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A subfamily F ′ of a set family F is said to q-represent F if for every A ∈ F and B of size q such that
A ∩ B = ∅ there exists a set A′ ∈ F ′ such that A′ ∩ B = ∅. Recently, we provided an algorithm that, for a
given family F of sets of size p together with an integer q, efficiently computes a q-representative family F ′
of F of size approximately ( p+q

p ). In this article, we consider the efficient computation of q-representative
families for product families F . A family F is a product family if there exist families A and B such that
F = {A ∪ B : A ∈ A, B ∈ B, A ∩ B = ∅}. Our main technical contribution is an algorithm that, given A, B and
q, computes a q-representative family F ′ of F . The running time of our algorithm is sublinear in |F | for many
choices of A, B, and q that occur naturally in several dynamic programming algorithms. We also give an
algorithm for the computation of q-representative families for product families F in the more general setting
where q-representation also involves independence in a matroid in addition to disjointness. This algorithm
considerably outperforms the naive approach where one first computes F from A and B and then computes
the q-representative family F ′ from F .

We give two applications of our new algorithms for computing q-representative families for product fam-
ilies. The first is a 3.8408knO(1) deterministic algorithm for the MULTILINEAR MONOMIAL DETECTION (k-MLD)
problem. The second is a significant improvement of deterministic dynamic programming algorithms for
“connectivity problems” on graphs of bounded treewidth.
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1. INTRODUCTION

Let M = (E, I) be a matroid and let S = {S1, . . . , St} be a family of subsets of E of
size p. A subfamily Ŝ ⊆ S is q-representative for S if, for every set Y ⊆ E of size at
most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set
X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. In other words, if a set Y of size at most q
can be extended to an independent set by adding a subset from S, then it also can be
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extended to an independent set by adding a subset from Ŝ as well. Thus, for certain
applications the family Ŝ contains the “essential” information about the whole family
S and independent sets of M.

The crucial property of representative families used in combinatorics and algorithms,
see, for example, Jukna [2011, Section 9.2.2] and [Tuza 1994, 1996], is that for certain
matroids the size of a q-representative family can be significantly smaller that the size
of S and that such a family can be computed efficiently. By the classic result of Lovász
[1977], for linear matroids, that is, matroids representable over a finite field, there
exists a representative family Ŝ ⊆q

rep S with at most ( p+q
p ) sets. However, it is a very

non-trivial task of constructing such a representative family efficiently. Monien [1985]
provided an algorithm computing a q-representative family of size at most

∑q
i=0 pi in

time O(pq · ∑q
i=0 pi · t) for set families or, equivalently, for uniform matroids. Marx

[2006] gave an algorithm, also for uniform matroids, for finding a q-representative fam-
ily of size at most ( p+q

p ) in time O(pq · t2). For linear matroids, Marx [2009] has shown
how Lovász’s proof can be transformed into an algorithm computing a q-representative
family of size at most ( p+q

p ) with running time 2O(p log(p+q)) · ( p+q
p )O(1)(||AM||t)O(1), where

||AM|| is the size of the input representation matrix of the matroid. Recently, we have
shown in Fomin et al. [2016] how to compute a q-representative family with at most
( p+q

p ) sets in O(( p+q
p )tpω + t( p+q

q )ω−1) operations over the field representing the matroid.
Here, ω < 2.373 is the matrix multiplication exponent [Gall 2014; Williams 2012].
For the special case of uniform matroids on n elements, we gave a faster algorithm
computing a representative family in time O(( p+q

q )q · 2o(p+q) · t · log n). The efficient com-
putations of representative families led to fast deterministic parameterized algorithms
for k-PATH, k-TREE, and, more generally, for k-SUBGRAPH ISOMORPHISM, where the k-vertex
pattern graph is of constant treewidth in Fomin et al. [2016].

All currently known algorithms that use fast computation of representative families
as a subroutine are based on dynamic programming. It is therefore very tempting
to ask whether the computation of representative families can be faster for families
that arise naturally in dynamic programs rather than for general families. A class of
families that often arises in dynamic programs is the class of product families; a family
F is the product of A and B if F = A ◦ B = {A∪ B : A ∈ A, B ∈ B ∧ A∩ B = ∅}. Product
families naturally appear in dynamic programs where sets represent partial solutions,
and two partial solutions can be combined if they are disjoint. For an example, in the
k-PATH problem, partial solutions are vertex sets of paths starting at a particular root
vertex v, and two such paths may be combined to a longer path if and only if they are
disjoint (except for overlapping at v). Many other examples exist—essentially product
families can be thought of as a subset convolution [Bellman and Karush 1962a, 1962b],
and the wide applicability of the fast subset convolution technique of Björklund et al.
[2007] is largely due to the frequent demand to compute product families in dynamic
programs.

Our results. Our main technical contributions are two algorithms for the computation
of representative families for product families, one for uniform matroids, and one for
linear matroids. For uniform matroids, we give an algorithm that, given an integer q
and families A, B of sets of sizes p1 and p2 over the ground set of size n, computes a
q-representative family F ′ of F . The running time of our algorithm is sublinear in |F |
for many choices of A, B, and q that occur naturally in several dynamic programming
algorithms. For example, let q, p1, p2 be integers. Let k = q + p1 + p2 and suppose
that we have families A and B, which are (k− p1) and (k− p2)-representative families.
Then the sizes of these families are roughly |A| = ( k

p1
) and |B| = ( k

p2
). In particular,
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when p1 = p2 = �k/2�, both families are of size roughly 2k, and thus the cardinality
of F is approximately 4k. On the other hand, for any choice of p1, p2, and k, our
algorithm outputs a (k − p1 − p2)-representative family of F of size roughly ( k

p1+p2
) in

time 3.8408knO(1). For many choices of p1, p2, and q, our algorithm runs significantly
faster than 3.8408knO(1). The expression capturing the running time dependence on p1,
p2, and q can be found in Theorem 3.3 and Corollary 3.4.

Our second algorithm is for computing representative families of prod-
uct families, when the universe is also enriched with a linear matroid.
More formally, let M = (E, I) be a matroid and let A,B ⊆ I. Then let
F = A • B = {A ∪ B : A ∪ B ∈ I, A ∈ A, B ∈ B and A ∩ B = ∅}. Just as for uni-
form matroids, a naive approach for computing a representative familiy of F would
be to compute the product A • B first and then compute a representative family of the
product. The fastest currently known algorithm for computing a representative family
is by Fomin et al. [2016] and has running time approximately ( p+q

p )ω−1|F |. We give an
algorithm that significantly outperforms the naive approach. An appealing feature of
our algorithm is that it works by reducing the computation of a representative family
for F to the computation of represesentative families for many smaller families. Thus
an improved algorithm for the computation of representative families for general
families will automatically accelerate our algorithm for product families as well. The
expression of the running time of our algorithm can be found in Theorem 4.2.

Applications. Our first application is a deterministic algorithm for the following pa-
rameterized version of multilinear monomial testing.

MULTILINEAR MONOMIAL DETECTION (k-MLD) Parameter: k
Input: An arithmetic circuit C over Z+ representing a polynomial P(X) over Z+.
Question: Does P(X) construed as a sum of monomials contain a multilinear mono-
mial of degree k?

This is the central problem in the algebraic approach of Koutis and Williams for
designing fast parameterized algorithms [Koutis 2008, 2012; Koutis and Williams 2009;
Williams 2009]. The idea behind the approach is to translate a given problem into the
language of algebra by reducing it to the problem of deciding whether a constructed
polynomial has a multilinear monomial of degree k. As it is mentioned implicitly by
Koutis [2008], k-MLD can be solved in time (2e)knO(1), where n is the input length, by
making use of color coding. The color-coding technique of Alon, Yuster, and Zwick [Alon
et al. 1995] is a fundamental and widely used technique in the design of parameterized
algorithms. It appeared that most of the problems solvable by making use of color coding
can be reduced to a multilinear monomial testing. Williams [2009] gave a randomized
algorithm solving k-MLD in time 2knO(1). The algorithms based on the algebraic method
of Koutis-Williams provide a dramatic improvement for a number of fundamental
problems [Björklund et al. 2013, 2010; Fomin et al. 2012; Guillemot and Sikora 2013;
Koutis 2008, 2012; Koutis and Williams 2009; Williams 2009]. See also the recent
survey in Koutis and Williams [2016].

The advantage of the algebraic approach over color coding is that for a number
of parameterized problems, the algorithms based on this approach have much bet-
ter exponential dependence on the parameter. On the other hand, color-coding-based
algorithms admit direct derandomization [Alon et al. 1995] and are able to handle
integer weights with running time overhead poly-logarithmic in the weights. Obtain-
ing deterministic algorithms matching the running times of the algebraic methods
but sharing these nice features of color coding remain a challenging open problem.
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Our deterministic algorithm for k-MLD is the first non-trivial step towards resolv-
ing this problem. In fact, our algorithm solves a weighted version of k-MLD, where
the elements of X are assigned weights and the task is to find a k-multilinear
term with minimum weight. The running time of our deterministic algorithm is
O(3.8408k2o(k)s(C)n log W log2 n), where s(C) is the size of the circuit and W is the
maximum weight of an element from X.

We also provide an algorithm for a more general version of multilinear monomial
testing, where variables of a monomial should form an independent set of a linear ma-
troid. The new algorithm can be used as the basic step in solving general optimization
problems of finding a subgraph with additional constraints provided in the form of
independent sets of some matroids. See, for example, Panolan and Zehavi [2016].

The second application of our fast computation of representative families is for dy-
namic programming algorithms on graph of bounded treewidth. It is well known that
many intractable problems can be solved efficiently when the input graph has bounded
treewidth. Moreover, many fundamental problems like MAXIMUM INDEPENDENT SET or
MINIMUM DOMINATING SET can be solved in time 2O(t)n [Cygan et al. 2015]. On the other
hand, it was believed until very recently that for some “connectivity” problems, such
as HAMILTONIAN CYCLE or STEINER TREE, no such algorithm exists. In their breakthrough
article, Cygan et al. [2011] introduced a new algorithmic framework called Cut&Count
and used it to obtain 2O(t)nO(1) time Monte Carlo algorithms for a number of con-
nectivity problems. Recently, Bodlaender et al. [2013] obtained the first deterministic
single-exponential algorithms for these problems using two novel approaches. One of
the approaches of Bodlaender et al. is based on rank estimations in specific matrices,
and the second is based on a matrix-tree theorem and computation of determinants.
Fomin et al. [2016] used efficient algorithms for computing representative families of
linear matroids to provide yet another approach for single-exponential algorithms on
graphs of bounded treewdith.

It is interesting to note that for a number of connectivity problems such as STEINER

TREE or FEEDBACK VERTEX SET the “bottleneck” of treewidth-based dynamic programming
algorithms is the join operation. For example, as shown by Bodlaender et al. [2013],
FEEDBACK VERTEX SET and STEINER TREE can be solved in time O((1 + 2ω)pwpwO(1)n) and
O((1 + 2ω+1)twtwO(1)n), where pw and tw are the pathwidth and the treewidth of the
input graph. The reason for the difference in the exponents of these two algorithms
is due to the cost of the join operation, which is required for treewidth and does not
occur for pathwidth. For many computational problems on graphs of bounded treewidth
in the join nodes of the decomposition, the family of partial solutions is the product
of the families of its children, and we wish to store a representative family (for a
graphic matroid) for this product family. Here our second algorithm comes into play.
By making use of this algorithm, one can obtain faster deterministic algorithms for
many connectivity problems. We exemplify this by providing algorithms with running
time O((1 + 2ω−1 · 3)twtwO(1)n) for FEEDBACK VERTEX SET and STEINER TREE.

Our methods. Consider a pair of disjoint sets A and B, with |A| = p and |B| = q. A
random coloring that colors each element in U red with probability p

p+q and blue with
probability q

p+q will color A red and B blue with probability roughly 1
(p+q

p ) . Thus a family

of slightly more than ( p+q
p ) such random colorings will contain, with high probability,

for each pair of disjoint sets A and B, with |A| = p and |B| = q a function that
colors Ared and B blue. The fast computation of representative families of Fomin et al.
[2016] deterministically constructs a collection of colorings that mimics this property of
random coloring families. The colorings in the family are used to witness disjointedness,
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since a coloring that colors A red and B blue certifies that A and B are disjoint. In our
setting, we can use such coloring families both for witnessing disjointedness in the
computation of representive sets and in the computation of F = A ◦ B. After all, each
set in F is the disjoint union of a set in A and a set in B. In order to make this idea
work, we use the deterministic construction of coloring familes given in Fomin et al.
[2016].

