
18

Tight Lower Bounds on Graph Embedding Problems

MAREK CYGAN, Institute of Informatics, University of Warsaw
FEDOR V. FOMIN, University of Bergen; St. Petersburg Department of Steklov Institute
of Mathematics of the Russian Academy of Sciences
ALEXANDER GOLOVNEV, New York University; St. Petersburg Department of Steklov
Institute of Mathematics of the Russian Academy of Sciences
ALEXANDER S. KULIKOV, St. Petersburg Department of Steklov Institute of Mathematics
of the Russian Academy of Sciences
IVAN MIHAJLIN, University of California—San Diego
JAKUB PACHOCKI, Carnegie Mellon University
ARKADIUSZ SOCAŁA, Institute of Informatics, University of Warsaw

We prove that unless the Exponential Time Hypothesis (ETH) fails, deciding if there is a homomorphism
from graph G to graph H cannot be done in time |V (H)|o(|V (G)|). We also show an exponential-time reduction
from Graph Homomorphism to Subgraph Isomorphism. This rules out (subject to ETH) a possibility of
|V (H)|o(|V (H)|)-time algorithm deciding if graph G is a subgraph of H. For both problems our lower bounds
asymptotically match the running time of brute-force algorithms trying all possible mappings of one graph
into another. Thus, our work closes the gap in the known complexity of these fundamental problems.

Moreover, as a consequence of our reductions, conditional lower bounds follow for other related problems
such as Locally Injective Homomorphism, Graph Minors, Topological Graph Minors, Minimum Distortion
Embedding and Quadratic Assignment Problem.

CCS Concepts: � Theory of computation → Parameterized complexity and exact algorithms; Graph
algorithms analysis;

Additional Key Words and Phrases: Lower bounds, graph homomorphism, subgraph isomorphism, graph
embedding, exponential time hypothesis

ACM Reference Format:
Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, Jakub Pachocki,
and Arkadiusz Socała. 2017. Tight lower bounds on graph embedding problems. J. ACM 64, 3, Article 18
(June 2017), 22 pages.
DOI: http://dx.doi.org/10.1145/3051094

The research of Alexander Golovnev is supported by NSF grant 1319051. The research of Jakub Pachocki is
supported by NSF grant CCF-1065106. The research of Marek Cygan and Arkadiusz Socała is supported by
National Science Centre of Poland, Grant Number UMO-2013/09/B/ST6/03136. Preliminary versions of this
work were presented at ICALP 2015 and SODA 2016.
The research leading to these results has received funding from the Government of the Russian Federation
(grant 14.Z50.31.0030).
Authors’ addresses: M. Cygan and A. Socała, Institute of Informatics, Banacha 2, 02-097 Warszawa,
Poland; emails: {cygan, as277575}@mimuw.edu.pl; F. Fomin, Department of Informatics, University of
Bergen, N-5020 Bergen, Norway; email: fomin@ii.uib.no; A. Golovnev, 251 Mercer St, New York, NY
10021, USA; email: alexgolovnev@gmail.com; A. S. Kulikov, Fontanka 27, 191023 St. Petersburg, Russia;
email: alexanders.kulikov@gmail.com; I. Mihajlin, 9500 Gilman Drive, La Jolla, CA 92093-0404 U.S.A;
email: imikhail@cs.ucsd.edu; J. Pachocki, Carnegie Mellon School of Computer Science, 5000 Forbes Ave,
Pittsburgh, PA 15213, USA; email: meret@seas.harvard.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0004-5411/2017/06-ART18 $15.00
DOI: http://dx.doi.org/10.1145/3051094

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

http://dx.doi.org/10.1145/3051094
http://dx.doi.org/10.1145/3051094

18:2 M. Cygan et al.

1. INTRODUCTION

We establish tight conditional lower bounds on the complexity of several fundamental
graph embedding problems, including GRAPH HOMOMORPHISM, SUBGRAPH ISOMORPHISM,
GRAPH MINOR, TOPOLOGICAL GRAPH MINOR, and MINIMUM DISTORTION EMBEDDING. For given
undirected graphs G and H, all these problems can be solved in time nO(n) by a brute-
force algorithm that tries all possible embeddings of G into H, where n is the total
number of vertices in G and H. We show that unless the Exponential Time Hypothesis
(ETH) fails, the running time n�(n) is unavoidable. This resolves a number of open
problems about graph embeddings that can be found in the literature. We start by
defining embedding problems and providing for each of the problems a brief overview
of the related previous results.

GRAPH HOMOMORPHISM. A homomorphism G → H from an undirected graph G to an
undirected graph H is a mapping from the vertex set of G to that of H such that the
image of every edge of G is an edge of H. In other words, there is G → H if and only
if there exists a mapping g : V (G) → V (H), such that for every edge uv ∈ E(G), we
have g(u)g(v) ∈ E(H). Then the GRAPH HOMOMORPHISM problem HOM(G, H) is defined
as follows.

GRAPH HOMOMORPHISM

Input: Undirected graphs G and H.
Task: Decide whether there is a homomorphism G → H.

Many combinatorial structures in G, for example, cliques, independent sets, and
proper vertex colorings, may be viewed as graph homomorphisms to a particular
graph H, see Hell and Nešetřil [2004] for a thorough introduction to the topic. It
is well known that COLORING is a special case of graph homomorphism. More precisely,
a graph G can be colored with at most h colors if and only if G → Kh, where Kh is a
complete graph on h vertices. Due to this, very often in the literature HOM(G, H), when
h = |V (H)|, is referred as H-coloring of G. It was shown by Feder and Vardi [1998] that
the CONSTRAINT SATISFACTION PROBLEM (CSP) can be interpreted as a homomorphism
problem on relational structures, and thus GRAPH HOMOMORPHISM encompasses a large
family of problems generalizing COLORING but is less general than CSP.

Hell and Nešetřil showed that for every fixed simple graph H, the problem whether
there exists a homomorphism from G to H is solvable in polynomial time if H is bipartite
and NP-complete if H is not bipartite [Hell and Nešetřil 1990]. Since then, algorithms
for and the complexity of graph homomorphisms (and homomorphisms between other
discrete structures) have been studied intensively [Austrin 2010; Barto et al. 2008;
Grohe 2007; Marx 2010; Raghavendra 2008].

There are two different ways graph homomorphisms are used to extract useful in-
formation about graphs. Let us consider two homomorphisms, from a “small” graph F
into a “large” graph G and from a “large” graph G into a “small” graph H, which can
be represented by the following formula (here we borrow the intuitive description from
Lovász [2012]):

F → G → H.

The “left-homomorphisms” from various small graphs F into G are useful to study
the local structure of G. For example, if F is a triangle, then the number of “left-
homomorphisms” from F into G is the number of triangles in graph G. This type of
information is closely related to sampling, and we refer to Lovász [2012], which provides
many applications of homomorphisms. “Right-homomorphisms” into “small” different
graphs H are related to global properties of graph G.

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

Tight Lower Bounds on Graph Embedding Problems 18:3

The trivial brute-force algorithm solving “left-homomorphism” from an f -vertex
graph F into an n-vertex graph G runs in time 2O(f log n): We try all possible vertex
subsets of G of size at most f , which is nO(f), and then for each subset try all possible f f

mappings into it from F. Interestingly, this naı̈ve algorithm is asymptotically optimal.
Indeed, as shown by Chen et al. [2006], assuming Exponential Time Hypothesis, there
is no g(k)no(k) time algorithm deciding if an input n-vertex graph G contains a clique
of size at least k for any computable function g. Since this is a very special case of
GRAPH HOMOMORPHISM with F being a clique of size k, the result of Chen et al. rules out
algorithms for GRAPH HOMOMORPHISM of running time g(f)2o(f log n), from F to G, when
the number of vertices f in F is significantly smaller than the number of vertices
n in G. Actually, the reduction of Chen et al. [2006] may be slightly adjusted (see
the remark right after Theorem 1.1) so a lower bound of the form 2ω(f log n) follows
whenever n is superpolynomial in f , under the Exponential Time Hypothesis.

The interest in “right-homomorphisms” is due to the recent developments in the area
of exact exponential algorithms for COLORING and 2-CSP (CSP where all constraints
have arity at most 2) problems. The area of exact exponential algorithms is about solv-
ing intractable problems significantly faster than the trivial exhaustive search, though
still in exponential time [Fomin and Kratsch 2010]. For example, as for GRAPH HOMO-
MORPHISM, a naı̈ve brute-force algorithm for coloring an n-vertex graph G in h colors is
to try for every vertex a possible color, resulting in the running time O∗(hn) = 2O(n log h).1
Since h can be of order �(n), the brute-force algorithm computing the chromatic num-
ber runs in time 2O(n log n). It was already observed in 1970s by Lawler [1976] that
the brute-force for the COLORING problem can be beaten by making use of dynamic
programming over maximal independent sets resulting in single-exponential running
time O∗((1 + 3

√
3)n) = O(2.45n). Almost 30 years later Björklund et al. [2009] succeeded

to reduce the running time to O∗(2n). And as we observed already, for H-coloring, the
brute-force algorithm solving H-coloring runs in time 2O(n log h). In spite of all the similar-
ities between graph coloring and homomorphism, no substantially faster algorithm was
known and it was an open question in the area of exact algorithms if there is a single-
exponential algorithm solving H-coloring in time 2O(n+h) [Fomin et al. 2007; Rzażewski
2014; Wahlström 2010, 2011], see also Fomin and Kratsch [2010, Chapter 12].

On the other hand, GRAPH HOMOMORPHISM is a special case of 2-CSP with n variables
and domain of size h. It was shown by Traxler [2008] that unless the Exponential Time
Hypothesis fails, there is no algorithm solving 2-CSP with n variables and domain of
size h in time ho(n) = 2o(n log h). This excludes (up to ETH) the existence of a single-
exponential cn time algorithm for some constant c > 1 for 2-CSP.

