroid is the edge set E(Kt[Z]) and the family of independent sets I consists of
spanning forests of Kt[Z].

Let Ŝt[Z] = {Et
1, . . . , Et

�} and let N = {F(Et
1), . . . , F(Et

�)} be the set of forests in Kt[Z]
corresponding to the edge subsets in Ŝt[Z]. For i ∈ {1, . . . , k− 1}, let Ni be the family of
forests of N with i edges. For each family Ni, we apply Theorem 3.7 and compute its
min (k − 1 − i)-representative. That is,

N̂i ⊆k−1−i
minrep Ni.

Let Ŝ ′
t[Z] ⊆ Ŝt[Z] be such that for every Et

j ∈ Ŝ ′
t[Z] we have that F(Et

j) ∈ ∪k−1
i=1 N̂i. By

Theorem 3.7, |Ŝ ′
t[Z]| ≤∑k−1

i=1 (k
i) ≤ 2k. Now we show that Ŝ ′

t[Z] maintains the correctness
invariant.

Let L ∈ S and let Lt = E(Ht) ∩ L, LR = L \ Lt and Z = ∂ t(L). Then there exists
Et

j ∈ Ŝt[Z] such that w(Et
j) ≤ w(Lt), L̂ = Et

j ∪ LR is an optimal solution and ∂ t(L̂) = Z.
Consider the forest F(Et

j). Suppose its size is i, and then F(Et
j) ∈ Ni. Now let F(LR)

be the forest corresponding to LR with respect to the bag Xt. Since L̂ is a solution, we
have that F(Et

j) ∪ F(LR) is a spanning tree in Kt[Z]. Since N̂i ⊆k−1−i
minrep Ni, we have that

there exists a forest F(Et
h) ∈ N̂i such that w(F(Et

h)) ≤ w(F(Et
i)) and F(Et

h) ∪ F(LR) is
a spanning tree in Kt[Z]. Thus, we know that Et

h ∪ LR is an optimum solution and
Et

h ∈ Ŝ ′
t[Z]. This proves that Ŝ ′

t[Z] maintains the invariant.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:47

The running time to compute Ŝt[Z] is dominated by

O
(

k−1∑
i=1

(
k − 1

i

)ω−1

kO(1)�

)
= O
(
2k(ω−1)kO(1)�

)
.

For a given edge set we also need to compute the forest and that can take O(n) time.

In our algorithm, the size of Ŝt[Z] can grow larger than 2|Z| in intermediate steps
but it will be at most 4|Z| and thus we can use the Shrinking Lemma (Lemma 5.14) to
reduce its size efficiently.

We now return to the dynamic programming algorithm over the tree-decomposition
(T,X) of G and prove that it maintains the correctness invariant. We assume that
(T,X) is a nice tree decomposition of G. By Ŝt we denote

⋃
Z⊆Xt

Ŝt[Z] (also called a
representative family of partial solutions). We show how Ŝt is obtained by doing dynamic
programming from the base node to the root node.

Base Node t. Here the graph Ht is empty and thus we take Ŝt = ∅.

Introduce Node t with Child t′. Here, we know that Xt ⊃ Xt′ and |Xt| = |Xt′ | + 1. Let v
be the vertex in Xt \ Xt′ . Furthermore, observe that E(Ht) = E(Ht′) and v is degree zero
vertex in Ht. Thus, the graph Ht only differs from Ht′ at an isolated vertex v. Since we
have not added any edge to the new graph, the family of solutions, which contains edge
subsets, does not change. Thus, we take Ŝt = Ŝt′ . Formally, we take Ŝt[Z] = Ŝt′[Z \ {v}].
Since Ht and Ht′ have the same set of edges, the invariant is vacuously maintained.

Forget Node t with Child t′. Here we know Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1. Let v be the
vertex in Xt′ \ Xt. Let Ev[Z] denote the set of edges between v and the vertices in Z ⊆ Xt.
Let Pv[Z] = {Y | ∅
= Y ⊆ Ev[Z]}. Observe that E(Ht) = E(Ht′) ∪ Ev[Xt]. Before we define
things formally, observe that in this step the graphs Ht and Ht′ differ by at most tw
edges—the edges with one endpoint in v and the other in Xt. We go through every
possible way an optimal solution can intersect with these newly added edges. The idea
is that for every edge subset in our family of partial solutions, we make several new
partial solutions, one each for every subset of newly added edges. More formally, the
new set of partial solutions is defined as follows:

Ŝt[Z] =
{ (

Ŝt′ [Z ∪ {v}] ◦ Pv[Z]
) ∪ {A ∈ Ŝt′[Z ∪ {v}] : A ∈ St

}
if v ∈ T(

Ŝt′ [Z ∪ {v}] ◦ Pv[Z]
) ∪ {A ∈ Ŝt′[Z ∪ {v}] : A ∈ St

} ∪ Ŝt′ [Z] if v /∈ T .

Recall that for two families A and B, we defined A◦B = {A∪ B : A ∈ A∧ B ∈ B}. Now
we claim that Ŝt[Z] ⊆ St. Toward the proof we first show that Ŝt′ [Z ∪ {v}] ◦ Pv[Z] ⊆ St.
Let E′ ∈ Ŝt′ [Z∪{v}]◦Pv[Z]. Note that E′ ∩Ev[Z]
= ∅. If E′ is a solution tree, then E′ ∈ St
and we are done. Since E′ \Ev[Z] ∈ Ŝt′ [Z∪{v}] ⊆ St′ , every vertex of (T ∩V (Gt))\(Xt ∪{v})
is incident with some edge from E′. Since E′ ∩ Ev[Z]
= ∅, there exists an edge in E′ that
is incident to v. This implies that every vertex of (T ∩ V (Gt)) \ Xt is incident with some
edge from E′. Now consider any connected component C in G[E′]. If v /∈ V (C), then C
contains a vertex from Xt′ \ {v} = Xt because E′ \ Ev[Z] ∈ Ŝt′[Z ∪ {v}] ⊆ St′ . If v ∈ V (C),
then C contains a vertex from Xt because E′ ∩ Ev[Z]
= ∅. Thus, we have shown that
E′ ∈ St. It is easy to see that {A ∈ Ŝt′[Z ∪ {v}] : A ∈ St} ⊆ St. If v /∈ T , then Ŝt′[Z] ⊆ St,
because Ŝt′[Z] ⊆ St′ and Xt = Xt′ \ {v}.

Now we show that Ŝt maintains the invariant of the algorithm. Let L ∈ S .

(1) Let Lt = E(Ht) ∩ L and LR = L \ Lt. Furthermore, edges of Lt can be partitioned
into Lt′ = E(Ht′) ∩ L and Lv = Lt \ Lt′ . That is, Lt = Lt′ � Lv.

(2) Let Z = ∂ t(L) and Z′ = ∂ t′
(L).

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:48 F. V. Fomin et al.

