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METRIC DIMENSION OF BOUNDED TREE-LENGTH GRAPHS∗

RÉMY BELMONTE† , FEDOR V. FOMIN‡ , PETR A. GOLOVACH‡ , AND

M. S. RAMANUJAN§

Abstract. The notion of resolving sets in a graph was introduced by Slater [Proceedings of
the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Util. Math.,
Winnipeg, 1975, pp. 549–559] and Harary and Melter [Ars Combin., 2 (1976), pp. 191–195] as a way
of uniquely identifying every vertex in a graph. A set of vertices in a graph is a resolving set if for
any pair of vertices x and y there is a vertex in the set which has distinct distances to x and y. A
smallest resolving set in a graph is called a metric basis and its size, the metric dimension of the
graph. The problem of computing the metric dimension of a graph is a well-known NP-hard problem
and while it was known to be polynomial time solvable on trees, it is only recently that efforts have
been made to understand its computational complexity on various restricted graph classes. In recent
work, Foucaud [Algorithmica, 2016, pp. 1–31] showed that this problem is NP-complete even on
interval graphs. They complemented this result by also showing that it is fixed-parameter tractable
(FPT) parameterized by the metric dimension of the graph. In this work, we show that this FPT
result can in fact be extended to all graphs of bounded tree-length. This includes well-known classes
like chordal graphs, AT-free graphs, and permutation graphs. We also show that this problem is
FPT parameterized by the modular-width of the input graph.
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1. Introduction. A vertex v of a connected graph G resolves two distinct ver-
tices x and y of G if distG(v, x) 6= distG(v, y), where distG(u, v) denotes the length
of a shortest path between u and v in the graph G. A set of vertices W ⊆ V (G) is a
resolving (or locating) set for G if for any two distinct x, y ∈ V (G), there is v ∈ V (G)
that resolves x and y. The metric dimension md(G) is the minimum cardinality of
a resolving set for G. This notion was introduced independently by Slater [22] and
Harary and Melter [16]. The task of the Minimum Metric Dimension problem is
to find the metric dimension of a graph G. Respectively,

Metric Dimension
Input: A connected graph G and a positive integer k.
Question: Is md(G) ≤ k?

is the decision version of the problem.
The problem was first mentioned in the literature by Garey and Johnson [13], and

the same authors later proved it to be NP-complete in general. Khuller, Raghavachari,
and Rosenfeld [19] have also shown that this problem is NP-complete on general
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graphs, while more recently Diaz et al. [5] showed that the problem is NP-complete
even when restricted to planar graphs. In this work, Diaz et al. also showed that
this problem is solvable in polynomial time on the class of outer-planar graphs. Prior
to this, not much was known about the computational complexity of this problem
except that it is polynomial-time solvable on trees (see [22, 19]), although there are
also results proving combinatorial bounds on the metric dimension of various graph
classes [3]. Subsequently, Epstein, Levin, and Woeginger [9] showed that this prob-
lem is NP-complete on split graphs, bipartite, and co-bipartite graphs. They also
showed that the weighted version of Metric Dimension can be solved in polyno-
mial time on paths, trees, cycles, co-graphs, and trees augmented with k-edges for
fixed k. Hoffmann and Wanke [18] extended the tractability results to a subclass of
unit disk graphs, and most recently, Foucaud et al. [10] showed that this problem is
NP-complete on interval graphs and Eppstein [8] showed that it is fixed-parameter
tractable parameterized by the max-leaf number of the input graph.

The NP-hardness of the problem in general as well as on several special graph
classes raises the natural question of resolving its parameterized complexity. Param-
eterized complexity is a two dimensional framework for studying the computational
complexity of a problem. One dimension is the input size n and another one is a
parameter k. It is said that a problem is fixed parameter tractable (FPT) if it can be
solved in time f(k) · nO(1) for some function f . We refer to the books of Cygan et
al. [4] and Downey and Fellows [7] for detailed introductions to parameterized com-
plexity. The parameterized complexity of Metric Dimension under the standard
parameterization—the metric dimension of the input graph on general graphs—was
open until 2012, when Hartung and Nichterlein [17] proved that it is W[2]-hard. The
next natural step in understanding the parameterized complexity of this problem is
the identification of special graph classes which permit FPT algorithms. Recently,
Foucaud et al. [10] showed that when the input is restricted to the class of interval
graphs, there is an FPT algorithm for this problem parameterized by the metric di-
mension of the graph. However, as Foucaud et al. note, it is far from obvious how the
crucial lemmas used in their algorithm for interval graphs might extend to natural
superclasses like chordal graphs, and charting the actual boundaries of tractability of
this problem remains an interesting open problem.

In this paper, we identify two width-measures of graphs, namely, tree-length and
modular-width, as two parameters under which we can obtain FPT algorithms for
Metric Dimension. The notion of tree-length was introduced by Dourisboure and
Gavoille [6] in order to deal with tree-decompositions whose quality is measured not
by the size of the bags but the diameter of the bags. Essentially, the length of a
tree-decomposition is the maximum diameter of the bags in this tree-decomposition,
and the tree-length of a graph is the minimum length over all tree-decompositions.
The class of bounded tree-length graphs is an extremely rich graph class as it contains
several well-studied graph classes like interval graphs, chordal graphs, AT-free graphs,
permutation graphs, and so on. As mentioned earlier, out of these, only interval graphs
were known to permit FPT algorithms for Metric Dimension. This provides a
strong motivation for studying the role played by the tree-length of a graph in the
computation of its metric dimension. Due to the obvious generality of this class, our
results for Metric Dimension on this graph class significantly expand the known
boundaries of tractability of this problem (see Figure 1).

Modular-width was introduced by Gallai [12] in the context of comparability
graphs and transitive orientations. A module in a graph is a set X of vertices such
that each vertex in V \X is adjacent to all or none of X. A partition of the vertex
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Bounded Tree-length

Bounded Chordality

Chordal co-Comparability co-Minor Free

Permutation
Split Interval

Fig. 1. Some well known graph classes which are subclasses of the class of bounded tree-length
graphs. Out of these, Metric Dimension was previously known to be FPT only on split graphs and
interval graphs. Our results imply FPT algorithms parameterized by metric dimension on all other
graph classes in the figure.

HH1 H2 H3

H4

Fig. 2. An illustration of the modular decomposition of H of width 5. Here, H is partitioned
into 4 modules H1, . . . , H4, where each module is a prime graph.

set into modules defines a quotient graph with the set of modules as the vertex set.
Roughly speaking, the modular decomposition tree is a rooted tree that represents the
graph by recursively combining modules and quotient graphs. The modular-width of
the decomposition is the size of the largest prime node in this decomposition, that is,
a node which cannot be partitioned into a set of nontrivial modules. Modular-width
is a larger parameter than the more general clique-width and has been used in the
past as a parameterization for problems where choosing clique-width as a parameter
leads to W-hardness [11]. See Figure 2 for an illustration of a modular decomposition.

Our main result is an FPT algorithm for Metric Dimension parameterized by
the maximum degree and the tree-length of the input graph.

Theorem 1.1. Metric Dimension is FPT when parameterized by ∆+tl, where
∆ is the max-degree and tl is the tree-length of the input graph.

It follows from [19, Theorem 3.6] that for any graph G, ∆(G) ≤ 2md(G) +md(G)−
1. Therefore, one of the main consequences of this theorem is the following.

Corollary 1.2. Metric Dimension is FPT when parameterized by tl + k,
where k is the metric dimension of the input graph.
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Further, it is known that chordal graphs and permutation graphs have tree-length
at most 1 and 2, respectively. This follows from the definition in the case of chordal
graphs. In the case of permutation graphs it is known that their chordality is bounded
by 4 (see, for example, [2]) and by using the result of Gavoille et al. [14] for any h-
chordal graph G, tl(G) ≤ h/2 and a tree decomposition of length at most h/2 can be
constructed in polynomial time. Therefore, we obtain FPT algorithms for Metric
Dimension parameterized by the solution size on chordal graphs and permutation
graphs. This answers a problem posed by Foucaud et al. [10], who proved a similar
result for the case of interval graphs.

The algorithm behind Theorem 3.7 is a dynamic programming algorithm on a
bounded width tree-decomposition. However, it is not sufficient to have bounded tree-
width. (Indeed it is open whether Metric Dimension is polynomial time solvable
on graphs of treewidth 2.) This is mainly due to the fact that pairs of vertices can
be resolved by a vertex “far away” from them, hence making the problem extremely
nonlocal. However, we use delicate distance based arguments using the tree-length
and degree bound on the graph to show that most pairs are trivially resolved by any
vertex that is sufficiently far away from the vertices in the pair, and furthermore, the
pairs that are not resolved in this way must be resolved “locally.” We then design
a dynamic programming algorithm incorporating these structural lemmas and show
that it is in fact an FPT algorithm for Metric Dimension parameterized by max-
degree and tree-length.

Our second result is an FPT algorithm for Metric Dimension parameterized
by the modular-width of the input graph.

Theorem 1.3. Metric Dimension is FPT when parameterized by the modular-
width of the input graph.

2. Basic definitions and preliminaries. Graphs. We consider finite undi-
rected graphs without loops or multiple edges. The vertex set of a graph G is denoted
by V (G), the edge set by E(G). We typically use n and m to denote the number of
vertices and edges, respectively. For a set of vertices U ⊆ V (G), G[U ] denotes the
subgraph of G induced by U , and by G−U we denote the graph obtained form G by
the removal of all the vertices of U , i.e., the subgraph of G induced by V (G)\U . A set
of vertices U ⊂ V (G) is a separator of a connected graph G if G−U is disconnected.
Let G be a graph. For a vertex v, we denote by NG(v) its (open) neighborhood, that
is, the set of vertices which are adjacent to v. The distance distG(u, v) between two
vertices u and v in a connected graph G is the number of edges in a shortest (u, v)-
path. For a positive integer r, Nr

G[v] = {u ∈ V (G) | distG(u, v) ≤ r}. For a vertex
v ∈ V (G) and a set U ⊆ V (G), distG(v, U) = min{distG(v, u) | u ∈ U}. For a set
of vertices U ⊆ V (G), its diameter diamG(U) = max{distG(u, v) | u, v ∈ U}. The
diameter of a graph G is diam(G) = diamG(V (G)). A vertex v ∈ V (G) is universal
if NG(v) = V (G) \ {v}. For two graphs G1 and G2 with V (G1) ∩ V (G2), the disjoint
union of G1 and G2 is the graph with the vertex set V (G1)∪V (G2) and the edge set
E(G1)∪E(G2), and the join of G1 and G2 is the graph the vertex set V (G1)∪V (G2)
and the edge set E(G1)∪E(G2)∪{uv | u ∈ V (G1), v ∈ V (G2)}. For a positive integer
k, a graph G is k-chordal if the length of the longest induced cycle in G is at most k.
The chordality of G is the smallest integer k such that G is k-chordal. It is usually
assumed that forests have chordality 2; chordal graphs are 3-chordal graphs. We say
that a set of vertices W ⊆ V (G) resolves a set of vertices U ⊆ V (G) if for any two
distinct vertices x, y ∈ U , there is a vertex v ∈ W that resolves them. Clearly, W is
a resolving set for G if W resolves V (G).
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Modular-width. A setX ⊆ V (G) is a module of graphG if for any v ∈ V (G)\X,
either X ⊆ NG(v) or X ∩ NG(v) = ∅. The modular-width of a graph G introduced
by Gallai in [12] is the maximum size of a prime node in the modular decomposition
tree. For us, it is more convenient to use the following recursive definition. The
modular-width of a graph G is at most t if one of the following holds:

(i) G has one vertex,
(ii) G is disjoint union of two graphs of modular-width at most t,
(iii) G is a join of two graphs of modular-width at most t,
(iv) V (G) can be partitioned into s ≤ t modules X1, . . . , Xs such that for every

i ∈ {1, . . . , s}, mw(G[Xi]) ≤ t.
The modular-width of a graph can be computed in linear time by the algorithm of
Tedder et al. [23] (see also [15]). Moreover, this algorithm outputs the algebraic
expression of G corresponding to the described procedure of its construction.

