
Information and Computation 247 (2016) 11–22
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Parameterized complexity of the anchored k-core problem for

directed graphs ✩

Rajesh Chitnis a, Fedor V. Fomin b,c, Petr A. Golovach b,c,∗
a Weizmann Institute of Science, Rehovot 7610001, Israel
b Department of Informatics, University of Bergen, N-5020 Bergen, Norway
c Steklov Institute of Mathematics at St. Petersburg, Russian Academy of Sciences, 27 Fontanka, 191023 St.Petersburg, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 February 2014
Received in revised form 4 July 2015
Available online 1 December 2015

Keywords:
Parameterized complexity
Directed graphs
Anchored k-core

We consider the Directed Anchored k-Core problem, where the task is for a given directed
graph G and integers b, k and p, to find an induced subgraph H with at least p vertices (the
core) such that all but at most b vertices (the anchors) of H have in-degree at least k. We
undertake a systematic analysis of the computational complexity of the Directed Anchored
k-Core problem.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Degree-constrained subgraph problems have been extensively studied in theoretical computer science. One can describe
degree-constrained subgraph problems in the following general setting: given a (un)directed graph G , find a maximum/min-
imum sized (induced, connected) subgraph H subject to some condition C imposed on the degrees of vertices. For
example, Independent Set or (Induced) Matching can be seen as problems within this framework. In this paper, we
study an interesting variant of the degree-constrained subgraph problem where we have to find a large subgraph in
which all (except a small set of anchor vertices) satisfy a degree constraint. Such problems arise in different settings
in social sciences. Adding the anchors however leads to non-trivial computation challenges as we will see in this pa-
per.

More precisely, the k-core of a directed graph G is defined as the largest subgraph H such that deg−
H (v) ≥ k for every

v ∈ V (H). This notion was introduced by Seidman [17] and is a well-known concept in the theory of social networks. It
has also been studied in various social sciences literature [8,9]. It is easy to see that we can find the k-core of a given
directed graph in polynomial time by the following procedure: iteratively remove any vertex that has in-degree less than k.
However, one might not want to strictly enforce the condition of in-degree being at least k for every vertex. In particular, we
allow for a small number of special vertices (called anchors) which can have arbitrary in-degrees, but their purpose in the
(anchored) k-core is to augment the in-degrees of the non-anchored vertices. Bhawalkar et al. [2] introduced the Anchored
k-Core problem for (undirected) graphs. In the Anchored k-Core problem the input is an undirected graph G = (V , E) and
integers b, k, and the task is to find an induced subgraph H of maximum size with all vertices but at most b (which are

✩ A preliminary version [6] of this paper appeared as an extended abstract in the proceedings of FSTTCS 2013.

* Corresponding author.
E-mail addresses: rajesh.chitnis@weizmann.ac.il (R. Chitnis), fedor.fomin@ii.uib.no (F.V. Fomin), petr.golovach@ii.uib.no (P.A. Golovach).
http://dx.doi.org/10.1016/j.ic.2015.11.002
0890-5401/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2015.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:rajesh.chitnis@weizmann.ac.il
mailto:fedor.fomin@ii.uib.no
mailto:petr.golovach@ii.uib.no
http://dx.doi.org/10.1016/j.ic.2015.11.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2015.11.002&domain=pdf

12 R. Chitnis et al. / Information and Computation 247 (2016) 11–22
anchored) to be of degree at least k. In this work, we extend the notion of anchored k-core to directed graphs and define
the parameterized version of the problem formally:

Directed Anchored k-Core (Dir-AKC)
Input: A directed graph G = (V , E) and integers b, k, p.
Parameter 1: b.
Parameter 2: k.
Parameter 3: p.
Question: Do there exist sets of vertices A ⊆ U ⊆ V (G) such that |A| ≤ b, |U | ≥ p, and every v ∈ U \ A satisfies
d−

G[U](v) ≥ k?

We will refer to the set A as the set of anchors and to the graph H = G[U] as the anchored k-core. Note that the
undirected version of the Anchored k-Core problem can be modeled by the directed version: simply replace each edge
{u, v} by arcs (u, v) and (v, u). Keeping the parameters b, k, p unchanged it is now easy to see that the two instances are
equivalent.

Connection to preventing unraveling in social networks Social networks are generally represented by making use of undirected
or directed graphs, where the edge set represents the relationship between individuals in the network. The undirected graph
model works fine for some networks, say Facebook, but the nature of interaction on some social networks such as Twitter
is asymmetrical: the fact that user A follows user B does not imply that user B also follows A. In this case, it is more
appropriate to model interactions in the network by directed graphs. We add a directed edge (u, v) if v follows u. We can
consider a model of user engagement where there is a threshold value k, such that each individual with less than k people
to follow (or equivalently whose in-degree is less than k) drops out of the network. This process can be contagious, and
may affect even those individuals who initially were linked to more than k people. An extreme example of this was given
by Schelling (see p. 17 of [15]): consider a directed path on n vertices and let k = 1. The left-endpoint has in-degree zero,
it drops out and now the in-degree of its only out-neighbor in the path becomes zero and it drops out as well. It is not
hard to see that this way the whole network eventually drops out as the result of a cascade of iterated withdrawals, i.e., the
1-core of this graph is the empty set. The unraveling process described above in Schelling’s example of a directed path can
be highly undesirable in many scenarios. One can attempt to prevent this unraveling by introducing a few special vertices
(called anchors) by “buying” them with extra incentives.

Parameterized complexity We are mainly interested in the parameterized complexity of Anchored k-Core. For general back-
ground on parameterized complexity, we refer to the recent books by Cygan et al. [10] and Downey and Fellows [12].
Parameterized complexity is basically a two dimensional framework for studying the computational complexity of a
problem. One dimension is the input size n and another one is a parameter k. A problem is said to be fixed param-
eter tractable (or FPT) if it can be solved in time f (k) · nO (1) for some function f . A problem is said to be in XP, if
it can be solved in time O (n f (k)) for some function f . The W-hierarchy is a collection of computational complexity
classes: we omit the technical definitions here. The following relation is known amongst the classes in the W-hierarchy:
FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P] ⊆ XP. It is widely believed that FPT �= W[1], and hence if a problem is hard for the
class W[i] (for any i ≥ 1) then it is considered to be fixed-parameter intractable.

Previous results for undirected graphs Bhawalkar et al. [2] initiated the algorithmic study of Anchored k-Core on undirected
graphs. In particular, they obtained the following dichotomy result: the decision version of the problem is solvable in
polynomial time for k ≤ 2 and is NP-complete for all k ≥ 3. In a followup paper, the current set of authors showed that for
k ≥ 3 the problem remains NP-complete even on planar graphs [7]. This motivates the study of the problem for k ≥ 3 from
the viewpoint of parameterized complexity. Unfortunately, the problem is W[2]-hard parameterized by b [2] and W[1]-hard
parameterized by p even for k = 3 [7].

Our results In this paper, we initiate the study of Anchored k-Core on directed graphs and provide a new insight into the
computational complexity of the problem. We obtain the following results.

• The decision version of Dir-AKC is NP-complete for every k ≥ 1 even if the input graph is restricted to be a planar
directed acyclic graph (DAG) of maximum degree at most k + 2. Thus the directed version is in some sense strictly
harder than the undirected version which is known be in P if k ≤ 2, and NP-complete if k ≥ 3 [2]. These results are
proven in Section 2.

• The NP-hardness result for Dir-AKC motivates us to make a more refined analysis of the Dir-AKC problem via the
paradigm of parameterized complexity. We obtain (Section 3) the following dichotomy result: Dir-AKC is FPT parame-
terized by p if k = 1, and W[1]-hard if k ≥ 2.

This fixed-parameter intractability result parameterized by p forces us to consider the complexity on special classes of
graphs such as bounded-degree directed graphs or directed acyclic graphs.

R. Chitnis et al. / Information and Computation 247 (2016) 11–22 13
• In Section 4, for graphs of degree upper bounded by �, we show that the Dir-AKC problem is FPT parameterized by
p +� if k ≥ �

2 . In particular, it implies that Dir-AKC is FPT parameterized by p for directed graphs of maximum degree
at most four.