Another interesting variant of GRAPH HOMOMORPHISM is related to graph labelings. A
homomorphism f : G → H is called locally injective if for every vertex u ∈ V (G), its
neighborhood is mapped injectively into the neighborhood of f (u) in H, that is, if every
two vertices with a common neighbor in G are mapped onto distinct vertices in H.

LOCALLY INJECTIVE GRAPH HOMOMORPHISM

Input: Undirected graphs G and H.
Task: Decide whether there is a locally injective homomorphism G → H.

As graph homomorphism generalizes graph coloring, locally injective graph homo-
morphism can be seen as a generalization of graph distance constrained labelings. An

1O∗(·) hides polynomial factors in the input length. Most of the algorithms considered in this article take
graphs G and H as an input. By saying that such an algorithm has a running time O∗(f (G, H)), we mean
that the running time is upper bounded by (|V (G)| + |E(G)| + |V (H)| + |E(H)|)O(1) · f (G, H).

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

18:4 M. Cygan et al.

L(2, 1)-labeling of a graph G is a mapping from V (G) into the nonnegative integers such
that the labels assigned to vertices at distance 2 differ while labels assigned to adjacent
vertices differ by at least 2. This problem was studied intensively in combinatorics and
algorithms, see, for example, Griggs and Yeh [1992] and Fiala et al. [2008]. Fiala and
Kratochvı́l suggested the following generalization of L(2, 1)-labeling, and we refer the
reader to Fiala and Kratochvı́l [2008] for the survey. For graphs G and H, an H(2, 1)-
labeling is a mapping f : V (G) → V (H) such that for every pair of distinct adjacent
vertices u, v ∈ V (G), images f (u) f (v) are distinct and nonadjacent in H. Moreover,
if the distance between u and v in G is two, then f (u) �= f (v). It is easy to see that a
graph G has an L(2, 1)-labeling with maximum label at most k if and only if there is
an H(2, 1)-labeling for H being a k-vertex path. Then the following is known, see, for
example, Fiala and Kratochvı́l [2008]: There is an H(2, 1)-labeling of a graph G if and
only if there is a locally injective homomorphism from G to the complement of H.

Several single-exponential algorithms for L(2, 1)-labeling can be found in the liter-
ature, the most recent algorithm is due to Junosza-Szaniawski et al. [2013] that runs
in time O(2.6488n). For H(2, 1)-labeling, or equivalently for locally injective homomor-
phisms, single-exponential algorithms were known only for special cases when the
maximum degree of H is bounded [Havet et al. 2011] or when the bandwidth of the
complement of H is bounded [Rzażewski 2014].

SUBGRAPH ISOMORPHISM. We say that an undirected G is a subgraph of H if one can
remove some edges and vertices of H, so what remains is isomorphic to G. In other
words, G is a subgraph of H if and only if there exists an injective mapping g : V (G) →
V (H), such that for each edge uv ∈ E(G), g(u)g(v) ∈ E(H). We define

SUBGRAPH ISOMORPHISM

Input: Undirected graphs G and H.
Task: Decide whether G is a subgraph of H.

SUBGRAPH ISOMORPHISM is an important and very general problem. Several flagship
graph problems can be viewed as instances of SUBGRAPH ISOMORPHISM:

—HAMILTONICITY(G): Is Cn (a cycle with n vertices) a subgraph of G?
—CLIQUE(G, k): Is Kk a subgraph of G?
—3-COLORING(G): Is G a subgraph of Kn,n,n, a tripartite graph with n vertices in each of

its three independent sets?
—BANDWIDTH(G, k): Is G a subgraph of Pk

n (a kth power of an n-vertex path)?

All of the mentioned problems are NP-complete, and the best-known algorithms for
all the listed special cases work in exponential time. In fact, all those problems are
well studied from the exact exponential algorithms perspective [Beigel and Eppstein
2005; Björklund 2014; Bourgeois et al. 2012; Cygan and Pilipczuk 2012; Feige 2000;
Held and Karp 1962; Lawler 1976; Robson 1986; Tarjan and Trojanowski 1977], where
the goal is to obtain an algorithm of running time O(cn) for the smallest possible value
of c. Furthermore, the SUBGRAPH ISOMORPHISM problem was very extensively studied
from the viewpoint of fixed parameter tractability, see Marx and Pilipczuk [2014] for
a discussion of 19 different possible parametrizations. All the mentioned special cases
of SUBGRAPH ISOMORPHISM admit O(cn) time algorithms, by using branching, inclusion-
exclusion principle, or dynamic programming. On the other hand, a simple exhaustive
search for the SUBGRAPH ISOMORPHISM problem—enumerating all possible mappings from
the pattern graph to the host graph—runs in 2O(n log n) time, where n is the total number
of vertices of the host graph and pattern graph.

Therefore, a natural question is whether SUBGRAPH ISOMORPHISM admits an O(cn) time
algorithm. This was repeatedly posed as an open problem [Amini et al. 2012; Cygan

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

Tight Lower Bounds on Graph Embedding Problems 18:5

et al. 2014; Fomin et al. 2008; Husfeldt et al. 2013]. In particular, in the monograph of
Fomin and Kratsch [2010] the existence of O(cn) time algorithm for SUBGRAPH ISOMOR-
PHISM was put among the few questions in the open problems section.

SUBGRAPH ISOMORPHISM is a special case of QUADRATIC ASSIGNMENT PROBLEM, which is

QUADRATIC ASSIGNMENT PROBLEM (QAP)
Input: n × n matrices A = (aij) and B = (bij) with real entries.
Task: Find a permutation π minimizing

∑n
i=1

∑n
j=1 aπ(i)π(j)bij .

Indeed, G is a subgraph of H if and only if for the instance of QAP with Aand B being
adjacency matrices of G and the complement of H the optimum value is 0.2 Problem 7.6
in the influential survey of Woeginger on exact algorithms [Woeginger 2003] is to prove
that QAP cannot be solved in time O(cn) for any fixed value c (under some reasonable
assumption).

GRAPH MINOR. For a graph G and an edge uv ∈ G, we define the operation of contracting
edge uv as follows: We delete vertices u and v from G and add a new vertex wuv adjacent
to all vertices that u or v was adjacent to in G. We say that a graph G is a minor of
H, if G can be obtained from some subgraph of H by a series of edge contractions.
Equivalently, we may say that G is a minor of H if G can be obtained from H itself by
a series of edge deletions, edge contractions, and vertex deletions.

GRAPH MINOR

Input: Undirected graphs G and H.
Task: Decide whether G is a minor of H.

GRAPH MINOR is a fundamental problem in graph theory and graph algorithms. By
the theorem of Robertson and Seymour [1995], there exists a computable function f
and an algorithm that, for given graphs G and H, checks in time f (G)|V (H)|3 whether
G is a minor of H. However, when the size of the graph G is not constant, nothing
beyond a brute-force algorithm trying all possible partitions of a vertex set of H was
known.

Related notion of graph embedding is the notion of topological minor. We say that a
graph G is a subdivision of a graph H if H can be obtained from G by contracting only
edges incident with vertices of degree two. In other words, G is obtained from H by
replacing edges with paths. A graph G is called a topological minor of a graph H if a
subdivision of G is isomorphic to a subgraph of H.

TOPOLOGICAL GRAPH MINOR

Input: Undirected graphs G and H.
Task: Decide whether G is a topological minor of H.

Lingas and Wahlen [2009] gave an algorithm of running time O∗(
(n

p

)
p!2n−p) solving

TOPOLOGICAL GRAPH MINOR for n-vertex graph H and p-vertex graph G.
MINIMUM DISTORTION EMBEDDING. Given an undirected connected graph G with the

vertex set V (G) and the edge set E(G), the graph metric of G is M(G) = (V (G), DG),
where the distance function DG is the shortest path distance between u and v for every
pair of vertices u, v ∈ V (G). Given a graph metric M and another metric space M′

2If G has smaller number of vertices than H, then it should be first padded with isolated vertices to make
the number of vertices in both graphs equal.

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

18:6 M. Cygan et al.

with distance functions D and D′, a mapping f : M → M′ is called an embedding
of M into M′. The mapping f is non-contracting if for every pair of points p, q in M,
D(p, q) ≤ D′(f (p), f (q)). The distortion of embedding f is the minimum number df
such that D(p, q) · df ≥ D′(f (p), f (q)). We define

MINIMUM DISTORTION EMBEDDING

Input: Undirected graphs G and H.
Task: Find a non-contracting embedding of G into H of minimum distortion.

Most of exact algorithms for MINIMUM DISTORTION EMBEDDING deal with a special case
when the host graph H is a path or a tree of bounded degree [Bădoiu et al. 2005a,
2005b; Cygan and Pilipczuk 2012; Fellows et al. 2013; Fomin et al. 2011; Kenyon et al.
2009]. In particular, an optimal-distortion embedding into a line can be found in time
2O(n) [Cygan and Pilipczuk 2012; Fomin et al. 2011].

Our Results. In this article, we show that from the algorithmic perspective, the
behavior of “right-homomorphism” is, unfortunately, much closer to 2-CSP than to
COLORING. This result will also imply similar lower bounds for many other graph
embedding and containment problems. All lower bounds obtained in this article are
conditional, and they hold unless the Exponential Time Hypothesis [Impagliazzo and
Paturi 2001; Impagliazzo et al. 2001a] fails. ETH is an established assumption; many
interesting lower bounds have been found under this hypothesis (see Cygan et al.
[2015] and Lokshtanov et al. [2011] for surveys). We formulate ETH in the next section.

The first main result of this article is the following theorem, which excludes (up to
ETH) resolvability of HOM(G, H) in time 2o(n log h), thus resolving the open qestion from
Fomin et al. [2007], Rzażewski [2014], Wahlström [2010], and Wahlström [2011].