Tree decompositions. A tree decomposition of a graph G is a pair (X , T ) where
T is a tree and X = {Xi | i ∈ V (T )} is a collection of subsets (called bags) of V (G)
such that

1.
⋃
i∈V (T )Xi = V (G),

2. for each edge xy ∈ E(G), x, y ∈ Xi for some i ∈ V (T ), and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) |Xi| − 1. The
length of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) diamG(Xi). The
tree-length if a graph G denoted as tl(G) is the minimum length over all tree decom-
positions of G.

The notion of tree-length was introduced by Dourisboure and Gavoille [6]. Lok-
shtanov proved in [21] that it is NP-complete to decide whether tl(G) ≤ ` for a given
G for any fixed ` ≥ 2, but it was shown by Dourisboure and Gavoille in [6] that the
tree-length can be approximated in polynomial time within a factor of 3.

We say that a tree decomposition (X , T ) of a graph G with X = {Xi | i ∈ V (T )}
is nice if T is a rooted binary tree such that the nodes of T are of four types:

(i) a leaf node i is a leaf of T and |Xi| = 1;
(ii) an introduce node i has one child i′ with Xi = Xi′ ∪ {v} for some vertex

v ∈ V (G) \Xi′ ;
(iii) a forget node i has one child i′ with Xi = Xi′ \ {v} for some vertex v ∈ Xi′ ;

and
(iv) a join node i has two children i′ and i′′ with Xi = Xi′ = Xi′′ such that the

subtrees of T rooted in i′ and i′′ have at least one forget vertex each.
By the same arguments as were used by Kloks in [20], it can be proved that every tree
decomposition of a graph can be converted in linear time to a nice tree decomposition
of the same length and the same width w such that the size of the obtained tree is
O(wn). Moreover, for an arbitrary vertex v ∈ V (G), it is possible to obtain such a
nice tree decomposition with the property that v is the unique vertex of the root bag.

3. Metric DimensionMetric DimensionMetric Dimension on graphs of bounded tree-length + max-degree.
In this section we prove that Metric Dimension is FPT when parameterized by
the max-degree and tree-length of the input graph. Throughout the section we use
the following notation. Let (X , T ), where X = {Xi | i ∈ V (T )}, be a nice tree
decomposition of a graph G. Then for i ∈ V (T ), Ti is the subtree of T rooted in i
and Gi is the subgraph of G induced by ∪j∈V (Ti)Xj .

We construct an algorithm for Metric Dimension based on dynamic program-
ming over (X , T ). Let i ∈ V (T ). Suppose that W is a resolving set of size at most
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k for G. Then for each pair of distinct vertices x, y ∈ V (G), there is v ∈ W that
resolves x and y. One of the following three possible cases can occur:

• x, y ∈ V (Gi),
• x, y /∈ V (Gi), or
• x ∈ V (Gi) and y ∈ V (G) \ V (Gi).

The first two cases, when the resolved vertices x and y are either inside or outside
of Gi, can be handled by exploiting the conditions that the size of Xi is bounded
by a function of ∆(G) + tl(G) and that the distances between the vertices of Xi

in G are at most tl(G). However, this is the third case which creates most of the
difficulties. In order to handle this case, we need additional structural properties
of graphs of bounded tree-length and maximum degree. We state and prove these
properties in subsection 3.1. We also need to obtain the structural properties of bags
of tree decomposition (X , T ) which are also separators of bounded diameter in G.
These results are proved in subsection 3.2. Only then do we proceed in constructing
the algorithm and analyzing its running time.

3.1. Properties of graphs of bounded tree-length and max-degree. We
need the following lemma from [1], bounding the treewidth of graphs of bounded
tree-length and degree.

Lemma 3.1 (see [1]). Let G be a connected graph with ∆(G) = ∆ and let (X , T )
be a tree decomposition of G with the length at most `. Then the width of (X , T ) is
at most w(∆, `) = ∆(∆− 1)(`−1).

We also need the next lemma, which essentially bounds the number of bags of
(X , T ) a particular vertex of the graph appears in. We then use this lemma to prove
Lemma 3.3, which states that the “distance between a pair of vertices in the tree-
decomposition” in fact approximates the distance between these vertices in the graph
by a factor depending only on ∆ and `.

Lemma 3.2. Let G be a connected graph with ∆(G) = ∆, and let (X , T ), where
X = {Xi | i ∈ V (T )}, be a nice tree decomposition of G of length at most `. Fur-
thermore, let P be a path in T such that for some vertex z ∈ V (G), z ∈ Xi for every
i ∈ V (P ). Then |V (P )| ≤ α(∆, `) = 2(∆`(∆ + 2) + 4).

Proof. Let P ′ be a path in T such that z ∈ Xi for i ∈ V (P ′). Furthermore,
suppose that one of the endpoints of P ′ is an ancestor of the other endpoint in T .
We will argue that |V (P ′)| ≤ α(∆, `)/2, which will in turn imply the lemma because
for any path P in T such that z ∈ Xi for i ∈ V (P ), there is a subpath P ′ of length
at least half that of P where one of the endpoints is an ancestor of the other. Now,
denote by nj , ni, nf , nl the number of join, introduce, forget, and leaf nodes of P ′.

• Observe that every vertex of G introduced in a node of P ′ is introduced
only once, and furthermore, each such vertex is present in N `

G(z). Therefore,
ni ≤ ∆`.

• Since any vertex of G that is forgotten in one of the forget nodes of P ′

is forgotten only once and furthermore is present in Xi for some i ∈ V (P ′)
(except when i is one of the endpoints of P ′), it follows that nf ≤ |N `

G(z)|+2 ≤
∆` + 2.

• Denote by J the set of children of the join nodes of P ′ that are outside P ′.
Notice that |J | ≥ nj − 1. Observe that for j ∈ J , Tj has at least one forget
node. Therefore, for each j ∈ J , there is a a vertex yj ∈ V (Gj)\Xj . Suppose
that nj ≥ 2. Then, for some distinct j, j′ ∈ J , the set Xj separates yj and y′j .
Since G is connected, it must be the case that some vertex in the connected
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component of G−Xj containing xj is adjacent to Xj and furthermore, this
vertex must be contained in V (Gj) \ Xj . Hence, we conclude that for each
j ∈ J , there is a vertex xj ∈ V (Gj) \Xj adjacent to a vertex of Xj . Notice
that the vertices xj for j ∈ J are pairwise distinct and distG(z, xj) ≤ ` + 1.
Consider Z = {xj | j ∈ J} ∪ {z}. We have that Z ⊆ N `+1

G (z) and |Z| =
|J |+ 1 ≥ nj . Therefore, nj ≤ |Z| ≤ ∆`+1.

As nl ≤ 2, we obtain that |V (P ′)| = nj + ni + nf + nl ≤ ∆`(∆ + 2) + 4.

Using Lemma 3.2, we obtain the following.

Lemma 3.3. Let G be a connected graph with max-degree ∆(G) = ∆, and let
(X , T ), where X = {Xi | i ∈ V (T )}, be a nice tree decomposition of G with the length
at most `. Then for i, j ∈ V (T ) and any x ∈ Xi and y ∈ Xj,

distT (i, j) ≤ α(∆, `)(distG(x, y) + 1)− 1.

Proof. Consider x ∈ Xi and y ∈ Xj for i, j ∈ V (T ). Let R be a shortest (x, y)-
path in G, and let P be the unique (i, j)-path in T . Observe that for any h ∈ V (P ),
Xh contains at least one vertex of R. Since any vertex z of R is included in at most
α(∆, `) bags Xh for h ∈ V (P ) (Lemma 3.2), |V (P )| ≤ α(∆, `)|V (R)|, and, therefore,
distT (i, j) ≤ α(∆, `)(distG(x, y) + 1)− 1.

The following lemma is the main structural lemma based on which we design our
algorithm.

Lemma 3.4 (locality lemma). Let (X , T ), where X = {Xi | i ∈ V (T )}, be a nice
tree decomposition of length at most ` of a connected graph G such that T is rooted
in r, Xr = {u}. Let ∆ = ∆(G) be the max-degree of G and let s = α(∆, `)(2` + 1).
Then the following holds:

(i) If i ∈ V (G) is an introduce node with the child i′ and v is the unique vertex of
Xi\Xi′ , then for any x ∈ V (Gj) for a node j ∈ V (Ti) such that distT (i, j) ≥ s,
u resolves v and x.

(ii) If i ∈ V (G) is a join node with the children i′, i′′ and x ∈ V (Gj) \ Xj for
j ∈ Ti′ such that distT (i′, j) ≥ s − 1 and y ∈ V (Gi′′) \ Xi′′ , then u or an
arbitrary vertex v ∈ (V (Gj) \Xj) resolves x and y.

Proof. To show (i), consider x ∈ V (Gj) for some j ∈ V (Ti′) such that distT (i′, j) ≥
s. Observe that by definition, x /∈ Xi. As either u ∈ Xi or Xi separates u and x,

distG(u, x) = min{distG(u, y) + distG(y, z) + distG(z, x) | y ∈ Xi, z ∈ Xj}.

Let y ∈ Xi and z ∈ Xj be vertices such that distG(u, x) = distG(u, y) + distG(y, z) +
distG(z, x). Then by Lemma 3.3,

distG(u, x) ≥ distG(u, y) + distG(y, z) ≥ distG(u, y) +
s+ 1

α(∆, `)
− 1.

Because v ∈ Xi and diamG(Xi) ≤ `,

distG(u, v) ≤ distG(u, y) + distG(y, v) ≤ distG(u, y) + `.

Because s = α(∆, `)(2`+ 1), we obtain that distG(u, v) < distG(u, x), completing the
proof of the first statement.

To prove (ii), let x ∈ V (Gj) for j ∈ Ti′ such that distT (i′, j) ≥ s − 1, and let
y ∈ V (Gi′′) \ Xi′′ . Assume also that v ∈ V (Gj) \ Xj . Suppose that u does not
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resolve x and y. It means that distG(u, x) = distG(u, y). Because either u ∈ Xi or
Xi separates u and {x, y}, there are x′, y′ ∈ Xi such that distG(u, x) = distG(u, x′) +
distG(x′, x) and distG(u, y) = distG(u, y′) + distG(y′, y). As distG(u, x) = distG(u, y)
and diamG(Xi) ≤ `,

distG(x′, x)− distG(y′, y) = distG(u, y′)− distG(u, x′) ≤ `.