For linear matroids, our algorithm computes a representative family F ′ of F = A •B
as follows. First, the family F is broken up into many smaller families F1, . . . ,Ft, and
then a representative family F ′

i is computed for each Fi. Finally, F ′ is obtained by
computing a representative family of

⋃
i F ′

i using the algorithm of Fomin et al. [2016]
for computing representative families. The speedup over the naive method is due to
the fact that (a)

⋃
i F ′

i is much smaller than F and (b) each Fi has a certain structure
that ensures better upper bounds on the size of F ′

i and allows F ′
i to be computed faster.

2. PRELIMINARIES

In this section, we give various definitions that we make use of in the article.

Graphs. Let G be a graph with vertex set V (G) and edge set E(G). A graph G′ is a
subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph G′ is called an induced
subgraph of G if E(G′) = {uv ∈ E(G) | u, v ∈ V (G′)}. In this case, G′ is also called the
subgraph induced by V (G′) and denoted by G[V (G′)]. For a vertex set S, by G \ S we
denote G[V (G) \ S], and by E(S) we denote the edge set E(G[S]). For an edge set E′, we
use G \ E′ to represent the graph with vertex set V (G) and edge set E(G) \ E′.

Sets, Functions, and Constants. Let [n] = {0, . . . , n− 1}. Let U be a set. We use 2U ,
(U

i ), and ( U
≤i ) to denote the family of all subsets of U ; the family of all subsets of size

i of U ; and the family of all subsets of size at most i of U , respectively. A family F of
subsets U is called a p-family if for all X ∈ F , |X| = p.

We call a function f : 2U → N additive if for any subsets X and Y of U we have that
f (X) + f (Y ) = f (X ∪ Y ) − f (X ∩ Y ).

A monomial Z = xs1
1 · · · xsn

n of a polynomial P(x1, . . . , xn) is called multilinear if si ∈
{0, 1} for all i ∈ {1, . . . , n}. We say a monomial Z = xs1

1 · · · xsn
n is k-multilinear term if Z

is multilinear and
∑n

i=1 si = k. Throughout the article, we use ω to denote the matrix
multiplication exponent. The current best-known bound on ω < 2.373 [Williams 2012].

2.1. Matroids and Representative Families

In this subsection, we give definitions related to matroids and representative family.
For a broader overview on matroids we refer to Oxley [2006].

Definition 2.1. A pair M = (E, I), where E is a ground set and I is a family of subsets
(called independent sets) of E, is a matroid if it satisfies the following conditions:

(I1) ∅ ∈ I.
(I2) If A′ ⊆ A and A ∈ I, then A′ ∈ I.
(I3) If A, B ∈ I and |A| < |B|, then there exists e ∈ (B\ A) such that A∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property and a pair (E, I) satisfying only
(I2) is called hereditary family. An inclusion wise maximal set of I is called a basis of
the matroid. Using axiom (I3) it is easy to show that all the bases of a matroid have the
same size. This size is called the rank of the matroid M and is denoted by rank(M). The
uniform matroids are among the simplest examples of matroids. A pair M = (E, I) over
an n-element ground set E, is called a uniform matroid if the family of independent
sets is given by I = {A ⊆ E||A| ≤ k}, where k is some constant. This matroid is also
denoted as Un,k.
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2.1.1. Linear Matroids and Representable Matroids. Let A be a matrix over an arbitrary
field F and let E be the set of columns of A. Given A we define the matroid M = (E, I)
as follows. A set X ⊆ E is independent (that is, X ∈ I) if the corresponding columns are
linearly independent over F. The matroids that can be defined by such a construction
are called linear matroids, and if a matroid can be defined by a matrix A over a field
F, then we say that the matroid is representable over F. That is, a matroid M = (E, I)
of rank d is representable over a field F if there exist vectors in Fd correspond to the
elements such that linearly independent sets of vectors correspond to independent
sets of the matroid. A matroid M = (E, I) is called representable or linear if it is
representable over some field F.

2.1.2. Graphic Matroids. Given a graph G, a graphic matroid M = (E, I) is defined by
taking elements as edges of G (that is, E = E(G)) and F ⊆ E(G) is in I if it forms a
spanning forest in the graph G. Consider the matrix AM with a row for each vertex
i ∈ V (G) and a column for each edge e = i j ∈ E(G). In the column corresponding to
e = i j, all entries are 0, except for a 1 in i or j (arbitrarily) and a −1 in the other. This is
a representation over reals. To obtain a representation over a field F, one needs to take
the representation given above over reals and simply replace all −1 by the additive
inverse of 1.

PROPOSITION 2.2 (OXLEY [2006]). Graphic matroids are representable over any field of
size at least 2.

2.1.3. Representative Family. Now we define q-representative family of a given family
and state theorems [Fomin et al. 2016] regarding its compuation.

Definition 2.3 (q-Representative Family [Fomin et al. 2016]). Given a matroid M =
(E, I) and a family S of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative
for S if the following holds: For every set Y ⊆ E of size at most q, if there is a set X ∈ S
disjoint from Y with X∪Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂∪Y ∈ I.
If Ŝ ⊆ S is q-representative for S, then we write Ŝ ⊆q

rep S.

In other words, if some independent set in S can be extended to a larger independent
set by q new elements, then there is a set in Ŝ that can be extended by the same q
elements. A weighted variant of q-representative families is defined as follows. It is
useful for solving problems where we are looking for objects of maximum or minimum
weight.

Definition 2.4 (Min/Max q-Representative Family [Fomin et al. 2016]). Given a
matroid M = (E, I), a family S of subsets of E and a non-negative weight function
w : S → N, we say that a subfamily Ŝ ⊆ S is min q-representative (max q-representative)
for S if the following holds: For every set Y ⊆ E of size at most q, if there is a set X ∈ S
disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with

(1) X̂ ∪ Y ∈ I, and
(2) w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).

We use Ŝ ⊆q
minrep S (Ŝ ⊆q

maxrep S) to denote a min q-representative (max q-
representative) family for S.

Definition 2.5. Given two families of independent sets L1 and L2 of a matroid
M = (E, I), we define

L1 • L2 = {X ∪ Y |X ∈ L1 ∧ Y ∈ L2 ∧ X ∩ Y = ∅ ∧ X ∪ Y ∈ I}.
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For normal set families A and B (in uniform matroid of rank at least maxA∈A,B∈B(|A| +
|B|)), note that A ◦ B = A • B = {X ∪ Y |X ∈ A ∧ Y ∈ B ∧ X ∩ Y = ∅}.

We say that a family S = {S1, . . . , St} of independent sets is a p-family if each set
in S is of size p. We state three lemmata providing basic results about representative
families. These lemmata work for the weighted variant of representative families.

LEMMA 2.6 (FOMIN ET AL. [2016]). Let M = (E, I) be a matroid and S be a family of
subsets of E. If S ′ ⊆q

rep S and Ŝ ⊆q
rep S ′, then Ŝ ⊆q

rep S.

LEMMA 2.7 (FOMIN ET AL. [2016]). Let M = (E, I) be a matroid and S be a family of
subsets of E. If S = S1 ∪ · · · ∪ S� and Ŝi ⊆q

rep Si , then ∪�
i=1Ŝi ⊆q

rep S.

LEMMA 2.8 (FOMIN ET AL. [2016]). Let M = (E, I) be a matroid of rank k, S1 be
a p1-family of independent sets, and S2 be a p2-family of independent sets such that
Ŝ1 ⊆k−p1

rep S1 and Ŝ2 ⊆k−p2
rep S2. Then Ŝ1 • Ŝ2 ⊆k−p1−p2

rep S1 • S2.

THEOREM 2.9 (FOMIN ET AL. [2016]). Let M = (E, I) be a linear matroid of rank
p + q = k, S = {S1, . . . , St} be a p-family of independent sets, and w : S → N be
a non-negative weight function. Then there exists Ŝ ⊆q

minrep S (Ŝ ⊆q
maxrep S) of size

( p+q
p ). Moreover, given a representation AM of M over a field F, we can find Ŝ ⊆q

minrep S
(Ŝ ⊆q

maxrep S) of size at most ( p+q
p ) in O(( p+q

p )tpω + t( p+q
q )ω−1) operations over F.

It is shown in Lokshtanov et al. [2015] that a theorem similar to Theorem 2.9 can
be obtained, even when the rank of the input matroid is not bounded, through a
deterministic truncation of linear matroids. For uniform matroids, faster algorithms
are known.

THEOREM 2.10 (FOMIN ET AL. [2016]). There is an algorithm that given a p-family
A of sets over a universe U of size n, an integer q, and a non-negative weight function
w : A → N with maximum value at most W, computes in time O(|A| · log |A| · log W +|A| ·
( p+q

q )q · 2o(p+q) · log n) a subfamily Â ⊆ A such that |Â| ≤ ( p+q
p ) · 2o(p+q) and Â ⊆q

minrep A
(Â ⊆q

maxrep A).

3. REPRESENTATIVE FAMILY COMPUTATION FOR PRODUCT FAMILIES

In this section, we design a faster algorithm to find a q-representative family for product
families. Our algorithm for a q-representative family for product families relies on the
construction of an n-p-q-separating collection defined in Fomin et al. [2016]. We start
with the formal definition of an n-p-q-separating collection.

Definition 3.1. An n-p-q-separating collection C is a tuple (F , χ, χ ′), where F is a
family of sets over a universe U of size n, χ is a function from ( U

≤p) to 2F , and χ ′ is a

function from ( U
≤q ) to 2F such that the following properties are satisfied:

(1) for every A ∈ ( U
≤p) and F ∈ χ (A), A ⊆ F;

(2) for every B ∈ ( U
≤q ) and F ∈ χ ′(B), F ∩ B = ∅;

(3) for every pairwise disjoint sets A1 ∈ ( U
p1

), A2 ∈ ( U
p2

), . . . , Ar ∈ ( U
pr

), and B ∈ (U
q ) such

that p1 + · · · + pr = p, ∃F ∈ χ (A1) ∩ χ (A2) . . . χ(Ar) ∩ χ ′(B).

The size of (F , χ, χ ′) is |F |, the (χ, p′)-degree of (F , χ, χ ′) for p′ ≤ p is

max
A∈(U

p′)
|χ (A)|,
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and the (χ ′, q′)-degree of (F , χ, χ ′) for q′ ≤ q is

max
B∈(U

q′)
|χ ′(B)|.

A construction of separating collections is a data structure that, given n, p, and q,
initializes and outputs a family F of sets over the universe U of size n. After the
initialization, one can query the data structure by giving it a set A ∈ ( U

≤p) or B ∈ ( U
≤q ),

and the data structure then outputs a family χ (A) ⊆ 2F or χ ′(B) ⊆ 2F , respectively.
Together the tuple C = (F , χ, χ ′) computed by the data structure should form an n-p-
q-separating collection.

LEMMA 3.2 (FOMIN ET AL. [2016]). Given 0 < x < 1, there is a construction of an n-p-q-
separating collection with the following parameters:

—size, ζ (n, p, q) ≤ 2O( p+q
log log(p+q) ) · 1

xp(1−x)q · (p + q)O(1) · log n

—initialization time, τI(n, p, q) ≤ 2O( p+q
log log(p+q) ) · 1

xp(1−x)q · (p + q)O(1) · n log n

—(χ, p′)-degree, �(χ,p′)(n, p, q) ≤ 2O( p+q
log log(p+q) ) · 1

xp−p′ (1−x)q · (p + q)O(1) · log n

—(χ, p′)-query time, Q(χ,p′)(n, p, q) ≤ 2O( p+q
log log(p+q) ) · 1

xp−p′ (1−x)q · (p + q)O(1) · log n

—(χ ′, q′)-degree, �(χ ′,q′)(n, p, q) ≤ 2O( p+q
log log(p+q) ) · 1

xp(1−x)q−q′ · (p + q)O(1) · log n

—(χ ′, q′)-query time, Q(χ ′,q′)(n, p, q) ≤ 2O( p+q
log log(p+q) ) · 1

xp(1−x)q−q′ · (p + q)O(1) · log n.

