
SIAM J. DISCRETE MATH. c© 2016 Society for Industrial and Applied Mathematics
Vol. 30, No. 1, pp. 383–410

HITTING FORBIDDEN MINORS: APPROXIMATION AND
KERNELIZATION∗

FEDOR V. FOMIN† , DANIEL LOKSHTANOV‡, NEELDHARA MISRA§ ,
GEEVARGHESE PHILIP§ , AND SAKET SAURABH¶

Abstract. We study a general class of problems called F-Deletion problems. In an F-
Deletion problem, we are asked whether a subset of at most k vertices can be deleted from a
graph G such that the resulting graph does not contain as a minor any graph from the family F
of forbidden minors. We study the problem parameterized by k, using p-F-Deletion to refer to
the parameterized version of the problem. We obtain a number of algorithmic results on the p-
F-Deletion problem when F contains a planar graph. We give a linear vertex kernel on graphs
excluding t-claw K1,t, the star with t leaves, as an induced subgraph, where t is a fixed integer and

an approximation algorithm achieving an approximation ratio of O(log3/2 OPT ), where OPT is the
size of an optimal solution on general undirected graphs. Finally, we obtain polynomial kernels for
the case when F only contains graph θc as a minor for a fixed integer c. The graph θc consists of
two vertices connected by c parallel edges. Even though this may appear to be a very restricted class
of problems it already encompasses well-studied problems such as Vertex Cover, Feedback Ver-

tex Set, and Diamond Hitting Set. The generic kernelization algorithm is based on a nontrivial
application of protrusion techniques, previously used only for problems on topological graph classes.

Key words. kernelization, minor, monadic second order logic

AMS subject classifications. 68W40, 68Q25, 68R10

DOI. 10.1137/140997889

1. Introduction. Let F be a finite set of graphs. Throughout the paper we
assume that F is explicitly given to us. In an p-F-Deletion problem,1 we are given
an n-vertex graph G and an integer k as input, and asked whether at most k vertices
can be deleted from G such that the resulting graph does not contain a graph from
F as a minor. More precisely, the problem is defined as follows:

p-F-Deletion

Instance: A graph G and a nonnegative integer k.
Parameter: k.
Question: Does there exist S ⊆ V (G), |S| ≤ k,

such that G \ S contains no graph from F as a minor?

We refer to such a subset S as an F -hitting set. The p-F-Deletion problem is a
generalization of several fundamental problems. For example, when F = {K2}, a com-
plete graph on two vertices, this is the Vertex Cover problem. When F = {C3}, a

∗Received by the editors December 1, 2014; accepted for publication (in revised form) January 8,
2016; published electronically March 3, 2016. A preliminary version of this paper appeared in the
proceedings of STACS 2011, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Wadern, Germany,
2011, pp. 189–200.

http://www.siam.org/journals/sidma/30-1/99788.html
†Department of Informatics, University of Bergen, Norway (fomin@ii.uib.no). The research of

this author was funded by the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013)/ERC Grant Agreement 267959.

‡Department of Informatics, University of Bergen, Norway (daniello@ii.uib.no).
§The Institute of Mathematical Sciences, Chennai, India (neeldhara@imsc.res.in, gphilip@imsc.

res.in).
¶Department of Informatics, University of Bergen, Norway and the Institute of Mathematical

Sciences, Chennai, India (saket@imsc.res.in).
1We use prefix p to distinguish the parameterized version of the problem.

383

http://www.siam.org/journals/sidma/30-1/99788.html
mailto:fomin@ii.uib.no
mailto:daniello@ii.uib.no
mailto:neeldhara@imsc.res.in
mailto:gphilip@imsc.res.in
mailto:gphilip@imsc.res.in
mailto:saket@imsc.res.in


384 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

Fig. 1. Graphs T2, t-claw K1,t with t = 7, and θc with c = 7.

cycle on three vertices, this is the Feedback Vertex Set problem. Other famous
cases are F = {K2,3,K4}, F = {K3,3,K5}, and F = {K3, T2}, which correspond to re-
moving vertices to obtain outerplanar graphs, planar graphs, and graphs of pathwidth
one, respectively. Here, Ki,j denotes the complete bipartite graph with bipartitions
of sizes i and j, and Ki denotes the complete graph on i vertices. Further, a T2 is
a star on three leaves, each of whose edges has been subdivided exactly once. A T2

structure is depicted in the leftmost graph of Figure 1. In the literature, these prob-
lems are known as p-Outerplanar Deletion Set, p-Planar Deletion Set, and
p-Pathwidth One Deletion Set, respectively.

Our interest in the p-F-Deletion problem is motivated by its generality and the
recent developments in kernelization or polynomial time preprocessing. The param-
eterized complexity of this general problem is well understood. By a celebrated re-
sult of Robertson and Seymour, every p-F-Deletion problem is nonuniformly fixed-
parameter tractable (FPT). That is, for every k there is an algorithm solving the
problem in time O(f(k) · n3) [59]. On the other hand, whenever F is given explicitly,
we have that the excluded minors for the class of graphs that are YES-instances of
the p-F-Deletion problem can be computed explicitly [2]. This leads to a single
algorithm for all k, making the problem uniformly FPT. In this paper we study this
problem from the view point of polynomial time preprocessing and approximation,
when the obstruction set F satisfies certain properties.

Preprocessing as a strategy for coping with hard problems is universally applied
in practice and the notion of kernelization provides a mathematical framework for an-
alyzing the quality of preprocessing strategies. We consider parameterized problems,
where every instance I comes with a parameter k. Such a problem is said to admit
a polynomial kernel if every instance (I, k) can be reduced in polynomial time to an
equivalent instance with both size and parameter values bounded by a polynomial
in k. The notion of a linear kernel is analogous, where we require the size and the
parameter of the reduced instance to be linear in k. The study of kernelization is
a major research frontier of parameterized complexity and many important recent
advances in the area are on kernelization. These include general results showing that
certain classes of parameterized problems have polynomial kernels [4, 15, 43, 51]. The
recent development of a framework for ruling out polynomial kernels under certain
complexity-theoretic assumptions [14, 34, 44] has added a new dimension to the field
and strengthened its connections to classical complexity. For overviews of kernel-
ization we refer to surveys [12, 46] and to the corresponding chapters in books on
parameterized complexity [30, 41, 55].

While the initial interest in kernelization was driven mainly by practical applica-
tions, the notion of kernelization turned out to be very important in theory as well.
It is well known (see, e.g., [35]) that a parameterized problem belongs to the class



HITTING FORBIDDEN MINORS 385

FPT if and only if it has a (perhaps exponential) kernel. Kernelization enables us
to classify problems within the class FPT further, based on the sizes of the problem
kernels. So far, most of the work done in the field of kernelization is still specific to
particular problems and powerful unified techniques to identify classes of problems
with polynomial kernels are still in their nascent stage. One of the fundamental chal-
lenges in the area is the possibility of characterising general classes of parameterized
problems possessing kernels of polynomial sizes. From this perspective, the class of
the p-F-Deletion problems is very interesting because it contains as special cases
the p-Vertex Cover and p-Feedback Vertex Set problems which are the most
intensively studied problems from the kernelization perspective.

Our contribution and key ideas. One of the main conceptual contributions of this
work is the extension of protrusion techniques employed in [15, 43] for obtaining meta-
kernelization theorems for problems on sparse graphs like planar and H-minor-free
graphs, to general graphs. We demonstrate this by obtaining a number of kernelization
results for the p-F-Deletion problem when F contains a planar graph. Our first
result is the following theorem for graphs that do not contain K1,t (a star on t leaves;
see Figure 1) as an induced subgraph.

Theorem 1.1. Let F be an obstruction set containing a planar graph. Then p-
F-Deletion admits a linear vertex kernel on graphs excluding K1,t as an induced
subgraph, where t is a fixed integer.

Several well-studied graph classes do not contain graphs with induced K1,t. Of
course, every graph with maximum vertex degree at most (t − 1) is K1,t-free. The
class of K1,3-free graphs, also known as claw-free graphs, contains line graphs and de
Bruijn graphs. Unit disk graphs are known to be K1,7-free [26].

Our kernelization is a divide and conquer algorithm which finds large protrusions.
A protrusion is a subgraph of constant treewidth separated from the remaining part of
the graph by a constant number of vertices. Having found protrusions of substantial
size, the kernelization algorithm replaces them with smaller, “equivalent” protrusions.
Here we use the results from the work by Bodlaender et al. [15] that enable this step
whenever the parameterized problem in question “behaves like a regular language.”
To prove that p-F-Deletion has the desired properties for this step, we formulate
the problem in monadic second order (MSO) logic and show that it exhibits certain
monotonicity properties. As a corollary we obtain that p-Feedback Vertex Set, p-
Diamond Hitting Set, p-Pathwidth One Deletion Set, and p-Outerplanar

Deletion Set admit a linear vertex kernel on graphs excluding K1,t as an induced
subgraph. The same methodology applies to p-Disjoint Cycle Packing, which
is the problem of finding at least k vertex disjoint cycles (parameterized by k). In
particular, we obtain an O(k log k) vertex kernel for p-Disjoint Cycle Packing

on graphs excluding K1,t as an induced subgraph. We note that p-Disjoint Cycle

Packing does not admit a polynomial kernel on general graphs [17] unless NP ⊆
CoNP/poly.

Let θc be a graph with two vertices and c ≥ 1 parallel edges (see Figure 1). Our
second result is the following theorem on general graphs.

Theorem 1.2. Let F be an obstruction set containing only θc. Then p-F-Deletion

admits a kernel of size O(k2 log3/2 k).

A number of well-studied NP-hard combinatorial problems are special cases of p-
θc-Deletion. When c = 1, this is the classical p-Vertex Cover problem [54]. For



386 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

c = 2, this is another well-studied problem, the p-Feedback Vertex Set problem [7,
9, 24, 48]. When c = 3, this is the p-Diamond Hitting Set problem [40]. Let us
note that the size of the best known kernel for c = 2 is O(k2), which is very close
to the size of the kernel in Theorem 1.2. Also, Dell and van Melkebeek proved that
no NP-hard vertex deletion problem based on a graph property that is inherited by
subgraphs can have kernels of size O(k2−ε) unless NP ⊆ CoNP/poly [34] and thus
the sizes of the kernels in Theorem 1.2 are tight up to a polylogarithmic factor.

The proof of Theorem 1.2 is obtained in a series of nontrivial steps. The very high
level idea is to reduce the general case to a problem on graphs of bounded degree, which
allows us to use the protrusion techniques as in the proof of Theorem 1.1. However,
vertex degree reduction is not straightforward and requires several new ideas. One
of the new tools is a generic O(log3/2 OPT )-approximation algorithm for the p-F-
Deletion problem when the class of excluded minors for F contains at least one
planar graph. More precisely, we obtain the following result, which is of independent
interest.

Theorem 1.3. Let F be an obstruction set containing a planar graph, and let
OPT be the size of the smallest F-hitting set. Given a graph G, in polynomial time
we can find a subset S ⊆ V (G) such that G[V \ S] contains no element of F as a

minor and |S| = O(OPT · log3/2 OPT ).

The constants in the theorem depend only on the family F , and in particular,
the size of the smallest planar graph in F . While several generic approximation
algorithms are known for problems of minimum vertex deletion to obtain subgraphs
with property P , as when P is a hereditary property with a finite number of minimal
forbidden subgraphs [53], or can be expressed as a universal first order sentence over
subsets of edges of the graph [50], we are not aware of any generic approximation
algorithm for the case when a property P is characterized by a finite set of forbidden
minors.