• We complement tractability results by showing in Section 5 that if k < �
2 and � ≥ 3, then Dir-AKC is W[2]-hard when

parameterized by the number of anchors b even for DAGs. On the other hand, the problem is FPT when parameterized
by � + p for DAGs of maximum degree at most �. Note that we can always assume that b ≤ p, and hence any FPT
result with parameter b implies FPT result with parameter p as well. On the other side, any hardness result with respect
to p implies the same hardness with respect to b.

2. Preliminaries

We consider finite directed and undirected graphs without loops or multiple arcs. The vertex set of a (directed) graph G
is denoted by V (G) and its edge set (arc set for a directed graph) by E(G). The subgraph of G induced by a subset U ⊆ V (G)

is denoted by G[U]. For U ⊂ V (G) by G − U we denote the graph G[V (G) \ U]. For a directed graph G , we denote by G∗
the undirected graph with the same set of vertices such that {u, v} ∈ E(G∗) if and only if (u, v) ∈ E(G). We say that G∗ is
the underlying graph of G .

Let G be a directed graph. For a vertex v ∈ V (G), we say that u is an in-neighbor of v if (u, v) ∈ E(G). The set of all
in-neighbors of v is denoted by N−

G (v). The in-degree d−
G (v) = |N−

G (v)|. Respectively, u is an out-neighbor of v if (v, u) ∈
E(G), the set of all out-neighbors of v is denoted by N+

G (v), and the out-degree d+
G (v) = |N+

G (v)|. The degree dG (v) of a
vertex v is the sum d−

G (v) + d+
G , and the maximum degree of G is �(G) = maxv∈V (G) dG(v). A vertex v of d−

G (v) = 0 is called
a source, and if d+

G (v) = 0, then v is a sink. Observe that isolated vertices are sources and sinks simultaneously.
Let G be a directed graph. For u, v ∈ V (G), it is said that v can be reached (or is reachable) from u if there is a directed

u → v path in G . Respectively, a vertex v can be reached from a set U ⊆ V (G) if v can be reached from some vertex u ∈ U .
Notice that each vertex is reachable from itself. We denote by R+

G (u) (R+
G (U) respectively) the set of vertices that can be

reached from a vertex u (a set U ⊆ V (G) respectively). Let R−
G (u) denote the set of all vertices v such that u can be reached

from v .
For two non-adjacent vertices s, t of a directed graph G , a set S ⊆ V (G) \ {s, t} is said to be an s − t separator if t /∈

R+
G−S (s). An s − t separator S is minimal if no proper subset S ′ ⊂ S is an s − t separator.

The notion of important separators was introduced by Marx [14] and generalized for directed graphs in [5]. We need a
special variant of this notion. Let G be a directed graph, and let s, t be non-adjacent vertices of G . A minimal s − t separator
S is an important s − t separator if there is no s − t separator S ′ with |S ′| ≤ |S| and R−

G−S (t) ⊂ R−
G−S ′ (t). The following lemma

is a variant of Lemma 4.2 of [5], and can be obtained from it by replacing a directed graph by the graph obtained from it
by reversing the direction of all arcs.

Lemma 1. (See [5].) Let G be a directed graph with n vertices, and let s, t be non-adjacent vertices of G. Then for every h ≥ 0, there are
at most 4h important s − t separators of size at most h. Furthermore, all these separators can be enumerated in time O (4h · nO (1)).

As further we are interested in the parameterized complexity of Dir-AKC, we show first NP-completeness of the problem.

Theorem 1. For any k ≥ 1, Dir-AKC is NP-complete, even for planar DAGs of maximum degree at most k + 2.

Proof. Membership in NP is clear.
To show NP-hardness we consider a variant of the Satisfiability problem. Let φ be a Boolean formula in a conjunctive

normal form with variables x1, . . . , xn and clauses C1, . . . , Cm . We associate the following directed graph Gφ with φ:

• For each 1 ≤ i ≤ n introduce the vertices ri, xi and xi . Add the arcs (xi, ri) and (xi, ri)

• For each 1 ≤ j ≤ m introduce the vertex v j .
• For each 1 ≤ i ≤ n and 1 ≤ j ≤ m add an arc (xi, v j) (respectively the arc (xi, v j)) if and only if xi (respectively xi)

belongs to the clause C j .

By the results of Dahlhaus et al. [11], the following problem is NP-hard:

Restricted-Planar-3-SAT

Input: A Boolean CNF formula φ such that

• each clause has at most 3 literals,
• each variable is used in at most 3 clauses,
• each variable is used at least once in positive and at least once in negation,
• the underlying undirected graph G∗

φ of Gφ is planar.

Question: Is the formula φ satisfiable?

14 R. Chitnis et al. / Information and Computation 247 (2016) 11–22
Fig. 1. Construction of G for k = 3.

We reduce from the Restricted-Planar-3-SAT problem. Consider an instance φ of Restricted-Planar-3-SAT with vari-
ables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm . To the graph Gφ , we add the following vertices and edges:

• For each i ∈ {1, . . . , n},
– add a set of k − 1 vertices Yi and draw an arc from each of them to ri ;
– for each vertex y ∈ Yi , add k vertices and draw an arc from each of them to y, denote the set of these k(k − 1)

vertices Zi .
• For each j ∈ {1, . . . , m},

– add a set of k − 1 vertices U j and draw an arc from each of them to v j ;
– for each vertex u ∈ U j , add k vertices and draw an arc from each of them to u, denote the set of these k(k − 1)

vertices W j .

Let the graph constructed be G . An example is shown in Fig. 1. Notice that if k = 1, then Yi = Zi = U j = W j = ∅. We set
b = n(k(k − 1) + 1) + mk(k − 1) and p = n((k + 1)(k − 1) + 2) + m((k + 1)(k − 1) + 1). It is straightforward to see that G is a
DAG. Because each variable xi is used at most 2 times in positive and at most 2 times in negations, dG (xi), dG(xi) ≤ 3 for all
i ∈ {1, . . . , n}, and �(G) ≤ k + 2. Because the underlying undirected graph G∗

φ of Gφ and we have only added planar gadgets
after that to construct G , it follows that the underlying undirected graph G∗ of G is also planar.

We claim that φ is satisfiable if and only if there are a set A ⊆ V (G) and an induced subgraph H of G such that
A ⊆ V (H), |A| ≤ b, |V (H)| ≥ p, and for every v ∈ V (H) \ A, we have d−

H (v) ≥ k.
Suppose that φ is satisfiable. Consider a satisfying truth assignment of x1, . . . , xn . We construct A by including all the

vertices Z1 ∪ . . . ∪ Zn ∪ W1 ∪ . . . ∪ Wm in this set, and for each i ∈ {1, . . . , n}, if xi = true, then xi is included in A and
xi is included otherwise. Clearly, |A| = |Z1| + . . . + |Zn| + |W1| + . . . + |Wm| + n = n(k(k − 1) + 1) + mk(k − 1) = b. Let
H = G[A ∪ Y1 ∪ . . . ∪ Yn ∪ U1 ∪ . . . Um ∪ {r1, . . . , rn} ∪ {v1, . . . , vm}]. Consider w ∈ V (H) \ A. If w ∈ Yi for i ∈ {1, . . . , n}, then
w has k in-neighbors in Zi ⊆ A. If w = ri for i ∈ {1, . . . , n}, then w has k − 1 in-neighbors in Yi and either xi or xi is an
in-neighbor of w as well. If w ∈ U j for j ∈ {1, . . . , m}, then w has k in-neighbors in W j ⊆ A. Finally, if w = v j for some
j ∈ {1, . . . , m}, then w has k − 1 in-neighbors in U j . As the clause C j is satisfied, it contains a literal xi or xi that has the
value true. Then by the construction of A, the corresponding vertex xi or xi respectively is in A, and w has one in-neighbor
in A. It remains to observe that |V (H)| = |A| +|Y1| + . . .+|Yn| +|U1| + . . .+|Um| = n(k(k −1) +1) +mk(k −1) +k(n +m) = p.

