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Abstract. We give an algorithm that for an input n-vertex graph G and integer k > 0, in time
2O(k)n, either outputs that the treewidth of G is larger than k, or gives a tree decomposition of G
of width at most 5k + 4. This is the first algorithm providing a constant factor approximation for
treewidth which runs in time single exponential in k and linear in n. Treewidth-based computations
are subroutines of numerous algorithms. Our algorithm can be used to speed up many such algorithms
to work in time which is single exponential in the treewidth and linear in the input size.
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1. Introduction. Since its invention in the 1980s, the notion of treewidth has
come to play a central role in an enormous number of fields, ranging from very deep
structural theories to highly applied areas. An important (but not the only) reason for
the impact of the notion is that many graph problems that are intractable on general
graphs become efficiently solvable when the input is a graph of bounded treewidth.
In most cases, the first step of an algorithm is to find a tree decomposition of small
width and the second step is to perform a dynamic programming procedure on the
tree decomposition.

In particular, if a graph on n vertices is given together with a tree decomposition
of width k, many problems can be solved by dynamic programming in time 2O(k)n,
i.e., single exponential in the treewidth and linear in n. Many of the problems admit-
ting such algorithms have been known for over thirty years [6] but new algorithmic
techniques on graphs of bounded treewidth [11, 21] as well as new problems motivated
by various applications (just a few of many examples are [1, 27, 31, 39]) continue to
be discovered. While a reasonably good tree decomposition can be derived from the
properties of the problem sometimes, in most of the applications, the computation of
a good tree decomposition is a challenge. Hence the natural question here is what can
be done when no tree decomposition is given. In other words, is there an algorithm
that for a given graph G and integer k, in time 2O(k)n either correctly reports that

∗Received by the editors December 2, 2013; accepted for publication (in revised form) February 2,
2016; published electronically March 31, 2016. A preliminary version of this paper appeared in
the Proceedings of FOCS 2013, IEEE, Piscataway, NJ, 2013, pp. 499–508. The research of the
second, fourth, and sixth authors has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement 267959.
The research of the third and fifth authors is supported by the Bergen Research Foundation under
the Beating Hardness by Preprocessing grant.

http://www.siam.org/journals/sicomp/45-2/94737.html
†Department of Information and Computing Sciences, Utrecht University, the Netherlands and

Department of Mathematics and Computer Science, University of Technology Eindhoven, the Nether-
lands (h.l.bodlaender@uu.nl). This research was partly done when Hans L. Bodlaender visited the
University of Bergen, supported by ERC Grant Agreement 267959. This author is partially sup-
ported by the NETWORKS project, funded by the Netherlands Organization for Scientific Research
NWO.

‡Department of Informatics, University of Bergen, Norway (Pal.Drange@ii.uib.no, Markus.Dregi@
ii.uib.no, fomin@ii.uib.no, Daniel.Lokshtanov@ii.uib.no).

§Institute of Informatics, University of Warsaw, Poland (michal.pilipczuk@mimuw.edu.pl).

317

http://www.siam.org/journals/sicomp/45-2/94737.html
mailto:h.l.bodlaender@uu.nl
mailto:Pal.Drange@ii.uib.no
mailto:Markus.Dregi@ii.uib.no
mailto:Markus.Dregi@ii.uib.no
mailto:fomin@ii.uib.no
mailto:Daniel.Lokshtanov@ii.uib.no
mailto:michal.pilipczuk@mimuw.edu.pl


318 BODLAENDER ET AL.

Table 1

Overview of treewidth algorithms. Here k is the treewidth and n is the number of vertices of an
input graph G. Each of the algorithms outputs in time f(k) · g(n) a decomposition of width given in
the approximation column.

Reference Approximation f(k) g(n)

Arnborg, Corneil, and Proskurowski [4] exact O(1) O(nk+2)
Robertson and Seymour [41] 4k + 3 O(33k) n2

Lagergren [32] 8k + 7 2O(k log k) n log2 n

Reed [38] 8k +O(1)1 2O(k log k) n logn

Bodlaender [9] exact O(kO(k3)) n

Amir [3] 4.5k O(23kk3/2) n2

Amir [3] (3 + 2/3)k O(23.6982kk3) n2

Amir [3] O(k log k) O(k log k) n4

Feige, Hajiaghayi, and Lee [25] O(k ·
√

log k) O(1) nO(1)

This paper 3k + 4 2O(k) n logn

This paper 5k + 4 2O(k) n

the treewidth of G is at least k, or finds an optimal solution to our favorite problem
(finds a maximum independent set, computes the chromatic number, decides if G is
Hamiltonian, etc.)? To answer this question it would be sufficient to have an algo-
rithm that in time 2O(k)n either reports correctly that the treewidth of G is more
than k, or construct a tree decomposition of width at most ck for some constant c.

However, the lack of such algorithms has been a bottleneck, both in theory and
in practical applications of the treewidth concept. The existing approximation al-
gorithms give us the choice of running times of the form 2O(k)n2, 2O(k log k)n logn,
or kO(k3)n; see Table 1. Remarkably, the newest of these current record holders is
now almost 20 years old. This “newest record holder” is the linear time algorithm of
Bodlaender [7, 9] that given a graph G, decides if the treewidth of G is at most k,

and if so, gives a tree decomposition of width at most k in O(kO(k3)n) time. The
improvement by Perković and Reed [37] is only a factor polynomial in k faster, how-
ever, if the treewidth is larger than k, it gives a subgraph of treewidth more than k
with a tree decomposition of width at most 2k, leading to an O(n2) algorithm for the
fundamental disjoint paths problem. Recently, a version running in logarithmic space
was found by Elberfeld, Jakoby, and Tantau [24], but its running time is not linear.

In this paper, we give the first constant factor approximation algorithm for the
treewidth graph such that its running time is single exponential in treewidth and
linear in the size of the input graph. Our main result is the following theorem.

Theorem 1. There exists an algorithm that, given an n-vertex graph G and an
integer k, in time 2O(k)n either outputs that the treewidth of G is larger than k, or
constructs a tree decomposition of G of width at most 5k + 4.

Of independent interest are a number of techniques that we use to obtain the
result and the intermediate result of an algorithm that either says that the treewidth
is larger than k or outputs a tree decomposition of width at most 3k + 4 in time
2O(k)n logn.

Related results and techniques. The basic shape of our algorithm is along the same
lines as almost all of the treewidth approximation algorithms [3, 13, 25, 32, 38, 41],
i.e., a specific scheme of repeatedly finding separators. If we ask for polynomial time

1Reed [38] does not state the approximation ratio of his algorithm explicitly. However, a careful
analysis of his manuscript show that the algorithm can be implemented to give a tree decomposition
of width at most 8k + O(1).
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approximation algorithms for treewidth, the currently best result is that of [25] that
gives in polynomial (but not linear) time a tree decomposition of width O(k ·

√
log k),

where k is the treewidth of the graph. Their work also gives a polynomial time approx-
imation algorithm with ratio O(|VH |2) for H-minor free graphs. By Austrin, Pitassi,
and Wu [5], assuming the small set expansion conjecture, there is no polynomial time
approximation algorithm for treewidth with a constant performance ratio.

An important element in our algorithms is the use of a data structure that allows
us to perform various queries in time O(ck logn) each, for some constant c. This data
structure is obtained by adding various new techniques to old ideas from the area of
dynamic algorithms for graphs of bounded treewidth [8, 19, 17, 18, 29].

A central element in the data structure is a tree decomposition of the input graph
of bounded (but too large) width such that the tree used in the tree decomposition is
binary and of logarithmic depth. To obtain this tree decomposition, we combine the
following techniques: following the scheme of the exact linear time algorithms [9, 37],
but replacing the call to the dynamic programming algorithm of Bodlaender and
Kloks [15] by a recursive call to our algorithm, we obtain a tree decomposition of G of
width at most 10k+9 (or 6k+9, in the case of the O(ckn logn) algorithm of section 3.)
We use a result by Bodlaender and Hagerup [14] that this tree decomposition can be
turned into a tree decomposition with a logarithmic depth binary tree in linear time in
the exclusive read exclusive write (EREW) PRAM model. Recall that in this PRAM
model, every memory cell can be read or written to by at most one processor at a time.
Their result is that this new tree decomposition can be computed in O(log n) time
using O(n) operations in the EREW PRAM model. The cost of this transformation
is increasing the width of the decomposition roughly three times. The latter result is
an application of classic results from parallel computing for solving problems on trees,
in particular Miller–Reif tree contraction [35, 36].

Implementing the approximation algorithm for treewidth by Robertson and Sey-
mour [41] using our data structure immediately gives a 3-approximation algorithm for
treewidth running in time O(ckn logn); this algorithm is explained in detail in sec-
tion 3. Additional techniques are needed to speed this algorithm up. We build a series
of algorithms, with running times of the formsO(ckn log logn), O(ckn log log logn), . . . .
etc. Each algorithm “implements” Reeds algorithm [38], but with a different proce-
dure to find balanced separators of the subgraph at hand, and stops when the subgraph
at hand has size O(log n). In the latter case, we call the previous algorithm of the
series on this subgraph.

Finally, to obtain a linear time algorithm, we consider two cases, one case for
when n is “small” (with respect to k), and one case when n is “large,” where we
consider n to be small if

n ≤ 22
c0k3

for some constant c0.

For small values of n, we apply the O(ckn log logn) algorithm from section 4. This
will yield a linear running time in n since log logn ≤ k. For larger values of n, we show
that the linear time algorithms of Bodlaender [9] or Perković and Reed [37] can be
implemented in truly linear time, without any overhead depending on k. This seem-
ingly surprising result can be obtained roughly as follows. We explicitly construct
a finite state tree automaton of the dynamic programming algorithm in time double
exponential in k. In this case, double exponential in k is in fact linear in n. This
automaton is then applied on an expression tree constructed from our tree decompo-
sition and this results in an algorithm running in time 2O(k)n. Viewing a dynamic
programming algorithm on a tree decomposition as a finite state automaton traces
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back to early work by Fellows and Langston [26]; see, e.g., also [2]. Our algorithm
assumes the RAM model of computation [42], and the only aspect of the RAM model
which is exploited by our algorithm is the ability to look up an entry in a table in
constant time, independently of the size of the table. This capability is crucially used
in almost every linear time graph algorithm including breadth first search and depth
first search.

Overview of the paper. In section 2 we give the outline of the main algorithms, fo-
cusing on explaining main intuitions rather than formal details of the proofs.
Sections 3, 4, and 5 give the formal descriptions of the main algorithms: first the
O(ckn logn) algorithm, then the series of O(ckn log(α) n) algorithms, before describ-
ing the O(ckn) algorithm. Each of the algorithms described in these sections uses
queries to a data structure which is described in section 6. Some concluding remarks
and open questions are made in section 7.

Notation. We give some basic definitions and notation, used throughout the pa-
per. For α ∈ N, the function log(α) n is defined as follows:

log(α) n =

{
logn if α = 1,

log(log(α−1) n) otherwise.

We will throughout the paper refer to |V (G)| as n, the number of vertices of a graphG,
and |E(G)| as m, the number of edges of G, whenever G is clear from context. We
say that a set X of vertices of a graph G = (V,E) separates u from v if there is no
path from u to v in G \X . We generalize this to sets in the natural way; let X , W1,
and W2 be sets of vertices of a graph G. We say that X separates W1 from W2 if
there is no pair of vertices w1 ∈ W1, w2 ∈ W2 such that w1 is in the same connected
component as w2 in G \X .

For the presentation of our results, it is more convenient when we regard tree
decompositions as rooted. This yields the following definition of tree decompositions.

Definition 1.1 (tree decomposition). A tree decomposition of a graph G is a
pair T = ({Bi | i ∈ I}, T = (I, F )) where T = (I, F ) is a rooted tree, and {Bi | i ∈ I}
is a family of subsets of V (G), such that

•
⋃

i∈I Bi = V (G),
• for all {v, w} ∈ E(G), there exists an i ∈ I with v, w ∈ Bi, and
• for all v ∈ V , Iv = {i ∈ I | v ∈ Bi} induces a subtree of T .

The width of T = ({Bi | i ∈ I}, T = (I, F )), denoted w(T ) is maxi∈I |Bi| − 1.
The treewidth of a graph G, denoted by tw(G), is the minimum width of a tree
decomposition of G.

For each v ∈ V (G), the tree induced by Iv is denoted by Tv; the root of this tree,
i.e., the node in the tree with shortest distance to the root of T is denoted by rv.

The sets Bi are called the bags of the decomposition. For each node i ∈ I, we
define Vi to be the union of bags contained in the subtree of T rooted at i, including Bi.
Moreover, we denote Wi = Vi \ Bi and Gi = G[Vi], Hi = G[Wi]. Note that by the
definition of tree decomposition, Bi separates Wi from V (G) \ Vi.

2. Proof outline. Our paper combines several different techniques. Instead of
directly giving the full proofs with all details, we first give in this section a more intu-
itive (but still quite technical) outline of the results and techniques. The roadmap of
this outline is as follows: first, we briefly explain some constant factor approximation
algorithms for treewidth upon which our algorithm builds. We start in section 2.1 with
a variant of an algorithm by Robertson and Seymour [41], which, within a constant
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factor, approximates a treewidth with a running time O(ckn2); then in section 2.2 we
discuss the O(kO(k)n logn) algorithm by Reed [38]. After this, we sketch in section 2.3
the proof of our new O(ckn logn) 3-approximation for treewidth, building upon the
earlier discussed algorithms by Robertson and Seymour and by Reed. This algorithm
needs a technical lemma, of which the main graph theoretic ideas are sketched in
sections 2.4 and 2.5. The algorithm needs a specific data structure: we exploit hav-
ing a tree decomposition of bounded (but still too large) width to perform several
queries in O(ck logn) time; this is sketched in section 2.6. The algorithm with run-
ning time O(ckn logn) is used as the first in a series of algorithms, with running times
O(ckn log log n), O(ckn log log logn), etc, each calling the previous one as a subrou-
tine; this is sketched in section 2.7. How we obtain from this series of algorithms our
final O(ckn) algorithm is then sketched in section 2.8.

2.1. The O(33kn2) time 4-approximation algorithm from Graph Minors
XIII [41]. The engine behind the algorithm is a lemma that states that graphs of
treewidth k have balanced separators of size k+1. In particular, for any way to assign
nonnegative weights to the vertices there exists a set X of size at most k + 1 such
that the total weight of any connected component of G\X is at most half of the total
weight of G. We will use the variant of the lemma where some vertices have weight 1
and some have weight 0.

Lemma 2.1 (Graph Minors II [40]). If tw(G) ≤ k and S ⊆ V (G), then there
exists X ⊆ V (G) with |X | ≤ k + 1 such that every component of G \X has at most
1
2 |S| vertices which are in S.

We note that the original version of [40] is seemingly stronger: it gives bound 1
2 |S\

X | instead of 1
2 |S|. However, we do not need this stronger version and we find it more

convenient to work with the weaker. The set X with properties ensured by Lemma 2.1
will be called a balanced S-separator, or a 1

2 -balanced S-separator. More generally, for
a β-balanced S-separator X every connected component of G\X contains at most β|S|
vertices of S. If we omit the set S, i.e., talk about separators instead of S-separators,
we mean S = V (G) and balanced separators of the whole vertex set.

The proof of Lemma 2.1 is not too hard; start with a tree decomposition of G
with width at most k and orient every edge of the decomposition tree towards the side
which contains the larger part of the set S. Two edges of the decomposition cannot
point “in different directions,” since then there would be disjoint parts of the tree,
both containing more than half of S. Thus there has to be a node in the decomposition
tree such that all edges of the decomposition are oriented towards it. The bag of the
decomposition corresponding to this node is exactly the set X of at most k+1 vertices
whose deletion leaves connected components with at most 1

2 |S| vertices of S each.
The proof of Lemma 2.1 is constructive if one has access to a tree decomposition

of G of width less than k. The algorithm does not have such a decomposition at hand,
after all we are trying to compute a decomposition of G of small width. Thus we have
to settle for the following algorithmic variant of the lemma [40].

Lemma 2.2 (see [41]). There is an algorithm that given a graph G, a set S, and
a k ∈ N either concludes that tw(G) > k or outputs a set X of size at most k+1 such
that every component of G \X has at most 2

3 |S| vertices which are in S and runs in

time O(3|S|kO(1)(n+m)).

Proof sketch. By Lemma 2.1 there exists a set X ′ of size at most k+ 1 such that
every component of G\X ′ has at most 1

2 |S| vertices which are in S. A simple packing
argument shows that the components can be assigned to left or right such that at
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most 2
3 |S| vertices of S go left and at most 2

3 |S| go right. Let SX be S∩X ′ and let SL

and SR be the vertices of S that were put left and right, respectively. By trying
all partitions of S in three parts the algorithm correctly guesses SX , SL, and SR.
Now X ′ separates SL from SR and so the minimum vertex cut between SL and SR

in G \ SX is at most |X ′ \ SX | ≤ (k + 1)− |SX |. The algorithm finds using max-flow
a set Z of size at most (k+1)− |SX | that separates SL from SR in G \ SX . Since we
are only interested in a set Z of size at most k − |SX | one can run max-flow in time
O((n +m)kO(1)). Having found SL, SR, SX , and Z the algorithm sets X = SX ∪ Z,
L to contain all components of G \X that contain vertices of SL, and R to contain
all other vertices. Since every component C of G \X is fully contained in L or R, the
bound on |C ∩ S| follows.

If no partition of S into SL, SR, SX yielded a cut set Z of size at most (k+1)−|SX |,
this means that tw(G) > k, which the algorithm reports.

The algorithm takes as input G, k, and a set S on at most 3k + 3 vertices, and
either concludes that the treewidth of G is larger than k or finds a tree decomposition
of width at most 4k + 3 such that the top bag of the decomposition contains S.

On input G, S, k the algorithm starts by ensuring that |S| = 3k+3. If |S| < 3k+3
the algorithm just adds arbitrary vertices to S until equality is obtained. Then the
algorithm applies Lemma 2.2 and finds a set X of size at most k + 1 such that each

component Ci of G \X satisfies |Ci ∩ S| ≤ 2|S|
3 ≤ 2k + 2. Thus for each Ci we have

|(S ∩ Ci) ∪ X | ≤ 3k + 3. For each component Ci of G \X the algorithm runs itself
recursively on (G[Ci ∪X ], (S ∩Ci) ∪X, k).

If either of the recursive calls returns that the treewidth is more than k then the
treewidth of G is more than k as well. Otherwise we have for every component Ci a
tree decomposition of G[Ci∪X ] of width at most 4k+3 such that the top bag contains
(S ∩ Ci) ∪ X . To make a tree decomposition of G we make a new root node with
bag X ∪S, and connect this bag to the roots of the tree decompositions of G[Ci ∪X ]
for each component Ci. It is easy to verify that this is indeed a tree decomposition
of G. The top bag contains S, and the size of the top bag is at most |S|+ |X | ≤ 4k+4,
and so the width if the decomposition is at most 4k + 3 as claimed.

The running time of the algorithm is governed by the recurrence

T (n, k) = O(3|S|kO(1)(n+m)) +
∑
Ci

T (|Ci ∪X |, k)(1)

which solves to T (n, k) ≤ (33kkO(1)n(n+m)) since |S| = 3k+3 and there always are
at least two nonempty components of G\X . Finally, we use the following observation
about the number of edges in a graph of treewidth k.

Lemma 2.3 (see [12]). Let G be a graph with treewidth at most k. Then |E(G)| ≤
|V (G)|k.

Thus if |E(G)| > nk the algorithm can safely output that tw(G) > k. After this,
running the algorithm above takes time O(33kkO(1)n(n+m)) = O(33kkO(1)n2).

2.2. The O(kO(k)n logn) time approximation algorithm of Reed. Reed
[38] observed that the running time of the algorithm of Robertson and Seymour [41]
can be sped up from O(n2) for fixed k to O(n logn) for fixed k, at the cost of a
worse (but still constant) approximation ratio, and a kO(k) dependence on k in the
running time, rather than the 33k factor in the algorithm of Robertson and Seymour.
We remark here that Reed [38] never states explicitly the dependence on k of his
algorithm, but a careful analysis shows that this dependence is in fact of order kO(k).
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The main idea of this algorithm is that the recurrence in (1) only solves to O(n2) for
fixed k if one of the components of G \X contains almost all of the vertices of G. If
one could ensure that each component Ci of G \X had at most c ·n vertices for some
fixed c < 1, the recurrence in (1) solves to O(n log n) for fixed k. To see that this is true
we simply consider the recursion tree. The total amount of work done at any level of
the recursion tree is O(n) for a fixed k. Since the size of the components considered at
one level is always a constant factor smaller than the size of the components considered
in the previous level, the number of levels is only O(log n) and we have O(n log n)
work in total.

By using Lemma 2.1 with S = V (G) we see that if G has treewidth at most k,
then there is a set X of size at most k + 1 such that each component of G \ X has
size at most n

2 . Unfortunately if we try to apply Lemma 2.2 to find an X which
splits G in a balanced way using S = V (G), the algorithm of Lemma 2.2 takes time
O(3|S|kO(1)(n + m)) = O(3nnO(1)), which is exponential in n. Reed [38] gave an
algorithmic variant of Lemma 2.1 especially tailored for the case where S = V (G).

Lemma 2.4 (see [38]). There is an algorithm that given G and k, runs in time
O(kO(k)n) and either concludes that tw(G) > k or outputs a set X of size at most k+1
such that every component of G \X has at most 3

4n vertices.

Let us remark that Lemma 2.4 as stated here is never explicitly proved in [38],
but it follows easily from the arguments given there.

Having Lemmas 2.2 and 2.4 at hand, we show how to obtain an 8-approximation
of treewidth in time O(kO(k)n logn). The algorithm takes as input G, k, and a set S
on at most 6k+6 vertices, and either concludes that the treewidth of G is at least k,
or finds a tree decomposition of width at most 8k + 7 such that the top bag of the
decomposition contains S.

On input G, S, k the algorithm starts by ensuring that |S| = 6k+6. If |S| < 6k+6
the algorithm just adds vertices to S until equality is obtained. Then the algorithm
applies Lemma 2.2 and finds a setX1 of size at most k+1 such that each component Ci

of G\X1 satisfies |Ci∩S| ≤ 2
3 |S| ≤ 4k+4. Now the algorithm applies Lemma 2.4 and

finds a set X2 of size at most k + 1 such that each component Ci of G \X2 satisfies
|Ci| ≤ 3

4 |V (G)| ≤ 3
4n. Set X = X1 ∪ X2. For each component Ci of G \X we have

that |(S ∩ Ci) ∪ X | ≤ 6k + 6. For each component Ci of G \ X the algorithm runs
itself recursively on (G[Ci ∪X ], (S ∩Ci) ∪X, k).

If either of the recursive calls returns that the treewidth is more than k then the
treewidth of G is more than k as well. Otherwise we have for every component Ci

a tree decomposition of G[Ci ∪ X ] of width at most 8k + 7 such that the top bag
contains (S ∩ Ci) ∪ X . Similarly as before, to make a tree decomposition of G we
make a new root node with bag X ∪ S, and connect this bag to the roots of the tree
decompositions of G[Ci ∪X ] for each component Ci. It is easy to verify that this is
indeed a tree decomposition of G. The top bag contains S, and the size of the top
bag is at most |S|+ |X | ≤ |S|+ |X1|+ |X2| ≤ 6k+6+2k+2 = 8k+8, and the width
of the decomposition is at most 8k + 7 as claimed.

The running time of the algorithm is governed by the recurrence

T (n, k) ≤ O
(
kO(k)(n+m)

)
+
∑
Ci

T (|Ci ∪X |, k)(2)

which solves to T (n, k) = O(kO(k)(n +m) logn) since each Ci has size at most 3
4n.

By Lemma 2.3 we have m ≤ kn and so the running time of the algorithm is upper
bounded by O(kO(k)n logn).
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2.3. A new O(ckn logn) time 3-approximation algorithm. The goal of
this section is to sketch a proof of the following theorem. A full proof of Theorem 2
can be found in section 3.

Theorem 2. There exists an algorithm which given a graph G and an integer k,
either computes a tree decomposition of G of width at most 3k+4 or correctly concludes
that tw(G) > k, in time O(ck · n logn) for some c ∈ N.

The algorithm employs the same recursive compression scheme which is used in
Bodlaender’s linear time algorithm [7, 9] and the algorithm of Perković and Reed [37].
The idea is to solve the problem recursively on a smaller instance, expand the obtained
tree decomposition of the smaller graph to a “good, but not quite good enough” tree
decomposition of the instance in question, and then use this tree decomposition to
either conclude that tw(G) > k or find a decomposition of G which is good enough.
A central concept in this recursive approach of Bodlaender’s algorithm [9] is the
definition of an improved graph.