We then use the approximation algorithm as a subroutine in a polynomial time al-
gorithm that transforms the input instance (G, k) into an equivalent instance (G′, k′)
such that k′ ≤ k and the maximum degree of G′ is bounded by O(k log3/2 k). After
obtaining an equivalent instance with bounded degree, we apply protrusion techniques
and prove Theorem 1.2. An important combinatorial tool used in designing this algo-
rithm is the q–expansion lemma. For q = 1 this lemma is Hall’s theorem and its usage
is equivalent to the application of the crown decomposition technique [1, 23]. Apply-
ing the lemma for q = 2 amounts to what is known as the double crown decomposition,
used by Prieto and Sloper for the first time to obtain a quadratic kernel for packing
k disjoint copies of stars with s leaves [58]. Prieto [57] used the q–expansion lemma
in its most general form to obtain a quadratic kernel for finding a maximal match-
ing with at most k edges. Prieto [57] referred to the q–expansion lemma as the
q-spike crown decomposition. We would like to add here that even though the ap-
plications of the q–expansion lemma is the same as the q-spike crown decomposition,
the q–expansion lemma involves a slightly weaker hypothesis (details can be found in
section 5).

Related work. All nontrivial p-F-Deletion problems are NP-hard [52]. By one
of the most well-known consequences of the celebrated graph minor theory of Robert-
son and Seymour the p-F-Deletion problem is nonuniformly FPT. Whenever F is
given explicitly, the problem is uniformly FPT because the excluded minors for the
class of graphs that are YES-instances of the p-F-Deletion problem can by com-



HITTING FORBIDDEN MINORS 387

puted explicitly [2]. A special case of the problem when F contains a planar graph
was introduced by Fellows and Langston [38], who gave a nonconstructive algorithm
running in time f(k)·n2 for some function f(k) [38, Theorem 6]. An even more special
case of the problem, when the set F contains only θc, has been studied from approxi-
mation and parameterized perspectives. In particular, the case of p-θ1-Deletion or,
equivalently, p-Vertex Cover, is the most well-studied problem in parameterized
complexity. Different kernelization techniques were applied on the problem, eventu-
ally resulting in a 2k-sized vertex kernel [1, 22, 33, 47]. For the kernelization of p-
Feedback Vertex Set, or p-θ2-Deletion, there has been a sequence of dramatic
improvements starting from an O(k11) vertex kernel by Buragge et al. [20], improved
to O(k3) by Bodlaender [11], and then finally to O(k2) by Thomassé [61]. Recently
Philip, Raman, and Sikdar [56] and Cygan et al. [31] obtained polynomial kernels
for p-Pathwidth One Deletion Set. Constant factor approximation algorithms
are known for Vertex Cover and Feedback Vertex Set [7, 8]. Very recently,
a constant factor approximation algorithm for the Diamond Hitting Set problem,
or p-θ3-Deletion, was obtained in [40]. Prior to our work, no polynomial kernels
were known for p-Diamond Hitting Set or more general families of p-F-Deletion

problems.
One of the main techniques used in this work is the extension of the protrusion

theory employed in [15, 43] for obtaining metakernelization theorems for problems on
sparse graphs like planar and H-minor-free graphs, to general graphs. Bodlaender et
al. [15] were first to use protrusion techniques (or rather graph reduction techniques)
to obtain kernels, but the idea of using graph replacement for algorithms has been
there for a long time. The idea of graph replacement for algorithms dates back to
Fellows and Langston [39]. Arnborg et al. [5] essentially showed that protrusions exist
for many problems on graphs of bounded treewidth, and gave safe ways of reducing
graphs. Using this, Arnborg et al. [5] obtained a linear time algorithm for MSO
expressible problems on graphs of bounded treewidth. Bodlaender and de Fluiter [13,
18] and de Fluiter [32] generalized these ideas in several ways—in particular, they
applied it to some optimization problems. It is also important to mention the work
of Bodlaender and Hagerup [16], who used the concept of graph reduction to obtain
parallel algorithms for MSO expressible problems on bounded treewidth graphs.

The remaining part of the paper is organised as follows. In section 2 we provide
preliminaries on basic notions from graph theory and logic used in the paper. Sec-
tion 3 is devoted to the proof of Theorem 1.1. In section 4 we give an approximation
algorithm proving Theorem 1.3. The proof of Theorem 1.2 is given in section 5. We
conclude with open questions in section 6.

2. Preliminaries. In this section we give various definitions which we use in
the paper. For n ∈ N, we use [n] to denote the set {1, . . . , n}. We use V (G) to
denote the vertex set of a graph G, and E(G) to denote the edge set. The degree
of a vertex v in G is the number of edges incident on v, and is denoted by d(v).
We use Δ(G) to denote the maximum degree of G. A graph G′ is a subgraph of G
if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph G′ is called an induced subgraph
of G if E(G′) = {{u, v} ∈ E(G) | u, v ∈ V (G′)}. Given a subset S ⊆ V (G) the
subgraph induced by S is denoted by G[S]. The subgraph induced by V (G) \ S is
denoted by G \ S. We denote by NG(S) the open neighborhood of S, i.e., the set of
vertices in V (G) \ S adjacent to S. Whenever the graph G is clear from the context,
we omit the subscript in NG(S) and denote it only by N(S). Given a graph G and
S ⊆ V (G), we define ∂G(S) as the set of vertices in S that have a neighbor in V (G)\S.



388 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

For a set S ⊆ V (G) the neighborhood of S is NG(S) = ∂G(V (G) \ S). When it is
clear from the context, we omit the subscripts.

By contracting an edge (u, v) of a graph G, we mean identifying the vertices u
and v, keeping all the parallel edges, and removing all the loops. A minor of a graph
G is a graph H that can be obtained from a subgraph of G by contracting edges. We
keep parallel edges after contraction since the graph θc which we want to exclude as
a minor itself contains parallel edges.

Let G,H be two graphs. A subgraph G′ of G is said to be a minor model of H in
G if G′ contains H as a minor. The subgraph G′ is a minimal minor model of H in
G if no proper subgraph of G′ is a minor model of H in G. A graph class C is minor
closed if any minor of any graph in C is also an element of C. A minor closed graph
class C is H-minor-free or simply H-free if H /∈ C. Let F be a finite set of graphs. A
vertex subset S ⊆ V (G) of a graph G is said to be an F -hitting set if G \ S does not
contain any graphs in the family F as a minor.

2.1. MSO logic. The syntax of MSO logic on graphs includes the logical con-
nectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices and sets of edges,
the quantifiers ∀, ∃ that can be applied to these variables, and the following five binary
relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable;
2. d ∈ D, where d is an edge variable and D is an edge set variable;
3. inc(d, u), where d is an edge variable, u is a vertex variable, and the inter-

pretation is that the edge d is incident on the vertex u;
4. adj(u, v), where u and v are vertex variables u, and the interpretation is that

u and v are adjacent;
5. equality of variables representing vertices, edges, set of vertices, and set of

edges.
Many common graph-theoretic notions such as vertex degree, connectivity, pla-

narity, acyclicicity, and so on, can be expressed in MSO, as can be seen from intro-
ductory expositions [19, 28]. Of particular interest to us are p-min-MSO problems.
In a p-min-MSO graph problem Π, we are given a graph G and an integer k as input.
The objective is to decide whether there is a vertex/edge set S of size at most k such
that the MSO-expressible predicate PΠ(G,S) is satisfied.

2.2. Parameterized algorithms and kernels. A parameterized problem Π
is a subset of Γ∗ × N for some finite alphabet Γ. An instance of a parameterized
problem consists of (x, k), where k is called the parameter. A central notion in
parameterized complexity is FPT which means, for a given instance (x, k), solvability
in time f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in
the input size. The notion of kernelization is formally defined as follows.

Definition 1 (kernelization, kernel [14]). A kernelization algorithm for a param-
eterized problem Π ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs, in
time polynomial in (|x| + k), a pair (x′, k′) ∈ Σ∗ × N such that (a) (x, k) ∈ Π if and
only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable function. The
output instance x′ is called the kernel, and the function g is referred to as the size of
the kernel. If g(k) = kO(1), then we say that Π admits a polynomial kernel.

It is important to mention here that the early definitions of kernelization required
that k′ ≤ k. This makes intuitive sense, as the parameter k measures the complexity
of the problem—thus the larger the k, the harder the problem. This requirement was



HITTING FORBIDDEN MINORS 389

subsequently relaxed, notably in the context of lower bounds. An advantage of the
more liberal notion of kernelization is that it is robust with respect to polynomial
transformations of the kernel. However, it limits the connection with practical pre-
processing. All the kernels obtained in this paper respect the fact that the output
parameter is at most the input parameter, that is, k′ ≤ k.

2.3. Treewidth and protrusions. Let G be a graph. A tree decomposition of
a graph G is a pair (T,X = {Xt}t∈V (T )), where T is a tree, and for all t ∈ V (T ), Xt

is a subset of V (G), such that
• ∪t∈V (T )Xt = V (G),
• for every edge (x, y) ∈ E(G) there is a t ∈ V (T ) such that {x, y} ⊆ Xt, and
• for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt}
is connected.

The width of a tree decomposition is (maxt∈V (T ) |Xt|)− 1 and the treewidth of G
is the minimum width over all tree decompositions of G. A tree decomposition (T,X )
is called a nice tree decomposition if T is a tree rooted at some node r, where Xr = ∅,
each node of T has at most two children, and each node is of one of the following
kinds:

1. Introduce node: a node t that has only one child t′, where Xt ⊃ Xt′ and
|Xt| = |Xt′ |+ 1.

2. Forget node: a node t that has only one child t′, where Xt ⊂ Xt′ and |Xt| =
|Xt′ | − 1.

3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
4. Base node: a node t that is a leaf of t, is different than the root, and Xt = ∅.

Notice that, according to the above definition, the root r of T is either a forget node
or a join node. It is well known that any tree decomposition of G can be transformed
into a nice tree decomposition in time O(|V (G)| + |E(G)|) maintaining the same
width [49]. We use Gt to denote the graph induced on the vertices ∪t′Xt′ , where t′

ranges over all descendants of t, including t. We use Ht to denote Gt \Xt. We now
define the notion of a protrusion.

Definition 2 (r-protrusion). Given a graph G, we say that a set X ⊆ V (G) is
an r-protrusion of G if tw(G[X ]) ≤ r and |∂(X)| ≤ r.

2.4. t-boundaried graphs. In this section we define t-boundaried graphs and
various operations on them. Throughout this section, t is an arbitrary positive integer.

Definition 3 (t-boundaried graphs). A t-boundaried graph is a graph G with t
distinguished vertices, uniquely labeled from 1 to t. The set ∂(G) of labeled vertices is
called the boundary of G. The vertices in ∂(G) are referred to as boundary vertices
or terminals.

For a graph G and a vertex set S ⊆ V (G), we will sometimes consider the graph
G[S] as the |∂(S)|-boundaried graph with ∂(S) being the boundary.

Definition 4 (gluing by ⊕). Let G1 and G2 be two t-boundaried graphs. We
denote by G1⊕G2 the t-boundaried graph obtained by taking the disjoint union of G1

and G2 and identifying each vertex of ∂(G1) with the vertex of ∂(G2) with the same
label; that is, we glue them together on the boundaries. In G1 ⊕ G2 there is an edge
between two labeled vertices if there is an edge between them in G1 or in G2.

In this paper, t-boundaried graphs often come coupled with a vertex set which
represents a partial solution to some optimization problem. For ease of notation we
define Ht to be the set of pairs (G,S), where G is a t-boundaried graph and S ⊆ V (G).



390 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

Definition 5 (replacement). Let G be a graph containing an r-protrusion X.
Let G1 be an r-boundaried graph. The act of replacing G[X ] with G1 corresponds to
changing G into G[(V (G) \X) ∪ ∂(X)]⊕G1.

2.5. Finite integer index. In this section we define the notion of finite integer
index. This first appeared in the work of Bodlaender and de Fluiter [13, 18, 32].

Definition 6 (canonical equivalence). For a parameterized problem Π and two
t-boundaried graphs G1 and G2, we say that G1 ≡Π G2 if there exists a constant c
such that for all t-boundaried graphs G3 and for all k,

(G1 ⊕G3, k) ∈ Π if and only if (G2 ⊕G3, k + c) ∈ Π.