THEOREM 1.1. Unless ETH fails, for any constant D > 0 there exists a constant
c = c(D) > 0 such that for any non-decreasing function 3 ≤ h(n) ≤ nD, there is no
algorithm solving GRAPH HOMOMORPHISM from an n-vertex graph G to a graph H with at
most h(n) vertices in time

O
(
2cn log h(n)). (1)

Note that for h(n) = n Theorem 1.1 implies that there is no 2O(n+h) time algorithm for
GRAPH HOMOMORPHISM under ETH. Let us remark that to obtain more general results,
in all lower bounds proven in this article we assume implicitly that the number h of
vertices of the graph H is a function of the number n of the vertices of the graph G.
At the same time, to exclude some pathological cases we assume that the function h(n)
is “reasonable,” meaning that it is non-decreasing and time constructible. Also, it is
worth noting that from previous work [Chen et al. 2006; Lokshtanov et al. 2013], it
follows that there is a reduction that transforms a given instance of 3-COLORING into
deciding whether a graph with k · 3n/k vertices admits a clique of size k (see the proof
of Theorem 14.21 in Cygan et al. [2015]). By setting k appropriately to values smaller
than n/ log n, one can obtain hardness for the cases not covered by Theorem 1.1, that
is, when h(n) is superpolynomial, consequently covering the whole spectrum of h(n).

With a tiny modification, the proof of Theorem 1.1 can be adapted to show a similar
lower bound for LOCALLY INJECTIVE GRAPH HOMOMORPHISM.

THEOREM 1.2. Unless ETH fails, for any constant D > 0 there exists a constant
c = c(D) > 0 such that for any non-decreasing function 3 ≤ h(n) ≤ nD, there is no
algorithm deciding if there is a locally injective homomorphism from an n-vertex graph
G to a graph H with at most h(n) vertices in time O(2cn log h(n)) .

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

Tight Lower Bounds on Graph Embedding Problems 18:7

The second main result of this article is about SUBGRAPH ISOMORPHISM, resolving the
open question asked in Amini et al. [2012], Cygan et al. [2014], Fomin et al. [2008],
Fomin and Kratsch [2010], and Husfeldt et al. [2013].

THEOREM 1.3. Unless ETH fails, there is no algorithm solving SUBGRAPH ISOMORPHISM

for graphs G and H in time 2o(n log n), where n = |V (G)| = |V (H)|.
Theorem 1.3 implies that QAP cannot be solved in time 2o(n log n) unless ETH fails and

hence provides the answer to the open problem of Woeginger [2003].
An important feature of our proof is that it rules out solvability of SUBGRAPH ISOMOR-

PHISM in time 2o(n log n) even for the special case when |V (G)| = |V (H)| = n, since in this
special case a graph G is a (topological) minor of H if and only if G is a subgraph of H.
Thus the case of GRAPH MINOR and TOPOLOGICAL GRAPH MINOR when |V (G)| = |V (H)| = n
cannot be resolved in time 2o(n log n) as well. Similar arguments work for various modi-
fications of GRAPH MINOR like SHALLOW GRAPH MINOR, and so on.

To see how the bound on SUBGRAPH ISOMORPHISM yields the bound on MINIMUM

DISTORTION EMBEDDING, we observe that an n-vertex graph G admits a non-contracting
embedding of distortion 1 into an n-vertex graph H if and only if H is a subgraph of G.

Methods. To establish lower bounds for graph homomorhisms, we proceed in two
steps. First, we obtain lower bounds for LIST GRAPH HOMOMORPHISM by reducing to
it the 3-coloring problem on graphs of bounded degree. More precisely, for a given
graph G with vertices of small degrees, we construct an instance (G′, H′) of LIST GRAPH

HOMOMORPHISM, such that G is 3-colorable if and only if there exists a list homomorphism
from G′ to H′. Moreover, our construction guarantees that a “fast” algorithm for list
homomorphism implies an algorithm for 3-coloring violating ETH. The reduction is
based on a “grouping” technique; however, to do the required grouping, we need a trick
exploiting the condition that G has a bounded maximum vertex degree and thus can
be colored in a bounded number of colors in polynomial time. In the second step of
reductions, we proceed from list homomorphisms to normal homomorphisms. Here we
need specific gadgets with a property that any homomorphism from such a graph to
itself preserves an order of its specific structures.

The remaining part of the article is organized as follows. Section 2 contains all
necessary definitions. In Section 3 we give technical lemmata and reductions that are
used to prove lower bounds for the GRAPH HOMOMORPHISM problem in Section 4.1 and
for the SUBGRAPH ISOMORPHISM in Section 4.2. We conclude with some open problems in
Section 5.

2. PRELIMINARIES

Graphs. We consider simple undirected graphs, where V (G) denotes the set of vertices
and E(G) denotes the set of edges of a graph G. For a given subset S of V (G), G[S]
denotes the subgraph of G induced by S, and G − S denotes the graph G[V (G) \ S].
A vertex set S of G is an independent set if G[S] is a graph with no edges, and S is a
clique if G[S] is a complete graph. The set of neighbors of a vertex v in G is denoted by
NG(v), and the set of neighbors of a vertex set S is NG(S) = ⋃

v∈S NG(v) \ S. By NG[S]
we denote the closed neighborhood of the set S, that is, the set S together with all its
neighbors: NG[S] = S ∪ NG(S). For an integer n, we use [n] to denote the set of integers
{1, . . . , n}.

The complete graph on k vertices is denoted by Kk. A coloring of a graph G is a
function assigning a color to each vertex of G such that adjacent vertices have different
colors. A k-coloring of a graph uses at most k colors, and the chromatic number χ (G) is
the smallest number of colors in a coloring of G.

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

18:8 M. Cygan et al.

Throughout the article, we implicitly assume that there is a total order on the set
of vertices of a given graph. This allows us to treat a k-coloring of an n-vertex graph
simply as a vector in [k]n.

Let G be an n-vertex graph, 1 ≤ r ≤ n be an integer, and V (G) = B1 � B2 � . . . � B� n
r

be a partition of the set of vertices of G. Then the grouping of G with respect to the
partition V (G) = B1 � B2 � . . . � B� n

r is a graph Gr with vertices B1, . . . , B� n
r such that

Bi and Bj are adjacent if and only if there exist u ∈ Bi and v ∈ Bj such that uv ∈ E(G).
To distinguish vertices of the graphs G and Gr, the vertices of Gr will be called buckets.

For a graph G, its square G2 has the same set of vertices as G and uv ∈ E(G2) if and
only if there is a path of length at most 2 between u and v in G (thus, E(G) ⊆ E(G2)).
It is easy to see that if the degree of G is at most d then the degree of G2 is at most d2.

Homomorphisms and List Homomorphisms. Let G and H be graphs. A mapping
ϕ : V (G) → V (H) is a homomorphism if for every edge uv ∈ E(G) its image ϕ(u)ϕ(v) ∈
E(H). If there exists a homomorphism from G to H, then we often write G → H. The
GRAPH HOMOMORPHISM problem HOM(G, H) asks whether G → H.

Assume that for each vertex v of G we are given a list L(v) ⊆ V (H). A list homo-
morphism of G to H, also known as a list H-coloring of G, with respect to the lists
L, is a homomorphism ϕ : V (G) → V (H), such that ϕ(v) ∈ L(v) for all v ∈ V (G). The
LIST GRAPH HOMOMORPHISM problem LIST-HOM(G, H) asks whether graph G with lists
L admits a list homomorphism to H with respect to L.

Exponential Time Hypothesis. Our lower bounds are based on a well-known complex-
ity hypothesis formulated by Impagliazzo et al. [2001b].

Exponential Time Hypothesis (ETH): There is a constant q > 0 such that 3-
CNF-SAT with n variables and m clauses cannot be solved in time 2qn(n + m)O(1).

This hypothesis is widely applied in the theory of exact exponential algorithms, and
we refer to Cygan et al. [2015] and Lokshtanov et al. [2013] for an overview of ETH
and its implications.

In this article, we use the following well-known application of ETH with respect
to 3-COLORING (see, e.g., Theorem 3.2 in Lokshtanov et al. [2013], and Exercise 7.27
in Sipser [2005]). The 3-COLORING problem is the problem to decide whether the given
graph can be properly colored in three colors.

PROPOSITION 2.1. Unless ETH fails, there exists a constant q > 0 such that 3-COLORING

on n-vertex graphs of average degree four cannot be solved in time O∗ (2qn).

It is well known that 3-COLORING remains NP-complete on graphs of maximum vertex
degree four. Moreover, the classical reduction, see, for example, Garey and Johnson
[1979], allows for a given n-vertex graph G to construct a graph G′ with maximum
vertex degree at most four and |V (G′)| = O(|E(G)|) such that G is 3-colorable if and
only if G′ is. Thus Proposition 2.1 implies the following (folklore) lemma that will be
used in our proofs.

LEMMA 2.2. Unless ETH fails, there exists a constant q > 0 such that there is no algo-
rithm solving 3-COLORING on n-vertex graphs of maximum degree four in time O∗ (2qn).

3. AUXILIARY LEMMATA

In this section, we provide reductions and auxiliary lemmata about colorings that will
be used to prove lower bounds for GRAPH HOMOMORPHISM and SUBGRAPH ISOMORPHISM.

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

Tight Lower Bounds on Graph Embedding Problems 18:9

3.1. Balanced Colorings

To prove slightly superexponential lower bound based on the ETH, we need a slightly
sublinear reduction. From Lemma 2.2, we know that 3-COLORING requires exponential
time even for graphs of maximum degree four. Given a graph G that needs to be 3-
colored, our general strategy is to partition the set of vertices of G into buckets of
size roughly ε log n (for some constant 0 < ε < 1). This way the number of buckets
is O(n/ log n), where n = |V (G)|. Observe that each bucket has only 3ε log n = nO(ε)

valid 3-colorings. Consequently, we may create graphs G′, H′, such that vertices of G′
correspond to buckets of G, whereas vertices of H′ correspond to potential 3-colorings
of a bucket, obtaining a sublinear reduction as |V (G′)| = O(n/ log n) and |V (H′)| =
nO(ε). Unfortunately, in our reduction we are unable to implement this strategy for
all bucketings. In particular, we are unable to verify consistency of colorings between
buckets if there is more than one edge between them. For this reason, in this section
we will prove two lemmata that will be used to construct a very particular bucketing
of G, suitable for reductions presented in Section 3.2.