Let us provide first some intuition behind the algorithm computing a q-
representative family for the product families. Let L1 and L2 be two families of sets
over a universe U of size n, where L1 is a p1-family and L2 is a p2-family. Any set in
L1 ◦ L2 is of the form A ∪ B, where A ∈ L1, B ∈ L2, and A ∩ B = ∅. Let p = p1 + p2
and q = k − p. We want to find a small subfamily L̂ of L1 ◦ L2 satisfying the following
property: For every set C of size at most q, if (A∪ B) ∩ C = ∅, where A∪ B ∈ L1 ◦ L2,
then there are sets A′ ∈ L1 and B′ ∈ L2 such that A′ ∪ B′ ∈ L̂, A′ ∩ B′ = ∅, and
(A′ ∪ B′) ∩ C = ∅. To construct such a subfamily, we build two separating collections.
The first n-p-q-separating collection (F , χF , χ ′

F ) is used to take care of the disjointness
between A∪ B and C. The second n-p1-p2-separating collection (H, χH, χ ′

H) is for taking
care of the disjointness between the sets in L1 and L2 (i.e., between A and B). For any
tuple (A, B, C) of sets, where A ∈ L1, B ∈ L2, A∩ B = ∅, and C is a set of size at most
q such that (A ∪ B) ∩ C = ∅, there is a pair of of sets F ∈ F and H ∈ H with the
following property: A ⊆ H, B ∩ H = ∅, A∪ B ⊆ F, and C ∩ F = ∅. Hence to keep the
q-representative family, it is sufficient to keep for every pair of sets F and H only one
set A′ ∪ B′ ∈ L̂, where A′ ⊆ H, B′ ∩ H = ∅, and A′ ∪ B′ ⊆ F.

We are ready to give the main theorem about product families using the constructions
of n-p-q-separating collections.

THEOREM 3.3. Let L1 be a p1-family of sets and L2 be a p2-family of sets over a universe
U of size n. Let w : 2U → N be an additive weight function. Let L = L1 ◦ L2 and p =
p1 + p2. For any 0 < x1, x2 < 1, there exist L̂ ⊆k−p1−p2

minrep L of size x−p
1 (1−x1)−(k−p) ·2o(k) · log n

and it can be computed in time

O
(

z(n, k, W)
xp

1 (1 − x1)q
+ z(n, k, W)

xp1
2 (1 − x2)p2

+ |L1| · z(n, k, W)
xp2

1 (1 − x1)q(1 − x2)p2
+ |L2| · z(n, k, W)

xp1
1 (1 − x1)qxp1

2

)
,

where z(n, k, W) = 2o(k)n log n · log W and W is the maximum weight defined by w.
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Fig. 1. Graph constructed from L1,L2,F , and H.

PROOF. We set p = p1 + p2 and q = k− p. To obtain the desired construction, we first
define an auxiliary graph and then use it to obtain the q-representative for the product
family L. We first obtain two families of separating collections.

—Apply Lemma 3.2 for 0 < x1 < 1 and construct an n-p-q-separating collection
(F , χF , χ ′

F ) of size 2O( p+q
log log(p+q) ) · 1

xp
1 (1−x1)q · (p + q)O(1) log n in time linear in the size

of F .
—Apply Lemma 3.2 for 0 < x2 < 1 and construct an n-p1-p2-separating collection

(H, χH, χ ′
H) of size 2O( p1+p2

log log(p1+p2) ) · 1
x

p1
2 (1−x2)p2

· (p1 + p2)O(1) log n in time linear in the size

of H.

Now we construct a graph G = (V, E) where the vertex set V contains a vertex each
for sets in F � H � L1 � L2. For clarity of presentation, we name the vertices by the
corresponding set. Thus, the vertex set V = F � H � L1 � L2. The edge set E =
E1 � E2 � E3 � E4, where each Ei for i ∈ {1, 2, 3, 4} is defined as follows (see Figure 1):

E1 = {(A, F)|A ∈ L1, F ∈ χF (A)}
E2 = {(B, F)|B ∈ L2, F ∈ χF (B)}
E3 = {(A, H)|A ∈ L1, H ∈ χH(A)}
E4 = {(B, F)|B ∈ L2, F ∈ χ ′

H(B)}.

Thus G is essentially a 4-partite graph.

Algorithm. The construction of L̂ is as follows. For a set F ∈ F , we call a pair of sets
(A, B) cyclic, if A ∈ L1, B ∈ L2 and there exists H ∈ H such that FAHB forms a cycle of
length four in G. Let J (F) denote the family of cyclic pairs for a set F ∈ F and

wF = min
(A,B)∈J (F)

w(A) + w(B).
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We obtain the family L̂ by adding A ∪ B for every set F ∈ F such that (A, B) ∈ J (F)
and w(A) + w(B) = wF . Indeed, if the family J (F) is empty, then we do not add any set
to L̂ corresponding to F. The procedure to find the smallest weight A∪ B for any F is
as follows. We first mark the vertices of NG(F) (the neighbors of F). Now we mark the
neighbors of P = (NG(F) ∩ L1) in H. For every marked vertex H ∈ H, we associate a
set A of minimum weight such that A ∈ (P ∩ NG(H)). This can be done sequentially as
follows. Let P = {S1, . . . , S�}. Now iteratively visit the neighbors of Si in H, i ∈ [�], and
for each vertex of H store the smallest weight vertex S ∈ P it has seen so far. After this,
we have a marked set of vertices in H such that with each marked vertex H in H we
stored a smallest weight marked vertex in L1 which is a neighbor of H. Now for each
marked vertex B in L2, we go through the neighbors of B in the marked set of vertices
in H and associate (if possible) a second vertex (which is a minimum weighted marked
neighbor from L2) with each marked vertex in H. We obtain a pair of sets (A, B) ∈ J (F)
such that w(A) + w(B) = wF . This can be easily done by keeping a variable that stores
a minimum weighted A∪ B seen after every step of marking procedure. Since for each
F ∈ F we add at most one set to L̂, the size of L̂ follows.

Correctness. We first show that L̂ ⊆ L. Towards this, we only need to show that
for every A ∪ B ∈ L̂ we have that A ∩ B = ∅. Observe that if A ∪ B ∈ L̂, then there
exist F ∈ F and H ∈ H such that FAHB forms a cycle of length four in the graph
G. So H ∈ χH(A) and H ∈ χ ′

H(B). This means A ⊆ H and B ∩ H = ∅. So we conclude
A and B are disjoint and hence L̂ ⊆ L. We also need to show that if there exist
pairwise disjoint sets A ∈ L1, B ∈ L2, C ∈ (U

q

)
, then there exist Â ∈ L1, B̂ ∈ L2 such

that Â ∪ B̂ ∈ L̂, Â, B̂, C are pairwise disjoint and w(Â) + w(B̂) ≤ w(A) + w(B). By the
property of separating collections (F , χF , χ ′

F ) and (H, χH, χ ′
H), we know that there exists

F ∈ χF (A) ∩ χF (B) ∩ χ ′
F (C), H ∈ χH(A) ∩ χ ′

H(B). This implies that FAHB forms a cycle
of length four in the graph G. Hence in the construction of L̂, we should have chosen
Â ∈ L1 and B̂ ∈ L2 corresponding to F such that w(Â) + w(B̂) ≤ w(A) + w(B) and added
to L̂. So we know that F ∈ χF (Â) ∩ χF (B̂). Now we claim that Â, B̂, and C are pairwise
disjoint. Since Â∪ B̂ ∈ L̂, Â∩ B̂ = ∅. Finally, since F ∈ χF (Â) ∩χF (B̂) and F ∈ χ ′

F (C), we
get Â, B̂ ⊆ F and F ∩ C = ∅, which implies C is disjoint from Â and B̂. This completes
the correctness proof.

Running Time Analysis. We first consider the time TG to construct the graph G. We
can construct F in time 2O( k

log log k ) · 1
xp

1 (1−x1)q · (p + q)O(1) · n log n. We can construct H in

time 2O( p
log log p ) · 1

x
p1
2 (1−x2)p2

· (p1 + p2)O(1) · n log n. Now to add edges in the graph, we do as

follows. For each vertex in L1 ∪ L2, we query the data structure created, spending the
query time mentioned in Lemma 3.2, and add edges to the vertices in F ∪H from it. So
the running time to construct G is

TG ≤ 2O( k
log log(k) )kO(1)n log n

(
1

xp
1 (1 − x1)q

+ 1
xp1

2 (1 − x2)p2
+ |L1|

xp2
1 (1 − x1)q

+ |L2|
xp1

1 (1 − x1)q
+ |L1|

(1 − x2)p2
+ |L2|

xp1
2

)
.

Now we bound the time TC taken to construct L̂ from G. To do the analysis, we see how
may times a vertex A in L1 ∪L2 is visited. It is exactly equal to the product of the degree
of A to F (denoted by degreeF (A)) and the degree of A to H (denoted by degreeH(A)).
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Also note that two weights can be compared in O(log W) time. Then

TC ≤ log W

⎛⎝∑
A∈L1

degreeF (A) · degreeH(A) +
∑
A∈L2

degreeF (A) · degreeH(A)

⎞⎠
≤ log W

⎛⎝∑
A∈L1

�(χF ,p1)(n, p, q) · �(χH,p1)(n, p1, p2)

+
∑
A∈L2

�(χF ,p2)(n, p, q) · �(χ ′
H,p2)(n, p1, p2)

⎞⎠
≤ 2O( k

log log(k) )kO(1) log2 n log W
( |L1|

xp2
1 (1 − x1)q(1 − x2)p2

+ |L2|
xp1

1 (1 − x1)qxp1
2

)
.

So the total running time T is

T = TG + TC

≤ 2O( k
log log(k) )kO(1)n log n · log W

(
1

xp
1 (1 − x1)q

+ 1
xp1

2 (1 − x2)p2

+ |L1|
xp2

1 (1 − x1)q(1 − x2)p2
+ |L2|

xp1
1 (1 − x1)qxp1

2

)
.

This completes the proof of the theorem.

Now we give a ready to use corollary for Theorem 3.3.

COROLLARY 3.4. Let L1 be a p1-family of sets and L2 be a p2-family of sets over a
universe U of size n. Furthermore, let w : 2U → N be an additive weight function,
|L1| = ( k

p1
) · 2o(k), |L2| = ( k

p2
) · 2o(k), L = L1 ◦ L2, p = p1 + p2, and q = k − p. There exists

L̂ ⊆q
minrep L of size ( k

p) · 2o(k) and it can be computed in time

min
0<x1,x2<1

O
(

z(n, k, W)
xp1

2 (1 − x2)p2
+

( k
p1

) · z(n, k, W)

xp2
1 (1 − x1)q(1 − x2)p2

+
( k

p2

) · z(n, k, W)

xp1
1 (1 − x1)qxp1

2
+

( k
q )q · z(n, k, W)

xp
1 (1 − x1)q

)
.

Here z(n, k, W) = 2o(k)n log n · log W and W is the maximum weight defined by w.

PROOF. We apply Theorem 3.3 for 0 < x1, x2 < 1 and find L′ ⊆q
minrep L of size

x−p
1 (1 − x1)−q2o(k) · log n in time T1 = O( z(n,k,W )

xp
1 (1−x1)q + z(n,k,W )

x
p1
2 (1−x2)p2

+ z(n,k,W )·|L1|
x

p2
1 (1−x1)q(1−x2)p2

+ z(n,k,W )·|L2|
x

p1
1 (1−x1)qx

p1
2

).

Now we apply Theorem 2.10 and get L̂ ⊆q
minrep L′ of size

(k
p

) · 2o(k) in time T2 =
O(x−p

1 (1 − x1)−q( k
q )q2o(k) · log2 n · log W). Due to Lemma 2.6, L̂ ⊆q

minrep L. Now we choose
x1, x2 such that T1 + T2 is minimized. So the total running time T to construct L̂ is

T = min
x1,x2

(T1 + T2)

= min
x1,x2

O
(

z(n, k, W)
xp1

2 (1 − x2)p2
+

z(n, k, W) · |( k
p1

)|
xp2

1 (1 − x1)q(1 − x2)p2

+
z(n, k, W) · |( k

p2

)|
xp1

1 (1 − x1)qxp1
2

+
z(n, k, W) · ( k

q )q

xp
1 (1 − x1)q

)
.

This completes the proof.
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4. REPRESENTATIVE FAMILY COMPUTATION FOR PRODUCT FAMILIES
OF A LINEAR MATROID

In this section, we give an algorithm to compute a q-representative family for product
families of a linear matroid. That is, given a matroid M = (E, I), families of independent
sets A and B of sets of sizes p1 and p2, respectively, and a positive integer q, we
compute F̂ ⊆q

rep F , where F = A • B, of size ( p1+p2+q
p1+p2

) efficiently. We compute a q-
representative family forF in two steps. In the first step, we compute an intermediate q-
representative family and then apply Theorem 2.9 to compute q-representative family
of the desired size. The intermediate q-representative family is obtained by computing
q-representative families of slices, A • {B} for all B ∈ B, and then taking its union.
We start with the following lemma that will be central to our faster algorithm for
computing the desired q-representative family for a product family of a linear matroid.

