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a b s t r a c t

We investigate Hunters & Rabbit game on graphs, where a set of
hunters tries to catch an invisible rabbit that is forced to slide along
an edge of a graph at every round. We show that the minimum
number of hunters required towin on an (n×m)-grid is ⌊

min{n,m}

2 ⌋+

1.We also show that the extremal value of this number on n-vertex
trees is between Ω(log n/log log n) and O(log n).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Our work originated from the following game puzzle. Hunter wants to shoot Rabbit who is hiding
behind one of the three bushes growing in a row. Hunter does not see Rabbit, so he select one of
the bushes and shoots at it. If Rabbit is behind the selected bush, then Hunter wins. Otherwise Rabbit,
scared by the shot, jumps to one of the adjacent bushes. As Rabbit is infinitely fast, Hunter sees neither
Rabbit’s old nor newbush and has to selectwhere to shoot again. CanHunter alwayswin in this game?

Of course, the answer is yes: Hunter has to shoot twice at the middle bush. If he misses the first
time, it means that Rabbit was hiding either behind the leftmost or the rightmost bush. In both cases,
the only adjacent bush where Rabbit can jump after the first shot is the middle one, thus the second
shot at the middle bush finishes the game. A natural question is what happens if we have four bushes,
and more generally, n ≥ 3 bushes growing in a row? After a bit of thinking, the answer here is yes as
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well. This time Hunter wins by shooting consequently at the bushes 2, . . . , n − 1 when n is odd and
at the bushes 2, . . . , nwhen n is even, and then repeating the same sequence of shots again.

In a slightly different situation, when bushes grow around a circle, say we have three bushes and
Rabbit can jump from any of them to any of them, thenHunter cannot guarantee the success anymore.
In this situation we need the second hunter and this brings us to the following setting. We consider
Hunters & Rabbit game with two players, Hunter and Rabbit, playing on an undirected graph. Hunter
player has a team of hunters who attempt to shoot the rabbit. At the beginning of the game, Rabbit
player selects a vertex and occupies it. Then the players take turns starting with Hunter player. At
every round of the game each of the hunters selects some vertex of the graph and the hunters shoot
simultaneously at their respective aims. If the rabbit is not in a vertex that is hit by a shot, it jumps to
an adjacent vertex. The rabbit is invisible to the hunters, but since we are interested in the guaranteed
success of the hunters, we can assume that rabbit has a complete knowledge about all shots that
the hunters plan. Hunter player wins if at some round of the game he succeeds to shoot the rabbit,
and Rabbit player wins if the rabbit can avoid these situations forever. For a given graph G, we are
interested in the minimum number of hunters sufficient to win in the Hunters & Rabbit game on G,
for any strategy chosen by the rabbit player. We call this parameter the hunting number of a graph,
and denote it by h(G).

Related work. Britnell and Wildon studied the case with one hunter in [4]. They characterized the
graphs for which one hunter (the prince in their terminology) can find the rabbit (the princess). This
result was also independently discovered by Haslegrave [9], who not only characterized the graphs
with hunting number one (in cat and mouse terminology) but also provided best possible capture
times on such graphs. This problem is also mentioned as problem 6∗ in [6, p. 4] (as a problem of
shooting shelters connected by tunnels) with a full solution given on pp. 52–54.

Hunters & Rabbit game is closely related to several pursuit-evasion and search games on graphs,
see [7] for further references. In pursuit-evasion games a team of cops is trying to catch a robber
located on the vertices of the graph. In cops–robbers terminology, Hunters & Rabbit is the Cops &
Robber game, where the set of cops on helicopters (that is allowed to jump to any vertex) is trying to
catch an invisible robber. The robbermoves only to adjacent vertices and is forced tomove every time
the cops are in the air.

In particular, the classical Cops & Robbers games introduced independently by Winkler and
Nowakowski [12] and by Quilliot [13] (see also the book by Bonato and Nowakowski [2] for the
detailed introduction to the field), is the game where robber is visible, and the cops and robber move
to adjacent vertices or remain on their present vertex. The variant of the game where the robber is
invisible introduced by Tošić [14] and the variantwhere the cops use predefined paths as theirs search
moves was introduced by Brass et al. [3]. Another related search game, node search, was introduced
by Kirousis and Papadimitriou in [10,11]. Here cops can fly, that is move to any vertex they wish, the
robber is invisible and very fast, that is can go to any vertex connected to his current location by a path
containing no cops. Thus, Hunters & Rabbit can be seen as a variant of Tošić’s game where cops have
more power or as a variant of Kirousis–Papadimitriou’s game, where the robber is more restricted.
One more significant difference with mentioned games is that in most versions of Cops & Robbers
games the robber is not forced to move at every round of the game, while in our setting the rabbit
cannot stay at the same vertex for two consecutive rounds.

A randomized game called Hunter vs. Rabbit was considered by Adler et al. [1]; here, the hunter is
allowed to move only along edges of the graph while there are no constraints on rabbit’s moves.

Our results and organization of the paper. The remaining part of this paper is organized as follows.
We give basic definitions and preliminary results in Section 2. We also show in this section that the
hunting number of a graph does not exceed its pathwidth plus one and the bound is tight. In Section 3,
we prove our first main result, namely that for an (n × m)-grid G, it holds that h(G) = ⌊

min{n,m}

2 ⌋ + 1.
This result is based on a new isoperimetric theorem that we find interesting on its own. In Section 4,
we provide bounds on the hunting number of trees, which is the second contribution of the paper.We
show that the hunting number of an n-vertex tree is always O(log n), but there are trees where it can
be as large as Ω(log n/ log log n). We conclude with open problems in Section 5.
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2. Basic definitions and preliminaries

We consider finite undirected graphs without loops or multiple edges. The vertex set of a graph
G is denoted by V (G), the edge set is denoted by E(G). For a set of vertices S ⊆ V (G), G[S] denotes
the subgraph of G induced by S, and by G − S we denote the graph obtained from G by the removal
of all the vertices of S, that is the subgraph of G induced by V (G) \ S. Let G be an undirected graph.
For a vertex v, we denote by NG(v) its (open) neighborhood, that is the set of vertices that are adjacent
to v. The closed neighborhood of a vertex v is NG[v] = NG(v) ∪ {v} and the degree of v is denoted by
dG(v) = |NG(v)|. For S ⊆ V (G), we denote NG(S) = ∪v∈S NG(v) \ S and δG(S) = |NG(S)|. We omit
the graph in the subscript whenever it is clear from the context. For positive integers n and m, the
(n × m)-grid is the graph with the vertex set {(x, y)|1 ≤ x ≤ n, 1 ≤ y ≤ m} where x and y are
integers, such that two vertices (x, y) and (x′, y′) are adjacent if and only if |x − x′

| + |y − y′
| = 1. In

other words, (n × m)-grid is the Cartesian product of two paths with n and m vertices respectively.
Throughout the paper log x denotes the logarithm of x to base 2.