Assume now there are a set A ⊆ V (G) and an induced subgraph H of G such that A ⊆ V (H), |A| ≤ b, |V (H)| ≥ p and
for every v ∈ V (H) \ A we have d−

H (v) ≥ k. We will show that φ is satisfiable.
Let S = {w ∈ V (G) | d−

G (w) = 0} = (∪n
i=1{xi, xi}) ∪ (∪n

i=1 Zi) ∪ (∪m
j=1W j) and T = V (G) \ S = {r1, . . . , rn} ∪ (∪n

i=1Yi) ∪
(∪m

j=1U j). We claim that A ⊆ S and T ⊆ V (H). To show it, observe that any vertex w ∈ S is in H if and only if w ∈ A as
d−

G (w) = 0. Because |V (G)| − |V (H)| ≤ n, at least |S| − n vertices of S are in A. Since |S| = b + n, we conclude that exactly
b = |S| − n vertices of S are in A and A ⊆ S . Moreover, V (H) = T ∪ A.

Let z ∈ Zi for some i ∈ {1, . . . , n} and assume that z is adjacent to y ∈ Yi . If z /∈ A, then y ∈ T has at most k − 1
in-neighbors in H , a contradiction. Hence, Z1 ∪ . . . ∪ Zn ⊆ A. By the same arguments we conclude that W1 ∪ . . . ∪ Wm ⊆ A.
Then we have exactly n elements of A in ∪n

i=1{xi, xi}. Consider a pair of vertices xi, xi for i ∈ {1, . . . , n}. If xi, xi /∈ A, then
ri ∈ T has at most k − 1 in-neighbors in H , a contradiction. Therefore, for each i ∈ {1, . . . , n}, exactly one vertex from the
pair xi, xi is in A. For i ∈ {1, . . . , n}, we set the variable xi = true if the vertex xi ∈ A, and xi = false otherwise.

It remains to prove that this is a satisfying truth assignment for φ. Consider a clause C j for j ∈ {1, . . . , m}. The vertex
v j ∈ T has k − 1 in-neighbors in H that are vertices of T . Hence, it has at least one in-neighbor in A. It can be either a
vertex xi or xi that correspond to a literal in C j . It is sufficient to observe that if xi ∈ A, then the literal xi = true, and if
xi ∈ A, then the literal xi = true by our assignment. �

R. Chitnis et al. / Information and Computation 247 (2016) 11–22 15
We conclude this section by the simple observation that Dir-AKC is in XP when parameterized by the number of an-
chors b. For a directed graph G with n vertices, we can consider all the at most

(n
b

) = nO (b) possibilities to choose the
anchors, and then recursively delete non-anchor vertices that have the in-degree at most k − 1. Trivially, if we obtain a
directed graph with at least p vertices for some selection of the anchors, then we have a solution and otherwise we can
answer NO.

3. DIR-AKC parameterized by the size of the core

In this section we consider the Dir-AKC problem for fixed k when p is the parameter, and obtain the following di-
chotomy: If k = 1 then the Dir-AKC problem is FPT parameterized by p, otherwise for k ≥ 2 it is W[1]-hard parameterized
by p.

Theorem 2. For k = 1, the Dir-AKC problem is solvable in time 2O (p) · n2 log n on digraphs with n vertices.

Proof. The proof is constructive, and we describe an FPT algorithm for the problem. Without loss of generality, we assume
that b < p ≤ n.

We apply the following preprocessing rule reducing the instance to an acyclic graph. Let C1, . . . , Cr be the non-trivial
strongly connected components of G , i.e., |V (Ci)| ≥ 2 for i ∈ {1, . . . , r}. Note that for each i ∈ {1, . . . , r} and any v ∈ V (Ci),
d−

Ci
(v) ≥ 1. By making use of Tarjan’s algorithm [18], C1, . . . , Cr can be found in linear time. Let R = R+

G

(⋃r
i=1 V (Ci)

)
be

the set of vertices reachable from these strongly connected components. Then every v ∈ R satisfies d−
G[R](v) ≥ 1. If |R| ≥ p,

then H = G[R] is an anchored 1-core of size at least p for the empty set of anchors. If b ≥ p − |R| > 0, then we select in
V (G) \ R any arbitrary b′ = p − |R| vertices a1, . . . , ab′ . In this case we output the set of anchors A = {a1, . . . , ab′ } and the
graph H = G[A ∪ R]. Otherwise, if b < p − |R|, we set G ′ = G − R and p′ = p − |R| and consider a new instance of Dir-AKC

with the graph G ′ and the parameter p′ .
To see that the rule is safe, it is sufficient to observe that a set of anchors A and a subgraph H ′ of size at least p′ is a

solution of the obtained instance if and only if (A, H = G[V (H ′) ∪ R]) is a solution for the original problem. Let us remark
that the preprocessing rule can be easily performed in time O (n2).

From now we can assume that G has no non-trivial strongly connected components, i.e., G is a directed acyclic graph.
Denote by S = {s1, . . . , sh} the set of sources of G . If |S| ≤ b, then set A = S . In this case, we output the pair (A, H = G).
The pair (A, H) is a solution because every vertex v ∈ V (G) \ S satisfies d−

G (v) ≥ 1. It remains to consider the case when
|S| > b. For i ∈ {1, . . . , h}, let Ri = R+

G (si). Then V (G) = R+
G (S) = ⋃h

i=1 Ri . Without loss of generality, we can assume that
every anchored vertex is from S . Indeed, if si is an anchor, then each vertex of Ri can be included in a solution. Hence for
every anchor a ∈ R j \ {s j}, we can delete this anchor from A and replace it by s j . Since we can choose anchors only from S ,
we are able to reduce the problem to Partial Set Cover.

Partial Set Cover

Input: A collection X = {X1, . . . , Xr} of subsets of a finite n-element set U and positive integers p, b.
Parameter: p.
Question: Are there at most b subsets Xi1 , . . . , Xib , 1 ≤ i1 < . . . < ib ≤ r, covering at least p elements of U , i.e.,
| ⋃b

j=1 Xi j | ≥ p?

Bläser [3] showed that Partial Set Cover is FPT parameterized by p and can be solved in time O (2O (p) · rn log n). For
Dir-AKC, we consider the collection of subsets {R1, . . . , Rr} of V (G). If we can select at most b subsets Ri1 , . . . , Rib such
that | ∪b

j=1 Ri j | ≥ p, we return the solution with anchors A = {si1 , . . . , sib } and H = G[⋃b
j=1 Ri j]. Otherwise, we return a

NO-answer.
Because our preprocessing can be done in time O (n2) and Partial Set Cover is solvable in time 2O (p) · n2 log n, we

conclude that the total running time is 2O (p) · n2 log n. �
Now we complement Theorem 2 by showing that for k ≥ 2, Dir-AKC becomes hard parameterized by the core size.

Theorem 3. For any fixed k ≥ 2, the Dir-AKC problem is W[1]-hard parameterized by p, even for DAGs.

Proof. We reduce from the b-Clique problem which is known to be W[1]-hard [12]:

b-Clique

Input: A undirected graph G and a positive integer b.
Parameter: b.
Question: Is there a clique of size b in G?

16 R. Chitnis et al. / Information and Computation 247 (2016) 11–22
From a given graph G = (V , E) we construct a directed graph G ′ as follows.

• Add a copy of V (G).
• For each edge e = {u, v} ∈ E(G), construct a new vertex we and add two edges in E(G ′) by joining u, v with we in the

copy of V (G) by arcs (u, we), (v, we). Call this set of |E(G)| vertices as W .
• Construct a set Z of k − 2 vertices z1, . . . , zk−2, and for each e ∈ E(G) add k − 2 edges in E(G ′) by joining z1, . . . , zk−2

with we by arcs (z1, we), . . . , (zk−2, we).