Definition 7 (finite integer index). We say that a parameterized problem Π has
finite integer index if for every t there exists a finite set S of t-boundaried graphs such
that for any t-boundaried graph G1 there exists G2 ∈ S such that G2 ≡Π G1. Such a
set S is called a set of representatives for (Π, t).

Note that for every t, the relation ≡Π on t-boundaried graphs is an equivalence
relation. A problem Π is finite integer index if and only if for every t, ≡Π is of
finite index, that is, has a finite number of equivalence classes. The notion of strong
monotonicity is an easily checked sufficient condition for a p-min-MSO problem to
have finite integer index.

Definition 8 (signatures). Let Π be a p-min-MSO problem. For a t-boundaried
graph G we define the signature function ζΠG : Ht → N ∪ {∞} as follows. For a pair
(G′, S′) ∈ Ht, if there is no set S ⊆ V (G) (S ⊆ E(G)) such that PΠ(G ⊕G′, S ∪ S′)
holds, then ζΠG((G

′, S′)) = ∞. Otherwise ζΠG((G′, S′)) is the size of the smallest S ⊆
V (G) (S ⊆ E(G)) such that PΠ(G⊕G′, S ∪ S′) holds.

Definition 9 (strong monotonicity). A p-min-MSO problem Π is said to be
strongly monotone if there exists a function f : N → N such that the following con-
dition is satisfied. For every t-boundaried graph G, there is a subset S ⊆ V (G) such
that for every (G′, S′) ∈ Ht such that ζΠG((G

′, S′)) is finite, PΠ(G⊕G′, S ∪ S′) holds
and |S| ≤ ζΠG((G

′, S′)) + f(t).

2.6. MSO formulations. We now give MSO formulations for some properties
involving F or θc that we use in our arguments. For a graph G and a vertex set S ⊆
V (G), let Conn(G,S) denote the MSO formula which states that G[S] is connected,
and let MaxConn(G,S) denote the MSO formula which states that G[S] is a maximal
connected subgraph of G.

H minor models. Let F be the finite forbidden set. For a graph G, we use φH(G)
to denote an MSO formula which states that G contains H as a minor—equivalently,
that G contains a minimal H minor model. Let V (H) = {h1, . . . , hc}. Then, for a
simple graph H , φH(G) is given by:

φH(G) ≡ ∃X1, . . . , Xc

⊆ V (G)

⎡
⎣∧
i�=j

(Xi ∩Xj = ∅) ∧
∧

1≤i≤c

Conn(G,Xi)

∧
∧

(hi,hj)∈E(H)

∃x ∈ Xi ∧ y ∈ Xj [(x, y) ∈ E(G)]

⎤
⎦ .



HITTING FORBIDDEN MINORS 391

More generally, if H has pj parallel edges between vertices (hi, hj), then the
formula φH(G) is given by

φH(G) ≡ ∃X1, . . . , Xc

⊆ V (G)

⎡
⎣∧
i�=j

(Xi ∩Xj = ∅) ∧
∧

1≤i≤c

Conn(G,Xi)

∧
∧

(hi,hj)∈E(H)

∃x1, . . . , xpij ∈ Xi ∧ y1, . . . , ypij

∈ Xj

⎡
⎣∧�∈[pij ](x�, y�) ∈ E(G)

∧
∧

(r �=s)∈[pij]×[pij ]

[xr �= xs] ∧
∧

(r �=s)∈[pij ]×[pij ]

yr �= ys]

⎤
⎦
⎤
⎦ .

Minimum-size F-hitting set. A minimum-size F -hitting set of graph G can be
expressed as

Minimize S ⊆ V (G)

[ ∧
H∈F

¬φH(G \ S)
]
.

Largest θc “flower.” Let v be a vertex in a graph G. A maximum-size set M of
θc minor models in G, all of which contain v and no two of which share any vertex
other than v, can be represented as

Maximize S

⊆ V (G)[∃F ⊆ E(G)[∀x ∈ S[∃X ⊆ V ′[MaxConn(G′, X)

∧ x ∈ X ∧ ∀y ∈ S[y �= x =⇒ y /∈ X ]

∧ φθc(X ∪ {v})]]]].

Here G′ is the graph with vertex set V (G) and edge set F , and V ′ = V (G)\{v}. S
is a system of distinct representatives for the vertex sets that constitute the elements
of M .

3. Kernelization for p-F-Deletion on K1,t free graphs. In this section we
show that if the obstruction set F contains a planar graph then the p-F-Deletion

problem has a linear vertex kernel on graphs excluding K1,t as an induced subgraph.
We start with the following lemma, which is crucial to our kernelization algorithms.

Lemma 3.1. Let F be an obstruction set containing a planar graph of size h. If
G has an F-hitting set S of size at most k, then tw(G \ S) ≤ d and tw(G) ≤ k + d,

where d = 202(14h−24)5 .

Proof. By assumption, F contains at least one planar graph. Let h be the size
of the smallest planar graph H contained in F . By a result of Robertson, Seymour,
and Thomas [60], H is a minor of the (� × �)-grid, where � = 14h − 24. In the
same paper Robertson, Seymour, and Thomas [60] have shown that any graph with

treewidth greater than 202�
5

contains a (�× �)-grid as a minor. Let S be an F–hitting



392 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

set of G of size at most k. Since the (� × �)-grid contains H as a minor, we have

that tw(G \ S) ≤ 202�
5

. Therefore, tw(G) ≤ k + d, where d = 202�
5

—indeed, a
tree decomposition of width (k + d) can be obtained by adding the vertices of S to
every bag in an optimal tree decomposition of G \ S. This completes the proof of the
lemma.

In a series of recent developments, Chekuri and Chuzhoy [21] and Chuzhoy [25]
have demonstrated polynomial bounds on the treewidth of graphs that exclude a
planar graph as a minor. In particular, they show that there is a universal constant,
say b, such that if G excludes a planar graph H as a minor, then the treewidth of G
is O(|V (H)|b). The most recent work [25] achieves a bound of O(g36(log g)O(1)) on
the treewidth of graphs that contain a g× g grid minor. This implies that the bound
in Lemma 3.1 can in fact be improved to tw(G) ≤ k + d, where d = O(hb).

3.1. The protrusion rule—reductions based on finite integer index. We
obtain our kernelization algorithm for p-F-Deletion by applying a protrusion based
reduction rule. That is, any large r-protrusion for a fixed constant r that depends only
on F (that is, only on the problem) is replaced with a smaller equivalent r-protrusion.
For this, we utilize the following lemma of Bodlaender et al. [15].

Lemma 3.2 (see [15]). Let Π be a parameterized problem that has finite integer
index. Then there exists a computable function γ : N → N and an algorithm that
given an instance (G, k) and an r-protrusion X of G of size at least γ(r), runs in
O(|X |) time and outputs an instance (G∗, k∗) such that |V (G∗)| < |V (G)|, k∗ ≤ k,
and (G∗, k∗) ∈ Π if and only if (G, k) ∈ Π.

Remark 1. Let us remark that if G does not have K1,t as an induced subgraph
then the proof of Lemma 3.2 also ensures that the graph G′ does not contain K1,t

as an induced subgraph. This ensures that the reduced instance belongs to the same
graph class as the original. The remark is not only true about the class of graphs
excluding K1,t as an induced subgraph, but also for any graph class G that can be
characterized by either a finite set of forbidden subgraphs or induced subgraphs or
minors. That is, if G is in G then the graph G′ returned by Lemma 3.2 is also in G.

In order to apply Lemma 3.2 we need to be able to efficiently find large r-
protrusions whenever the instance considered is large enough. Also, we need to prove
that p-F-Deletion has finite integer index. The next lemma yields a divide and
conquer algorithm for efficiently finding large r-protrusions.

Lemma 3.3. There is a linear time algorithm that, given an n-vertex graph G and
a set X ⊆ V (G) such that tw(G \X) ≤ d, outputs a 2(d+ 1)-protrusion of G of size

at least n−|X|
4|N(X)|+1 . Here d is some constant.

Proof. Let F = G \X . The algorithm starts by computing a nice tree decompo-
sition of F of width at most d. Notice that since d is a constant this can be done in
linear time [10]. Let S be the vertices in V (F ) that are neighbors of X in G, that is,
S = NG(X).

The nice tree decomposition of F is a pair (T,B = {B�}�∈V (T )), where T is a
rooted binary tree. We will now mark some of the nodes of T . For every v ∈ S, we
mark the topmost node � in T such that v ∈ B�. In this manner, at most |S| nodes are
marked. Now we mark more nodes of T by exhaustively applying the following rule:



HITTING FORBIDDEN MINORS 393

if u and v are marked, mark their least common ancestor in T . Let M be the set of
all marked nodes of T . Standard counting arguments on trees give that |M | ≤ 2|S|.

Since T is a binary tree, it follows that T \M has at most 2|M | + 1 connected
components. Let the vertex sets of these connected components be C1, C2, . . . , Cη,
η ≤ 2|M |+ 1. For every i ≤ η, let C′

i = NT (Ci) ∪ Ci and let Pi =
⋃

u∈C′
i
Bu. By the

construction of M , every component of T \M has at most 2 neighbors in M . Also
for every 1 ≤ i ≤ η and v ∈ S, we have that if v ∈ Pi, then v should be contained in
one of the bags of NT (Ci). In other words, S ∩Pi ⊆

⋃
u∈C′

i\Ci
Bu. Thus every Pi is a

2(d+1)-protrusion ofG with boundary
⋃

u∈C′
i\Ci

Bu. Since η ≤ 2|M |+1 ≤ 4|S|+1, the

pigeonhole principle yields that there is a protrusion Pi with at least n−|X|
4|S|+1 vertices.

The algorithm constructs M and P1, . . . , Pη and outputs the largest protrusion Pi.
It is easy to implement this procedure to run in linear time. This concludes the
proof.

Now we show that p-F-Deletion has finite integer index. For this we need the
following lemma.

Lemma 3.4 (see [15]). Every strongly monotone p-min-MSO problem has finite
integer index.

Lemma 3.5. p-F-Deletion has finite integer index.

Proof. One can easily formulate p-F-Deletion in MSO, which shows that it is
a p-min-MSO problem (see section 2.6). To complete the proof that p-F-Deletion

has finite integer index we show that Π = p-F-Deletion is strongly monotone. Given
a t-boundaried graph G, with ∂(G) as its boundary, let S′′ ⊆ V (G) be a minimum
set of vertices in G such that G \S′′ does not contain any graph in F as a minor. Let
S = S′′ ∪ ∂(G).

Now for any (G′, S′) ∈ Ht such that ζΠG((G′, S′)) is finite, we have that G ⊕
G′[(V (G) ∪ V (G′)) \ (S ∪ S′)] does not contain any graph in F as a minor and
|S| ≤ ζΠG((G

′, S′)) + t. This proves that p-F-Deletion is strongly monotone. By
Lemma 3.4, p-F-Deletion has finite integer index.

3.2. Analysis and kernel size—proof of Theorem 1.1. Now we give the
desired kernel for p-F-Deletion. We first prove a useful combinatorial lemma.

Lemma 3.6. Let G be a graph excluding K1,t as an induced subgraph and S be an
F-hitting set. If F contains a planar graph of size h, then |N(S)| ≤ g(h, t) · |S| for
some computable function g of h and t.