Definition 2.5. Given a graph G and an integer k, the improved graph of G,
denoted GI , is obtained by adding an edge between each pair of vertices with at least k+
1 common neighbors of degree at most k in G.

Intuitively, adding the edges during construction of the improved graph cannot
spoil any tree decomposition of G of width at most k, as the pairs of vertices connected
by the new edges will need to be contained together in some bag anyway. This is
captured in the following lemma.

Lemma 2.6. Given a graph G and an integer k ∈ N, tw(G) ≤ k if and only if
tw(GI) ≤ k.

If |E(G)| = O(kn), which is the case in graphs of treewidth at most k, the
improved graph can be computed in O(kO(1) · n) time using radix sort [9].

A vertex v ∈ G is called simplicial if its neighborhood is a clique, and I-simplicial,
if it is simplicial in the improved graphGI . The intuition behind I-simplicial vertices is
as follows: all the neighbors of an I-simplicial vertex must be simultaneously contained
in some bag of any tree decomposition of GI of width at most k, so we can safely
remove such vertices from the improved graph, compute the tree decomposition, and
reintroduce the removed I-simplicial vertices. The crucial observation is that if no
large set of I-simplicial vertices can be found, then one can identify a large matching,
which can be also used for a robust recursion step. The following lemma, which follows
from the work of Bodlaender [9], encapsulates all the main ingredients that we will
use.

Lemma 2.7. There is an algorithm working in O(kO(1)n) time that, given a graph
G and an integer k, either

(i) returns a maximal matching in G of cardinality at least |V (G)|
O(k6) ,

(ii) returns a set of at least |V (G)|
O(k6) I-simplicial vertices, or

(iii) correctly concludes that the treewidth of G is larger than k.

Moreover, if a set X of at least |V (G)|
O(k6) I-simplicial vertices is returned, and the algo-

rithm is in addition provided with some tree decomposition TI of GI \X of width at
most k, then in O(kO(1) · n) time one can turn TI into a tree decomposition T of G
of width at most k, or conclude that the treewidth of G is larger than k.

Lemma 2.7 allows us to reduce the problem to a compression variant where we are
given a graph G, an integer k, and a tree decomposition of G of width O(k), and the
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goal is to either conclude that the treewidth of G is at least k or output a tree decom-
position of G of width at most 3k+4. The proof of Theorem 2 has two parts: an algo-
rithm for the compression step and an algorithm for the general problem that uses the
algorithm for the compression step together with Lemma 2.7 as black boxes. We now
state the properties of our algorithm for the compression step in the following lemma.

Lemma 2.8. There exists an algorithm which on input G, k, S0, Tapx, where
(i) S0 ⊆ V (G), |S0| ≤ 2k + 3, (ii) G \ S0 is connected, and (iii) Tapx is a tree
decomposition of G of width at most O(k), in O(ck · n logn) time for some c ∈ N
either computes a tree decomposition T of G with w(T ) ≤ 3k + 4 and S0 as the root
bag, or correctly concludes that tw(G) > k.

We now give a proof of Theorem 2, assuming the correctness of Lemma 2.8. The
correctness of the lemma will be argued in sections 2.4 and 2.5.

Proof of Theorem 2. Our algorithm will in fact solve a slightly more general prob-
lem. Here we are given a graph G, an integer k, and a set S0 on at most 2k + 3
vertices, with the property that G \ S0 is connected. The purpose of S0 in the final
algorithm lies in the recursive step: when we recursively apply our algorithm to dif-
ferent connected components, we need to ensure that we are able to connect the tree
decomposition of the different connected components onto the already connected tree
decomposition without blowing up the width too much. The algorithm will either
conclude that tw(G) > k or output a tree decomposition of width at most 3k+4 such
that S0 is the root bag. To get a tree decomposition of any (possibly disconnected)
graph it is sufficient to run this algorithm on each connected component with S0 = ∅.
The algorithm proceeds as follows. It first applies Lemma 2.7 on (G, 3k + 4). If the
algorithm of Lemma 2.7 concludes that tw(G) > 3k + 4 the algorithm reports that
tw(G) > 3k + 4 > k.

If the algorithm finds a matching M in G with at least |V (G)|
O(k6) edges, it contracts

every edge in M and obtains a graph G′. Since G′ is a minor of G we know that
tw(G′) ≤ tw(G). The algorithm runs itself recursively on (G′, k, ∅), and either con-
cludes that tw(G′) > k (implying tw(G) > k) or outputs a tree decomposition of G′

of width at most 3k+4. Uncontracting the matching in this tree decomposition yields
a tree decomposition Tapx of G of width at most 6k+9 [9]. Now we can run the algo-
rithm of Lemma 2.8 on (G, k, S0, Tapx) and either obtain a tree decomposition of G of
width at most 3k + 4 and S0 as the root bag, or correctly conclude that tw(G) > k.

If the algorithm finds a set X of at least |V (G)|
O(k6) I-simplicial vertices, it constructs

the improved graph GI and runs itself recursively on (GI \X, k, ∅). If the algorithm
concludes that tw(GI \X) > k then tw(GI) > k implying tw(G) > k by Lemma 2.6.
Otherwise we obtain a tree decomposition of GI \X of width at most 3k+4. We may
now apply Lemma 2.7 and obtain a tree decomposition Tapx of G with the same width.
Note that we cannot just output Tapx directly, since we cannot be sure that S0 is the
top bag of Tapx. However we can run the algorithm of Lemma 2.8 on (G, k, S0, Tapx)
and either obtain a tree decomposition of G of width at most 3k + 4 and S0 as the
root bag, or correctly conclude that tw(G) > k.

It remains to analyze the running time of the algorithm. Suppose the algorithm
takes time at most T (n, k) on input (G, k, S0), where n = |V (G)|. Running the
algorithm of Lemma 2.7 takes O(kO(1)n) time. Then the algorithm either halts, or
calls itself recursively on a graph with at most n− n

O(k6) = n(1− 1
O(k6) ) vertices taking

time T (n(1− 1
O(k6) ), k). Then the algorithm takes time O(kO(1)n) to either conclude

that tw(G) > k or to construct a tree decomposition Tapx of G of width O(k). In
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the latter case we finally run the algorithm of Lemma 2.8, taking time O(ck ·n logn).
This gives the following recurrence:

T (n, k) ≤ O
(
ck · n logn

)
+ T

(
n

(
1− 1

O(k6)

)
, k

)
.

The recurrence leads to a geometric series and solves to T (n, k) ≤ O(ckkO(1) ·n logn),
completing the proof. For a thorough analysis of the recurrence, see (3) and (4) in
section 3. Pseudocode for the algorithm described here is given in Algorithm 1 in
section 3.

2.4. A compression algorithm. We now proceed to give a sketch of a proof
for a slightly weakened form of Lemma 2.8. The goal is to give an algorithm that given
as input a graph G, an integer k, a set S0 of size at most 6k + 6 such that G \ S0 is
connected, and a tree decomposition Tapx ofG of width O(k), runs in time O(ckn logn)
and either correctly concludes that tw(G) > k or outputs a tree decomposition of G
of width at most 8k + 7. The paper does not contain a full proof of this variant
of Lemma 2.8—we will discuss the proof of Lemma 2.8 in section 2.5. The aim of
this section is to demonstrate that the recursive scheme of section 2.3 together with
a nice trick for finding balanced separators is already sufficient to obtain a factor 8
approximation for treewidth running in time O(ckn logn). A variant of the trick
used in this section for computing balanced separators turns out to be useful in our
final O(ckn) time 5-approximation algorithm.

The route we follow here is to apply the algorithm of Reed described in section 2.2,
but instead of using Lemma 2.4 to find a set X of size k+1 such that every connected
component of G \ X is small, to finding X by dynamic programming over the tree
decomposition Tapx in time O(ckn). There are a few technical difficulties with this
approach.

The most serious issue is that, to the best of our knowledge, the only known dy-
namic programming algorithms for balanced separators in graphs of bounded treewidth
take time O(ckn2) rather than O(ckn): in the state, apart from a partition of the bag,
we also need to store the cardinalities of the sides which gives us another dimension
of size n. We now explain how it is possible to overcome this issue. We start by
applying the argument in the proof of Lemma 2.1 on the tree decomposition Tapx and
get in time O(kO(1)n) a partition of V (G) into L0, X0, and R0 such that there are no
edges between L0 and R0, max(|L0|, |R0|) ≤ 3

4n, and |X0| ≤ w(Tapx) + 1. For every
way of writing k + 1 = kL + kX + kR and every partition of X0 into XL ∪XX ∪XR

with |XX | = kX we do the following.
First we find in time O(ckn) using dynamic programming over the tree decom-

position Tapx a partition of L0 ∪X0 into L̂L ∪ X̂L ∪ R̂L such that there are no edges

from L̂L to R̂L, |X̂L| ≤ kL + kX , XX ⊆ X̂L, XR ⊆ R̂L, and XL ⊆ L̂L and the size
|L̂L| is maximized.

Then we find in time O(ckn) using dynamic programming over the tree decompo-
sition Tapx a partition of R0∪X0 into L̂R∪X̂R∪R̂R such that there are no edges from

L̂R to R̂R, |X̂R| ≤ kR + kX , XX ⊆ X̂R, XR ⊆ R̂R, and XL ⊆ L̂R and the size |R̂R| is
maximized. Let L = L̂L∪L̂R, R = R̂L∪R̂R, andX = XL∪XR. The sets L,X , R form
a partition of V (G) with no edges from L to R and |X | ≤ kL+kX+kR+kX−kX ≤ k+1.

It is possible to show using a combinatorial argument (see Lemma 6.5 in section 6)
that if tw(G) ≤ k then there exists a choice of kL, kX , kR such that k+1 = kL+kX+kR
and a partition ofX0 intoXL∪XX∪XR with |XX | = kX such that the above algorithm
will output a partition of V (G) into X , L, and R such that max(|L|, |R|) ≤ 8n

9 . Thus
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we have an algorithm that in time O(ckn) either finds a set X of size at most k+1 such
that each connected component of G \X has size at most 8n

9 or correctly concludes
that tw(G) > k.

The second problem with the approach is that the algorithm of Reed is an 8-
approximation algorithm rather than a 3-approximation. Thus, even the sped up
version does not quite prove Lemma 2.8. It does however yield a version of Lemma 2.8
where the compression algorithm is an 8-approximation. In the proof of Theorem 2
there is nothing special about the number 3 and so one can use this weaker variant of
Lemma 2.8 to give an 8-approximation algorithm for treewidth in time O(ckn logn).
We will not give complete details of this algorithm, as we will shortly describe a proof
of Lemma 2.8 using a quite different route.

It looks difficult to improve the algorithm above to an algorithm with running
time O(ckn). The main hurdle is the following: both the algorithm of Robertson and
Seymour [41] and the algorithm of Reed [38] find a separatorX and proceed recursively
on the components of G\X . If we use O(ck ·n) time to find the separator X , then the
total running time must be at least O(ck · n · d), where d is the depth of the recursion
tree of the algorithm. It is easy to see that the depth of the tree decomposition
output by the algorithms equals (up to constant factors) the depth of the recursion
tree. However there exist graphs of treewidth k such that no tree decomposition of
depth o(logn) has width O(k) (take for example powers of paths). Thus the depth of
the constructed tree decompositions, and hence the recursion depth of the algorithm,
must be at least Ω(log n).

Even if we somehow managed to reuse computations and find the separator X in
time O(ck · n

logn ) on average, we would still be in trouble since we need to pass on the

list of vertices of the connected components of G \X that we will call the algorithm
on recursively. At a first glance this has to take O(n) time and then we are stuck with
an algorithm with running time O((ck · n

logn + n) · d), where d is the recursion depth

of the algorithm. For d = logn this is still O(ckn+n logn) which is slower than what
we are aiming at. In section 2.5 we give a proof of Lemma 2.8 that almost overcomes
these issues.

2.5. A better compression algorithm. We give a sketch of the proof of
Lemma 2.8. The goal is to give an algorithm that given as input a connected graph G,
an integer k, a set S0 of size at most 2k + 3 such that G \ S0 is connected, and a
tree decomposition Tapx of G, runs in time O(ckn logn) and either correctly concludes
that tw(G) > k or outputs a tree decomposition of G of width at most 3k + 4 with
top bag S0.

Our strategy is to implement the O(ckn2) time 4-approximation algorithm de-
scribed in section 2.1, but make some crucial changes in order to (a) make the imple-
mentation run in O(ckn logn) time, and (b) make it a 3-approximation rather than a
4-approximation. We first turn to the easier of the two changes, namely, making the
algorithm a 3-approximation.

To get an algorithm that satisfies all of the requirements of Lemma 2.8, but runs
in time O(ckn2) rather than O(ckn logn) we run the algorithm described in section 2.1
setting S = S0 in the beginning. Instead of using Lemma 2.2 to find a set X such
that every component of G \ X has at most 2

3 |S| vertices which are in S, we apply
Lemma 2.1 to show the existence of an X such that every component of G \X has
at most 1

2 |S| vertices which are in S, and do dynamic programming over the tree
decomposition Tapx in time O(ckn) in order to find such an X . Going through the
analysis of section 2.1 but with X satisfying that every component of G \ X has at
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most 1
2 |S| vertices which are in S shows that the algorithm does in fact output a tree

decomposition with width 3k + 4 and top bag S0 whenever tw(G) ≤ k.
It is somewhat nontrivial to do dynamic programming over the tree decomposition

Tapx in time O(ckn) in order to find an X such that every component of G \X has
at most 2

3 |S| vertices which are in S. The problem is that G \ X could potentially
have many components and we do not have time to store information about each of
these components individually. The following lemma, whose proof can be found in
section 6.4.2, shows how to deal with this problem.

Lemma 2.9. Let G be a graph and S ⊆ V (G). Then a set X is a balanced S-
separator if and only if there exists a partition (M1,M2,M3) of V (G) \X such that
there is no edge between Mi and Mj for i 	= j, and |Mi ∩ S| ≤ |S|/2 for i = 1, 2, 3.

Lemma 2.9 shows that when looking for a balanced S-separator we can just look
for a partition of G into four sets X,M1,M2,M3 such that there is no edge between
Mi and Mj for i 	= j, and |Mi ∩ S| ≤ |S|/2 for i = 1, 2, 3. This can easily be done in
time O(ckn) by dynamic programming over the tree decomposition Tapx. This yields
the promised algorithm that satisfies all of the requirements of Lemma 2.8, but runs
in time O(ckn2) rather than O(ckn logn).

We now turn to the most difficult part of the proof of Lemma 2.8, namely, how
to improve the running time of the algorithm above from O(ckn2) to O(ckn logn)
in a way that gives hope of a further improvement to running time O(ckn). The
O(ckn logn) time algorithm we describe now is based on the following observations:

(i) In any recursive call of the algorithm above, the considered graph is an in-
duced subgraph of G. Specifically, the considered graph is always G[C ∪ S],
where S is a set with at most 2k+3 vertices and C is a connected component
of G \ S.

(ii) The only computationally hard step, finding the balanced S-separator X , is
done by dynamic programming over the tree decomposition Tapx of G.

These observations give some hope that one can reuse the computations done in
the dynamic programming when finding a balanced S-separator for G during the
computation of balanced S-separators in induced subgraphs of G. This plan can be
carried out in a surprisingly clean manner and we now give a rough sketch of how it
can be done.

We start by preprocessing the tree decomposition using an algorithm of Bodlaen-
der and Hagerup [14]. This algorithm is a parallel algorithm and here we state its
sequential form. Essentially, Proposition 2.10 lets us assume without loss of generality
that the tree decomposition Tapx has depth O(log n).

Proposition 2.10 (Bodlaender and Hagerup [14]). There is an algorithm that,
given a tree decomposition of width k with O(n) nodes of a graph G, finds a rooted bi-
nary tree decomposition of G of width at most 3k+2 with depth O(log n) in O(kn) time.

In section 6 we will describe a data structure with the following properties. The
data structure takes as input a graph G, an integer k, and a tree decomposition Tapx
of width O(k) and depth O(log n). After an initialization step which takes O(ckn)
time the data structure allows us to do certain operations and queries. At any point
of time the data structure is in a certain state. The operations allow us to change
the state of the data structure. Formally, the state of the data structure is a 3-tuple
(S,X, F ) of subsets of V (G) and a vertex π called the “pin”, with the restriction that
π /∈ S. The initial state of the data structure is that S = S0, X = F = ∅, and π is
an arbitrary vertex of G \S0. The data structure allows operations that change S, X
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or F by inserting/deleting a specified vertex, and move the pin to a specified vertex
in time O(ck log n).

For a fixed state of the data structure, the active component U is the component
of G \S which contains π. The data structure allows the query findSSeparator which
outputs in time O(ck log n) either an S-balanced separator X̂ of G[U ∪ S] of size at
most k + 1, or ⊥, which means that tw(G[S ∪ U ]) > k.

The algorithm of Lemma 2.8 runs the O(ckn2) time algorithm described above,
but uses the data structure to find the balanced S-separator in time O(ck log n) instead
of doing dynamic programming over Tapx. All we need to make sure of is that the S in
the state of the data structure is always equal to the set S for which we want to find
the balanced separator, and that the active component U is set such that G[U ∪ S]
is equal to the induced subgraph we are working on. Since we always maintain that
|S| ≤ 2k + 3 we can change the set S to anywhere in the graph (and specifically into
the correct position) by doing kO(1) operations taking O(ck logn) time each.

At a glance, it looks like viewing the data structure as a black box is sufficient
to obtain the desired O(ckn logn) time algorithm. However, we haven’t even used
the sets X and F in the state of the data structure, or described what they mean!
The reason for this is of course that there is a complication. In particular, after the
balanced S-separator X̂ is found—how can we recurse into the connected components
of G[S ∪U ] \ (S ∪ X̂)? We need to move the pin into each of these components one at
a time, but if we want to use O(ck logn) time in each recursion step, we cannot afford
to spend O(|S∪U |) time to compute the connected components of G[S∪U ]\ (S∪X̂).
We resolve this issue by pushing the problem into the data structure, and showing
that the appropriate queries can be implemented there. This is where the sets X
and F in the state of the data structure come in.

Recall that the data structure is a 3-tuple (S,X, F ) of subsets of V (G) together
with a pin π. The role of the second argument X in these triples in the data structure
is that when queries to the data structure depending on X are called, X equals the
set X̂ , i.e., the balanced S-separator found by the query findSSeparator. The set F is
a set of “finished pins” whose intention is the following: when the algorithm calls itself
recursively, we use findNextPin to find a connected component U ′ of G[S∪U ]\(S∪X̂),
with the restriction that U ′ does not contain any vertices of F . After it has finished
computing a tree decomposition of G[U ′∪N(U ′)] with N(U ′) as its top bag, it selects
an arbitrary vertex of U ′ and inserts it into F .

The query findNextPin finds a new pin π′ in some component U ′ of G[S ∪ U ] \
(S ∪ X̂) that does not contain any vertices of F . And finally, the query findNeigh-
borhood allows us to find the neighborhood N(U ′), which in turn allows us to call
the algorithm recursively in order to find a tree decomposition of G[U ′ ∪ N(U ′)]
with N(U ′) as its top bag.

At this point it should be clear that the O(ckn2) time algorithm described in
the beginning of this section can be implemented using O(kO(1)) calls to the data
structure in each recursive step, thus spending only O(ck logn) time in each recursive
step. Pseudocode for this algorithm can be found in Algorithm 3. The recurrence
bounding the running time of the algorithm then becomes

T (n, k) ≤ O(ck logn) +
∑
Ui

T (|Ui ∪ X̂|, k).

Here U1, . . . , Uq are the connected components of G[S ∪U ] \ (S ∪ X̂). This recurrence
solves to O(ckn logn), proving Lemma 2.8. A full proof of Lemma 2.8 assuming the
data structure as a black box may be found in section 3.2.
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2.6. The data structure. We sketch the main ideas in the implementation
of the data structure. The goal is to set up a data structure that takes as input
a graph G, an integer k, and a tree decomposition Tapx of width O(k) and depth
O(log n), and initializes in time O(ckn). The state of the data structure is a 4-tuple
(S,X, F, π), where S, X , and F are vertex sets in G and π ∈ V (G) \ S. The initial
state of the data structure is (S0, ∅, ∅, v), where v is an arbitrary vertex in G \ S0.
The data structure should support operations that insert (delete) a single vertex to
(from) S, X , and F , and an operation to change the pin π to a specified vertex. These
operations should run in time O(ck logn). For a given state of the data structure,
set U to be the component of G \ S that contains π. The data structure should also
support the following queries in time O(ck logn).

• findSSeparator: assuming that |S| ≤ 2k + 3, return a set X̂ of size at most
k+1 such that every component of G[S∪U ]\X̂ contains at most 1

2 |S| vertices
of S, or conclude that tw(G) > k.
• findNextPin: return a vertex π′ in a component U ′ of G[S ∪U ]\ (S ∪ X̂) that
does not contain any vertices of F .
• findNeighborhood: return N(U) if |N(U)| < 2k + 3 and ⊥ otherwise.

Suppose for now that we want to set up a much simpler data structure. Here the state
is just the set S and the only query we want to support is findSSeparator which returns
a set X̂ such that every component of G\ (S∪ X̂) contains at most 1

2 |S| vertices of S,
or conclude that tw(G) > k. At our disposal we have the tree decomposition Tapx
of width O(k) and depth O(log n). To set up the data structure we run a standard
dynamic programming algorithm for finding X̂ given S. Here we use Lemma 2.9 and
search for a partition of V (G) into (M1,M2,M3, X) such that |X | ≤ k+1, there is no
edge between Mi and Mj for i 	= j, and |Mi ∩ S| ≤ |S|/2 for i = 1, 2, 3. This can be
done in time O(ckkO(1)n) and the tables stored at each node of the tree decomposition
have size O(ckkO(1)). This finishes the initialization step of the data structure. The
initialization step took time O(ckkO(1)n).

We will assume without loss of generality that the top bag of the decomposition
is empty. The data structure will maintain the following invariant: after every change
has been performed the tables stored at each node of the tree decomposition corre-
spond to a valid execution of the dynamic programming algorithm on input (G,S). If
we are able to maintain this invariant, then answering findSSeparator queries is easy:
assuming that each cell of the dynamic programming table also stores solution sets
(whose size is at most k + 1) we can just output in time O(kO(1)) the content of the
top bag of the decomposition!

But how to maintain the invariant and support changes in time O(ck logn)? It
turns out that this is not too difficult: the content of the dynamic programming table
of a node t in the tree decomposition depends only on S and the dynamic programming
tables of t’s children. Thus, when the dynamic programming table of the node t
is changed, this will only affect the dynamic programming tables of the O(log n)
ancestors of t. If the dynamic program is done carefully, one can ensure that adding
or removing a vertex to/from S will only affect the dynamic programming tables
for a single node t in the decomposition, together with all of its O(log n) ancestors.
Performing the changes amounts to recomputing the dynamic programming tables for
these nodes, and this takes time O(ckkO(1) logn).

It should now be plausible that the idea above can be extended to work also for
the more complicated data structure with the more advanced queries. Of course there
are several technical difficulties, the main one is how to ensure that the computation
is done in the connected component U of G \ S without having to store “all possible
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ways the vertices in a bag could be connected below the bag.” We omit the details of
how this can be done in this outline. The full exposition of the data structure can be
found in section 6.

2.7. Approximating treewidth in O(ckαn log(α) n) time. We now sketch
how the algorithm of the previous section can be sped up, at the cost of increasing
the approximation ratio from 3 to 5. In particular we give a proof outline for the
following theorem.

Theorem 3. For every α ∈ N, there exists an algorithm which, given a graph G
and an integer k, in O(ckα · n log(α) n) time for some cα ∈ N either computes a tree
decomposition of G of width at most 5k + 3 or correctly concludes that tw(G) > k.

The algorithm of Theorem 2 satisfies the conditions of Theorem 3 for α = 1. We
will show how one can use the algorithm for α = 1 in order to obtain an algorithm for
α = 2. In particular we aim at an algorithm which given a graph G and an integer k,
in O(ck2 · n log log n) time for some c2 ∈ N either computes a tree decomposition of G
of width at most 5k + 3 or correctly concludes that tw(G) > k.

We inspect the O(ckn logn) algorithm for the compression step described in sec-
tion 2.5. It uses the data structure of section 2.6 in order to find balanced separators
in time O(ck logn). The algorithm uses O(ck logn) time on each recursive call regard-
less of the size of the induced subgraph of G it is currently working on. When the
subgraph we work on is big this is very fast. However, when we get down to induced
subgraphs of size O(log logn) the algorithm of Robertson and Seymour described in
section 2.1 would spend O(ck(log logn)2) time in each recursive call, while our pre-
sumably fast algorithm still spends O(ck logn) time. This suggests that there is room
for improvement in the recursive calls where the considered subgraph is very small
compared to n.