Let V (G ′) = V (G) ∪ W ∪ Z . It is straightforward to see that G ′ is a directed acyclic graph. We call vertices of W as subdivision
vertices and vertices of copy of V (G) as branch vertices. Let b′ = b + k − 2 and p = b(b+1)

2 + k − 2. Let Z = {z1 . . . , zk−2}. We
claim that G has a clique of size b if and only if there is a set of at most b′ vertices A ⊆ V (G ′) such that there exists an
induced subgraph H of G ′ with at least p vertices, A ⊆ V (H) and for any v ∈ V (H) \ A we have d−

H (v) ≥ k.

Suppose that K forms a clique in G of size b. We let A = K ∪ Z and define U = {we | e ∈ K }. Notice that |U | = b(b−1)
2

and each vertex of U has two in-neighbors in A ∩ K and k − 2 in-neighbors in Z . We conclude that H = G ′[A ∪ U] has p
vertices and every v ∈ V (H) \ A satisfies d−

H (v) ≥ k.
Assume now that there is a set of at most b′ vertices A ⊆ V [G ′] such that there exists an induced subgraph H of G ′ with

at least p vertices, A ⊆ V (H) and for any v ∈ V (H) \ A we have d−
H (v) ≥ k. Since every vertex from V (G) ∪ Z has in-degree

0 in G ′ , it follows that (V (H) \ A) ⊆ W . Let W0 ⊆ W be the set V (H) \ A. Consider a vertex y ∈ W0: there is such a vertex
y since |V (H) \ A| ≥ p −b = b(b−1)

2 . Since d−
G (y) = k, it follow that the entire in-neighborhood of y must be in H (and hence

in A). Hence, Z ⊆ A. Furthermore, we observed above that (V (H) \ A) ⊆ W and so Z ⊆ A. We have already used up k − 2
budget from the total budget of anchors. Let E0 ⊆ E(G) be the set {e | we ∈ W0}. Let V 0 ⊆ V (G) be the set V (G[E0]). Since
|E0| = |W0| ≥ b(b−1)

2 , it follows that |V 0| ≥ b. However, Z ⊆ A and |A| ≤ b + k − 2 and hence |V 0| = |A| − |Z | ≤ b. Therefore,
|V 0| = b. This implies |E0| ≤ b(b−1)

2 , and so combining with the lower bound in upper line gives |E0| = b(b−1)
2 . The condition

for adding edges between branch vertices and subdivision vertices implies that V 0 is indeed a clique in G which concludes
the proof. �
4. DIR-AKC on graphs of bounded degree

In this section we show that Dir-AKC problem is FPT parameterized by � + p if k ≥ �
2 .

In our algorithms we need to check the existence of solutions for Dir-AKC that have bounded size. It can be observed
that if we are interested in solutions (A, H) such that p ≤ |V (H)| ≤ q, then for every positive q, we can express this
problem in First Order Logic. It was proved by Seese [16] that any graph problem expressible in First Order Logic can be
solved in linear time on (directed) graphs of bounded degree. Later this result was extended for much more rich graph
classes (see [13]). These meta theorems are very general, but do not provide good upper bounds on the running time for
particular problems. Hence, we give the following lemma. Our algorithms use the random separation technique due to Cai
et al. [4] (which is a variant of the color coding method introduced by Alon et al. [1]).

Lemma 2. There is a randomized algorithm with running time 2O (�q) · n that for an instance of Dir-AKC with an n-vertex directed
graph of maximum degree at most � and a positive integer q ≥ p, either returns a solution (A, H) with V (H) ≥ p or gives the answer
that there is no solution with |V (H)| ≤ q. Furthermore, the algorithm can be derandomized, and the deterministic variant runs in time
2O (�q) · n log n.

Proof. Consider an instance of Dir-AKC with an n-vertex directed graph G of maximum degree at most �. We assume that
b ≤ p ≤ n. For given q ≥ p, to decide if G contains a solution of size at most q, we do the following.

We color each vertex of G uniformly at random with probability 1
2 by one of two colors, say red or blue. Let R be the

set of vertices colored red. Observe that if there is a solution (A, H) with |V (H)| ≤ q, then with probability at least 1
2q all

vertices of H are colored red and with probability at least 1
2�q all in- and out-neighbors of the vertices of H that are outside

of H are colored blue. Using this observation, we assume that H is the union of some weakly connected components of the
graph G[R] induced by red vertices.

In time O (�n) we find all weakly connected components of G[R]. If there is a component C with at least b + 1 vertices
of in-degree at most k −1 (in C), then we discard this component as it cannot be a part of any solution. Denote by C1, . . . , Cr

the remaining components. For i ∈ {1, . . . , r}, let Ai = {v ∈ V (Ci)|d−
Ci

(v) < k}, bi = |Ai | and pi = |V (Ci)|.
Thus everything boils down to the problem of finding a set I ⊆ {1, . . . , r} such that

∑
i∈I bi ≤ b and

∑
i∈I pi ≥ p. But this

is the well known Knapsack problem, which is solvable in time O (bn) by dynamic programming. If we obtain a solution I ,
then we output (A, H), where A = ∪i∈I Ai and H = G[∪i∈I V (Ci)]. Otherwise, we return a NO-answer. Notice that this
algorithm can also find a solution (A, H) with |V (H)| > q ≥ p.

It remains to observe that for any positive number α < 1, there is a constant cα such that after running our ran-
domized algorithm cα · 2�q times, we either find a solution (A, H) or can claim that with probability α that it does not
exist.

R. Chitnis et al. / Information and Computation 247 (2016) 11–22 17
This algorithm can be derandomized by the technique proposed by Alon et al. [1]: replace the random colorings by a
family of at most 2O (�q) · log n hash functions which are known to be constructible in time 2O (�q) · n log n. �

Our next aim is to prove that for k > �/2 the Dir-AKC problem is FPT when parameterized by � + b.

Lemma 3. Let � be a positive integer. If k > �/2, then the Dir-AKC problem can be solved in time 2O (�2b) · n log n for n-vertex
directed graphs of maximum degree at most �.

Proof. Suppose (A, H) is a solution for the Dir-AKC problem. Let us observe that because k > �/2, for every vertex v ∈
V (H) \ A, we have d−

H (v) > d+
H (v). Recall that for any directed graph, the sum of in-degrees equals the sum of out-degrees.

Then
∑

v∈V (H)\A

(d−
H (v) − d+

H (v)) =
∑
v∈A

(d+
H (v) − d−

H (v)).

Since for every vertex v ∈ V (H) \ A, d−
H (v) − d+

H (v) ≥ 1, we have that

|V (H) \ A| ≤
∑

v∈V (H)\A

(d−
H (v) − d+

H (v)).

On the other hand, d+
H (v) − d−

H (v) ≤ �, and we arrive at

|V (H) \ A| ≤
∑

v∈V (H)\A

(d−
H (v) − d+

H (v)) =
∑
v∈A

(d+
H (v) − d−

H (v)) ≤ �|A|.

Hence, |V (H)| ≤ (� + 1)|A| ≤ (� + 1)b. Using this observation, we can solve the Dir-AKC problem as follows. If p > (� +
1)b, then we return a NO-answer. If p ≤ (� + 1)b, we apply Lemma 2 for q = (� + 1)b, and solve that problem in time
2O (�2b) · n log n. �

Now we show that if k = �
2 then the Dir-AKC problem is FPT parameterized by � + p.

Lemma 4. Let � be a positive integer. If k = �/2, then the Dir-AKC problem can be solved in time 2O (�3b+�2bp) · nO (1) for n-vertex
directed graphs of maximum degree at most �.

Proof. We describe an FPT algorithm. Consider an instance of the Dir-AKC problem. Without loss of generality we assume
that b < p ≤ n.

We apply the following preprocessing rule. Suppose that G has a (weakly) connected component C such that for any
v ∈ V (C), d−

C (v) = d+
C (v) = k. If b ≥ p − |V (C)|, then we choose a set A of b′ = p − |V (C)| vertices arbitrary in V (G) \ V (C).