Proof. By Lemma 3.1, tw(G \ S) ≤ d for d = 202(14h−24)5. It is well known that
a graph of treewidth d is d + 1 colorable (see, for instance, [41]). Let v ∈ S and let
Sv be its neighbors in G \ S. We first show that |Sv| ≤ (t − 1)(d + 1). Consider the
graph G∗ = G[Sv]. Since tw(G \ S) ≤ d we have that tw(G∗) ≤ d and hence G∗ is
d + 1 colorable. Fix a coloring κ of G∗ with d + 1 colors and let η be the size of the
largest color class. Clearly η ≥ (|Sv|/d+ 1). Since each color class is an independent
set, we have that η ≤ (t− 1), else we will get K1,t as an induced subgraph in G. This
implies that |Sv| ≤ (t− 1)(d+ 1). Since v was an arbitrary vertex of S, we have that∑

v∈S |Sv| ≤
∑

v∈S(t−1)(d+1) = |S| ·g(h, t). Here g(h, t) = (t−1)(202(14h−24)5 +1).
Finally the observation that N(S) = ∪v∈SSv, yields the result.



394 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let (G, k) be an instance of p-F-Deletion and h be the
size of a smallest planar graph in the obstruction set F . We first apply Theorem 1.3
(to be proved in next section), an approximation algorithm for p-F-Deletion with

factor O(log3/2 OPT ), and obtain a set X ⊆ V (G) such that G\X contains no graph

in F as a minor. If the size of the set X is more than O(k log3/2 k) then we return
that (G, k) is a NO-instance to p-F-Deletion. This is justified by the approximation
guarantee provided by Theorem 1.3.

Let d denote the treewidth of the graph after the removal of X , that is, d :=
tw(G\X). Now we obtain the kernel in two phases: we first apply the protrusion rule
selectively (Lemma 3.2) and get a polynomial kernel. Then, we apply the protrusion
rule exhaustively on the obtained kernel to get a smaller kernel. This is done in order
to reduce the running time complexity of the kernelization algorithm. To obtain the
kernel we follow the following steps.

Applying the protrusion rule. By Lemma 3.1, d ≤ 202(14h−24)5 . We apply Lemma

3.3 and obtain a 2(d+1)-protrusion Y of G of size at least |V (G′)|−|X|
4|N(X)|+1 . By Lemma 3.5,

p-F-Deletion has finite integer index. Let γ : N → N be the function defined in

Lemma 3.2. If |V (G′)|−|X|
4|N(X)|+1 ≥ γ(2d+2), then using Lemma 3.2 we replace the 2(d+1)-

protrusion Y in G and obtain an instance (G∗, k∗) such that |V (G∗)| < |V (G)|,
k∗ ≤ k, and (G∗, k∗) is a YES-instance of p-F-Deletion if and only if (G, k) is a
YES-instance of p-F-Deletion . Recall that G∗ also excludes K1,t as an induced
subgraph.

Let (G∗, k∗) be a reduced instance with hitting setX∗ of size at mostO(k∗ log3/2 k∗).
In other words, there is no (2d+ 2)-protrusion of size γ(2d+ 2) in G∗ \X∗, and the
protrusion rule no longer applies. We claim that the number of vertices in this graph
is bounded by O(k log3/2 k). Indeed, since we cannot apply the protrusion rule, we

have that |V (G∗)|−|X∗|
4|N(X∗)|+1 ≤ γ(2d+ 2), which can be rewritten as follows:

|V (G∗)| ≤ γ(2d+ 2)(4|N(X∗)|+ 1) + |X∗|.(3.1)

By Lemma 3.6, |N(X∗)| ≤ g(h, d) · |X∗|. Since k∗ ≤ k, we have that

|V (G∗)| = O(γ(2d+ 2) · k log3/2 k) = O(k log3/2 k).(3.2)

This gives us a polynomial time algorithm that returns a vertex kernel of size
O(k log3/2 k).

Now we give a kernel of smaller size. We would like to replace every large (2d+2)-
protrusion in the graph by a smaller one. We find a (2d+ 2)-protrusion Y of size at
least γ(2d+ 2) by guessing the boundary ∂(Y ) of size at most 2d+ 2. This could be
performed in time |V (G∗)|O(d) = kO(d). Let (G∗, k∗) be the reduced instance on which
we cannot apply the protrusion rule. If (G, k) is a YES-instance, then G∗ admits an
F -hitting set S of size at most k∗. Note that tw(G \ S) ≤ d, and applying (3.1) with
S yields that |V (G∗)| = O(k). Recall that this analysis applies when we begin with a
YES-instance. Therefore, if the number of vertices in the reduced instance G∗ exceeds
the bound derived in (3.2), then we return that G is a NO-instance. This concludes
the proof of the theorem.

Corollary 3.7. p-Feedback Vertex Set, p-Diamond Hitting Set,
p-Pathwidth One Deletion Set, p-Outerplanar Deletion Set admit linear
vertex kernel on graphs excluding K1,t as an induced subgraph.



HITTING FORBIDDEN MINORS 395

The methodology used in proving Theorem 1.1 is not limited to p-F-Deletion.
For example, it is possible to obtain an O(k log k) vertex kernel on K1,t-free graphs
for p-Disjoint Cycle Packing, which is for a given graph G and positive integer k
to determine if there are k vertex disjoint cycles in G. It is interesting to note that p-
Disjoint Cycle Packing does not admit a polynomial kernel on general graphs [17].
For our kernelization algorithm, we use the following Erdős–Pósa property [36]: given
a positive integer � every graph G either has � vertex disjoint cycles or there exists
a set S ⊆ V (G) of size at most O(� log �) such that G \ S is a forest. So given a
graph G and positive integer k, we first apply the factor 2 approximation algorithm
given in [7] and obtain a set S such that G \ S is a forest. If the size of S is more
than O(k log k) then we return that G has k vertex disjoint cycles. Else, we use the
fact that p-Disjoint Cycle Packing [15] has finite integer index and apply the
protrusion reduction rule in G \ S to obtain an equivalent instance (G∗, k∗), as in
Theorem 1.1. The analysis for kernel size used in the proof of Theorem 1.1 together
with the observation that tw(G \ S) ≤ 1 shows that if (G, k) is a YES-instance then
the size of V (G∗) is at most O(k log k).

Corollary 3.8. p-Disjoint Cycle Packing has O(k log k) vertex kernel on
graphs excluding K1,t as an induced graph.

Next, we extend the methods used in this section for obtaining kernels for p-F-
Deletion on graphs excluding K1,t as an induced graph to all graphs, though for
restricted F—we consider the families F that contain θc.

4. An approximation algorithm for finding an F–hitting set. To ex-
tend our results to all graphs, we need a polynomial time approximation algorithm
with a factor polynomial in optimum size and not depending on the input size. For
example, an approximation algorithm with factor O(log n) would not serve our pur-
pose. Here, we obtain an approximation algorithm for p-F-Deletion with a factor
O(log3/2 OPT ) whenever the finite obstruction set F contains a planar graph. Here
OPT is the size of a minimum F -hitting set. This immediately implies a factor
O(log3/2 n) algorithm for all the problems that can be categorized by p-F-Deletion

when F contains a planar graph. We believe this result has its own significance and
is of independent interest.

Lemma 4.1. There is a polynomial time algorithm that, given a graph G and a
positive integer k, either reports that G has no F-hitting set of size at most k or finds
an F-hitting set of size at most O(k log3/2 k).

Proof. We begin by introducing some definitions that will be useful for describing
our algorithms. First is the notion of a good labeling function. Given a nice tree
decomposition (T,X = {Xt}t∈V (T )) of a graph G, a function g : V (T )→ N is called
a good labeling function if it satisfies the following properties:

• if t is a base node then g(t) = 0;
• if t is an introduce node, then g(t) = g(s), where s is the child of t;
• if t is a join node, then g(t) = g(s1) + g(s2), where s1 and s2 are the children

of t; and
• if t is a forget node, then g(t) ∈ {g(s), g(s) + 1}, where s is the child of t.

A max labeling function g is defined analogously to a good labeling function, the only
difference being that for a join node t, we have the condition g(t) = max{g(s1), g(s2)}.
We now turn to the approximation algorithm.



396 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

Our algorithm has two phases. In the first phase we obtain an F -hitting set of size
O(k2

√
log k) and in the second phase we use the hitting set obtained in the first phase

to get an F -hitting set of size O(k log3/2 k). The second phase could be thought of
as “bootstrapping” where one uses an initial solution to a problem to obtain a better
solution.

By assumption we know that F contains at least one planar graph. Let h be
the number of vertices in the smallest planar graph H contained in F . By a result
of Robertson, Seymour, and Thomas [60], H is a minor of the (ρ × ρ)-grid, where
ρ = 14h− 24. Robertson, Seymour, and Thomas [60] have also shown that any graph

with treewidth greater than 202ρ
5

contains a ρ× ρ grid as a minor. In the algorithm
we set d = 202ρ

5

+ 1.
We begin by describing the first phase of the algorithm; see Algorithm 1. We

start by checking whether a graph G has treewidth at most d (the first step of the
algorithm) using the linear time algorithm of Bodlaender [10]. If tw(G) ≤ d then we
find an optimum F -hitting set of G in linear time using a modification of Lemma 5.4.
If the treewidth of the input graph is more than d then we find an approximate tree
decomposition of width � using an algorithm of Feige, Hajiaghayi, and Lee [37] such
that tw(G) ≤ � ≤ d′tw(G)

√
log tw(G), where d′ is a fixed constant.

Algorithm 1. Hit-Set-I-(G).

1: if tw(G) ≤ d then
2: Find a minimum F -hitting set Y of G and return Y .
3: end if
4: Compute an approximate tree decomposition (T,X = {Xt}t∈V (T )) of width �.

5: if � > (k + d)d′
√
log(k + d), where d is as in Lemma 3.1 then

6: Return that G does not have F–hitting set of size at most k.
7: end if
8: Convert (T,X = {Xt}t∈V (T )) to a nice tree decomposition of the same width.
9: Find a partitioning of vertex set V (G) into V1, V2 and X (a bag corresponding to

a node in T ) such that tw(G[V1]) = d as described in the proof.

10: Return
(
X

⋃
Hit-Set-I-(G[V1])

⋃
Hit-Set-I-(G[V2])

)
.

If � > (k + d)d′
√
log(k + d), then by Lemma 3.1, we know that the size of a

minimum F -hitting set of G is at least (k + 1). Hence from now onwards we as-
sume that tw(G) ≤ � ≤ (k + d)d′

√
log(k + d). In the next step we convert the

given tree decomposition to a nice tree decomposition of the same width in linear
time [49]. Given a nice tree decomposition (T,X = {Xt}t∈V (T )) of G, we compute
a partial function β : V (T ) → N, defined as β(t) = tw(Ht) (recall that Ht refers to
Gt[V (Gt) \ Xt]). Observe that β is a max labeling function. We compute β in a
bottom up fashion starting from base nodes and moving towards the root. We stop
this computation the first time that we find a node t such that β(t) = tw(Ht) = d.
Let V1 = V (Ht), V2 = (V (G) \ V1) \Xt, and X = Xt. After this we recursively solve
the problem on the graphs induced on V1 and V2.

Let us assume that G has an F -hitting set of size at most k. We show that in
this case the size of the hitting set returned by the algorithm can be bounded by
O(k2

√
log k). The above recursive procedure can be thought of as a rooted binary

tree T where at each nonleaf node of the tree the algorithm makes two recursive calls.
We will assume that the left child of a node of T corresponds to the graph induced



HITTING FORBIDDEN MINORS 397

on V1 such that the treewidth of G[V1] is d. Assuming that the root is at depth 0 we
show that the depth of T is bounded by k. Let P = a0a1 · · · aq be a longest path from
the root to a leaf and let Gi be the graph associated with the node ai. Observe that
for every i ∈ {0, . . . , q − 1}, ai has a left child, or else ai cannot be a nonleaf node of
T . Let the graph associated with the left child of ai, i ∈ {0, . . . , q− 1}, be denoted by
Hi. Observe that for every 0 ≤ i < j ≤ q − 1, V (Hi) ∩ V (Hj) = ∅ and tw(Hi) = d.
This implies that every Hi has at least one H minor model and all of these are vertex
disjoint. This implies that q ≤ k and hence the depth of T is bounded by k.