Notice that distG(x,Xi) ≤ distG(x, x′) and distG(y,Xi) ≥ distG(y, y′) − `, because
diamG(Xi) ≤ `. Hence, distG(x,Xi) − distG(y,Xi) ≤ 2`. There are z, z′ ∈ Xj

such that distG(x,Xi) = distG(x, z) + distG(z,Xi) and distG(v,Xi) = distG(v, z′) +
distG(z′, Xi). Because diamG(Xj) ≤ `, it follows that distG(v, z) ≤ distG(v, z′) + `
and distG(z,Xi) ≤ distG(z′, Xi) + `. Hence,

distG(v, z) + distG(z,Xi) ≤ distG(v, z′) + distG(z′, Xi) + 2` ≤ distG(v,Xi) + 2`.

Since Xi separates v and y,

distG(v, y) ≥ distG(v,Xi) + distG(y,Xi)

≥ distG(v, z) + distG(z,Xi)− 2`+ distG(y,Xi)

≥ distG(v, z) + distG(z,Xi)− 2`+ distG(x,Xi)− 2`

≥ distG(v, z) + 2distG(z,Xi) + distG(x, z)− 4`.

Clearly, distG(v, x) ≤ distG(x, z) + distG(v, z). Hence,

distG(v, y)− distG(v, x) ≥ (distG(v, z) + 2distG(z,Xi) + distG(x, z)− 4`)

− (distG(x, z) + distG(v, z))

≥ 2distG(z,Xi)− 4`.

It remains to observe that distG(z,Xi) ≥ s+1
α(∆,`) − 1 > 2`, and we obtain that

distG(v, y)− distG(v, x) > 0, i.e., v resolves x and y.

Having proved the necessary structural properties of graphs with bounded tree-
length and max-degree, we proceed to set up some notation which will help us formally
present our algorithm for Metric Dimension on such graphs. However, before we
do so, we will give an informal description of the way we use the above lemma to
design our algorithm.

Let i be a node in the tree-decomposition (see Figure 3) and suppose that it is an
introduce node where the vertex v is introduced. The case when i is a join node can
be argued analogously by appropriate applications of the statements of Lemma 3.4.
Since any vertex outside Gi has at most `+ 1 possible distances to the vertices of Xi,
the resolution of any pair in Gi by a vertex outside can be expressed in a “bounded”
way. The same holds for a vertex in Gi − Xi which resolves a pair in G − V (Gi).
The tricky part is when a vertex in Gi resolves a pair with at least one vertex in
Gi. Now, consider pairs of vertices in G which are necessarily resolved by a vertex of
the solution in Gi. Let a, b be such a pair. Now, for those pairs a, b such that both
are contained in Gi′ , either v resolves them or we may inductively assume that these
resolutions have been handled during the computation for node i′. We now consider
other possible pairs. Now, if a is v, then by Lemma 3.4, if b is in V (Gj) for any j which
is at a distance at least s from i, then this pair is trivially resolved by u. Therefore,
any “interesting pair” containing v is contained within a distance of s from Xi in the
tree-decomposition induced on Gi. However, due to Lemma 3.2 and the fact that G
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Fig. 3. An illustration of the structure guaranteed by Lemma 3.4. Here, Xi is an introduce
node while Xl is a join node. In this example, l = i for statement (ii) of the lemma.

has bounded degree, the number of such vertices which form an interesting pair with
v is bounded by a function of ∆ and `. Now, suppose that a is in V (Gi) and b is a
vertex in V (G) \V (Gi) and there is an introduce node on the path from i to the root
which introduces b. Then, if a ∈ V (Gj), where j is at a distance at least s from i,
then this pair is trivially resolved by u. By the same reasoning, if the bag containing
a is within a distance of s from i, then the node where b is introduced must be within
a distance of s from i. Otherwise this pair is again trivially resolved by u. Again,
there are only a bounded number of such pairs.

Finally, suppose that a ∈ V (Gi) and b is not introduced on a bag on the path from
i to the root. In this case, there is a join node, call it l, on the path from i to the root
with children l′ and l′′ such that l′ lies on the path from i to the root and b is contained
in V (Gl′′). In this case, we can use statement (ii) of Lemma 3.4 to argue that if a lies
in V (Gj), where j is at a distance at least s from i, then it lies at a distance at least
s from l and hence either u or a vertex in Gj resolves this and in the latter case, any
arbitrary vertex achieves this. Therefore, we simply compute solutions corresponding
to both cases. Otherwise, the bag containing a lies at a distance at most s from i. In
this case, if l is at a distance greater than s from i, then the previous argument based
on statement (ii) still holds. Therefore, it only remains to consider the case when l is
at a distance at most s from i. However, in this case, due to Lemma 3.3, if u does not
resolve this pair, it must be the case that even b lies in a bag which is at a distance
at most s from l. Hence, the number of such pairs is also bounded and we conclude
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that at any node i of the dynamic program, the number of interesting pairs we need
to consider is bounded by a function of ∆ and `, and hence we can perform a bottom
up parse of the tree-decomposition and compute the appropriate solution values at
each node.

3.2. Projections and resolving sets. Let X ⊆ V (G), and let d be a positive
integer such that diamG(X) ≤ d. For a vertex v ∈ V (G), we say that Prv,d(X) =
(X0, . . . , Xd), where Xi = {x ∈ X | distG(v, x) = distG(v,X) + i} is the projection
of v on X. Notice that (X0, . . . , Xd) form an ordered partition of X (some sets
could be empty), because diamG(X) ≤ d. For a set U ⊆ V (G), the set PrU,d(X) =
{Prv,d(X) | v ∈ U}; notice that it can happen that Prv,d(X) = Pu,d(X) for u, v ∈ U ,
but as PrU,d(X) is a set, it contains only one copy of Prv,d(X).

Our algorithm uses the following properties of separators of bounded diameter.
For Definitions 1 and 2 and Lemmas 3.5 and 3.6 let X be a separator of a connected
graph G such that diamG(X) ≤ d, and let V1, V2 be a partition of the vertex set of
G−X such that no edge of G joins a vertex of V1 with a vertex of V2.

Lemma 3.5. If for u, v ∈ V1, Pru,d(X) = Prv,d(X), then u resolves vertices x, y ∈
V2 if and only if v resolves x, y. Moreover, for a given ordered partition (X0, . . . , Xd)
of X, it can be decided in polynomial time whether there is a vertex v ∈ V1 with
Prv,d(X) = (X0, . . . , Xd) resolves x and y.

Proof. Consider v ∈ V1 and x ∈ V2. Because X separates v and x,

distG(v, x) = min{distG(v, x′) + distG(x′, x) | x′ ∈ X}
= distG(v,X) + min

i∈{0,...,d}
min{i+ distG(x′, x) | x′ ∈ Xi}

= distG(v,X) + min
i∈{0,...,d}

(i+ distG(Xi, x)).

Therefore, v ∈ V1 resolves x, y ∈ V2 if and only if

min
i∈{0,...,d}

(i+ distG(Xi, x)) 6= min
i∈{0,...,d}

(i+ distG(Xi, y)).

It immediately implies that if for u, v ∈ V1, Pru,d(X) = Prv,d(X), then u resolves
vertices x and y, where {x, y} ⊆ V2 if and only if v resolves x, y. Because for any
x ∈ V2, mini∈{0,...,d}(i+distG(Xi, x)) can be computed in polynomial time by making
use of the Dijkstra’s algorithm if (X0, . . . , Xd) is given, we obtain the second part of
the statement. This completes the proof of the lemma.

Definition 1. Let X ′ ⊆ X ∪ V2. Let (X0, . . . , Xd) be an ordered partition of X.
We define the ordered partition (X ′0, . . . , X

′
d) of X ′ as

X ′i =

{
x ∈ X ′ | min

i∈{0,...,d}
(i+ distG(Xi, x)) = s+ i

}
, where

s = min
x∈X′

min
i∈{0,...,d}

(i+ distG(Xi, x))

for i ∈ {0, . . . , d}.
Definition 2. We say that (X0, . . . , Xd) is a d-cover of (X ′0, . . . , X

′
d) with re-

spect to V1, and we say that (X ′0, . . . , X
′
d) is d-covered by (X0, . . . , Xd) with respect

to V1. We also say that a set P of ordered partitions (X0, . . . , Xd) of X is a d-cover
of a set P ′ of ordered partition (X ′0, . . . , X

′
d) of X ′ with respect to V1 if P ′ is the set

of all ordered partitions of X ′ that are d-covered by the partitions of P.
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Clearly, for a given (X0, . . . , Xd), (X ′0, . . . , X
′
d) can be constructed in polynomial

time using, e.g., the Dijkstra’s algorithm.

Lemma 3.6. Let X ′ ⊆ X ∪ V2. Let also (X0, . . . , Xd) and (X ′0, . . . , X
′
d) be or-

dered partitions of X and X ′, respectively, such that (X0, . . . , Xd) is a d-cover of
(X ′0, . . . , X

′
d) with respect to V1. If Prv,d(X) = (X0, . . . , Xd) for some v ∈ V1, then

Prv,d(X ′) = (X ′0, . . . , X
′
d).

Proof. Let v ∈ V1 and x ∈ X ′. Suppose that Prv,d(X) = (X0, . . . , Xd). Because
X separates v and x,

distG(v, x) = distG(v,X) + min
i∈{0,...,d}

(i+ distG(Xi, x)).

Hence,

distG(v,X ′) = distG(v,X) + min
x∈X′

min
i∈{0,...,d}

(i+ distG(Xi, x)).

Let

s = min
x∈X′

min
i∈{0,...,d}

(i+ distG(Xi, x)) = distG(v,X ′)− distG(v,X).

Let Prv,d(X ′) = (X ′0, . . . , X
′
d). We immediately obtain that

X ′i =

{
x ∈ X ′ | min

i∈{0,...,d}
(i+ distG(Xi, x)) = s+ i

}
for i ∈ {0, . . . , d}, i.e., (X0, . . . , Xd) is a d-cover of (X ′0, . . . , X

′
d) with respect to V1.

3.3. The algorithm. Now we are ready to prove the main result of the section.

Theorem 3.7. Metric Dimension is FPT when parameterized by ∆+tl, where
∆ is the max-degree and tl is the tree-length of the input graph.

Proof. Let (G, k) be an instance of Metric Dimension. Recall that the tree-
length of G can be approximated in polynomial time within a factor of 3 by the results
of Dourisboure and Gavoille [6]. Hence, we assume that a tree-decomposition (X , T )
of length at most ` ≤ 3tl(G) + 1 is given. By Lemma 3.1, the width of (X , T ) is at
most w(∆, `). We consider at most n choices of a vertex u ∈ V (G), and for each u,
we check the existence of a resolving set W of size at most k that includes u.

From now on, we assume that u ∈ V (G) is given. We use the techniques of Kloks
from [20] and construct from (X , T ) a nice tree decomposition of the same width and
the length at most ` such that the root bag is {u}. To simplify notation, we assume
that (X , T ) is such a decomposition and T is rooted in r. By Lemma 3.2, for any
path P in T , any z ∈ V (G) occurs in at most α(∆, `) bags Xi for i ∈ V (P ).