Then we return a YES-answer, as the anchors A and H = G[A ∪ V (C)] is a solution. Otherwise, if b < p − |V (C)|, we let
G ′ = G − V (C) and p′ = p −|V (C)|. Now we consider a new instance of the problem with the graph G ′ and the parameter p′ .
To see that the rule is safe, it is sufficient to observe that a set of anchors A and a subgraph H ′ of size at least p′ is a solution
of the obtained instance if and only if A and H = G[V (H ′) ∪ V (C)] is a solution for the original problem. Henceforth we
assume that G has no such components.

We need the following claim.

Claim A. If an instance of the Dir-AKC problem has a core with at least (�p + 1)b + 1 vertices, then it has a solution (A, H) with the
following property: there is a vertex t ∈ V (H) \ A reachable in H from any vertex of H. Moreover, for each vertex v of H, there is a path
from v to t with all vertices except v in V (H) \ A.

Proof of Claim A. Let (A, H ′) be a solution with the set of anchors A and such that V (H ′) > (�p + 1)b.
We show that V (H ′) = R+

H ′(A), i.e., all vertices of H ′ are reachable from the anchors. To obtain a contradiction, suppose
that there is a vertex u ∈ V (H ′) such that u /∈ R+

H ′ (A). Let U = R−
H ′(u), i.e., U is the set of vertices from which we can

reach u. Clearly, A ∩ U = ∅. Therefore, d−
H ′(v) ≥ k = �/2 for v ∈ U . Notice that for a vertex v ∈ U , N−

H ′(v) ⊆ U by the
definition. Hence, d−

G[U](v) ≥ k = �/2 for v ∈ U . Because the sum of in-degrees equals the sum of out-degrees, for every
vertex v ∈ U , we have that d−

G[U](v) = d+
G[U](v) = k = �/2. Then C = G[U] is a component of G such that for every v ∈ V (C),

d−
C (v) = d+

C (v) = k, but such components are excluded by the preprocessing; a contradiction.
Observe now that if d−

H ′(v) < d+
H ′(v), then d−

H ′ (v) < k and thus v ∈ A. Hence, by adding at most �b (maybe multiple) arcs
from V (H ′) \ A to A, joining the vertices v ∈ V (H ′) of degrees d−

H ′(v) > d+
H ′ (v) with vertices of degrees d−

H ′(v) < d+
H ′(v), we

can transform H ′ into a disjoint union of directed Eulerian graphs. Since V (H ′) = R+
′ (A), each of these directed Eulerian
H

18 R. Chitnis et al. / Information and Computation 247 (2016) 11–22
graphs contains at least one vertex of A. Thus the set of arcs of H ′ can be covered by at most �b arc-disjoint directed
walks, each walk starting from a vertex of A and never coming back to A. Because d−

H ′ (v) ≥ k for v ∈ V (H ′) \ A, we have
that |E(H ′)| ≥ k(|V (H ′)| − b) > �kbp. Then there is a walk W with at least kp + 1 arcs. Let a ∈ A be the first vertex of W
and let t be the last vertex of the walk. The walk W visits a only once, t and all other vertices of W are visited at most k
times. We conclude that W has at least p vertices.

Let R = R−
H ′−A(t) and let A′ = {a ∈ A | N+

H ′(a) ∩ R �= ∅}. Consider H = G[R ∪ A′]. Since V (W) ⊆ V (H) it follows that
|V (H)| ≥ p. For any v ∈ V (H) \ A, the in-neighbors of v in H ′ are in H by the construction and, therefore, d−

H (v) ≥ k. It
remains to observe that to select at most b anchors, we take A′ ⊆ V (H). �

Using Claim A, we proceed with our algorithm. We try to find a solution such that H has at most q = (�p + 1)b vertices
by applying Lemma 2. It takes time O (2O (�2bp) · n log n). If we obtain a solution, then we return it and stop. Otherwise,
we conclude that every core contains at least (�p + 1)b + 1 vertices. By Claim A, we can search for a solution H with a
non-anchor vertex t which is reachable from all other vertices of H by directed paths avoiding A. Notice that since t is a
non-anchor vertex, we have that d−

G (t) ≥ k. We try at most n possibilities for all possible choices of t , and solve our problem
for each choice. Clearly, if we get a YES-answer for one of the choices, we return it and stop. Otherwise, if we fail, we return
a NO-answer.

From now we assume that we have already selected t . We denote by G ′ the graph obtained from G by adding an artificial
source vertex s joined by arcs with all the vertices v ∈ V (G) with d−

G (v) < k. Observe that (s, t) /∈ E(G ′).
Suppose that (A, H) is a solution with the set of anchors A such that t ∈ V (H) \ A is reachable in H from any vertex

of H by a path with all inner vertices in V (H) \ A. Denote by δG ′ (H) the set {v ∈ V (H) | N−
G ′(v) \ V (H) �= ∅}, i.e., δG ′(H)

contains vertices that have in-neighbors outside H . We need a chain of claims about the structure of H in G ′ .

Claim B. |δG ′ (H) \ A| ≤ �b.

Proof of Claim B. Let X = {v ∈ V (H) | d−
H (v) ≥ k and d+

H (v) < k}, Y = {v ∈ V (H) | d−
H (v) = d+

H (v) = k} and Z = {v ∈
V (H) | d−

H (v) < k}. Clearly,

∑
v∈X

(d−
H (v) − d+

H (v)) +
∑
v∈Y

(d−
H (v) − d+

H (v)) =
∑
v∈Z

(d+
H (v) − d−

H (v))

Observe that d−
H (v) −d+

H (v) ≥ 1 for v ∈ X , d−
H (v) −d+

H (v) = 0 for v ∈ Y and d+
H (v) −d−

H (v) ≤ � for v ∈ Z . Hence, |X | ≤ �|Z |.
If d−

H (v) < k for v ∈ V (H), then v ∈ A. It follows that Z ⊆ A and |Z | ≤ b. We have |X | ≤ �b. Consider a vertex v ∈ δG ′ (H) \ A.
It has at least one in-neighbor outside H in G and d−

H (v) ≥ k. Since maximum degree is � = 2k, it follows that d+
H (v) < k

and hence v ∈ X . We conclude that δG ′ (H) \ A ⊆ X and |δG ′ (H) \ A| ≤ �b. �
Claim C. There is an s − t separator S in G ′ of size at most (�(k − 1) + 1)b such that V (H) \ A ⊆ R−

G ′−S (t).

Proof of Claim C. Let S =
(
δG ′ (H) ∩ A

)
∪

(⋃
v∈δG′ (H)\A(N−

G (v) \ V (H))
)

, i.e., the set containing all anchors that are in δG ′ (H),
and for each non-anchor vertex of δG ′(H) containing all its in-neighbors outside of H . Consider a directed (s, t)-path P in G ′ .
Let v be the first vertex in P that is in V (H) and let u be its predecessor in P . If v ∈ A, then v ∈ S . If v /∈ A, then u �= s as
H has no non-anchor vertices with in-degree at most k − 1 in G . Then u ∈ S . We conclude that each (s, t)-path contains a
vertex of S , i.e., this set is an s − t separator.

Note that S either contains vertices of A, or vertices which are not in H . Since we know that t can be reached from any
vertex of H in this graph by a path with all inner vertices in V (H) \ A, it follows that V (H) \ A ⊆ R−

G ′−S (t).
It remains to show that |S| ≤ (�(k − 1) + 1)b. By Claim B, |δG ′(H) \ A| ≤ �b. A vertex v ∈ δG ′ (H) \ A has at least one

out-neighbor in H because t is reachable from v . Also the in-degree in H of v ∈ δG ′ (H) \ A is at least k. Since the max
degree is � = 2k, it follow that v has at most k − 1 in-neighbors outside H . Hence |S| ≤ |δG ′ (H) ∩ A| + (k − 1) · |δG ′ (H) \ A| ≤
|A| + (k − 1) · |δG ′ (H) \ A| ≤ (�(k − 1) + 1)b. �

Now we can prove the following claim about important s − t separators in G ′ .

Claim D. There is an important s − t separator S∗ of size at most (�(k − 1) + 1)b in G ′ such that V (H) ⊆ R−
G ′−S∗ (t) ∪ S∗ .