By the property of Ŝt′ , there exists L̂t′ ∈ Ŝt′ [Z′] such that

L ∈ S ⇐⇒ Lt′ � Lv � LR ∈ S

⇐⇒ L̂t′ � Lv � LR ∈ S (7)

and ∂ t′
(L) = ∂ t′

(L̂t′ � Lv � LR) = Z′.

We put L̂t = L̂t′ ∪ Lv and L̂ = L̂t ∪ LR. We now show that L̂t ∈ Ŝt[Z]. Toward this just
note that since Z′ = Z or Z′ = Z ∪ {v}, we have that Ŝt[Z] contains Ŝt′[Z′] ◦ {Lv}. By
Equation (7), L̂ ∈ S . Finally, we need to show that ∂ t(L̂) = Z. Toward this just note
that ∂ t(L̂) = Z′ \ {v} = Z. This concludes the proof for the fact that Ŝt maintains the
correctness invariant.

Join Node t with Two Children t1 and t2. Here, we know that Xt = Xt1 = Xt2 . Also, we
know that the edges of Ht are obtained by the union of edges of Ht1 and Ht2 , which are
disjoint. Of course, they are separated by the vertices in Xt. A natural way to obtain
a family of partial solutions for Ht is to take the union of edge subsets of the families
stored at nodes t1 and t2. This is exactly what we do. Let

Ŝt[Z] = Ŝt1 [Z] ◦ Ŝt2 [Z].

Now we show that Ŝt maintains the invariant. Let L ∈ S .

(1) Let Lt = E(Ht) ∩ L and LR = L \ Lt. Furthermore, edges of Lt can be partitioned
into those belonging to Ht1 and those belonging to Ht2 . Let Lt1 = E(Ht1) ∩ L and
Lt2 = E(Ht2) ∩ L. Observe that since E(Ht1) ∩ E(Ht2) = ∅, we have that Lt1 ∩ Lt2 = ∅.
Also, observe that Lt = Lt1 � Lt2 .

(2) Let Z = ∂ t(L). Since Xt = Xt1 = Xt2 , this implies that Z = ∂ t(L) = ∂ t1 (L) = ∂ t2 (L).

Now observe that

L ∈ S ⇐⇒ Lt1 � Lt2 � LR ∈ S

⇐⇒ L̂t1 � Lt2 � LR ∈ S (by the property of Ŝt1 we have that L̂t1 ∈ Ŝt1 [Z])

⇐⇒ L̂t1 � L̂t2 � LR ∈ S (by the property of Ŝt2 we have that L̂t2 ∈ Ŝt2 [Z]).

We put L̂t = L̂t1 ∪ L̂t2 . By the definition of Ŝt[Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝ[Z]. The
previous inequalities also show that L̂ = L̂t∪LR ∈ S . It remains to show that ∂ t(L̂) = Z.
Since ∂ t1 (L) = Z, we have that ∂ t1 (L̂t1 � Lt2 � LR) = Z. Now, since Xt1 = Xt2 , we have that
∂ t2 (L̂t1 � Lt2 � LR) = Z and thus ∂ t2 (L̂t1 � L̂t2 � LR) = Z. Finally, because Xt2 = Xt, we
conclude that ∂ t(L̂t1 � L̂t2 � LR) = ∂ t(L̂) = Z. This concludes the proof of the correctness
invariant.

Root Node r. Here, Xr = ∅. We go through all the solutions in Ŝr[∅] and output the one
with the minimum weight. This concludes the description of the dynamic programming
algorithm.

Computation of Ŝt. Now we show how to implement the algorithm described previ-
ously in the desired running time by making use of Lemma 5.14. For our discussion, let
us fix a node t and Z ⊆ Xt of size k. While doing the dynamic programming algorithm
from the base nodes to the root node, we always maintain the size invariant. That is,
Ŝt[Z]| ≤ 2k.

Base Node t. Trivially, in this case we have |Ŝt[Z]| ≤ 2k.

Introduce Node t with Child t′. Here, we have that Ŝt[Z] = Ŝt′ [Z \ {v}] and thus
|Ŝt[Z]| = |Ŝt′ [Z \ {v}]| ≤ 2k−1 ≤ 2k.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:49

Forget Node t with Child t′. In this case,

Ŝt[Z] =
{ (

Ŝt′ [Z ∪ {v}] ◦ Pv[Z]
) ∪ {A ∈ Ŝt′[Z ∪ {v}] : A ∈ St

}
if v ∈ T(

Ŝt′ [Z ∪ {v}] ◦ Pv[Z]
) ∪ {A ∈ Ŝt′[Z ∪ {v}] : A ∈ St

} ∪ Ŝt′ [Z] if v /∈ T .

Observe that∣∣Ŝt[Z]
∣∣ ≤ ∣∣Ŝt′[Z ∪ {v}] ◦ Pv[Z]

∣∣+ ∣∣{A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St
}∣∣+ ∣∣Ŝt′ [Z]

∣∣
≤
(

k∑
i=1

(
k
i

)
2k+1

)
+ 2k+1 + 2k = O(4k).

It can happen in this case that the size of Ŝt[Z] is larger than 2k and thus we need to
reduce the size of the family. We apply Lemma 5.14 and obtain Ŝ ′

t[Z], which maintains
the correctness and size invariants. We update Ŝt[Z] = Ŝ ′

t[Z].
The running time to compute Ŝt (i.e., across all subsets of Xt) is

O
(

tw+1∑
i=1

(
tw + 1

i

)
2i(ω−1)4i · twO(1)n

)
= O
(
(1 + 2ω+1)tw · twO(1)n

)
.

Join Node t with Two Children t1 and t2. Here we defined

Ŝt[Z] = Ŝt1 [Z] ◦ Ŝt2 [Z].

The size of Ŝt[Z] is 2k · 2k = 4k. Now, we apply Lemma 5.14 and obtain Ŝ ′
t[Z], which

maintains the correctness invariant and has size at most 2k. We put Ŝt[Z] = Ŝ ′
t[Z].

The running time to compute Ŝt is

O
(

tw+1∑
i=1

(
tw + 1

i

)
4i2i(ω−1) · twO(1)n

)
= O
(
(1 + 2ω+1)tw · twO(1)n

)
.

Thus, the whole algorithm takes time O((1 + 2ω+1)tw · twO(1) · n2) as the number of
nodes in a nice tree decomposition is upper bounded by O(n). However, observe that
we do not need to compute the forests and the associated weight at every step of the
algorithm. The size of the forest is at most tw + 1 and we can maintain these forests
across the bags during dynamic programming in time twO(1). This will lead to an
algorithm with the claimed running time. The last remark we would like to make is
that one can do better at forget node by forgetting a single edge at a time. However,
we did not try to optimize this, as the running time to compute the family of partial
solutions at join node is the most expensive operation. This completes the proof.

The approach of Theorem 5.13 can be used to obtain single-exponential algorithms
parameterized by the treewidth of an input graph for several other connectivity prob-
lems such as HAMILTONIAN CYCLE, FEEDBACK VERTEX SET, and CONNECTED DOMINATED SET.
For all these problems, checking whether two partial solutions can be glued together
to form a global solution can be checked by testing independence in a specific graphic
matroid. We believe that there exist interesting problems where this check corresponds
to testing independence in a different class of linear matroids.