LEMMA 4.1 (SLICE COMPUTATION LEMMA). Let M = (E, I) be a linear matroid of rank
k, L be a p1-family of independent sets of M and S ∈ I of size p2. Furthermore, let
w : L• {S} → N be a non-negative weight function. Then given a representation AM of M
over a field F, we can find L̂ • {S} ⊆k−p1−p2

minrep L•{S} of size at most ( k−p2
p1

) in O(( k−p2
p1

)|L|pω
1 +

|L|( k−p2
p1

)ω−1) operations over F.

PROOF. Observe that L • {S} is a p1 + p2-family of independent sets of M and all
sets in L • {S} contain S as a subset. Let AM the matrix representing the matroid M
over a field F. Without loss of generality we can assume that the first p2 columns of
AM correspond to the elements in S. Furthermore, we can also assume that the first
p2 columns and p2 rows form an identity matrix Ip2×p2 . That is, if S denotes the first
p2 columns and Z denotes the first p2 rows, then the submatrix AM[Z, S] is Ip2×p2 . The
reason for the last assertion is that if the matrix is not in the required form, then we can
apply elementary row operations and obtain the matrix in the desired form. This also
allows us to assume that the number of rows in AM is k. So AM have the following form:(

Ip2×p2 A
0 B

)
.

Let AM/S be the matrix obtained after deleting first p2 rows and first p2 columns from
AM. That is, AM/S= B. Let M/S = (Es, Is) be the matriod represented by the matrix
AM/S on the underlying ground set Es = E \ S. Observe that rank(M/S) = rank(B) =
k− p2, else rank(AM) would become strictly smaller than k. Let e1, e2, . . . , ep2 be the first
p2 column vectors of AM, that is, they are columns corresponding to the elements of S.
For a column vector v in AM, v̄ is used to denote the column vector restricted to the
matrix AM/S (i.e., v̄ contains the last k − p2 entries of v).

Now consider the set L(S) = {X | X∪ S ∈ L • {S}}. We also define a new non-negative
weight function w′ : L(S) → N as follows: w′(X) = w(X ∪ S). We would like to compute
k− p2 representative for L(S). Towards that goal we first show that L(S) is a p1-family
of independent sets of M/S. Let X ∈ L(S). We know that X ∪ S ∈ I. Let v1, v2, . . . , vp1

be the column vectors in AM corresponding to the elements in X. Suppose X /∈ Is. Then
there exist coefficients λ1, . . . , λp1 such that λ1v̄1 + λ2v̄2 + · · · + λp1 v̄p1 = �0 and at least
one of them is non-zero. Then

λ1v1 + λ2v2 + · · · + λp1vp1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ap2

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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This implies that −a1e1 − a2e2 − · · · − ap2ep2 + λ1v1 + λ2v2 + · · · + λp1vp1 = �0, which
contradicts the fact that S∪ X ∈ I. Hence X ∈ Is and L(S) is a p1-family of independent
sets of M/S.

Now we apply Theorem 2.9 and find L̂(S) ⊆k−p1−p2
minrep L(S) of size

(k−p2
p1

)
by considering

L(S) as a p1-family of independent sets of the matroid M/S. We claim that L̂(S) •
{S} ⊆k−p1−p2

minrep L • {S}. Let X∪ S ∈ L • {S} and Y ⊆ E \ (X∪ S) such that |Y | = k− p1 − p2

and X∪ S∪Y ∈ I. We need to show that there exists a X̂ ∈ L̂(S) such that X̂∪ S∪Y ∈ I
and w(X̂∪ S) ≤ w(X∪ S). We start by showing that that X∪ Y ∈ Is. Let v1, v2, . . . , vk−p2

be the column vectors in AM corresponding to the elements of X∪Y . Suppose X∪Y /∈ Is.
Then there exist coefficients λ1, . . . , λk−p2 such that λ1v̄1 + λ2v̄2 + · · · + λk−p2 v̄k−p2 = �0
and at least one of them is non-zero. Then we have the following:

λ1v1 + λ2v2 + · · · + λk−p2vk−p2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b1
...

bp2

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

However, this implies that −b1e1 −b2e2 −· · ·−bp2ep2 +λ1v1 +λ2v2 +· · ·+λk−p2vk−p2 = �0,
which contradicts the fact that S ∪ X ∪ Y ∈ I. Hence X ∪ Y ∈ Is. Since L̂(S) ⊆k−p1−p2

minrep

L(S), there exists a set X̂ ∈ L(S), with w′(X̂) ≤ w′(X) (i.e., w(X̂ ∪ S) ≤ w(X ∪ S)) and
X̂ ∪ Y ∈ Is. We claim that X̂ ∪ S ∪ Y ∈ I. Let u1, u2, . . . , uk−p2 be the column vectors in
AM corresponding to the elements of X̂ ∪ Y . Suppose X̂ ∪ S ∪ Y /∈ I. Then there exist
coefficients α1, . . . , αk such that α1e1 + α2e2 + · · · + αp2ep2 + αp2+1u1 + · · · + αkuk−p2 = �0
and at least one of the coefficients is non-zero. We claim that at least one of the
coefficients among {αp2+1, . . . , αk} is non-zero. Suppose not; then α1e1 + · · · + αp2ep2 = 0
and at least one of the coefficients among {α1, . . . , αp2} is non-zero. This contradicts the
fact that S ∈ I. Since α1e1 + · · · + αp2ep2 + αp2+1u1 + · · · + αkuk−p2 = �0, we have that
αp2+1ū1 + · · · + αkūk−p2 = �0, where ūj are restrictions of uj to the last k − p2 entries.
Also note that at least one of the coefficients among {αp2+1, . . . , αk} is non-zero. This
contradicts our assumption that X̂ ∪ Y ∈ Is. Thus we have shown that X̂ ∪ Y ∪ S ∈ I.
The size of L̂(S) • {S} is

(k−p2
p1

)
, and it can be found in O(( k−p2

p1
)|L|pω

1 + |L|( k−p2
p1

)ω−1)
operations over F.

Now we are ready to prove the main theorem of this section by using Lemma 4.1.

THEOREM 4.2. Let M = (E, I) be a linear matroid of rank k, L1 be a p1-family
of independent sets of M, and L2 be a p2-family of independent sets of M. Given a
representation AM of M over a field F, we can find L̂1 • L2 ⊆k−p1−p2

minrep L1 • L2 of size at
most ( k

p1+p2
) in

O
(

|L2||L1|
(

k − p2

p1

)ω−1

pω
1 + |L2|

(
k − p2

p1

)(
k

p1 + p2

)ω−1

(p1 + p2)ω
)

operations over F.
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PROOF. Let L2 = {S1, S2, . . . , S�}. Then we have

L1 • L2 =
�⋃

i=1

L1 • {Si}.

By Lemma 2.7,

L =
�⋃

i=1

̂L1 • {Si} ⊆k−p1−p2
minrep L1 • L2.

Using Lemma 4.1, for all 1 ≤ i ≤ �, we find ̂L1 • {Si} ⊆k−p1−p2
minrep L1 • {Si} of size ( k−p2

p1
)

in O(( k−p2
p1

)|L1|pω
1 + |L1|( k−p2

p1
)ω−1) = O(|L1|( k−p2

p1
)ω−1 pω

1 ) operations over F. Now we have

that |L| = |⋃�
i=1

̂L1 • {Si}| ≤ |L2|( k−p2
p1

). Now we apply Theorem 2.9 and find L̂ ⊆k−p1−p2
minrep L

of size
( k

p1+p2

)
. The number of operations, denoted by T1, over F to find L̂ from L is

T1 = O
((

k
p1 + p1

)
|L2|

(
k − p2

p1

)
(p1 + p2)ω + |L2|

(
k − p2

p1

)(
k

p1 + p2

)ω−1
)

= O
(

|L2|
(

k − p2

p1

)(
k

p1 + p2

)ω−1

(p1 + p2)ω
)

.

By Lemma 2.6, L̂ ⊆k−p1−p2
minrep L1 • L2. The number of operations, denoted by T , over F to

find L̂ from L1 and L2 is

T = |L2| · O
(

|L1|
(

k − p2

p1

)ω−1

pω
1

)
+ T1

= O
(

|L2||L1|
(

k − p2

p1

)ω−1

pω
1 + |L2|

(
k − p2

p1

)(
k

p1 + p2

)ω−1

(p1 + p2)ω
)

.

This completes the proof of the theorem.

The following form of Theorem 4.2 will be directly useful in some applications as
we prune the size of the partial solutions in every step of the dynamic programming
algorithm.

COROLLARY 4.3. Let M = (E, I) be a linear matroid of rank k, L1 and L2 be two families
of independent sets of M, and the number of sets of size p in L1 and L2 be at most ( k+c

p ).
Here c is a fixed constant. Let Lr,i be the set of independent sets of size exactly i in Lr for
r ∈ {1, 2}. Then for all the pairs i, j ∈ [k], we can find ̂L1,i • L2, j ⊆k−i− j

minrep L1,i • L2, j of size
( k

i+ j ), in a total of O(kω(2ω + 2)k + kω2k(ω−1)3k) operations over F.

PROOF. By using Theorem 4.2, we can find ̂L1,i • L2, j ⊆k−i− j
minrep L1,i • L2, j of size ( k

i+ j )

for any i, j ∈ [k] in O(( k+c
j )( k+c

i )( k− j
i )ω−1iω + ( k+c

j )( k− j
i )( k

i+ j )
ω−1(i + j)ω) operations over F.

Let k′ = k+ c. So the total number of operations, denoted by T , over F to find ̂L1,i • L2, j
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for all i, j ∈ [k] is

T = O

⎛⎝⎛⎝ k∑
i=0

k∑
j=0

(
k′

j

)(
k′

i

)(
k − j

i

)ω−1

iω

⎞⎠ +
⎛⎝ k∑

i=0

k∑
j=0

(
k′

j

)(
k − j

i

)(
k

i + j

)ω−1

(i + j)ω

⎞⎠⎞⎠
= O

⎛⎝⎛⎝kω

k∑
i=0

(
k′

i

) k∑
j=0

(
k′

j

)
2(k− j)(w−1)

⎞⎠ +
⎛⎝kω

k∑
j=0

(
k′

j

) k− j∑
i=0

(
k − j

i

)(
k

i + j

)ω−1
⎞⎠⎞⎠

= O

⎛⎝(
kω2k(ω−1)

k∑
i=0

(
k′

i

)(
1 + 1

2(ω−1)

)k′)
+

⎛⎝kω2k(w−1)
k∑

j=0

(
k′

j

) k− j∑
i=0

(
k − j

i

)⎞⎠⎞⎠
= O

⎛⎝(
kω2k′(

2(ω−1) + 1
)k) +

⎛⎝kω2k(w−1)
k∑

j=0

(
k′

j

)
2k− j

⎞⎠⎞⎠
= O

(
kω2k(2(ω−1) + 1

)k + kω2k(ω−1)3k)
= O

(
kω(2ω + 2)k + kω2k(ω−1)3k).

The above simplification completes the proof.

5. APPLICATION I: MULTILINEAR MONOMIAL TESTING

In this section, we first design a faster algorithm for a weighted version of k-MLD
and then give an algorithm for an extension of this to a matroidal version. In the
weighted version of k-MLD, in addition to an arithmetic circuit C over variables X =
{x1, x2, . . . , xn} representing a polynomial P(X) over Z+, we are given an additive weight
function w : 2X → N. The task is that if there exists a k-multilinear term, then find
one with minimum weight. We call the weighted variant by k-WMLD. We start with the
definition of an arithmetic circuit.

Definition 5.1. An arithmetic circuit C over a commutative ring R is a simple labelled
directed acyclic graph with its internal nodes labeled by + or × and leaves (in-degree
zero nodes) labeled from X ∪ R, where X = {x1, x2, . . . , xn} is a set of variables. There is
a node of out-degree zero, called the root node or the output gate. The size of C, s(C), is
the number of vertices in the graph.

It is well known that we can replace any arithmetic circuit C with an equivalent
circuit with fan-in two for all the internal nodes with quadratic blow up in the size.
For an example, by replacing each node of in-degree greater than 2, with at most s(C)
many nodes of the same label and in-degree 2, we can convert a circuit C to a circuit
C ′ of size s(C ′) = s(C)2. So from now onwards we always assume that we are given a
circuit of this form. We assume W is the maximum weight defined by w.