The overall structure of our O(ck2 log logn) time algorithm is identical to the
structure of the O(ck logn) time algorithm of Theorem 2. The only modifications
happen in the compression step. The compression step is also similar to the O(ck logn)
algorithm described in section 2.5, but with the following caveat. The data structure
query findNextPin finds the largest component where a new pin can be placed, returns
a vertex from this component, and also returns the size of this component. If a call of
findNextPin returns that the size of the largest yet unprocessed component is less than
logn the algorithm does not process this component, nor any of the other remaining
components in this recursive call. This ensures that the algorithm is never run on
instances where it is slow. Of course, if we do not process the small components we
do not find a tree decomposition of them either. A bit of inspection reveals that what
the algorithm will do is either conclude that tw(G) > k or find a tree decomposition
of an induced subgraph of G′ of width at most 3k + 4 such that for each connected
component Ci of G \ V (G′), (a) |Ci| ≤ logn, (b) |N(Ci)| ≤ 2k + 3, and (c) N(Ci) is
fully contained in some bag of the tree decomposition of G′.

How much time does it take the algorithm to produce this output? Each recursive
call takesO(ck logn) time and adds a bag to the tree decomposition ofG′ that contains
some vertex which was not yet in V (G′). Thus the total time of the algorithm is upper
bounded by O(|V (G′)| · ck logn). What happens if we run this algorithm, then run
the O(ckn logn) time algorithm of Theorem 2 on each of the connected components of
G \V (G′)? If either of the recursive calls return that the treewidth of the component
is more than k then tw(G) > k. Otherwise we have a tree decomposition of each of the
connected components with width 3k + 4. With a little bit of extra care we find tree
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decompositions of the same width as Ci∪N(Ci) for each component Ci, such that the
top bag of the decomposition contains N(Ci). Then all of these decompositions can be
glued together with the decomposition of G′ to yield a decomposition of width 3k+4
for the entire graph G.

The running time of the above algorithm can be bounded as follows. It takes
O(|V (G′)| · ck logn) time to find the partial tree decomposition of G′, and

O

(∑
i

ck2 |Ci| log |Ci|
)

= O

(
ck2 log logn ·

∑
i

|Ci|
)

= O(ck2n log logn)

time to find the tree decompositions of all the small components. Thus, if |V (G′)| =
O( n

logn ), the running time of the first part would be O(ckn) and the total running

time would be O(ck2n log logn).
How big can |V (G′)| be? In other words, if we inspect the algorithm described in

section 2.1, how big a part of the graph does the algorithm see before all remaining
parts have size less than logn? The bad news is that the algorithm could see almost
the entire graph. Specifically if we run the algorithm on a path it could well be building
a tree decomposition of the path by moving along the path and only terminating when
reaching the vertex which is logn steps away from from the endpoint. The good news
is that the algorithm of Reed described in section 2.2 will get down to components
of size logn after decomposing only O( n

logn ) vertices of G. The reason is that the
algorithm of Reed also finds balanced separators of the considered subgraph, ensuring
that the size of the considered components drop by a constant factor for each step
down in the recursion tree.

Thus, if we augment the algorithm that finds the tree decomposition of the sub-
graph G′ such that that it also finds balanced separators of the active component
and adds them to the top bag of the decomposition before going into recursive calls,
this will ensure that |V (G′)| = O( n

logn ) and that the total running time of the algo-

rithm described in the paragraphs above will be O(ck2n log log n). The algorithm of
Reed described in section 2.2 has a worse approximation ratio than the algorithm of
Robertson and Seymour described in section 2.1. The reason is that we also need to
add the balanced separator to the top bag of the decomposition. When we augment
the algorithm that finds the tree decomposition of the subgraph G′ in a similar man-
ner, the approximation ratio also gets worse. If we are careful about how the change
is implemented we can still achieve an algorithm with running time O(ck2n log logn)
that meets the specifications of Theorem 3 for α = 2.

The approach to improve the running time from O(ckn logn) to O(ck2n log logn)

also works for improving the running time fromO(ckα·n log(α) n) to O(ckα+1·n log(α+1) n).
Running the algorithm that finds in O(ckn) time the tree decomposition of the sub-
graph G′ such that all components of G \ V (G′) have size logn and running the

O(ckα · n log(α) n) time algorithm on each of these components yields an algorithm

with running time O(ckα+1 · n log(α+1) n).
In the above discussion we skipped over the following issue. How can we compute

a small balanced separator for the active component in time O(ck logn)? It turns out
that also this can be handled by the data structure. The main idea here is to consider
the dynamic programming algorithm used in section 2.4 to find balanced separators
in graphs of bounded treewidth, and show that this algorithm can be turned into
an O(ck logn) time data structure query. We would like to remark here that the
implementation of the trick from section 2.4 is significantly more involved than the
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other queries: we need to use the approximate tree decomposition not only for fast
dynamic programming computations, but also to locate the separation (L0, X0, R0)
on which the trick is employed. A detailed explanation of how this is done can be
found at the end of section 6.4.4. This completes the proof sketch of Theorem 3. A
full proof can be found in section 4.

2.8. 5-approximation in O(ckn) time. The algorithm(s) of Theorem 4 are
in fact already O(ckn) algorithms unless n is astronomically large compared to k. If,

for example, n ≤ 22
2k

then log(3) n ≤ k and so O(ckn log(3) n) ≤ O(ckkn). Thus, to
get an algorithm which runs in O(ckn) it is sufficient to consider the cases when n
is really, really big compared to k. The recursive scheme of section 2.3 allows us to
only consider the case where (a) n is really big compared to k and (b) we have at our
disposal a tree decomposition Tapx of G of width O(k).

For this case, consider the dynamic programming algorithm of Bodlaender and
Kloks [15] that, given G and a tree decomposition Tapx of G of width O(k), either
computes a tree decomposition of G of width k or concludes that tw(G) > k in

time O(2O(k3)n). The dynamic programming algorithm can be turned into a tree

automaton based algorithm [26, 2] with running time O(22
O(k3)

+n) if one can inspect

an arbitrary entry of a table of size O(22
O(k3)

) in constant time. If n ≥ Ω(22
O(k3)

)

then inspecting an arbitrary entry of a table of size O(22
O(k3)

) means inspecting an
arbitrary entry of a table of size O(n), which one can do in constant time in the RAM

model. Thus, when n ≥ Ω(22
O(k3)

) we can find an optimal tree decomposition in

time O(n). When n = O(22
O(k3)

) the O(ckn log(3) n) time algorithm of Theorem 4
runs in time O(ckkn).

This concludes the outline of the proof of Theorem 1. A full explanation of how
to handle the case where n is much bigger than k can be found in section 5.

3. An O(ckn logn) 3-approximation algorithm for treewidth. In this
section, we provide formal details of the proof of Theorem 2:

Theorem 2. There exists an algorithm which given a graph G and an integer k,
either computes a tree decomposition of G of width at most 3k+4 or correctly concludes
that tw(G) > k, in time O(ck · n logn) for some c ∈ N.

In fact, the algorithm that we present, is slightly more general. The main pro-
cedure, Alg1, takes as input a connected graph G, an integer k, and a subset of
vertices S0 such that |S0| ≤ 2k + 3. Moreover, we have a guarantee that not only G
is connected, but G \ S0 as well. Alg1 runs in O(ck · n logn) time for some c ∈ N
and either concludes that tw(G) > k, or returns a tree decomposition of G of width
at most 3k + 4, such that S0 is the root bag. Clearly, to prove Theorem 2, we can
run Alg1 on every connected component of G separately using S0 = ∅. Note that
computation of the connected components takes O(|V (G)| + |E(G)|) = O(kn) time,
since if |E(G)| > kn, then we can safely output that tw(G) > k.

The presented algorithm Alg1 uses two subroutines. As described in section 2,
Alg1 uses the reduction approach developed by the first author [9]; in brief, we can
either apply a reduction step, or find an approximate tree decomposition of width O(k)
on which a compression subroutine Compress1 can be employed. In this compression
step we are either able to find a refined, compressed tree decomposition of width at
most 3k + 4, or again conclude that tw(G) > k.

The algorithm Compress1 starts by initializing the data structure (see section 2 for
an intuitive description of the role of the data structure), and then calls a subroutine
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FindTD. This subroutine resembles the algorithm of Robertson and Seymour (see
section 2): it divides the graph using balanced separators, recurses on the different
connected components, and combines the subtrees obtained for the components into
the final tree decomposition.

3.1. The main procedure Alg1. Algorithm Alg1, whose layout is proposed as
Algorithm 1, runs very similarly to the algorithm of the first author [9]; we provide
here all the necessary details for the sake of completeness, but we refer to [9] for a
broader discussion.

Algorithm 1: Alg1.

Input: A connected graph G, an integer k, and S0 ⊆ V (G) s.t. |S0| ≤ 2k + 3
and G \ S0 is connected.

Output: A tree decomposition T of G with w(T ) ≤ 3k+4 and S0 as the root
bag, or conclusion that tw(G) > k.

Run algorithm of Lemma 2.7 for parameter 3k + 4

if Conclusion that tw(G) > 3k + 4 then
return ⊥

end

if G has a matching M of cardinality at least n
O(k6) then

Contract M to obtain G′.
T ′ ← Alg1(G

′, k) /* w(T ′) ≤ 3k + 4 */
if T ′ = ⊥ then

return ⊥
else

Decontract the edges of M in T ′ to obtain T .
return Compress1(G, k, T )

end

end

if G has a set X of at least n
O(k6) I-simplicial vertices then

Compute the improved graph GI and remove X from it.
T ′ ← Alg1(GI \X, k) /* w(T ′) ≤ 3k + 4 */
if T ′ = ⊥ then

return ⊥
end
Reintroduce vertices of X to T ′ to obtain T .
if Reintroduction failed then

return ⊥
else

return Compress1(G, k, T )
end

end

First, we apply Lemma 2.7 on graph G for parameter 3k+ 4. We either immedi-
ately conclude that tw(G) > 3k + 4, find a set of I-simplicial vertices of size at least

n
O(k6) , or a matching of size at least n

O(k6) . Note that in the application of Lemma 2.7

we ignore the fact that some of the vertices are distinguished as S0.
If a matchingM of size at least n

O(k6) is found, we employ a similar strategy to [9].

We first contract the matchingM to obtain G′; note that if G had treewidth at most k
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then so does G′. Then we apply Alg1 recursively to obtain a tree decomposition T ′

of G′ of width at most 3k+4, and having achieved this we decontract the matchingM
to obtain a tree decomposition T of G of width at most 6k + 9: every vertex in the
contracted graph is replaced by at most two vertices before the contraction. Finally,
we call the subprocedure Compress1, which given G,S0, k, and the decomposition T
(of width O(k)), either concludes that tw(G) > k, or provides a tree decomposition
of G of width at most 3k + 4, with S0 as the root bag. Compress1 is given in detail
in the next section.

In the case of obtaining a large set X of I-simplicial vertices, we proceed similarly
to Bodlaender [9]. We compute the improved graph, remove X from it, apply Alg1
on GI \ X recursively to obtain its tree decomposition T ′ of width at most 3k + 4,
and finally reintroduce the missing vertices of X to obtain a tree decomposition T
of G of width at most 3k + 4 (recall that reintroduction can fail, and in this case
we may conclude that tw(G) > k). Observe that the decomposition T satisfies all
the needed properties, with the exception that we have not guaranteed that S0 is the
root bag. However, to find a decomposition that has S0 as the root bag, we may
again make use of the subroutine Compress1, running it on input G,S0, k, and the
tree decomposition T . Lemma 2.7 ensures that all the described steps, apart from the
recursive calls to Alg1 and Compress1, can be performed in O(kO(1) · n) time. Note
that the I-simplicial vertices can safely be reintroduced since we used Lemma 2.7 for
parameter 3k + 4 instead of k.

Let us now analyze the running time of the presented algorithm, provided that
the running time of the subroutine Compress1 is O(ck · n logn) for some c ∈ N. Since
all the steps of the algorithm (except for calls to subroutines) can be performed in
O(kO(1) · n) time, the time complexity satisfies the following recurrence relation:

T (n) ≤ O(kO(1) · n) +O(ck · n logn) + T

((
1− 1

C · k6

)
n

)
;(3)

here C is the constant hidden in the O-notation in Lemma 2.7. By unraveling the
recurrence into a geometric series, we obtain that

T (n) ≤
∞∑
i=0

(
1− 1

Ck6

)i

O(kO(1) · n+ ck · n logn)(4)

= Ck6 ·O(kO(1) · n+ ck · n logn) = O(ck1 · n logn)

for some c1 > c.

3.2. Compression. In this section we provide the details of the implementation
of the subroutine Compress1. The main goal is encapsulated in the following lemma.

Lemma 3.1 (Lemma 2.8, restated). There exists an algorithm which on input
G, k, S0, Tapx, where (i) S0 ⊆ V (G), |S0| ≤ 2k+ 3, (ii) G \ S0 are connected, and (iii)
Tapx is a tree decomposition of G of width at most O(k), in O(ck · n logn) time for
some c ∈ N either computes a tree decomposition T of G with w(T ) ≤ 3k + 4 and S0

as the root bag, or correctly concludes that tw(G) > k.

The subroutine’s layout is given as Algorithm 2. Roughly speaking, we first
initialize the data structure DS, with G, k, S0, T as input, and then run a recursive
algorithm FindTD that constructs the decomposition itself given access to the data
structure. See Figure 1 for an overview of the operations of our data structure DS.



336 BODLAENDER ET AL.

Operation / Query Description
setπ(v) sets v as current pin, π
getπ() gives π
getS() gives the set S
insertS(v) inserts v to S
insertX(v) inserts v to X
insertF (v) inserts v to F
clearS() clears S (sets it to ∅)
clearX() clears X
clearF () clears F
findNeighborhood() Gives neighborhood of U in S
findSSeparator() gives a balanced S-separator
findNextPin() gives a pair (π′, l) such that in the connected component of G −

(S ∪X) containing π′, there is no vertex in F , l is the size of the
component, and the component is a largest such or ⊥ if no such π′
exists.

Fig. 1. Data structure operations. Every operation takes time O(ck logn). In our algorithm we
will give the insert methods sets of vertices of size kO(1). Note that this can be implemented with a
loop over the elements and that due to the size of the sets the delay can be hidden in the ck-factor.

Algorithm 2: Compress1(G, k, T ).
Input: Connected graph G, k ∈ N, a set S0 s.t. |S0| ≤ 2k + 3 and G \ S0 is

connected, and a tree decomposition Tapx with w(Tapx) = O(k)
Output: Tree decomposition of G of width at most 3k + 4 with S0 as the

root bag, or conclusion that tw(G) > k.

Initialize data structure DS with G, k, S0, Tapx
return FindTD()

The decomposition is returned by a pointer to the root bag. The data structure
interface will be explained in the following paragraphs, and its implementation is
given in section 6. We refer to section 2 for a brief, intuitive outline.

The initialization of the data structure takes O(ckn) time (see Lemma 6.1). The
time complexity of FindTD, given in section 3.3, is O(ck · n logn).

3.3. The recursive algorithm FindTD. The subroutine FindTD works on the
graph G with two disjoint vertex sets S and U distinguished. Intuitively, S is small
(of size at most 2k + 3) and represents the root bag of the tree decomposition under
construction. U in turn, stands for the part of the graph to be decomposed below the
bag containing S, and is always one of the connected components ofG\S. As explained
in section 2, we cannot afford storing U explicitly. Instead, we represent U in the
data structure by an arbitrary vertex π (called the pin) belonging to it, and implicitly
define U to be the connected component of G \ S that contains π. Formally, the
behavior of the subroutine FindTD is encapsulated in the following lemma; herein, the
state of the data structure DS is the content of its tables; see section 6.1 (specifically
Figure 2). A short description of the state is given in the next paragraphs.

Lemma 3.2. There exists an algorithm that, given access to the data structure DS
in a state such that |S| ≤ 2k+3, computes a tree decomposition T of G[U∪S] of width
at most 3k+4 with S as a root bag, or correctly reports that tw(G[U ∪S]) > k. If the
algorithm is run on S = ∅ and U = V (G), then its running time is O(ck · n logn) for
some c ∈ N.
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Table Meaning Update Initialization
P [i] Boolean value π ∈Wi O(t · logn) O(t · n)

C[i][(Si, Ui)] Connectivity information on Uext
i O(3t · tO(1) · logn) O(3t · tO(1) · n)

CardU [i][(Si, Ui)] Integer value |Uext
i ∩Wi| O(3t · tO(1) · logn) O(3t · tO(1) · n)

T1[i][(Si, Ui)] Table for query findNeighborhood O(3t · kO(1) · logn) O(3t · kO(1) · n)

T2[i][(Si, Ui)][ψ] Table for query findSSeparator O(9t · kO(1) · logn) O(9t · kO(1) · n)

T3[i][(Si, Ui, Xi, Fi)] Table for query findNextPin O(6t · tO(1) · logn) O(6t · tO(1) · n)

T4[i][(Si, Ui)][ψ] Table for query findUSeparator O(5t · kO(1) · logn) O(5t · kO(1) · n)

Fig. 2. Description of tables and complexities.

The data structure is initialized with S = S0 and π set to an arbitrary vertex of
G \ S0; as we have assumed that G \ S0 is connected, this gives U = V (G) \ S0 after
initialization. Therefore, Lemma 3.2 immediately yields Lemma 2.8.

A gentle introduction to the data structure. Before we proceed to the implemen-
tation of the subroutine FindTD, we give a quick description of the interface of the
data structure DS: what kind of queries and updates it supports, and what is the
running time of their execution. The details of the data structure implementation
will be given in section 6.

The state of the data structure is, in addition to G, k, T , three subsets of ver-
tices, S, X , and F , and the pin π with the restriction that π /∈ S. S and π uniquely
imply the set U , defined as the connected component of G \ S that contains π. The
intuition behind these sets and the pin is the following:

• S is the set that will serve as a root bag for some subtree;
• π is a vertex which indicates the current active component;
• U is the current active component, the connected component of G \ S con-
taining π;
• X is a balanced S-separator (of G[S ∪ U ]); and
• F is a set of vertices marking the connected components of G[S∪U ]\ (S∪X)
as “finished.”

The construction of the data structure DS is heavily based on the fact that we are
provided with some tree decomposition of width O(k). Given this tree decomposition,
the data structure can be initialized in O(ck ·n) time for some c ∈ N. At the moment of
initialization we set S = X = F = ∅ and π to be an arbitrary vertex of G. During the
run of the algorithm, the following updates can be performed on the data structure:

• insert/remove a vertex to/from S, X , or F ;
• mark/unmark a vertex as a pin π.

All of these updates will be performed in O(ck · log n) time for some c ∈ N.
The data structure provides a number of queries that are used in the subroutine

FindTD. The running time of each query is O(ck · logn) for some c ∈ N, and in many
cases it is actually much smaller. We find it more convenient to explain the needed
queries while describing the algorithm itself.

Implementation of FindTD. The pseudocode of the algorithm FindTD is given
as Algorithm 3. Its correctness is proved in Claim 3.3, and its time complexity is
proved as Claim 3.4. The subroutine is provided with the data structure DS, and the
following invariants hold at each time the subroutine is called and exited:

• S ⊆ V (G), |S| ≤ 2k + 3;
• π exists, is unique, and π /∈ S;
• X = F = ∅; and
• the state of the data structure is the same on exit as it was when the function
was called.
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The latter means that when we return, be it a tree decomposition or ⊥, the algorithm
that called FindTD will have S, X , F , and π as they were before the call.

Algorithm 3: FindTD.

Data: Data structure DS
Output: Tree decomposition of width at most 3k + 4 of G[S ∪ U ] with S as

root bag or conclusion that tw(G) > k.

oldS ← DS.getS()
oldπ ← DS.getπ()
sep← DS.findSSeparator()
if sep = ⊥ then

return ⊥ /* safe to return: the state not changed */
end
DS.insertX(sep)
DS.insertX(π)
pins← ∅
while (u, l)← DS.findNextPin() 	= ⊥ do

pins.append(u)
DS.insertF (u)

end
DS.clearX()
DS.clearF ()
DS.insertS(sep)
bags← ∅
for u ∈ pins do
DS.setπ(u)
bags.append(DS.findNeighborhood())

end
children← ∅
for u, b ∈ pins, bags do
DS.setπ(u)
DS.clearS()
DS.insertS(b)
children.append(FindTD())

end
DS.clearS()
DS.insertS(oldS)
DS.setπ(oldπ)
if ⊥ ∈ children then

return ⊥ /* postponed because of rollback of S and π */
end
return build(oldS, sep, children)

We now describe the consecutive steps of the algorithm FindTD; the reader is
encouraged to follow these steps in the pseudocode in order to be convinced that all
the crucial, potentially expensive computations are performed by calls to the data
structure.

First we apply query findSSeparator, which either finds a 1
2 -balanced S-separator

in G[S ∪ U ] of size at most k + 1, or concludes that tw(G) > k. The running time of
this query is kO(1). If no such separator can be found, by Lemma 2.1 we infer that
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tw(G[S ∪ U ]) > k and we can terminate the procedure. Otherwise we are provided
with such a separator sep, which we add to X in the data structure. Moreover, for
a technical reason, we also add the pin π to sep (and thus also to X), so we end up
with having |sep| ≤ k + 2.

The next step is a loop through the connected components of G[S∪U ]\(S∪sep).
This part is performed using the query findNextPin. Query findNextPin, which runs
in constant time, either finds an arbitrary vertex u of a connected component of
G[S ∪U ]\ (S∪X) that does not contain any vertex from F , or concludes that each of
these components contains some vertex of F . After finding u, we mark u by putting
it to F and proceed further, until all the components are marked. Having achieved
this, we have obtained a list pins, containing exactly one vertex from each connected
component of G[S ∪ U ] \ (S ∪ sep). We remove all the vertices on this list from F ,
thus making F again empty.

It is worth mentioning that the query findNextPin not only returns some vertex u
of a connected component of G[S∪U ]\(S∪sep) that does not contain any vertex from
F , but also provides the size of this component as the second coordinate of the return
value. Moreover, the components are being found in decreasing order with respect to
sizes. In this algorithm we do not exploit this property, but it will be crucial for the
linear time algorithm.

The setX will no longer be used, so we remove all the vertices of sep from X , thus
making it again empty. On the other hand, we add all the vertices from sep to S. The
new set S obtained in this manner will constitute the new bag, of size at most |S|+
|sep| ≤ 3k+5. We are left with computing the tree decompositions for the connected
components below this bag, which are pinpointed by vertices stored in the list pins.

We iterate through the list pins and process the components one by one. For
each vertex u ∈ pins, we set u as the new pin by unmarking the old one and marking
u. Note that the set U gets redefined and now is the connected component containing
considered u. First, we find the neighborhood of U in S. This is done using query
findNeighborhood, which in O(k) time returns either this neighborhood, or concludes
that its cardinality is larger than 2k+3. However, as X was a 1

2 -balanced S-separator,
it follows that this neighborhood will always be of size at most 2k + 3 (a formal
argument is contained in the proof of correctness). We continue with S∩N(U) as our
new S and recursively call FindTD in order to decompose the connected component
under consideration, with its neighborhood in S as the root bag of the constructed
tree decomposition. FindTD either provides a decomposition by returning a pointer
to its root bag, or concludes that no decomposition can be found. If the latter is the
case, we may terminate the algorithm providing a negative answer.

After all the connected components are processed, we merge the obtained tree
decompositions. For this, we use the function build(S,X,C) which, given sets of
vertices S and X and a set of pointers C, constructs two bags B = S and B′ = S∪X ,
makes C the children of B′, B′ the child of B, and returns a pointer to B. This
pointer may be returned from the whole subroutine, after doing a cleanup of the data
structure.

Invariants. Now we show that the stated invariants indeed hold. Initially S =
X = F = ∅ and π ∈ V (G), so clearly the invariants are satisfied. If no S-separator
is found, the algorithm returns without changing the data structure and hence the
invariants trivially hold in this case. Since both X and F are empty or cleared before
return or recursing, X = F = ∅ holds. Furthermore, as S is reset to oldS (consult
Algorithm 3 for the variable names used) and the pin to oldπ before returning, it
follows that the state of the data structure is reverted upon returning.
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The size of S = ∅ is trivially less than 2k + 3 when initialized. Assume that
for some call to FindTD we have that |oldS| ≤ 2k + 3. When recursing, S is the
neighborhood of some component C of G[oldS ∪U ] \ (oldS ∪ sep) (note that we refer
to U before resetting the pin). This component is contained in some component C′ of
G[oldS ∪U ] \ sep, and all the vertices of oldS adjacent to C must be contained in C′.
Since sep is a 1

2 -balanced oldS-separator, we know that C′ contains at most 1
2 |oldS|

vertices of oldS. Hence, when recursing we have that |S| ≤ 1
2 |oldS| + |sep| =

1
2 (2k + 3) + k + 2 = 2k + 7

2 and, since |S| is an integer, it follows that |S| ≤ 2k + 3.
Finally, we argue that the pin π is never contained in S. When we obtain the

elements of pins (returned by query findNextPin) we know that X = sep and the
data structure guarantees that the pins will be from G[oldS∪U ] \ (oldS∪sep). When
recursing, S = b ⊆ (oldS∪sep) and π ∈ pins, so it follows that π /∈ S. Assuming π /∈
oldS, it follows that π is not in S when returning, and our argument is complete.
From here on we will safely assume that the invariants indeed hold.