In the following, we show how to construct a specific “balanced” coloring of a graph
in polynomial time. Let G be a graph of constant maximum degree. The coloring of
G we want to construct should satisfy three properties. First, it should be a proper
coloring of G2. Then the size of each color class should be bounded as well as the
number of edges between vertices from different color classes. More precisely, we prove
the following lemma.

LEMMA 3.1. For any constant d ≥ 1, there exist constants α, β, τ > 1 and a polynomial
time algorithm that for a given graph G on n vertices of maximum degree d and an
integer τ ≤ L ≤ n

4d2 , finds a coloring c : V (G) → [L] satisfying the following properties:

(i) The coloring c is a proper coloring of G2.
(ii) There are only a few vertices of each color: for all i ∈ [L],

|c−1(i)| ≤
⌈
α · n

L

⌉
. (2)

(iii) There are only a few edges of G between each pair of colors: For all i �= j ∈ [L], we
have

ki, j := |{uv ∈ E(G) : c(u) = i, c(v) = j}| ≤ Ki, j :=
⌈
β · min{|c−1(i)|, |c−1(j)|}

L

⌉
.

PROOF. The algorithm starts by constructing greedily an independent set I of G2 of
size � n

d2+1. Since the maximum vertex degree of G2 does not exceed d2, this is always
possible. We construct a partial coloring of G2 by coloring the vertices of I in L colors
such that the obtained coloring is a balanced coloring of G2[I], meaning that the number
of vertices of each color is �|I|/L� or �|I|/L. Since I is an independent set in G2, such a
coloring can be easily constructed in polynomial time. In the obtained partial equitable
coloring, we have that for every i ∈ [L]

|c−1(i)| ≥
⌊

n
L(d2 + 1)

⌋
≥

⌊ n
2Ld2

⌋
≥ n

4Ld2 , (3)

because L ≤ n
4d2 and �x� ≥ x/2 for any x ≥ 2. Let us note that the obtained precoloring

of G2 clearly satisfies the first and the third conditions of the lemma. Since the size of
every c−1(i), i ∈ [L], does not exceed |c−1(i)| ≤ ⌈ n

L

⌉
, the second condition of the lemma

also holds for every α ≥ 1.
We extend the precoloring of G2 to the required coloring by the following greedy

procedure: We select an arbitrary uncolored vertex v and color it by a color from [L]

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

18:10 M. Cygan et al.

such that the new partial coloring also satisfies the three conditions of the lemma. In
what follows, we prove that such a greedy choice of a color is always possible.

Coloring of a vertex v with a color i can be forbidden only because it breaks one of
the three conditions. Let us count, how many colors can be forbidden for v by each of
the three constraints.

(i) Vertex v has at most d2 neighbors in G2, so the first constraint forbids at most d2

colors.
(ii) The second constraint forbids all the colors that are “fully packed” already. The

number of such colors is at most n
(αn

L) = L
α

.

(iii) To estimate the number of colors forbidden by the third condition, we go through
all the neighbors of v. A neighbor u ∈ NG(v) forbids a color i if coloring v by i exceeds
the allowed bound on ki,c(u). Hence to estimate the number of such forbidden colors
i (for every fixed vertex u) we need to estimate how many values of ki,c(u) can reach
the allowed upper bound Ki,c(u). We have that

|{i : ki,c(u) = Ki,c(u)}|
by (3)≤

∣∣∣∣
{

i : ki,c(u) ≥ βn
4L2d2

}∣∣∣∣ =
∣∣∣∣
{

i : ki,c(u) · 4L2d2

βn
≥ 1

}∣∣∣∣
≤

∑
i∈[L]

ki,c(u) · 4L2d2

βn
.

The number of edges between vertices of the same color c(u) and all other vertices
of the graph does not exceed the cardinality of the color class c(u) times d. Thus
we have

∑
i∈[L]

ki,c(u) · 4L2d2

βn
≤ d|c−1(c(u))| · 4L2d2

βn

by (2)≤ d
⌈

αn
L

⌉
· 4L2d2

βn

≤ d
2αn

L
· 4L2d2

βn
= 8αLd3

β
,

where the last inequality is due to α > 1 and L ≤ n. Therefore,

|{i : ki,c(u) = Ki,c(u)}| ≤ 8αLd3

β
.

Since the degree of v in G does not exceed d, we have that the number of colors
forbidden by the third constraint is at most 8αLd4

β
.

Thus, the total number of colors forbidden by all three constraints for the vertex v is
at most

d2 + L
α

+ 8αLd4

β
.

By taking sufficiently large constants α, β, and τ , say, α = 4, β = 32αd4, and τ = 4d2,
we may upper bound this expression by L/4 + L/4 + L/4 = 3L

4 , which is guaranteed not
to exceed L − 1 for every L ≥ τ ≥ 4. Therefore, there always exists a vacant color for
the vertex v, which concludes the proof.

We would like to note that the properties of Lemma 3.1 cannot be improved signifi-
cantly, as on average a color class has n/L vertices, while the average number of edges
between two color classes is roughly dn/L2 = d · n/L

L .

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

Tight Lower Bounds on Graph Embedding Problems 18:11

Now with help of Lemma 3.1, we describe a way to construct a specific grouping of a
graph. The properties of such groupings are crucial for the final reduction.

LEMMA 3.2. For any constant d ≥ 1, there exist positive integers λ = λ(d), n0 = n0(d)
and a polynomial time algorithm that for a given graph G on n ≥ n0 vertices of maximum
degree d and a positive integer r ≤ √ n

2λ
, finds a grouping G̃ of G and a coloring

c̃ : V (G̃) → [λr] such that

(i) The number of buckets of G̃ is

|V (G̃)| ≤ |V (G)|
r

;

(ii) The coloring c̃ is a proper coloring of G̃2;
(iii) Each bucket B ∈ V (G̃) is an independent set in G, that is, for every u, v ∈ B,

uv �∈ E(G);
(iv) For every pair of buckets B1, B2 ∈ V (G̃) there is at most one edge between them in G,

that is,

|{uv ∈ E(G) : u ∈ B1, v ∈ B2}| ≤ 1 .

PROOF. Let β = β(d), τ = τ (d) be constants provided by Lemma 3.1 and let L = λr
for λ = λ(d) = max(�τ, �2dβ). Clearly, L ≥ τ . To ensure L ≤ n/(4d2), and consequently
satisfy the prerequisites of Lemma 3.1 for any r ≤

√
n/(2λ), we set n0 = 8λd4 and

assume n ≥ n0, as then

L = λr ≤
√

nλ

2
= n ·

√
λ

2n
≤ n ·

√
λ

2 · 8λd4 = n
4d2 .

Let also c be a coloring of G in L colors provided by Lemma 3.1. We want to construct
a grouping G̃ of G such that for all buckets B ∈ V (G̃) and all u �= v ∈ B,

c(u) = c(v) and c(u′) �= c(v′) (4)
for all u′ ∈ NG(u), v′ ∈ NG(v).

In other words, all vertices of the same bucket are of the same color while any two
neighbors of such two vertices are of different colors.

For each color i ∈ [L], we introduce an auxiliary constraint graph Fi. The vertex set
of Fi is V (Fi) = c−1(i) and its edge set is

E(Fi) = {uv : ∃u′ ∈ NG(u), v′ ∈ NG(v), c(u′) = c(v′)}.
In our construction, each bucket of G̃ will be an independent set in some Fi. Note that
this will immediately imply Equation (4). The degree of any vertex v ∈ V (Fi) is at most

degFi
(v) ≤

∑
v′∈NG(v)

(
Kc(v),c(v′) − 1

) ≤ d
(⌈

β|c−1(c(v))|
L

⌉
− 1

)
≤ dβ|V (Fi)|

L
≤ |V (Fi)|

2r
,

where the last inequality follows from L ≥ �2dβr ≥ 2dβr. This means that the greedy
algorithm finds a proper coloring of each Fi in at most |V (Fi)|

2r + 1 colors, which splits
each Fi in at most |V (Fi)|

2r + 1 independent sets. We create a separate bucket of G̃ from
each independent set of each Fi. Now we show that the four conditions from the lemma
statement hold.

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

18:12 M. Cygan et al.

(i) For the first property, the number of independent sets in each Fi is at most |V (Fi)|
2r +1.

Thus the number of buckets in G̃ is

|V (G̃)| ≤
∑
i∈[L]

(|V (Fi)|
2r

+ 1
)

=
∑
i∈[L]

(|c−1(i)|
2r

+ 1
)

= n
2r

+ L ≤ n
r

,

since L = λr and 2λr2 ≤ n.
(ii) For the second property, by Lemma 3.1, the coloring c is proper in G2. We can

convert c to a coloring c̃ : V (G̃) → [λr] by assigning each bucket the color of its
vertices (all of them have the same color). The resulting coloring c̃ is a proper
coloring of G̃2 by Equation (4) and the fact that c is proper in G2.

(iii) All buckets of G̃ are monochromatic with respect to c, thus, each bucket B ∈ V (G̃)
is an independent set in G and the third property holds.

(iv) Finally, by Equation (4), there is at most one edge in G between vertices corre-
sponding to any pair of buckets in G̃.

Thus, the constructed grouping and its coloring satisfy all conditions of the lemma.

We would like to note that the properties of Lemma 3.2 do not upper bound the size of
each bucket explicitly. However, for any graph without isolated vertices we may upper
bound the size of each bucket as follows. Consider a bucket B. By property (iii), we
know that B is an independent set, and if there are no isolated vertices in the graph,
then each vertex of B has at least one incident edge going outside of B. By property (iv)
each of those edges goes to a different bucket, and by property (ii) each of those buckets
has a different color. Consequently, the number of vertices of a bucket is not greater
than the total number of colors being λr.