Consider the Hunters & Rabbit game on a graph G. Suppose that the Hunter player has k hunters.
A hunters’ strategy is a (possible infinite) sequence H = (H1,H2, . . .) where Hi ⊆ V (G) and |Hi| ≤ k
for i ∈ {1, 2, . . .}; the hunters shoot at each vertex of Hi at the ith round of the game. Respectively, a
rabbit’s strategy is a sequence R = (r0, r1, . . .) of vertices of G such that ri is adjacent to ri−1 for i ≥ 1;
r0 is an initial position of the rabbit, and it jumps from ri−1 to ri after the ith shot of the hunters. For a
set of vertices S ⊆ V (G), a strategy H is a winning hunters’ strategy with respect to S if for any rabbit’s
strategy R such that r0 ∈ S, there is i ≥ 1 such that ri−1 ∈ Hi; H is awinning hunters’ strategy if it is a
winning hunters’ strategy with respect to V (G). Therefore, the hunting number h(G) is the minimum
k such that there is a winning hunters’ strategy for k hunters. We also say that a rabbit’s strategy R is
a winning rabbit’s strategy against a hunters’ strategy H if ri−1 ∉ Hi for all i ≥ 1.

As it is common for pursuit-evasion games with invisible fugitives, it is convenient to keep track of
vertices that can or, respectively, cannot be occupied by the rabbit. LetH = (H1,H2, . . .) be a hunters’
strategy. For S ⊆ V (G), a vertex v is contaminated with respect to S after ith shot if there is a rabbit’s
strategy R = (r0, r1, . . .) such that r0 ∈ S, v = ri and for any j ∈ {1, . . . , i}, rj−1 ∉ Hj. Otherwise, we
say that v is clear with respect to S. If S = V (G), then we simply say that v is contaminated or clear. It
is easy to see that if X is a set of vertices contaminated at moment i − 1 with respect to some S, then
the set of vertices contaminated at moment i will be exactly Φ(X,Hi) = N(X \ Hi).

In our proofs we will be using the fact that we can always restrict our attention to finite strategies.

Proposition 1. If k hunters have a winning strategy on an n-vertex graph G with respect to S ⊆ V (G),
then they have a winning strategy of length at most 2n.
Proof. Consider the auxiliary arena graph, which is a directed graph G with the set of vertices 2V (G)

such that for any distinct X, Y ⊆ V (G), G has the arc (X, Y ) if and only if there exists a setH ⊆ V (G) of
size at most k such that Y = Φ(X,H). The graph G has 2n vertices and at most

n
k


·2n arcs. It is easy to

observe that k hunters have awinning strategy on G if and only ifG has a directedwalk that leads from
S and ∅: such paths correspond to Hunter’s strategies, while the traversed vertices of G keep track of
the set of contaminated vertices. Moreover, if such a walk exists, then there is also a directed simple
path from S to ∅, which corresponds to a winning strategy of length at most 2n. �

It is straightforward to observe that the hunting number is closed under taking subgraphs.

Proposition 2. If G1 is a subgraph of G2, then h(G1) ≤ h(G2).

We also use the following property of Hunters & Rabbit on bipartite graphs.

Lemma 1. Let G be a bipartite graph and let (V1, V2) be a bipartition of V (G). Then k hunters have a
winning strategy on G if and only if k hunters have a winning strategy with respect to V1.
Proof. Clearly, if k hunters have awinning strategyH on G, thenH is a winning strategywith respect
toV1. LetH be awinning strategy onGwith respect toV1. By Proposition 1,we can assumewithout loss
of generality that H = (H1, . . . ,Hℓ) is finite. Moreover, we assume that ℓ is odd; otherwise, we just
consider H = (H1, . . . ,Hℓ,Hℓ). Let H ′ be the strategy obtained by the concatenation of two copies
of the sequence H . We claim that H ′ is a winning strategy. To see it consider an arbitrary rabbit’s



T.V. Abramovskaya et al. / European Journal of Combinatorics 52 (2016) 12–26 15

Fig. 1. An example of a graph Gwith h(G) = pw(G) + 1 = 3.

strategy R = (r0, r1, . . .). If r0 ∈ V1, then there is i ∈ {1, . . . , ℓ} such that ri−1 ∈ Hi because H is a
winning hunters’ strategy with respect to V1. Suppose then that r0 ∈ V2. If ri−1 ∉ Hi for i ∈ {1, . . . , ℓ},
then rℓ ∈ V1 because ℓ is odd. Then, there is j ∈ {1, . . . , ℓ} such that rℓ+j−1 ∈ Hj. As in the rounds
ℓ + 1, . . . , 2ℓ the hunters repeat H , we have that the hunters shoot the rabbit in the (ℓ + j)th round
for some j ∈ {1, . . . , ℓ}. �

We conclude the section by showing that the hunting number of a graph does not exceed its
pathwidth plus one.

A path decomposition of a graph G is a sequence (X1, . . . , Xℓ) of subsets of V (G) (called bags) such
that
(i)


i∈V (T ) Xi = V (G),

(ii) for each edge xy ∈ E(G), x, y ∈ Xi for some i ∈ V (T ), and
(iii) for each x ∈ V (G), if x ∈ Xi ∩ Xj for some 1 ≤ i ≤ j ≤ ℓ, then x ∈ Xk for all kwith i ≤ k ≤ j.

Thewidth of a path decomposition (X1, . . . , Xℓ) is max{|Xi| | 1 ≤ i ≤ ℓ}− 1. The pathwidth of a graph
G (denoted as pw(G)) is the minimum width over all path decompositions of G.

Proposition 3. For a graph G it holds that h(G) ≤ pw(G) + 1, and this bound is tight for graphs of
pathwidth at least 2.