THEOREM 5.2. k-WMLD can be solved in time O(3.8408k2o(k)s(C)n log n · log W).

PROOF. An arithmetic circuit C over Z+ with all leaves labelled from X ∪ Z+ will
represent sum of monomials with positive integer coefficients. With each multilinear
term 
�

j=1xij we associate a set {xi1 , . . . , xil} ⊆ X. With any polynomial we can associate
a family of subsets of X which corresponds to the set of multilinear terms in it. Since
C is a directed acyclic graph, there exists a topological ordering π = v1, . . . , vn, such
that all the nodes corresponding to variables appear before any other gate and for
every directed arc uv we have that u <π v. For a node vi of the circuit let Pi(X) be
the multivariate polynomial represented by the subcircuit containing all the nodes w
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such that w ≤π vi. At every node we keep a family F j
vi of j-multilinear term, where

j ∈ {1, . . . , k}. Let Fvi = ⋃k
x=1 F x

vi
. Given a circuit C, if we compute associated family of

subsets of X for each node we can answer the question of having a k-multilinear term of
minimum weight in the polynomial computed by C. But the size of the family of subsets
could be exponential in n, the number of variables. That is, the size of F j

vi could be
(n

j

)
.

So instead of storing all subsets, we store a representative family for the associated
family of subsets of each node. That is, we store F̂ j

vi ⊆k− j
minrep F j

vi . The correctness of this
step follows from the definition of k − j-representative family.

We make a dynamic programming algorithm to detect a multilinear monomial of
order k as follows. Our algorithm goes from left to right following the ordering given by
π and computes Fvi from the families previously computed. The algorithm computes an
appropriate representative family corresponding to each node of C. We show that we
can compute a representative family Fv associated with any node v, where the number
of subsets with p elements in Fv is at most ( k

p)2o(k). When v is an input node, then the
associated family contains only one set. That is, if v is labelled with xi, then Fv = {{xi}},
and if v is labelled from Z+, then Fv = {∅}. When v is not an input node, then we have
two cases.

Addition Gate: v = v1 + v2. Due to the left-to-right computation in the topological
order, we have representative families Fv1 and Fv2 for v1 and v2, respectively, where the
number of subsets with p elements in Fv1 as well as in Fv2 will be at most ( k

p)2o(k). The
representative family corresponding to v will be the representative family of Fv1 ∪Fv2 .
We partition Fv1 ∪Fv2 based on the size of subsets in it. Let Fv1 ∪Fv2 = ⊎

p≤k Hp, where
Hp contains all subsets of size p in Fv1 ∪ Fv2 . Note that |Hp| ≤ 2( k

p)2o(k). Now using

Theorem 2.10, we can compute all Ĥp ⊆k−p
minrep Hp in time

O

⎛⎝2o(k) log n · log W ·
∑
p<k

{
2
(

k
p

)
·
(

k
k − p

)k−p
}⎞⎠ ,

where W is the maximum weight defined by weight function w. The above running
time is upper bounded by O(2.851k2o(k) log n log W) by the similar analysis done for the
k-PATH problem in Fomin et al. [2014]. We output

⋃
p≤k Ĥp as the representative family

corresponding to the node v. By Theorem 2.10, |Ĥp| ≤ ( k
p)2o(k), and hence the number

of subsets with p elements in the representative family corresponding to v is at most
( k

p)2o(k). The computation corresponding to addition gate can be sped up by using ideas
given in Fomin et al. [2016].

Multiplication Gate: v = v1 × v2. Similarly to the previous case, we have a repre-
sentative families Fv1 and Fv2 for v1 and v2, respectively, where the number of subsets
with p elements in Fv1 , as well as in Fv2 , is at most ( k

p)2o(k). Here the representative
family corresponding to v will be the representative family of Fv1 ◦ Fv2 . The idea is to
get representative families using Corollary 3.4 for different values of p1 and p2. We
have that

Fv1 ◦ Fv2 =
⋃
p1,p2

F p1
v1

◦ F p2
v2

,

where F pi
vi contains all the subsets of size pi in Fvi . We know that |F pi

vi | ≤ ( k
pi

)2o(k). Now,

by using Corollary 3.4, we compute ̂F p1
v1 ◦ F p2

v2 ⊆k−p1−p2
minrep F p1

v1 ◦ F p2
v2 of size ( k

p1+p2
) · 2o(k) for
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all p1, p2 such that p1 + p2 ≤ k. Let q = k− p1 − p2, and then all these computation can
be done in time

∑
p1,p2

min
x1,x2

O
(

z(n, k, W)
xp1

2 (1 − x2)p2
+

z(n, k, W) · |( k
p1

)|
xp2

1 (1 − x1)q(1 − x2)p2
+

z(n, k, W) · |( k
p2

)|
xp1

1 (1 − x1)qxp1
2

+
z(n, k, W) · ( k

q )q

xp
1 (1 − x1)q

)
.

Here z(n, k, W) = 2o(k)n log n · log W . The above running time is upper bounded by
O(3.8408k2o(k) · n log n · log W). We output

⋃
p1,p2

̂F p1
v1 ◦ F p2

v2 as the representative family

corresponding to the node v. Note that the number of sets of size p in
⋃

p1,p2
̂F p1
v1 ◦ F p2

v2

is bounded by k · ( k
p)2o(k) ≤ ( k

p)2o(k).
Now we output a minimum weight set of size k (if exists) among the representative

family corresponding to the root node; otherwise we output NO. Since there are s(C)
nodes in C, the total running time is bounded by O(3.8408k2o(k)s(C)n log n · log W). This
completes the proof.

5.1. Matroidal Multilinear Monomial Detection

In this section, we extend the k-WMLD problem to a matroidal version and design
an algorithm for this. The problem MATROIDAL MULTILINEAR MONOMIAL DETECTION (k-
WMMLD) is defined as follows.

MATROIDAL MULTILINEAR MONOMIAL DETECTION Parameter: k
Input: An arithmetic circuit C over variables X = {x1, x2, . . . , xn} representing a
polynomial P(X) over Z, a linear matroid M = (E, I) where the ground set E = X
with its representation matrix AM and an additive weight function w : 2X → N.
Question: Does P(X) construed as a sum of monomials contain a multilinear mono-
mial Z of degree k such that Z ∈ I? If yes, then find a minimum weighted such Z.

Our main theorem of this section is as follows. The proof of this theorem is along
the lines of Theorem 5.2. The only difference is that we compute representative family
with respect to the given matroid.

THEOREM 5.3. k-WMMLD can be solved in time O(7.7703kkωs(C)).

PROOF. Let π = v1, . . . , vn be a topological ordering of C such that all the nodes
corresponding to variables appear before any other gate and for every directed arc uv

we have that u <π v. As in Theorem 5.2, at every node we keep a family F j
vi of j-

multilinear terms that are also members of I, where j ∈ {1, . . . , k}. Let Fvi = ⋃k
x=1 F x

vi
.

So Fv ⊆ I. We process the nodes from left to right and keep F̂ j
vi ⊆k− j

minrep F j
vi of size ( k

p).
When v is an input node, then the associated family contains only one set. That is,

if v is labelled with xi and {xi} ∈ I, then Fv = {{xi}}; otherwise Fv = {∅}. If v is labelled
from Z+, then Fv = {∅}. When v is not an input node, then we have two cases.

Addition Gate: v = v1 + v2. Due to the left-to-right computation in the topological
order, we have representative families Fv1 and Fv2 for v1 and v2, respectively, where the
number of subsets with p elements in Fv1 as well as in Fv2 will be at most ( k

p). So the
representative family corresponding to v will be the representative family of Fv1 ∪Fv2 .
We partition Fv1 ∪ Fv2 based on the size of subsets in it. Let Fv1 ∪ Fv2 = ⊎

p≤k Hp,
where Hp contains all subsets of size p in Fv1 ∪ Fv2 . Note that |Hp| ≤ 2( k

p). Now using
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Theorem 2.9 we can compute all Ĥp ⊆k−p
minrep Hp in time

O

⎛⎝2
∑
p≤k

{(
k
p

)(
k
p

)
pω +

(
k
p

)(
k
p

)ω−1
}⎞⎠ .

The above running time is upper bounded by O(4k pωk + 2ωkk). We output
⋃

p≤k Ĥp as
the representative family corresponding to the node v. By Theorem 2.9, |Ĥp| ≤ ( k

p) and

thus the number of subsets with p elements in
⋃

p≤k Ĥp is at most ( k
p).

Multiplication Gate: v = v1 × v2. Similarly to the previous case, we have repre-
sentative families Fv1 and Fv2 for v1 and v2, respectively, where the number of subsets
with p elements in Fv1 , as well as in Fv2 , is at most ( k

p). Here the representative family
corresponding to v will be the representative family of Fv1 • Fv2 . We have that

Fv1 • Fv2 =
⋃
p1,p2

F p1
v1

• F p2
v2

,

where F pi
vi contains all the subsets of size pi in Fvi . We know that |F pi

vi | ≤ ( k
pi

). Now, by

using Corollary 4.3, we can compute ̂F p1
v1 • F p2

v2 ⊆k−p1−p2
minrep F p1

v1 • F p2
v2 of size ( k

p1+p2
) for all

p1, p2 together in time O(kω(2ω + 2)k + kω2k(ω−1)3k).
Now let F = ⋃

p1,p2
̂F p1
v1 • F p2

v2 = �pHp, where �pHp is the partition of F based on
the size of subsets. It is easy to see that |Hp| ≤ k( k

p). Now using Theorem 2.9, we can

compute Ĥp ⊆k−p
minrep Hp for all p ≤ k together in time,

O

⎛⎝k
∑
p≤k

{(
k
p

)(
k
p

)
pω +

(
k
p

)(
k
p

)ω−1
}⎞⎠ .

The above running time is upper bounded by O(4kkω+1 + 2ωkk2). We output
⋃

p≤k Ĥp as
the representative family corresponding to the node v.

Now we output a minimum weight set of size k (if it exists) among the representative
family corresponding to the root node; otherwise we output NO. Since there are s(C)
nodes in C, the total running time is O(kω(2ω+2)ks(C)+kω2k(ω−1)3ks(C)). This completes
the proof.

6. APPLICATION II: DYNAMIC PROGRAMMING OVER GRAPHS OF BOUNDED TREEWIDTH

In this section, we discuss deterministic algorithms for “connectivity problems” such
as STEINER TREE and the FEEDBACK VERTEX SET parameterized by the treewidth of the
input graph. The algorithms are based on Theorem 2.9 and Corollary 4.3. The idea
of designing deterministic algorithms for connectivity problems parameterized by the
treewidth of the input graph based on fast computation of representative families
was outlined in Fomin et al. [2016]. Here we show how we can speed the method
described in Fomin et al. [2016] using the fast computation of representative families
for product families coming from a graphic matroid. The method described in this
section gives the fastest-known deterministic algorithms for most the connectivity
problems parameterized by the treewidth. We exemplify the methods on STEINER TREE

and FEEDBACK VERTEX SET.
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6.1. Treewidth

Let G be a graph. A tree decomposition of a graph G is a pair (T,X = {Xt}t∈V (T)) such
that

—∪t∈V (T) Xt = V (G),
—for every edge xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and
—for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T) |Xt| − 1 and the treewidth of G is the
minimum width over all tree decompositions of G and is denoted by tw(G).

A tree decomposition (T,X ) is called a nice tree decomposition if T is a tree rooted at
some node r where Xr = ∅, each node of T has at most two children, and each node is
of one of the following kinds:

(1) Introduce node: a node t that has only one child t′, where Xt ⊃ Xt′ and |Xt| =
|Xt′ | + 1.

(2) Forget node: a node t that has only one child t′, where Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1.
(3) Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
(4) Base node: a node t that is a leaf of T, differs from the root, and Xt = ∅.

Notice that, according to the above definition, the root r of T is either a forget node or
a join node. It is well known that any tree decomposition of G can be transformed into
a nice tree decomposition maintaining the same width in linear time [Kloks 1994]. We
use Gt to denote the graph induced by the vertex set

⋃
t′ Xt′ , where t′ ranges over all

descendants of t, including t. By E(Xt) we denote the edges present in G[Xt]. We use Ht
to denote the graph on vertex set V (Gt) and the edge set E(Gt) \ E(Xt). For clarity of
presentation, we use the term nodes to refer to the vertices of the tree T.