Let us look at all the subproblems at depth i in the recursion tree T . Suppose
at depth i the induced subgraphs associated with these subproblems are G[Vj ], j ∈
[τ ], where τ is some positive integer. Then observe that for every j1, j2 ∈ [τ ] and
j1 �= j2, we have that Vj1 ∩ Vj2 = ∅, there is no edge (u, v) such that u ∈ Vj1 ,
v ∈ Vj2 , and hence

∑τ
j=1 kj ≤ k, where kj is the size of the minimum F–hitting

set of G[Vj ]. Furthermore the number of instances at depth i such that it has at
least one H minor model and hence contributes to the hitting set is at most k. Now
Lemma 3.1 together with the factor d′

√
log tw(G) approximation algorithm of Feige,

Hajiaghayi, and Lee [37] implies that the treewidth of every instance is upper bounded
by (kj+d)d′

√
log(kj + d), where kj is the size of the minimum F–hitting set of G[Vj ].

Hence the total size of the union of sets added to our hitting set at depth i is at most

τ∑
j=1

χ(j)(kj + d)d′
√
log(kj + d) ≤ d′(k + d)

√
log(k + d).

Here χ(j) is 1 if G[Vj ] contains at least one H minor model and is 0 otherwise. We
have shown that for each i the size of the union of the sets added to the hitting set
is at most d′(k + d)

√
log(k + d). This together with the fact that the depth is at

most k implies that the size of the F -hitting set is at most O(k2
√
log k). Hence if the

size of the hitting set returned by the algorithm is more than d′(k + d)k
√

log(k + d)
then we return that G has a no F -hitting set of size at most k. Hence when we move
to the second phase we assume that we have a hitting set of size O(k2

√
log k). This

concludes the description of the first phase of the algorithm.
Now we describe the second phase of the algorithm. Here we are given the hitting

set Z of size O(k2
√
log k) obtained from the first phase of the algorithm. The algo-

rithm is depicted in Algorithm 2. The new algorithm essentially uses Z to define a
good labeling function μ which enables us to argue that the depth of recursion is upper
bounded by O(log |Z|). In particular, consider the function μ : V (T )→ N, defined as
follows: μ(t) = |V (Ht)∩Z|. Let k′ := μ(r), where r is the node corresponding to the
root of a fixed nice tree decomposition of G.

Let t ∈ V (T ) be the node where μ(t) > 2k′/3 and for each child t′ of t, μ(t′) ≤
2k′/3. Since μ is a good labeling function, it is easy to see that this node exists and is
unique provided that k′ > 0. Moreover, observe that t could either be a forget node
or a join node. We distinguish these two cases.

• Case 1. If t is a forget node, we set V1 = V (Ht′) and V2 = V (G) \ (V1 ∪Xt′)
and observe that |V (Gi) ∩ Z| ≤ �2k′/3�, i = 1, 2. Also we set X = Xt′ .

• Case 2. If t is a join node with children t1 and t2, we have that μ(ti) ≤
2k′/3, i = 1, 2. However, as μ(t1) + μ(t2) > 2k′/3, we also have that either
μ(t1) ≥ k′/3 or μ(t2) ≥ k′/3. Without loss of generality we assume that
μ(t1) ≥ k′/3 and we set V1 = V (Ht1), V2 = V (G) \ (V1 ∪Xt1), and X = Xt1 .

Now we argue that if G has an F -hitting set of size at most k then the size of the
hitting set returned by the algorithm is upper bounded by O(k log3/2 k). As in the



398 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

Algorithm 2. Hit-Set-II-(G,Z).

1: if tw(G) ≤ d then
2: Find a minimum F -hitting set Y of G and Return Y .
3: end if
4: Compute an approximate tree decomposition (T,X = {Xt}t∈V (T )) of width �.
5: Convert it to a nice tree decomposition of G. Now compute the function μ :

V (T )→ N, defined as follows: μ(t) = |V (Ht) ∩ Z|.
6: if (μ(r) = 0) then
7: Return φ.
8: else
9: Find the partitioning of the vertex set V (G) into V1, V2, and X (a bag cor-

responding to a node in T ) as described in Cases 1 and 2 of the proof of
Lemma 4.1.

10: end if
11: Return

(
X

⋃
Hit-Set-II-(G[V1], Z ∩ V1)

⋃
Hit-Set-II-(G[V2], Z ∩ V2)

)
.

first phase we can argue that the size of the union of the sets added to the hitting
set in the subproblems at depth i is at most d′(k + d)

√
log(k + d). Observe that the

recursive procedure in Algorithm 2 is such that the value of the function μ() drops
by at least a constant fraction at every level of recursion. This implies that the depth
of recursion is upper bounded by O(log |Z|) = O(log k). Hence the size of the hitting

set returned by the algorithm is upper bounded by O(k log3/2 k) whenever G has an
F–hitting set of size at most k. Thus if the size of the hitting set returned by Hit-

Set-II-(G,Z) is more than d′(k+ d)

√
log3/2(k + d), we return that G does not have

an F–hitting set of size at most k. This concludes the proof.

Proof of Theorem 1.3. Given a graph G on n vertices, let k be the minimum
positive integer in {1, . . . , n} such that Lemma 4.1 returns an F -hitting set S when
applied on (G, k). We return this S as an approximate solution. By our choice
of k we know that G does not have an F -hitting set of size at most k − 1 and
hence OPT ≥ k. This implies that the size of S returned by Lemma 4.1 is at most
O(k log3/2 k) = O(OPT log3/2 OPT ). This concludes the proof.

We now define a generic problem. Let η be a fixed constant. In the Treewidth

η-Deletion Set problem, we are given an input graph G and the objective is to
delete a minimum number of vertices from a graph such that the resulting graph has
treewidth at most η. For an example Treewidth 1-Deletion Set is simply the
Feedback vertex set problem. We obtain the following corollary of Theorem 1.3.

Corollary 4.2. Feedback Vertex Set, Diamond Hitting Set, Pathwidth

One Deletion Set, Outerplanar Deletion Set, and Treewidth η-Deletion

Set admit a factor O(log3/2 n) approximation algorithm on general undirected graphs.

5. Kernelization for p-θc-Deletion. In this section we obtain a polynomial
kernel for p-θc-Deletion on general graphs, where c is a fixed constant. To obtain
our kernelization algorithm we not only need the approximation algorithm presented
in the last section but also a variation of the classical Hall’s theorem. We first present
this combinatorial tool and other auxiliary results that we make use of.



HITTING FORBIDDEN MINORS 399

5.1. Combinatorial lemma and some linear time subroutines. We need
a variation of the celebrated Hall’s theorem, which we call the q–expansion lemma.
The q–expansion lemma is a generalization of Hall’s theorem, and captures a certain
property of neighborhood sets in graphs that has been used by several authors to
obtain polynomial kernels for many graph problems. For q = 1 this lemma is Hall’s
theorem and its usage is equivalent to the application of the crown decomposition
technique [1, 23]. For q = 2 it was known as double crown decomposition and was
used by Prieto and Sloper for the first time to obtain a quadratic kernel for packing
k disjoint copies of stars with s leaves [58]. Prieto [57] used the q–expansion lemma
in its most general form to obtain a quadratic kernel for finding a maximal matching
with at most k edges. Prieto [57] referred to this technique as the q-spike crown
decomposition.

The expansion lemma. Consider a bipartite graphG with vertex bipartitionA�B.
Given subsets S ⊆ A and T ⊆ B, we say that S has |S| q-stars in T if to every x ∈ S
we can associate a subset Fx ⊆ N(x) ∩ T such that (a) for all x ∈ S, |Fx| = q; (b)
for any pair of vertices x, y ∈ S, Fx ∩ Fy = ∅. Observe that if S has |S| q-stars in T
then every vertex x in S could be thought of as the center of a star with its q leaves
in T , with all these stars being vertex disjoint. Further, a collection of |S| q-stars is
also a family of q edge-disjoint matchings, each saturating S. We use the following
result in our kernelization algorithm to bound the degrees of vertices. The proof of
the next lemma is just a slight variation of the proof of q-spike crown decomposition
given in [57] and is primarily given here for the sake of completeness. (See the remark
following the lemma for an explanation of the differences.)

Lemma 5.1 (The q–expansion lemma). Let q be a positive integer, and let m be
the size of the maximum matching in a bipartite graph G with vertex bipartition A�B.
If |B| > mq, and there are no isolated vertices in B, then there exist nonempty vertex
sets S ⊆ A, T ⊆ B such that S has |S| q-stars in T and no vertex in T has a neighbor
outside S. Furthermore, the sets S, T can be found in time polynomial in the size of
G.

Proof. Consider the graph H obtained from G = (A � B,E) by adding (q − 1)
copies of all the vertices in A, and giving all copies of a vertex v the same neighborhood
in B as v. Formally, let {u1, u2, . . . , up} denote the vertices of A, and let A1, . . . , Aq

denote q vertex sets, with q vertices each:

Ai := {u(i)
1 , . . . , u(i)

p }.
Further, we use X to denote A1 ∪ · · · ∪ Aq. The graph H is the bipartite graph
(X �B,E∗), where E∗ is given by⋃

1≤j≤q

{(u(j)
i , v) | u(j)

i ∈ Aj , v ∈ B such that (ui, v) ∈ E}.

Let M be a maximum matching in H . For the rest of this discussion, vertices are
saturated and unsaturated with respect to this fixed matching M .

Let UX be the vertices in X that are unsaturated, and RX be those that are
reachable from UX via nontrivial alternating paths, i.e, paths with at least two edges.
We let SA = X \ (UX ∪RX). Let UB be the set of unsaturated vertices in B, and let
T denote the set of partners of SA in the matching M , that is,

T = {x ∈ B | (u, x) ∈M and u ∈ SA}
(see Figure 2).



400 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

Fig. 2. The construction used in the proof of the q–expansion lemma.

Note that SA is nonempty: since |B| > mq , the set UB of unsaturated vertices
of B in H is nonempty. Further, by the assumption that B admits no isolated ver-
tices, the neighbors of UB form a nontrivial subset of A. Now, notice that neighbors
of UB cannot lie in either UX or RX (in both cases we obtain augmenting paths,
contradicting the fact that M is a maximum matching). Therefore, the neighbors of
UB must lie in SA, and therefore SA is nonempty.

For every v ∈ A, let C(v) be the set of all copies of v (including v). We claim that
either C(v) ∩ SA = C(v), or C(v) ∩ SA = ∅. Suppose that v ∈ SA but a copy of v,
say u, is in UX . Let (v, w) ∈M . Then v is reachable from u because (u,w) ∈ E(H),
contradicting the assumption that v ∈ SA. In the case when v ∈ SA but a copy
of u is in RX , let (w, u) be the last edge on some alternating path from UX to u.
Since (w, v) ∈ E(H), we have that there is also an alternating path from UX to v,
contradicting the fact that v ∈ SA. Now, let S = {v ∈ A | C(v) ⊆ SA}. Then the
subgraph G[S ∪ T ] contains q edge-disjoint matchings, each of which saturates S in
G—this is because in H , M saturates each copy of v ∈ S separately.

We now show that no vertex in T has a neighbor outside S in G. Notice that if
no vertex in T has a neighbor outside SA in H , then from the construction no vertex
in T has a neighbor outside S in G, thus it suffices to prove that no vertex in T has
a neighbor outside SA in H . For the purpose of contradiction, let us assume that
for some v ∈ T , u ∈ N(v), but u /∈ SA. Suppose u ∈ RX . We know that u ∈ RX

because there is some unsaturated vertex (say w) that is connected by an alternating
path to u. This path can be extended to a path to v using the edge (u, v), and can
be further extended to v′, where (v, v′) ∈M . However, v′ ∈ SA, and by construction,
there is no path from w ∈ UX to v′, a contradiction. If u ∈ UX , then we arrive at a
contradiction along the same lines (in fact, the paths from w to a vertex in S will be
of length two in this case). This proves the claim that no vertex in T has a neighbor
outside SA in H . This concludes the proof.