Proof. Let (X1, . . . , Xℓ) be a path decomposition of G of width k = pw(G). We show that H =

(X1, . . . , Xℓ) is a winning hunters’ strategy for k + 1 hunters. To prove this, we show that all the
vertices of (∪i

j=1 Xj) \ Xi+1 are clear after the ith round, for all i ∈ {1, . . . , ℓ}; we assume here that
Xℓ+1 = ∅. It is straightforward to see that the claim holds for i = 1, because a vertex v ∈ X1 can
have a neighbor outside X1 only if v ∈ X1 ∩ X2, by the conditions (ii) and (iii) of the definition of a
path decomposition. Assume that the claim holds for some i ∈ {1, . . . , ℓ}. If a vertex v ∈ ∪

i+1
j=1 Xj is

contaminated after the i + 1st round, then v has to be adjacent to a vertex u that was contaminated
after the ith round, and moreover u ∉ Xi+1. By the inductive assumption we infer that u ∉ ∪

i+1
j=1 Xj,

and hence by (ii) and (iii) of the definition of a path decomposition it follows that v ∈ Xi+1 ∩ Xi+2.
Thus, no vertex of (∪i+1

j=1 Xj) \ Xi+2 is contaminated after the i+ 1st round, which proves the induction
step. It remains to observe that after the ℓth round all the vertices of G are clear. This means that the
strategy H is winning.

Now we show tightness of the bound. First, we prove that the bound is tight for graphs of
pathwidth 2.

Consider the graph G shown in Fig. 1. It is straightforward to verify that pw(G) = 2. We show
that h(G) ≥ 3. Consider an arbitrary hunters’ strategy H = (H1,H2, . . .) for 2 hunters. We prove
that H cannot be a winning strategy by showing that for any i ≥ 1, after the ith round the following
invariant holds: at least 5 vertices of G are contaminated, and the only vertices that can be clear are
v1, v3, v4, v6. We shall denote this invariant by (♦).

Clearly, all the vertices are contaminated in the beginning, so (♦) holds before round 1. Suppose
now that (♦) is satisfied before the ith round and we show that the same holds after the round. By
symmetry and monotonicity under containment, it is sufficient to consider two cases.
Case 1. Vertex v1 is clear and all other vertices are contaminated before the ith round. Notice that each
of v2, v4, v5 has at least 3 contaminated neighbors before the ith round. Hence, they are contaminated
after the round aswell. IfHi = {v4, v5}, then v1, . . . , v5 are contaminated after the round andwe have
(♦). Assume then that Hi ≠ {v4, v5}. Then v6 is contaminated after the round. If Hi = {v2, v5}, then
v1 is contaminated after the round and we have (♦), because v1, v2, v4, v5, v6 are contaminated after
the round. If Hi ≠ {v2, v5}, then v3 gets contaminated and we have (♦), because v2, v3, v4, v5, v6 are
contaminated after the round.
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Case 2. Vertex v3 is clear and all other vertices are contaminated before the ith round. Notice that
each of v2, v3, v4, v5 has at least 3 contaminated neighbors before the ith round. Hence, they are
contaminated after the round. If Hi = {v4, v5}, then v1, . . . , v5 get contaminated and we have (♦)
after the round. If Hi ≠ {v4, v5}, then v2, . . . , v6 get contaminated and we again have (♦) after the
round.

To show tightness of the bound for graphs of pathwidth k ≥ 2, consider the graph G′ obtained
from the graph G shown in Fig. 1 as follows. We add a set X of k − 2 vertices and join them pairwise
by edges to form a clique. Then every vertex of X is joined by an edge with every vertex of G. It is
straightforward to see that pw(G′) = k. We show that h(G′) = k + 1. Let H = (H1,H2, . . .) be an
arbitrary hunters’ strategy for k hunters. We prove that H is not a winning strategy by showing that
for any i ≥ 1, after the ith round the following invariant (♦♦) holds: the invariant (♦) if fulfilled for
the vertices of G and the vertices of X are contaminated.

As all the vertices are contaminated in the beginning, (♦♦) holds before round 1. Suppose that
(♦♦) is satisfied before the ith round and we show that the same holds after the round.

If X ⊆ Hi, then at most 2 hunters shoot at the vertices of G and, therefore, (♦) holds for G as it was
shown above. Also in this case all the vertices of X are contaminated after the ith round, because there
is at least one contaminated before ith round vertex u of G such that u ∉ Hi. We conclude that (♦♦)
is fulfilled.

Suppose that |X \Hi| = 1. Since the vertices of X \Hi are contaminated before the ith round, all the
vertices of G are contaminated after ith round. Since at most 3 hunters shoot at the vertices of G and
G has at least 5 contaminated vertices before the ith round, the vertices of X are contaminated after
the round. Hence, (♦♦) holds.

Finally, assume that |X \ Hi| ≥ 2 and consider distinct x, y ∈ X \ Hi. As x is contaminated before
the i-round, we have that all the vertices of G are contaminated after ith round. It remains to observe
that all the vertices of X \ {x} are contaminated after the ith round, because x is contaminated before
the round, and x is contaminated, because y is contaminated before the ith round. We again have that
(♦♦) holds. �

We proved that the bound is tight for graphs of pathwidth at least 2. It can be noticed that if
pw(G) = 1, then h(G) = 1, because every component of G is a caterpillar in this case, and as it
was shown in [4], in this case h(G) = 1.

3. Hunting rabbit on a grid

In this section we compute the hunting number of an (n × m)-grid. Throughout this section we
assume that n ≤ m. Recall that an (n,m)-grid has the vertex set {(x, y) | 1 ≤ x ≤ n, 1 ≤ y ≤ m} and
two vertices (x, y) and (x′, y′) are adjacent if and only if |x − x′

| + |y − y′
| = 1. For a vertex (i, j), we

say that i is the x-coordinate and j is the y-coordinate of (i, j). Clearly, grids are bipartite graphs, andwe
assume in this section that (V1, V2), where V1 = {(x, y) | x+ y is even} and V2 = {(x, y) | x+ y is odd},
is the bipartition of the vertex set of a grid.

3.1. Isoperimetrical properties of grids

We need some isoperimetrical properties of subsets of V1 for square grids. Let G be an (n×n)-grid.
For i ∈ {2, . . . , 2n}, let Ui = {(x, y) ∈ V (G) | x + y = i} (see Fig. 2) and

s(i) = |Ui| =


i − 1 if i ≤ n + 1,
2n − i + 1 if i > n + 1.

It is assumed that Ui = ∅ if i ≤ 1 or i > 2n. We denote the vertices of Ui by ui
1, . . . , u

i
s(i) and

assume that they are ordered by the increase of their y-coordinate. For i ∈ {1 − n, . . . , n − 1},
Wi = {(x, y) ∈ V (G) | x − y = i} (see Fig. 2) and t(i) = |Wi| = n − |i|; Wi = ∅ if i ≤ −n or i ≥ n.
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Fig. 2. Sets U8 and W2 in a (10 × 10)-grid; the vertices of V1 are depicted as white and the vertices of V2 are black.

Fig. 3. An example of the down-right shifting; the vertices of Q (in a) and Q ′ (in b) are marked by square frames.