6.2. Steiner Tree Parameterized By Treewidth

The problem we study in this subsection is defined below.

STEINER TREE

Input: An undirected graph Gwith a set of terminals T ⊆ V (G), and a non-negative
weightfunction w : E(G) → N.
Task: Find a subtree in G of minimum weight spanning all vertices of T .

Let G be an input graph of the STEINER TREE problem. Throughout this section, we
say that E′ ⊆ E(G) is a solution if the subgraph induced on this edge set is connected
and it contains all the terminal vertices. We call E′ ⊆ E(G) an optimal solution if E′ is
a solution of the minimum weight. Let S be a family of edge subsets such that every
edge subset corresponds to an optimal solution. That is,

S = {E′ ⊆ E(G) | E′ is an optimal solution}.
Observe that any edge set in S induces a forest. We start with a few definitions that
will be useful in explaining the algorithm. Let (T,X ) be a tree decomposition of G of
width tw. Let t be a node of V (T). By St, we denote the family of edge subsets of E(Ht),
{E′ ⊆ E(Ht) | G[E′] is a forest}, that satisfies one of the following properties.

—E′ is a solution tree (that is, the subgraph induced on this edge set is connected and
it contains all the terminal vertices).

—Every vertex of (T ∩ V (Gt)) \ Xt is incident with some edge from E′, and every
connected component of the graph induced by E′ contains a vertex from Xt.
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We call St a family of partial solutions for t. We denote by Kt a complete graph on
the vertex set Xt. For an edge subset E∗ ⊆ E(G) and bag Xt corresponding to a node t,
we define the following:

(1) Set ∂ t(E∗) = Xt ∩ V (E∗), the set of endpoints of E∗ in Xt.
(2) Let G∗ be the subgraph of G on the vertex set V (G) and the edge set E∗. Let

C ′
1, . . . , C ′

� be the connected components of G∗ such that for all i ∈ [�], C ′
i ∩ Xt �= ∅.

Let Ci = C ′
i ∩ Xt. Observe that C1, . . . , C� is a partition of ∂ t(E∗). By Ft(E∗), we

denote a forest {Q1, . . . , Q�} where each Qi is an arbitrary spanning tree of Kt[Ci].
For an example, since Kt[Ci] is a complete graph we could take Qi as a star. The
purpose of Ft(E∗) is to keep track for the vertices in Ci whether they were in the
same connected component of G∗.

(3) We define w(Ft(E∗)) = w(E∗).

Let A and B be two families of edge subsets of E(G); then we define

A � B = {E1 ∪ E2 | E1 ∈ A ∧ E2 ∈ B ∧ E1 ∩ E2 = ∅ ∧ G[E1 ∪ E2] is a forest}.
With every node t of T, we associate a subgraph of G. In our case, it will be Ht. For

every node t, we keep a family of partial solutions for the graph Ht. That is, for every
optimal solution L ∈ S and its intersection Lt = E(Ht) ∩ L with the graph Ht, we have
some partial solution in the family that is “as good as Lt.” More precisely, we have some
partial solution, say, L̂t, in our family such that L̂t ∪ LR is also an optimum solution for
the whole graph, where LR = L \ Lt. As we move from one node t in the decomposition
tree to the next node t′, the graph Ht changes to Ht′ and so does the set of partial
solutions. The algorithm updates its set of partial solutions accordingly. Here matroids
come into play: In order to bound the size of the family of partial solutions that the
algorithm stores at each node, we employ Theorem 2.9 and Corollary 4.3 for graphic
matroids. More details are given in the proof of the following theorem, which is one of
the main results in this section.

THEOREM 6.1. Let G be an n-vertex graph given together with its tree decomposition
of width tw. Then STEINER TREE on G can be solved in time

O((1 + 2ω−1 · 3)twtwO(1)n).

PROOF. For every node t of T and subset Z ⊆ Xt, we store a family of edge subsets
Ŝt[Z] ⊆ St of Ht satisfying the following correctness invariant.

Correctness Invariant: For every L ∈ S we have the following. Let Lt = E(Ht) ∩
L, LR = L \ Lt, and Z = ∂ t(L). Then there exists L̂t ∈ Ŝt[Z] such that w(L̂t) ≤ w(Lt),
L̂ = L̂t ∪ LR is a solution, and ∂ t(L̂) = Z. Observe that, since w(L̂t) ≤ w(Lt) and
L ∈ S , we have that L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing the
dynamic programming. Throughout the process, we maintain the correctness invariant,
which will prove the correctness of the algorithm. However, our main idea is to use
representative families to obtain Ŝt[Z] of small size. That is, given the set Ŝt[Z] (as
a product of two families A and B, i.e., Ŝt[Z] = A � B) that satisfies the correctness
invariant, we use Corollary 4.3 to obtain a subset Ŝ ′

t[Z] of Ŝt[Z] that also satisfies the
correctness invariant and has size upper bounded by 2|Z| in total. More precisely, the
number of partial solutions with i connected components in Ŝ ′

t[Z] is upper bounded by( |Z|
|Z|−i

) = (|Z|
i

)
. Thus, we maintain the following size invariant.
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Size Invariant: After node t of T is processed by the algorithm, for every Z ⊆ Xt

we have that |Ŝt[Z, i]| ≤ ( |Z|
i ), where Ŝt[Z, i] is the partial solutions with i connected

components in Ŝt[Z].

The main ingredient of the dynamic programming algorithm for STEINER TREE is the
use of Theorem 2.9 and Corollary 4.3 to compute Ŝt[Z], maintaining the size invariant.
The next lemma shows how to implement it.

LEMMA 6.2 (PRODUCT SHRINKING LEMMA). Let t be a node of T, and let Z ⊆ Xt be a set
of size k. Let P and Q be two families of edge sets of Ht. Furthermore, let Ŝt[Z] = P � Q
be the family of edge subsets of Ht satisfying the correctness invariant. If the number of
edge sets with i connected components in P as well as in Q is bounded by ( k+c

i ) where
c is some fixed constant, then in time O(kω(2ω + 2)kn + kω2k(ω−1)3kn) we can compute
Ŝ ′

t[Z] ⊆ Ŝt[Z], satisfying correctness and size invariants.

PROOF. We start by associating a matroid with the node t and the set Z ⊆ Xt as follows.
We consider a graphic matroid M = (E, I) on Kt[Z]. Here the element set E of the
matroid is the edge set E(Kt[Z]) and the family of independent sets I consists of forests
of Kt[Z]. Let P = {A1, . . . , A�} and Q = {B1, . . . , B�′ }. Let L1 = {Ft(A1), . . . , Ft(A�)} and
L2 = {Ft(B1), . . . , Ft(B�′)} be the set of forests in Kt[Z] corresponding to the edge subsets
inP andQ, respectively. For r ∈ {1, 2} and i ∈ {1, . . . , k−1}, letLr,i be the family of forests
of Lr with i edges. Now we apply Corollary 4.3 and find ̂L1,i • L2, j ⊆k−1−i− j

minrep L1,i •L2, j of
size ( k−1

i+ j ) for all i, j ∈ [k] such that i + j < k. Let Ŝ ′
t[Z, k− d] ⊆ Ŝt[Z, k− d] be such that

for every D ∈ Ŝ ′
t[Z, k − d] we have that Ft(D) ∈ ⋃

i+ j=d
̂L1,i • L2, j . Note that Ft(D) has d

edges if and only if G[D] have k − d connected components. Let Ŝ ′
t[Z] = ⋃k

j=1 Ŝ ′
t[Z, j].

By Corollary 4.3, |Ŝ ′
t[Z, k − d]| ≤ k

(k−1
d

) ≤ ( k
k−d), and hence Ŝ ′

t[Z] maintains the size
invariant.

Now we show that the Ŝ ′
t[Z] maintains the correctness invariant. Let L ∈ S . Let

Lt = E(Ht) ∩ L, LR = L \ Lt, and Z = ∂ t(L). Since Ŝt[Z] satisfies correctness invariant,
there exists L′

t ∈ Ŝt[Z] such that w(L′
t) ≤ w(Lt), L̂ = L′

t ∪ LR is an optimal solution, and
∂ t(L̂) = Z. Since Ŝt[Z] = P � Q, there exist A ∈ P and B ∈ Q such that L′

t = A ∪ B.
Observe that G[L′

t], G[A] and G[B] form forests. Consider the forests Ft(A) and Ft(B).
Suppose Ft(A) has i edges and Ft(B) has j edges, then Ft(L′

t) ∈ L1,i • L2, j . This is
because if Ft(L′

t) contain a cycle, then, corresponding to that cycle, we can get a cycle
in G[L′

t], which is a contradiction. Now let Ft(LR) be the forest corresponding to LR.
Since L̂ is a solution, we have that Ft(L′

t) ∪ Ft(LR) is a spanning tree in Kt[Z]. Since
̂L1, j • L2, j ⊆k−1−i− j

minrep L1,i •L2, j , we have that there exists a forest Ft(L̂′
t) ∈ ̂L1,i • L2, j such

that w(Ft(L̂′
t)) ≤ w(Ft(L′

t)) and F(L̂′
t) ∪ F(LR) is a spanning tree in Kt[Z]. Thus, we have

that L̂′
t ∪ LR is an optimum solution and L̂′

t ∈ Ŝ ′
t[Z]. This proves that Ŝ ′

t[Z] maintains
the correctness invariant.

For a given edge set D, we need to compute the forest Ft(D), and that can take O(n)
time. The running time to compute Ŝ ′

t[Z] is

O
(
kω (2ω + 2)k n + kω2k(ω−1)3kn

)
.

This completes the proof of the lemma.

We now return to the dynamic programming algorithm over the tree decomposition
(T,X ) of G and prove that it maintains the correctness invariant. We assume that
(T,X ) is a nice tree decomposition of G. By Ŝt, we denote

⋃
Z⊆Xt

Ŝt[Z] (also called a
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representative family of partial solutions). We show how Ŝt is obtained by doing dynamic
programming from base node to the root node.

Base Node t. Here the graph Ht is empty and thus we take Ŝt = {∅}.
Introduce Node t with Child t′. Here, we know that Xt ⊃ Xt′ and |Xt| = |Xt′ | + 1. Let v

be the vertex in Xt \ Xt′ . Furthermore, observe that E(Ht) = E(Ht′ ) and v is a degree zero
vertex in Ht. Thus the graph Ht only differs from Ht′ at an isolated vertex v. Since we
have not added any edge to the new graph, the family of solutions, which contains edge-
subsets, does not change. Thus, we take Ŝt = Ŝt′ . Formally, we take Ŝt[Z] = Ŝt′ [Z \ {v}].
Since Ht and Ht′ have same set of edges, the invariant is vacuously maintained.

Forget Node t with Child t′. Here we know Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1. Let v be
the vertex in Xt′ \ Xt. Let Ev[Z] denote the set of edges between v and the vertices in
Z ⊆ Xt. Observe that E(Ht) = E(Ht′) ∪ Ev[Xt]. Before we define things formally, observe
that in this step the graphs Ht and Ht′ differ by at most tw edges—the edges with one
endpoint in v and the other in Xt. We go through every possible way an optimal solution
can intersect with these newly added edges. Let Pv[Z] = {Y | ∅ �= Y ⊆ Ev[Z]}. Then the
new set of partial solutions is defined as follows:

Ŝt[Z] =
{ (

Ŝt′[Z ∪ {v}] � Pv[Z]
) ∪ {

A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St
}

if v ∈ T(
Ŝt′[Z ∪ {v}] � Pv[Z]

) ∪ {
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

} ∪ Ŝt′[Z] if v /∈ T
.

Now we claim that Ŝt[Z] ⊆ St. Towards the proof, we first show that Ŝt′ [Z∪{v}]�Pv[Z] ⊆
St. Let E′ ∈ Ŝt′ [Z ∪ {v}] � Pv[Z]. Note that E′ ∩ Ev[Z] �= ∅. If E′ is a solution tree,
then E′ ∈ St, and we are done. Since E′ \ Ev[Z] ∈ Ŝt′ [Z ∪ {v}] ⊆ St′ , every vertex
of (T ∩ V (Gt)) \ (Xt ∪ {v}) is incident with some edge from E′. Since E′ ∩ Ev[Z] �= ∅,
there exists an edge in E′ that is incident to v. This implies that every vertex of
(T ∩ V (Gt)) \ Xt is incident with some edge from E′. Now consider any connected
component C in G[E′]. If v /∈ V (C), then C contains a vertex from Xt′ \ {v} = Xt,
because E′ \ Ev[Z] ∈ Ŝt′ [Z ∪ {v}] ⊆ St′ . If v ∈ V (C), then C contains a vertex from
Xt because E′ ∩ Ev[Z] �= ∅. Thus we have shown that E′ ∈ St. It is easy to see that
{A ∈ Ŝt′[Z ∪ {v}] : A ∈ St} ⊆ St. If v /∈ T , then Ŝt′ [Z] ⊆ St, because Ŝt′ [Z] ⊆ St′ and
Xt = Xt′ \ {v}.