5.5. Path, Trees, and Subgraph Isomorphism

In this section, we outline algorithms for k-PATH, k-TREE, and k-SUBGRAPH ISOMORPHISM

using representative families. All results in this section are based on computing repre-
sentative families with respect to uniform matroids.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:50 F. V. Fomin et al.

5.5.1. k-PATH. The problem we study in this section is as follows:

k-PATH Parameter: k
Input: An undirected n-vertex and m-edge graph G and a positive integer k.
Question: Does there exist a simple path of length k in G?

We start by modifying the graph slightly. We add a new vertex, say, s, not present
in V (G) to G by making it adjacent to every vertex in V (G). Let the modified graph be
called G′. It is clear that G has a path of length k if and only if G′ has a path of length
k+1 starting from s. For ease of presentation, we rename G′ to G and the objective is to
find a path of length k+ 1 starting from s. Let M = (E, I) be a uniform matroid Un,k+2,
where E = V (G) and I = {S ⊆ V (G) | |S| ≤ k + 2}. In this section, whenever we speak
about independent sets, we mean independence with respect to the uniform matroid
Un,k+2 defined earlier. For a given pair of vertices s, v ∈ V (G), recall that we defined

P i
sv = {X ∣∣ X ⊆ V (G), v, s ∈ X, |X| = i and there is a path from s to v of length i

in G with all the vertices belonging to X.
}

The problem can be reformulated to asking whether there exists v ∈ V (G) such that
Pk+2

sv is nonempty. Our algorithm will check whether Pk+2
uv is nonempty by computing

P̂k+2
sv ⊆0

rep Pk+2
sv and checking whether P̂k+2

sv is nonempty. The correctness of this algo-
rithm is as follows. If Pk+2

sv is nonempty, then Pk+2
sv contains some set A that does not

intersect the empty set ∅. But then P̂k+2
sv ⊆0

rep Pk+2
sv must also contain a set that does not

intersect with ∅, and hence P̂k+2
sv must be nonempty as well. Thus, having computed

the representative families P̂k+2
sv , all we need to do is to check whether there is a vertex

v such that P̂k+2
sv is nonempty. All that remains is an algorithm that computes the

representative families P̂k+2
sv ⊆0

rep Pk+2
sv for all v ∈ V (G) \ {s}.

Now, using Lemma 5.4 (by setting � = p = k+ 2 and replacing each edge by two arcs
in opposite directions), we compute P̂k+2

sv ⊆0
rep Pk+2

sv for all v ∈ V (G) \ {s} in time

2o(k) · mlog n · max
i∈[k+2]

{(
2(k + 2) − i

i

)i (2(k + 2) − i
2(k + 2) − 2i

)2(k+2)−2i
}

.

Simple calculus shows that the running time is maximized for i = (1 − 1√
5
)(k + 2),

and thus the running time to compute P̂k+2
sv ⊆0

rep Pk+2
sv for all v ∈ V (G) \ {s} together

is upper bounded by φ2k+o(k)mlog2 n = O(2.619k+o(k)mlog n), where φ is the golden ratio
1+√

5
2 . Furthermore, in the same time every set in P̂ p

sv can be ordered in a way that it
corresponds to an undirected path in G. A graph G has a path of length k + 1 starting
from s if and only if for some v ∈ V (G) \ {s}, we have that P̂k+2

sv
= ∅. Thus, the running
time of this algorithm is upper bounded by O(2.619k+o(k)mlog n). Let us remark that
almost the same arguments show that the version of the problem on directed graphs is
solvable within the same running time. However, on undirected graphs, we can speed
up the algorithm slightly by using the following standard trick. We need the following
result.

PROPOSITION 5.15 (BODLAENDER [1993]). There exists an algorithm that, given a graph
G and an integer k, in time O(k2n) either finds a simple path of length ≥ k or computes
a DFS (depth-first search) tree rooted at some vertex of G of depth at most k.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:51

We first apply Proposition 5.15 and in time O(k2n) either find a simple path of length
≥ k in G or compute a DFS tree of G of depth at most k. In the former case, we simply
output the same path. In the latter case, since all the root-to-leaf paths are upper
bounded by k and there are no cross-edges in a DFS tree, we have that the number of
edges in G is upper bounded by O(k2n). Now on this G we apply the representative-
family-based algorithm described previously. This results in the following theorem.

THEOREM 5.16. k-PATH can be solved in time O(2.619k+o(k)n log n).

Our algorithm for k-PATH can be used to solve the weighted version of the problem,
that is, SHORT CHEAP TOUR. In this problem, a graph G with maximum edge cost W is
given, and the objective is to find a path of length at least k where the total sum of
costs on the edges is minimized.

THEOREM 5.17. SHORT CHEAP TOUR can be solved in time O(2.619k+o(k)nO(1) log W).

5.5.2. k-TREE and k-SUBGRAPH ISOMORPHISM. In this section, we consider the following
problem:

k-TREE Parameter: k
Input: An undirected n-vertex, an m-edge graph G, and a tree T on k vertices.
Question: Does G contains a subgraph isomorphic to T ?

We design an algorithm for k-TREE using the method of representative families. The
algorithm for k-TREE is more involved than for k-PATH. The reason for that is due to the
fact that paths pose perfectly balanced separators of size one, while trees do not. We
select a leaf r of T and root the tree at r. For vertices x, y ∈ V (T), we say that y ≤ x
if x lies on the path from y to r in T (if x = r, we also say that y ≤ x). For a set C of
vertices in T , we will say that x �C y if x ≤ y and there is no z ∈ C such that x ≤ z and
z ≤ y. For a pair x, y of vertices such that y ≤ x in T , we define

Cxy =
{∅ if xy ∈ E(T),

The unique component C of T \ {x, y} such that N(C) = {x, y} otherwise.

We also define T uv = T [Cuv ∪ {u, v}]. We start by making a few simple observations
about sets of vertices in trees.

LEMMA 5.18. For any tree T , a pair {x, y} of vertices in V (T), and an integer c ≥ 1,
there exists a set W of vertices such that {x, y} ⊆ W, |W | = O(c), and every connected
component U of T \ W satisfies |U | ≤ |V (T)|

c and |N(U)| ≤ 2.

PROOF. We first find a set W1 of size at most c such that every connected component
U of T \ W1 satisfies |U | ≤ |V (T)|

c . Start with W1 = ∅ and select a lowermost vertex
u ∈ V (T) such that the subtree rooted at u has at least |V (T)|

c vertices. Add u to W1
and remove the subtree rooted at u from T . The process must stop after c iterations
since each iteration removes |V (T)|

c vertices of T . Each component U of T \ W1 satisfies
|U | ≤ |V (T)|

c because (1) whenever a vertex u is added to W1, all components below u
have size strictly less than |V (T)|

c , and (2) when the process ends, the subtree rooted at
r has size at most |U | ≤ |V (T)|

c . Now, insert x and y into W1 as well.
We build W from W1 by taking the least common ancestor closure of W1; start with

W = W1 and as long as there exist two vertices u and v in W such that their least
common ancestor w is not in W , add w to W . Standard counting arguments on trees

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:52 F. V. Fomin et al.

imply that this process will never increase the size of W by more than a factor of 2;
hence, |W | ≤ 2|W1| = O(c).