Let Wi = {wi
1, . . . , w

i
t(i)} and assume that the vertices are ordered by the increase of their y-

coordinate. Notice that

V1 = U2 ∪ U4 ∪ · · · ∪ U2n

= W2−2⌈n/2⌉ ∪ · · · ∪ W−2 ∪ W0 ∪ W2 ∪ · · · ∪ W2⌈n/2⌉−2

and

V2 = U3 ∪ U5 ∪ · · · ∪ U2n−1 = W1−2⌊n/2⌋ ∪ · · · ∪ W−1 ∪ W1 ∪ · · · ∪ W2⌊n/2⌋−1.

Let Q ⊆ V1. We say that Q ′ is obtained from Q by the down-right shifting if it is constructed as
follows: for each even integer i ∈ {2 . . . 2n}, all the r = |Ui ∩ Q | vertices of Ui ∩ Q are replaced by
ui
1, . . . , u

i
r (see Fig. 3). Respectively, Q ′ is obtained from Q by the down-left shifting if for each even

integer i ∈ {1 − n, . . . , n − 1}, all the r = |Wi ∩ Q | vertices ofWi ∩ Q are replaced by wi
1, . . . , w

i
r .

Lemma 2. If Q ′ is obtained from Q ⊆ V1 by the down-right (respectively, down-left) shifting, then
δ(Q ′) ≤ δ(Q ).

Proof. We prove the lemma for the down-right shifting. The proof for the down-left shifting uses
symmetric arguments.

For an odd integer i ∈ {3, 5, . . . , 2n − 1}, let us define the following numbers:

(i) ci = |Ui ∩ N(Q )|, c−

i = |Ui ∩ N(Q ∩ Ui−1)| and c+

i = |Ui ∩ N(Q ∩ Ui+1)|;
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(ii) di = |Ui ∩ N(Q ′)|, d−

i = |Ui ∩ N(Q ′
∩ Ui−1)| and d+

i = |Ui ∩ N(Q ′
∩ Ui+1)|.

By the construction of Q ′ it is straightforward to verify that c−

i ≥ d−

i and c+

i ≥ d+

i . Since all elements
of Q that neighbor a vertex of Ui reside either in Ui−1 or in Ui+1, we have that ci ≥ max{c−

i , c+

i }.
However, since vertices of Q ′

∩ Ui−1 are exactly the |Q ′
∩ Ui−1| vertices of Ui−1 that have the smallest

y-coordinate, and the same also holds for Q ′
∩ Ui+1, then it is easy to see that di = max{d−

i , d+

i }.
Hence, we obtain that

δ(Q ) =

n−1
j=1

c2j+1 ≥

n−1
j=1

max{c−

2j+1, c
+

2j+1}

≥

n−1
j=1

max{d−

2j+1, d
+

2j+1} =

n−1
j=1

d2j+1 = δ(Q ′). �

Thus, we already have two operations that preserve the cardinality of a set Q while not increasing
δ(Q ): down-left and down-right shifting. We may now inspect sets Q ⊆ V1 that are invariant with
respect to both these operations, and it is easy to see that these are exactly sets conforming to the
following definition. We say that Q ⊆ V1 is a pyramidal set if for any (x, y) ∈ Q such that y ≥ 2,
(x − 1, y − 1) ∈ Q if x ≥ 2 and (x + 1, y − 1) ∈ Q if x ≤ n − 1.

For i ∈ {1, . . . , n}, let Ri = {(x, y)|1 ≤ x ≤ n, y = i}, Xi = Ri ∩ V1 and X i = Ri ∩ V2. Let also

ℓ(i) = |Xi| =


⌊n/2⌋ if i is even,
⌈n/2⌉ if i is odd.

Denote by xi1, . . . , x
i
ℓ(i) the vertices of Xi and assume that they are ordered by the increase of their

x-coordinate.

Lemma 3. Suppose Q ⊆ V1 is a pyramidal set. Then

δ(Q ) = |Q | − |Q ∩ Xn| + |N(Q ∩ X1) ∩ X1|.

Proof. Take any (x, y) ∈ N(Q ) such that y ≥ 2. As (x, y) ∈ N(Q ), then one of neighboring four
vertices of G belongs to Q , and due to Q being pyramidal we have that (x, y−1) ∈ Q . Let us construct
a matching M between vertices of N(Q ) and vertices of Q that matches every vertex (x, y) ∈ N(Q )
with y ≥ 2 with vertex (x, y− 1) ∈ Q . Then, on the side of N(Q ) the only unmatched vertices are the
vertices ofN(Q )∩R1, and from the fact thatQ is pyramidal it follows that these are exactly the vertices
of N(Q ∩ X1) ∩ X1. On the side of Q the only unmatched vertices are the vertices of Q ∩ Rn = Q ∩ Xn.
Thus, the claimed formula on δ(Q ) follows. �

We have already introduced shiftings along diagonals of the grid, so now we introduce shifting
along the rows. Take any Q ⊆ V1. We say that Q ′ is obtained from Q by the left shifting if it is
constructed as follows: for each integer i ∈ {1 . . . n}, all the r = |Xi ∩Q | vertices of Xi ∩Q are replaced
by xi1, . . . , x

i
r . See Fig. 4 for an example. Respectively, Q ′ is obtained from Q by the right shifting if

for each integer i ∈ {1, n}, all the r = |Xi ∩ Q | vertices of Xi ∩ Q are replaced by xiℓ(i)−r+1, . . . , x
i
ℓ(i).

A pyramidal set Q ⊆ V1 is called left-pyramidal if for any (x, y) ∈ Q with x ≥ 3 we also have that
(x − 2, y) ∈ Q . Respectively, Q is right-pyramidal if for any (x, y) ∈ Q with x ≤ n − 2 we also have
that (x + 2, y) ∈ Q .

For a pyramidal set Q ⊆ V1, let i1(Q ) = 0 if (1, y) ∉ Q for all y ∈ {1, . . . , n} and i1(Q ) =

max{y | (1, y) ∈ Q } otherwise. Similarly, let i2(Q ) = 0 if (n, y) ∉ Q for all y ∈ {1, . . . , n} and
i2(Q ) = max{y | (n, y) ∈ Q } otherwise.

Lemma 4. Let Q ⊆ V1 be a pyramidal set. If i1(Q ) ≥ i2(Q ) (as in Fig. 4), then Q ′ obtained from Q by the
left shifting is left-pyramidal and satisfies δ(Q ′) ≤ δ(Q ). Respectively, if i1(Q ) ≤ i2(Q ), then Q ′ obtained
from Q by the right shifting is right-pyramidal and satisfies δ(Q ′) ≤ δ(Q ).
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Fig. 4. An example of the left shifting, i1 = 5 and i2 = 4; the vertices of Q (in a) and Q ′ (in b) are marked by square frames.