Remark 2. Prieto [57] or Thomassé [61, Theorem 2.3] proved a slightly different
version of Lemma 5.1. The statement in [57, 61] assumes that |B| ≥ q|A|, however,
Lemma 5.1 only assumes that |B| > qm, where m is the size of maximum matching.

We will need the following proposition for the proof of next observation. Its proof
follows from the definitions.



HITTING FORBIDDEN MINORS 401

Proposition 5.2. For any c ∈ N, a subgraph M of graph G is a minimal minor
model of θc in G if and only if M consists of two trees, say T1 and T2, and a set S of
c edges, each of which has one end vertex in T1 and the other in T2, and further, for
each leaf vertex v of T1 and T2, there is an edge in S incident on v.

Observation 1. For c ≥ 2, any minimal θc minor model M of a graph G is a
connected subgraph of G, and does not contain a vertex whose degree in M is less than
2, or a vertex whose deletion from M results in a disconnected graph (a cut vertex of
M).

Proof. From Proposition 5.2, whose terminology we use in this proof, M is con-
nected and contains no isolated vertex. Suppose x is a vertex of degree exactly one
in M . Then x is a leaf node in one of the two trees in M , say T1, and no edge in S is
incident on x. Removing x from T1 results in a smaller θc minor model, contradicting
the minimality of M . It follows that every vertex of M has degree at least two.

Now suppose x is a cut vertex in M which belongs to, say, the tree T1. Let
T 1
1 , T

2
1 , . . . , T

l
1 be the subtrees of T1 obtained when x is deleted from T1. Let M ′ be

the graph obtained by deleting x from M . If l > 0, then each T i
1 has a leaf node,

which, by the above argument, has at least one neighbor in T2. If l = 0, then M ′ = T2.
Thus M ′ is connected in all cases, and so x is not a cut vertex, a contradiction.

The following well known result states that every optimization problem express-
ible in MSO has a linear time algorithm on graphs of bounded treewidth.

Proposition 5.3 (see [6, 10, 19, 27, 29]). Let φ be a property that is expressible
in MSO logic. For any fixed positive integer t, there is an algorithm that, given a
graph G of treewidth at most t as input, finds a largest (alternatively, smallest) set S
of vertices of G that satisfies φ in time f(t, |φ|)|V (G)|.

Proposition 5.3 together with MSO formulations given in section 2.6 implies the
following lemma.

Lemma 5.4. Let G be a graph on n vertices and v a vertex of G. Given a tree
decomposition of width t = O(1) of G, we can, in O(n) time, find both (1) a smallest
set S ⊆ V of vertices of G such that the graph G \ S does not contain θc as a minor,
and (2) a largest collection {M1,M2, . . . ,Ml} of θc minor models of G such that for
1 ≤ i < j ≤ l, (V (Mi) ∩ V (Mj)) = {v}.

Now we describe the reduction rules used by the kernelization algorithm. In
contrast to the reduction rules employed by most known kernelization algorithms,
these rules cannot always be applied on general graphs in polynomial time. Hence
the algorithm does not proceed by applying these rules exhaustively, as is typical in
kernelization programs. We describe how to arrive at situations where these rules can
in fact be applied in polynomial time, and prove that even this selective application
of rules results in a kernel of size polynomial in the parameter k.

5.2. Bounding the maximum degree of a graph. Now we present a set of
reduction rules which, given an input instance (G, k) of p-θc-Deletion, obtains an
equivalent instance (G′, k′), where k′ ≤ k and the maximum degree of G′ is at most
a polynomial in k. In what follows a vertex v is irrelevant if it is not a part of any
θc minor model, and is relevant otherwise. For each rule below, the input instance is
(G, k).



402 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

Reduction Rule 1 (irrelevant vertex rule). Delete all irrelevant vertices in G.

Given a graph G and a vertex v ∈ V (G), an �-flower passing through v is a set
of � different θc minor models in G, each containing v and no two sharing any vertex
other than v.

Reduction Rule 2 (flower rule). If a (k + 1)-flower passes through a vertex v
of G, then include v in the solution and remove it from G to obtain the equivalent
instance (G \ {v}, (k − 1)).

The argument for the soundness of these reduction rules is simple and is hence
omitted. One can test whether a particular vertex v is part of any minimal minor
model corresponding to θc using the rooted minor testing algorithm of Robertson and
Seymour [59]. It is not clear, however, that one might check whether a vertex is a
part of the (k+1)-flower in polynomial time. Hence we defer the application of these
rules and apply them only when the vertices are “evidently” irrelevant or finding a
flower can be solved in polynomial time. Now we state an auxiliary lemma which will
be useful in bounding the maximum degree of the graph.

Lemma 5.5. Let G be an n-vertex graph containing θc as a minor and v be a
vertex such that G′ = G \ {v} does not contain θc as a minor and the maximum �
such that G has an �-flower containing v is at most k. Then there exists a vertex
subset Tv of size O(k) such that v /∈ Tv and G \ Tv does not contain θc as a minor.
Moreover, we can find Tv in polynomial time.

Proof. We first bound the treewidth of G′. Robertson, Seymour, and Thomas [60]

have shown that any graph with treewidth greater than 202c
5

contains a c × c grid,
and hence θc, as a minor. This implies that for a fixed c, tw(G′) ≤ 202c

5

= O(1). Now
we show the existence of a Tv of the desired kind. Recall the algorithm used to obtain
the F -hitting set for a graph described in Algorithm 2. We use the same algorithm to
construct the desired Tv. Let Fθc(G) denote the size of the maximum flower passing
through v in G. Consider a nice tree decomposition (T,X = {Xt}t∈V (T )) of G′ of
width at most tw(G′). We define the function μ(t) := Fθc(G[V (Ht) ∪ {v}]). It is
easy to see that μ is a good labeling function, and can be computed in polynomial
time due to Lemma 5.4. Observe that μ(r) ≤ k, where r is the root node of the
tree decomposition. Let S(G′, k) denote the size of the hitting set returned by the
algorithm. Thus the size of the hitting set returned by the Algorithm 2 is governed
by the following recurrence:

S(G′, k) ≤ max
1/3≤α≤2/3

{
S(G[V1], αk) + S(G[V2], (1− α)k) +O(1)

}
.

Using Akra and Bazzi [3] it follows that the above recurrence solves to O(k). This
implies that there exists a set Tv of size O(k) such that v /∈ Tv and G \ Tv does
not contain θc as a minor. We now proceed to find an optimal hitting set in G
avoiding v. To make Algorithm 2 run in polynomial time we only need to find the tree
decomposition and compute the function μ() in polynomial time. Since tw(G) = O(1),
we can find the desired tree decomposition of G or one of its subgraphs in linear time
using the algorithm of Bodlaender [10]. Similarly we can compute a flower of the
maximum size using Lemma 5.4 in linear time. Hence the function μ() can also be
computed in polynomial time. This concludes the proof of the lemma.



HITTING FORBIDDEN MINORS 403

Flowers, expansion, and the maximum degree. Now we are ready to prove the
lemma which bounds the maximum degree of the instance.

Lemma 5.6. There exists a polynomial time algorithm that, given an instance
(G, k) of p-θc-Deletion returns an equivalent instance (G′, k′) such that k′ ≤ k and

that the maximum degree of G′ is O(k log3/2 k). Moreover it also returns a θc-hitting

set of G′ of size O(k log3/2 k).

Proof. Given an instance (G, k) of p-θc-Deletion, we first apply Lemma 4.1 on
(G, k). The polynomial time algorithm described in Lemma 4.1, given a graph G and
a positive integer k, either reports that G has no θc-hitting set of size at most k,
or finds a θc-hitting set of size at most k∗ = O(k log3/2 k). If the algorithm reports
that G has has no θc-hitting set of size at most k, then we return that (G, k) is a
NO-instance to p-θc-Deletion. So we assume that we have a hitting set S of size
k∗. Now we proceed with the following two rules.

(1) Selective flower rule. To apply the flower rule selectively we use S, the θc-
hitting set. For a vertex v ∈ S let Sv := S \ {v} and let Gv := G \ Sv. By a result of
Robertson, Seymour, and Thomas [60] we know that any graph of treewidth greater

than 202c
5

contains a c× c grid, and hence θc, as a minor. Since deleting v from Gv

makes it θc-minor-free, tw(Gv) ≤ 202c
5

+ 1 = O(1). Now by Lemma 5.4, we find in
linear time the size of the largest flower centered at v, inGv. If for any vertex v ∈ S the
size of the flower in Gv is at least k+1, we apply the flower rule and get an equivalent
instance (G← G \ {v}, k ← k − 1). Furthermore, we set S := S \ {v}. We apply the
flower rule selectively until no longer possible. We abuse notation and continue to use
(G, k) to refer to the instance that is reduced with respect to exhaustive application
of the selective flower rule. Thus, for every vertex v ∈ S the size of any flower passing
through v in Gv is at most k.

Now we describe how to find, for a given v ∈ V (G), a hitting set Hv ⊆ V (G)\{v}
for all minor models of θc that contain v. Notice that this hitting set is required to
exclude v, so Hv cannot be the trivial hitting set {v}. If v /∈ S, then Hv = S. On the
other hand, suppose v ∈ S. Since the maximum size of a flower containing v in the
graph Gv is at most k by Lemma 5.5, we can find a set Tv of size O(k) that does not
contain v and hits all the θc minor models passing through v in Gv. Hence in this
case we set Hv = Sv ∪ Tv (see Figure 3). We denote |Hv| by hv. Notice that Hv is
defined algorithmically, that is, there could be many small hitting sets in V (G) \ {v}
hitting all minor models containing v, and Hv is one of them.

(2) q-expansion rule with q = c. Given an instance (G, k), S, and a family of
sets Hv, we show that if there is a vertex v with degree more than chv + c(c− 1)hv,
then we can reduce its degree to at most chv + c(c− 1)hv by repeatedly applying the
q–expansion lemma with q = c. Assume, without loss of generality, that the instance
is reduced with respect to the irrelevant vertex rule. Observe that for every vertex v
the set Hv is also a θc hitting set for G, that is, Hv hits all minor models of θc in G.
Consider the graph G \ (Hv ∪ {v}). Let the components of this graph that contain a
neighbor of v be C1, C2, . . . , Cr. Note that v cannot have more than (c− 1) neighbors
into any component, else the component together with v will form a θc minor and will
contradict the fact that Hv hits all the θc minors. Also note that none of the Ci’s can
contain a minor model of θc. Since v has at most (c− 1) edges to each Ci, it follows
that if d(v) > chv + c(c− 1)hv, then the number of components |C| is more than chv.

We say that a component Ci is adjacent to Hv if there exists a vertex u ∈ Ci and
w ∈ Hv such that (u,w) ∈ E(G). Next we show that vertices in components that



404 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

Fig. 3. The hitting set in the selective flower rule.

are not adjacent to Hv are irrelevant in G. Recall a vertex is irrelevant if there is no
minimal minor model of θc that contains it. Consider a vertex u in a component C
that is not adjacent to Hv. Since G[V (C) ∪ {v}] does not contain any θc minor we
have that if u is a part of a minimal minor model M ⊆ G, then v ∈M and also there
exists a vertex u′ ∈ M such that u′ /∈ C ∪ {v}. Then the removal of v disconnects
u from u′ in M , a contradiction to Observation 1 that for c ≥ 2, any minimal θc
minor model M of a graph G does not contain a cut vertex. Therefore, any vertex
in a component not adjacent to Hv is irrelevant. Since the instance is reduced with
respect to the irrelevant vertex rule, we conclude that in all the components Ci, there
is at least one vertex that is adjacent to a vertex in Hv.