3.2. Reductions

This section constitutes the main technical part of the article and contains all the
necessary reductions used in the lower bounds proofs. Using these reductions as build-
ing blocks, the lower bounds follow from careful calculations. The general pipeline is
as follows. To prove a lower bound, we take a graph G of maximum degree four that
needs to be 3-colored and construct an equisatisfiable instance (G′, H′) of LIST GRAPH

HOMOMORPHISM using Lemma 3.3 . We then use Lemma 3.4 to transform (G′, H′) into an
equisatisfiable instance (G′′, H′′) of GRAPH HOMOMORPHISM. Thus, an algorithm checking
whether there exists a homomorphism from G′′ to H′′ can be used to check whether
the initial graph G can be 3-colored. At the same time, we know a lower bound for
3-COLORING under ETH (Lemma 2.2). This gives us a lower bound for GRAPH HOMO-
MORPHISM under the ETH assumption (Section 4.1). To prove the hardness of SUBGRAPH

ISOMORPHISM in Section 4.2, we show an exponential-time reduction from GRAPH HOMO-
MORPHISM to SUBGRAPH ISOMORPHISM.

LEMMA 3.3 (3-COLORING → LIST GRAPH HOMOMORPHISM). There exists an algorithm that
takes as input a graph G on n vertices of maximum degree d that needs to be 3-colored
and an integer r = o(

√
n) and finds an equisatisfiable instance (G′, H′) of LIST-HOM,

where |V (G′)| ≤ n/r and |V (H′)| ≤ γ (d)r, where γ (d) is a function of the graph degree.
The running time of the algorithm is polynomial in n and the size of the output graphs.

PROOF. Constructing the graph G′. Let G′ be the grouping of G and c : V (G′) → [L]
be the coloring provided by Lemma 3.2, where L = λ(d)r. To distinguish colorings of G
and G′, we call c(B), for a bucket B ∈ V (G′), a label of B. Consider a bucket B ∈ V (G′),
that is, a subset of vertices of G, and a label i ∈ [L]. From item (ii) of Lemma 3.2, we
know that c is a proper coloring of (G′)2. This, in particular, means that there is at

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

Tight Lower Bounds on Graph Embedding Problems 18:13

most one B′ ∈ NG′(B) such that c(B′) = i. Moreover, if such B′ exists then, by item (iv)
of Lemma 3.2, there exists a unique u ∈ B and unique u′ ∈ B′ such that uu′ ∈ E(G).
This allows us to define the following mapping φB : [L] → B ∪ {0}: φB(i) = u if such B′
exists and φB(i) = 0 if B has no neighbor B′ of label i. Without loss of generality we
assume that G does not have isolated vertices. Since each vertex has a neighbor outside
its bucket (it cannot have a neighbor in its own bucket, as buckets are independent),
B ⊆ φB(L).

Constructing the graph H′. We now define a redundant encoding of a 3-coloring of
a bucket B ∈ V (G′). Namely, let μB : (f : B → {1, 2, 3}) → {0, 1, 2, 3}L. That is, for a
3-coloring f : B → {1, 2, 3} of B, μB(f) is a vector v of length L. For i ∈ [L], by v[i] we
denote the ith component of v. The value of v[i] is defined as follows: If φB(i) = 0, then
v[i] = 0, otherwise v[i] = f (φB(i)). In other words, for a given bucket B and a 3-coloring
f of its vertices, for each possible label i ∈ [L], μB(f)[i] is the color of the vertex u ∈ B
that has a neighbor in a bucket with label i and 0 if there is no such vertex u.

We are now ready to construct the graph H′. The set of vertices of H′ is defined as
follows:

V (H′) = {(R, l) : R ∈ {0, 1, 2, 3}L and l ∈ [L]} .

Intuitively, a vertex of H′ is a pair consisting of a redundant encoding of a 3-coloring of a
bucket and a label of a bucket. By using list constraints, we will ensure that R = μB(f)
for some 3-coloring f of B, where B is a bucket mapped to (R, l).

Formally, the list constraints of this instance of LIST GRAPH HOMOMORPHISM are defined
as follows: a bucket B ∈ V (G′) is allowed to be mapped to (R, l) ∈ V (H′) if and only if
l = c(B), and there is a 3-coloring f of B such that μB(f) = R. Informally, two vertices
in V (H′) are joined by an edge if they define two consistent 3-colorings. Formally,
(R1, l1)(R2, l2) ∈ E(H′) if and only if R1[l2] �= R2[l1]. Observe that |V (G′)| ≤ n/r by
Lemma 3.2 and |V (H′)| ≤ 4L · L ≤ 4L · 2L = 8λ(d)r = γ (d)r for γ (d) = 8λ(d).

In the described construction, it might happen that we add an edge to H′ even
if R1[l2] = 0 or R2[l1] = 0. We would like to note that this is, however, irrelevant
to the following proof of correctness: If the edges would be added to H′ only when
R1[l2], R2[l1] �= 0, then the same reasoning would also work.

Running time of the reduction. The reduction clearly takes time polynomial in the
size of input and output.

Correctness of the reduction. It remains to show that G is 3-colorable if and only if
(G′, H′) is a yes-instance of LIST GRAPH HOMOMORPHISM.

Assume that G is 3-colorable and take a proper 3-coloring g of G. It defines a ho-
momorphism from G′ to H′ in a natural way: B ∈ V (G′) is mapped to (μB(g|B), c(B)),
where g|B is the function g with its domain restricted to B. Each list constraint is
satisfied by definition. To show that each edge is mapped to an edge, consider an edge
BB′ ∈ E(G′). Then, by item (iv) of Lemma 3.2, there is a unique edge uu′ ∈ E(G) such
that u ∈ B, u′ ∈ B′. Note that B and B′ are mapped to vertices (R, l) and (R′, l′) such
that R[l′] = g(u) and R′[l] = g(u′), since g is a proper 3-coloring of G, g(u) �= g(u′). This,
in turn, means that (R, l)(R′, l′) ∈ E(H′), and hence the edge BB′ is mapped to this edge
in H′.

For the reverse direction, consider a homomorphism h : G′ → H′. For each bucket
B ∈ V (G′), h(B) defines a proper 3-coloring of B, that is, μ−1

B (h(B)). Note that μ−1
B (h(B))

is well defined as μB is injective due to the list constraints and the assumption that
G has no isolated vertices. Together, they define a 3-coloring g of G and we need to
show that g is proper. Assume, to the contrary, that there is an edge uu′ ∈ E(G) such
that g(u) = g(u′). By item (iii) of Lemma 3.2, u and u′ belong to different buckets
B, B′ ∈ V (G′). By the definition of grouping, BB′ ∈ E(G′). Since h is a homomorphism,

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

18:14 M. Cygan et al.

Fig. 1. The graphs D′ (left) and D (right). The encircled clique Kh+3 is the canonical clique of D. An edge
from a clique to a vertex of a cycle means that each vertex of the clique is joined to this vertex.

(R, l)(R′, l′) := h(B)h(B′) ∈ E(H′). At the same time, R[l′] = g(u) = g(u′) = R′[l], which
contradicts the fact that (R, l)(R′, l′) is an edge in H′.

In the following lemma, we show a reduction from LIST-HOM to HOM, but before
formally proving the lemma, let us discuss the approach we take. Let (G, H) be an
instance of LIST-HOM equipped with lists L : V (G) → 2V (H). A natural idea could be
as follows. Create graphs G′ = G ∪ X and H′ = H ∪ X, where X = {v′ : v ∈ V (H)}, that
is add to both graphs G and H a set X of |V (H)| vertices. If we could guarantee that
any homomorphism from G′ to H′ maps each v′ of G′ to its corresponding copy v′ of H′,
then we could emulate the list constraints L by appropriate connections with X:

—connect each vertex x ∈ V (G) to {v′ : v ∈ V (H) \ L(x)} in G′, that is, connect it to the
copies of forbidden vertices,

—connect each vertex v ∈ V (H) to X \ {v′} in H′, that is, connect it to all the vertices of
X except its copy.

Now for a homomorphism from G′ to H′ mapping bijectively X to X, where the
bijection is an identity function, a vertex x ∈ V (G) cannot be mapped to vertex v ∈ V (H)
with v �∈ L(x), as the edge xv of G′ would not be mapped to an edge of H′.

To implement the above idea, we construct anchors, which can be only mapped to
themselves by any homomorphism.

LEMMA 3.4 (LIST GRAPH HOMOMORPHISM → GRAPH HOMOMORPHISM). There is a
polynomial-time algorithm that from an instance (G, H) of LIST-HOM where |V (G)| =
n, |V (H)| = h ≥ 3 constructs an equisatisfiable instance (G′, H′) of HOM where
|V (G′)| ≤ n + �, |V (H′)| ≤ � for � = 25h2.

PROOF. Preparations. We start with a simple six-vertex gadget D′ consisting of a 5-
cycle together with an apex vertex adjacent to all the vertices of the cycle, see Figure 1.

An important property of D′ is that for each homomorphism φ : D′ → D′ and i ∈ [5],

φ(z) = z and φ(z) �= φ(xi),

which means that z is always mapped to z and nothing else is mapped to z. Indeed,
because the vertex z is adjacent to all the remaining vertices of D′, we have that
φ(z) �= φ(xi) as otherwise φ(z) would not be adjacent to φ(xi), since D′ contains no self-
loops. For the same reason, we have that for every i ∈ [5], φ(xi) ∈ ND′ (φ(z)). But for
every xi, its open neighborhood ND′ (xi) induces a bipartite graph. On the other hand,
the chromatic number of the cycle C = x1x2x3x4x5 is 3, and thus it cannot be mapped
by φ to ND′ (xi) for any i ∈ [5]. Therefore, φ(z) = z.

In order for the φ(z) = z argument to work in a bigger graph, we replace z by a clique
Kh+3 of size h + 3, called the canonical clique of the gadget. The obtained graph with
(h + 3) + 5 vertices is denoted as D (see Figure 1).

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

Tight Lower Bounds on Graph Embedding Problems 18:15

Fig. 2. The gadget Tk for k = 3.

Fig. 3. The graph G′. A vertex x ∈ V (G) is connected to bj if and only if v j �∈ L(x), where L(x) is the list
associated with the vertex x ∈ V (G) and V (H) = {v1, . . . , vh}.