Proof. We first prove that if Q ′ is obtained by the left shifting, then Q ′ is left-pyramidal, and if Q ′

is obtained by the right shifting, then Q ′ is right-pyramidal. It is straightforward to see that if Q ′ is
obtained by the left shifting, then (x, y) ∈ Q ′ implies (x− 2, y) ∈ Q ′ whenever x ≥ 3. Symmetrically,
if Q ′ is obtained by the right shifting, then (x, y) ∈ Q ′ implies (x + 2, y) ∈ Q ′ whenever x ≤ n − 2.
Hence, we only have to prove that Q ′ is pyramidal, that is for any (x, y) ∈ Q ′ such that y ≥ 2, it holds
that (x − 1, y − 1) ∈ Q ′ provided x ≥ 2 and (x + 1, y − 1) ∈ Q ′ provided x ≤ n − 1. Let us fix some
(x, y) ∈ Q ′ with y ≥ 2.

Assume first that Q ′ is obtained from Q by the left-shifting. If Xy ∩ Q = Xy, that is Q occupies the
whole Xy, then because Q is pyramidal, we also have Xy−1 ∩ Q = Xy−1. From the construction of Q ′ it
follows that Xy ∩ Q ′

= Xy and Xy−1 ∩ Q ′
= Xy−1, and the claimed condition holds for (x, y) trivially.

Suppose then that Xy \ Q ≠ ∅. In such a situation it can be easily seen that |Q ∩ Xy| ≤ |Q ∩ Xy−1|

because Q is pyramidal, and hence also |Q ′
∩ Xy| ≤ |Q ′

∩ Xy−1|. By the construction of Q ′, we infer
that (x − 1, y − 1) ∈ Q ′ provided x ≥ 2. The second property, that is (x + 1, y − 1) ∈ Q ′ provided
x ≤ n − 1, also follows if at least one of the following conditions holds: |Q ∩ Xy| < |Q ∩ Xy−1| or y
is odd. Thus, the only remaining case is when |Q ∩ Xy| = |Q ∩ Xy−1| and y is even. Since Xy \ Q ≠ ∅

and Q is pyramidal, one can easily verify that the only situation when |Q ∩ Xy| = |Q ∩ Xy−1| is
the following: n is even, Q ∩ Xy = {xyr , . . . , x

y
ℓ(y)} for some r ∈ {2, . . . , ℓ(y)}, where xyℓ(y) = (n, y),

and Q ∩ Xy−1 = {xy−1
r , . . . , xy−1

ℓ(y−1)}. But then (n, y) ∈ Q and (1, y − 1) ∉ Q and we have that
i1(Q ) < y ≤ i2(Q ). This is a contradiction with the assumption that Q ′ is obtained by the left shifting.

The arguments for the case when Q is obtained by the right shifting are exactly symmetric, and
hence we omit the second check.

We are left with proving that δ(Q ′) ≤ δ(Q ). Since we already know that both Q ′ and Q are
pyramidal, from Lemma 3 we infer that it suffices to prove that |N(Q ∩X1)∩X1| ≥ |N(Q ′

∩X1)∩X1|.
If X1 ⊆ Q , then Q ′

∩ X1 = Q ∩ X1 = X1 and the condition holds trivially. Otherwise, if X1 \ Q ≠ ∅, it
can be easily seen that |N(Q ∩ X1) ∩ X1| ≥ |Q ∩ X1|. On the other hand, by the construction of Q ′ we
have that |N(Q ′

∩ X1) ∩ X1| = |Q ′
∩ X1| = |Q ∩ X1| apart from the situation when n is even and Q ′

was obtained by the right shifting; In this case we have |N(Q ′
∩ X1) ∩ X1| = |Q ∩ X1| + 1, and this is

the only situation left. Observe, however, that provided n is even and X1 \ Q ≠ ∅, the only situation
with |N(Q ∩ X1) ∩ X1| = |Q ∩ X1| is when Q = {x11, x

1
2, . . . , x

1
r } for some r < ℓ(1), and otherwise we

are done. But then we would have that (1, 1) ∈ Q and (n − 1, 1) ∉ Q , which, by Q being pyramidal,
implies that i1(Q ) > 0 = i2(Q ). This is a contradiction with the fact that Q ′ was obtained by the right
shifting. �

We say that a left-pyramidal set Q ⊆ V1 has a left spot at (i, j) if (i, j) ∈ Q and (i − 1, j + 1) ∈

V (G)\Q . Similarly, a right-pyramidal setQ ⊆ V1 has a right spot at (i, j) if (i, j) ∈ Q and (i+1, j+1) ∈

V (G)\Q . Obviously, all the left spots of a left pyramidal set have pairwise different x-coordinates, and
the same also holds for right spots of right pyramidal sets.

The following two lemmas can be easily verified by a direct check using Lemma 3.
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Fig. 5. Replacement of Lemma 5 for (i1, j1) = (6, 4) and (i2, j2) = (8, 4); the vertices of Q (in a) and Q ′ (in b) are marked by
square frames.

Fig. 6. Replacement of Lemma 5 for (i1, j1) = (5, 5) and (i2, j2) = (8, 4); the vertices of Q (in a) and Q ′ (in b) are marked by
square frames.

Lemma 5. Let Q ⊆ V1 be a left-pyramidal set with two different left spots (i1, j1) and (i2, j2), such that
(i1, j1) and (i2, j2) have the smallest and the largest x-coordinates among the left spots of Q , respectively.
Construct Q ′

= Q \ {(i2, j2)} ∪ {(i1 − 1, j1 + 1)} (see Figs. 5 and 6). Then Q ′ is also a left-pyramidal set
and δ(Q ′) ≤ δ(Q ).

Lemma 6. Let Q ⊆ V1 be a right-pyramidal set with two different right spots (i1, j1) and (i2, j2), such that
(i1, j1) and (i2, j2) have the largest and the smallest x-coordinates among the right spots of Q , respectively.
Construct Q ′

= Q \ {(i2, j2)}∪ {(i1 +1, j1 +1)}. Then Q ′ is also a right-pyramidal set and δ(Q ′) ≤ δ(Q ).

Note that the transformations of Lemmas 5 and 6 can be applied as long as the set Q in question
has at least two left (resp. right) spots.