Correctness. We now show that the algorithm FindTD actually does what we need,
that is, provided that the treewidth of the input graph G is at most k, it outputs a
tree decomposition of width at most 3k + 4 with S as a root bag.

Claim 3.3. The algorithm FindTD is correct, that is
(a) if tw(G) ≤ k, FindTD returns a valid tree decomposition of G[S ∪U ] of width

at most 3k + 4 with S as a root bag and
(b) if FindTD returns ⊥ then tw(G) > k.

Proof. We start by proving (b). Suppose the algorithm returns ⊥. This happens
only if at some point we are unable to find a balanced S-separator for an induced
subgraph G′ = G[S ∪ U ]. By Lemma 2.1 the treewidth of G′ is more than k. Hence
tw(G) > k as well.

To show (a) we proceed by induction on the height of the recursion tree. In the
induction we prove that the algorithm creates a tree decomposition, and we therefore
argue that the necessary conditions are satisfied, namely,

• the bags have size at most 3k + 5,
• every vertex and every edge is contained in some bag,
• for each v ∈ V (G) the subtree of bags containing v is connected, and finally
• S is the root bag.

The base case is at the leaf of the obtained tree decomposition, namely, when U ⊆
S ∪ sep. Then we return a tree decomposition containing two bags, B and B′, where
B = {S} and B′ = {S ∪ sep}. Clearly, every edge and every vertex of G[S ∪ U ] =
G[S ∪ sep] is contained in the tree decomposition. Furthermore, since the tree has
size two, the connectivity requirement holds and finally, since |S| ≤ 2k+3 (invariant)
and sep ≤ k + 2, it follows that |S ∪ sep| ≤ 3k + 5. Note that due to the definition
of the base case, the algorithm will find no pins and hence it will not recurse further.
Clearly, letting B = {S} be the root bag fulfills the requirements.

The induction step is as follows. Assuming, by the induction hypothesis, that all
recursive calls to FindTD() correctly returned what was promised, we now consider the
case when we have successfully completed all the calls for each of the connected com-
ponents (the line containing children.append(FindTD()) in Algorithm 3), and return
build(oldS, sep, children).

Since U � S∪sep, the algorithm have found some pins π1, π2, . . . , πd and the cor-
responding components C1, C2, . . . , Cd inG[S∪U ]\(S∪sep). LetNi=N(Ci)∩(S∪sep).
By the induction hypothesis the algorithm gives us valid tree decompositions Ti of
G[Ni ∪ Ci]. Note that the root bag of Ti consists of the vertices in Ni. By the same
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argument as for the base case, the two bags B = S and B′ = S∪sep that we construct
have appropriate sizes.

Let v be an arbitrary vertex of S ∪ U . If v ∈ S ∪ sep, then it is contained in B′.
Otherwise there exists a unique i such that v ∈ Ci. It then follows from the induction
hypothesis that v is contained in some bag of Ti.

It remains to show that the edge property and the connectivity property hold.
Let uv be an arbitrary edge of G[S ∪U ]. If u and v both are in S∪sep, then the edge
is contained in B′. Otherwise, assume without loss of generality that u is in some
component Ci. Then u and v are in Ni ∪Ci and hence they are in some bag of Ti by
the induction hypothesis.

Finally, for the connectivity property, let v be some vertex in S∪U . If v /∈ S∪sep,
then there is a unique i such that v ∈ Ci, hence we can apply the induction hypoth-
esis. So assume that v ∈ S ∪ sep = B′. Let A be some bag of T containing v. We
will complete the proof by proving that there is a path of bags containing v from A
to B′. If A is B or B′, then this follows directly from the construction. Other-
wise there exists a unique i such that A is a bag in Ti. Observe that v is in Ni as
it is in S ∪ sep. By the induction hypothesis the bags containing v in Ti are con-
nected and hence there is a path of bags containing v from A to the root bag Ri

of Ti. By construction B′ contains v and the bags B′ and Ri are adjacent. Hence
there is a path of bags containing v from A to B′ and as A was arbitrary chosen,
this proves that the bags containing v form a connected subtree of the decomposi-
tion.

Now all we need to show is that S is the root bag of the tree decomposition we
return, but that is precisely what is returned in the algorithm. We return (see the
last line of Algorithm 3) the output of the function build(oldS, sep, children), but
as described above, this function builds the tree decomposition consisting of the two
bags oldS and oldS∪sep, together with children, and outputs a pointer to oldS, which
is exactly S.

This concludes the proof of Claim 3.3.

Complexity. The final part needed to prove the correctness of Lemma 3.2, and
thus conclude the algorithm of this section, is that the running time of FindTD does
not exceed what was stated, namely, O(ck · n logn). That is the last part of this
section and is formalized in the following claim:

Claim 3.4. The invocation of FindTD in the algorithm Compress1 runs in
O(ck · n logn) time for some c ∈ N.

Proof. First we simply observe that at each recursion step, we add the previous
pin to S and create two bags. Since a vertex can only be added to S one time during
the entire process, at most 2n bags are created. Hence the number of bags is bounded,
and if we partition the used running time between the bags, charging each bag with
at most O(ck · logn) time, it follows that FindTD runs in O(ck · n logn) time.

We now charge the bags. For a call C to FindTD, let B and B′ be as previously
with R1, . . . , Rd the children of B′. Let Ti be the tree decomposition of the recursive
call which has Ri as the root bag. We will charge B′ and R1, . . . , Rd for the time
spent on C. Notice that as Ri will correspond to B in the next recursion step, each
bag will only be charged by one call to FindTD. We charge B′ with everything in C
not executed in the two loops iterating through the components, plus with the last
call to findNextPin that returned ⊥.

Now, since every update and query in the data structure is executed in O(ck ·logn)
time, and there is a constant number of queries charged to B′, it follows that B′ is
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charged with O(ck · log n) time. For each iteration in one of the loops we consider the
corresponding πi and charge the bag Ri with the time spent on this iteration. As all
the operations in the loops can be performed in O(ck · logn) time, each Ri is charged
with at most O(ck · logn) time.

Since our tree decomposition has at most 2n bags and each bag is charged with
at most O(ck · logn) time, it follows that FindTD runs in O(ck · n logn) time and the
proof is complete.

4. An O(ckα · n log(α) n) 5-approximation algorithm for treewidth. In
this section we provide formal details of the proof of Theorem 3.

Theorem 3. For every α ∈ N, there exists an algorithm which, given a graph G
and an integer k, in O(ckα · n log(α) n) time for some cα ∈ N either computes a tree
decomposition of G of width at most 5k + 3 or correctly concludes that tw(G) > k.

In the proof we give a sequence of algorithms Algα for α = 2, 3, . . .; Alg1 has
been already presented in the previous section. Each Algα in fact solves a slightly
more general problem than stated in Theorem 3, in the same manner as Alg1 solved
a more general problem than the one stated in Theorem 2. Namely, every algorithm
Algα gets as input a connected graph G, an integer k, and a subset of vertices S0 such
that |S0| ≤ 4k + 3 and G \ S0 is connected, and either concludes that tw(G) > k or
constructs a tree decomposition of width at most 5k+4 with S0 as the root bag. The
running time of Algα is O(ckα · n log(α) n) for some cα ∈ N; hence, in order to prove
Theorem 3 we can again apply Algα to every connected component of G separately,
using S0 = ∅.

The algorithms Algα are constructed inductively; by that we mean that Algα will
call Algα−1, which again will call Algα−2, and all the way until Alg1, which was given
in the previous section. Let us remark that a closer examination of our algorithms
in fact shows that the constants cα in the bases of the exponents of consecutive algo-
rithms can be bounded by some universal constant. However, of course the constant
factor hidden in the O-notation depends on α.

In the following we present a quick outline of what will be given in this section.
For α = 1, we refer to the previous section, and for α > 1, Algα and Compressα are
described in this section, in addition to the subroutine FindPartialTD.

• Algα takes as input a graph G, an integer k, and a vertex set S0 with similar
assumptions as in the previous section, and returns a tree decomposition T
of G of width at most 5k+4 with S0 as the root bag. The algorithm is almost
exactly as Alg1 given as Algorithm 1, except that it uses Compressα for the
compression step.
• Compressα is an advanced version of Compress1 (see Algorithm 2), it allows
S0 to be of size up to 4k+3 and gives a tree decomposition of width at most
5k + 4 in time O(c′α

k · n log(α) n) for some c′α ∈ N. It starts by initializing
the data structure, and then it calls FindPartialTD, which returns a tree
decomposition T ′ of an induced subgraph G′ ⊆ G. The properties of G′

and T ′ are as follows. All the connected components C1, . . . Cp of G \ V (G′)
are of size less than logn. Furthermore, for every connected component Cj ,
the neighborhood N(Cj) in G is contained in a bag of T ′. Intuitively, this
ensures that we are able to construct a tree decomposition of Cj and attach
it to T ′ without blowing up the width of T ′. More precisely, for every con-
nected component Cj , the algorithm constructs the induced subgraph Gj =
G[Cj ∪ N(Cj)] and calls Algα−1 on Gj , k, and N(Cj). The size of N(Cj)
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will be bounded by 4k + 3, making the recursion valid with respect to the
invariants of Algα. If this call returned a tree decomposition Tj with a root
bag N(Cj), we can conveniently attach Tj to T ′; otherwise, we conclude that
tw(G[Cj ∪N(Cj)]) > k so tw(G) > k as well.
• FindPartialTD differs from FindTD in two ways. First, we use the fact that
when enumerating the components separated by the separator using query
findNextPin, these components are identified in the descending order of car-
dinalities. We continue the construction of partial tree decomposition in the
identified components only as long as they are of size at least logn, and we
terminate the enumeration when we encounter the first smaller component.
It follows that all the remaining components are smaller then logn; these re-
mainders are exactly the components C1, . . . Cp that are left not decomposed
by Algα, and on which Algα−1 is run.
The other difference is that the data structure has a new flag, whatsep,
which is set to either u or s and is alternated between calls. If whatsep = s,
we use the same type of separator as FindTD did, namely, findSSeparator,
but if whatsep = u, then we use the (new) query findUSeparator. Query
findUSeparator, instead of giving a balanced S-separator, provides an 8

9 -bal-
anced U -separator, that is, a separator that splits the whole set U of vertices
to be decomposed in a balanced way. Using the fact that on every second level
of the decomposition procedure the whole set of available vertices shrinks by
a constant fraction, we may for example observe that the resulting partial
tree decomposition will be of logarithmic depth. More importantly, it may be
shown that the total number of constructed bags is at most O(n/ log n) and
hence we can spend O(ckα · logn) time constructing each bag and still obtain
running time linear in n.

In all the algorithms that follow we assume that the cardinality of the edge set is
at most k times the cardinality of the vertex set, because otherwise we may immedi-
ately conclude that treewidth of the graph under consideration is larger than k and
terminate the algorithm.

4.1. The main procedure Algα. The procedure Algα works exactly as Alg1,
with the exception that it applies Lemma 2.7 for parameter 5k+4 instead of 3k+4, and
calls recursively Algα and Compressα instead of Alg1 and Compress1. The running
time analysis is exactly the same, hence we omit it here.

4.2. Compression algorithm. The following lemma explains the behavior of
the compression algorithm Compressα.

Lemma 4.1. For every integer α ≥ 1 there exists an algorithm, which on input
G, k, S0, Tapx, where (i) S0 ⊆ V (G), |S0| ≤ 4k + 3, (ii) G and G \ S0 are connected,

and (iii) Tapx is a tree decomposition of G of width at most O(k), in O(c′α
k ·n log(α) n)

time for some c′α ∈ N either computes a tree decomposition T of G with w(T ) ≤ 5k+4
and S0 as the root bag, or correctly concludes that tw(G) > k.

The outline of the algorithm Compressα for α > 1 is given as Algorithm 4.
Having initialized the data structure using Tapx, the algorithm asks FindPartialTD
for a partial tree decomposition T ′, and then the goal is to decompose the remaining
small components and attach the resulting tree decompositions in appropriate places
of T ′.

First we traverse T ′ in linear time and store information on where each vertex
appearing in T ′ is forgotten in T ′. More precisely, we compute a map forgotten :
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Algorithm 4: Compressα.

Input: Connected graph G, k ∈ N, a set S0 s.t. |S0| ≤ 4k + 3 and G \ S0 is
connected, and a tree decomposition Tapx with w(Tapx) = O(k)

Output: Tree decomposition of G of width at most 5k + 4 with S0 as the
root bag, or conclusion that tw(G) > k.

Initialize data structure DS with G, k, S0, Tapx
T ′ ← FindPartialTD()
if T ′ = ⊥ then

return ⊥
end
Create the map forgotten : V (G)→ V (T ′) using a DFS traversal of T ′

Construct components C1, C2, . . . , Cp of G \W , and graphs
Gj = G[Cj ∪N(Cj)] for j = 1, 2, . . . , p

for j = 1, 2, . . . , p do
Tj ← Algα−1 on Gj , k,N(Cj)
if Tj = ⊥ then

return ⊥
end
Locate a node i of T ′ s.t. N(Cj) ⊆ Bi, by checking forgotten(v) for
each v ∈ N(Cj)
Attach the root of Tj as a child of i

end
return T ′

V (G) → V (T ′) ∪ {⊥}, where for every vertex v of G we either store ⊥ if it is not
contained in T ′, or we remember the top-most bag Bi of T ′ such that v ∈ Bi (the
connectivity requirement of the tree decomposition ensures that such Bi exists and
is unique). The map forgotten may be very easily computed via a DFS traversal
of the tree decomposition: when accessing a child node i from a parent i′, we put
forgotten(v) = i for each v ∈ Bi \ Bi′ . Moreover, for every v ∈ Br, where r is the
root node, we put forgotten(v) = r. Clearly, all the vertices not assigned a value in
forgotten in this manner, are not contained in any bag of T ′, and we put value ⊥
for them. Let W be the set of vertices contained in T ′, i.e., W =

⋃
i∈V (T ′)Bi.

Before we continue, let us show how the map forgotten will be used. Suppose
that we have some set Y ⊆W , and we have a guarantee that there exists a node i of
T ′ such that Bi contains the whole Y . We claim the following: then one of the bags
associated with forgotten(v) for v ∈ Y contains the whole Y . Indeed, take the path
from i to the root of the tree decomposition T ′, and consider the last node i′ of this
path whose bag contains the whole Y . It follows that i′ = forgotten(v) for some
v ∈ Y and Y ⊆ Bi′ , so the claim follows. Hence, we can locate the bag containing Y
in O(kO(1) · |Y |) time by testing each of |Y | candidate nodes forgotten(v) for v ∈ Y .

The next step of the algorithm is locating the vertices which have not been ac-
counted for, i.e., those assigned⊥ by forgotten. The reason each of these vertices has
not been put into the tree decomposition is precisely because the size of its connected
component C of G \W is smaller than logn. The neighborhood of this component
in G is N(C), and this neighborhood is guaranteed to be of size at most 4k + 3 and
contained in some bag of T ′ (a formal proof of this fact will be given when presenting
the algorithm FindPartialTD, i.e., in Lemma 4.2).
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Let C1, C2, . . . , Cp be all the connected components of G \W , i.e., the connected
components outside the obtained partial tree decomposition T ′. To complete the
partial tree decomposition into a tree decomposition, for every connected component
Cj , we construct a graph Gj = G[Cj ∪N(Cj)] that we then aim to decompose. These
graphs may be easily identified and constructed in O(kO(1) ·n) time using a depth-first
search as follows.

We iterate through the vertices ofG, and for each vertex v such that forgotten(v)
= ⊥ and v was not visited yet, we apply a depth-first search on v to identify its
component C. During this depth-first search procedure, we terminate searching and
return from a recursive call whenever we encounter a vertex from W . In this manner
we identify the whole component C, and all the visited vertices of W constitute
exactly N(C). Moreover, the edges traversed while searching are exactly those inside
C or between C and N(C). To finish the construction of Gj , it remains to identify
edges between vertices of N(C). Recall that we have a guarantee that N(C) ⊆ W
and N(C) is contained in some bag of T ′. Using the map forgotten we can locate
some such bag in O(kO(1)) time, and in O(kO(1)) time check which vertices of N(C)
are adjacent in it, thus finishing the construction of Gj . Observe that during the
presented procedure we traverse each edge of the graph at most once, and for each of
at most n components C we spend O(kO(1)) time on examination of N(C). It follows
that the total running time is O(kO(1) · n).

Having constructed Gj , we run the algorithm Algα−1 on Gj using S0 = N(Cj).
Note that in this manner we have that both Gj and Gj \S0 are connected, which are
requirements of the algorithm Algα−1. If Algα−1 concluded that tw(Gj) > k, then
we can consequently answer that tw(G) > k since Gj is an induced subgraph of G.
On the other hand, if Algα−1 provided us with a tree decomposition Tj of Gj having
N(Cj) as the root bag, then we may simply attach this root bag as a child of the bag
of T ′ that contains the whole N(Cj). Any such bag can be again located in O(kO(1))
time using the map forgotten.

4.2.1. Correctness and complexity. In this section we prove Lemma 4.1 and
Theorem 3, and we proceed by induction on α. To this end we will assume the
correctness of Lemma 4.2, which will be proved later, and which describes behavior
of the subroutine FindPartialTD().

For the base case, α = 1, we use Compress1 given as Algorithm 2. When its
correctness was proved we assumed |S0| ≤ 2k + 3 and this is no longer the case.
However, if Alg1 is applied with |S0| ≤ 4k+3 it will conclude that tw(G) > k or give
a tree decomposition of width at most 5k + 4. The reason is as follows: assume that
FindTD is applied with the invariant |S| ≤ 4k + 3 instead of 2k + 3. By the same
argument as in the original proof this invariant will hold, since 1

2 (4k+3)+k+2 ≤ 4k+3.
The only part of the correctness (and running time analysis) affected by this change is
the width of the returned decomposition, and when the algorithm adds the separator
to S it creates a bag of size at most (4k + 3) + (k + 2) = 5k + 5 and hence our
argument for the base case is complete. For the induction step, suppose that the
theorem and lemma hold for α − 1. We show that Compressα is correct and runs

in O(c′α
k · n log(α) n) time. This immediately implies correctness and complexity of

Algα, in the same manner as in section 3.
To prove correctness of Compressα, suppose that T ′ is a valid tree decomposition

for some G′ ⊆ G that we have obtained from FindPartialTD. Observe that if T ′ =
⊥, then tw(G) > k by Lemma 4.2. Otherwise, let C1, . . . , Cp be the connected
components of G \W , and let Gj = G[Cj ∪N(Cj)] for j = 1, 2, . . . , p. Let Tj be the
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tree decompositions obtained from application of the algorithm Algα−1 on graphs Gj .
If Tj = ⊥ for any j, we infer that tw(Gj) > k and, consequently, tw(G) > k. Assume
then that for all the components we have indeed obtained valid tree decompositions,
with N(Cj) as root bags. It can be easily seen that since N(Cj) separates Cj from
the rest of G, then attaching the root of Tj as a child of any bag containing the whole
N(Cj) gives a valid tree decomposition; the width of this tree decomposition is the
maximum of widths of T ′ and Tj , which is at most 5k + 3. Moreover, if we perform
this operation for all the components Cj , then all the vertices and edges of the graph
will be contained in some bag of the obtained tree decomposition.

We now proceed to the time complexity of Compressα. The first thing done by
the algorithm is the initialization of the data structure and running FindPartialTD

to obtain T ′. Application of FindPartialTD takes O(ckn) time by Lemma 4.2, and
so does initialization of the data structure (see section 6). As discussed, creation of
the forgotten map and construction of the graphs Gj takes O(kO(1) · n) time.

Now, the algorithm applies Algα−1 to each graph Gj . Let nj be the number of
vertices of Gj . Note that

p∑
j=1

nj =

p∑
j=1

|Cj |+
p∑

j=1

|N(Cj)| ≤ n+ p · (4k + 3) ≤ (5k + 3)n.

Moreover, as nj ≤ logn+ (4k + 3), it follows from concavity of t→ log(α−1) t that

log(α−1) nj ≤ log(α−1)(logn+ (4k + 3)) ≤ log(α) n+ log(α−1)(4k + 3).

By the induction hypothesis, the time complexity of Algα−1 on Gj is

O(c′α−1
k ·nj log

(α−1) nj) for some c′α−1 ∈ N , hence we spend O(c′α−1
k ·nj log

(α−1) nj)

time for Gj . Attaching each decomposition Tj to T ′ can be done in O(kO(1)) time.
Let Cα denote the complexity of Compressα and Aα the complexity of Algα. By

applying the induction hypothesis and by taking c′α > max{c, cα−1} in order to hide
polynomial factors depending on k, we analyze the complexity of Compressα:

Cα(n, k) = O(ck · n) +
n∑

j=1

Aα−1(nj , k)

= O(ck · n) +
p∑

j=1

O(ckα−1 · nj log
(α−1) nj)

≤ O(ck · n) +
p∑

j=1

O(ckα−1 · nj(log
(α) n+ log(α−1)(4k + 3)))

= O(c′α
k · n) +

p∑
j=1

O(ckα−1 · nj log
(α) n)

≤ O(c′αk · n) + (5k + 3)n · O(ckα−1 · log(α) n) = O(c′α
k · n log(α) n).

We conclude that Compressα is both correct and that it runs in O(c′α
k ·n log(α) n)

time for some c′α ∈ N.
Recall that the only difference between Algα and Alg1 is which compression sub-

routine is called. Hence, the correctness of Algα follows in the same manner as the
correctness of Alg1; see the previous section. The time analysis of Algα is also very
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similar to the time analysis of Alg1 as given in section 3.1; taking cα > c′α, we obtain

a time complexity of O(ckαn log
(α) n) using (3) and (4) with cα and c′α instead of c1

and c. And hence our induction step is complete and the correctness of Lemma 2.8
and Theorem 3 follows. The only assumption we made was that of the correctness of
Lemma 4.2, which will be given immediately.

4.3. The algorithm FindPartialTD. The following lemma describes behavior
of the subroutine FindPartialTD.

Lemma 4.2. There exists an algorithm that, given data structure DS in a state
such that |S| ≤ 4k + 3 if whatsep = s or |S| ≤ 3k + 2 if whatsep = u, in time
O(ckn) either concludes that tw(G[U ∪ S]) > k, or give a tree decomposition T ′ of
G′ ⊆ G[U ∪ S] such that

• the width of the decomposition is at most 5k + 4 and S is its root bag;
• for every connected component C of G[U∪S]\V (G′), the size of the component

is less than logn, its neighborhood is of size at most 4k + 3, and there is a
bag in the decomposition T ′ containing this whole neighborhood.

The pseudocode of FindPartialTD is presented as Algorithm 5. Recall Figure 1
for the operations on the data structure. The algorithm proceeds very similarly to
the subroutine FindTD, given in section 3. The main differences are the following.

• We alternate usage of findSSeparator and findUSeparator between the lev-
els of the recursion to achieve that the resulting tree decomposition is also
balanced. A special flag in the data structure, whatsep, that can be set
to s or u, denotes whether we are currently about to use findSSeparator
or findUSeparator, respectively. When initializing the data structure we set
whatsep = s, so we start with finding a balanced S-separator.
• When identifying the next components using query findNextPin, we stop
when a component of size less than logn is discovered. The remaining com-
ponents are left without being decomposed.

The new query findUSeparator, provided that we have the data structure with S and
π distinguished, gives an 8

9 -balanced separator of U in G[U ] of size at most k+1. That
is, it returns a subset Y of vertices of U , with cardinality at most k+1, such that every
connected component of G[U ]\Y has at most 8

9 |U | vertices. If such a separator cannot
be found (which is signalized by ⊥), we may safely conclude that tw(G[U ]) > k and,
consequently tw(G) > k. The running time of query findUSeparator is O(ck · logn).

We would like to remark that the usage of balanced U -separators make it not
necessary to add the pin to the obtained separator. Recall that this was a techni-
cal trick that was used in section 3 to ensure that the total number of bags of the
decomposition was linear.

4.3.1. Correctness. The invariants of Algorithm 5 are as for Algorithm 3, ex-
cept for the size of S, in which case we distinguish whether whatsep is s or u. In the
case of s the size of S is at most 4k + 3 and for u the size of S is at most 3k + 2.