We claim that every connected component U of T \ W satisfies |N(U)| ≤ 2. Suppose
not and let u be the vertex of U closest to the root. Since |N(U)| > 2, at least two
vertices v and w in N(U) are descendants of u. Since U is connected, v and w can’t
be descendants of each other, but then the least common ancestor of v and w is in U ,
contradicting the construction of W .

Let us remark that in the following observation, if the root of a tree is of degree 1, then
we also count it as a leaf.

OBSERVATION 5.1. For any tree T , set W ⊆ V (T) and component U of T \ W such that
|N(U)| = 1, U contains a leaf of T .

PROOF. T [U ∪ N(U)] is a tree on at least two vertices and hence it has at least two
leaves. At most one of these leaves is in N(U); the other one is also a leaf of T .

LEMMA 5.19. Let W ⊆ V (T) be a set of vertices such that for every pair of vertices in
W, their least common ancestor is also in W. Let X be a set containing one leaf of T from
each connected component U of T \ W such that |N(U)| = 1. Then, for every connected
component U such that |N(U)| = 1, there exist x ∈ W, y ∈ X such that U = Cxy ∪ {y}.
For every other connected component U, there exist x, y ∈ W such that U = Cxy.

PROOF. It follows from the argument at the end of the proof of Lemma 5.18 that
every component U of T \ W satisfies |N(U)| ≤ 2. If |N(U)| = 2, let N(U) = {x, y}. We
have that x ≤ y or y ≤ x since the least common ancestor of x and y cannot be in U
and would therefore be in N(U), contradicting |N(U)| = 2. Without loss of generality,
y ≤ x. But then U = Cxy. If N(U) = 1, let N(U) = {x}. By Observation 5.1, U contains
a leaf y of T . Then U = Cxy ∪ {y}.

Given two graphs F and H, a graph homomorphism from F to H is a map f from
V (F) to V (H), that is, f : V (F) → V (H), such that if uv ∈ E(F), then f (u) f (v) ∈ E(H).
Furthermore, when the map f is injective, f is called a subgraph isomorphism. For
every x, y ∈ V (T) such that y ≤ x, and every u, v in V (G), we define

F xy
uv =

{
F ∈
(

V (G) \ {u, v}
|Cxy|

)
: ∃ subgraph isomorphism f

from T xy to G[F ∪ {u, v}] such that f (x) = u and f (y) = v

}
.

Let us remember that for a set X and a family A, we use A+ X to denote {A∪ X : A ∈ A}.
For every x, y ∈ V (T) such that y ≤ x, and every u in V (G), we define

F xy
u∗ =

⋃
v∈V (G)\{u}

F xy
uv + {v}. (8)

We recall that r is a leaf of T . In order to solve the problem, it is sufficient to select
an arbitrary leaf � of T and determine whether there exists a u ∈ V (G) such that
the family Fr�

u∗ is nonempty. We show that the collections of families {F xy
uv } and {F xy

u∗ }
satisfy a recurrence relation. We will then exploit this recurrence relation to get a fast
algorithm for k-TREE.

LEMMA 5.20. For every x, y ∈ V (T) such that y ≤ x, every Ŵ = W ∪ {x, y} where
W ⊆ Cxy such that for every pair of vertices in Ŵ their least common ancestor is also in
Ŵ, and every X ⊆ Cxy \ W such that X contains exactly one leaf of T in each connected

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:53

component U of T xy \ Ŵ with |N(U)| = 1, the following recurrence holds:

F xy
uv =

⋃
g:Ŵ→V (G)

g(x)=u∧g(y)=v

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

•∏
x′,y′∈Ŵ
y′�Ŵ x′

F x′ y′

g(x′)g(y′) •
•∏

x′∈Ŵ, y′∈X
y′�Ŵ x′

F x′ y′

g(x′)∗

⎞⎟⎟⎟⎠+ g(W)

⎤⎥⎥⎥⎦ . (9)

Here the union goes over all O(n|W |) injective maps g from Ŵ to V (G) such that g(x) = u
and g(y) = v, and by g(W) we mean {g(c) : c ∈ W}.

PROOF. For the ⊆ direction of the equality, consider any subgraph isomorphism f
from T xy to V (G) such that f (x) = u and f (y) = v. Let g be the restriction of f to
W . The map f can be considered as a collection of subgraph isomorphisms with one
isomorphism for each x′, y′ ∈ Ŵ such that y′ �Ŵ x from T x′ y′

to G such that f (x′) = g(x′)
and f (y′) = g(y′), and one isomorphism for each x′ ∈ Ŵ, y′ ∈ X such that y′ �Ŵ x from
T x′ y′

to G such that f (x′) = g(x′). Taking the union of the ranges of each of the small
subgraph isomorphisms clearly gives the range of f . Here we used Lemma 5.19 to
argue that for every connected component U of T xy \ Ŵ , we have that T [U ∪ N(U)] is
in fact of the form T x′ y′

for some x′, y′.
For the reverse direction, take any collection of subgraph isomorphisms with one iso-

morphism f for each x′, y′ ∈ Ŵ such that y′ �Ŵ x from T x′ y′
to G such that f (x′) = g(x′)

and f (y′) = g(y′), and one isomorphism for each x′ ∈ Ŵ, y′ ∈ X such that y′ �Ŵ x
from T x′ y′

to G such that f (x′) = g(x′), such that the range of all of these subgraph
isomorphisms are pairwise disjoint (except on vertices in Ŵ). Since all of these sub-
graph isomorphisms agree on the set W , they can be glued together to a subgraph
isomorphism from T xy to G.

Our goal is to compute for every x, y ∈ V (T) such that y ≤ x and u, v ∈ V (G) a
family F̂ xy

uv such that F̂ xy
uv ⊆k−|Cxy|

rep F xy
uv and for every x, y ∈ V (T) such that y ≤ x and

u ∈ V (G) a family F̂ xy
u∗ such that F̂ xy

u∗ ⊆k−|Cxy|−1
rep F xy

u∗ . We will also maintain the following
size invariants:

|F̂ xy
uv | ≤

(
2k − |Cxy|

|Cxy|
)|Cxy| (2k − |Cxy|

2k − 2|Cxy|
)k−|Cxy|

2o(k) (10)

|F̂ xy
u∗ | ≤

(
2k − |Cxy| − 1

|Cxy| + 1

)|Cxy|+1 (2k − |Cxy| − 1
2k − 2|Cxy| − 2

)k−|Cxy|−1

2o(k). (11)

Let the right-hand side of Equation (10) be sxy and the right-hand side of Equation (11)
be s∗

xy. We first compute such families F̂ xy
uv for all x, y ∈ V (T) such that y ≤ x and

xy ∈ E(T). Observe that in this case we have

F xy
uv =
{{∅} if uv ∈ E(G),
∅ if uv /∈ E(G).