Now we show that Ŝt maintains the invariant of the algorithm. Let L ∈ S .

(1) Let Lt = E(Ht) ∩ L and LR = L \ Lt. Furthermore, edges of Lt can be partitioned
into Lt′ = E(Ht′) ∩ L and Lv = Lt \ Lt′ . That is, Lt = Lt′ � Lv.

(2) Let Z = ∂ t(L) and Z′ = ∂ t′
(L).

By the property of Ŝt′ , there exists a L̂t′ ∈ Ŝt′ [Z′] such that

L ∈ S ⇐⇒ Lt′ � Lv � LR ∈ S

⇐⇒ L̂t′ � Lv � LR ∈ S (1)

and ∂ t′
(L) = ∂ t′

(L̂t′ � Lv � LR) = Z′.
We put L̂t = L̂t′ ∪ Lv and L̂ = L̂t ∪ LR. We now show that L̂t ∈ Ŝt[Z]. If v /∈ Z′,

then v /∈ T , L̂t = L̂t′ , and Z = Z′. This implies that L̂t ∈ Ŝt[Z]. If v ∈ Z′ and Lv �= ∅,
then Z′ = Z ∪ {v}. This implies that L̂t ∈ Ŝt′ [Z′] � {Lv} ⊆ Ŝt[Z]. If v ∈ Z′ and Lv = ∅,
then Z′ = Z ∪ {v} and L̂t = L̂t′ . This implies that L̂t ∈ {A ∈ Ŝt′[Z′] : A ∈ St} ⊆ Ŝt[Z].
By Equation (1), L̂ ∈ S . Finally, we need to show that ∂ t(L̂) = Z. Towards this, note
that ∂ t(L̂) = Z′ \ {v} = Z. This concludes the proof for the fact that Ŝt maintains the
correctness invariant.
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Join Node t with Two Children t1 and t2. Here we know that Xt = Xt1 = Xt2 . Also we
know that the edges of Ht is obtained by the union of edges of Ht1 and Ht2 , which are
disjoint. Of course, they are separated by the vertices in Xt. A natural way to obtain
a family of partial solutions for Ht is that we take the union of edge subsets of the
families stored at nodes t1 and t2. This is exactly what we do. Let

Ŝt[Z] = Ŝt1 [Z] � Ŝt2 [Z].

Now we show that Ŝt maintains the invariant. Let L ∈ S .

(1) Let Lt = E(Ht) ∩ L and LR = L \ Lt. Furthermore, edges of Lt can be partitioned
into those belonging to Ht1 and those belonging to Ht2 . Let Lt1 = E(Ht1 ) ∩ L and
Lt2 = E(Ht2 ) ∩ L. Observe that, since E(Ht1 ) ∩ E(Ht2 ) = ∅, we have that Lt1 ∩ Lt2 = ∅.
Also observe that Lt = Lt1 � Lt2 and G[Lt1 ], G[Lt1 ] form forests.

(2) Let Z = ∂ t(L). Since Xt = Xt1 = Xt2 this implies that Z = ∂ t(L) = ∂ t1 (L) = ∂ t2 (L).

Now observe that

L ∈ S ⇐⇒ Lt1 � Lt2 � LR ∈ S

⇐⇒ L̂t1 � Lt2 � LR ∈ S (by the property of Ŝt1 we have that L̂t1 ∈ Ŝt1 [Z])

⇐⇒ L̂t1 � L̂t2 � LR ∈ S (by the property of Ŝt2 we have that L̂t2 ∈ Ŝt2 [Z]).

We put L̂t = L̂t1 ∪ L̂t2 . By the definition of Ŝt[Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝt[Z]. The
above inequalities also show that L̂ = L̂t ∪ LR ∈ S . It remains to show that ∂ t(L̂) = Z.
Since ∂ t1 (L) = Z, we have that ∂ t1 (L̂t1 � Lt2 � LR) = Z. Now, since Xt1 = Xt2 , we have
that ∂ t2 (L̂t1 � Lt2 � LR) = Z and thus ∂ t2 (L̂t1 � L̂t2 � LR) = Z. Finally, because Xt2 = Xt,
we conclude that ∂ t(L̂t1 � L̂t2 � LR) = ∂ t(L̂) = Z. This concludes the proof of correctness
invariant.

Root Node r. Here Xr = ∅. We go through all the solutions in Ŝr[∅] and output the one
with the minimum weight. This concludes the description of the dynamic programming
algorithm.

Computation of Ŝt. Now we show how to implement the algorithm described above
in the desired running time by making use of Lemma 6.2. For our discussion, let us fix
a node t and Z ⊆ Xt of size k. While doing dynamic programming algorithm from the
base nodes to the root node, we always maintain the size invariant.

Base Node t. Trivially, in this case we have maintained the size invariant.
Introduce Node t with Child t′. Here we have that Ŝt[Z] = Ŝt′ [Z \ {v}] and thus the

number of partial solutions with i connected components in Ŝt[Z] is bounded ( k
i ).

Forget Node t with Child t′. In this case,

Ŝt[Z] =
{ (

Ŝt′ [Z ∪ {v}] � Pv[Z]
) ∪ {

A ∈ Ŝt′[Z ∪ {v}] : A ∈ St
}

if v ∈ T(
Ŝt′ [Z ∪ {v}] � Pv[Z]

) ∪ {
A ∈ Ŝt′[Z ∪ {v}] : A ∈ St

} ∪ Ŝt′ [Z] if v /∈ T
.

Since Ŝt′ [Z ∪ {v}] maintains the size invariant, the number of edge subsets with i
connected components in Ŝt′ [Z ∪ {v}] is upper bounded by ( k+1

i ). It is easy to see that
the number of edge subsets with i connected components in Pv[Z] is upper bounded by
( k

i ). So, first, we apply Lemma 6.2 and obtain R ⊆ Ŝt′ [Z ∪ {v}] � Pv[Z] that maintains
the correctness and size invariants. Now let

Ŝ ′
t[Z] =

{
R ∪ {

A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St
}

if v ∈ T

R ∪ {
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

} ∪ Ŝt′ [Z] if v /∈ T
.
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Note that Ŝ ′
t[Z] maintains the correctness invariant. Since the number of edge subsets

with i connected components in {A ∈ Ŝt′ [Z∪{v}] : A ∈ St} and Ŝt′[Z] is bounded by ( k+1
i ),

the number of edge subsets with i connected components in Ŝ ′
t[Z] is at most ( k+4

i ). Also
note that Ŝ ′

t[Z] = Ŝ ′
t[Z] � {∅}. Thus we can apply Lemma 6.2 and obtain Ŝ ′′

t [Z] ⊆ Ŝ ′
t[Z]

that maintains the correctness and size invariants. We update Ŝt[Z] = Ŝ ′′
t [Z].

The running time to compute {A ∈ Ŝt′[Z ∪ {v}] : A ∈ St} is O(2|Z|n). Thus the running
time T to compute Ŝt (that is, across all subsets of Xt) is

T = O
(

tw+1∑
i=1

(
tw + 1

i

)(
iω (2ω + 2)i n + iω2i(ω−1)3in

) +
tw+1∑
i=1

(
tw + 1

i

)
2in

)
= O

(
twωn (2ω + 3)tw + twωn(1 + 2ω−1 · 3)tw)

.

Join Node t with Two Children t1 and t2. Here we defined

Ŝt[Z] = Ŝt1 [Z] � Ŝt2 [Z].

The number of edge subsets with i connected components in Ŝt1 [Z] and Ŝt2 [Z] are
bounded by ( k

i ). Now we apply Lemma 6.2 and obtain Ŝ ′
t[Z] that maintains the cor-

rectness invariant and has size at most 2k. We put Ŝt[Z] = Ŝ ′
t[Z]. The running time to

compute Ŝt is

O
(
twωn (2ω + 3)tw + twωn(1 + 2ω−1 · 3)tw)

.

Thus, the whole algorithm takes O(twωn2(2ω + 3)tw + twωn2(1 + 2ω−1 · 3)tw) =
O(8.7703twn2), as the number of nodes in a nice tree-decomposition is upper bounded
by O(n). However, observe that we do not need to compute the forests and the associ-
ated weight at every step of the algorithm. The size of the forest is at most tw + 1, and
we can maintain these forests across the bags during dynamic programming in time
twO(1). Also, these forests can be used to compute the set {A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St}
during the computation in the forget node t. This will lead to an algorithm with the
claimed running time. This completes the proof.

6.3. Feedback Vertex Set Parameterized By Treewidth

In this subsection we study the FEEDBACK VERTEX SET problem which is defined as
follows.

FEEDBACK VERTEX SET

Input: An undirected graph G and a non negative weight function w : V (G) → N.
Task: Find a minimum weight set Y ⊆ V (G) such that G[V (G) \ Y ] is a forest.

Let G be an input graph of the FEEDBACK VERTEX SET problem. In this subsection,
instead of saying feedback vertex set Y ⊆ V (G) is a solution, we say that V (G) \ Y
is a solution; that is, our objective is to find a maximum weight set V ′ ⊆ V (G) such
that G[V ′] is a forest. We call V ′ ⊆ V (G) is an optimal solution if V ′ is a solution with
maximum weight. Let S be a family of vertex subsets such that every vertex subset
corresponds to an optimal solution. That is,

S = {V ′ ⊆ V (G)|V ′ is an optimal solution}.
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Let (T,X ) be a tree decomposition of G of width tw. For each tree node t and Z ⊆ Xt,
we define St[Z], a family of partial solutions, as follows:

St[Z] = {U ⊆ V (Ht)|U ∩ Xt = Z and Ht[U ] is a forest}.
We denote by Kt a complete graph on the vertex set Xt. Let G∗ be subgraph of G. Let

C ′
1, . . . , C ′

� be the connected components of G∗ that have nonempty intersection with
Xt. Let Ci = C ′

i ∩ Xt. By Ft(G∗), we denote the forest {Q1, . . . , Q�}, where each Qi is an
arbitrary spanning tree of Kt[Ci].

For two family of vertex subsets P and Q of the subgraph Ht, we denote

P ⊗t Q = {U1 ∪ U2|U1 ∈ P,U2 ∈ Q and Ht[U1 ∪ U2] is a forest}.
With every node t of T, we associate the subgraph Ht of G. For every node t, we

keep a family of partial solutions for the graph Ht that is sufficient to guarantee the
correctness of the algorithm. That is, for every optimal solution L ∈ S with L∩ Xt = Z
and its intersection Lt = V (Ht)∩ L with the graph Ht, we have some partial solution L̂t

in our subset such that L̂t ∩ Xt = Z and L̂t ∪ LR is an optimal solution, that is, G[L̂t ∪ LR]
is a forest, where LR = L \ Lt and w(L̂t ∪ LR) ≥ w(L). Now we are ready to state the
main theorem.

THEOREM 6.3. Let G be an n-vertex graph given together with its tree decomposition of
width tw. Then FEEDBACK VERTEX SET on G can be solved in timeO((1+2ω−1 ·3)twtwO(1)n).

PROOF. For every node t of T and Z ⊆ Xt, we store a family of vertex subsets Ŝt[Z] of
V (Ht) satisfying the following correctness invariant.

Correctness Invariant: For every L ∈ S , we have the following. Let Lt = V (Ht)∩
L, LR = L\ Lt, and L∩ Xt = Z. Then there exists L̂t ∈ Ŝt[Z] such that L̂ = L̂t ∪ LR is
an optimal solution, that is, G[L̂t ∪ LR] is a forest with w(L̂t) ≥ w(Lt). Thus we have
that L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing the
dynamic programming. Throughout the process, we maintain the correctness invariant,
which will prove the correctness of the algorithm. However, our main idea is to use
representative families to obtain Ŝt[Z] of small size. That is, given the set Ŝt[Z] that
satisfies the correctness invariant, we use the representative family tool to obtain a
subset Ŝ ′

t[Z] of Ŝt[Z] that also satisfies the correctness invariant and has a size upper
bounded by 2|Z| in total. More precisely, the number of partial solutions in Ŝ ′

t[Z] that
have i connected components with nonempty intersection with Xt is upper bounded by(|Z|

i

)
. Thus, we maintain the following size invariant.