If whatsep = u then, since |S| ≤ 3k+2 and we add a U -separator of size at most
k + 1 and make this our new S, the size of the new S will be at most 4k + 3 and we
set whatsep = s. For every component C on which we recurse, the cardinality of its
neighborhood (S at the moment of recursing) is therefore bounded by 4k+ 3. So the
invariant holds when whatsep = u.

We now show that the invariant holds when whatsep = s. Now |oldS| ≤ 4k + 3.
We find 1

2 -balanced S-separator sep of size at most k+1. When recursing, the new S
is the neighborhood of some component C of G[oldS ∪U ] \ (oldS ∪ sep) (note that we
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Algorithm 5: FindPartialTD.

Data: Data structure DS
Output: Partial tree decomposition of width at most k of G[S ∪ U ] with S as

root bag or conclusion that tw(G) > k.

oldS ← DS.getS()
oldπ ← DS.getπ()
oldw ← DS.whatsep
if DS.whatsep = s then

sep← DS.findSSeparator()
DS.whatsep← u

else
sep← DS.findUSeparator()
DS.whatsep← s

end
if sep = ⊥ then
DS.whatsep← oldw
return ⊥ /* safe to return: the state not changed */

end
DS.insertX(sep)
pins← ∅
while (u, l)← DS.findNextPin() 	= ⊥ and l ≥ logn do

pins.append(u)
DS.insertF (u)

end
DS.clearX()
DS.clearF ()
DS.insertS(sep)
bags← ∅
for u ∈ pins do
DS.setπ(u)
bags.append(DS.findNeighborhood())

end
children← ∅
for u, b ∈ pins, bags do
DS.setπ(u)
DS.clearS()
DS.insertS(b)
children.append(FindPartialTD())

end
DS.whatsep← oldw
DS.clearS()
DS.insertS(oldS)
DS.setπ(oldπ)
if ⊥ ∈ children then

return ⊥ /* postponed because of rollback of S and π */
end
return build(oldS, sep, children)
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refer to U before resetting the pin). This component is contained in some component
C′ of G[oldS ∪ U ] \ sep, and all the vertices of oldS adjacent to C must be contained
in C′. Since sep is a 1

2 -balanced oldS-separator, we know that C′ contains at most
1
2 |oldS| vertices of oldS. Hence, when recursing we have that |S| ≤ 1

2 |oldS|+ |sep| =
1
2 (4k + 3) + k + 1 = 3k + 5

2 and, since |S| is an integer, it follows that |S| ≤ 3k + 2.
Hence, the invariant also holds when whatsep = s.

Note that in both the checks we did not assume anything about the size of the
component under consideration. Therefore, it also holds for components on which
we do not recurse, i.e., those of size at most logn, that the cardinalities of their
neighborhoods will be bounded by 4k + 3.

The fact that the constructed partial tree decomposition is a valid tree decompo-
sition of the subgraph induced by vertices contained in it, follows immediately from
the construction, similarly to section 3. A simple inductive argument also shows that
the width of this tree decomposition is at most 5k+4; at each step of the construction,
we add two bags of sizes at most (4k + 3) + (k + 1) ≤ 5k + 5 to the obtained de-
compositions of the components, which by inductive hypothesis are of width at most
5k + 4.

Finally, we show that every connected component of G[S ∪ U ] \ V (G′) has size
at most logn and that the neighborhood of each of these connected components is
contained in some bag on the partial tree decomposition T ′. First, by simply breaking
out of the loop shown in Algorithm 5 at the point we get a pair (π, l) such that
l < logn, we are guaranteed that the connected component of G[S∪U ]\sep containing
π has size less than logn, and so does every other connected component of G[S ∪ U ]
not containing a vertex from F and which has not been visited by DS.findNextPin().
Furthermore, since immediately before we break out of the loop due to small size
we add S ∪ sep to a bag, we have ensured that the neighborhood of any such small
component is contained in this bag. The bound on the size of this neighborhood has
been already argued.

4.3.2. Complexity. Finally, we show that the running time of the algorithm is
O(ck ·n). The data structure operations all take time O(ck logn) and we get the data
structure DS as input.

The following combinatorial lemma will be helpful to bound the number of bags
in the tree decomposition produced by FindPartialTD. We aim to show that the tree
decomposition T ′ contains at most O(n/ logn) bags, so we will use the lemma with
μ(i) = wi/ logn, where i is a node in a tree decomposition T ′ and wi is the number of
vertices inG[U ] when i is added to T ′. Having proven the lemma, we can show that the
number of bags is bounded by O(μ(r)) = O(n/ logn), where r is the root node of T ′.

Lemma 4.3. Let T be a rooted tree with root r. Assume that we are given a
measure μ : V (T )→ R with the following properties:

(i) μ(v) ≥ 1 for every v ∈ V (T );
(ii) for every vertex v, let v1, v2, . . . , vp be its children, we have that

∑p
i=1 μ(vi) ≤

μ(v); and
(iii) there exists a constant 0 < C < 1 such that for for every two vertices v, v′

such that v is a parent of v′, it holds that μ(v′) ≤ C · μ(v).
Then |V (T )| ≤ (1 + 1

1−C )μ(r) − 1.

Proof. We prove the claim by induction with respect to the size of V (T ). If
|V (T )| = 1, the claim trivially follows from property (i). We proceed to the induction
step.
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Let v1, v2, . . . , vp be the children of r and let T1, T2, . . . , Tp be subtrees rooted in
v1, v2, . . . , vp, respectively. If we apply the induction hypothesis to trees T1, . . . , Tp,
we infer that for each i = 1, 2, . . . , p we have that |V (Ti)| ≤ (1 + 1

1−C )μ(vi) − 1. By
summing the inequalities we infer that

|V (T )| ≤ 1− p+
(
1 +

1

1− C

) p∑
i=1

μ(vi).

We now consider two cases. Assume first that p ≥ 2; then

|V (T )| ≤ 1− 2 +

(
1 +

1

1− C

) p∑
i=1

μ(vi) ≤
(
1 +

1

1− C

)
μ(r) − 1,

and we are done. Assume now that p = 1; then

|V (T )| ≤
(
1 +

1

1− C

)
μ(v1) ≤ C

(
1 +

1

1− C

)
μ(r)

=

(
1 +

1

1− C

)
μ(r)− (2 − C)μ(r) ≤

(
1 +

1

1− C

)
μ(r)− 1,

and we are done as well.

We now prove the following claim.

Claim 4.4. The partial tree decomposition T ′ contains at most 42n/ logn nodes.

Proof. Let us partition the set of nodes V (T ′) into two subsets. At each recursive
call of FindPartialTD, we create two nodes: one associated with the bag oldS, and
one associated with the bag oldS ∪ sep. Let Ismall be the set of nodes associated with
bags oldS, and let Ilarge the the set of remaining nodes, associated with bags oldS∪sep.
As bags are always constructed in pairs, it follows that |Ismall| = |Ilarge| = 1

2 |V (T ′)|.
Therefore, it remains to establish a bound on |Ismall|.

We now further partition Ismall into three parts: Issmall, I
u,int
small, and I

u,leaf
small :

• Issmall consists of all the nodes created in recursive calls where whatsep = s.

• Iu,leafsmall consists of all the nodes created in recursive calls where whatsep = u,
and moreover the algorithm did not make any more recursive calls to FindTD

(in other words, all the components turned out to be of size smaller than
logn).

• Iu,intsmall consists of all the remaining nodes created in recursive calls where
whatsep = u, that is, such that the algorithm made at least one more call to
FindTD.

We aim at bounding the size of each of the sets Issmall, I
u,int
small, and I

u,leaf
small separately.

We first claim that |Iu,leafsmall | ≤ n/ logn. For each node in Iu,leafsmall , consider the set
of vertices strictly below the bag. By construction, such a set consists of a number of
components, each with less than logn vertices. However, as a recursive call to create
the bag was made at the parent, the total size of these components must be at least
logn. Now observe that these associated sets are pairwise disjoint for the bags in
Ii,leafsmall; so it follows that |Iu,leafsmall | ≤ n/ logn.

We now claim that |Iu,intsmall| ≤ |Issmall|. Indeed, if with every node i ∈ Iu,intsmall we
associate any of its grandchildren belonging to Issmall, whose existence is guaranteed

by the definition of Iu,intsmall, we obtain an injective map from Iu,intsmall into I
s
small.
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We are left with bounding |Issmall|. We use the following notation. For a node
i ∈ V (T ′), let wi be the number of vertices strictly below i in the tree decomposi-
tion T ′, also counting the vertices outside the tree decomposition. Note that by the
construction it immediately follows that wi ≥ logn for each i ∈ Ismall.

We now make use of Lemma 4.3. Recall that vertices of Issmall are exactly those
that are in levels whose indices are congruent to 1 modulo 4, where the root has level
1; in particular, r ∈ Issmall. We define a rooted tree T as follows. The vertex set of T
is Issmall, and for every two nodes i, i′ ∈ Issmall such that i′ is an ancestor of i exactly
4 levels above (grand-grand-grand-parent), we create an edge between i and i′. It is
easy to observe that T created in this manner is a rooted tree, with r as the root.

We can now construct a measure μ : V (T )→ R by taking μ(i) = wi/ logn. Let us
check that μ satisfies the assumptions of Lemma 4.3 for C = 8

9 . Property (i) follows
from the fact that wi ≥ logn for every i ∈ Ismall. Property (ii) follows from the fact
that the parts of the components on which the algorithm recurses below the bags are
always pairwise disjoint. Property (iii) follows from the fact that between every pair
of parent, child in the tree T we have used an 8

9 -balanced U -separator. Application
of Lemma 4.3 immediately gives that |Issmall| ≤ 10n/ logn.

As |Issmall| ≤ 10n/ logn, we have that |Iu,intsmall| ≤ |Issmall| ≤ 10n/ logn, thus

|Ismall| ≤ |Issmall| + |I
u,inte
small | + |I

u,leaf
small | ≤ 21n/ logn. Hence |V (T ′)| ≤ 2 · |Ism| ≤

42n/ logn.

To conclude the running time analysis of FindPartialTD, we provide a similar
charging scheme as in section 3. More precisely, we charge every node of T ′ with
O(ck · logn) running time; Claim 4.4 ensures us that then the total running time of
the algorithm is then O(ck · n).

Let B = oldS and B′ = oldS ∪ sep be the two bags constructed at some call of
FindPartialTD. All the operations in this call, apart from the two loops over the
components, take O(ck · logn) time and are charged to B′. Moreover, the last call of
findNextPin, when a component of size smaller than logn is discovered, is also charged
to B′. As this call takes O(1) time, B′ is charged with O(ck · logn) time in total.

We now move to examining the time spent while iterating through the loops. Let
Bj be the root bag of the decomposition created for graph Gj . We charge Bj with
all the operations that were done when processing Gj within the loops. Note that
thus every such Bj is charged at most once, and with running time O(ck · logn).
Summarizing, every bag of T ′ is charged with O(ck · log n) running time, and we have
at most 42n/ logn bags, so the total running time of FindPartialTD is O(ck · n).

5. An O(ckn) 5-approximation algorithm for treewidth. In this section
we give the main result of the paper, i.e., we prove Theorem 1 (restated below) and
discuss how it follows from a combination of the previous sections and a number of
existing results with some modifications.

Theorem 1. There exists an algorithm that, given an n-vertex graph G and an
integer k, in time 2O(k)n either outputs that the treewidth of G is larger than k, or
constructs a tree decomposition of G of width at most 5k + 4.

The algorithm distinguishes between two cases depending on whether or not n ≤
22

c0k

for some constant c0. If this is the case, we may simply run Alg2 which will
work in linear time since n log logn = O(nkO(1)) and hence O(ck2n log logn) = O(ckn)
for some constant c. Otherwise we will construct a tree automaton being a version
of the dynamic programming algorithm by Bodlaender and Kloks [15]. The crucial
insight is to perform the automaton construction once, before the whole algorithm,
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and then use the table lookups to implement the automaton’s run in time O(kO(1)n).
These techniques combined will give us a 5-approximation algorithm for treewidth in
time, single exponential in k, and linear in n.

The section is organized as follows. In section 5.1, we describe how to construct
the automaton. In section 5.2 we show how to solve the instance when n is astronom-
ically big compared to k, and finally in section 5.3 we wrap up and give the proof of
Theorem 1.

5.1. Automata. This section is devoted to the proof of Lemma 5.2. We (1) de-
fine nice expression trees, (2) explain the relationship between dynamic programming
on tree decompositions and nice expression trees, (3) describe a table lookup proce-
dure, and finally (4) show how to construct an actual tree decomposition, provided
that the automaton decides whether the treewidth of the input graph is at most k.

Lemma 5.1 (Bodlaender and Kloks [15]). There is an algorithm that, given
a graph G, an integer k, and a nice tree decomposition of G of width at most �
with O(n) bags, either decides that the treewidth of G is more than k, or finds a tree

decomposition of G of width at most k in time O(2O(k�2)n).

In our algorithm, we need to separate the automaton’s construction from running
it on the tree decomposition. We will use the standard notion of a deterministic
tree automaton working on ranked trees with at most two children per node, labeled
with symbols from some finite alphabet Σ. The automaton has a finite set of states,
whereas transitions compute the state corresponding to a node based on the states of
the children and the symbol of Σ placed on the node.

Our version of the above result can hence be expressed as follows.

Lemma 5.2. There are algorithms Algpre and Algrun and constants cp and cr such
that

• Algorithm Algpre gets as input integers k, � ∈ N, where k is the treewidth we
want to decide whereas � is the width of the input tree decomposition, and

constructs in time O(22
cpk�2

) an automaton Ak,�;
• Algorithm Algrun gets as input a graph G, with a nice tree decomposition of G

of width at most � with O(n) bags, an integer k, and the automaton Ak,�,
and either decides that the treewidth of G is more than k, or finds a tree
decomposition of G of width at most k in time O(kcrn).

By the exact same recursive techniques as in sections 3.1 and 4.1, which originate
from Bodlaender’s algorithm [9], we can focus our attention on the case when we are
given a tree decomposition of the input graph of slightly too large width.

5.1.1. Nice expression trees. The dynamic programming algorithm in Bod-
laender and Kloks [15] is described with the help of so called nice tree decompositions.2

As we need to represent a nice tree decomposition as a labeled tree with the label
alphabet of size being a function of k, we use a slightly different notion of labeled
nice tree decomposition. The formalism is quite similar to existing formalisms, e.g.,
the operations on k-terminal graphs by Borie [16], or construction terms used by
Lokshtanov et al. [33].

A labeled terminal graph is a 4-tuple G = (V (G), E(G), X, f), with (V (G), E(G))
a graph, X ⊆ V (G) a set of terminals, and f : X → N an injective mapping of the
terminals to nonnegative integers, which we call labels. A k-labeled terminal graph is

2See the beginning of section 6 for a definition of nice tree decompositions.
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a labeled terminal graph with the maximum label at most k, i.e., maxx∈X f(x) ≤ k.
Let Ok be the set of the following operations on k-terminal graphs.

Leaf�(): Gives a k-terminal graph with one vertex v, no edges, with v a terminal
with label �.

Introduce�,S(G): G = (V (G), E(G), X, f) is a k-terminal graph, � a non-negative
integer, and S ⊆ {1, . . . , k} a set of labels. If there is a terminal vertex in G with label
�, then the operation returns G, otherwise it returns the graph obtained by adding
a new vertex v, making v a terminal with label �, and adding edges {v, w} for each
terminal w ∈ X with f(w) ∈ S, i.e., we make the new vertex adjacent to each existing
terminal whose label is in S.

Forget�(G): Again G = (V (G), E(G), X, f) is a k-terminal graph. If there is no
vertex v ∈ X with f(v) = �, then the operation returns G, otherwise, we turn v into
a nonterminal, i.e., we return the k-terminal graph (V (G), E(G), X \ {v}, f ′) for the
vertex v with f(v) = �, and f ′ is the restriction of f to X \ {v}.

Join(G,H): G = (V (G), E(G), X, f) and H = (V (H), E(H), Y, g) are k-terminal
graphs. If the ranges of f and g are not equal, then the operation returns G. Other-
wise, the result is obtained by taking the disjoint union of the two graphs, and then
identifying pairs of terminals with the same label.

Note that for given k, Ok is a collection of k+k ·2k +k+1 operations. When the
treewidth is k, we work with (k + 1)-terminal graphs. The set of operations mimics
closely the well-known notion of nice tree decompositions (see, e.g., Kloks [30] or
Bodlaender [10]).

Proposition 5.3. Suppose a tree decomposition of G is given of width at most
k with m bags. Then, in time linear in n and polynomial in k, we can construct an
expression giving a graph isomorphic to G in terms of operations from Ok+1 with the
length of the expression O(mk).

Proof. First build with standard methods a nice tree decomposition of G of width
k; this has O(mk) bags, and O(m) join nodes. Now, construct the graph H =
(V (H), E(H)), with V (H) = V (G) and for all v, w ∈ V (H), {v, w} ∈ E(H), if and
only if there is a bag i with v, w ∈ Xi. It is well known that H is a chordal super-
graph of G with maximum clique size k+1 (see, e.g., Bodlaender [10]). Use a greedy
linear time algorithm to find an optimal vertex coloring c of H (see Golumbic [28,
section 4.7]).

Now, we can transform the nice tree decomposition to the expression as follows:
each leaf bag that contains a vertex v is replaced by the operation Leafc(v), i.e., we
label the vertex by its color in H . We can now replace bottom up each bag in the nice
tree decomposition by the corresponding operation; as we labeled vertices with the
color in H , we have that all vertices in a bag have different colors, which ensures that
a Join indeed performs identifications of vertices correctly. Bag sizes are bounded by
k + 1, so all operations belong to Ok+1.

View the expression as a rooted tree with every node labeled by an operation
from Ok+1: leaves are labeled with the leaf operation, and binary nodes have the join
label. Thus, every node has at most two children. To each node i of the tree, we can
associate a graph Gi; the graph Gr associated with the root node r is isomorphic to
G. Call such a labeled rooted tree a nice expression tree of width k.

5.1.2. Dynamic programming and finite state tree automata. The dis-
cussion in this paragraph holds for all problems invariant under isomorphism. Note
that the treewidth of a graph is also invariant under isomorphisms. We use ideas from
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the early days of treewidth; see, e.g., Fellows and Langston [26] or Abrahamson and
Fellows [2].

A dynamic programming algorithm on nice tree decompositions can be viewed also
as a dynamic programming algorithm on a nice expression tree of width k. Suppose
that we have a dynamic programming algorithm that computes in bottom-up order
for each node of the expression tree a table with at most r = O(1) bits per table, and
to compute a table, only the label of the node (type of operation) and the tables of the
children of the node are used. As we will argue in the next sections, the DP algorithm
for treewidth from Bodlaender and Kloks [15] is indeed of this form, if we see k as a
fixed constant. Such an algorithm can be seen as a finite state tree automaton: the
states of the automaton correspond to the at most 2r = O(1) different tables; the
alphabet is the O(1) different labels of tree nodes.

To decide if the treewidth of G is at most k, we first explicitly build this finite
state tree automaton, and then execute it on the expression tree. For actually building
the corresponding tree decomposition of G of width at most k, if existing, some more
work has to be done, which is described later.

5.1.3. Table lookup implementation of dynamic programming. The al-
gorithm of Bodlaender and Kloks [15] (see especially Definition 5.9 therein) builds for
each node in the nice tree decomposition a table of characteristics. Each characteris-
tic represents the “essential information” of a partial tree decomposition of width at
most k of the graph associated with the bag. More precisely, if i is a node of the in-
put tree decomposition, then we need to succintly encode partial tree decompositions
of graph Gi. With each such partial decomposition we associate its characteristic.
Bodlaender and Kloks argue that for the rest of the computation, we only need to
remember a bounded-size family of characteristics. More precisely, we will say that
a set of characteristics F for the node i is full if the following holds: if there is a
tree decomposition of the whole graph, then there is also a tree decomposition whose
restriction to Gi has a characteristic belonging to F . The crucial technical result of
Bodlaender and Kloks [15] is that there is a full set of characteristics F where each
characteristic has size bounded polynomially in k and �, assuming that we are given
an expression tree of width � and want to test if the treewidth is at most k. Moreover,
this set can be effectively constructed for each node of the input tree decomposition
using a bottom-up dynamic programming. Inspection of the presentation of [15] easily
shows that the number of possible characteristics, for which we need to store whether
they are included in the full set or not, is bounded by 2O(k·�2). Thus, the algorithm of
Bodlander and Kloks needs to remember 2O(k·�2) bits of information in every dynamic
programming table, one per every possible characteristic.

We now use that we represent the vertices in a bag, i.e., the terminals, by labels
from {1, . . . , �+ 1}, where � is the width of the nice expression tree. Thus, we have a

set Ck,� (only depending of k and �) with |Ck,�| = 2O(k·�2) that contains all possible
characteristics that can possibly belong to a computed full set. Then, each table is
just a subset of Ck,�, i.e., an element of P(Ck,�), where P(·) denotes the powerset.
This in turn means that we can view the decision variant of the dynamic programming
algorithm of Bodlaender and Kloks as a tree automaton working over rooted trees over
the alphabet O�+1 (with at most two children per node). Namely, the state set of the
automaton is P(Ck,�), and transitions correspond to the formulas for combining full
sets of characteristics that are given by Bodlaender and Kloks [15].

The first step of the proof of Lemma 5.2 is to explicitly construct the described
tree automaton. We can do this as follows. Enumerate all characteristics in Ck,�, and
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number them c1, . . . , cs, where s = 2O(k·�2). Enumerate all elements of P(Ck,�), and

number them t1, . . . , ts′ , s
′ = 22

O(k·�2)

; store with ti the elements of its set.
Then, we compute the transition function δ : O�+1 × {1, . . . , s′} × {1, . . . , s′} →

{1, . . . , s′}. In terms of tree automaton view, δ computes the state of a node given
its symbol and the states of its children. (If a node has less than two children, the
third, and possibly the second argument are ignored.) In terms of the DP algorithm,
if we have a tree node i with operation o ∈ O�+1, and the children of i have tables
corresponding to tα and tβ , then δ(o, α, β) gives the number of the table obtained
for i by the algorithm. To compute one value of δ, we just execute one part of the
algorithm of Bodlaender and Kloks. Suppose we want to compute δ(o, α, β). We build
the tables Tα and Tβ corresponding to tα and tβ , and execute the step of the algorithms
of Bodlaender and Kloks for a node with operation o whose children have tables Tα
and Tβ . (If the node is not binary, we ignore the second and possibly both tables.)
Then, look up what is the index of the resulting table; this is the value of δ(o, α, β).

We now estimate the time to compute δ. We need to compute O(2� · � · s′2) =

O(22
O(k·�2)

) values; each executes one step of the DP algorithm and does a lookup in

the table, which is easily seen to be bounded again by O(22
O(k·�2)

), so the total time

to compute δ is still bounded by O(22
O(k·�2)

). To decide if the treewidth of G is at
most k, given a nice tree decomposition of width at most �, we thus carry out the
following steps:

• Compute δ.
• Transform the nice tree decomposition to a nice expression tree of width �.
• Compute bottom-up (e.g., in postorder) for each node i in the expression tree
a value qi, equal to the state of the automaton at i in the run, as follows. If
node i is labeled by operation o ∈ O�+1 and its children have precomputed
values qj1 , qj2 , we have qi = δ(o, qj1 , qj2). If i has less than two children, we
take some arbitrary argument for the values of the missing children. In this
way, qi corresponds to the table computed by the DP algorithm of Bodlaender
and Kloks [15].
• If the value qr for the root of the expression tree corresponds to the empty
set, then the treewidth of G is more than k, otherwise the treewidth of G is
at most k [15].

If our decision algorithm decides that the treewidth of G is more than k, we reject,
and we are done. Otherwise, we need to do additional work to construct a tree
decomposition of G of width at most k, which is described next.

5.1.4. Constructing tree decompositions. After the decision algorithm has
determined that the treewidth of G is at most k, we need to find a tree decomposition
of G of width at most k. Again, the discussion is necessarily not self-contained and
we refer to details given in Bodlaender and Kloks [15, section 6].

Basically, each table entry (characteristic) in the table of a join node is the result of
a combination of a characteristic from the table of the left child and a characteristic
from the table of the right child. More precisely, a pair of characteristics for the
children can be combined into a characteristic of a node. Bodlaender and Kloks give
a constructive procedure that verifies whether the combination of two characteristic
is possible to perform, and if so then it computes the result; this algorithm was
already used implicitly in the previous section when we described how δ is computed.
The characteristics that are included in the table of a node are exactly those that
can be obtained as combinations of characteristics included in the tables of children.
Similarly, for nodes with one child, each characteristic is the result of an operation to
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a characteristic in the table of the child node, and characteristics stored for a node
are exactly those obtainable in this manner. Leaf nodes represent a graph with one
vertex, and we have just one tree decomposition of this graph, and thus one table
entry in the table of a leaf node.