Recall that V1 = U2 ∪ U4 ∪ · · · ∪ U2n. We define the ordering v1, . . . , v⌈n2/2⌉ of the vertices of
V1 as follows: the sequence enumerates consequently the vertices of U2,U4, . . . ,U2n and the vertices
of each Ui are listed in the order ui

1, . . . , u
i
s(i). For a positive integer p, let Zp = {v1, . . . , vp}. Recall

also that V1 = W2−2⌈n/2⌉ ∪ · · · ∪ W−2 ∪ W0 ∪ W2 ∪ · · · ∪ W2⌈n/2⌉−2. Respectively, we define another
ordering v′

1, . . . , v
′

⌈n2/2⌉ of the vertices of V1: the sequence enumerates consequently the vertices of

W2⌈n/2⌉−2,W2⌈n/2⌉−4, . . . ,W2−2⌈n/2⌉ and the vertices of each Wi are listed in the order wi
1, . . . , w

i
t(i).

For a positive integer p, we define Z ′
p = {v′

1, . . . , v
′
p}.

Theorem 1. Let G be an (n × n)-grid. Then for any Q ⊆ V1, it holds that δ(Q ) ≥ min(δ(Zp), δ(Z ′
p)),

where p = |Q |.



T.V. Abramovskaya et al. / European Journal of Combinatorics 52 (2016) 12–26 21

Proof. Let p ∈ {1, 2, . . . , ⌈ n2
2 ⌉} and let δ∗

= min{δ(Q ) |Q ⊆ V1, |Q | = p}.
First, we show that there is a left-pyramidal or a right-pyramidal set Q ⊆ V1 of size p with

δ(Q ) = δ∗. Let Q be any set of size p with δ(Q ) = δ∗. Assume that Q is chosen in such a way that
the sum of y-coordinates of the vertices of Q is minimum. Then Q is pyramidal because otherwise we
could apply the down-right or down-left shifting and obtain a set Q ′ that would have smaller sum of
y-coordinates of its vertices, and for which it would hold that δ(Q ′) ≤ δ(Q ) by Lemma 2. Suppose
now that Q is neither left- nor right-pyramidal. If i1(Q ) ≥ i2(Q ), then let Q ′ be the set obtained from
Q by the left shifting. By Lemma 4, we have that δ(Q ′) ≤ δ(Q ) and Q ′ is left-pyramidal. On the other
hand, if i1(Q ) < i2(Q ), then the set Q ′ obtained from Q by the right shifting is right-pyramidal and
satisfies δ(Q ′) ≤ δ(Q ) by Lemma 4. Since δ(Q ) = δ∗ is minimum possible, in both cases we conclude
that δ(Q ′) = δ∗.

Suppose now that there is a left pyramidal set Q of size pwith δ(Q ) = δ∗. Among all such sets we
select Q for which the sum of x-coordinates of its vertices is minimum. Then Q has at most one spot,
since otherwise using Lemma 5 we could construct a left-pyramidal set Q ′ with δ(Q ′) ≤ δ(Q ) and a
smaller sum of x-coordinates of vertices. It remains to notice that if a left-pyramidal set of size p has
at most one spot, then in fact Q = Zp.

The case when there is a right-pyramidal set Q of size p with δ(Q ) = δ∗ is symmetric. Among all
such sets we select Q that maximizes the sum of x-coordinates of its vertices, and using Lemma 6 we
argue that then Q = Z ′

p.
Summarizing, in the first case we have that δ∗

= δ(Zp) and in the second we have that δ∗
= δ(Z ′

p),
so we infer that δ∗

= min(δ(Zp), δ(Z ′
p)). �

Using Theorem 1, it is possible to obtain an explicit expression for the tight lower bound for δ(Q ),
but such an expression is rather ugly. In particular, it can be noticed that there are cases when the
bound is given by δ(Zp) and cases when δ(Z ′

p) is minimum. Consider, e.g., the (6 × 6)-grid. Then
6 = δ(Z4) < δ(Z ′

4) = 7 and 15 = δ(Z12) > δ(Z ′

12) = 14. To compute the hunting number of a
grid, we need the bound for one special case.

Corollary 1. Let G be an (n×n)-grid, where n ≥ 4 and n is even. Then for any Q ⊆ V1 with |Q | =
n2
4 −

n
2 ,

it holds that δ(Q ) ≥
n2
4 .

Proof. Let p =
n2
4 −

n
2 . Observe that Zp contains all the vertices of U2, . . . ,Un−2 and n

2 − 1
vertices of Un. Then N(Zp) contains all the vertices of U3, . . . ,Un−1 and n

2 vertices of Un+1. Because

s(3) + · · · + s(n − 1) = 2 + · · · + (n − 2) =
n2
4 −

n
2 , we have that δ(Zp) =

n2
4 . For the set Z ′

p, we

have that Z ′
p = Wn−2 ∪ · · · ∪ W2 and N(Z ′

p) = Wn−1 ∪ · · · ∪ W1. Hence, it follows that δ(Z ′
p) =

n2
4 . By

Theorem 1, δ(Q ) ≥ min(δ(Zp), δ(Z ′
p)) =

n2
4 . �

3.2. The hunting number of a grid

Now we are ready to compute the hunting number of a grid.

Theorem 2. Let G be an (n × m)-grid. Then h(G) = ⌊
min{n,m}

2 ⌋ + 1.

Proof. Recall that we assume that n ≤ m.
First, we prove that h(G) ≤ ⌊

n
2⌋+1. By Proposition 2, it is sufficient to show it for odd n. Therefore,

we assume that n is odd and, using Lemma 1, construct a winning strategy for n−1
2 + 1 hunters with

respect to V1. Consecutively, for i = 1, . . . ,m− 1, the hunter player makes the following sequence of
shoots as it is shown in Fig. 7:

(i) shoot at (i, 1), (i, 3), . . . , (i, n),
(ii) for j = 1, . . . , (n + 1)/2, shoot at (i + 1, 1), (i + 1, 3) . . . , (i + 1, 2j − 1), (i, 2j), . . . , (i, n − 1)

and then at (i + 1, 2), . . . , (i + 1, 2j), (i, 2j + 1), . . . , (i, n).
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Fig. 7. The series of shots for each i ∈ {1, . . . ,m − 1} for n = 7.

Finally, the hunter player shoots at (m, 1), (m, 3), . . . , (m, n). It is straightforward to verify (see Fig. 7)
that the following claim holds for each i ∈ {1, . . . ,m}: after the ith series of rounds,

(i) the vertices of V2−i mod 2 are clear;
(ii) the vertices (x, y) for x < i are clear.