For each x, y ∈ V (T) such that y ≤ x and xy ∈ E(T) and every u, v ∈ V (G), we
set F̂ xy

uv = F xy
uv . We can now compute F̂ xy

u∗ for every x, y ∈ V (T) such that y ≤ x and
xy ∈ E(T) and every u ∈ V (G) by applying Equation (8). Clearly the computed families
are within the required size bounds.

We now show how to compute a family F̂ xy
uv of size sxy for every x, y ∈ V (T) such that

y ≤ x and u, v ∈ V (G) and |Cxy| = t, assuming that the families F̂ xy
uv and F̂ xy

u∗ have been

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:54 F. V. Fomin et al.

computed for every x, y ∈ V (T) such that y ≤ x and u, v ∈ V (G) and |Cxy| < t. We also
assume that for each family F̂ xy

uv that has been computed, |F̂ xy
uv | ≤ sxy. Similarly, we

assume that for each family F̂ xy
u∗ that has been computed, |F̂ xy

u∗ | ≤ s∗
xy.

We fix a constant c whose value will be decided later. First, apply Lemma 5.18
on T xy, vertex pair {x, y}, and constant c and obtain a set Ŵ such that {x, y} ⊆ Ŵ
and every connected component U of T \ Ŵ satisfies |U | ≤ |V (T)|

c and |N(U)| ≤ 2.
Select a set X ⊆ V (T x,y) \ Ŵ such that each connected component U of T \ Ŵ with
|N(U)| = 1 contains exactly one leaf, which is in X. Now, set W = Ŵ \{x, y} and consider
Equation (9) for F̂ xy

uv for this choice of x, y, W and X. Define

F̃ xy
uv =

⋃
g:Ŵ→V (G)

g(x)=u∧g(y)=v

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

•∏
x′,y′∈Ŵ
y′�Ŵ x′

F̂ x′ y′

g(x′)g(y′) •
•∏

x′∈Ŵ, y′∈X
y′�Ŵ x′

F̂ x′ y′

g(x′)∗

⎞⎟⎟⎟⎠+ g(W)

⎤⎥⎥⎥⎦ . (12)

Lemma 5.20 together with Lemmata 3.4 and 3.5 directly imply that F̃ xy
uv ⊆k−|Cxy|

rep F xy
uv .

Furthermore, each family on the right-hand side of Equation (12) has already been
computed, since Cx′ y′ ⊂ Cxy and so |Cx′ y′ | < t. For a fixed injective map g : W → V (G),
we define

F̃ xy
g =

⎛⎜⎜⎜⎝
•∏

x′,y′∈Ŵ
y′�Ŵ x′

F̂ x′ y′

g(x′)g(y′) •
•∏

x′∈Ŵ, y′∈X
y′�Ŵ x′

F̂ x′ y′

g(x′)∗

⎞⎟⎟⎟⎠+ g(W). (13)

It follows directly from the definition of F̃ xy
uv and F̃ xy

g that

F̃ xy
uv =

⋃
g:Ŵ→V (G)

g(x)=u∧g(y)=v

F̃ xy
g .

Our goal is to compute a family F̂ xy
uv ⊆k−|Cxy|

rep F̃ xy
uv such that |F̂ xy

uv | ≤ sxy. Lemma 3.3
then implies that F̂ xy

uv ⊆k−|Cxy|
rep F xy

uv . To that end, we define the function reduce. Given a
family F of sets of size p, the function reduce will run the algorithm of Theorem 4.15 on
F with x = p

2k−p and produce a family of size (2k−p
p)p(2k−p

2k−2p)k−p2o(k) that k− p represents
F .

We will compute for each g : Ŵ → V (G) such that g(x) = u and g(y) = v a family F̂ xy
g

of size at most sxy such that F̂ xy
g ⊆k−|Cxy|

rep F̃ xy
g . We will then set

F̂ xy
uv = reduce

⎛⎜⎜⎝ ⋃
g:Ŵ→V (G)

g(x)=u∧g(y)=v

F̂ xy
g

⎞⎟⎟⎠ . (14)

To compute F̂ xy
g , inspect Equation (13). Equation (13) shows that F̃ xy

g basically is a long
chain of • operations, specifically

F̃ xy
g = (F̂1 • F̂2 • F̂3 · · · • F̂�

)+ g(W). (15)

We define (and compute) F̂ xy
g as follows:

F̂ xy
g = reduce

(
reduce

(
. . . reduce

(
reduce

(
F̂1 • F̂2

) • F̂3
) • . . .

) • F̂�

)+ g(W). (16)

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:55

F̂ xy
g ⊆k−|Cxy|

rep F̃ xy
g and thus also F̂ xy

uv ⊆k−|Cxy|
rep F̃ xy

uv ⊆k−|Cxy|
rep F xy

uv follow from Lemma 3.5 and
Theorem 4.15. Since the last operation we do in the construction of F̂ xy

uv is a call to
reduce, |F̂ xy

uv | ≤ sxy follows from Theorem 4.15. To conclude the computation, we set

F̃ xy
u∗ = reduce

⎛⎝ ⋃
v∈V (G)\{u}

F̂ xy
uv + {v}

⎞⎠ . (17)

Lemma 3.5 and Theorem 4.15 imply that F̃ xy
u∗ ⊆k−|Cxy|−1

rep F xy
u∗ and that |F̂ xy

u∗ | ≤ s∗
xy.

The algorithm computes the families F̂ xy
u∗ and F̂ xy

uv for every x, y ∈ V (T) such that
y ≤ x. It then selects an arbitrary leaf � of T and checks whether there exists a u ∈ V (G)
such that the family F̂r�

u∗ is nonempty. Since F̂r�
u∗ ⊆0

rep Fr�
u∗, there is a nonempty Fr�

u∗ if
and only if there is a nonempty F̂r�

u∗. Thus, the algorithm can answer that there is a
subgraph isomorphism from T to G if some F̂r�

u∗ is nonempty, and that no such subgraph
isomorphism exists otherwise.

It remains to bound the running time of the algorithm. Up to polynomial factors, the
running time of the algorithm is dominated by the computation of F̂ xy

uv . This computa-
tion consists of nO(|̂W |) independent computations of the families F̂ xy

g . Each computation
of the family F̂ xy

g consists of at most k repeated applications of the operation

F̂ i+1 = reduce(F̂ i • F̂i+1).

Here F i is a family of sets of size p, and so |F i| ≤ (2k−p
p)p (2k−p

2k−2p)k−p2o(k) log n. On the
other hand, F̂i+1 is a family of sets of size p′ ≤ k

c since we used Lemma 5.18 to construct
Ŵ . Thus,

|F̂i+1| ≤
(

2k − p′

p′

)p′ (
2k − p′

2k − 2p′

)k−p′

2o(k)

≤
(

2k
p′

)p′ (
2k

2k − 2p′

)k−p′

2o(k)

≤
(

k
p′

)
· 2p′ · 2o(k)

≤
(

k
k/c

)
· 2k/c · 2o(k)

≤ 2(ε+1/c)k · 2o(k).