We now describe how, given a run of the automaton (equivalently, filling of the
DP tables), to reconstruct one exemplary tree decomposition of the graph. This
construction can be thought of a variant of the well-known technique of backlinks
used for recovering solutions from dynamic programming tables. First, let us define
an auxiliary function γ, as follows. This function has four arguments: an operation
from O�+1, the index of a characteristic (a number between 1 and s), and the indices
of two states (numbers between 1 and s′ = 2s). As a value, γ yields ⊥ or a pair of
two indices of characteristics. The intuition is as follows: suppose we have a node
i in the nice expression tree labeled with o, an index ci of a characteristic of a (not
yet known) tree decomposition of Gi, and indices of the tables of the children of i,
say tj1 and tj2 . Then γ(o, ci, tj1 , tj2) should be an (arbitrarily chosen) pair (cj1 , cj2)
such that ci is the result of the combination of cj1 and cj2 (in the case o is the join
operation) or of the operation as described in the previous paragraph to cj1 (in the
case o is an operation with one argument; cj2 can have any value and is ignored). If
no such pair exists, the output of γ is ⊥.

To compute γ, we can perform the following steps for each 4-tuple o, ci, tj1 , tj2 .
Let S1 ∈ P(Ck,�) be the set corresponding to tj1 , and S2 ∈ P(Ck,�) be the set
corresponding to tj2 . For each c ∈ S1 and c′ ∈ S2, see if a characteristic c and a
characteristic c′ can be combined (or, in the case of a unary operation, if the relevant
operation can be applied to c) to obtain c1. If we found at least one such pair, we
return an arbitrarily selected one (say, lexicographically first); if no combination gives
c1, we return ⊥. Again, in the case of unary operations o, we ignore c′. We do not
need γ in the case o is a leaf operation, and can give any return values in such cases.

One can easily see that the computation of γ again uses 22
O(k·�2)

time.
The first step of our construction phase is to build γ, as described above. After

this, we select a characteristic from Ck,� for each node in the nice expression tree,
as follows. As we arrived in this phase, the state of the root bag corresponds to
a nonempty set of characteristics, and we take an arbitrary characteristic from this
set (e.g., the first one from the list). Now, we select top-down in the expression
tree (e.g., in preorder) a characteristic for each node. Leaf nodes always receive the
characteristic of the trivial tree decomposition of a graph with one vertex. In all other
cases, if node i has operation o and has selected characteristic c, the left child of i
has state tj1 and the right child of i has state tj2 (or, take any number, e.g., 1, if i
has only one child, i.e., o is a unary operation), look up the precomputed value of
γ(o, c, tj1 , tj2). As c is a characteristic in the table that is the result of δ(o, tj1 , tj2),
we have that γ(o, c, tj1 , tj2) 	= ⊥, so suppose γ(o, c, tj1 , tj2) is the pair (c′, c′′). We
associate c′ as a characteristic with the left child of i, and (if i has two children) c′′

as a characteristic with the right child of i.
At this point, we have associated a characteristic with each node in the nice

expression tree. These characteristics are precisely the same as the characteristics
that are computed in the constructive phase of the algorithm from Bodlaender and
Kloks [15, section 6], with the sole difference that we work with labeled terminals
instead of the “names” of the vertices (i.e., in Bodlaender and Kloks [15], terminals /
bag elements are identified as elements from V (G)).

From this point on, we can follow without significant changes the algorithm from
Bodlaender and Kloks [15, section 6]: bottom-up in the expression tree, we build
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for each node i, a tree decomposition of Gi whose characteristic is the characteristic
we just selected for i, together with a number of pointers from the characteristic
to the tree decomposition. The decomposition for Gi can be constructed from the
(precomputed) decompositions for the children of i using amortized time (k+�)O(1) for
additional work needed for combining the partial decompositions, so that the whole
reconstruction algorithm works in time O((k+ �)O(1) ·n). Again, the technical details
can be found in Bodlaender and Kloks [15], our only change is that we work with
terminals labeled with integers in {1, . . . , �+ 1} instead of bag vertices.

At the end of this process, we obtain a tree decomposition of the graph associated
with the root bag Gr = G whose characteristic belongs to the set corresponding to
the state of r. As we only work with characteristics of tree decompositions of width
at most k, we obtained a tree decomposition of G of width at most k.

All work we do, except for the precomputation of the tables of δ and γ, is linear
in n and polynomial in k; the time for the precomputation does not depend on n, and

is bounded by 22
O(k�2)

. Note that once δ and γ are computed, retrieving their values
is done by a table lookup that takes constant time in the RAM model. This ends the
description of the proof of Lemma 5.2.

5.2. Astronomic n: Proof of Lemma 5.4. We now state and prove Lemma 5.4,
which is a variant of a result from Bodlaender [9].

Lemma 5.4. There exists constants cp and cr and an algorithm, that given an

n-vertex graph G and an integer k, in time O(22
cpk3

+ kcrn), either outputs that the
treewidth of G is larger than k, or constructs a tree decomposition of G of width at
most k.

The O(f(k)n) algorithm for treewidth by Bodlaender [9] makes a number of
calls to an algorithm by Bodlaender and Kloks [15]. More precisely, Lemma 5.4 is
obtained by combining Lemmas 5.1 and 5.2, but modifying it by replacing the explicit
construction of tables to lookup of states in an explicitly constructed automaton.

We modify the algorithm as follows. Before the whole procedure, in the prepro-
cessing phase we construct the automatonAk,� using algorithm Algpre from Lemma 5.2
with � = 2k + 1. Then, instead of calling the algorithm of Lemma 5.1 in step 5, we
call algorithm Algrun from Lemma 5.2. Thus we obtain an algorithm for treewidth

for fixed k that uses O(22
cpk3

) time once for constructing the automaton, and then
has a recursive procedure whose running time is given by

T (n) = T

(
(1− Ω

(
1

k6

)
n

)
+O(kO(1)n),

which solves to T (n) = O(kO(1)n). We can conclude that using the algorithm of
Lemma 5.2 as a subroutine inside Bodlaender’s algorithm gives an algorithm for

treewidth that uses O(22
O(k3)

+ kO(1)n) time, and thus Lemma 5.2 together with the
insights of earlier sections in this paper and the results from Bodlaender [9] implies
Lemma 5.4.

5.3. Wrapping up.

Proof of Theorem 1. Now, Theorem 1 follows easily from the results in previous
sections and Lemma 5.4, in the following way: the algorithm distinguishes between
two cases. The first case is when n is “sufficiently small” compared to k. By this, we

mean that n ≤ 22
cpk3

for the value of cp ∈ N in Lemma 5.4. The other case is when
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this is not the case. For the first case, we can apply Alg2 from Theorem 3. Since n
is sufficiently small compared to k we can observe that log logn = kO(1), resulting in
a 2O(k)n time algorithm. In the second case, we use the algorithm of Lemma 5.4; as

n > 22
cpk3

, the algorithm uses O(kcrn) time.

6. A data structure for queries in O(ck logn) time.

6.1. Overview of the data structure. Assume we are given a tree decompo-
sition ({Bi | i ∈ I}, T = (I, F )) of G of width O(k). First we turn our tree decompo-
sition into a tree decomposition of depth O(log n), keeping the width to t = O(k), by
the work of Bodlaender and Hagerup [14]. Furthermore, by standard arguments we
turn this decomposition into a nice tree decomposition in O(tO(1) · n) time, that is, a
decomposition of the same width and satisfying the following properties:

• All the leaf bags, as well as the root bag, are empty.
• Every node of the tree decomposition is of one of four different types:

– Leaf node: a node i with Bi = ∅ and no children.
– Introduce node: a node i with exactly one child j such that Bi = Bj∪{v}

for some vertex v /∈ Bj ; we say that v is introduced in i.
– Forget node: a node i with exactly one child j such that Bi = Bj \ {v}

for some vertex v ∈ Bi; we say that v is forgotten in i.
– Join node: a node i with two children j1, j2 such that Bi = Bj1 = Bj2 .

The standard technique of turning a tree decomposition into a nice one includes (i)
adding paths to the leaves of the decomposition on which we consecutively introduce
the vertices of corresponding bags; (ii) adding a path to the root on which we con-
secutively forget the vertices up to the new root, which is empty; (iii) introducing
paths between every nonroot node and its parent, on which we first forget all the
vertices that need to be forgotten, and then introduce all the vertices that need to be
introduced; (iv) substituting every node with d > 2 children with a balanced binary
tree of O(log d) depth. It is easy to check that after performing these operations, the
tree decomposition has depth at most O(t log n) and contains at most O(t · n) bags.
Moreover, using folklore preprocessing routines, in O(tO(1) · n) time we may prepare
the decomposition for algorithmic uses, e.g., for each bag compute and store the list
of edges contained in this bag. We omit here the details of this transformation and
refer to Kloks [30].

In the data structure, we store a number of tables: three special tables that en-
code general information on the current state of the graph, and one table per query.
The information stored in the tables reflects some choice of subsets of V (G), which we
will call the current state of the graph. More precisely, at each moment the following
subsets will be distinguished: S,X, F , and a single vertex π, called the pin. The
meaning of these sets is described in section 3. On the data structure we can perform
the following updates: adding and removing vertices to S,X, F and marking and un-
marking a vertex as a pin. In the following table we gather the tables used by the
algorithm, together with an overview of the running times of updates. The meaning
of the table entries uses terminology that is described in the following sections.

The following lemma follows from each of the entries in the table below, and will
be proved in this section:

Lemma 6.1. The data structure can be initialized in O(ckn) time.

We now proceed to the description of the table P , and then to the two ta-
bles C and CardU that handle the important component U . The tables T1, T2, T3 are
described together with the description of realization of the corresponding queries.



A ckn 5-APPROXIMATION ALGORITHM FOR TREEWIDTH 359

Whenever describing the table, we argue how the table is updated during updates of
the data structure, and initialized in the beginning.

6.2. The table P . In the table P , for every node i of the tree decomposition
we store a boolean value P [i] equal to (π ∈ Wi). We now show how to maintain
the table P when the data structure is updated. The table P needs to be updated
whenever the pin π is marked or unmarked. Observe, that the only nodes i for which
the information whether π ∈ Wi changed, are the ones on the path from rπ to the
root of the tree decomposition. Hence, we can simply follow this path and update the
values. As the tree decomposition has depth O(t log n), this update can be performed
in O(t · logn) time. As when the data structure is initialized, no pin is assigned, P is
initially filled with ⊥.

6.3. Maintaining the important component U . Before we proceed to the
description of the queries, let us describe what is the reason for introducing the
pin π. During the computation, the algorithm recursively considers smaller parts
of the graph, separated from the rest via a small separator: at each step we have
a distinguished set S and we consider only one connected component U of G \ S.
Unfortunately, we cannot afford recomputing the tree decomposition of U at each
recurrence call, or even listing the vertices of U . Therefore we employ a different
strategy for identification of U . We will distinguish one vertex of U as a representative
pin π, and U can then be defined as the set of vertices reachable from π in G \ S.
Instead of recomputing U at each recursive call we will simply change the pin.

In order to make the operation to change the pin more efficient, we store additional
information in the tables. For each node i of the tree decomposition, we not only have
an entry in its table for the current value of the pin π, but in order to quickly update in-
formation when the pin is changed, also store entries for each possible intersection of U
with Bi. Thus, when the pin is changed and thus the important set is changed, we are
prepared and the information is already available in the table: information needs to be
recomputed on two paths to the root in the tree decomposition, corresponding to the
previous and the next pins, while for subtrees unaffected by the change we do not need
to recompute anything as the tables stored there already contain information about
the new U as well—as they contain information for every possible new U . As the tree
decomposition is of logarithmic depth, the update time is logarithmic instead of linear.

We proceed to the formal description. We store the information about U in two
special tables: C and CardU . As we intuitively explained, tables C and CardU store
information on the connectivity behavior in the subtree, for every possible interaction
of U with the bag. Formally, for every node of the tree decomposition i we store
an entry for every member of the family of signatures of the bag Bi. A signature of
the bag Bi is a pair (Si, Ui), such that Si, Ui are disjoint subsets of Bi. Clearly, the
number of signatures is at most 3|Bi|.

Let i be a node of the tree decomposition. For a signature φ = (Si, Ui) of Bi, let
Sext
i = Si ∪ (S ∩Wi) and U

ext
i consists of all the vertices reachable in Gi \ Sext

i from
Ui or π, providing that it belongs to Wi. Sets S

ext
i and U ext

i are called extensions of
the signature φ; note that given Si and Ui, the extensions are defined uniquely. We
remark here that the definition of extensions depends not only on φ but also on the
node i; hence, we will talk about extensions of signatures only when the associated
node is clear from the context.

We say that signature φ of Bi with extensions Sext
i and U ext

i is valid if it holds
that

(i) U ext
i ∩Bi = Ui,
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(ii) if Ui 	= ∅ and π ∈ Wi (equivalently, P [i] is true), then the component of
G[U ext

i ] that contains π contains also at least one vertex of Ui.
Intuitively, invalidity means that φ cannot contain consistent information about the
intersection of U and Gi. The second condition says that we cannot fully forget the
component of π, unless the whole U ext

i is already forgotten.
Formally, the following invariant explains what is stored in tables C and CardU :
• if φ is invalid then C[i][φ] = CardU [i][φ] = ⊥;
• otherwise, C[i][φ] contains an equivalence relation R consisting of all pairs of
vertices (a, b) ∈ Ui that are connected in Gi[U

ext
i ], while CardU [i][φ] contains

|U ext
i ∩Wi|.

Note that in this definition we actually ignore the information about the membership
of vertices of Bi in sets S, F,X in the current state of the graph, the stored information
depends only on the membership of forgotten vertices to these sets, whereas the
signature of the bag overrides the actual information about the membership of vertices
of the bag. In this manner we are prepared for possible changes in the data structure,
as after an update some other signature will reflect the current state of the graph.
Moreover, it is clear from this definition that during the computation, the membership
of any vertex v in sets S, F,X in the current state of the graph is being checked only
in the single node rv when this vertex is being forgotten; we use this property heavily
to implement the updates efficiently.

We now explain how for every node i, entries of C[i] and CardU [i] can be com-
puted using the entries of these tables for the children of i. We consider different
cases, depending on the type of node i.

Case 1: Leaf node. If i is a leaf node then C[i][(∅, ∅)] = ∅ and CardU [i][(∅, ∅)] = 0.
Case 2: Introduce node. Let i be a node that introduces vertex v, and j be

its only child. Consider some signature φ = (Si, Ui) of Bi; we would like to compute
Ri = C[i][φ]. Let φ′ be a natural projection of φ ontoBj , that is, φ

′ = (Si∩Bj , Ui∩Bj).
Let Rj = C[j][φ′]. We consider some subcases, depending on the alignment of v in φ.

Case 2.1: v ∈ Si. If we introduce a vertex from Si, then it follows that
extensions of Ui = Uj are equal. Therefore, we can put C[i][φ] = C[j][φ′] and
CardU [i][φ] = CardU [j][φ′].

Case 2.2: v ∈ Ui. In the beginning we check whether conditions of validity
are not violated. First, if v is the only vertex of Ui and P [i] = �, then we simply
put C[i][φ] = ⊥: condition (ii) of validity is violated. Second, we check whether v is
adjacent only to vertices of Sj and Uj ; if this is not the case, we put C[i][φ] = ⊥ as
condition (i) of validity is violated.

If the validity checks are satisfied, we can infer that the extension U ext
i of Ui is

the extension U ext
j of Uj with v added; this follows from the fact that Bj separates v

from Wj , so the only vertices of U ext
i adjacent to v already belong to Uj. Now we

would like to compute the equivalence relation Ri out of Rj . Observe that Ri should
be basically Rj augmented by connections introduced by the new vertex v between
its neighbors in Bj . Formally, Ri may be obtained from Rj by merging equivalence
classes of all the neighbors of v from Uj , and adding v to the obtained equivalence
class; if v does not have any neighbors in Uj , we put it as a new singleton equivalence
class. Clearly, CardU [i][φ] = CardU [j][φ′].

Case 2.3: v ∈ Bi\(Si∪Ui). We first check whether the validity constraints are
not violated. As v is separated from Wj by Bj , the only possible violation introduced
by v is that v is adjacent to a vertex from Uj . In this situation we put C[i][φ] =
CardU [i][φ] = ⊥, or otherwise we can put C[i][φ] = C[j][φ′] and CardU [i][φ] =
CardU [j][φ′], because extensions of φ and φ′ are equal.
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Case 3: Forget node. Let i be a node that forgets vertex w, and j be its only
child. Consider some signature φ = (Si, Ui) of Bi and define extensions Sext

i , U ext
i

for this signature. Observe that there is at most one valid signature φ′ = (Sj , Uj)
of Bj for which Sext

j = Sext
i and U ext

j = U ext
i , and this signature is simply φ with w

added possibly to Si or Ui, depending on whether it belongs to Sext
i or U ext

i : the
three candidates are φS = (Si ∪ {w}, Ui), φU = (Si, Ui ∪ {w}), and φ0 = (Si, Ui).
Moreover, if φ is valid then so is φ′. Formally, in the following manner we can define
signature φ′, or conclude that φ is invalid:

• if w ∈ S, then φ′ = φS ;
• otherwise, if w = π then φ′ = φU ;
• otherwise, we look into entries C[j][φU ] and C[j][φ0].

(i) if C[j][φU ] = C[j][φ0] = ⊥ then φ is invalid, and we put C[i][φ] =
CardU [i][φ] = ⊥;

(ii) if C[j][φU ] = ⊥ or C[j][φ0] = ⊥, we take φ′ = φ0 or φ′ = φU , respec-
tively;

(iii) if C[j][φU ] 	= ⊥ and C[j][φ0] 	= ⊥, it follows that w must be a member
of a component of Gi \ Sext

i that is fully contained in Wi and does not
contain π. Hence we take φ′ = φ0.

The last point is in fact a check on whether w ∈ U ext
i : whether w is connected to a

vertex from Ui in Gi, can be looked up in table C[j] by adding or not adding w to Ui,
and checking the stored connectivity information. If w ∈ Sext

i or w ∈ U ext
i , we should

be using the information for the signature with Si or Ui updated with w, otherwise
we do not need to add w anywhere.

As we argued before, if φ is valid then so is φ′; hence if C[j][φ′] = ⊥ then we
can take C[i][φ] = CardU [i][φ] = ⊥. On the other hand, if φ′ is valid, then the only
possibility for φ to be invalid is when condition (ii) ceases to be satisfied. This could
happen only if φ′ = φU and w is in a singleton equivalence class of C[j][φ′] (note
that then the connected component corresponding to this class needs to necessarily
contain π, as otherwise we would have φ′ = φ0). Therefore, if this is the case, we
put C[i][φ] = CardU [i][φ] = ⊥, otherwise we conclude that φ is valid and move to
defining C[i][φ] and CardU [i][φ].

Let now Rj = C[j][φ′]. As extensions of φ′ and φ are equal, it follows directly from
the maintained invariant that Ri is equal to Rj with w removed from its equivalence
class. Moreover, CardU [i][φ] is equal to CardU [j][φ′], possibly incremented by 1 if
we concluded that φ′ = φU .

Case 4: Join node. Let i be a join node and j1, j2 be its two children. Consider
some signature φ = (Si, Ui) of Bi. Let φ1 = (Si, Ui) be a signature of Bj1 and
φ2 = (Si, Ui) be a signature of Bj2 . From the maintained invariant it follows that
C[i][φ] is a minimum transitive closure of C[j1][φ1] ∪ C[j2][φ2], or ⊥ if any of these
entries contains ⊥. Similarly, CardU [i][φ] = CardU [j1][φ1] + CardU [j2][φ2].

We now explain how to update tables C and CardU in O(3t · tO(1) · logn) time.
We perform a similar strategy as with table P : whenever some vertex v is included
or removed from S, or marked or unmarked as a pin, we follow the path from rv to
the root and fully recompute the whole tables C,CardU in the traversed nodes using
the formulas presented above. At each step we recompute the table for some node
using the tables of its children; these tables are up to date since they did not need an
update at all, or were updated in the previous step. Observe that since the alignment
of v in the current state of the graph is accessed only in a computation for rv, the
path from rv to the root of the decomposition consists of all the nodes for which the
tables should be recomputed. Note also that when marking or unmarking the pin π,
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we must first update P and then C and CardU . The update takes O(3t · tO(1) · logn)
time: recomputation of each table takes O(3t · tO(1)) time, and we perform O(t log n)
recomputations as the tree decomposition has depth O(t log n).

Similarly, tables C and CardU can be initialized in O(3t · tO(1) · n) time by
processing the tree in a bottom-up manner: for each node of the tree decomposition,
in O(3t · tO(1)) time we compute its table based on the tables of the children, which
were computed before.

6.4. Queries. In our data structure we store one table per query. In this section,
we describe each of the queries. We do this by first introducing an invariant for the
entries we query, then how this information can be computed once we have computed
the entries for all the children.

We then discuss how to perform updates and initialization of the tables, as they
are based on the same principle as with tables C and CardU . The queries themselves
can be performed by reading a single entry of the data structure, with the exception
of findUSeparator, whose implementation is more complex.

6.4.1. Query findNeighborhood. We begin the description of the queries with
the simplest one, namely, findNeighborhood. This query lists all the vertices of S that
are adjacent to U . In the algorithm we have an implicit bound on the size of this
neighborhood, which we can use to cut the computation when the accumulated list
grows too long. We use � to denote this bound; in our case we have that � = O(k).

findNeighborhood
Output: A list of vertices of N(U) ∩ S, or marker “�” if their number is larger
than �.
Time: O(�)

Let i be a node of the tree decomposition, let φ = (Si, Ui) be a signature of Bi, and
let U ext

i , Sext
i be extensions of this signature. In entry T1[i][φ] we store the following:

• if φ is invalid then T1[i][φ] = ⊥;
• otherwise T1[i][φ] stores the list of elements of N(U ext

i ) ∩ Sext
i if there is at

most � of them, and � if there is more of them.
Note that the information whether φ is invalid can be looked up in table C. The
return value of the query is stored in T [r][(∅, ∅)].

We now present how to compute entries of table T1 for every node i depending
on the entries of children of i. We consider different cases, depending of the type of
node i. For every case, we consider only signatures that are valid, as for the invalid
ones we just put value ⊥.

Case 1: Leaf node. If i is a leaf node then T1[i][(∅, ∅)] = ∅.
Case 2: Introduce node. Let i be a node that introduces vertex v, and j be its only

child. Consider some signature φ = (Si, Ui) of Bi; we would like to compute T1[i][φ] =
Li. Let φ

′ be a natural intersection of φ with Bj , that is, φ
′ = (Si ∩Bj , Ui ∩Bj). Let

T1[j][φ
′] = Lj . We consider some subcases, depending on the alignment of v in φ.
Case 2.1: v ∈ Si. If we introduce a vertex from Si, we have that U -extensions

of φ and φ′ are equal. It follows that Li should be simply list Lj with v appended
if it is adjacent to any vertex of Uj = Ui. Note here that v cannot be adjacent to
any vertex of U ext

i \ Ui, as Bj separates v from Wj . Hence, we copy the list Lj and
append v if it is adjacent to any vertex of Uj and Lj 	= �. However, if the length
of the new list exceeds the � bound, we replace it by �. Note that copying the list
takes O(�) time, as its length is bounded by �.
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Case 2.2: v ∈ Ui. If we introduce a vertex from Ui, then possibly some
vertices of Si gain a neighbor in U ext

i . Note here that vertices of Sext
i \ Si are not

adjacent to the introduced vertex v, as Bj separates v from Wj . Hence, we copy
list Lj and append to it all the vertices of Si that are adjacent to v, but were not yet
on Lj . If we exceed the � bound on the length of the list, we put � instead. Note
that both copying the list and checking whether a vertex of Si is on it can be done
in O(�) time, as its length is bounded by �.

Case 2.3: v ∈ Bi \ (Si ∪Ui). In this case extensions of φ and φ′ are equal, so
it follows from the invariant that we may simply put T [i][φ] = T [j][φ′].

Case 3: Forget node. Let i be a node that forgets vertex w, and j be its only
child. Consider some signature φ = (Si, Ui) of Bi. Define φ′ in the same manner as
in the forget step in the computation of C. As extensions of φ and φ′ are equal, it
follows that T1[i][φ] = T1[j][φ

′].
Case 4: Join node. Let i be a join node and j1, j2 be its two children. Consider

some signature φ = (Si, Ui) of Bi. Let φ1 = (Si, Ui) be a signature of Bj1 and
φ2 = (Si, Ui) be a signature of Bj2 . It follows that T1[i][φ] should be the merge of
lists T1[j1][φ1] and T1[j2][φ2], where we remove the duplicates. Of course, if any of
these entries contains �, we simply put �. Otherwise, the merge can be done in O(�)
time due to the bound on the lengths of T1[j1][φ1] and T1[j2][φ2], and if the length of
the result exceeds the bound �, we replace it by �.