This immediately implies that we have a winning hunter’s strategy.
Now we show that h(G) ≥ ⌊

n
2⌋ + 1. By Proposition 2, it is sufficient to show it for (n × n)-grids

for even n. If n = 2, then a direct check shows that h(G) = 2 and the claim holds. Suppose then that
n ≥ 4. We show that the Hunter player has no winning strategy for n

2 hunters.
For the sake of contradiction, suppose H = (H1,H2, . . .) is Hunter’s strategy for n

2 hunters. We

show inductively that for every i ≥ 1, each of the sets V1 and V2 has at least n2
4 contaminated vertices

after the ith shot. Clearly, all vertices are contaminated before the first shoot. Assume that the claim
holds before ith round. Set V1 contains at least n2

4 contaminated vertices before the ith shot; let us
denote this set of contaminated vertices by Ai−1. As |Hi| ≤

n
2 , we have a set Q = Ai−1 \ Hi of at least

n2
4 −

n
2 vertices that were contaminated before the ith shot and were not shot during the ith round.

By applying Corollary 1 to any subset of Q of size exactly n2
4 −

n
2 , we infer that δ(Q ) ≥

n2
4 and hence

at least n2
4 vertices of V2 are contaminated after the ith shot. To show the symmetric claim for V2,

we can use exactly the same arguments, because we can apply Corollary 1 also to subsets of V2; this
follows from the assumption that n is even and, therefore, V1 and V2 can be mapped to each other by
an automorphism of G.
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Fig. 8. Construction of tree Tk .

This is a contradiction with the assumption that H is a winning strategy for the Hunter player. As
H was chosen arbitrarily, we have that n

2 hunters cannot hunt the rabbit. �

4. Hunting rabbit on a tree

In this section we provide upper and lower bounds on the hunting number of a tree.
It immediately follows from the results of Ellis, Sudborough and Turner [5] that any tree of

pathwidth t has at least (5 · 3t
− 1)/2 vertices. Together with Proposition 3 it implies the following

theorem.

Theorem 3. For every n-vertex tree T , h(T ) ≤ log3
2n+1

5 + 1.

Next, we prove that the hunting number of an n-vertex tree can be as large as Ω(log n/ log log n).
More precisely, we prove the following theorem.

Theorem 4. For every positive integer k there exists a tree Tk such that |V (Tk)| = 2O(k log k) and h(Tk) ≥ k.

The rest of this section is devoted to the proof of Theorem 4. The construction of the sequence of
trees (Tk)k=1,2,3,... is inductive. We are going to think of each Ti as of a rooted tree. For T1 we take
simply a path on three vertices with the middle vertex being the root. Let us define

p(k) = 2 · ((4k − 3)(k − 1) + 1).

To construct Tk based on Tk−1, perform the following:

(i) Create the root u.
(ii) Add p := p(k) children of u, denoted by v1, v2, . . . , vp.
(iii) For every child vi of u, add p subtreesQ i,j for j = 1, 2, . . . , p, all isomorphic to Tk−1 andwith roots

being children of vi.

See Fig. 8 for an illustration. For i = 1, 2, . . . , p, by P i we denote the subtree of Tk rooted at vi.
Furthermore, let wi,j be the root of subtree Q i,j, for all i, j ∈ {1, 2 . . . , p}. By somehow abusing the
notation, we will identify each subtree P i and Q i,j with its vertex set.

Observe now that we have recursive equation |V (Tk)| = 1 + p(k) + p(k)2 · |V (Tk−1)|, from which
it immediately follows that |V (Tk)| = 2O(k log k). We are left with proving by induction that h(Tk) ≥ k
for all positive integers k. For k = 1 we have h(T1) = 1, so we proceed to the inductive step for k ≥ 2.
In the following, we denote T = Tk.

Let us fix the bipartition (V1, V2) of T such that u ∈ V1 and {v1, v2, . . . , vp
} ⊆ V2. We shall prove

that k − 1 hunters do not have a winning strategy on T with respect to V1, which by Lemma 1 is
equivalent to the main claim. For the sake of contradiction, suppose that there is a winning strategy
with respect to V1 for k − 1 hunters, and denote it by H = (H1,H2,H3, . . . ,Hm). Therefore, in the
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beginning of this strategy all the vertices of V1 are contaminated, and at the end all the vertices of T
are clean. For t = 0, 1, 2, . . . ,m, let At be the set of contaminated vertices between hunters’ shots t
and t + 1. Thus, A0 = V1, Am = ∅, At ⊆ V1 for even t , and At ⊆ V2 for odd t .

Let us fix a moment t ∈ {0, 1, . . . ,m}, and consider subtree Q i,j. We shall say that
(i) Q i,j is contaminated at moment t if Q i,j

∩ At ≠ ∅.
(ii) Q i,j is full at moment t if Q i,j

∩ At = Q i,j
∩ V1 provided that t is even, and Q i,j

∩ At = Q i,j
∩ V2

provided that t is odd.
(iii) Q i,j iswell-contaminated atmoment t if the following holds: supposing t ′ ≤ t is the latestmoment

not later than t when Q i,j was full, then |Q i,j
∩ Ht ′′ | < k − 1 for all t ′ < t ′′ ≤ t . In other words,

since the last time Q i,j was full, it did not happen that all the available hunters were shooting at
Q i,j in some round.

Observe that at moment t = 0 all the subtrees Q i,j are full, hence the definition of being well-
contaminated is valid. Observe also that by the induction hypothesis and Lemma 1, each subtree Q i,j

cannot be cleaned using less than k − 1 hunters and beginning from any moment when it is full. This
justifies the following claim.

Claim 1. If a subtree Q i,j is well-contaminated at moment t, then it is also contaminated at moment t.

Similarly as for Q i,j, a subtree P i is contaminated at moment t if P i
∩At ≠ ∅. Also, P i is full at moment

t if P i
∩ At = P i

∩ V1 provided t is even, and P i
∩ At = P i

∩ V2 provided t is odd.
We now prove a few auxiliary observations that will be used in the main proof.

Claim 2. The following holds:
(i) Suppose that subtree Q i,j is contaminated at moment t and for every t ′ with t < t ′ ≤ t + (4k − 6)

we have that Ht ′ ∩ Q i,j
= ∅. Then Q i,j is full at moment t + (4k − 6).

(ii) Suppose that subtree P i is contaminated at moment t and for every t ′ with t < t ′ ≤ t + (4k − 4) we
have that Ht ′ ∩ Q i,j

= ∅. Then P i is full at moment t + (4k − 4).