Let D0, . . . , Dk be k + 1 copies of the graph D. We join those k + 1 graphs isomorphic
to D to construct a larger gadget Tk as follows (see Figure 2). For each i ∈ [k], we
select an arbitrary vertex from the canonical clique of Di, denote this vertex as zi, and
identify it with one arbitrary vertex of Di−1 that does not belong to the canonical clique
of Di−1, that is, with a vertex of the 5-cycle (see Figure 2). Denote the new graph by Tk.
Observe that each Di is a block of Tk, and we call Di the ith block of Tk. Note that two
consecutive blocks Di−1 and Di have exactly one common vertex, namely zi.

The reason we are using those canonical cliques instead of single vertices in the
construction of Tk is that those canonical cliques are big enough to behave as anchors.
That is, we will prove that canonical cliques can only be mapped to themselves and
not to other parts of the graph, in particular, for each i ∈ [k] and homomorphism
φ : Tk → Tk, φ(zi) = zi.

Constructing G′. As we take into consideration list constraints, let us denote V (H) =
{v1, . . . , vh}. Let Ah be a graph consisting of a matching with h edges {a1b1, . . . , ahbh}.
Then the graph G′ consists of a copy of G, a copy of Th, and a copy of Ah with the
following additional edges: The vertex zi from the ith block of Th is adjacent to the
vertices ai and bi. Also we add edges from G to Ah: For a vertex x ∈ V (G), we add an
edge xaj for every j, and an edge xbj if v j �∈ L(x) (see Figure 3). The number of vertices
in G′ is at most n + 2h + (h + 1)(h + 3 + 5) ≤ n + (h + 1)(h + 11) ≤ n + 25h2.

Constructing H′. Recall we denote V (H) = {v1, . . . , vh}. The graph H′ is constructed
similarly as G′. It consists of a copy of H, a copy of Th, and a copy of Ah. For every
i, we add edges ziai and zibi as before. Also, each vertex vi of H is adjacent to all the
vertices from Ah except for bi (see Figure 4). The number of vertices in H′ is at most
h + 2h + (h + 1)(h + 3 + 5) ≤ (h + 1)(h + 11) ≤ 25h2.

Correctness. We now turn to prove that the instance (G, H) of LIST-HOM is equisat-
isfiable to an instance (G′, H′) of HOM.

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

18:16 M. Cygan et al.

Fig. 4. The graph H′. A vertex vi ∈ V (H) is connected to all aj ’s and all bj ’s except for bi ; here we illustrate
the case i = 1.

CLAIM 3.5. Any homomorphism φ from G′ to H′ maps Th into Th.

PROOF OF THE CLAIM. No pair of vertices of the same clique of Th is mapped to the
same vertex in H′, because H′ has no self-loops. Therefore, canonical cliques from Th
are mapped to some cliques from Th, as H′ has no more cliques of size h + 3. The
remaining vertices of Th have at least h + 3 neighbors from canonical cliques, and
therefore they must be mapped to vertices from Th.

CLAIM 3.6. Any homomorphism φ from G′ to H′ bijectively maps Th to Th so the order
of z’s is preserved, that is, for each i ∈ [h], φ(zi) = zi.

PROOF OF THE CLAIM.

(1) Every canonical clique is mapped to a canonical clique. First note that a canonical
clique is mapped into one block. Indeed, there are no vertices outside a block that
are connected to more than one vertex of the block. Assume, to the contrary, that
some canonical clique is mapped to one block but not to a canonical clique. Then
its image has to contain one or two vertices of the 5-cycle from that block. If the
image contains only one vertex of the 5-cycle, then the image of the 5-cycle has at
most three vertices: one vertex from the canonical clique Kh+3 and two neigbors
of the vertex from the 5-cycle (because all the vertices of the image of the 5-cycle
must be connected to all the vertices of the image of the clique). Note that these
three vertices do not form a triangle, and therefore the 5-cycle cannot be mapped to
them. If the image of the clique contains two vertices outside of the canonical clique,
then for the same reason the image of the 5-cycle must contain only two vertices,
which is not possible. This analysis shows that every canonical clique Kh+3 must
be mapped to a canonical clique Kh+3.

(2) Every block is mapped to a block. We already know that every canonical clique is
mapped to a canonical clique. The 5-cycle from the same block must be mapped
to the corresponding 5-cycle, because it is the only image that contains a closed
walk of odd length and every vertex of which is connected to the clique (recall
that the images of the canonical clique and the 5-cycle do not intersect, since their
preimages are joined by edges). Note that since the canonical clique and the cycle
are mapped to themselves, zi has to be mapped to some zj .

(3) If Di is mapped to Dj, then Di+1 is mapped to Dj+1. The cycle from Di shares a
vertex with the canonical clique from Di+1, and therefore if Di is mapped to Dj ,

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

Tight Lower Bounds on Graph Embedding Problems 18:17

then Di+1 can only be mapped to Dj+1 or Dj . However, Di+1 cannot be mapped into
the same block as Di. Indeed, in this case the canonical clique of Di+1 would be
mapped to the canonical clique of Dj , but we already know that zi+1 is mapped to
the 5-cycle of Dj . Therefore, Di and Di+1 must be mapped in consecutive blocks.

The above proves that for every i ∈ {0, . . . , h}, Di is mapped to Di, which implies that
any homomorphism preserves the order of z’s.

CLAIM 3.7. Any homomorphism φ from G′ to H′ bijectively maps Ah to Ah so {ai, bi} is
mapped to {ai, bi}.

PROOF OF THE CLAIM. Every pair {ai, bi} is connected to zi ∈ Th, so it can be mapped
either to {ai, bi} or to some vertices of Th. But in the latter case it would not have paths
of length 2 to all other pairs {aj, bj} for h ≥ 3.

CLAIM 3.8. Any homomorphism φ from G′ to H′ maps G to H.

PROOF OF THE CLAIM. Assume, to the contrary, that a vertex x ∈ V (G) is mapped to a
vertex v ∈ V (Th) or a vertex a ∈ V (Ah). The vertex x is adjacent to at least h vertices
from Ah, but v and a are adjacent to at most two vertices from Ah (recall that by the
previous claim every {ai, bi} is mapped to {ai, bi}).

Now we show that the two instances are equisatisfiable. Let φ be a list homomor-
phism from G to H. We show that its natural extension φ′ mapping Th to Th and Ah
to Ah is a correct homomorphism from G′ to H′. This is non-trivial only for edges of G′
from G to Ah. Consider an edge from a vertex x of G to a vertex bj . The presence of this
edge means that x is not mapped to v j ∈ V (H) by φ. Recall that the bj is mapped by
φ′ to bj , as we have assumed that φ′ extends φ by the identity function on Th and Ah.
This means that the considered edge in G′ is mapped to an edge in H′ by φ′.

For the reverse direction, let φ′ be a homomorphism from G′ to H′. We show that
its natural projection is a list homomorphism from G to H. Since φ′ maps G to H (by
Claim 3.8), it is enough to check that all list constraints are satisfied. For this, consider
a vertex x from G and assume that vi �∈ L(x). Then φ′ does not map x to vi, as otherwise
there would be no image for one of the edges xai or xbi.

Running time of the reduction. The reduction clearly takes time polynomial in the
input length.

4. LOWER BOUNDS

4.1. Graph Homomorphism

We are ready to prove our main result about graph homomorphisms, that is, Theo-
rem 1.1.

THEOREM 4.1 (THEOREM 1.1 RESTATED). Unless ETH fails, for any constant D > 0 there
exists a constant c = c(D) > 0 such that for any non-decreasing function 3 ≤ h(n) ≤ nD,
there is no algorithm solving GRAPH HOMOMORPHISM from an n-vertex graph G to a graph
H with at most h(n) vertices in time

O
(
2cn log h(n)). (5)

PROOF. The outline of the proof of the theorem is as follows. Assuming that there
is a “fast” algorithm for GRAPH HOMOMORPHISM, we show that there is also a “fast”
algorithm solving LIST GRAPH HOMOMORPHISM, which, in turn, implies “fast” algorithm
for 3-COLORING on degree 4 graphs, contradicting ETH. In what follows, we specify what
we mean by “fast.”

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

18:18 M. Cygan et al.

Let h0 = 252. If h(n) < h0 for all values of n, then an algorithm with running
time O(hcn) would solve 3-COLORING in time O(hcn

0) = O(2cn log h0) (recall that h(n) ≥ 3).
Therefore, by choosing a small-enough constant c such that c log h0 < q, we arrive at a
contradiction with Lemma 2.2.

From now on, we assu.me that h(n) ≥ h0 for large-enough values of n. Let c = q
8D log γ

,
where q is the constant from Lemma 2.2, and γ := γ (4) is the constant from Lemma 3.3.
For the sake of contradiction, let us assume that there exists an algorithm A deciding
whether G → H in time O(hcn) = O(2cn log h), where |V (G)| = n, |V (H)| = h := h(n). Now
we show how to solve 3-coloring on n′-vertex graphs of maximum degree four in time
2qn′

, which would contradict Lemma 2.2.
Let G′ be an n′-vertex graph of maximum degree four that needs to be 3-colored.

Let r = log h
4D log γ

and n = 2n′
r . Using Lemma 3.3 (note that r = o(

√
n′) as required), we

construct an instance (G1, H1) of LIST GRAPH HOMOMORPHISM that is satisfiable if and only
if the initial graph G′ is 3-colorable, and |V (G1)| ≤ n′

r , |V (H1)| ≤ γ r. By Lemma 3.4,
this instance is equisatisfiable to an instance (G, H) of GRAPH HOMOMORPHISM where
|V (H)| < 25γ 2r = 25h

1
2D ≤ h (since D ≥ 1 and h(n) ≥ h0), and

|V (G)| ≤ n′

r
+ 25γ 2r ≤ n

2
+ 25h

1
2D ≤ n

2
+ 25

√
n ≤ n

(for sufficiently large values of n).
Now, to solve 3-coloring for G′, we construct an instance (G, H) with |V (G)| ≤ n and

|V (H)| ≤ h of GRAPH HOMOMORPHISM and invoke the algorithm A on this instance. The
running time of A is

O(2cn log h) = O(2
2cn′

r log h) = O(22cn′ log h· 4D log γ

log h) = O(28cDn′ log γ) = O(2qn′
)

and hence we can find a 3-coloring of G′ in time O(2qn′
), which contradicts ETH (see

Lemma 2.2).