We now design a dynamic programming algorithm over the tree decomposition
that checks the existence of a resolving set of size at most k that includes u. For
simplicity, we only solve the decision problem. However, the algorithm can be modified
to find such a resolving set (if exists).

Let s = α(∆, `)(2`+ 1). For i ∈ V (T ), we define Yi = ∪j∈Ns
Ti

[i]Xj and Ii = {j ∈
V (Ti) | distTi(i, j) = s} as is shown in Figure 4.

We construct the tables of states of the algorithm for i ∈ V (T ) using the following
observations. Assume that W is a resolving set for G of size at most k. Then it
is natural to consider the pair (W ∩ V (Gi),PrW\V (Gi),`(Xi)) as a partial solution
corresponding to W , because PrW\V (Gi),`(Xi) gives us complete information about
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Fig. 4. A nice tree decomposition and the set of nodes Ii = {j1, . . . , jh}.

the differences between the distances between a vertex of W outside Gi and two
arbitrary vertices of Gi. Clearly, we cannot keep all possible subsets of V (Gi) of size
at most k that could be parts of potential solutions; it would make the table of partial
solutions of order nk.

Instead, we want to keep the sizes of such sets together with their intersections
with Yi. Since the sizes of Yi are bounded by a function of ∆ + tl, the number of such
sets is bounded by some function of k,∆, and tl. However, this information is not
sufficient for solving the problem. This is why we also have to keep information about
the vertices of W∩(V (Gi)\Yi). These vertices are vertices of sets V (Gj)\Xj for j ∈ Ii.
The idea is to represent W ∩ (V (Gj) \Xj) by its projection PrW∩(V (Gj)\Xj)(Xj) on
Xj .

We use locality Lemma 3.4 to argue that this information about partial solution is
sufficient. In particular, assume that i ∈ V (T ) is a child of an introduce node i′ ∈ V (T )
and {v} = Xi′ \Xi. Then to extend the table for i, we have to check whether v and
each vertex x ∈ V (Gi) are resolved by a partial solution. If x ∈ V (Gj) \ Xj for
j ∈ Ii, then v and x are automatically resolved by u by Lemma 3.4(i). For x ∈ Yi,
we can verify the property by checking elements of each partial solution in Yi and
the projections. Similarly, if i and a node i′ are children of a join node of T , we use
Lemma 3.4(ii) to check whether x ∈ V (Gi) and y ∈ V (Gi′) are resolved.

Now we formally define the data tables that are used in our dynamic programming
algorithm. Let I ′i = Ii∪{0} for i ∈ V (T ). For each i ∈ V (T ), the algorithm constructs
the table of values of the function wi(Z, {Pj | j ∈ I ′i}), where the following hold:

(i) Z ⊆ Yi and |Z| ≤ k. (For each partial solution S, set Z is the part of S
contained in Yi.)

(ii) P0 is a set of ordered partitions (Y0, . . . , Y`) (some sets could be empty) of
Xi such that Pru,`(Xi) ∈ P0 if u /∈ Xi. (Sets P0 represents projections of
“future parts” of a solution.)
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(iii) For j ∈ Ii, Pj is a set of ordered partitions (Y0, . . . , Y`) (some sets could be
empty) of Xj . (Each set Pj represents for a partial solution S projections of
S ∩ (V (Gj) \Xj) on Xj .)

The value of wi(Z, {Pj | j ∈ I ′i}) is the minimum cardinality of a set W ⊆ V (Gi)
such that

(iv) for any two distinct x, y ∈ V (Gi), there is a vertex v ∈W that resolves x and
y or there is an ordered partition (Y0, . . . , Y`) ∈ P0 of Xi such that a vertex
v ∈ V (G) \ V (Gi) with Prv,`(Xi) = (Y0, . . . , Y`) resolves x and y,

(v) W ∩ Yi = Z,
(vi) for j ∈ Ii, Pj = PrW∩(V (Gj)\Xj),`(Xj);

if such a set W does not exist, then wi(Z, {Pj | j ∈ I ′i}) = +∞. The meaning of wi
is that it outputs the minimum cardinality of a partial solution.

Let us note that for i = r, the condition (a) implies that for any two distinct
x, y ∈ V (Gi), there is a vertex v ∈ W that resolves x and y. Therefore, G has a
resolving set W of size at most k if and only if the table for the root node r has an
entry wr(Z, {Pj | j ∈ I ′r}) ≤ k.

Now we explain how we construct the table for each node i ∈ V (T ).
Let i ∈ V (T ). We define Ji = {j ∈ V (Ti) | distTi(i, j) = s − 1}. For Z and

{Pj | j ∈ Ii} satisfying (i) and (iii),

R(Z, {Pj | j ∈ Ii}) = {Rj | j ∈ Ji},

where Rj is a set of ordered partitions (Y0, . . . , Y`) (some sets could be empty) of Xj ,
is constructed as follows. Let j ∈ Ji.

• If j is a leaf node of T , then Rj = ∅.
• If j is an introduce node of T with the unique child j′, then Rj is the set of

ordered partitions (Y ′0 , . . . , Y
′
` ) of Xj such that Pj′ is an `-cover of Rj with

respect to V (Gj′) \Xj′ .
• If j is a forget node of T with the unique child j′ and {v} = Xj′ \Xj , then

we first construct Rj as the set of ordered partitions (Y ′0 , . . . , Y
′
` ) of Xj such

that Pj′ is an `-cover of Rj with respect to V (Gj′) \ Xj′ , and then we set
Rj = Rj ∪ {Prv,`(Xi)} if v ∈ Z.

• If j is a join node of T with the two children j′ and j′′, set Rj = Pj′ ∪ Pj′′ .
Observe that given Z and {Pj | j ∈ Ii}, R(Z, {Pj | j ∈ Ii}) can be constructed in
polynomial time.

Construction for a leaf node. Let Xi = {x}. Then it is straightforward to
verify that for any {Pj | j ∈ I ′i} satisfying (ii) (notice that Ii = ∅), wi(∅, {Pj | j ∈
I ′i}) = 0 and wi({x}, {Pj | j ∈ I ′i}) = 1.

To describe the construction for introduce, forget, and join nodes, assume that
the tables are already constructed for the descendants of i in t. We also initiate the
construction by setting wi(Z, {Pj | j ∈ I ′i}) = +∞ for all Z and {Pj | j ∈ I ′i}
satisfying (i)–(iii).

Construction for an introduce node. Let i′ be the child of i and {v} =
Xi \Xi′ . Consider every Z and {Pj | j ∈ I ′i′} satisfying (i)–(iii) for the node i′ such
that wi′(Z, {Pj | j ∈ I ′i′}) < +∞.

Notice that Ji′ = Ii. We construct R(Z, {Pj | j ∈ Ii′}) = {Rj | j ∈ Ji′} and for
j ∈ Ii, set P̂j = Rj . We consider two cases.

Case 1. Set Ẑ = Z ∩ Yi if v 6= u. We consider every set P̂0 of ordered partitions
(Ŷ0, . . . , Ŷ`) of Xi that satisfies (ii) for the node i such that P̂0 is an `-cover of P0

with respect to V (G) \ V (Gi).
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We verify the following condition.
Condition (∗). For every x ∈ Yi
• there is z ∈ Ẑ that resolves x and v, or
• there is an ordered partition (Y0, . . . , Y`) ∈ P̂0 of Xi such that a vertex
z ∈ V (G) \ V (Gi) with Prz,`(Xi) = (Y0, . . . , Y`) resolves x and v, or

• there is an ordered partition (Y0, . . . , Y`) ∈ Ph of Xh for h ∈ I ′i such that a
vertex z ∈ V (Gh) \Xh with Prz,`(Xh) = (Y0, . . . , Y`) resolves x and v.

Notice, that by Lemma 3.5, (∗) can be verified in polynomial time. If (∗) holds
and wi(Ẑ, {P̂j | j ∈ I ′i}) > wi′(Z, {Pj | j ∈ I ′i′}), we set wi(Ẑ, {P̂j | j ∈ I ′i}) =
wi′(Z, {Pj | j ∈ I ′i′}).

Case 2. Set Ẑ = (Z ∩ Yi) ∪ {v} if |Z ∩ Yi| ≤ k − 1. We consider every set P̂0 of
ordered partitions (Ŷ0, . . . , Ŷ`) of Xi that satisfies (ii) for the node i such that P̂0 is
an `-cover of P0 or P0 \ {Prv,`(Xi′)} with respect to V (G) \ V (Gi). If wi(Ẑ, {P̂j |
j ∈ I ′i}) > wi′(Z, {Pj | j ∈ I ′i′}) + 1, we set wi(Ẑ, {P̂j | j ∈ I ′i}) = wi′(Z, {Pj | j ∈
I ′i′}) + 1. Having described the way the algorithm computes the table at an introduce
node, we now argue the correctness.

Proof of correctness for an introduce node. To show correctness, assume
that wi(Ẑ, {P̂j | j ∈ I ′i}) is the value of wi obtained by the algorithm and denote by

w∗i (Ẑ, {P̂j | j ∈ I ′i}) the value of the function by the definition, i.e., the minimum
cardinality of a set W ⊆ V (Gi) satisfying (iv)–(vi). We also assume inductively that
the values of wi′ are computed correctly.

We prove first that w∗i (Ẑ, {P̂j | j ∈ I ′i}) ≤ wi(Ẑ, {P̂j | j ∈ I ′i}) for Ẑ and

{P̂j | j ∈ I ′i} satisfying (i)–(iii) for the node i.

If wi(Ẑ, {P̂j | j ∈ I ′i}) = +∞, then the inequality holds trivially. Let wi(Ẑ, {P̂j |
j ∈ I ′i}) < +∞. Then the value wi(Ẑ, {P̂j | j ∈ I ′i}) is obtained as described above

for some Z, {Pj | j ∈ I ′i′} satisfying (i)–(iii) for the node i′, and P̂0 satisfying (ii) for
the node i. Clearly, wi′(Z, {Pj | j ∈ I ′i}) < +∞. By induction, wi′(Z, {Pj | j ∈ I ′i})
is the minimum cardinality of a set W ⊆ V (Gi′) satisfying (iv)–(vi) for the node i′.
Let Ŵ = W ∪ Ẑ.

To show that (iv) holds for Ŵ , consider distinct x, y ∈ V (Gi).
If x, y ∈ V (Gi′), then there is a vertex z ∈ W that resolves x and y or there

is an ordered partition (Y0, . . . , Y`) of Xi′ such that a vertex z ∈ V (G) \ V (Gi′)
with Prv,`(Xi′) = (Y0, . . . , Y`) resolves x and y. By Lemmas 3.5 and 3.6, if there
is an ordered partition (Y0, . . . , Y`) of Xi′ such that a vertex v ∈ V (G) \ V (Gi′)
with Prv,`(Xi′) = (Y0, . . . , Y`) resolves x and y, then there is an ordered partition

(Ŷ0, . . . , Ŷ`) of Xi that `-covers (Y0, . . . , Y`) with respect to V (G)\V (Gi) and we have
that a vertex v ∈ V (G) \ V (Gi) with Prv,`(Xi) = (Ŷ0, . . . , Ŷ`) resolves x and y, or
v ∈ Z resolves x and y if Prv,`(Xi′) = (Y0, . . . , Yl).