Size Invariant: After node t of T is processed by the algorithm, we have that
|Ŝt[Z, i]| ≤ ( |Z|

i ), where Ŝt[Z, i] is the set of partial solutions that have i connected
components with nonempty intersection with Xt.

LEMMA 6.4 (PRODUCT SHRINKING LEMMA). Let t be a node of T, and let Z ⊆ Xt be a set of
size k. Let P and Q be two families of vertex subsets of V (Ht) (partial solutions) such that
for any A ∈ P and B ∈ Q, E(Ht[A]) ∩ E(Ht[B]) = ∅. Furthermore, let Ŝt[Z] = P ⊗t Q be
the family of vertex subsets of V (Ht) satisfying the correctness invariant. If the number
of partial solutions with i connected components having nonempty intersection with Z
in P as well as in Q is bounded by ( k+c

i ), where c is some fixed constant, then in time
O(kω(2ω + 2)kn + kω2k(ω−1)3kn) we can compute Ŝ ′

t[Z] ⊆ Ŝt[Z] satisfying correctness and
size invariants.
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PROOF. We start by associating a matroid with node t and the set Z ⊆ Xt as follows. We
consider a graphic matroid M = (E, I) on Kt[Z]. Here the element set E of the matroid is
the edge set E(Kt[Z]), and the family of independent sets I consists of spanning forests
of Kt[Z]. Here our objective is to find a small subfamily of Ŝt[Z] = P ⊗t Q satisfying
correctness and size invariants using efficient computation of representative family in
the graphic matroid M. The main idea to prune the size of partial solutions is as follows:
For each independent set U ∈ Ŝt[Z], we associate Ft(Ht[U ]) as the corresponding
independent set in the graphic matroid M and compute representative family in the
graphic matroid M.

Let P = {A1, . . . , A�} and Q = {B1, . . . , B�′ }. Let L1 = {Ft(Ht[A1]), . . . , Ft(Ht[A�])}
and L2 = {Ft(Ht[B1]), . . . , Ft(Ht[B�′])} be the set of forests in Kt[Z] corresponding to
the vertex subsets in P and Q, respectively. Now we define a non-negative weight
function w′ : L1 • L2 → N as follows. For each Ft(Ht[Ai]) ∪ Ft(Ht[Bj]) ∈ L1 • L2, we set
w′(Ft(Ht[Ai]) ∪ Ft(Ht[Bj])) = w(Ai ∪ Bj). For i ∈ [k] and r ∈ {1, 2}, let Lr,i be the family
of forests of Lr with i edges. Now we apply Corollary 4.3 and find ̂L1,i • L2, j ⊆k−1−i− j

maxrep

L1,i • L2, j of size ( k−1
i+ j ) for all i, j ∈ [k]. Let Ŝ ′

t[Z, k − d] ⊆ Ŝt[Z, k − d] be such that, for

every U1 ∪ U2 ∈ Ŝ ′
t[Z, k − d], we have that Ft(Ht[U1]) ∪ Ft(Ht[U2]) ∈ ⋃

i+ j=d
̂L1,i • L2, j .

Let Ŝ ′
t[Z] = ⋃k

j=0 Ŝ ′
t[Z, j]. By Corollary 4.3, |Ŝ ′

t[Z, k − d]| ≤ k( k−1
d ) ≤ ( k

k−d), and hence
Ŝ ′

t[Z] maintains the size invariant.
Now we show that the Ŝ ′

t[Z] maintains the correctness invariant. Let L ∈ S and let
Lt = V (Ht)∩L, LR = L\Lt, and Z = L∩ Xt. Since Ŝt[Z] satisfy the correctness invariant,
there exists L̂t ∈ Ŝt[Z] such that w(L̂t) ≥ w(Lt), L̂ = L̂t ∪ LR is an optimal solution, and
L̂∩Xt = Z. Since Ŝt[Z] = P⊗tQ, there exists U1 ∈ P and U2 ∈ Q such that L̂t = U1 ∪ U2.
Observe that Ht[U1 ∪U2] form a forest. Consider the forests Ft(Ht[U1]) and Ft(Ht[U2]).
Suppose |Ft(Ht[U1])| = i1 and |Ft(Ht[U2])| = i2, then Ft(Ht[U1]) ∪ Ft(Ht[U2]) ∈ L1,i1 •
L1,i2 . This is because if Ft(Ht[U1]) ∪ Ft(Ht[U2]) contains a cycle, then, corresponding
to that cycle, we can get a cycle in Ht[U1 ∪ U2], which is a contradiction. Now let
E′ = Ft(G[LR ∪ Z]) be the forest corresponding to LR ∪ Z with respect to the bag Xt.
Since L̂ is a solution, we have that Ft(Ht[U1]) ∪ Ft(Ht[U2]) ∪ E′ is a forest in Kt[Z].
Since ̂L1,i1 • L2,i2 ⊆k−1−i1−i2

maxrep L1,i1 • L2,i2 , there exists a forest Ft(Ht[U ′
1]) ∪ Ft(Ht[U ′

2]) ∈
̂L1,i1 • L2,i2 such that w′(Ft(Ht[U ′

1]) ∪ Ft(Ht[U ′
2])) ≥ w′(Ft(Ht[U1] ∪ Ft(Ht[U2]))) = w(U1 ∪

U2) and Ft(Ht[U ′
1]) ∪ Ft(Ht[U ′

2]) ∪ E′ is a forest in Kt[Z]. Hence U ′
1 ∪ U ′

2 ∈ Ŝ ′
t[Z].

Since w(U ′
1 ∪ U ′

2) = w′(Ft(Ht[U ′
1]) ∪ Ft(Ht[U ′

2])), w(U ′
1 ∪U ′

2) ≥ w(U1 ∪U2). Thus, we can
conclude that U ′

1 ∪U ′
2 ∪ LR is an optimal solution. This proves that Ŝ ′

t[Z] maintains the
correctness invariant.

By Corollary 4.3, the running time to compute Ŝ ′
t[Z] is upper bounded by

O
(
kω (2ω + 2)k n + kω2k(ω−1)3kn

)
.

This completes the proof of the lemma.

We now explain the dynamic programming algorithm over the tree-decomposition
(T,X ) of G and prove that it maintains the correctness invariant. We assume that
(T,X ) is a nice tree-decomposition of G. By Ŝt, we denote

⋃
Z⊆Xt

Ŝt[Z] (also called a
representative family of partial solutions). We show how Ŝt is obtained by doing dynamic
programming from base node to the root node.

Base Node t. Here the graph Ht is empty, and thus we take Ŝt = {∅}.
Introduce Node t with Child t′. Here we know that Xt ⊃ Xt′ and |Xt| = |Xt′ | + 1. Let

v be the vertex in Xt \ Xt′ . Furthermore, observe that E(Ht) = E(Ht′) and v is degree
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zero vertex in Ht. Thus, the graph Ht only differs from Ht′ at an isolated vertex v. Since
we have not added any edge to the new graph, the family of solutions does not change.
Thus, we take Ŝt = Ŝt′ . Formally, we take Ŝt[Z] = Ŝt′ [Z \ {v}]. Since Ht and Ht′ have
same set of edges, both the correctness and size invariance is maintained.

Forget Node t with Child t′. Here we know Xt ⊂ Xt′ , |Xt| = |Xt′ | − 1. Let v ∈ Xt′ \ Xt.
Observe that E(Ht) ⊇ E(Ht′ ). Thus, for any U ∈ Ŝt′ , Ht[U ] may or may not be a forest.
So, in this case, we collect all the vertex subsets in Ŝt′ , which is a forest, as induced
subgraph in Ht. Formally,

Ŝt[Z] = {A ∈ Ŝt′[Z] ∪ Ŝt′[Z ∪ v]|Ht[A] is a forest}.
Let Ŝt = ⋃

Z⊆Xt
Ŝt[Z]. Now we show that Ŝt satisfies the correctness invariant. Let

L ∈ S . Let Lt′ = V (Ht′) ∩ L and LR = L \ Lt′ . Let Z′ = L ∩ Xt′ . Now observe that

L ∈ S ⇐⇒ Lt′ ∪ LR ∈ S

⇐⇒ L̂t′ ∪ LR ∈ S (by the property of Ŝt′ we have that L̂t′ ∈ Ŝt′ [Z′]).

Since Ht[L̂t′] is a forest, L̂t′ ∈ Ŝt[Z′ \ {v}]. This concludes the proof of the correctness
invariant.

Since Ŝt[Z] ⊆ Ŝt′[Z] ∪ Ŝt′[Z ∪ v], the number of partial solutions with i connected
components having nonempty intersection with Z in Ŝt[Z] is bounded by ( k

i ) + ( k+1
i ) ≤

( k+2
i ). Since Ŝt[Z] = Ŝt[Z] ⊗t {∅}, we apply Lemma 6.4 and find that Ŝ ′

t[Z] ⊆ Ŝt[Z]
satisfies the correctness and size invariants in time O(kω(2ω + 2)kn + kω2k(ω−1)3kn) and
we set Ŝt[Z] = Ŝ ′

t[Z].

Join Node t with Two Children t1 and t2. Here we know that Xt = Xt1 = Xt2 . The
natural way to get a family of partial solutions for Xt is the union of vertex sets of two
families stored at node t1 and t2 that form a forest as an induced subgraph of Ht, that
is,

Ŝt[Z] = {U1 ∪ U2|U1 ∈ Ŝt1 [Z],U2 ∈ Ŝt2 [Z], Ht[U1 ∪ U2] is a forest}
= Ŝt1 [Z] ⊗t Ŝt2 [Z].

Now we show that Ŝt maintains the invariant. Let L ∈ S . Let Lt = V (Gt) ∩ L, Lt1 =
V (Gt1 ) ∩ L, Lt2 = V (Gt2 ) ∩ L, and LR = L \ Lt. Let Z = L ∩ Xt. Now observe that

L ∈ S ⇐⇒ Lt1 ∪ Lt2 ∪ LR ∈ S

⇐⇒ L̂t1 ∪ Lt2 ∪ LR ∈ S (by the property of Ŝt1 we have that L̂t1 ∈ Ŝt1 [Z])

⇐⇒ L̂t1 ∪ L̂t2 ∪ LR ∈ S (by the property of Ŝt2 we have that L̂t2 ∈ Ŝt2 [Z]).

We put L̂t = L̂t1 ∪ L̂t2 . By the definition of Ŝt[Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝt[Z]. The
above inequalities also show that L̂ = L̂t ∪ LR ∈ S . Note that (L̂t ∪ LR) ∩ Xt = Z. This
concludes the proof of the correctness invariant.

We apply Lemma 6.4 and find that Ŝ ′
t[Z] ⊆ Ŝt[Z] satisfies the correctness and size

invariants in time O(kω(2ω + 2)kn + kω2k(ω−1)3kn), and we set Ŝt[Z] = Ŝ ′
t[Z].

Root Node r. Here Xr = ∅. We go through all the solutions in Ŝr[∅] and output the
one with the maximum weight.

In the worst case, in every tree node t, for all subsets Z ⊆ Xt, we apply Lemma 6.4. By
doing the same runtime analysis as in the case of the Steiner Tree, the total running
time will be upper bounded by O(((2ω + 3)tw + (1 + 2ω−1 · 3)tw)twO(1)n).
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7. CONCLUSION

In this article, we gave algorithms for finding representative families for product fam-
ilies that are faster than the naive computation for these families. We showed their
applicability by designing the best-known deterministic algorithms for k-WMLD, k-
WMMLD, and for “connectivity problems” parameterized by treewidth. We believe that
our algorithms for computing representative families of product families will be use-
ful to accelerate other algorithms. We conclude with several interesting problems as
follows:

(1) What are the other natural set families for which we can find representative fami-
lies faster than by directly applying the results of Fomin et al. [2016]?

(2) Can we find representative families for a uniform matroid in time linear in the
input size?

(3) Does there exist a deterministic algorithm for k-WMLD running in time
2knO(1) log W?

REFERENCES

Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. J. Assoc. Comput. Mach. 42, 4 (1995), 844–856.
Richard Bellman and William Karush. 1962a. Mathematical programming and the maximum transform. J.

Soc. Indust. Appl. Math. 10 (1962), 550–567.
Richard Bellman and William Karush. 1962b. On the maximum transform and semigroup of transformations.

Bull. Am. Math. Soc. 68 (1962), 516–518.
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. 2007. Fourier meets möbious: Fast
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