Thus, |F̂ i • F̂i+1| ≤ (2k−p
p)p(2k−p

2k−2p)k−p2(ε+1/c)k+o(k). Hence, when we apply Theorem 4.15

with x = p+p′
2k−p−p′ to compute reduce(F̂ i • F̂i+1), this takes time

|F̂ i • F̂i+1|
(

2k − p − p′

2k − 2p − 2p′

)k−p−p′

2o(k) log n

≤ |F̂ i • F̂i+1|
(

2k − p
2k − 2p

)k−p(2k − 2p
2k − 2p − 2p′

)k−p−p′

2o(k) log n

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

29:56 F. V. Fomin et al.

≤ |F̂ i • F̂i+1|
(

2k − p
2k − 2p

)k−p(
1 + p′

k − p − p′

)k−p−p′

2o(k) log n

≤ |F̂ i • F̂i+1|
(

2k − p
2k − 2p

)k−p

ep′
2o(k) log n

≤
(

2k − p
p

)p(2k − p
2k − 2p

)2k−2p

2(ε+3/c)k+o(k) log n.

Since there are nO(|̂W |) (which is equal to nO(c), where c is a constant) independent
computations of the families F̂ xy

g , the total running time is upper bounded by(
2k − p

p

)p(2k − p
2k − 2p

)2k−2p

2(ε+3/c)k+o(k)nO(1).

The maximum value of (2k−p
p)p (2k−p

2k−2p)2k−2p is when p = (1 − 1√
5
)k and the maximum

value is φ2k, where φ is the golden ratio 1+√
5

2 . Now we can choose the value of c in such
a way that ε + 3/c is small enough and the aforementioned running time is bounded
by 2.619k+o(k)nO(1). This yields the following theorem.

THEOREM 5.21. k-TREE can be solved in time 2.619k+o(k)nO(1).

The algorithm for k-TREE can be generalized to k-SUBGRAPH ISOMORPHISM for the case
when the pattern graph F has treewidth at most t. Toward this, we need a result
analogous to Lemma 5.18 for trees, which can be proved using the separation properties
of graphs of treewidth at most t. This will lead to an algorithm with running time
2.619k+o(k) · nO(t).

5.6. Other Applications

Marx [2009] gave algorithms for several problems based on matroid optimization. The
main theorem in his work is Theorem 1.1 [Marx 2009] on which most applications
of Marx [2009] are based. The proof of the theorem uses an algorithm to find repre-
sentative families as a black box. Applying our algorithm (Theorem 1.1 of this article)
instead gives an improved version of Theorem 1.1 of Marx [2009].

PROPOSITION 5.22. Let M = (E, I) be a linear matroid where the ground set is parti-
tioned into blocks of size �. Given a linear representation AM of M, it can be determined
in O(2ωk�||AM||O(1)) randomized time whether there is an independent set that is the
union of k blocks. (||AM|| denotes the length of AM in the input.)

Finally, we mention another application from Marx [2009] that we believe could be
useful to obtain single exponential time parameterized and exact algorithms:

�-MATROID INTERSECTION Parameter: k
Input: Let M1 = (E, I1), . . . , M1 = (E, I�) be matroids on the same ground set E
given by their representations AM1 , . . . , AM�

over the same field F and a positive
integer k.
Question: Does there exist k element set that is independent in each Mi (X ∈
I1 ∩ · · · ∩ I�)?

Using Theorem 1.1 of [Marx 2009], Marx gave a randomized algorithm for �-MATROID

INTERSECTION. By using Proposition 5.22 instead, we get the following result.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

Representative Families with Applications 29:57

PROPOSITION 5.23. �-MATROID INTERSECTION can be solved in O(2ωk�||AM||O(1)) random-
ized time.

6. CONCLUSION AND RECENT DEVELOPMENTS

In this article, we gave an efficient algorithm for computing a representative family
of a family of independent sets in a linear matroid. For the special case where the
underlying matroid is uniform, we developed an even faster algorithm. We also showed
interesting links between representative families of matroids and the design of single-
exponential parameterized and exact exponential algorithms. We believe that these
connections have a potential for a wide range of applications. This work opens up an
interesting avenue for further research, and we list some of the natural open problems
here:

—What is the best possible running time of an algorithm that computes a q-
representative family of size at most (p+q

p) for a p-family F of independent sets
of a linear matroid? Does an algorithm with linear dependence of the running time
on |F | exist, or is it possible to prove superlinear lower bounds?

—It would be interesting to find faster algorithms even for special classes of linear
matroids. Uniform matroids and graphic matroids are especially interesting in this
regard.

—Finally, the only matroids we used in our algorithmic applications were graphic, uni-
form, and partition matroids. It would be interesting to see what kinds of applications
can be handled by other kinds of matroids.

The results and methods from the preliminary conference version of this article have
already been utilized to obtain several deterministic parameterized algorithms [Fomin
and Golovach 2014; Goyal et al. 2013, 2015; Pinter et al. 2014; Shachnai and Zehavi
2014a, 2014b; Gabizon et al. 2015; Fomin et al. 2016]. The results also have been
used in the context of exact learning [Abasi et al. 2014] and linear time constructions
of some d-restriction problems [Bshouty 2015]. Lokshtanov et al. [2015] obtained a
deterministic algorithm for computing an �-truncation of a given matrix and obtained
a deterministic version of Theorem 3.8 for those matroids whose representation can be
found in deterministic polynomial time. Recently Zehavi [2013] announced a further
improvement for the k-PATH algorithm, which runs in time 2.597k · nO(1). It has also
been brought to our attention by Cygan [2013], in a private communication, that one
can obtain a single-exponential time algorithm for MINIMUM EQUIVALENT GRAPH based
on the methods described in Bodlaender et al. [2015] and Cygan et al. [2011].

REFERENCES

Hasan Abasi, Nader H. Bshouty, and Hanna Mazzawi. 2014. On exact learning monotone DNF from mem-
bership queries. In Proceedings of the 25th International Conference on Algorithmic Learning The-
ory (ALT) (Lecture Notes in Comput. Sci.), Vol. 8776. Springer, 111–124. DOI:http://dx.doi.org/10.1007/
978-3-319-11662-4_9

Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. J. Assoc. Comput. Mach. 42, 4 (1995), 844–856.
Omid Amini, Fedor V. Fomin, and Saket Saurabh. 2012. Counting subgraphs via homomorphisms. SIAM J.

Discrete Math. 26, 2 (2012), 695–717.
Jørgen Bang-Jensen and Gregory Gutin. 2009. Digraphs (2nd ed.). Springer-Verlag London Ltd., London.

xxii+795 pages. DOI:http://dx.doi.org/10.1007/978-1-84800-998-1 Theory, algorithms and applications.
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. 2010. Narrow sieves for parameter-

ized paths and packings. CoRR abs/1007.1161 (2010).
Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. 2004. Approximating longest directed paths and

cycles. In Proceedings of the 31st International Colloquium, Automata, Languages and Programming
(ICALP’04) (Lecture Notes in Comput. Sci.), Vol. 3142. Springer, 222–233.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

http://dx.doi.org/10.1007/978-3-319-11662-49
http://dx.doi.org/10.1007/978-3-319-11662-49
http://dx.doi.org/10.1007/978-1-84800-998-1

29:58 F. V. Fomin et al.