Assume that x = v and y ∈ V (Gi′). If v ∈ Ẑ, then v resolves x and y. Suppose
that v /∈ Ẑ, i.e, the value of wi(Ẑ, {P̂j | j ∈ I ′i}) was obtained in Case 1. If y ∈
V (Gj) \Xj for j ∈ Ii, then x and y are resolved by u according to Lemma 3.4. Let

y ∈ Yi. By (∗), there is z ∈ Ẑ that resolves y and v, or there is an ordered partition
(Y0, . . . , Y`) ∈ P̂0 of Xi such that a vertex z ∈ V (G) \ V (Gi) with Prz,`(Xi) =
(Y0, . . . , Y`) resolves y and v, or there is an ordered partition (Y0, . . . , Y`) ∈ Ph1 of Xh

for h ∈ Ii′ such that a vertex z ∈ V (Gh) \Xh with Prz,`(Xh) = (Y0, . . . , Y`) resolves
y and v. It remains to observe that in the last case there is z ∈ V (Gh) \ Xh with
Prz,`(Xh) = (Y0, . . . , Y`) such that z ∈W ⊆ Ŵ , because (v) holds for W .

Clearly, Ŵ ∩ Yi = Ẑ by the definition, i.e., (v) is fulfilled.
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By the definition of Ri′ and Lemma 3.6, we obtain that for j ∈ Ii, P̂j =
PrŴ∩(V (Gj)\Xj),`(Xj) and (vi) is satisfied.

Hence, Ŵ satisfies (iv)–(vi) for the node i and, therefore, w∗i (Ẑ, {P̂j | j ∈ I ′i}) ≤
|Ŵ | = wi(Ẑ, {P̂j | j ∈ I ′i}).

Now we prove that w∗i (Ẑ, {P̂j | j ∈ I ′i}) ≥ wi(Ẑ, {P̂j | j ∈ I ′i}).
If w∗i (Ẑ, {P̂j | j ∈ I ′i}) = +∞, then the inequality holds. Assume that for Ẑ,

{P̂j | j ∈ I ′i′} satisfying (i)–(iii) for the node i, w∗i (Ẑ, {P̂j | j ∈ I ′i}) < +∞. Then

there is Ŵ ⊆ V (Gi) satisfying (iv)–(vi) for the node i and w∗i (Ẑ, {P̂j | j ∈ I ′i}) = |Ŵ |.
Let W = Ŵ ∩ V (Gi′) and Z = W ∩ Zi′ . We construct P0 as the set of ordered

partitions of Xi′ such that P0 is `-covered by P̂0 and add Prv,`(Xi′) to this set if

v ∈ Ŵ . For j ∈ Ii′ , Pj = PrW∩(V (Gj)\Xj),`(Xj). It is straightforward to see that Z

and {Pj | j ∈ I ′i′} satisfy (i)–(iii) for the node i′. By the construction and Lemma 3.6,
W satisfies (iv)–(vi) for the node i′ and the constructed Z and {Pj | j ∈ I ′i′}. Hence,
wi′(Z, {Pj | j ∈ I ′i′}) ≤ |W |.

We claim that if v /∈ Ẑ, then (∗) is fulfilled. Because (iv) is fulfilled for Ŵ , for any
x ∈ Yi, there is a vertex z ∈W that resolves v and x or there is an ordered partition
(Y0, . . . , Y`) ∈ P0 of Xi such that a vertex x ∈ V (G) \ V (Gi) with Prv,`(Xi) =
(Y0, . . . , Y`) resolves v and z. It is sufficient to notice that if z ∈ W that resolves v
and x and z /∈ Ẑ, then z ∈ V (Gh) \Xh for h ∈ I ′h and, therefore, Prz,`(Xh) ∈ Ph.

It remains to observe that the value of wi(Ẑ, {P̂j | j ∈ I ′i}) constructed by the

algorithm for Z, {Pj | j ∈ I ′i′} and P̂0 is at most |Ŵ | = w∗i (Ẑ, {P̂j | j ∈ I ′i}).
Construction for a forget node. Let i′ be the child of i and {v} = Xi′ \Xi.

Consider every Z and {Pj | j ∈ I ′i′} satisfying (i)–(iii) for the node i′ such that
wi′(Z, {Pj | j ∈ I ′i′}) < +∞. Recall that Ji′ = Ii. We construct R(Z, {Pj | j ∈
Ii′}) = {Rj | j ∈ Ji′} and for j ∈ Ii, set P̂j = Rj . We set Ẑ = Z ∩ Yi. We consider
every set P̂0 of ordered partitions (Ŷ0, . . . , Ŷ`) of Xi that satisfies (ii) for the node i
such that P̂0 is an `-cover of P0 with respect to V (G) \ V (Gi). If wi(Ẑ, {P̂j | j ∈
I ′i}) > wi′(Z, {Pj | j ∈ I ′i′}), we set wi(Ẑ, {P̂j | j ∈ I ′i}) = wi′(Z, {Pj | j ∈ I ′i′}).

Correctness is proved in the same way as for the construction for an introduce
node. Notice that the arguments, in fact, become simpler, because V (Gi) ⊆ V (Gi′).

Construction for a join node. Let i′ and i′′ be the children of i. Recall that
Xi = Xi′ = Xi′′ . Consider every Z1 and {Pj1 | j ∈ I ′i′} satisfying (i)–(iii) for the node

i′ such that wi′(Z, {Pj1 | j ∈ I ′i′}) < +∞ and every Z2 and {Pj2 | j ∈ I ′i′′} satisfying

(i)–(iii) for the node i′′ such that wi′′(Z, {Pj2 | j ∈ I ′i′}) < +∞ with the property that
Z1 ∩Xi = Z2 ∩Xi.

We set Z = (Z1 ∪ Z2) ∩ Yi.
For every j ∈ Ii′ , we construct the set Sj1 of ordered partitions (Y0, . . . , Y`) of Xi

such that Pj1 is an `-cover of Sj1 , and set

S1 =
(
∪j∈Ii′S

j
1

)
∪ (∪v∈Z1\Xi

Prv,`(Xi)).

Similarly, for every j ∈ Ii′′ , we construct the set Sj1 of ordered partitions (Y0, . . . , Y`)

of Xi such that Pj2 is an `-cover of Sj2 , and set

S2 =
(
∪j∈Ii′′S

j
2

)
∪ (∪v∈Z2\Xi

Prv,`(Xi)).

We consider every set P0 of the ordered partitions (Y0, . . . , Y`) of Xi that satisfy (ii)
for the node i such that P0

1 = P0 ∪ S2 and P0
2 = P0 ∪ S1.



1232 BELMONTE, FOMIN, GOLOVACH, AND RAMANUJAN

Notice that Ii = Ji′ ∪ Ji′′ . We construct R(Z1, {Pj1 | j ∈ Ii′}) = {Rj | j ∈ Ji′}
and R(Z2, {Pj2 | j ∈ Ii′′}) = {Rj | j ∈ Ji′′}. We define {Pj | j ∈ I ′i} by setting
Pj = Rj for j ∈ Ji′ ∪ Ji′′ .

We verify the following conditions.
Condition (∗∗). For every x ∈ V (Gi′) \Xi and y ∈ V (Gi′′) \Xi,
• there is v ∈ Z that resolves x and y, or
• there is an ordered partition (Y0, . . . , Y`) ∈ P0 of Xi such that a vertex
v ∈ V (G) \ V (Gi) with Prv,`(Xi) = (Y0, . . . , Y`) resolves x and y, or

• there is an ordered partition (Y0, . . . , Y`) ∈ Pj of Xj for j ∈ Ii such that
x, y /∈ V (Gj) \Xj and a vertex v ∈ V (Gj) \Xj with Prv,`(Xj) = (Y0, . . . , Y`)
resolves x and y, or

• x ∈ V (Gj) \Xj for j ∈ Ii and Pj 6= ∅, or
• y ∈ V (Gj) \Xj for j ∈ Ii and Pj 6= ∅.

Notice, that by Lemma 3.5, (∗∗) can be verified in polynomial time.
If (∗∗) holds and wi(Z, {Pj | j ∈ I ′i}) > wi′(Z1, {Pj1 | j ∈ I ′i′})+wi′′(Z2, {Pj2 | j ∈

I ′′i′})− |Z1 ∩Xi|, we set wi(Z, {Pj | j ∈ I ′i}) = wi′(Z1, {Pj1 | j ∈ I ′i′}) + wi′′(Z2, {Pj2 |
j ∈ I ′′i′})− |Z1 ∩Xi|.

Correctness for join nodes. To show correctness, assume that wi(Z, {Pj | j ∈
I ′i}) is the value of wi obtained by the algorithm and denote by w∗i (Z, {Pj | j ∈ I ′i})
the value of the function by the definition, i.e., the the minimum cardinality of a set
W ⊆ V (Gi) satisfying (iv)–(vi). We also assume inductively that the values of wi′

and wi′′ are computed correctly.
We show first that w∗i (Z, {Pj | j ∈ I ′i}) ≤ wi(Z, {Pj | j ∈ I ′i}) for Z and

{Pj | j ∈ I ′i} satisfying (i)–(iii) for the node i.
If wi(Z, {Pj | j ∈ I ′i}) = +∞, then the inequality trivially holds. Let wi(Z, {Pj |

j ∈ I ′i}) < +∞. Then the value wi(Z, {Pj | j ∈ I ′i}) is obtained as described above

for some Z1, {Pj1 | j ∈ I ′i′} satisfying (i)–(iii) for the node i′, Z2, {Pj2 | j ∈ I ′i′′}
satisfying (i)–(iii) for the node i′′, and P0 satisfying (ii) for the node i. By induction,
wi′(Z1, {Pj1 | j ∈ I ′i}) < +∞ is the minimum cardinality of a set W1 ⊆ V (Gi′)

satisfying (iv)–(vi) for the node i′ and wi′′(Z2, {Pj2 | j ∈ I ′i}) < +∞ is the minimum
cardinality of a set W2 ⊆ V (Gi′′) satisfying (iv)–(vi) for the node i′′. Let W =
W1 ∪W2.

To show that (iv) holds for W , consider distinct x, y ∈ V (Gi).
Suppose that x, y ∈ V (Gi′). Because (iv) holds for W1 and the node i′, there is a

vertex v ∈W1 that resolves x and y or there is an ordered partition (Y0, . . . , Y`) ∈ P0
1

of Xi′ such that a vertex v ∈ V (G) \ V (Gi′) with Prv,`(Xi) = (Y0, . . . , Y`) resolves x
and y. If there is a vertex v ∈ W1 that resolves x and y, then v ∈ W resolve x and
y. Suppose that there is an ordered partition (Y0, . . . , Y`) ∈ P0

1 of Xi′ such that a
vertex v ∈ V (G) \ V (Gi′) with Prv,`(Xi) = (Y0, . . . , Y`) resolves x and y. Recall that
P0

1 = P0∪S2. If (Y0, . . . , Y`) ∈ P0, then (iv) holds. Let (Y0, . . . , Y`) ∈ S2. Then there
is v ∈ Z2 ⊆ W2 ⊆ W such that Prv,`(X2) = (Y0, . . . , Y`) and v resolves x and y, or

there is Sj2 for j ∈ Ii′′ such that (Y0, . . . , Y`) ∈ Sj2 . In the last case, there is a vertex
v ∈W2 ∩ (V (Gj) \Xj) that resolves x and y by Lemmas 3.5 and 3.6.