Now, consider a bipartite graph G with vertex bipartitions Hv and C. Here
C = {c1, . . . , cs} contains a vertex ci corresponding to each component Ci. For every
u ∈ Hv, we add the edge (u, ci) if there is a vertex w ∈ Ci such that {u,w} ∈ E(G).
Even though we start with a simple graph (graphs without parallel edges) it is possible
that after applying reduction rules parallel edges may appear. However, throughout
the algorithm, we ensure that the number of parallel edges between any pair of vertices
is at most c. Now, v has at most chv edges to vertices in Hv. By applying the
q–expansion lemma with q = c, A = Hv, and B = D, we find a subset S ⊆ Hv and
T ⊆ D such that S has |S| c-stars in T and N(T ) = S.

The reduction rule involves deleting edges of the form (v, u) for all u ∈ Ci, such
that ci ∈ T , and adding c edges between v and w for all w ∈ S. We add these
edges only if they were not present before so that the number of edges between any
pair of vertices remains at most c. This completes the description of the q-expansion
reduction rule with q = c. Let GR be the graph obtained after applying the reduction
rule. The following lemma shows the correctness of the rule.

Lemma 5.7. Let G, S, and v be as above and GR be the graph obtained after
applying the c-expansion rule. Then (G, k) is a YES-instance of p-θc-Deletion if
and only if (GR, k) is a YES-instance of p-θc-Deletion.

Proof. We first show that if GR has hitting set Z of size at most k, then the same
hitting set Z hits all the minor models of θc in G. Observe that either v ∈ Z or
S ⊆ Z. Suppose v ∈ Z, then observe that GR \ {v} is the same as G \ {v}. Therefore
Z \ {v}, a hitting set of GR \ {v}, is also a hitting set of G \ {v}. This shows that Z
is a hitting set of size at most k of G. The case when S ⊆ Z is similar.

To prove that a hitting set of size at most k in G implies a hitting set of size at
most k in GR, it suffices to prove that whenever there is a hitting set of size at most



HITTING FORBIDDEN MINORS 405

k, there also exists a hitting set of size at most k that contains either v or all of S.
Consider a hitting set W that does not contain v, and omits at least one vertex from
S. Note the |S| c-stars in G[S ∪ T ], along with v, correspond to minor models of θc
centered at v in G, vertex disjoint except for v. Thus, such a hitting set must pick at
least one vertex from one of the components. Let C be the collection of components
Ci such that the (corresponding) vertex ci ∈ T . Let X denote the set of all vertices
of W that appeared in any Ci ∈ C. Consider the hitting set W ′ obtained from W by
removing X and adding S, that is, W ′ := (W \X) ∪ S.

We now argue that W ′ is also a hitting set of size at most k. Indeed, let S′ be the
set of vertices in S that do not already belong to W . Clearly, for every such vertex
that W omitted, W must have had to pick distinct vertices from C to hit the θc minor
models formed by the corresponding c-stars. Formally, there exists an X ′ ⊆ X such
that there is a bijection between S′ and X ′, implying that |W ′| ≤ |W | ≤ k.

Finally, observe that W ′ must also hit all minor models of θc in G. If not, there
exists a minor model M that contains some vertex u ∈ X . Hence, u ∈ Ci for some i,
and M contains some vertex in Hv \ S. However, v separates u from Hv \ S in G \ S,
contradicting Observation 1 that M does not contain a cut vertex. This concludes
the proof.

Observe that all edges that are added during the application of the q-expansion
reduction rule have at least one end point in S, and hence S remains a hitting set of
GR. We are now ready to summarize the algorithm that bounds the degree of the
graph (see Algorithm 3).

Algorithm 3. Bound-Degree(G, k,S).
1: Apply the Selective Flower Rule
2: if ∃v ∈ V (G) such that d(v) > chv + c(c− 1)hv then
3: Apply the q-expansion reduction rule with q = c.
4: else
5: Return (G, k,S).
6: end if
7: Return Bound-Degree(G, k,S).

Let the instance output by Algorithm 3 be (G′, k′,S). Clearly, in G′, the degree

of every vertex is at most chv + c(c− 1)hv ≤ O(k log3/2 k). The routine also returns

S—a θc-hitting set of G′ of size at most O(k log3/2 k).
We now show that the algorithm runs in polynomial time. For x ∈ V (G), let

ν(x) be the number of neighbors of x to which x has fewer than c parallel edges.
Observe that the application of the q-expansion reduction rule never increases ν(x)
for any vertex. For the vertex v that is considered in line 2 of Algorithm 3, the
application of the q-expansion lemma with q = c reduces the degree of v to at most
chv + c(c − 1)hv, therefore reducing the degree of v. Further, the edges that are
removed by the reduction rule are from v to its neighbors in T , which have fewer than
c parallel edges with v. It follows that ν(v) strictly decreases by one. The other rules
delete vertices, and can never increase ν(x) for any vertex. This is the conclusion of
the proof of Lemma 5.6.

5.3. Analysis and kernel size—proof of Theorem 1.2. In this section we
give the desired kernel for p-θc-Deletion.



406 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

Proof of Theorem 1.2. Let (G, k) be an instance to p-θc-Deletion. We first
bound the maximum degree of the graph by applying Lemma 5.6 on (G, k). If
Lemma 5.6 returns that (G, k) is a NO-instance to p-θc-Deletion then we return
the same. Else we obtain an equivalent instance (G′, k′) such that k′ ≤ k and the

maximum degree of G′ is bounded by O(k log3/2 k). Moreover it also returns a θc-

hitting set, X ′, of G′ of size at most O(k log3/2 k). Let d denote the treewidth of the
graph after the removal of X ′, that is, d := tw(G′ \X ′).

Now, we obtain our kernel in two phases: we first apply the protrusion rule
selectively (Lemma 3.2) and get a polynomial kernel. Then, we apply the protrusion
rule exhaustively on the obtained kernel to get a smaller kernel. To obtain the kernel
we follow the following steps.

Applying the protrusion rule. By a result of Robertson, Seymour, and Thomas [60]

we know that any graph of treewidth greater than 202c
5

contains a c × c grid, and
hence θc, as a minor. Hence d ≤ 202c

5

. Now we apply Lemma 3.3 and get a 2(d+ 1)-

protrusion Y of G′ of size at least |V (G′)|−|X′|
4|N(X′)|+1 . By Lemma 3.5, p-θc-Deletion has

finite integer index. Let γ : N → N be the function defined in Lemma 3.2. Hence if
|V (G′)|−|X′|
4|N(X′)|+1 ≥ γ(2d+ 2) then using Lemma 3.2 we replace the 2(d+ 1)-protrusion Y

of G′ and obtain an instance G∗ such that |V (G∗)| < |V (G′)|, k∗ ≤ k′, and (G∗, k∗)
is a YES-instance of p-θc-Deletion if and only if (G′, k′) is a YES-instance of p-θc-
Deletion.

Before applying the protrusion rule again, if necessary, we bound the maximum
degree of the graph by reapplying Lemma 5.6. This is done because the application
of the protrusion rule could potentially increase the maximum degree of the graph.
We alternately apply the protrusion rule and Lemma 5.6 in this fashion, until either
Lemma 5.6 returns that G is a NO instance, or the protrusion rule ceases to apply.
Observe that this process will always terminate as the procedure that bounds the
maximum degree never increases the number of vertices and the protrusion rule always
reduces the number of vertices.

Let (G∗, k∗) be a reduced instance with hitting set X . In other words, there is
no (2d+ 2)-protrusion of size γ(2d+ 2) in G∗ \X , and the protrusion rule no longer
applies. Also, since Lemma 5.6 has also been applied exhaustively, we have that
Δ(G∗) = O(k log( 3/2)k). Now we show that the number of vertices and edges of this
graph is bounded by O(k2 log3 k). We first bound the number of vertices. Since we

cannot apply the protrusion rule, |V (G∗)|−|X|
4|N(X)|+1 ≤ γ(2d+ 2). Since k∗ ≤ k this implies

that

|V (G∗)| ≤ γ(2d+ 2)(4|N(X)|+ 1) + |X |
≤ γ(2d+ 2)(4|X |Δ(G∗) + 1) + |X |
≤ γ(2d+ 2)(O(k log3/2 k)×O(k log3/2 k) + 1) +O(k log3/2 k)

≤ O(k2 log3 k).

To get the desired bound on the number of edges we first observe that since
tw(G∗\X) ≤ 202c

5

= d, we have that the number of edges in G∗\X ≤ d|V (G∗)\X | =
O(k2 log3 k). Also the number of edges incident on the vertices in X is at most
|X | ·Δ(G∗) ≤ O(k2(log k)3). This gives us a polynomial time algorithm that returns
a kernel of size O(k2 log3 k).

To obtain a kernel of smaller size, we apply a combination of rules to bound the
degree and the protrusion rule as before. The only difference is that we would like to
replace any large (2d+2)-protrusion in the graph by a smaller one. We find a 2d+2-



HITTING FORBIDDEN MINORS 407

protrusion Y of size at least γ(2d+2) by guessing the boundary ∂(Y ) of size at most
2d+2. This could be performed in time kO(d). So let (G∗, k∗) be the reduced instance
on which we can not apply either the protrusion rule or Lemma 5.6. Then we know
that Δ(G∗) = O(k log3/2 k). If G is a YES-instance then there exists a θc-hitting set

X of size at most k such that tw(G \ X) ≤ 202c
5

= d. Now applying the analysis

above with this X yields that |V (G∗)| = O(k2 log3/2 k) and |E(G∗)| ≤ O(k2 log3/2 k).
Hence if the number of vertices or edges in the reduced instance G∗, to which we can
not apply the protrusion rule, is more than O(k2 log3/2 k) then we return that G is a
NO-instance. This concludes the proof of the theorem.

Theorem 1.2 has the following immediate corollary.

Corollary 5.8. p-Vertex Cover, p-Feedback Vertex Set, and p-Diamond

Hitting Set have kernel of size O(k2 log3/2 k).

6. Conclusion. In this paper we gave the first kernelization algorithms for a
subset of p-F-Deletion problems and a generic approximation algorithm for the
p-F-Deletion problem when the set of excluded minors F contains at least one
planar graph. Our approach generalizes and unifies known kernelization algorithms
for p-Vertex Cover and p-Feedback Vertex Set. By the celebrated result of
Robertson and Seymour, every p-F-Deletion problem is FPT and our work naturally
leads to the following question, does every p-F-Deletion problem have a polynomial
kernel? Can it be that for some finite sets of minor obstructions F = {O1, . . . , Op}
the answer to this question is NO? Even the case F = {K5,K3,3}, vertex deletion to
planar graphs, is an interesting challenge.

In the follow-up work of a subset of the authors [42], it was shown that p-F-
Deletion admits a polynomial kernel and randomized constant factor approximation
when F contains a planar graph. However our algorithm is still the best known
deterministic approximation algorithm for this problem.

The kernelization results from [42] are also of a different nature than ours. Our

kernel is uniform, i.e., its size is bounded by f(θc) · k2 log3/2 k for some function f .
The polynomial kernel for p-F-Deletion given in [42] is nonuniform, in a sense that
the size of the kernel is kf(F), where f is a nonelementary function. Moreover, as
was shown very recently the improvement of the general case is highly unlikely—
unless some complexity assumption fails, there is no kernel of size f(F) ·kO(1) for any
function of F , when F contains a planar graph [45].

REFERENCES

[1] F. N. Abu-Khzam, M. R. Fellows, M. A. Langston, and W. H. Suters, Crown structures
for vertex cover kernelization, Theory Comput. Syst., 41 (2007), pp. 411–430.

[2] I. Adler, M. Grohe, and S. Kreutzer, Computing excluded minors, in Proceedings of
the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), SIAM,
Philadelphia, 2008, pp. 641–650.

[3] M. Akra and L. Bazzi, On the solution of linear recurrence equations, Comput. Optim. Appl.,
10 (1998), pp. 195–210.

[4] N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo, Solving MAX-r-SAT above a tight
lower bound, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA 2010), SIAM, Philadelphia, 2010, pp. 511–517.