Hans L. Bodlaender. 1993. On linear time minor tests with depth-first search. J. Algorithms 14, 1 (1993),
1–23.

Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. 2015. Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243 (2015),
86–111. DOI:http://dx.doi.org/10.1016/j.ic.2014.12.008

B. Bollobás. 1965. On generalized graphs. Acta Math. Acad. Sci. Hungar 16 (1965), 447–452.
Nader H. Bshouty. 2015. Linear time constructions of some d-restriction problems. In Proceedings of the

9th International Conference on Algorithms and Complexity (CIAC’15) (Lecture Notes in Comput. Sci.),
Vol. 9079. Springer, 74–88. DOI:http://dx.doi.org/10.1007/978-3-319-18173-8_5

J. Bunch and J. Hopcroft. 1974. Triangular factorization and inversion by fast matrix multiplication. Math.
Comp. 28, 125 (1974), 231–236.

Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan Richter, Peter Rossmanith, Sing-Hoi Sze,
and Fenghui Zhang. 2009. Randomized divide-and-conquer: Improved path, matching, and packing
algorithms. SIAM J. Comput. 38, 6 (2009), 2526–2547. DOI:http://dx.doi.org/10.1137/080716475

Jianer Chen, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. 2007. Improved algorithms for path, matching,
and packing problems. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’07). SIAM, 298–307.

Nathann Cohen, Fedor V. Fomin, Gregory Gutin, Eun Jung Kim, Saket Saurabh, and Anders Yeo. 2010.
Algorithm for finding k-vertex out-trees and its application to k-internal out-branching problem. J.
Comput. System Sci. 76, 7 (2010), 650–662. DOI:http://dx.doi.org/10.1016/j.jcss.2010.01.001

T. H. Cormen, Ch. Leiserson, R. Rivest, and C. Stein. 2001. Introduction to Algorithms (2nd ed.). MIT Press,
Cambridge, MA.

Marek Cygan. 2013. Private communication. (2013).
Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał

Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer.
Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry

Wojtaszczyk. 2011. Solving connectivity problems parameterized by treewidth in single exponential time.
In Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS’11). IEEE,
150–159.

R. G. Downey and M. R. Fellows. 1999. Parameterized Complexity. Springer-Verlag, New York.
Jack Edmonds. 1967. Optimum branchings. J. Res. Nat. Bur. Standards Sect. B 71B (1967), 233–240.
Fedor V. Fomin, Petr Golovach, Fahad Panolan, and Saket Saurabh. 2016. Editing to connected f -degree

graph. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS’16)
(Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 47. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 36:1–36:14. DOI:http://dx.doi.org/10.4230/LIPIcs.STACS.2016.36

Fedor V. Fomin and Petr A. Golovach. 2014. Long circuits and large euler subgraphs. SIAM J. Discrete Math.
28, 2 (2014), 878–892. DOI:http://dx.doi.org/10.1137/130936816

Fedor V. Fomin and Petteri Kaski. 2013. Exact exponential algorithms. Commun. ACM 56, 3 (2013), 80–88.
DOI:http://dx.doi.org/10.1145/2428556.2428575

Fedor V. Fomin and Dieter Kratsch. 2011. Exact Exponential Algorithms. Springer.
Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2014b. Representative sets of

product families. In Proceedings of the 22nd Annual European Symposium on Algorithms (ESA’14)
(Lecture Notes in Comput. Sci.), Vol. 8737. Springer, 443–454. DOI:http://dx.doi.org/10.1007/978-
3-662-44777-2_37

Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghavendra Rao. 2012.
Faster algorithms for finding and counting subgraphs. J. Comput. System Sci. 78, 3 (2012), 698–706.
DOI:http://dx.doi.org/10.1016/j.jcss.2011.10.001

Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2014a. Efficient computation of representative
sets with applications in parameterized and exact algorithms. In Proceedings of the 24th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’14). SIAM, 142–151. DOI:http://dx.doi.org/10.1137/
1.9781611973402.10

P. Frankl. 1982. An extremal problem for two families of sets. Eur. J. Combin. 3, 2 (1982), 125–127.
Ariel Gabizon, Daniel Lokshtanov, and Michal Pilipczuk. 2015. Fast algorithms for parameterized problems

with relaxed disjointness constraints. In Proceedings of the 23rd Annual European Symposium on
Algorithms (ESA’15), Vol. 9294. Springer, 545–556. DOI:http://dx.doi.org/10.1007/978-3-662-48350-3_46

Harold N. Gabow and Shuxin Nie. 2008. Finding a long directed cycle. ACM Trans. Algorithms 4, 1 (2008),
Article No. 7.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

http://dx.doi.org/10.1016/j.ic.2014.12.008
http://dx.doi.org/10.1007/978-3-319-18173-8_5
http://dx.doi.org/10.1137/080716475
http://dx.doi.org/10.1016/j.jcss.2010.01.001
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.36
http://dx.doi.org/10.1137/130936816
http://dx.doi.org/10.1145/2428556.2428575
http://dx.doi.org/10.1007/978-3-662-44777-237
http://dx.doi.org/10.1007/978-3-662-44777-237
http://dx.doi.org/10.1016/j.jcss.2011.10.001
http://dx.doi.org/10.1137/1.9781611973402.10
http://dx.doi.org/10.1137/1.9781611973402.10
http://dx.doi.org/10.1007/978-3-662-48350-3_46

Representative Families with Applications 29:59

Prachi Goyal, Neeldhara Misra, and Fahad Panolan. 2013. Faster deterministic algorithms for r-dimensional
matching using representative sets. In Proceedings of the 33rd IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS’13), Vol. 24. 237–248.
DOI:http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.237

Prachi Goyal, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and Saket Saurabh. 2015. Finding
even subgraphs even faster. In Proceedings of the 35th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’15). 434–447. DOI:http://dx.doi.org/
10.4230/LIPIcs.FSTTCS.2015.434

Harry T. Hsu. 1975. An algorithm for finding a minimal equivalent graph of a digraph. J. Assoc. Comput.
Mach. 22 (1975), 11–16.

Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. 2008. Algorithm engineering for color-coding with
applications to signaling pathway detection. Algorithmica 52, 2 (2008), 114–132. DOI:http://dx.doi.org/
10.1007/s00453-007-9008-7

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential
complexity. J. Comput. System Sci. 63, 4 (2001), 512–530.

Stasys Jukna. 2011. Extremal Combinatorics. Springer Verlag, Berlin.
Ton Kloks. 1994. Treewidth, Computations and Approximations (Lecture Notes in Comput. Sci.), Vol. 842.