THEOREM 4.2 (THEOREM 1.2 RESTATED). Unless ETH fails, for any constant D > 0 there
exists a constant c = c(D) > 0 such that for any non-decreasing function 3 ≤ h(n) ≤ nD,
there is no algorithm deciding if there is a locally injective homomorphism from an
n-vertex graph G to a graph H with at most h(n) vertices in time O(2cn log h(n)) .

PROOF. The proof is almost identical to the proof of Theorem 4.1.
Let us observe that in the reduction in Lemma 3.3, in graph G′, we take a coloring

(in the proof we refer to such coloring as to labeling) of the square of G′. Thus for every
bucket v of G′, all its neighbors are labeled by different colors. The way we construct
the lists, only buckets with the same labels can be mapped to the same vertex of H′.
Thus for every vertex v of G′, no pair of its neighbors can be mapped to the same vertex.
Hence every list homomorphism from G′ to H′ is locally injective. Therefore, the result
of Lemma 3.3 holds for locally injective list homomorphisms as well, and we obtain the
following lemma.

LEMMA 4.3. There exists an algorithm that takes as input a graph G on n vertices of
maximum degree d that needs to be 3-colored and an integer r = o(

√
n) and finds an

equisatisfiable instance (G′, H′) of LOCALLY INJECTIVE LIST GRAPH HOMOMORPHISM, where
|V (G′)| ≤ n/r and |V (H′)| ≤ γ (d)r, where γ (d) is a function of the graph degree. The
running time of the algorithm is polynomial in n and the size of the output graphs.

In the reduction of Lemma 3.4, we established that every homomorphism from G′
to H′ bijectively maps Th to Th and Ah to Ah so {ai, bi} is mapped to {ai, bi}. Thus for
vertices of these structures, every homomorphism is locally injective. By Claim 3.8,

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

Tight Lower Bounds on Graph Embedding Problems 18:19

any homomorphism φ from G′ to H′ maps G to H. Therefore, there is a locally injective
homomorphism from G′ to H′ if and only if there is a locally injective list homomorphism
from G to H. Then by making use of Lemma 4.3, the calculations performed in the proof
of Theorem 4.1, we conclude with the proof of the theorem.

4.2. Subgraph Isomorphism

To prove a lower bound for SUBGRAPH ISOMORPHISM, we need a reduction, which, given an
instance of GRAPH HOMOMORPHISM, produces a single exponential number of instances of
SUBGRAPH ISOMORPHISM. Even though from the perspective of polynomial time algorithms
such a reduction gives no implication in terms of which problem is harder, in our setting
it is enough to obtain a lower bound for SUBGRAPH ISOMORPHISM.

THEOREM 4.4. Given an instance (G, H) of GRAPH HOMOMORPHISM , one can in poly(p)2p

time create 2p instances of SUBGRAPH ISOMORPHISM with |V (G)| vertices in each of the
graphs, where p = |V (G)| + |V (H)|, such that (G, H) is a yes-instance if and only if at
least one of the created instances of SUBGRAPH ISOMORPHISM is a yes-instance.

PROOF. Let (G, H) be an instance of GRAPH HOMOMORPHISM and let p = |V (G)|+|V (H)|.
Note that any homomorphism h from G to H can be associated with some sequence of
non-negative numbers (|h−1(v)|)v∈V (H), being the numbers of vertices of G mapped to
particular vertices of H. The sum of the numbers in such a sequence equals exactly
|V (G)|. As the number of such sequences is (V (G)+V (H)−1

V (H)−1) ≤ 2p, we can enumerate all
such sequences in time 2p poly(p). For each such sequence (av)v∈V (H) we create a new
instance (G′, H′) of SUBGRAPH ISOMORPHISM, where the pattern graph remains the same,
that is, G′ = G, and in the host graph H′ each vertex of v ∈ V (H) is replicated exactly
av times (possibly zero). Observe that |V (H′)| = |V (G′)|.

We claim that G admits a homomorphism to H if and only if for some sequence
(av)v∈V (H) the graph G′ is a subgraph of H′. First, assume that G admits a homomor-
phism h to H. Consider the instance (G′, H′) created for the sequence av = |h−1(v)| and
observe that we can create a bijection h′ : V (G′) → V (H′) by assigning v ∈ V (G′) to its
private copy of h(v). As h is a homomorphism, so is h′, and as h′ is at the same time a
bijection, we infer that G′ is a subgraph of H′.

On the other hand, if for some sequence (av)v∈V (H) the constructed graph G′ is a
subgraph of H′, then projecting the witnessing injection g : V (G′) → V (H′) so g′(v) is
defined as the prototype of the copy g(v), gives a homomorphism from G to H, as copies
of each v ∈ V (H) form independent sets in H′.

Combining Theorem 4.1 with Theorem 4.4, we immediately obtain the following
lower bound.

THEOREM 4.5 (THEOREM 1.3 RESTATED). Unless ETH fails, there exists a constant c > 0
such that there is no algorithm deciding whether a given n-vertex graph G contains a
subgraph isomorphic to a given n-vertex graph H in time O (ncn).

5. CONCLUSION AND OPEN PROBLEMS

In this work, we resolved a number of questions about exact exponential algorithms.
Our lower bounds suggest several directions for further research.

“Fine-grained” Dichotomy. The classical results of Hell and Nešetřil [1990] estab-
lishes the following dichotomy for GRAPH HOMOMORPHISM subject to P�= NP : For every
fixed simple graph H, the problem of whether there exists a homomorphism from G to
H is solvable in polynomial time if and only if H is bipartite. Is there anything similar
to that in the world of exponential algorithms for HOM(G, H)?

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

18:20 M. Cygan et al.

More precisely, for graph classes G and H, we denote by HOM(G,H) the restriction of
the graph homomorphism problem to input graphs G ∈ G and H ∈ H. If G or H is the
class of all graphs, then we use the placeholder “ ” instead of a letter. Thus the result
of Hell-Nešetřil states that unless P=NP, HOM(,H) is in P if and only if H is a class
of bipartite graphs.

Now we know that solving HOM(,) with input graphs G and H in time |V (H)|o(|V (G)|)
would refute ETH. On the other hand, when H is the class of graphs consisting of
complete graphs, HOM(,H) is equivalent to computing the chromatic number of G
and thus is solvable in time O(2|V (G)|) [Björklund et al. 2009]. More generally, let H be
a graph class such that for some constant t, either the clique width or the maximum
vertex degree of the core of every graph in H is at most t. Wahlström [2010] has
shown that in this case HOM(,H) is solvable in single-exponential time O(f (t)|V (G)|) =
2O(|V (G)|), where f is some function of H only. Is it possible to characterize (up to
some complexity assumption) graph classes H, where HOM(,H) is solvable in single-
exponential time?

What about the fine-grained complexity of GRAPH HOMOMORPHISM for HOM(G,) and
HOM(G,H)? Of course, similar questions are interesting for SUBGRAPH ISOMORPHISM, as
well as for counting versions of GRAPH HOMOMORPHISM and SUBGRAPH ISOMORPHISM.

Some Concrete Problems. Are the following problems solvable in single-exponential
time?

—SUBGRAPH ISOMORPHISM with instance (G, H) when the maximum vertex degree of G is
3. (When degree of G does not exceed 2, the problem is solvable in single-exponential
time, see, for example, Held and Karp [1962].)

—Deciding if graph G can be obtained from graph H only by edge contractions.
—Deciding if graph G is an immersion of graph H.
—Deciding if G is a minor of a graph H for the special case when G is a clique.
—Finding a minimum distortion embedding into a cycle. We remark that embedding

in a path can be done in time 2O(|V (G)|) [Cygan and Pilipczuk 2012; Fomin et al. 2011].

ACKNOWLEDGMENTS

We thank Gregory Gutin for pointing us to QAP and the anonymous reviewers for their helpful comments.

REFERENCES

Omid Amini, Fedor V. Fomin, and Saket Saurabh. 2012. Counting subgraphs via homomorphisms. SIAM J.
Discr. Math. 26, 2 (2012), 695–717. DOI:http://dx.doi.org/10.1137/100789403

Per Austrin. 2010. Towards sharp inapproximability for any 2-CSP. SIAM J. Comput. 39, 6 (2010), 2430–2463.
Mihai Bădoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropoulos. 2005a. Low-distortion embeddings

of general metrics into the line. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC’05). ACM, 225–233.

Mihai Bădoiu, Kedar Dhamdhere, Anupam Gupta, Yuri Rabinovich, Harald Räcke, R. Ravi, and Anasta-
sios Sidiropoulos. 2005b. Approximation algorithms for low-distortion embeddings into low-dimensional
spaces. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05).
SIAM, 119–128.

Libor Barto, Marcin Kozik, and Todd Niven. 2008. Graphs, polymorphisms and the complexity of homomor-
phism problems. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC’08).
789–796.

Richard Beigel and David Eppstein. 2005. 3-coloring in time O(1.3289n). J. Algor. 54, 2 (2005), 444–453.
Andreas Björklund. 2014. Determinant sums for undirected hamiltonicity. SIAM J. Comput. 43, 1 (2014),

280–299. DOI:http://dx.doi.org/10.1137/110839229
Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. 2009. Set partitioning via inclusion–exclusion.

SIAM J. Comput. 39, 2 (2009), 546–563.

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

http://dx.doi.org/10.1137/100789403
http://dx.doi.org/10.1137/110839229

Tight Lower Bounds on Graph Embedding Problems 18:21

Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos, and Johan M. M. van Rooij. 2012. Fast algo-
rithms for max independent set. Algorithmica 62, 1–2 (2012), 382–415. DOI:http://dx.doi.org/10.1007/
s00453-010-9460-7

Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. 2006. Strong computational lower bounds via
parameterized complexity. J. Comput. Syst. Sci. 72, 8 (2006), 1346–1367.