Proof of Claim D. By Claim C, there is an s − t separator S in G ′ of size at most (�(k − 1) + 1)b such that V (H) \ A ⊆
R−

G ′−S (t). Notice that S may not necessary be a minimal separator, but there is a minimal s − t separator S ′ ⊆ S . Clearly,
|S ′| ≤ |S| ≤ (�(k − 1) + 1)b. Since S ′ ⊆ S we have R−

G ′−S (t) ⊆ R−
G ′−S ′ (t) and hence we have V (H) \ A ⊆ R−

G ′−S ′ (t).
If S ′ itself is an important s − t separator, then we are done by choosing S∗ = S ′ . Otherwise there is an important

separator S∗ such that |S∗| ≤ |S| ≤ (�(k − 1) + 1)b and R−
′ ′ (t) ⊂ R−

′ ∗ (t). Hence, it follows that V (H) \ A ⊆ R−
′ ∗ (t).
G −S G −S G −S

R. Chitnis et al. / Information and Computation 247 (2016) 11–22 19
We now want to show that V (H) ⊆ R−
G ′−S∗ (t) ∪ S∗ . Let a ∈ A. If a ∈ S∗ , then clearly a ∈ R−

G ′−S∗ (t) ∪ S∗ . Otherwise a /∈ S∗ . By
Claim A, we know that there is a path P from a to t whose internal vertices are all in V (H) \ A. Since V (H) \ A ⊆ R−

G ′−S∗ (t),
the path P gives a certificate that a ∈ R−

G ′−S∗ (t). Therefore, we have V (H) ⊆ R−
G ′−S∗ (t) ∪ S∗ . �

The next step of our algorithm is to check all important s − t separators in G ′ of size at most (�(k − 1) + 1)b. By
Lemma 1, there are at most 4(�(k−1)+1)b important s − t separators and they can be listed in time 2O (�2b) · nO (1) . For each
important s − t separator S∗ , we consider the set of vertices U = R−

G ′−S∗ (t) ∪ S∗ and decide whether there is a solution such
that V (H) ⊆ U . If we have a solution for some S∗ , then we return a YES-answer and stop. Otherwise, if we fail to find such
a solution for all important separators, we use Claim D to deduce that there is no solution.

From now on, we assume that an important s − t separator S∗ is given and that U = R−
G ′−S∗ (t) ∪ S∗ . In what follows, we

describe a procedure of finding a solution with V (H) ⊆ U .
Denote by D the set {v ∈ U | d−

G (v) > k}. We need the following observation.

Claim E. Set D contains at most (� + 1)(�(k − 1) + 1)b vertices.

Proof of Claim E. The idea of the proof is similar to that of Claim B. Let Q = G[U]. Let X = {v ∈ V (Q) | d−
Q (v) ≥

k and d+
Q (v) < k}, Y = {v ∈ V (Q) | d−

Q (v) = d+
Q (v) = k} and Z = {v ∈ V (Q) | d−

Q (v) < k}. Clearly,

∑
v∈X

(d−
Q (v) − d+

Q (v)) +
∑
v∈Y

(d−
Q (v) − d+

Q (v)) =
∑
v∈Z

(d+
Q (v) − d−

Q (v))

Observe that d−
Q (v) −d+

Q (v) ≥ 1 for v ∈ X , d−
Q (v) −d+

Q (v) = 0 for v ∈ Y and d+
Q (v) −d−

Q (v) ≤ � for v ∈ Z . Hence, |X | ≤ �|Z |.
Recall that G ′ is obtained from G by joining s with all vertices of in-degree at most k − 1. Since S∗ is an s − t separator,

if for v ∈ U , d−
Q (v) < k, then v ∈ S∗ . Hence, Z ⊆ S∗ and |Z | ≤ |S∗| ≤ (�(k − 1) + 1)b. If for v ∈ U , d−

G (v) > k, then v ∈ X ∪ Z .
We conclude that |D| ≤ |X | + |Z | ≤ (� + 1)|Z | ≤ (� + 1)(�(k − 1) + 1)b. �

Recall that set δG ′ (H) contains vertices of H that have in-neighbors outside of H . If v ∈ δG ′ (H) \ A, then it has at least
k in-neighbors in H and at least one in-neighbor outside H . Notice that s /∈ N−

G ′ (v) because d−
G (v) ≥ d−

H (v) ≥ k. Hence,
d−

G (v) > k. Because V (H) ⊆ U , δG ′(H) \ A ⊆ D . By Claim C, |δG ′(H) \ A| ≤ �b, and by Claim E, |D| ≤ (� + 1)(�(k − 1) + 1)b.
We consider all at most 2(�+1)(�(k−1)+1)b possibilities to select δG ′ (H) \ A. For each choice of δG ′ (H) \ A, we guess the arcs
that join the vertices that are outside H with the vertices of δG ′ (H) \ A and delete them. Denote the graph obtained from
G by F . Recall that from each vertex v of δG ′ (H) \ A, there is a directed path to t that avoids A. Hence, v has at least one
out-neighbor in H and at most � − 1 in-neighbors in G . Also v has at least k in-neighbors in H , and we delete at most
d−

G (v) − k arcs. Therefore, for v we choose at most k − 1 arcs out of at most � − 1 arcs. We can upper bound the number
of possibilities for v by 2�−1, and the total number of possibilities for δG ′ (H) \ A by 2(�−1)�b .

Observe that (A, H) is a solution for the new instance of Dir-AKC, where G is replaced by F for a correct guess of the
deleted arcs. Also each solution for the new instance provides a solution for the graph G , because if we put deleted arcs
back, then we can only increase the in-degrees. Hence, we can check for each possible choice of the set of deleted arcs,
whether the new instance has a solution. If for some choice we obtain a solution, then we return a YES-answer. Otherwise,
if we fail for all choices, then we return a NO-answer. Further we assume that F is given.

Denote by F ′ the graph obtained from F by the addition of a vertex s joined by arcs with all the vertices N+
G ′ (s). Now

δF ′(H) = {v ∈ V (H) | N−
F ′(v) \ V (H) �= ∅}. By the choice of F , we have δF ′ (H) = δG ′ (H) ∩ A and therefore |δF ′ (H)| ≤ b. Also

δF ′(H) is an s − t separator in F ′ by Claim C.
Now we can prove the following.

Claim F. There is an important s − t separator Ŝ of size at most b in F ′ such that (Ŝ, G[R−
F ′−Ŝ

(t) ∪ Ŝ]) is a solution for the instance of
the Dir-AKC problem for the graph G.

Proof of Claim F. It was already observed above that δF ′ (H) is an s − t separator in F ′ of size at most b. Because for any
vertex v of H , there is a directed (v, t) path with all inner vertices in V (H) \ A, it follows that V (H) \ A ⊆ R−

F ′−δF ′ (H)
(t).

Notice that δF ′ (H) may not necessary be a minimal separator, but there is a minimal s − t separator S ⊆ δF ′(H). Clearly,
|S| ≤ |δF ′(H)| ≤ b. Since S ⊆ δF ′(H) we have R−

F ′−δF ′ (H)
(t) ⊆ R−

F ′−S (t), and hence it follows that V (H) \ A ⊆ R−
F ′−S (t).

If S itself is an important s − t separator, then we are done by choosing Ŝ = S . Otherwise there is an important separator
Ŝ such that | Ŝ| ≤ |S| ≤ b and R−

F ′−S (t) ⊂ R−
F ′−Ŝ

(t). Hence, it follows that V (H) \ A ⊆ R−
F ′−Ŝ

(t). We now want to show that

V (H) ⊆ R−
F ′−Ŝ

(t) ∪ Ŝ . Let a ∈ A. If a ∈ Ŝ , then clearly a ∈ R−
F ′−Ŝ

(t) ∪ Ŝ . Otherwise a /∈ Ŝ . By Claim A, we know that there is
a path P from a to t whose internal vertices are all in V (H) \ A. Since V (H) \ A ⊆ R−

F ′−Ŝ
(t), the path P gives a certificate

that a ∈ R− (t). Therefore, we have V (H) ⊆ R− (t) ∪ Ŝ .