[5] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese, An algebraic theory of graph
reduction, J. ACM, 40 (1993), pp. 1134–1164.

[6] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable graphs, J.
Algorithms, 12 (1991), pp. 308–340.



408 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

[7] V. Bafna, P. Berman, and T. Fujito, A 2-approximation algorithm for the undirected feed-
back vertex set problem, SIAM J. Discrete Math., 12 (1999), pp. 289–297.

[8] R. Bar-Yehuda and S. Even, A linear-time approximation algorithm for the weighted vertex
cover problem, J. Algorithms, 2 (1981), pp. 198–203.

[9] R. Bar-Yehuda, D. Geiger, J. S. Naor, and R. M. Roth, Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and Bayesian
inference, SIAM J. Comput., 27 (1998), pp. 942–959.

[10] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth,
SIAM J. Comput., 25 (1996), pp. 1305–1317.

[11] H. L. Bodlaender, A cubic kernel for feedback vertex set, in Proceedings of 24th Annual
Symposium on Theoretical Aspects of Computer Science (STACS 2007), Lecture Notes in
Comput. Sci. 4393 , Springer, Berlin, 2007, pp. 320–331.

[12] H. L. Bodlaender, Kernelization: New upper and lower bound techniques, in Proceedings
of the 4th Workshop on Parameterized and Exact Computation (IWPEC 2009), Lecture
Notes in Comput. Sci. 5917, Springer, Berlin, 2009, pp. 17–37.

[13] H. L. Bodlaender and B. de Fluiter, Reduction algorithms for constructing solutions in
graphs with small treewidth, in Proceedings of the Second Annual International Conference
on Computing and Combinatorics, (COCOON 1996), Lecture Notes Comput. Sci. 1090,
Springer, Berlin, 1996, pp. 199–208.

[14] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin, On problems without
polynomial kernels, J. Comput. Syst. Sci., 75 (2009), pp. 423–434.

[15] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.

Thilikos, (Meta) Kernelization, in Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009), IEEE Computer Society, Los Alamitos,
CA, 2009, pp. 629–638.

[16] H. L. Bodlaender and T. Hagerup, Parallel algorithms with optimal speedup for bounded
treewidth, SIAM J. Comput., 27 (1998), pp. 1725–1746.

[17] H. L. Bodlaender, S. Thomassé, and A. Yeo, Kernel bounds for disjoint cycles and disjoint
paths, in Proceedings of the 17th Annual European Symposium (ESA 2009), Lecture Notes
in Comput. Sci. 5757, Springer, Berlin, 2009, pp. 635–646.

[18] H. L. Bodlaender and B. van Antwerpen-de Fluiter, Reduction algorithms for graphs of
small treewidth, Inform. and Comput., 167 (2001), pp. 86–119.

[19] R. B. Borie, G. R. Parker, and C. A. Tovey, Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families,
Algorithmica, 7 (1992), pp. 555–581.

[20] K. Burrage, V. Estivill Castro, M. R. Fellows, M. A. Langston, S. Mac, and F. A.

Rosamond, The undirected feedback vertex set problem has a poly(k) kernel, in Proceedings
of 2nd International Workshop on Parameterized and Exact Computation (IWPEC 2006),
Lecture Notes in Comput. Sci. 4169, Springer, Berlin, 2006, pp. 192–202.

[21] C. Chekuri and J. Chuzhoy, Polynomial bounds for the grid-minor theorem, in Symposium on
Theory of Computing, STOC 2014, D. B. Shmoys, ed., ACM, New York, 2014, pp. 60–69.

[22] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: Further observations and further improve-
ments, J. Algorithms, 41 (2001), pp. 280–301.

[23] B. Chor, M. R. Fellows, and D. W. Juedes, Linear kernels in linear time, or how to save
k colors in O(n2) steps, in Proceedings of the 30th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2004), Lecture Notes in Comput. Sci. 3352,
Springer, Berlin, 2004, pp. 257–269.

[24] F. A. Chudak, M. X. Goemans, D. S. Hochbaum, and D. P. Williamson, A primal-dual
interpretation of two 2-approximation algorithms for the feedback vertex set problem in
undirected graphs, Oper. Res. Lett., 22 (1998), pp. 111–118.

[25] J. Chuzhoy, Excluded grid theorem: Improved and simplified, in Proceedings of the 47th
Annual ACM on Symposium on Theory of Computing, STOC 2015, R. A. Servedio and
R. Rubinfeld, eds., ACM, New York, 2015, pp. 645–654.

[26] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk graphs, Discrete Math., 86
(1990), pp. 165–177.

[27] B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs,
Inform. and Comput., 85 (1990), pp. 12–75.

[28] B. Courcelle, The expression of graph properties and graph transformations in monadic
second-order logic, in Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Vol. 1: Foundations, G. Rozenberg, ed., World Scientific, Singapore, 1997.

[29] B. Courcelle and M. Mosbah, Monadic second-order evaluations on tree-decomposable
graphs, Theoret. Comput. Sci., 109 (1993), pp. 49–82.



HITTING FORBIDDEN MINORS 409

[30] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,

M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, Cham, Switzerland,
2015.

[31] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, Improved FPT algorithm
and quadratic kernel for pathwidth one vertex deletion, in Proceedings of the 5th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC 2010), Lecture Notes
in Comput. Sci. 6478, Springer, Berlin, 2010, pp. 95–106.

[32] B. de Fluiter, Algorithms for Graphs of Small Treewidth, Ph.D. thesis, Utrecht University,
Utrecht, The Netherlands, 1997.

[33] F. K. H. A. Dehne, M. R. Fellows, F. A. Rosamond, and P. Shaw, Greedy localization,
iterative compression, and modeled crown reductions: New FPT techniques, an improved
algorithm for set splitting, and a novel 2k kernelization for Vertex Cover, in Proceedings
of the First International Workshop on Parameterized and Exact Computation (IWPEC
2004), Lecture Notes in Comput. Sci. 3162, Springer, Berlin, 2004, pp. 271–280.

[34] H. Dell and D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses, in Proceedings of 42th ACM Symposium on Theory
of Computing (STOC 2010), ACM, New York, 2010, pp. 251–260.

[35] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, New York, 1999.
[36] P. Erdős and L. Pósa, On independent circuits contained in a graph, Canad. J. Math., 17

(1965), pp. 347–352.
[37] U. Feige, M. T. Hajiaghayi, and J. R. Lee, Improved approximation algorithms for minimum

weight vertex separators, SIAM J. Comput., 38 (2008), pp. 629–657.
[38] M. R. Fellows and M. A. Langston, Nonconstructive tools for proving polynomial-time

decidability, J. ACM, 35 (1988), pp. 727–739.
[39] M. R. Fellows and M. A. Langston, An analogue of the Myhill-Nerode theorem and its use

in computing finite-basis characterizations, in Proceedings of the 30th Annual Symposium
on Foundations of Computer Science (FOCS 1989), IEEE Computer, Los Alamitos, 1989,
pp. 520–525.

[40] S. Fiorini, G. Joret, and U. Pietropaoli, Hitting diamonds and growing cacti, in Proceedings
of the 14th Conference on Integer Programming and Combinatorial Optimization (IPCO
2010), Lecture Notes in Comput. Sci. 6080, Springer, Berlin, 2010, pp. 191–204.

[41] J. Flum and M. Grohe, Parameterized Complexity Theory, Texts Theoret. Comput. Sci.
EATCS Ser., Springer-Verlag, Berlin, 2006.

[42] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh, Planar F-deletion: Approximation,
kernelization and optimal FPT algorithms, in Proceedings of the 53rd Annual Symposium
on Foundations of Computer Science (FOCS), IEEE Computer Society, Los Alamitos, CA,
2012, pp. 470–479.

[43] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos, Bidimensionality and ker-
nels, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2010), SIAM, Philadelphia, 2010, pp. 503–510.

[44] L. Fortnow and R. Santhanam, Infeasibility of instance compression and succinct PCPs
for NP, in Proceedings of the 40th ACM Symposium on Theory of Computing (STOC
2008), ACM, New York, 2008, pp. 133–142.

[45] A. C. Giannopoulou, B. M. P. Jansen, D. Lokshtanov, and S. Saurabh, Uniform kernel-
ization complexity of hitting forbidden minors, in Automata, Languages, and Programming
- 42nd International Colloquium, ICALP, Lecture Notes in Comput. Sci. 9134, Springer,
Berlin, 2015, pp. 629–641.

[46] J. Guo and R. Niedermeier, Invitation to data reduction and problem kernelization, ACM
SIGACT News, 38 (2007), pp. 31–45.

[47] D. S. Hochbaum and J. S. Naor, Simple and fast algorithms for linear and integer programs
with two variables per inequality, SIAM J. Comput., 23 (1994), pp. 1179–1192.

[48] R. M. Karp, Reducibility among combinatorial problems, in Proceedings of the Symposium on
the Complexity of Computer Computations, Plenum, New York, 1972, pp. 85–103.

[49] T. Kloks, Treewidth – computations and approximations, Lecture Notes in Comput. Sci. 842,
Springer, Berlin, 1994.

[50] P. G. Kolaitis and M. N. Thakur, Approximation properties of NP minimization classes, J.
Comput. System Sci., 50 (1995), pp. 391–411.

[51] S. Kratsch, Polynomial kernelizations for MIN F+pi1 and MAX NP, in Proceedings of
the 26th International Symposium on Theoretical Aspects of Computer Science (STACS
2009), LIPIcs 3, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Wadern, Germany,
2009, pp. 601–612.

[52] J. M. Lewis and M. Yannakakis, The node-deletion problem for hereditary properties is
NP-complete, J. Comput. System Sci., 20 (1980), pp. 219–230.



410 FOMIN, LOKSHTANOV, MISRA, PHILIP, AND SAURABH

[53] C. Lund and M. Yannakakis, The approximation of maximum subgraph problems, in Pro-
ceedings of the 20th International Colloquium Automata, Languages and Programming
(ICALP 1993), Lecture Notes in Comput. Sci. 700, Springer, Berlin, 1993, pp. 40–51.

[54] G. L. Nemhauser and L. E. Trotter, Jr., Properties of vertex packing and independence
system polyhedra, Math. Program., 6 (1974), pp. 48–61.

[55] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Lecture Ser. Math. Appl.
31, Oxford University Press, Oxford, 2006.

[56] G. Philip, V. Raman, and S. Sikdar, Solving dominating set in larger classes of graphs:
FPT algorithms and polynomial kernels, in Proceedings of the 17th Annual European
Symposium on Algorithms (ESA 2009), Lecture Notes in Comput. Sci. 5757, Springer,
Berlin, 2009, pp. 694–705.

[57] E. Prieto, Systematic Kernelization in FPT Algorithm Design, Ph.D. thesis, The University
of Newcastle, Callaghan NSW, Australia, 2005.

[58] E. Prieto and C. Sloper, Looking at the stars, Theoret. Comput. Sci., 351 (2006), pp. 437–
445.

[59] N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Com-
bin. Theory Ser. B, 63 (1995), pp. 65–110.

[60] N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a planar graph, J. Combin.
Theory Ser. B, 62 (1994), pp. 323–348.

[61] S. Thomassé, A quadratic kernel for feedback vertex set, ACM Trans. Algorithms, 6 (2010),
32.


	Introduction
	Preliminaries
	MSO logic
	Parameterized algorithms and kernels
	Treewidth and protrusions
	t-boundaried graphs
	Finite integer index
	MSO formulations

	Kernelization for p-F-Deletion on K1,t free graphs
	The protrusion rule—reductions based on finite integer index
	Analysis and kernel size—proof of Theorem 1.1

	An approximation algorithm for finding an F–hitting set
	Kernelization for p-c-Deletion
	Combinatorial lemma and some linear time subroutines
	Bounding the maximum degree of a graph
	Analysis and kernel size—proof of Theorem 1.2

	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