Marek Cygan, Fedor Fomin, Bart M. P. Jansen, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2014. School on Parameterized Algorithms and
Complexity—Open Problems. Retrieved from http://fptschool.mimuw.edu.pl/opl.pdf.

Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Dániel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michał
Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer.

Marek Cygan and Marcin Pilipczuk. 2012. Bandwidth and distortion revisited. Discr. Appl. Math. 160, 4–5
(2012), 494–504. DOI:http://dx.doi.org/10.1016/j.dam.2011.10.032

Tomás Feder and Moshe Y. Vardi. 1998. The computational structure of monotone monadic SNP and con-
straint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28, 1 (1998), 57–104.
DOI:http://dx.doi.org/10.1137/S0097539794266766

Uriel Feige. 2000. Coping with the NP-hardness of the graph bandwidth problem. In Proceedings of the 7th
Scandinavian Workshop on Algorithm Theory (SWAT’00). Lecture Notes in Computer Science, Vol. 1851.
Springer, Berlin, 10–19.

Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Elena Losievskaja, Frances A. Rosamond, and Saket
Saurabh. 2013. Distortion is fixed parameter tractable. ACM Trans. Comput. Theory 5, 4 (2013), 16.

Jirı́ Fiala, Petr A. Golovach, and Jan Kratochvı́l. 2008. Computational complexity of the distance constrained
labeling problem for trees (extended abstract). In Proceedings of the 35th International Colloquium of
Automata, Languages and Programming (ICALP’08). Lecture Notes in Computer Science, Vol. 5125.
Springer, 294–305.

Jirı́ Fiala and Jan Kratochvı́l. 2008. Locally constrained graph homomorphisms - structure, complexity, and
applications. Comput. Sci. Rev. 2, 2 (2008), 97–111. DOI:http://dx.doi.org/10.1016/j.cosrev.2008.06.001

Fedor Fomin, Kazuo Iwama, and Dieter Kratsch. 2008. Moderately exponential time algorithms (dagstuhl
seminar 08431). In Dagstuhl Reports. Retrieved from http://drops.dagstuhl.de/opus/volltexte/2008/1798/
pdf/08431.SWM.Paper.1798.pdf. 1.

Fedor V. Fomin, Pinar Heggernes, and Dieter Kratsch. 2007. Exact algorithms for graph homomorphisms.
Theor. Comput. Syst. 41, 2 (2007), 381–393.

Fedor V. Fomin and Dieter Kratsch. 2010. Exact Exponential Algorithms. Springer.
Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2011. An exact algorithm for minimum dis-

tortion embedding. Theor. Comput. Sci. 412, 29 (2011), 3530–3536. DOI:http://dx.doi.org/10.1016/
j.tcs.2011.02.043

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman.

Jerrold R. Griggs and Roger K. Yeh. 1992. Labelling Graphs with a Condition at Distance 2. SIAM J. Discr.
Math. 5, 4 (1992), 586–595.

Martin Grohe. 2007. The complexity of homomorphism and constraint satisfaction problems seen from the
other side. J. ACM 54, 1 (2007).

Frédéric Havet, Martin Klazar, Jan Kratochvı́l, Dieter Kratsch, and Mathieu Liedloff. 2011. Exact al-
gorithms for L(2, 1)-labeling of graphs. Algorithmica 59, 2 (2011), 169–194. DOI:http://dx.doi.org/
10.1007/s00453-009-9302-7

Michael Held and Richard M. Karp. 1962. A dynamic programming approach to sequencing problems. J.
SIAM 10 (1962), 196–210.

Pavol Hell and Jaroslav Nešetřil. 1990. On the complexity of H-coloring. J. Combin. Theory Ser. B 48, 1
(1990), 92–110.

Pavol Hell and Jaroslav Nešetřil. 2004. Graphs and Homomorphisms. Oxford Lecture Series in Mathematics
and its Applications, Vol. 28. Oxford University Press, Oxford.

Thore Husfeldt, Ramamohan Paturi, Gregory B. Sorkin, and Ryan Williams. 2013. Exponential algorithms:
Algorithms and complexity beyond polynomial time (dagstuhl seminar 13331). In Dagstuhl Reports. Re-
trieved from http://drops.dagstuhl.de/opus/volltexte/2013/4342/pdf/dagrep_v003_i008_p040_s13331.pdf.
63.

Russell Impagliazzo and Ramamohan Paturi. 2001. On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 2
(2001), 367–375. DOI:http://dx.doi.org/10.1006/jcss.2000.1727

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001a. Which problems have strongly exponen-
tial complexity? J. Comput. Syst. Sci. 63, 4 (2001), 512–530. DOI:http://dx.doi.org/10.1006/jcss.2001.1774

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

http://dx.doi.org/10.1007/s00453-010-9460-7
http://dx.doi.org/10.1007/s00453-010-9460-7
http://fptschool.mimuw.edu.pl/opl.pdf
http://dx.doi.org/10.1016/j.dam.2011.10.032
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1016/j.cosrev.2008.06.001
http://drops.dagstuhl.de/opus/volltexte/2008/1798/pdf/08431.SWM.Paper.1798.pdf
http://drops.dagstuhl.de/opus/volltexte/2008/1798/pdf/08431.SWM.Paper.1798.pdf
http://dx.doi.org/10.1016/j.tcs.2011.02.043
http://dx.doi.org/10.1016/j.tcs.2011.02.043
http://dx.doi.org/10.1007/s00453-009-9302-7
http://dx.doi.org/10.1007/s00453-009-9302-7
http://drops.dagstuhl.de/opus/volltexte/2013/4342/pdf/dagrep_v003_i008_p040_s13331.pdf
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774

18:22 M. Cygan et al.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001b. Which problems have strongly exponen-
tial complexity. J. Comput. Syst. Sci. 63, 4 (2001), 512–530.

Konstanty Junosza-Szaniawski, Jan Kratochvı́l, Mathieu Liedloff, Peter Rossmanith, and Paweł Rzażewski.
2013. Fast exact algorithm for L(2, 1)-labeling of graphs. Theor. Comput. Sci. 505 (2013), 42–54.
DOI:http://dx.doi.org/10.1016/j.tcs.2012.06.037

Claire Kenyon, Yuval Rabani, and Alistair Sinclair. 2009. Low distortion maps between point sets. SIAM J.
Comput. 39, 4 (2009), 1617–1636. DOI:http://dx.doi.org/10.1137/080712921

Eugene L. Lawler. 1976. A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5, 3
(1976), 66–67.

Andrzej Lingas and Martin Wahlen. 2009. An exact algorithm for subgraph homeomorphism. J. Discr.
Algorithms 7, 4 (2009), 464–468. DOI:http://dx.doi.org/10.1016/j.jda.2008.10.003

Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2011. Lower bounds based on the exponential time
hypothesis. Bull. EATCS 105 (2011), 41–72.

Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2013. Lower bounds based on the exponential time
hypothesis. Bull. EATCS 3, 105 (2013).

László Lovász. 2012. Large Networks and Graph Limits. Vol. 60. American Mathematical Soc.
Dániel Marx. 2010. Can you beat treewidth? Theor. Comput. 6, 1 (2010), 85–112. DOI:http://dx.doi.org/

10.4086/toc.2010.v006a005
Dániel Marx and Michal Pilipczuk. 2014. Everything you always wanted to know about the param-

eterized complexity of Subgraph Isomorphism (but were afraid to ask). In Proceedings of the
31st International Symposium on Theoretical Aspects of Computer Science (STACS’14). 542–553.
DOI:http://dx.doi.org/10.4230/LIPIcs.STACS.2014.542

Prasad Raghavendra. 2008. Optimal algorithms and inapproximability results for every CSP? In Proceedings
of the 40th Annual ACM Symposium on Theory of Computing (STOC’08). 245–254.

Neil Robertson and Paul D. Seymour. 1995. Graph minors. XIII. The disjoint paths problem. J. Combin.
Theory Ser. B 63, 1 (1995), 65–110.

J. M. Robson. 1986. Algorithms for maximum independent sets. J. Algor. 7, 3 (1986), 425–440.
Paweł Rzażewski. 2014. Exact algorithm for graph homomorphism and locally injective graph homomor-

phism. Inf. Process. Lett. 114, 7 (2014), 387–391. DOI:http://dx.doi.org/10.1016/j.ipl.2014.02.012
Michael Sipser. 2005. Introduction to the Theory of Computation. Cengage Learning.
Robert Endre Tarjan and Anthony E. Trojanowski. 1977. Finding a maximum independent set. SIAM J.

Comput. 6, 3 (1977), 537–546.
Patrick Traxler. 2008. The time complexity of constraint satisfaction. In Parameterized and Exact Computa-

tion. Springer, 190–201.
Magnus Wahlström. 2010. Problem 5.21. time complexity of graph homomorphism. In Exact Complexity of

NP-Hard Problems. Dagstuhl Seminar 10441 Final Report, Ramamohan Paturi Thore Husfeldt, Dieter
Kratsch and Gregory Sorkin (Eds.). Dagstuhl.

Magnus Wahlström. 2011. New plain-exponential time classes for graph homomorphism. Theor. Comput.
Syst. 49, 2 (2011), 273–282.

Gerhard J. Woeginger. 2003. Exact algorithms for NP-hard problems: A survey. In Combinatorial
Optimization—Eureka, You Shrink!Lecture Notes in Computer Science, Vol. 2570. Springer-Verlag,
Berlin, 185–207.

Received February 2016; revised October 2016; accepted February 2017

Journal of the ACM, Vol. 64, No. 3, Article 18, Publication date: June 2017.

http://dx.doi.org/10.1016/j.tcs.2012.06.037
http://dx.doi.org/10.1137/080712921
http://dx.doi.org/10.1016/j.jda.2008.10.003
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.542
http://dx.doi.org/10.1016/j.ipl.2014.02.012