Proof. The claim follows immediately from the facts that the diameter of each Q i,j is equal to 4k − 6
and the diameter of each P i is equal to 4k − 4. This, in turn, follows from the observation that the
diameter of Tk is equal to 4k − 2, which can be proved via a straightforward induction. �

For a moment t (0 ≤ t ≤ m) and index i (1 ≤ i ≤ p), let ni(t) be the number of subtrees Q i,j, for
j = 1, 2, . . . , p, that are well-contaminated at moment t . We shall say that
(i) P i is lightly contaminated at moment t if ni(t) ≤ p/2;
(ii) P i is heavily contaminated at moment t if p/2 < ni(t).

Claim 3. Suppose P i is heavily contaminated at moment t, where t is odd. Then vi
∈ At .

Proof. Suppose first that there was a moment t0 with t − (4k − 5) ≤ t0 < t , such that vi
∈ At0 but

vi
∉ Ht0+1; in particular t0 is odd. Then it follows that wi,j

∈ At0+1 for every j = 1, 2, . . . , p, so in
particular all the subtrees Q i,j became contaminated at moment t0 + 1. Out of these subtrees, at most
(4k − 5)(k − 1) might contain some vertex of Ht ′ for any t ′ with t0 < t ′ ≤ t , which leaves at least
one subtree Q i,j that did not contain any shots during all these moments. Since both t0 and t are odd
and Q i,j consists of more than one vertex, we infer that wi,j remained contaminated at all the even
moments between t0 + 1 and t − 1, so in particular wi,j

∈ At−1. Since wi,j
∉ Ht , we have that vi

∈ At .
Suppose now that no such moment t0 exists. Recall that P i is heavily contaminated at moment t ,

that is the number of subtrees Q i,j, for j = 1, 2, . . . , p, that are well-contaminated and, therefore,
contaminated at moment t is more than p/2. Since t0 does not exist, we have that all the subtrees Q i,j

that are contaminated at moment t , needed to be contaminated at all moments t ′ withmax{t − (4k−

5), 0} ≤ t ′ ≤ t: the only way a subtree Q i,j can become contaminated is by not shooting at vi when it
is contaminated. At most (4k − 5)(k − 1) of these subtrees might contain some vertex of Ht ′ for any
t ′ with max{0, t − (4k − 5)} < t ′ ≤ t , which leaves at least one subtree Q i,j that did not contain any
shots during all these moments. By Claim 2, this subtree is full at moment t − 1. Since t is odd, this
means that wi,j

∈ At−1. As wi,j
∉ Ht , we again have that vi

∈ At . �
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Claim 4. Suppose t is an oddmoment, vi
∈ At , and vi

∉ Ht+1. Then P i is heavily contaminated at moment
t + (4k − 5).

Proof. By the assumption we have that wi,j
∈ At+1 for every j = 1, 2, . . . , p. At most (4k− 6)(k− 1)

subtrees Q i,j can contain some vertex of Ht ′ for t + 1 < t ′ ≤ t + (4k − 5). This leaves more than p/2
subtrees Q i,j that do not contain any shots during these moments. By Claim 2, all these subtrees are
full at moment t + (4k − 5), so in particular they are well-contaminated then. �

Finally, we introduce a similar classification for the whole tree T as for subtrees P i. We shall say
that

(i) T is lightly contaminated at moment t if the number of heavily contaminated subtrees P i is at most
p/2;

(ii) T is heavily contaminated at moment t if the number of heavily contaminated subtrees P i is more
than p/2.

The following two claims can be proved in exactly the same manner as Claims 3 and 4, with the
modification that we use the second point of Claim 2 instead of the first one.

Claim 5. Suppose T is heavily contaminated at moment t, where t is even. Then u ∈ At .

Claim 6. Suppose t is an even moment, u ∈ At , and u ∉ Ht+1. Then T is heavily contaminated at moment
t + (4k − 3).

We are finally ready to prove that h(Tk) ≥ k by exposing that the existence of the hunters’ strategy
(H1,H2,H3, . . . ,Hm) leads to a contradiction. Let t ∈ {0, 1, . . . ,m} be the latest moment when T
was heavily contaminated. Since T is heavily contaminated at moment 0, and lightly contaminated
at moment m, we infer that such t exists and satisfies t < m. By the maximality of t , we have
that T is lightly contaminated at moment t + 1. This means that some subtree P i0 ceased to be
highly contaminated between moments t and t + 1, which in turn means that some subtree Q i0,j0

ceased to be well-contaminated between moments t and t + 1. By the definition of being well-
contaminated, subtree Q i0,j0 could have ceased to be well-contaminated only if all the k − 1 hunters
were shooting at it at moment t + 1, that is we have that Ht+1 ⊆ Q i0,j0 . This implies in particular that
Ht+1 ∩ {u, v1, v2, . . . , vp

} = ∅.
We now consider two cases depending on the parity of t .
Suppose first that t is odd, so At ⊆ V2. We have that more than p/2 subtrees P i are heavily

contaminated atmoment t , including the subtree P i0 . By Claim 3, for each of these subtrees P i we have
that vi

∈ At . Since no vertex vi is contained in Ht+1, we can apply Claim 4 and infer that every subtree
P i that was heavily contaminated at moment t is again heavily contaminated at moment t + (4k−5).
Hence, at moment t + (4k − 5) we again have more than p/2 heavily contaminated subtrees P i, a
contradiction with the maximality of t .

Suppose now that t is even, so At ⊆ V1. Since T is heavily contaminated atmoment t , by Claim 5we
have that u ∈ At . Since u ∉ Ht+1, by Claim 6 we have that T is again heavily contaminated at moment
t + (4k − 3), which contradicts the maximality of t .

We have obtained a contradiction in both of the cases, so this completes the inductive proof that
h(Tk) ≥ k. Thus Theorem 4 is proven.

5. Conclusions

In our paper we investigated the hunting number for grids and trees. In particular, we proved
that the extremal value of the hunting number for n-vertex trees is between Ω(log n/ log log n) and
O(log n). Very recently this result was improved by Gruslys and Méroueh in [8]. They showed that
h(T ) ≤ ⌈(1/2) log n⌉ for an n-vertex tree T , and for any ε > 0 and any sufficiently large n, there is a
tree T of order n such that h(T ) ≥ (1/4 − ε) log n. Hence, they give asymptotically tight lower and
upper bound for the maximum value of the hunting number of trees.
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We conclude with a few open questions. We leave the algorithmic aspects of the problem
completely untouched. For example, graphs with h(G) = 1 can be recognized in polynomial time
due to characterization from [4]. However, we do not know if deciding whether h(G) ≤ 2 can be done
in polynomial time.While it is natural to assume that the problem isNP-hard or even PSPACE-hard,we
do not have a proof confirming such an assumption. Also it would be interesting to see if the hunting
number of a tree can be computed in polynomial time.
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