Similarly as before, for every addition and removal of vertex v to/from S, or mark-
ing and unmarking v as a pin, we can update table T1 in O(3

t ·kO(1) ·logn) time by fol-
lowing the path from rv to the root and recomputing the tables in the traversed nodes.
Also, T1 can be initialized in O(3t ·kO(1) ·n) time by processing the tree decomposition
in a bottom-up manner and applying the formula for every node. Note that updat-
ing/initializing table T1 must be performed after updating/initializing tables P and C.

6.4.2. Query findSSeparator. We now move to the next query, namely, find-
ing a balanced S-separator. By Lemma 2.1, as G[U ∪S] has treewidth at most k, such
a 1

2 -balanced S-separator of size at most k+1 always exists. We therefore implement
the following query.

findSSeparator
Output: A list of elements of a 1

2 -balanced S-separator of G[U ∪S] of size at most
k + 1, or ⊥ if no such element exists.
Time: O(tO(1))

Before we proceed to the implementation of the query, we show how to translate the
problem of finding an S-balanced separator into a partitioning problem.

Lemma 6.2 (Lemma 2.9, restated). Let G be a graph and S ⊆ V (G). Then a
set X is a balanced S-separator if and only if there exists a partition (M1,M2,M3) of
V (G)\X such that there is no edge between Mi andMj for i 	= j, and |Mi∩S| ≤ |S|/2
for i = 1, 2, 3.

The following combinatorial observation is crucial in the proof of Lemma 2.9.

Lemma 6.3. Let a1, a2, . . . , ap be nonnegative integers such that
∑p

i=1 ai = q and
ai ≤ q/2 for i = 1, 2, . . . , p. Then there exists a partition of these integers into three
sets, such that the sum of integers in each set is at most q/2.

Proof. Without loss of generality assume that p > 3, as otherwise the claim is
trivial. We perform a greedy procedure as follows. At each time step of the procedure
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we have a number of sets, maintaining an invariant that each set is of size at most q/2.
During the procedure we gradually merge the sets, i.e., we take two sets and replace
them with their union. We begin with each integer in its own set. If we arrive at three
sets, we end the procedure, thus achieving a feasible partition of the given integers.
We therefore need to present how the merging step is performed.

At each step we choose the two sets with the smallest sums of elements and merge
them (i.e., replace them by their union). As the number of sets is at least 4, the sum
of elements of the two chosen ones constitute at most half of the total sum, so after
merging them we obtain a set with sum at most q/2. Hence, unless the number of
sets is at most 3, we can always apply this merging step.

Proof of Lemma 2.9. One of the implications is trivial: if there is a partition
(M1,M2,M3) of G \ X with the given properties, then every connected component
of G \X must be fully contained either in M1, M2, or M3, hence it contains at most
|S|/2 vertices of S. We proceed to the second implication.

Assume thatX is a balanced S-separator of G and let C1, C2, . . . , Cp be connected
components of G \ X . For i = 1, 2, . . . , p, let ap = |S ∩ Ci|. By Lemma 6.3, there
exists a partition of integers ai into three sets, such that the sum of elements of
each set is at most |S|/2. If we partition vertex sets of components C1, C2, . . . , Cp in
the same manner, we obtain a partition (M1,M2,M3) of V (G) \X with postulated
properties.

Lemma 2.9 shows that, when looking for a balanced S-separator, instead of trying
to bound the number of elements of S in each connected component of G[U ∪ S] \X
separately, which could be problematic because of the connectivity condition, we can
just look for a partition of G[U ∪S] into four sets with prescribed properties that can
be checked locally. This suggest the following definition of table T2.

In table T2 we store entries for every node i of the tree decomposition, for every
signature φ = (Si, Ui) of Bi, and for every 8-tuple ψ = (M1,M2,M3, X,m1,m2,m3, x)
where

• (M1,M2,M3, X) is a partition of Si ∪ Ui,
• m1,m2,m3 are integers between 0 and |S|/2,
• and x is an integer between 0 and k + 1.

This 8-tuple ψ will be called the interface, and intuitively it encodes the interaction
of a potential solution with the bag. Observe that the set U is not given in our graph
directly but rather via connectivity information stored in table C, so we need to be
prepared also for all the possible signatures of the bag; this is the reason why we
introduce the interface on top of the signature. Note however, that the number of
possible pairs (φ, ψ) is at most 9|Bi| · kO(1), so for every bag Bi we store 9|Bi| · kO(1)

entries.
We proceed to the formal definition of what is stored in table T2. For a fixed

signature φ = (Si, Ui) of Bi, let (S
ext
i , U ext

i ) be its extension, we say that partitioning
(M ext

1 ,M ext
2 ,M ext

3 , Xext) of Sext
i ∪ U ext

i is an extension consistent with interface ψ =
(M1,M2,M3, X,m1,m2,m3, x), if

• Xext ∩Bi = X and M ext
j ∩Bi =Mj for j = 1, 2, 3;

• there is no edge between vertices of M ext
j and M ext

j′ for j 	= j′;

• |Xext ∩Wi| = x and |M ext
j ∩Wi| = mj for j = 1, 2, 3.

In entry T2[i][φ][ψ] we store
• ⊥ if φ is invalid or no consistent extension of ψ exists;
• otherwise, a list of length x of vertices of Xext∩Wi in some consistent exten-
sion of ψ.
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The query findSSeparator can be realized in O(tO(1)) time by checking entries
in the table T , namely, T [r][(∅, ∅)][(∅, ∅, ∅, ∅,m1,m2,m3, x)] for all possible values
0 ≤ mj ≤ |S|/2 and 0 ≤ x ≤ k + 1, and outputting the list contained in any of them
that is not equal to ⊥, or ⊥ if all of them are equal to ⊥.

We now present how to compute entries of table T2 for every node i depending
on the entries of children of i. We consider different cases, depending of the type of
node i. For every case, we consider only signatures that are valid, as for the invalid
ones we just put value ⊥.

Case 1: Leaf node. If i is a leaf node then T2[i][(∅, ∅)][(∅, ∅, ∅, ∅, 0, 0, 0, 0)] = ∅,
and all the other interfaces are assigned ⊥.

Case 2: Introduce node. Let i be a node that introduces vertex v, and j be
its only child. Consider some signature φ = (Si, Ui) of Bi and an interface ψ =
(M1,M2,M3, X,m1,m2,m3, x); we would like to compute T2[i][φ][ψ] = Li. Let φ

′, ψ′

be natural intersections of φ, ψ with Bj , respectively, that is, φ
′ = (Si∩Bj , Ui∩Bj) and

ψ′ = (M1 ∩Bj ,M2 ∩Bj ,M3 ∩Bj , X ∩Bj ,m1,m2,m3, x). Let T2[j][φ
′][ψ′] = Lj . We

consider some subcases, depending on the alignment of v in φ and ψ. The cases with v
belonging to M1, M2, and M3 are symmetric, so we consider only the case for M1.

Case 2.1: v ∈ X. Note that every extension consistent with interface ψ is an
extension consistent with ψ′ after trimming to Gj . On the other hand, every extension
consistent with ψ′ can be extended to an extension consistent with ψ by adding v to
the extension of X . Hence, it follows that we can simply take Li = Lj .

Case 2.2: v ∈ M1. Similarly as in the previous case, every extension consis-
tent with interface ψ is an extension consistent with ψ′ after trimming to Gj . On the
other hand, if we are given an extension consistent with ψ′, we can add v to M1 and
make an extension consistent with ψ if and only if v is not adjacent to any vertex of
M2 orM3; this follows from the fact that Bj separates v fromWj , so the only vertices
from M ext

2 , M ext
3 that v could possibly be adjacent to, lie in Bj . However, if v is ad-

jacent to a vertex ofM2 orM3, we can obviously put Li = ⊥, as there is no extension
consistent with ψ: the property that there is no edge between M ext

1 and M ext
3 ∪M ext

3

is already broken in the bag. Otherwise, by the reasoning above we can put Li = Lj .
Case 2.3: v ∈ Bi \ (Si ∪ Ui). Again, in this case we have one-to-one corre-

spondence of extensions consistent with ψ with ψ′ after trimming to Bj , so we may
simply put Li = Lj.

Case 3: Forget node. Let i be a node that forgets vertex w, and j be its
only child. Consider some signature φ = (Si, Ui) of Bi, and some interface ψ =
(M1,M2,M3, X,m1,m2,m3, x); we would like to compute T2[i][φ][ψ] = Li. Let
φ′ = (Sj , Uj) be the only extension of signature φ to Bj that has the same extension
as φ; φ′ can be deduced by looking up which signatures are found valid in table C in
the same manner as in the forget step for computation of table C. We consider three
cases depending on alignment of w in φ′.

Case 3.1: w /∈ Sj ∪ Uj. If w is not in Sj ∪ Uj , then it follows that we may
put Li = T2[j][φ

′][ψ′]: extensions of ψ consistent with ψ correspond one-to-one to
extensions consistent with ψ′.

Case 3.2: w ∈ Sj. Assume that there exists some extension (M ext
1 ,M ext

2 ,M ext
3 ,

Xext) consistent with ψ. In this extension, vertex w is either in M ext
1 , M ext

2 , M ext
3 ,

or in Xext. Let us define the corresponding interfaces:
• ψ1 = (M1 ∪ {w},M2,M3, X,m1 − 1,m2,m3, x);
• ψ2 = (M1,M2 ∪ {w},M3, X,m1,m2 − 1,m3, x);
• ψ3 = (M1,M2,M3 ∪ {w}, X,m1,m2,m3 − 1, x);
• ψX = (M1,M2,M3, X ∪ {w},m1,m2,m3, x− 1).
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If any of the integers m1− 1,m2− 1,m3− 1, x− 1 turns out to be negative, we do not
consider this interface. It follows that for at least one ψ′ ∈ {ψ1, ψ2, ψ3, ψX} there must
be an extension consistent with ψ′: it is just the extension (M ext

1 ,M ext
2 ,M ext

3 , Xext).
On the other hand, any extension consistent with any of interfaces ψ1, ψ2, ψ3, ψX is
also consistent with ψ. Hence, we may simply put Li = T2[i][φ

′][ψ′], and append w
on the list in case ψ′ = ψX .

Case 3.3: w ∈ Uj. We proceed in the same manner as in Case 3.2, with the
exception that we do not decrement mj by 1 in interfaces ψj for j = 1, 2, 3.

Case 4: Join node. Let i be a join node and j1, j2 be its two children. Consider
some signature φ = (Si, Ui) ofBi, and an interface ψ = (M1,M2,M3, X,m1,m2,m3, x);
we would like to compute T2[i][φ][ψ] = Li. Let φ1 = (Si, Ui) be a signature of
Bj1 and φ2 = (Si, Ui) be a signature of Bj2 . Assume that there is some exten-
sion (M ext

1 ,M ext
2 ,M ext

3 , Xext) consistent with ψ. Define mp
q = |Wjp ∩Mq| and xp =

|Wjp ∩ X | for p = 1, 2 and q = 1, 2, 3; note that m1
q +m2

q = mq for q = 1, 2, 3 and
x1 + x2 = x. It follows that in Gj1 , Gj2 there are some extensions consistent with
(M1,M2,M3, X,m

1
1,m

1
2,m

1
3, x

1) and (M1,M2,M3, X,m
2
1,m

2
2,m

2
3, x

2), respectively—
these are simply extension (M ext

1 ,M ext
2 ,M ext

3 , Xext) intersected with Vi, Vj , respec-
tively. On the other hand, if we have some extensions in Gj1 , Gj2 consistent with
(M1,M2,M3, X,m

1
1,m

1
2,m

1
3, x

1) and (M1,M2,M3, X,m
2
1,m

2
2,m

2
3, x

2) for numbers
mq

p, x
p such thatm1

q+m
2
q = mq for q = 1, 2, 3 and x1+x2 = x, then the pointwise union

of these extensions is an extension consistent with (M1,M2,M3, X,m1,m2,m3, x).
It follows that in order to compute Li, we need to check if for any such choice
of mq

p, x
p we have non-⊥ entries in T2[j1][φ1][(M1,M2,M3, X,m

1
1,m

1
2,m

1
3, x

1)] and
T2[j2][φ2][(M1,M2,M3, X,m

2
1,m

2
2,m

2
3, x

2)]. If this is the case, we put the union of
the lists contained in these entries as Li, otherwise we put ⊥. Note that computing
the union of these lists takes O(k) time as their lengths are bounded by k, and there
are O(k4) possible choices of mq

p, x
p to check.

Similarly as before, for every addition and removal of vertex v to and from S or
marking and unmarking v as a pin, we can update table T2 in O(9t ·kO(1) · logn) time
by following the path from rv to the root and recomputing the tables in the traversed
nodes. Also, T2 can be initialized in O(9t ·kO(1) ·n) time by processing the tree decom-
position in a bottom-up manner and applying the formula for every node. Note that
updating/initializing table T2 must be performed after updating/initializing tables P
and C.

6.4.3. Query findNextPin. We now proceed to the next query. Recall that
at each point, the algorithm maintains the set F of vertices marking components of
G[U ∪ S] \ (X ∪ S) that have been already processed. A component is marked as
processed when one of its vertices is added to F . Hence, we need a query that finds
the next component to process by returning any of its vertices. As in the linear time
approximation algorithm we need to process the components in decreasing order of
size; the query in fact provides a vertex of the largest component.

findNextPin
Output: A pair (u, �), where (i) u is a vertex of a component of G[U ∪ S] \
(X ∪S) that does not contain a vertex from F and is of maximum size among such
components, and (ii) � is the size of this component; or, ⊥ if no such component
exists.
Time: O(1)

To implement the query we create a table similar to table C, but with entry indexing
enriched by subsets of the bag corresponding to possible intersections with X and F .
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Formally, we store entries for every node i, and for every signature φ = (Si, Ui, Xi, Fi),
which is a quadruple of subsets of Bi such that (i) Si ∩Ui = ∅, (ii) Xi ⊆ Si ∪Ui, (iii)
Fi ⊆ Ui \Xi. The number of such signatures is equal to 6|Bi|.

For a signature φ = (Si, Ui, Xi, Fi), we say that (Sext
i , U ext

i , Xext
i , F ext

i ) is the
extension of φ if (i) (Sext

i , U ext
i ) is the extension of (Si, Ui) as in the table C, (ii)

Xext
i = Xi ∪ (Wi ∩X) and F ext

i = Fi ∪ (Wi ∩ F ). We may now state what is stored
in entry T3[i][(Si, Ui, Xi, Fi)]:

• if (Si, Ui) is invalid then we store ⊥:
• otherwise we store

– an equivalence relation R between vertices of Ui \Xi such that (v1, v2) ∈
R if and only if v1, v2 are connected in G[U ext

i \Xext
i ];

– for every equivalence class K of R, an integer mK equal to the number
of vertices of the connected component of G[U ext

i \Xext
i ] containing K,

which are contained inWi, or to ⊥ if this connected component contains
a vertex of F ext

i ;
– a pair (u,m), where m is equal to the size of the largest component of
G[U ext

i \ Xext
i ] not containing any vertex of F ext

i or Ui, while u is any
vertex of this component; if no such component exists, then (u,m) =
(⊥,⊥).

Clearly, query findNextPin may be implemented by outputting the pair (u,m) stored
in the entry T3[r][(∅, ∅, ∅, ∅)], or ⊥ if this pair is equal to (⊥,⊥).

We now present how to compute entries of table T3 for every node i depending
on the entries of children of i. We consider different cases, depending of the type of
node i. For every case, we consider only signatures (Si, Ui, Xi, Fi) for which (Si, Ui)
is valid, as for the invalid ones we just put value ⊥.

Case 1: Leaf node. If i is a leaf node then T3[i][(∅, ∅, ∅, ∅)] = (∅, ∅, (⊥,⊥)).
Case 2: Introduce node. Let i be a node that introduces vertex v, and j be its only

child. Consider some signature φ = (Si, Ui, Xi, Fi) of Bi; we would like to compute
T3[i][φ] = (Ri, (m

i
K)K∈Ri , (ui,mi)). Let φ

′ be a natural projection of φ onto Bj , that

is, φ′ = (Si ∩Bj , Ui ∩Bj , Xi ∩Bj , Fi ∩Bj). Let T3[j][φ
′] = (Rj , (m

j
K)K∈Rj , (uj ,mj));

note that this entry we know, but entry T3[i][φ] we would like to compute. We consider
some subcases, depending on the alignment of v in φ.

Case 2.1: v ∈ Ui \ (Xi∪Fi). If we introduce a vertex from Ui \ (Xi∪Fi), then
the extension of φ is just the extension of φ′ plus vertex v added to U ext

i . If we consider
the equivalence classes of Ri, then these are equivalence classes of Rj but possibly
some of them have been merged because of connections introduced by vertex v. As
Bj separates v from Wj , v could only create connections between two vertices from
Bj∩(Uj \Xj). Hence, we can obtain Ri from Rj by merging all the equivalence classes
of vertices of Uj \Xj adjacent to v; the corresponding entry in sequence (mK)K∈Ri is

equal to the sum of entries from the sequence (mj
K)K∈Rj corresponding to the merged

classes. If any of these entries is equal to ⊥, we put simply ⊥. If v was not adjacent
to any vertex of Uj \Xj, we put v in a new equivalence class K with mK = 0. Clearly,
we can also put (ui,mi) = (uj ,mj).

Case 2.2: v ∈ (Ui \Xi)∩Fi. We perform in the same manner as in Case 2.2,
with the exception that the new entry in sequence (mK)K∈Ri will be always equal to
⊥, as the corresponding component contains a vertex from F ext

i .
Case 2.3: v ∈ Si ∪ Xi. In this case we can simply put T3[i][φ] = T3[j][φ

′]
as the extensions of φ and φ′ are the same with the exception of v being included
into Xext

i and/or into Sext
i , which does not influence information to be stored in the

entry.
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Case 2.4: v ∈ Bi \(Si∪Ui). In this case we can simply put T3[i][φ] = T3[j][φ
′]

as the extensions of φ and φ′ are equal.
Case 3: Forget node. Let i be a node that forgets vertex w, and j be its only

child. Consider some signature φ = (Si, Ui, Xi, Fi) of Bi; we would like to compute

T3[i][φ] = (Ri, (m
i
K)K∈Ri , (ui,mi)).

Let (Sext
i , U ext

i , Xext
i , F ext

i ) be an extension of φ. Observe that there is exactly one
signature φ′ = (Sj , Uj, Xj , Fj) of Bj with the same extension as φ, and this signature
is simply φ with w added possibly to Si, Ui, Xi, or Fi, depending on whether it
belongs to Sext

i , U ext
i , Xext

i , or F ext
i . Coloring φ′ may be defined similarly as in the

case of the forget node for table C; we just need in addition to include w in Xext
i or

F ext
i if it belongs to X or F , respectively.

Let T3[j][φ] = (Rj , (m
j
K)K∈Rj , (uj ,mj)). As the extensions of φ and φ′ are equal,

it follows that we may take Ri equal to Rj with w possibly excluded from its equiv-

alence class. Similarly, for every equivalence class K ∈ Ri we put mi
K equal to mj

K′ ,
where K ′ is the corresponding equivalence class of Rj , except the class that con-
tained w which should get the previous number incremented by 1, providing it was
not equal to ⊥. We also put (ui,mi) = (uj ,mj) except the situation when we forget
the last vertex of a component of G[U ext

j \Xext
j ]: this is the case when w is in Uj \Xj

and constitutes a singleton equivalence class of Rj . Let then m
j
{w} be the correspond-

ing entry in sequence (mj
K)K∈Rj . If mj

{w} = ⊥, we simply put (ui,mi) = (uj ,mj);

else, if (uj ,mj) = (⊥,⊥) or mj
{w} > mj , we put (ui,mi) = (w,mj

{w}), otherwise we

put (ui,mi) = (uj ,mj).
Case 4: Join node. Let i be a join node and j1, j2 be its two children. Con-

sider some signature φ = (Si, Ui, Xi, Fi) of Bi; we would like to compute T3[i][φ] =
(Ri, (m

i
K)K∈Ri , (ui,mi)). Let φ1 = (Si, Ui, Xi, Fi) be a signature of Bj1 and φ2 =

(Si, Ui, Xi, Fi) be a signature of Bj2 . Let T3[j1][φ1] = (Rj1 , (m
j1
K)K∈Rj1

, (uj1 ,mj1))

and T3[j2][φ2] = (Rj2 , (m
j2
K)K∈Rj2

, (uj2 ,mj2)). Note that equivalence relations Rj1

and Rj2 are defined on the same set Ui \Xi. It follows from the definition of T3 that
we can put

• Ri to be the minimum transitive closure of Rj1 ∪Rj2 ;

• for every equivalence class K of Ri, m
i
K equal to the sum of (i) numbers mj1

K1

for K1 ⊆ K, K1 being an equivalence class of Rj1 , and (ii) numbers mj2
K2

for
K2 ⊆ K, K2 being an equivalence class of Rj2 ; if any of these numbers is
equal to ⊥, we put mi

K = ⊥;
• (ui,mi) to be equal to (uj1 ,mj1) or (uj2 ,mj2), depending on whether mj1 or
mj2 is larger; if any of these numbers is equal to ⊥, we take the second one,
and if both are equal to ⊥, we put (ui,mi) = (⊥,⊥).

Similarly as before, for every addition and removal of vertex v to and from S, to
and fromX , to and from F , or marking and unmarking v as a pin, we can update table
T3 in O(6

t ·tO(1) ·logn) time by following the path from rv to the root and recomputing
the tables in the traversed nodes. Also, T3 can be initialized in O(6t · tO(1) ·n) time by
processing the tree decomposition in a bottom-up manner and applying the formula
for every node. Note that updating/initializing table T3 must be performed after
updating/initializing tables P and C.

6.4.4. Query findUSeparator. In this section we implement the last query,
needed for the linear time algorithm; the query is significantly more involved than the
previous one. The query specification is as follows:
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findUSeparator
Output: A list of elements of an 8

9 -balanced separator of G[U ] of size at most
k + 1, or ⊥ if no such element exists.
Time: O(ct · kO(1) · logn)

Note that Lemma 2.1 guarantees that in fact G[U ] contains a 1
2 -balanced separator

of size at most k + 1. Unfortunately, we are not able to find a separator with such
a good guarantee on the sizes of the sides; the difficulties are explained in section 2.
Instead, we again make use of the precomputed approximate tree decomposition to
find a balanced separator with slightly worse guarantees on the sizes of the sides.

In the following we will also use the notion of a balanced separation. For a graphG,
we say that a partition (L,X,R) of V (G) is an α-balanced separation of G if there is
no edge between L and R and |L|, |R| ≤ α|V (G)|. The order of a separation is the size
of X . Clearly, if (L,X,R) is an α-balanced separation of G, then X is an α-balanced
separator of G. By folklore (see the proof of Lemma 2.2) we know that every graph
of treewidth at most k has a 2

3 -balanced separation of order at most k + 1.
Expressing the search for a balanced separator as a maximization problem. Before

we start explaining the query implementation, we begin with a few definitions that
enable us to express finding a balanced separator as a simple maximization problem.

Definition 6.4. Let G be a graph, and TL, TR be disjoint sets of terminals in G.
We say that a partition (L,X,R) of V (G) is a terminal separation of G of order � if
the following conditions are satisfied:

(i) TL ⊆ L and TR ⊆ R;
(ii) there is no edge between L and R;
(iii) |X | ≤ �.

We moreover say that (L,X,R) is left-pushed ( right-pushed) if |L| (|R|) is maximum
among possible terminal separations of order �.

Pushed terminal separations are similar to important separators of Marx [34], and
their number for fixed TL, TR can be exponential in �. Pushed terminal separations
are useful for us because of the following lemma, that enables us to express finding a
small balanced separator as a maximization problem, providing that some separator
of a reasonable size is given.

Lemma 6.5. Let G be a graph of treewidth at most k and let (A1, B,A2) be
some separation of G, such that |A1|, |A2| ≤ 3

4 |V (G)|. Then there exists a parti-
tion (TL, XB, TR) of B and integers k1, k2 with k1 + k2 + |XB| ≤ k + 1, such that if
G1, G2 are G[A1 ∪ (B \XB)] and G[A2 ∪ (B \XB)] with terminals TL, TR, then

(i) there exist a terminal separations of G1, G2 of orders k1, k2, respectively;
(ii) for any left-pushed terminal separation (L1, X1, R1) of order k1 in G1 and any

right-pushed separation (L2, X2, R2) of order k2 in G2, the triple
(L1 ∪ TL ∪L2, X1 ∪XB ∪X2, R1 ∪ TR ∪R2) is a terminal separation of G of

order at most k+1 with |L1∪TL∪L2|, |R1∪TR∪R2| ≤ 7
8 |V (G)|+ |X|+(k+1)

2 .