F ′−Ŝ F ′−Ŝ

20 R. Chitnis et al. / Information and Computation 247 (2016) 11–22
It remains to observe that s is adjacent to all vertices of G with in-degrees at most k − 1 and Ŝ is an s − t separator. It
immediately follows that for any vertex v ∈ R−

F ′−Ŝ
(t) we have d−

F (U)(v) ≥ k. Then (Ŝ, G[R−
F ′−Ŝ

(t) ∪ Ŝ]) is a solution for the

Dir-AKC problem. �
The final step of our algorithm is to enumerate all important s − t separators Ŝ of size at most b in F ′ , which number

by Lemma 1 is at most 4b , and for each Ŝ , check whether (Ŝ, G[R−
F ′−Ŝ

(t) ∪ Ŝ]) is a solution. Recall that all these separators
can be listed in time 2O (b) · nO (1) . We return a YES-answer if we obtain a solution for some important separator, and a
NO-answer otherwise.

To complete the proof, let us observe that each step of the algorithm runs either in polynomial or FPT time. Partic-
ularly, the preprocessing is done in time O (�n). Then we check the existence of a solution of a bounded size in time
2O (�2bp) · n log n. Further we consider at most n possibilities to choose t . For each t , we consider at most 4(�(k−1)+1)b

important s − t separators S∗ . Recall that they can be listed in time 2O (�2b) · nO (1) . Then for each S∗ , we have at most
2(�+1)(�(k−1)+1)b+(�−1) possibilities to construct F , and it can be done in time 2O (�3b) + O (�n). Finally, there are at most
4b important s − t separators Ŝ and they can be listed in time 2O (b) · nO (1) . We conclude that the total running time is
2O (�3b+�2bp) · nO (1) . �

Combining Lemmas 3 and 4, we obtain the following theorem.

Theorem 4. Let � be a positive integer. If k ≥ �
2 , then the Dir-AKC problem can be solved in time 2O (�3b+�2bp) · nO (1) for n-vertex

directed graphs of maximum degree at most �.

Theorems 2 and 4 give the next corollary.

Corollary 1. The Dir-AKC problem can be solved in time 2O (bp) · nO (1) for n-vertex directed graphs of maximum degree at most 4.

5. DIR-AKC on directed acyclic graphs

For the special case of directed acyclic graphs (DAGs), we understand the complexity of Dir-AKC on graphs of bounded
degree much better. Theorem 3 showed that Dir-AKC on DAGs is W[1]-hard parameterized by p for every fixed k ≥ 2, when
the degree of the graph is not bounded. We now show the following theorem that gives W[2]-hardness of Dir-AKC when
parameterized by the number of anchors b (recall that we can always assume that b ≤ p).

Theorem 5. For any � ≥ 3 and any positive k < �
2 , Dir-AKC is W[2]-hard (even on DAGs) when parameterized by the number of

anchors b on graphs of maximum degree at most �.

Proof. First, we prove the claim for k = 1 and � = 3. We reduce from the b-Set Cover problem which is known to be
W[2]-hard [12]:

b-Set Cover

Input: A collection X = {X1, . . . , Xr} of subsets of a finite n-element set U and a positive integer b.
Parameter: b.
Question: Are there at most b subsets Xi1 , . . . , Xib such that these sets cover U , i.e., U = ⋃b

j=1 Xi j ?

Let U = {u1, . . . , un}. We construct the directed graph G as follows (see Fig. 2).

• For i ∈ {1, . . . , r}, assume that Xi = {u j1 , . . . , u js } and
– construct a vertex vi and s vertices xij1 , . . . , xijs ;
– construct arcs (vi, xij1), (xij1 , xij2), . . . , (xijs−1 , xijs).

• For j ∈ {1, . . . , n}, assume that u j is included in the sets Xi1 , . . . , Xit and
– construct a vertex w j and t vertices y ji1 , . . . , y jit ;
– construct arcs (y ji1 , y ji2), . . . , (y jit−1 , y jit);
– join y jit with w j by a directed path P j of length � = 2rn + r.

• For i ∈ {1, . . . , r} and j ∈ {1, . . . , n}, if u j ∈ Xi , then construct an arc (xij, y ji).

It is straightforward to see that G is a directed acyclic graph of maximum degree at most 3. We set p = n�. We claim that
U can be covered by at most b sets if and only if there is a set of at most b vertices A such that there exists an induced
subgraph H of G with at least p vertices, A ⊆ V (H) and for any v ∈ V (H) \ A, d−

H (v) ≥ 1.
Notice that v1, . . . , vr are the sources of G , w1, . . . , wn are the sinks, and V (G) = ⋃r

i=1 R+
G (vi). Observe also that w j

can be reached from vi if and only if u j ∈ Xi .

R. Chitnis et al. / Information and Computation 247 (2016) 11–22 21
Fig. 2. Construction of G for U = {u1, u2, u3} and X1 = {u1, u2}, X2 = {u2, u3}.

Fig. 3. Construction of G ′ for k = 4.

Suppose that U can be covered by at most b sets say Xi1 , . . . , Xib . Let A = {vi1 , . . . , vib } and H = G[R+
G (A)]. It is straight-

forward to see that for any vertex z ∈ V [H], d−
H (z) ≥ 1. Because U is covered, all vertices w1, . . . , wn are in H and, therefore,

V (P1) ∪ . . . ∪ V (Pn) ⊆ V (H). It remains to observe that |V (P1) ∪ . . . ∪ V (Pn)| = n(� + 1) ≥ p and we conclude that (A, H) is
a solution of our instance of Dir-AKC.

Assume now that (A, H) is a solution of the Dir-AKC problem. Without loss of generality we can assume that each a ∈ A
is a source of G . Otherwise, a ∈ R+

G (vi) for some source vi , and we can replace a by vi in A (or delete it if vi ∈ A already).
Let {i | 1 ≤ i ≤ n, vi ∈ A} = {i1, . . . , ib}. We show that Xi1 , . . . , Xib cover U . To obtain a contradiction, assume that there is
an element u j ∈ U such that u j /∈ Xi1 ∪ . . . ∪ Xib . Then the vertex w j is not reachable from A. Hence, the vertices of P j are
not reachable from A. It follows that V (P j) ∩ V (H) = ∅. We have that |V (H)| ≤ |V (G)| − |V (P j)|. Because |X j | ≤ n for j ∈
{1, . . . , r} and each uh is included in at most r sets for h ∈ {1, . . . , n}, |V (G)| ≤ r(n +1) +n(r +�) = 2rn + r +n� = 2rn + r + p.
Therefore, |V (H)| ≤ p + (2rn + r − (� + 1)) < p because P j has � + 1 vertices; a contradiction.

Now we prove W[2]-hardness for k ≥ 2 and � > 2k. We reduce from an instance of the Dir-AKC problem with k = 1
and � = 3. Consider an instance of this problem with a directed acyclic graph G and positive integers b, p. Assume that
b ≤ p ≤ |V (G)| and |V (G)| ≥ 3. We construct the graph G ′ as follows (see Fig. 3).

• Construct a copy of G and denote its vertices by v1, . . . , vn .
• For each i ∈ {1, . . . , n}, construct a set of k vertices Di and join k − 1 vertices of this set with vi by arcs.
• For each i ∈ {2, . . . , n}, join each vertex of Di−1 with all vertices of Di by arcs.