Clearly, the case x, y ∈ V (Gi′′) is symmetric.
Assume that x ∈ V (Gi)\Xi′ and y ∈ V (Gi′′)\Xi′′ . Recall that (∗∗) is fulfilled. If

there is v ∈ Z that resolves x and y or there is an ordered partition (Y0, . . . , Y`) ∈ P0

of Xi such that a vertex v ∈ V (G) \ V (Gi) with Prv,`(Xi) = (Y0, . . . , Y`) resolves x
and y, then x and y are resolved by v ∈ Z ⊆ W . If there is an ordered partition
(Y0, . . . , Y`) ∈ Pj of Xj for j ∈ Ii such that x, y /∈ V (Gj) \ Xj and a vertex v ∈
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V (Gj) \Xj with Prv,`(Xj) = (Y0, . . . , Y`) resolves x and y, then there is such v ∈W
and we again obtain that x and y are resolved by a vertex of W . Suppose that the
first three conditions of (∗∗) are not fulfilled for x and y. Then x ∈ V (Gj) \Xj for
j ∈ Ii and Pj 6= ∅ or y ∈ V (Gj) \Xj for j ∈ Ii and Pj 6= ∅. If x ∈ V (Gj) \Xj for
j ∈ Ii and Pj 6= ∅, then there is v ∈ W such that v ∈ V (Gj) \Xj . By Lemma 3.4 u
or v resolves x and y. Then case y ∈ V (Gj) \Xj for j ∈ Ii and Pj 6= ∅ is symmetric.

We have that W ∩ Yi = Z by the definition, i.e., (v) is fulfilled.
By the definition of Ri′ , Ri′ and Lemma 3.6, we obtain that for j ∈ Ii, Pj =

PrŴ∩(V (Gj)\Xj),`(Xj) and (vi) is satisfied.

Hence, W satisfies (iv)–(vi) for the node i and, therefore, w∗i (Ẑ, {P̂j | j ∈ I ′i}) ≤
|W | = wi(Ẑ, {P̂j | j ∈ I ′i}).

Now we prove that w∗i (Z, {Pj | j ∈ I ′i}) ≥ wi(Z, {Pj | j ∈ I ′i}).
If w∗i (Z, {Pj | j ∈ I ′i}) = +∞, then the inequality holds. Assume that for Z,

{Pj | j ∈ I ′i′} satisfying (i)–(iii) for the node i, w∗i (Z, {Pj | j ∈ I ′i}) < +∞. Then
there is W ⊆ V (Gi) satisfying (iv)–(vi) for the node i and w∗i (Z, {Pj | j ∈ I ′i}) = |W |.

Let W1 = W ∩ V (Gi′) and W2 = W ∩ V (Gi′′). We now define P0
1 = P0 ∪

PrW\V (Gi′ ),`(Xi) and P0
2 = P0 ∪ PrW\V (Gi′′ ),`(Xi). For j ∈ Ii′ , we define Pj1 =

PrW∩(V (Gj)\Xj),`(Xj), and for j ∈ Ii′′ , Pj2 = PrW∩(V (Gj)\Xj),`(Xj). It is straight-

forward to see that Z1, {Pj1 | j ∈ I ′i′} and Z2, {Pj2 | j ∈ I ′i′′} satisfy (i)–(iii) for the
nodes i′ and i′′, respectively.

To prove that W1 satisfies (iv)–(vi) for the node i′ and the constructed Z1 {Pj1 |
j ∈ I ′i′}, it is sufficient to verify (iv), as (v) and (vi) are straightforward. Let x, y ∈
V (Gi′). There is a vertex v ∈W that resolves x and y or there is an ordered partition
(Y0, . . . , Y`) ∈ P0 of Xi such that a vertex v ∈ V (G) \ V (Gi) with Prv,`(Xi) =
(Y0, . . . , Y`) resolves x and y. If there is v ∈ W1 that resolves x and y or there is an
ordered partition (Y0, . . . , Y`) ∈ P0 ⊆ P0

1 of Xi such that a vertex v ∈ V (G) \ V (Gi)
with Prv,`(Xi) = (Y0, . . . , Y`) resolves x and y, then we obtain (iv) for x and y.
Assume that there is v ∈ W \W1 that resolves x and y. Then Prv,`(Xi) ∈ P0

1 and
we have that there is an ordered partition (Y0, . . . , Y`) ∈ P0

1 of Xi such that a vertex
v ∈ V (G) \ V (Gi) with Prv,`(Xi) = (Y0, . . . , Y`) resolves x and y.

We obtain that W1 satisfies (iv)–(vi) for the node i′ and the constructed Z1

{Pj1 | j ∈ I ′i′} and, by the same arguments, W2 satisfies (iv)–(vi) for the node i′′

and the constructed Z2 {Pj2 | j ∈ I ′i′′}. Hence, wi′(Z1, {Pj1 | j ∈ I ′i′}) ≤ |W1| and

wi′′(Z2, {Pj2 | j ∈ I ′i′′}) ≤ |W2|.
Now we show that (∗∗) is fulfilled. Let x ∈ V (Gi′)\Xi and y ∈ V (Gi′′)\Xi. Then

there is v ∈W that resolves x and y or there is an ordered partition (Y0, . . . , Y`) ∈ P0

of Xi such that a vertex v ∈ V (G) \ V (Gi) with Prv,`(Xi) = (Y0, . . . , Y`) resolves x
and y. In the last case (∗∗) holds for x and y. Also we have the condition if v ∈ Z.
Assume that v ∈W \ Z. Then v ∈ V (Gj) \Xj for some j ∈ Ii. If x, y /∈ V (Gj) \Xj ,
then we have the property that a vertex v ∈ V (Gj)\Xj with Prv,`(Xj) = (Y0, . . . , Y`)
resolves x and y. Assume that x ∈ V (Gj) \Xj or y ∈ V (Gj) \Xj . Then we have that
Pj 6= ∅ or Pj 6= ∅, respectively. Therefore, (∗∗) holds.

It remains to observe that the value of wi(Z, {Pj | j ∈ I ′i}) constructed by the

algorithm for Z1, {Pj1 | j ∈ I ′i′}, satisfying (i)–(iii) for the node i′, Z2, {Pj2 | j ∈ I ′i′′}
and P0 is at most |W1 ∪W2| = w∗i (Z, {Pj | j ∈ I ′i}).

It completes the correction proof for a join node and, therefore, we have that the
algorithm correctly constructs the tables of values of wi(Z, {Pj | j ∈ I ′i}).

Running time analysis. We now analyze the running time of the dynamic
programming algorithm. For this, we give the following upper bound on the size
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of each table. Let i ∈ V (T ). We have that |Xi| ≤ w(∆, `). We also have that

Ns
Ti
≤ 2s+1 − 1. Hence, |Yi| ≤ (2s+1 − 1)w(∆, `), and there is at most 2(2s+1−1)w(∆,`)

possibilities to choose Z. We have that |I ′i| ≤ 2s + 1. The number of all ordered
partitions (Y0, . . . , Y`) of any Xj is at most (` + 1)|Xj | ≤ (` + 1)w(∆,`). Hence, the

table for the node i contains at most 2(2s+1−1)w(∆,`)(` + 1)(2s+1)w(∆,`) values of the
function wi(Z, {Pj | j ∈ I ′i}).

As the number of ordered partitions (Y0, . . . , Y`) of Xi is at most (` + 1)w(∆,`),
we obtain that each table can be constructed in time

O∗
(

22(2s+1−1)w(∆,`)(`+ 1)(2s+1+3)w(∆,`)
)
.

The total running time of the dynamic programming algorithm can therefore be
bounded as O∗(22(2s+1−1)w(∆,`)(`+ 1)(2s+1+3)w(∆,`)).

Since preliminary steps of our algorithm for Metric Dimension can be executed
in polynomial time and we run the dynamic programming algorithm for at most n
choices of u, the total running time is O∗(22(2s+1−1)w(∆,`)(`+ 1)(2s+1+3)w(∆,`)).

4. Metric DimensionMetric DimensionMetric Dimension on graphs of bounded modular-width. In this sec-
tion we prove that the metric dimension can be computed in linear time for graphs of
bounded modular-width. Let X be a module of a graph G and v ∈ V (G) \X. Then
the distances in G between v and the vertices of X are the same. This observation
immediately implies the following lemma.

Lemma 4.1. Let X ⊂ V (G) be a module of a connected graph G and |X| ≥ 2.
Let also H be a graph obtained from G[X] by the addition of a universal vertex. Then
any v ∈ V (G) resolving x, y ∈ X is a vertex of X, and if W ⊆ V (G) is a resolving
set of G, then W ∩X resolves X in H.

Theorem 4.2. The metric dimension of a connected graph G of modular-width
at most t can be computed in time O(t34t · n+m).

Proof. To compute md(G), we consider auxiliary values w(H, p, q) defined for a
(not necessarily connected) graph H of modular-width at most t with at least two
vertices and boolean variables p and q as follows. Let H ′ be the graph obtained from
H by the addition of a universal vertex u. Notice that diamH′(V (H)) ≤ 2. Then
w(H, p, q) is the minimum size of a set W ⊆ V (H) such that

(i) W resolves V (H) in H ′,
(ii) H has a vertex x such that distH′(x, v) = 1 for every v ∈ W if and only if

p = true, and
(iii) H has a vertex x such that distH′(x, v) = 2 for every v ∈ W if and only if

q = true.
We assume that w(H, p, q) = +∞ if such a set does not exists.

The intuition behind the definition of H ′ and the function w(.) is as follows. Let
X be a module in the graph G and H = G[X]. Let Z be a hypothetical optimal
resolving set and let Z ′ = Z ∩X. By Lemma 4.1, we know that every pair of vertices
in H must be resolved by a vertex in Z ′. Therefore, we need to compute a set
which, among satisfying other properties must be a resolving set for the vertices in
X. However, since these vertices are all in the same module and G is connected, any
pair of vertices are either adjacent or at a distance exactly 2 in G. Hence, we ask for
W (condition (i)) to be a resolving set of V (H) in H ′, the graph obtained by adding
a universal vertex to H. Further, it could be the case that a vertex of Z is required
to resolve a pair of vertices, one contained in X, say, x, and the other disjoint from
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X, say y. If x ∈ Z itself, then x resolves x and y. If x is at distance 1 from z ∈ Z ′
in G (and hence in H ′) and there is z′ ∈ Z ′ at distance 2 from x, then either z or
z′ resolves x and y, because distG(z, y) = distG(z′, y). Respectively, if for a partial
solution W we have that x ∈W or x is at distinct distances in H ′ from two vertices of
W , then x and y are resolved by W . Suppose that x is at distance 1 in G from every
vertex in Z ′. If x′ ∈ X has the same property, that is, it is at distance 1 from every
vertex of Z ′, then z ∈ Z resolves x and y if and only if z resolves x′ and y. Hence,
it is sufficient to know whether X has a vertex at distance 1 from every vertex of W .
This is precisely captured by the boolean variable p and W in (ii). Similarly, if x is
at distance 2 in G from every vertex is Z ′, then it suffices to know whether there are
such vertices for a partial solution, and we use the boolean variable q in (iii) to keep
this information.