Proof. As the treewidth of G is at most k, there is a separation (L,X,R) of G
such that |L|, |R| ≤ 2

3 |V (G)| and |X | ≤ k+1 by folklore [see the proof of Lemma 2.2].
Let us set (TL, XB, TR) = (L ∩B,X ∩B,R ∩B), k1 = |X ∩ A1|, and k2 = |X ∩ A2|.
Observe that X ∩A1 and X ∩A2 are terminal separations in G1 and G2 of orders k1
and k2, respectively, hence we are done with (i). We proceed to the proof of (ii).

Let us consider sets L ∩ A1, L ∩ A2, R ∩ A1, and R ∩ A2. Since (A1, B,A2) and
(L,X,R) are 1

4 - and
1
3 -balanced separations, respectively, we know that
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• |L ∩ A1|+ |L ∩ A2|+ |B| ≥ 1
3 |V (G)| − (k + 1);

• |R ∩ A1|+ |R ∩ A2|+ |B| ≥ 1
3 |V (G)| − (k + 1);

• |L ∩ A1|+ |R ∩ A1|+ (k + 1) ≥ 1
4 |V (G)| − |B|;

• |L ∩ A2|+ |R ∩ A2|+ (k + 1) ≥ 1
4 |V (G)| − |B|.

We claim that either |L∩A1|, |R ∩A2| ≥ 1
8 |V (G)| − |B|+(k+1)

2 or |L∩A2|, |R∩A1| ≥
1
8 |V (G)|− |B|+(k+1)

2 . Assume first that |L∩A1| < 1
8 |V (G)|− |B|+(k+1)

2 . Observe that

then |L∩A2| ≥ 1
3 |V (G)|−|B|−(k+1)−(18 |V (G)|− |B|+(k+1)

2 ) ≥ 1
8 |V (G)|− |B|+(k+1)

2 .

Similarly, |R ∩ A1| ≥ 1
4 |V (G)| − |B| − (k + 1)− (18 |V (G)| − |B|+(k+1)

2 ) ≥ 1
8 |V (G)| −

|B|+(k+1)
2 . The case when |R∩A2| < 1

8 |V (G)|− |B|+(k+1)
2 is symmetric. Without loss

of generality, by possibly flipping separation (L,X,R), assume that |L∩A1|, |R∩A2| ≥
1
8 |V (G)| − |B|+(k+1)

2 .
Let (L1, X1, R1) be any left-pushed terminal separation of order k1 in G1 and

(L2, X2, R2) be any right-pushed terminal separation of order k2 in G2. By the defi-
nition of being left- and right-pushed, we have that |L1 ∩A1| ≥ |L∩A1| ≥ 1

8 |V (G)| −
|B|+(k+1)

2 and |R2 ∩ A2| ≥ |R ∩ A2| ≥ 1
8 |V (G)| − |B|+(k+1)

2 . Therefore, we have that

|L1 ∪ TL ∪ L2| ≤ 7
8 |V (G)|+ |B|+(k+1)

2 and |L1 ∪ TL ∪ L2| ≤ 7
8 |V (G)| + |B|+(k+1)

2 .

The idea of the rest of the implementation is as follows. First, given an approx-
imate tree decomposition of width O(k) in the data structure, in logarithmic time
we will find a bag Bi0 that splits the component U in a balanced way. This bag will
be used as the separator B in the invocation of Lemma 6.5; the right part of the
separation will consist of vertices contained in the subtree below Bi0 , while the whole
rest of the tree will constitute the left part. Lemma 6.5 ensures us that we may find
some balanced separator of U by running two maximization dynamic programs: one
in the subtree below Bi0 to identify a right-pushed separation, and one on the whole
rest of the tree to find a left-pushed separation. As in all the other queries, we will
store tables of these dynamic programs in the data structure, maintaining them with
O(ct logn) update times.

Case of a small U . At the very beginning of the implementation of the query
we read |U |, which is stored in the entry CardU [r][(∅, ∅)]. If it turns out that |U | <
36(k + t + 2) = O(k), we perform the following explicit construction. We apply a
depth-first search from π to identify the whole U ; note that this search takes O(k2)
time, as U and S are bounded linearly in k. Then we build subgraph G[U ], which
again takes O(k2) time. As this subgraph has O(k) vertices and treewidth at most k,
we may find its 1

2 -balanced separator of order at most k+1 in ck time using a brute-
force search through all the possible subsets of size at most k + 1. This separator
may be returned as the result of the query. Hence, from now on we assume that
|U | ≥ 36(k + t+ 2).

Tracing U . We first aim to identify bag Bi0 in logarithmic time. The following
lemma encapsulates the goal of this subsection. Note that we are not only interested
in the bag itself, but also in the intersection of the bag with of S and U (defined as
the connected component of G \ S containing π). While intersection with S can be
trivially computed given the bag, we will need to trace the intersection with U inside
the computation.

Lemma 6.6. There exists an algorithm that, given access to the data structure,
in O(tO(1) · logn) time finds a node i0 of the tree decomposition such that |U |/4 ≤
|Wi0 ∩U | ≤ |U |/2 together with two subsets Ui, Si of Bi0 such that U0 = U ∩Bi0 and
S0 = S ∩Bi0 .
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Proof. The algorithm keeps track of a node i of the tree decomposition to-
gether with a pair of subsets (Ui, Si) = (Bi ∩ U,Bi ∩ S) being the intersections
of the bag associated with the current node with U and S, respectively. The al-
gorithm starts with the root node r and two empty subsets, and iteratively tra-
verses down the tree keeping an invariant that CardU [i][(Ui, Si)] ≥ |U |/2. Whenever
we consider a join node i with two sons j1, j2, we choose to go down to the node
where CardU [it][(Ujt , Ujt)] is larger among t = 1, 2. In this manner, at each step
CardU [i][(Ui, Si)] can be decreased by at most 1 in case of a forget node, or can be
at most halved in case of a join node. As |U | ≥ 36(k + t + 2), it follows that the
first node i0 when the invariant CardU [i][(Ui, Si)] ≥ |U |/2 ceases to hold, satisfies
|U |/4 ≤ CardU [i0][(Ui0 , Si0)] ≤ |U |/2, and therefore can be safely returned by the
algorithm.

It remains to argue how sets (Ui, Si) can be updated at each step of the traverse
down the tree. Updating Si is trivial as we store an explicit table remembering for
each vertex whether it belongs to S. Therefore, now we focus on updating U .

The cases of introduce and join nodes are trivial. If i is an introduce node with
son j, then clearly Uj = Ui ∩ Bj . Similarly, if i is a join node with sons j1, j2, then
Uj1 = Uj2 = Ui. We are left with the forget node.

Let i be a forget node with son j, and let Bj = Bi ∪ {w}. We have that Uj =
Ui ∪ {w} or Uj = Ui, depending whether w ∈ U or not. This information can be read
from the table C[j] as follows:

• if C[j][(Ui ∪ {w}, Sj)] = ⊥, then w /∈ U and Uj = Ui;
• if C[j][(Ui, Sj)] = ⊥, then w ∈ U and Uj = Ui ∪ {w};
• otherwise, both C[j][(Ui, Sj)] and C[j][(Ui∪{w}, Sj)] are not equal to ⊥; this

follows from the fact that at least one of them, corresponding to the correct
choice whether w ∈ U or w /∈ U , must be not equal to ⊥. Observe that in
this case w is in a singleton equivalence class of C[j][(Ui ∪ {w}, Sj)], and the
connected component of w in the extension of Ui ∪ {w} cannot contain the
pin π. It follows that w /∈ U and we take Uj = Ui.

Computation at each step of the tree traversal takes O(tO(1)) time. As the tree has
logarithmic depth, the whole algorithm runs in O(tO(1) · logn) time.

Dynamic programming for pushed separators. In this subsection we show how to
construct dynamic programming tables for finding pushed separators. The implemen-
tation resembles that of table T2, used for balanced S-separators.

In table T4 we store entries for every node i of the tree decomposition, for every
signature φ = (Si, Ui) of Bi, and for every 4-tuple ψ = (L,X,R, x), called again the
interface, where

• (L,X,R) is a partition of Ui,
• x is an integer between 0 and k + 1.

Again, the intuition is that the interface encodes the interaction of a potential solution
with the bag. Note that for every bag Bi we store at most 5|Bi| · (k + 2) entries.

We proceed to the formal definition of what is stored in table T4. Let us fix a
signature φ = (Si, Ui) of Bi, and let (Sext

i , U ext
i ) be its extension. For an interface

ψ = (L,X,R, x), we say that a terminal separation (Lext, Xext, Rext) in G[U ext
i ] with

terminals L,R is an extension consistent with interface ψ = (L,X,R, x) if
• Lext ∩Bi = L, Xext ∩Bi = X , and Rext ∩Bi = R;
• |Xext ∩Wi| = x.

Then entry T4[i][φ][ψ] contains the pair (r,X0), where r is the maximum possible
|Rext ∩ Wi| among extensions consistent with ψ, and X0 is the corresponding set
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Xext ∩Wi for which this maximum was attained, or ⊥ if the signature φ is invalid or
no consistent extension exists.

We now present how to compute entries of table T4 for every node i depending
on the entries of children of i. We consider different cases, depending of the type of
node i. For every case, we consider only signatures that are valid, as for the invalid
ones we just put value ⊥.

Case 1: Leaf node. If i is a leaf node then T4[i][(∅, ∅)][(∅, ∅, ∅, 0)] = (0, ∅), and all
the other entries are assigned ⊥.

Case 2: Introduce node. Let i be a node that introduces vertex v, and j be its only
child. Consider some signature φ = (Si, Ui) of Bi and an interface ψ = (L,X,R, x); we
would like to compute T4[i][φ][ψ] = (ri, X

i
0). Let φ

′, ψ′ be natural intersections of φ, ψ
with Bj , respectively, that is, φ

′ = (Si∩Bj , Ui∩Bj) and ψ
′ = (L∩Bj , X∩Bj , R∩Bj , x).

Let T4[j][φ
′][ψ′] = (rj , X

j
0). We consider some subcases, depending on the alignment

of v in φ and ψ. The cases with v belonging to L and R are symmetric, so we consider
only the case for L.

Case 2.1: v ∈ X. Note that every extension consistent with interface ψ is an
extension consistent with ψ′ after trimming to Gj . On the other hand, every extension
consistent with ψ′ can be extended to an extension consistent with ψ by adding v to
the extension of X . Hence, it follows that we can simply take (ri, X

i
0) = (rj , X

j
0).

Case 2.2: v ∈ L. Similarly as in the previous case, every extension consistent
with interface ψ is an extension consistent with ψ′ after trimming to Gj . On the
other hand, if we are given an extension consistent with ψ′, then we can add v to L
and make an extension consistent with ψ if and only if v is not adjacent to any
vertex of R; this follows from the fact that Bj separates v from Wj , so the only
vertices from Rext that v could be possibly adjacent to, lie in Bj . However, if v
is adjacent to a vertex of R, then we can obviously put (ri, X

i
0) = ⊥ as there is

no extension consistent with ψ: property that there is no edge between L and R is
broken already in the bag. Otherwise, by the reasoning above we can put (ri, X

i
0) =

(rj , X
j
0).

Case 2.3: v ∈ Bi \Ui. Again, in this case we have one-to-one correspondence
of extensions consistent with ψ and extensions consistent with ψ′, so we may simply
put (ri, X

i
0) = (rj , X

j
0).

Case 3: Forget node. Let i be a node that forgets vertex w, and j be its only child.
Consider some signature φ = (Si, Ui) of Bi, and some interface ψ = (L,X,R, x); we
would like to compute T4[i][φ][ψ] = (ri, X

i
0). Let φ′ = (Sj , Uj) be the only extension

of signature φ to Bj that has the same extension as φ; φ′ can be deduced by looking
up which signatures are found valid in table C in the same manner as in the forget
step for computation of table C. We consider two cases depending on alignment of w
in φ′.

Case 3.1: w /∈ Uj. If w is not in Uj, then it follows that we may put
(ri, X

i
0) = T4[j][φ

′][ψ′]: extensions consistent with ψ correspond with one-to-one with
extensions consistent with ψ′.

Case 3.2: w ∈ Uj. Assume that there exists some extension (Lext, Xext, Rext)
consistent with ψ, and assume further that this extension is the one that maximizes
|Rext ∩Wi|. In this extension, vertex w is either in Lext, Xext, or in Rext. Let us
define the corresponding interfaces:

• ψL = (L ∪ {w}, X,R, x);
• ψX = (L,X ∪ {w}, R, x− 1);
• ψR = (L,X,R ∪ {w}, x).
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If x − 1 turns out to be negative, we do not consider ψX . For t ∈ {L,X,R}, let
(rj , X

j,t
0 ) = T4[j][φ

′][ψt]. It follows that for at least one ψ′ ∈ {ψL, ψX , ψR} there
must be an extension consistent with ψ′: it is just the extension (Lext, Xext, Rext).
On the other hand, any extension consistent with any of interfaces ψL, ψX , ψR is also
consistent with ψ. Hence, we may simply put ri = max(rL, rX , rR + 1), and define
X i

0 as the corresponding Xj,t
0 , with possibly w appended if t = X . Of course, in this

maximum we do not consider the interfaces ψt for which T4[j][φ
′][ψt] = ⊥, and if

T4[j][φ
′][ψt] = ⊥ for all t ∈ {L,X,R}, we put (ri, X

i
0) = ⊥.

Case 4: Join node. Let i be a join node and j1, j2 be its two children. Con-
sider some signature φ = (Si, Ui) of Bi, and an interface ψ = (L,X,R, x); we
would like to compute T4[i][φ][ψ] = (ri, X

i
0). Let φ1 = (Si, Ui) be a signature

of Bj1 and φ2 = (Si, Ui) be a signature of Bj2 . Assume that there is some ex-
tension (Lext, Xext, Rext) consistent with ψ, and assume further that this exten-
sion is the one that maximizes |Rext ∩ Wi|. Define rp = |Wjp ∩ R| and xp =
|Wjp ∩ X | for p = 1, 2; note that r1 + r2 = ri and x1 + x2 = x. It follows that
in Gj1 , Gj2 there are some extensions consistent with (L,X,R, x1) and (L,X,R, x2),
respectively—these are simply extension (Lext, Xext, Rext) intersected with Vi, Vj , re-
spectively. On the other hand, if we have some extensions in Gj1 , Gj2 consistent
with (L,X,R, x1) and (L,X,R, x2) for numbers xp such that x1 + x2 = x, then
the pointwise union of these extensions is an extension consistent with (L,X,R, x).
It follows that in order to compute (ri, X

i
0), we need to iterate through choices of

xp such that we have non-⊥ entries in T2[j1][φ1][(L,X,R, x
1)] = (rx

1

j1
, Xj1,x

1

0 ) and

T2[j2][φ2][(L,X,R, x
2)] = (rx

1

j1
, Xj1,x

1

0 ), choose x1, x2 for which rx
1

j1
+rx

2

j2
is maximum,

and define (ri, X
i
0) = (rx

1

j1
+ rx

2

j2
, Xj1,x

1

0 ∪Xj2,x
2

0 ). Of course, if for no choice of x1, x2

it is possible, we put (ri, X
i
0) = ⊥. Note that computing the union of the sets X

jp,x
p

0

for p = 1, 2 takes O(k) time as their sizes are bounded by k, and there is O(t) possible
choices of xp to check.

Similarly as before, for every addition and removal of vertex v to and from S or
marking and unmarking v as a pin, we can update table T4 in O(5t · kO(1) · logn)
time by following the path from rv to the root and recomputing the tables in the
traversed nodes. Also, T4 can be initialized in O(5t · kO(1) · n) time by processing the
tree decomposition in a bottom-up manner and applying the formula for every node.
Note that updating/initializing table T4 must be performed after updating/initializing
tables P and C.

Implementing the query findUSeparator. We now show how to combine Lem-
mas 6.5 and 6.6 with the construction of table T4 to implement the query findUSep-
arator.

The algorithm performs as follows. First, using Lemma 6.6 we identify a node i0
of the tree decomposition, together with disjoint subsets (Ui0 , Si0) = (U∩Bi0 , S∩Bi0)
of Bi0 , such that |U |/4 ≤ |Wi0 ∩ U | ≤ |U |/2. Let A2 = Wi0 and A1 = V (G) \ Vi0 .
Consider separation (A1 ∩U,Bi0 ∩U,A2∩U) of G[U ] and apply Lemma 6.5 to it. Let
(T 0

L, X
0
B, T

0
R) be the partition of Bi0 and k01 , k

0
2 be the integers with k01 + k02 + |X0

B| ≤
k + 1, whose existence is guaranteed by Lemma 6.5.

The algorithm now iterates through all possible partitions (TL, XB, TR) of Bi0

and integers k1, k2 with k1 + k2 + |XB| ≤ k + 1. We can clearly discard the par-
titions where there is an edge between TL and TR. For a partition (TL, XB, TR),
let G1, G2 be defined as in Lemma 6.5 for the graph G[U ]. For a considered tuple
(TL, XB, TR, k1, k2), we try to find
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(i) a separator of a right-pushed separation of order k2 in G2, and the corre-
sponding cardinality of the right side;

(ii) a separator of a left-pushed separation of order k1 in G1, and the correspond-
ing cardinality of the left side.

Goal (i) can be achieved simply by reading entries T4[i0][(Ui0 , Si0)][(TL, XB, TR, k
′)]

for k′ ≤ k2, and taking the right-pushed separation with the largest right side. We
are going to present how goal (ii) is achieved in the following paragraphs, but first let
us show that achieving both of the goals is sufficient to answer the query.

Observe that if for some (TL, XB, TR) and (k1, k2) we obtained both of the separa-
tors, denote them X1, X2, together with cardinalities of the corresponding sides, then
using these cardinalities and precomputed |U | we may check whether X1 ∪X2 ∪XB

gives us an 8
9 -separation of G[U ]. On the other hand, Lemma 6.5 asserts that when

(T 0
L, X

0
B, T

0
R) and (k01 , k

0
2) are considered, we will find some pushed separations, and

moreover any such two separations will yield an 8
9 -separation of G[U ]. Note that

this is indeed the case as the sides of the obtained separation have cardinalities at
most

7

8
|U |+ (k + 1) + (t+ 1)

2
=

8

9
|U |+ k + t+ 2

2
− |U |

72
≤ 8

9
|U |,

since |U | ≥ 36(k + t+ 2).
We are left with implementing goal (ii). Let G′

1 be G1 with terminal sets swapped;
clearly, left-pushed separations in G1 correspond to right-pushed separations in G′

1.
We implement finding right-pushed separations in G′

1 as follows.
Let P = (i0, i1, . . . , ih = r) be the path from i0 to the root r of the tree decom-

position. The algorithm traverses the path P , computing tables D[it] for consecutive
indexes t = 1, 2, . . . , t. The table D[it] is indexed by signatures φ and interfaces ψ
in the same manner as T4. Formally, for a fixed signature φ = (Sit , Uit) of Bit with
extension (Sext

it
, U ext

it
), we say that this signature is valid with respect to (Si0 , Ui0) if it

is valid and moreover (Si0 , Ui0) = (Sext
it
∩Bi0 , U

ext
it
∩Bi0). For an interface ψ we say

that separation (Lext, Xext, Rext) in G[U ext
i \Wi0 ] with terminals L,R is consistent

with ψ with respect to (TL, XB, TR), if it is consistent in the same sense as in table
T4, and moreover (TL, XB, TR) = (Lext ∩ Bi0 , X

ext ∩ Bi0 , R
ext ∩ Bi0). Then entry

T [it][φ][ψ] contains the pair (r,X0), where r is the maximum possible |Rext ∩ Wi|
among extensions consistent with ψ with respect to (TL, XB, TR), and X0 is the cor-
responding set Xext∩Wi for which this maximum was attained, or ⊥ if the signature
φ is invalid with respect to (Si0 , Ui0) or no such consistent extension exists.

The tables D[it] can be computed by traversing the path P using the same re-
currential formulas as for table T4. When computing the next D[it], we use table
D[it−1] computed in the previous step and possibly table T4 from the second child of
it. Moreover, as D[i0] we insert the dummy table Dummy[φ][ψ] defined as follows:

• Dummy[(Ui0 , Si0)][(TR, XB, TL, 0)] = 0;
• all the other entries are evaluated to ⊥.

It is easy to observe that table Dummy exactly satisfies the definition of D[i0]. It is
also straightforward to check that the recurrential formulas used for computing T4 can
be used in the same manner to compute tables D[it] for t = 1, 2, . . . , h. The definition
of D and the method of constructing it show that the values D[r][(∅, ∅)][(∅, ∅, ∅, x)]
for x = 0, 1, . . . , k, correspond to exactly right-pushed separations with separators of
size exactly x in the graph G′

1: insertion of the dummy table removes A2 from the
graph and forces the separation to respect the terminals in Bi0 .
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Let us conclude with a summary of the running time of the query. The algorithm
of Lemma 6.6 uses O(tO(1) · logn) time. Then we iterate through at most O(3t · k2)
tuples (TL, XB, TR) and (k1, k2), and for each of them we spendO(k) time on achieving
goal (i) and O(5t ·kO(1) · logn) time on achieving goal (ii). Hence, in total the running
time is O(15t · kO(1) · logn).

7. Conclusions. In this paper we have presented an algorithm that gives a
constant factor approximation (with a factor 5) of the treewidth of a graph, which
runs in single exponential time in the treewidth and linear in the number of vertices of
the input graph. Here we give some consequences of the result, possible improvements,
and open problems.

7.1. Consequences, corollaries, and future work. A large number of com-
putational results use the following overall scheme: first find a tree decomposition of
bounded width, and then run a dynamic programming algorithm on it. Many of these
results use the linear time exact algorithm of Bodlaender [9] for the first step. If we
aim for algorithms whose running time dependency on treewidth is single exponential,
however, then our algorithm is preferable over the exact algorithm of Bodlaender [9].
Indeed, many classical problems like Dominating Set and Independent Set are
easily solvable in time O(ck · n) when a tree decomposition of width k is provided;
see Telle and Proskurowski [43]. Furthermore, there is on-going work on finding new
dynamic programming routines with such a running time for problems seemingly
not admitting such robust solutions; the fundamental examples are Steiner Tree,
Traveling Salesman, and Feedback Vertex Set [11, 21]. The results of this
paper show that for all these problems we may also claim O(ck ·n) running time even
if the decomposition is not given to us explicitly, as we may find its constant factor
approximation within the same complexity bound.

Our algorithm is also compatible with the celebrated Courcelle’s theorem [20],
which states that every graph problem expressible in monadic second-order logic
(MSOL) is solvable in time f(k, ||ϕ||) · n when a tree decomposition of width k is
provided, where ϕ is the formula expressing the problem and f is some function.
Again, the first step of applying Courcelle’s theorem is usually computing the opti-
mum tree decomposition using the linear time algorithm of Bodlaender [9]. Using
the results of this paper, this step can be substituted with finding an approximate
decomposition in O(ck · n) time. For many problems, in the overall running time
analysis we may thus significantly reduce the factor dependent on the treewidth of
the graph, while keeping the linear dependence on n at the same time.

It seems that the main novel idea of this paper, namely, treating the tree decom-
position as a data structure on which logarithmic-time queries can be implemented,
can be similarly applied to all the problems expressible in MSOL. Extending our
results in this direction seems like a thrilling perspective for future work.

Concrete examples where the results of this paper can be applied can be found
also within the framework of bidimensionality theory [22, 23]. In all parameterized
subexponential algorithms obtained within this framework, the polynomial depen-
dence of n in the running time becomes linear if our algorithm is used. For instance,
it follows immediately that every parameterized minor bidimensional problem with
parameter k, solvable in time 2O(t)n on graphs of treewidth t, is solvable in time

2O(
√
k)n on graphs excluding some fixed graph as a minor.

7.2. Improvements and open problems. Our result is mainly of theoretical
importance due to the large constant c at the base of the exponent. One immediate
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open problem is to obtain a constant factor approximation algorithm for treewidth
with running time O(ckn), where c is a small constant.

Another open problem is to find more efficient exact fixed-parameter tractable
(FPT) algorithms for treewidth. Bodlaender’s algorithm [9] and the version of Reed

and Perković both use O(kO(k3)n) time; the dominant term being a call to the dy-
namic programming algorithm of Bodlaender and Kloks [15]. In fact, no exact FPT
algorithm for treewidth is known whose running time as a function of the parameter k
is asymptotically smaller than this; testing the treewidth by verifying the forbidden
minors can be expected to be significantly slower. Thus, it would be very interesting
to have an exact algorithm for testing if the treewidth of a given graph is at most k
in 2o(k

3)nO(1) time.
Currently, the best approximation ratio for treewidth for algorithms whose run-

ning time is polynomial in n and single exponential in the treewidth is the 3-approxi-
mation algorithm from section 3. What is the best approximation ratio for treewidth
that can be obtained in this running time? Is it possible to give lower bounds?
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