Clearly, G ′ is a directed acyclic graph. We let b′ = b + k and p′ = p + nk. Let also D = D1 ∪ . . . ∪ Dn . Notice that for each
v ∈ V (G), dG ′ (v) = dG(v) +k −1 ≤ k +2 ≤ � as maximum degree of G is 3. For v ∈ D , dG ′ (v) ≤ 2k +1 ≤ �. Hence maximum
degree of G ′ is at most �. We now claim that there is a set of at most b vertices A ⊆ V (G) such that there exists an induced
subgraph H of G with at least p vertices, A ⊆ V (H) and for any v ∈ V (H ′) \ A, d−

H (v) ≥ 1 if and only if there is a set of at
most b′ vertices A′ ⊆ V (G ′) such that there exists an induced subgraph H ′ of G ′ with at least p′ vertices, A′ ⊆ V (H ′) and
for any v ∈ V (H) \ A, d−

H ′(v) ≥ k.
Suppose that our original instance of Dir-AKC has a solution (A, H). We let A′ = A ∪ D1 and H ′ = G ′[V (H) ∪ D]. Then

each vertex v ∈ D \ A′ has k in-neighbors in D . It remains to observe that each vertex v of G ′ from V (G) \ A′ has at least
one in-neighbor in V (G) and k − 1 in-neighbors in D . Therefore, d−

G ′ (v) ≥ k.
Assume now that (A′, H ′) is a solution for the constructed instance of Dir-AKC with |A′| ≤ b′ and |V (H)| ≥ p′ . If |D ∩

A′| < k, then we claim that D ∩ V (H ′) ⊆ A′ . To prove it, suppose that (V (H ′) ∩ D) \ A �= ∅ and consider the smallest index i
such that there is v ∈ (V (H ′) ∩ Di) \ A. Clearly, i ≥ 2. The vertex v has in-neighbors only in Di−1. By the choice of i, Di−1

has at most k − 1 vertices of H ′ , because they can be only anchors and |D ∩ A′| < k. Then d−
H ′(v) < k, a contradiction.

Then if |D ∩ A′| < k, V (H ′) ⊆ V (G) ∪ A′ and |V (H ′)| ≤ n + b + k ≤ n + p + k < p′ as n ≥ 3 and k ≥ 2. This contradicts
our assumption about size of H ′ . Hence, at least k anchors are in D and |A′ \ D| ≤ b. Let A = A′ \ D and H = H ′ − D . If
v ∈ V (H) \ A, then d−

H ′(v) ≥ k and v has at most k − 1 in-neighbors from D in H ′. Then v has at least one in-neighbor in
V (H) and d−(v) ≥ 1. �
H

22 R. Chitnis et al. / Information and Computation 247 (2016) 11–22
The complexity of Dir-AKC parameterized by b on DAGs for the case of k ≥ �
2 is left open. However, we can show that

Dir-AKC is FPT on DAGs of maximum degree �, when parameterized by � + p.

Theorem 6. For any positive integers p and �, Dir-AKC can be solved in time 2O (�p) · n log n for n-vertex DAGs of maximum degree
at most �.

Proof. Consider an instance of Dir-AKC with an n-vertex directed acyclic graph G . Without loss of generality we can assume
that b ≤ p ≤ n. Observe that for DAGs if there is a solution of size ≥ p then there is a solution of size exactly p: given a
solution of size > p, we can (repeatedly) remove a sink vertex since such a vertex does not have outgoing edges to any
other vertex.

We apply Lemma 2 for q = p. In time 2O (�p) · n log n we either obtain a solution of size p or can conclude that for any
solution (A, H) we have H has size at least p + 1. If we obtain a solution of size p then return it. Otherwise by above
paragraph, it follows that there is no solution of size ≥ p. �

Let us remark that this result can be easily extended for any class of directed acyclic graphs G such that the corre-
sponding class of underlaying graphs {G∗|G ∈ G} has (locally) bounded expansion by making use of the results by Dvorak et
al. [13].

6. Conclusions

We proved that Dir-AKC is NP-complete even for planar DAGs of maximum degree at most k + 2. It was also shown that
Dir-AKC is FPT when parameterized by p + � for directed graphs of maximum degree at most � whenever k ≥ �/2 and
we obtained some further results for DAGs. It is natural to ask whether the problem is FPT for other values k. This question
is interesting even for the special case � = 5 and k = 2. Another interesting question is what happens when the input graph
is planar? We know that the problem is NP-complete on planar graphs for fixed k ≥ 1 and maximum degree k + 2. Is the
problem FPT on planar directed graphs when parameterized by the size of the core p?

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 267959, the Government of the Russian
Federation (grant 14.Z50.31.0030), by NSF CAREER award 1053605, NSF grant CCF-1161626, ONR YIP award N000141110662,
DARPA/AFOSR grant FA9550-12-1-0423, a Simons Award for Graduate Students in Theoretical Computer Science and a Sum-
mer International Research Fellowship from the University of Maryland.

References

[1] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856.
[2] K. Bhawalkar, J.M. Kleinberg, K. Lewi, T. Roughgarden, A. Sharma, Preventing unraveling in social networks: the anchored k-core problem, in: ICALP ’12,

in: Lecture Notes in Computer Science, vol. 7392, 2012, pp. 440–451.
[3] M. Bläser, Computing small partial coverings, Inf. Process. Lett. 85 (6) (2003) 327–331.
[4] L. Cai, S.M. Chan, S.O. Chan, Random separation: a new method for solving fixed-cardinality optimization problems, in: IWPEC ’06, in: Lecture Notes in

Computer Science, vol. 4169, 2006, pp. 239–250.
[5] R. Chitnis, M. Hajiaghayi, D. Marx, Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset, SIAM J. Comput. 42 (4)

(2013) 1674–1696.
[6] R.H. Chitnis, F.V. Fomin, P.A. Golovach, Parameterized complexity of the anchored k-core problem for directed graphs, in: FSTTCS 2013, in: LIPIcs,

vol. 24, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013, pp. 79–90.
[7] R.H. Chitnis, F.V. Fomin, P.A. Golovach, Preventing unraveling in social networks gets harder, in: AAAI ’13, AAAI Press, 2013.
[8] M. Chwe, Structure and strategy in collective action 1, Am. J. Sociol. 105 (1) (1999) 128–156.
[9] M. Chwe, Communication and coordination in social networks, Rev. Econ. Stud. 67 (1) (2000) 1–16.

[10] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[11] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, M. Yannakakis, The complexity of multiterminal cuts, SIAM J. Comput. 23 (4) (1994)

864–894.
[12] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, 2013.
[13] Z. Dvorak, D. Král, R. Thomas, Deciding first-order properties for sparse graphs, in: FOCS, IEEE Computer Society, 2010, pp. 133–142.
[14] D. Marx, Parameterized graph separation problems, Theor. Comput. Sci. 351 (3) (2006) 394–406.
[15] T. Schelling, Micromotives and Macrobehavior, WW Norton, 2006.
[16] D. Seese, Linear time computable problems and first-order descriptions, Math. Struct. Comput. Sci. 6 (6) (1996) 505–526.
[17] S. Seidman, Network structure and minimum degree, Soc. Netw. 5 (3) (1983) 269–287.
[18] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (2) (1972) 146–160.

http://refhub.elsevier.com/S0890-5401(15)00100-5/bib416C6F6E595A3935s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib42686177616C6B61724B4C52533132s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib42686177616C6B61724B4C52533132s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib426C617365723033s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib43616943433036s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib43616943433036s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib436869746E6973484D3132s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib436869746E6973484D3132s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib44424C503A636F6E662F6673747463732F436869746E697346473133s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib44424C503A636F6E662F6673747463732F436869746E697346473133s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib436869746E697346473133s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib6368776531393939737472756374757265s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib6368776532303030636F6D6D756E69636174696F6Es1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib437967616E464B4C4D5050533135s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib4461686C686175734A5053593934s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib4461686C686175734A5053593934s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib446F776E6579463133s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib44766F72616B4B543130s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib4D6172783036s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib736368656C6C696E67323030366D6963726F6D6F7469766573s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib53656573653936s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib736569646D616E2D6B2D636F7265s1
http://refhub.elsevier.com/S0890-5401(15)00100-5/bib5461726A616E3732s1

	Parameterized complexity of the anchored k-core problem for directed graphs
	1 Introduction
	2 Preliminaries
	3 Dir-AKC parameterized by the size of the core
	4 Dir-AKC on graphs of bounded degree
	5 Dir-AKC on directed acyclic graphs
	6 Conclusions
	Acknowledgments
	References