Recall that since H has modular-width at most t, it can be constructed from
single vertex graphs by the disjoint union and join operation and decomposing H into
at most t modules and H has at least two vertices. In the rest of the proof, we for-
mally describe our algorithm to compute w(H, p, q) given the modular decomposition
of H and the values computed for the “child” nodes. As the base case corresponds to
graphs of size at most t we may compute the values for the leaf nodes by brute force
and execute a bottom up dynamic program.

Description of the algorithm. We begin the description of the algorithm by
first considering the cases when H is the disjoint union or join of a pair of graphs.
Following that, we consider the case when H can be partitioned into at most t graphs,
each of modular-width at most t. Although the third case subsumes the first 2, we
address these 2 cases explicitly for a clearer understanding of the algorithm.

Case 1. H is a disjoint union of H1 and H2. Assume without loss of generality
that |V (H1)| ≤ |V (H2)|.

If |V (H1)| = |V (H2)| = 1, then it is straightforward to verify the following.
(a) w(H, false, true) = 1, (b) w(H, false, false) = 2, and (c) w(H, true, true) =
w(H, true, false) = +∞.

Suppose that |V (H1)| = 1, |V (H2)| ≥ 2 and the values of w(H2, p, q) are already
computed for p, q ∈ {true, false}. Clearly, the single vertex of H1 is at distance 2
from any vertex of H2 in H ′. Observe that we have two possibilities of the vertex of
H1: it is either in a resolving set or not. Then by Lemma 4.1,

• w(H, true, true) = w(H2, true, false),
• w(H, false, true) = min{w(H2, false, false), w(H2, true, true) + 1,
w(H2, false, true) + 1},

• w(H, true, false) = +∞,
• w(H, false, false) = min{w(H2, true, false) + 1, w(H2, false, false) + 1}.

Suppose that |V (H1)|, |V (H2)| ≥ 2 and the values of w(Hi, p, q) are already
computed for i ∈ {1, 2} and p, q ∈ {true, false}. Notice that for x ∈ V (H1) and
y ∈ V (H2), distH′(x, y) = 2. Observe also that any resolving set has at least one
vertex in H1 and at least one vertex in H2. Then by Lemma 4.1,

• w(H, true, true) = +∞,
• w(H, false, true) = min{w(H1, p1, q1) + w(H2, p2, q2) | pi, qi ∈ {true, false}

for i ∈ {1, 2} and q1 6= q2},
• w(H, true, false) = +∞,
• w(H, false, false) = min{w(H1, p1, false)+w(H2, p2, false)}, where p1, p2 ∈
{true, false}.

Case 2. H is a join of H1 and H2. Assume without loss of generality that
|V (H1)| ≤ |V (H2)|.
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If |V (H1)| = |V (H2)| = 1, then it is straightforward to verify the following.
(a) w(H, true, false) = 1, (b) w(H, false, false) = 2, and (c) w(H, true, true) =
w(H, false, true) = +∞.

Suppose that |V (H1)| = 1, |V (H2)| ≥ 2 and the values of w(H2, p, q) are already
computed for p, q ∈ {true, false}. Clearly, the single vertex of H1 is at distance 1
from any vertex of H2 in H ′, and this single vertex is in a resolving set or not. Then
by Lemma 4.1,

• w(H, true, true) = w(H2, false, true),
• w(H, false, true) = +∞,
• w(H, true, false) = min{w(H2, false, false), w(H2, true, true) + 1,
w(H2, true, false) + 1},

• w(H, false, false) = min{w(H2, false, true) + 1, w(H2, false, false) + 1}.
Suppose that |V (H1)|, |V (H2)| ≥ 2 and the values of w(Hi, p, q) are already

computed for i ∈ {1, 2} and p, q ∈ {true, false}. Notice that for x ∈ V (H1) and
y ∈ V (H2), distH′(x, y) = 1, and any resolving set has at least one vertex in H1 and
at least one vertex in H2. Then by Lemma 4.1,

• w(H, true, true) = +∞,
• w(H, false, true) = +∞,
• w(H, true, false) = min{w(H1, p1, q1) + w(H1, p2, q2) | pi, qi ∈ {true, false}

for i ∈ {1, 2} and p1 6= p2},
• w(H, false, false) = min{w(H1, false, q1)+w(H2, false, q2)}, where q1, q2 ∈
{true, false}.

Case 3. V (H) is partitioned into s ≤ t nonempty modules X1, . . . , Xs, s ≥ 2
(see, for example, Figure 2). Again we point out that Cases 1 and 2 can be seen as
special cases of Case 3, but we keep Cases 1 and 2 to make the algorithm for com-
puting w(H, p, q) more clear. We assume that X1, . . . , Xh are trivial, i.e, |Xi| = 1 for
i ∈ {1, . . . , h}; it can happen that h = 0. Clearly, for distinct i, j ∈ {1, . . . , s}, either
every vertex of Xi is adjacent to every vertex of Xj or the vertices of Xi and Xj are
not adjacent.

Consider the prime graph F with a vertex set {v1, . . . , vs} such that vi is ad-
jacent to vj if and only if the vertices of Xi are adjacent to the vertices of Xj for
distinct i, j ∈ {1, . . . , s}. Let F ′ be the graph obtained from F by the addition of a
universal vertex. Observe that if x ∈ Xi and y ∈ Xj for distinct i, j ∈ {1, . . . , s}, then
distH′(x, y) = distF ′(vi, vj).

For boolean variables p, q, a set of indices I ⊆ {1, . . . , h} and boolean variables
pi, qi, where i ∈ {h+ 1, . . . , s}, we define

ω(p, q, I, ph+1, qh+1, . . . , ps, qs) = |I|+
s∑

i=h+1

w(H[Xi], pi, qi)

if the following holds:
(a) the set Z = {vi | i ∈ I ∪ {h+ 1, . . . , s}} resolves V (F ) in F ′,
(b) if pi = true for some i ∈ {h + 1, . . . , s}, then for each j ∈ {1, . . . , h} \ I,

distF ′(vi, vj) = 2 or there is vr ∈ Z such that r 6= i and distF ′(vr, vi) 6=
distF ′(vr, vj),

(c) if qi = true for some i ∈ {h + 1, . . . , s}, then for each j ∈ {1, . . . , h} \ I,
distF ′(vi, vj) = 1 or there is vr ∈ Z such that r 6= i and distF ′(vr, vi) 6=
distF ′(vr, vj),

(d) if pi = pj = true for some distinct i, j ∈ {h+1, . . . , s}, then distF ′(vi, vj) = 2
or there is vr ∈ Z such that r 6= i, j and distF ′(vr, vi) 6= distF ′(vr, vj),
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(e) if qi = qj = true for some distinct i, j ∈ {h+ 1, . . . , s}, then distF ′(vi, vj) = 1
or there is vr ∈ Z such that r 6= i, j and distF ′(vr, vi) 6= distF ′(vr, vj),

(f) p = true if and only if there is i ∈ {1, . . . , h}\I such that distF ′(vi, vj) = 1 for
vj ∈ Z or there is i ∈ {h+1, . . . , s} such that pi = true and distF ′(vi, vj) = 1
for vj ∈ Z \ {vi},

(g) q = true if and only if there is i ∈ {1, . . . , h}\I such that distF ′(vi, vj) = 2 for
vj ∈ Z or there is i ∈ {h+ 1, . . . , s} such that qi = true and distF ′(vi, vj) = 2
for vj ∈ Z \ {vi};

and ω(p, q, I, ph+1, qh+1, . . . , ps, qs) = +∞ in all other cases.
We claim that

w(H, p, q) = minω(p, q, I, ph+1, qh+1, . . . , ps, qs),

where the minimum is taken over all I ⊆ {1, . . . , h} and pi, qi ∈ {true, false} for
i ∈ {h+ 1, . . . , s}.

First, we show that w(H, p, q) ≥ minω(p, q, I, ph+1, qh+1, . . . , ps, qs). Observe
that if w(H, p, q) = +∞, then the inequality trivially holds. Let w(H, p, q) < +∞.
Then there is a set W ⊆ V (H) of minimum size such that

(i) W resolves V (H) in H ′,
(ii) H has a vertex x such that distH′(x, v) = 1 for every v ∈ W if and only if

p = true, and
(iii) H has a vertex x such that distH′(x, v) = 2 for every v ∈ W if and only if

q = true.
By the definition, w(H, p, q) = |W |. Let Wi = W∩Xi for i ∈ {1, . . . , s}. Let I = {i|i ∈
{1, . . . , h},Wi 6= ∅}. Notice that Wi 6= ∅ for i ∈ {h+ 1, . . . , s} by Lemma 4.1. For i ∈
{h+1, . . . , s}, let pi = true if there is a vertex x ∈ Xi such that distH′(x, u) = 1 for u ∈
Wi, and let qi = true if there is a vertex x ∈ Xi such that distH′(x, u) = 2 for u ∈Wi.

By Lemma 4.1, Wi resolves Xi in the graph obtained from H[Xi] by the addi-
tion of a universal vertex for i ∈ {h + 1, . . . , s}. Hence, |Wi| ≥ w(H[Xi], pi, qi) for
i ∈ {h+ 1, . . . , s} and, therefore, |W | ≥ |I|+

∑s
i=h+1 w(H[Xi], pi, qi).

We show that (a)–(g) are fulfilled for I and the defined values of pi, qi.
To show (a), consider distinct vertices vi, vj of F . If vi ∈ Z or vj ∈ Z, then it is

straightforward to see that Z resolves vi and vj . Suppose that i, j ∈ {1, . . . , h} \ I.
Then Xi, Xj are trivial modules with the unique vertices x and y, respectively. Be-
cause W resolves V (H), there is u ∈W such that distH′(u, x) 6= distH′(u, y). Consider
the set Wr containing u. It remains to observe that vr resolves vi and vj , because
distF ′(vr, vi) = distH′(u, x) 6= distH′(u, y) = distF ′(vr, vj).

To prove (b), assume that pi = true for some i ∈ {h + 1, . . . , s} and consider
j ∈ {1, . . . , h} \ I. Suppose that distF ′(vi, vj) 6= 2, i.e., distF ′(vi, vj) = 1. Then Xi

has a vertex x adjacent to all the vertices of Wi. Let y be the unique vertex of Xj . The
set W resolves x, y and, therefore, there is u ∈W such that distH′(u, x) 6= distH′(u, y).
If u ∈ Xi, then we have that distH′(u, x) = 1 = distF ′(vi, vj) = distH′(u, y), a con-
tradiction. Hence, u /∈ Xi. Let Xr be the module containing u. Then we have that
distF ′(vr, vi) = distH′(u, x) 6= distH′(u, y) = distF ′(vr, vi).