Springer.
Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. 2008. Divide-and-color. In Proceedings

of the 34th International Workshop Graph-Theoretic Concepts in Computer Science (WG’08) (Lecture
Notes in Comput. Sci.), Vol. 4271. Springer, 58–67.

Ioannis Koutis. 2008. Faster algebraic algorithms for path and packing problems. In Proceedings of the
35th International Colloquium on Automata, Languages and Programming (ICALP’08) (Lecture Notes
in Comput. Sci.), Vol. 5125. 575–586.

Ioannis Koutis and Ryan Williams. 2009. Limits and applications of group algebras for parameterized prob-
lems. In Proceedings of the 36th International Colloquium on Automata, Languages and Programming
(ICALP’09) (Lecture Notes in Comput. Sci.), Vol. 5555. Springer, 653–664.

Ioannis Koutis and Ryan Williams. 2016. Algebraic fingerprints for faster algorithms. Commun. ACM 59, 1
(2016), 98–105. DOI:http://dx.doi.org/10.1145/2742544

Stefan Kratsch and Magnus Wahlström. 2012. Representative sets and irrelevant vertices: New tools for
kernelization. In Proceedings of the 53rd Annual Symposium on Foundations of Computer Science
(FOCS’12). IEEE, 450–459.

Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. 2015. Deterministic trun-
cation of linear matroids. In Proceedings of the 42nd International Colloquium of Automata, Lan-
guages and Programming (ICALP’15) (Lecture Notes in Comput. Sci.), Vol. 9134. Springer, 922–934.
DOI:http://dx.doi.org/10.1007/978-3-662-47672-7_75

L. Lovász. 1977. Flats in matroids and geometric graphs. In Combinatorial Surveys (Proceedings of the 6th
British Combinatorial Conference, Royal Holloway Coll., Egham). Academic Press, London, 45–86.

S. Martello. 1978. An algorithm for finding a minimal equivalent graph of a strongly connected digraph.
Computing 21, 3 (1978), 183–194. DOI:http://dx.doi.org/10.1007/BF02253052

Silvano Martello and Paolo Toth. 1982. Finding a minimum equivalent graph of a digraph. Networks 12, 2
(1982), 89–100. DOI:http://dx.doi.org/10.1002/net.3230120202

Dániel Marx. 2006. Parameterized coloring problems on chordal graphs. Theor. Comput. Sci. 351, 3 (2006),
407–424.

Dániel Marx. 2009. A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410, 44
(2009), 4471–4479.

Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press.

B. Monien. 1985. How to find long paths efficiently. In Analysis and Design of Algorithms for Combinatorial
Problems (Udine, 1982). North-Holland Math. Stud., Vol. 109. 239–254. DOI:http://dx.doi.org/10.1016/
S0304-0208(08)73110-4

Dennis M. Moyles and Gerald L. Thompson. 1969. An algorithm for finding a minimum equivalent graph of
a digraph. J. ACM 16, 3 (July 1969), 455–460. DOI:http://dx.doi.org/10.1145/321526.321534

Kazuo Murota. 2000. Matrices and Matroids for Systems Analysis. Vol. 20. Springer.
Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. 1995. Splitters and near-optimal derandomiza-

tion. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS’95).
IEEE, 182–191.

James G. Oxley. 2006. Matroid Theory. Vol. 3. Oxford University Press.

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.237
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.434
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.434
http://dx.doi.org/10.1007/s00453-007-9008-7
http://dx.doi.org/10.1007/s00453-007-9008-7
http://dx.doi.org/10.1145/2742544
http://dx.doi.org/10.1007/978-3-662-47672-7_75
http://dx.doi.org/10.1007/BF02253052
http://dx.doi.org/10.1002/net.3230120202
http://dx.doi.org/10.1016/S0304-0208(08)73110-4
http://dx.doi.org/10.1016/S0304-0208(08)73110-4
http://dx.doi.org/10.1145/321526.321534

29:60 F. V. Fomin et al.

Christos H. Papadimitriou and Mihalis Yannakakis. 1996. On limited nondeterminism and the complexity
of the V-C dimension. J. Comput. Syst. Sci. 53, 2 (1996), 161–170.

Ron Y. Pinter, Hadas Shachnai, and Meirav Zehavi. 2014. Deterministic parameterized algorithms for the
graph motif problem. In Proceedings of the 39th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS’14) (Lecture Notes in Comput. Sci.), Vol. 8635. Springer, 589–600.
DOI:http://dx.doi.org/10.1007/978-3-662-44465-8_50

Jürgen Plehn and Bernd Voigt. 1991. Finding minimally weighted subgraphs. In Proceedings of the 16th
Workshop on Graph-Theoretic Concepts in Computer Science (WG’91) (Lecture Notes in Comput. Sci.),
Vol. 484. Springer, 18–29.

Hadas Shachnai and Meirav Zehavi. 2014a. Parameterized algorithms for graph partitioning problems.
In Proceedings of the 40th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’14) (Lecture Notes in Comput. Sci.), Vol. 8747. Springer, 384–395. DOI:http://dx.doi.org/10.1007/978-
3-319-12340-0_32

Hadas Shachnai and Meirav Zehavi. 2014b. Representative families: A unified tradeoff-based approach. In
Proceedings of the 22nd Annual European Symposium on Algorithms (ESA’14) (Lecture Notes in Comput.
Sci.), Vol. 8737. Springer, 786–797. DOI:http://dx.doi.org/10.1007/978-3-662-44777-2_65

Zs. Tuza. 1994. Applications of the set-pair method in extremal hypergraph theory. In Extremal Problems
for Finite Sets (Visegrád, 1991). Bolyai Soc. Math. Stud., Vol. 3. János Bolyai Math. Soc., Budapest,
479–514.

Zs. Tuza. 1996. Applications of the set-pair method in extremal problems. II. In Combinatorics, Paul Erdős
Is Eighty, Vol. 2 (Keszthely, 1993). Bolyai Soc. Math. Stud., Vol. 2. János Bolyai Math. Soc., Budapest,
459–490.

Ryan Williams. 2009. Finding paths of length k in O∗(2k) time. Inf. Process. Lett. 109, 6 (2009), 315–318.
Virginia Vassilevska Williams. 2012. Multiplying matrices faster than Coppersmith-Winograd. In Proceed-

ings of the 44th Annual ACM Symposium on Theory of Computing (STOC’12). ACM, 887–898.
Meirav Zehavi. 2013. Mixing color coding-related techniques. In Proceedings of the 23rd Annual European

Symposium on Algorithms (ESA’13) (Lecture Notes in Comput. Sci.), Vol. 9294. Springer, 1037–1049.

Received November 2014; revised February 2016; accepted June 2016

Journal of the ACM, Vol. 63, No. 4, Article 29, Publication date: September 2016.

http://dx.doi.org/10.1007/978-3-662-44465-8_50
http://dx.doi.org/10.1007/978-3-319-12340-032
http://dx.doi.org/10.1007/978-3-319-12340-032
http://dx.doi.org/10.1007/978-3-662-44777-2_65