Similarly, to obtain (c), assume that qi = true for some i ∈ {h+1, . . . , s} and con-
sider j ∈ {1, . . . , h} \ I. Suppose that distF ′(vi, vj) 6= 1, i.e., distF ′(vi, vj) = 2. Then
Xi has a vertex x at distance 2 from all the vertices of Wi. Let y be the unique vertex
of Xj . The set W resolves x, y and, therefore, there is u ∈W such that distH′(u, x) 6=
distH′(u, y). If u ∈ Xi, then we have that distH′(u, x) = 2 = distF ′(vi, vj) =
distH′(u, y), a contradiction. Hence, u /∈ Xi. Let Xr be the module containing
u. Then we have that distF ′(vr, vi) = distH′(u, x) 6= distH′(u, y) = distF ′(vr, vi).
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To show (d), suppose that pi = pj = true for some distinct i, j ∈ {h+1, . . . , s} and
assume that distF ′(vi, vj) 6= 2, i.e., distF ′(vi, vj) = 1. Then Xi has a vertex x adjacent
to all the vertices of Wi and Xj has a vertex y adjacent to all the vertices of Wj . The
set W resolves x, y and, therefore, there is u ∈W such that distH′(u, x) 6= distH′(u, y).
If u ∈ Xi, then we have that distH′(u, x) = distF ′(vi, vj) = distH′(u, y), a contradic-
tion. Hence, u /∈ Xi. By the same arguments, u /∈ Xj . Let Xr be the module contain-
ing u. Then we have that distF ′(vr, vi) = distH′(u, x) 6= distH′(u, y) = distF ′(vr, vi).

To prove (e), suppose that qi = qj = true for some distinct i, j ∈ {h + 1, . . . , s}
and assume that distF ′(vi, vj) 6= 1, i.e., distF ′(vi, vj) = 2. Then Xi has a vertex x at
distance 2 to all the vertices of Wi and Xj has a vertex y at distance 2 to all the vertices
of Wj . The set W resolves x, y and, therefore, there is u ∈W such that distH′(u, x) 6=
distH′(u, y). If u ∈ Xi, then we have that distH′(u, x) = distF ′(vi, vj) = distH′(u, y),
a contradiction. Hence, u /∈ Xi. By the same arguments, u /∈ Xj . Let Xr be the
module containing u. Then we have that distF ′(vr, vi) = distH′(u, x) 6= distH′(u, y) =
distF ′(vr, vi).

To see (f), recall that p = true if and only if V (H) has a vertex x that is adjacent
to all the vertices of W . Suppose that V (H) has a vertex x that is adjacent to all the
vertices of W . If x ∈ Xi for i ∈ {1, . . . , h} \ I, then distF ′(vi, vj) = 1 for vj ∈ Z. If
x ∈ Xi for i ∈ {h+ 1, . . . , s}, then pi = true and distF ′(vi, vj) = 1 for vj ∈ Z \ {vi}.
Suppose that there is i ∈ {1, . . . , h}\ I such that distF ′(vi, vj) = 1 for vj ∈ Z or there
is i ∈ {h + 1, . . . , s} such that pi = true and distF ′(vi, vj) = 1 for vj ∈ Z \ {vi}. If
there is i ∈ {1, . . . , h} \ I such that distF ′(vi, vj) = 1 for vj ∈ Z, then the unique
vertex x of Xi is at distance 1 from all the vertices of W and p = true. If there is
i ∈ {h + 1, . . . , s} such that pi = true, then there is x ∈ Xi at distance 1 from each
vertex of Wi. If distF ′(vi, vj) = 1 for vj ∈ Z \ {vi}, then x at distance 1 from the
vertices W \Wi and, therefore, p = true.

Similarly, to prove (g), recall that q = true if and only if V (H) has a vertex x
that is at distance 2 from every vertex of W . Suppose that V (H) has a vertex x that
is at distance 2 from all the vertices of W . If x ∈ Xi for i ∈ {1, . . . , h} \ I, then
distF ′(vi, vj) = 2 for vj ∈ Z. If x ∈ Xi for i ∈ {h + 1, . . . , s}, then qi = true and
distF ′(vi, vj) = 2 for vj ∈ Z \ {vi}. Suppose that there is i ∈ {1, . . . , h} \ I such
that distF ′(vi, vj) = 2 for vj ∈ Z or there is i ∈ {h + 1, . . . , s} such that qi = true
and distF ′(vi, vj) = 2 for vj ∈ Z \ {vi}. If there is i ∈ {1, . . . , h} \ I such that
distF ′(vi, vj) = 2 for vj ∈ Z, then the unique vertex x of Xi is at distance 2 from all
the vertices of W and q = true. If there is i ∈ {h + 1, . . . , s} such that qi = true,
then there is x ∈ Xi at distance 2 from each vertex of Wi. If distF ′(vi, vj) = 2 for
vj ∈ Z \ {vi}, then x at distance 2 from the vertices W \Wi and, therefore, q = true.

Because (a)–(g) are fulfilled, w(H, p, q) ≥ |W | ≥ |I| +
∑s
i=h+1 w(H[Xi], pi, qi) =

ω(p, q, I, ph+1, qh+1, . . . , ps, qs) and the claim follows.
Now we show that w(H, p, q) ≤ minω(p, q, I, ph+1, qh+1, . . . , ps, qs). Assume that

I and the values of ph+1, qh+1, . . . , ps, qs are chosen in such a way that the value of
ω(p, q, I, ph+1, qh+1, . . . , ps, qs) is the minimum possible. Note that if ω(p, q, I, ph+1,
qh+1, . . . , ps, qs) = +∞, then, trivially, we have that w(H, p, q) ≤ ω(p, q, I, ph+1,
qh+1, . . . , ps, qs). Suppose that this is not the case and ω(p, q, I, ph+1, qh+1, . . . , ps, qs)
< +∞. Then ω(p, q, I, ph+1, qh+1, . . . , ps, qs) = |I|+

∑s
i=h+1 w(H[Xi], pi, qi) and (a)–

(g) are fulfilled for p, q, I and the values of ph+1, qh+1, . . . , ps, qs.
Notice that w(H[Xi], pi, qi) < +∞ for i ∈ {h + 1, . . . , s}. For i ∈ {h + 1, . . . , s},

let Wi ⊆ Xi be a set om minimum size such that
(i) Wi resolves Xi in the graph H ′i obtained from H[Xi] by the addition of a

universal vertex,
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(ii) Xi has a vertex x such that distH′
i
(x, v) = 1 for every v ∈ Wi if and only if

pi = true, and
(iii) Xi has a vertex x such that distH′

i
(x, v) = 2 for every v ∈ Wi if and only if

qi = true.
By the definition, w(H[Xi], pi, qi) = |Wi| for i ∈ {h+ 1, . . . , s}. Let

W = (∪i∈IXi) ∪
(
∪si=h+1Wi

)
.

We have that |W | = ω(p, q, I, ph+1, qh+1, . . . , ps, qs).
We claim W is a resolving set for V (H) in H ′.
Let x, y be distinct vertices of H. We show that there is a vertex u in W that

resolves x and y in H ′. Clearly, it is sufficient to prove it for x, y ∈ V (H)\W . Let Xi

and Xj be the modules that contain x and y, respectively. If i = j, then a vertex u ∈
Wi resolves x and y in H ′i and, therefore, u resolves x and y in H ′. Suppose that i 6= j.

Assume first that i, j ∈ {1, . . . , h}. Then i, j ∈ {1, . . . , h} \ I, because X1, . . . , Xh

are trivial. By (a), Z resolves V (F ) in F ′. Hence, there is vr ∈ Z such that
distF ′(vr, vi) 6= distF ′(vr, vj). Notice that Wr 6= ∅ by the definition of Wr and Z.
Let u ∈Wr. We have that distH′(u, x) = distF ′(vr, vi) 6= distF ′(vr, vj) = distH′(u, y).

Let now i ∈ {h+ 1, . . . , s} and j ∈ {1, . . . , h}. If there are u1, u2 ∈ Wi such that
distH′

i
(u1, x) 6= distH′

i
(u2, x), then u1 or u2 resolves x and y, because distH′(u1, y) =

distH′(u2, y). Assume that all the vertices of Wi are at the same distance from x in H ′i.
Let u ∈Wi. If distH′

i
(u, x) = 1, then pi = true and, by (b), distF ′(vi, vj) = 2 or there

is vr ∈ Z such that r 6= i, j and distF ′(vr, vi) 6= distF ′(vr, vj). If distF ′(vi, vj) = 2,
then u resolves x and y, as distH′(u, y) = 2. Otherwise, any vertex u′ ∈ Wr resolves
x and y. Similarly, if distH′

i
(u, x) = 2, then qi = true and, by (c), distF ′(vi, vj) = 1 or

there is vr ∈ Z such that r 6= i, j and distF ′(vr, vi) 6= distF ′(vr, vj). If distF ′(vi, vj) =
1, then u resolves x and y, as distH′(u, y) = 1. Otherwise, any vertex u′ ∈Wr resolves
x and y.

Finally, let i, j ∈ {h+ 1, . . . , s}. If there are u1, u2 ∈Wi such that distH′
i
(u1, x) 6=

distH′
i
(u2, x), then u1 or u2 resolves x and y, because distH′(u1, y) = distH′(u2, y). By

the same arguments, if there are u1, u2 ∈ Wj such that distH′
j
(u1, y) 6= distH′

i
(u2, y),

then u1 or u2 resolves x and y. Assume that all the vertices of Wi are at the same dis-
tance from x in H ′i and all the vertices of Wj are at the same distance from y in H ′j . Let
u1 ∈W1 and u2 ∈Wj . If distH′

i
(u1, x) 6= distH′

j
(u2, y), then u1 or u2 resolves x and y,

because distH′(u1, y) = distH′(u2, x). Suppose that distH′
i
(u1, x) = distH′

j
(u2, y) = 1.

Then pi = pj = true and, by (d), distF ′(vi, vj) = 2 or there is vr ∈ Z such that r 6= i, j
and distF ′(vr, vi) 6= distF ′(vr, vj). If distF ′(vi, vj) = 2, then u1 resolves x and y. Oth-
erwise, any vertex u′ ∈Wr resolves x and y. If distH′

i
(u1, x) = distH′

j
(u2, y) = 2, then

qi = qj = true and, by (d), distF ′(vi, vj) = 1 or there is vr ∈ Z such that r 6= i, j
and distF ′(vr, vi) 6= distF ′(vr, vj). If distF ′(vi, vj) = 1, then u1 resolves x and y.
Otherwise, any vertex u′ ∈Wr resolves x and y.

By (f), p = true if and only if there is i ∈ {1, . . . , h}\I such that distF ′(vi, vj) = 1
for vj ∈ Z or there is i ∈ {h+ 1, . . . , s} such that pi = true and distF ′(vi, vj) = 1 for
vj ∈ Z \{vi}. If there is i ∈ {1, . . . , h}\I such that distF ′(vi, vj) = 1, then the unique
vertex x ∈ Xi is at distance 1 from any vertex of W . If there is i ∈ {h+1, . . . , s} such
that pi = true and distF ′(vi, vj) = 1 for vj ∈ Z \ {vi}, then there is a vertex x ∈ Xi

at distance 1 from each vertex of Wi, because pi = true, and as distF ′(vi, vj) = 1
for vj ∈ Z \ {vi}, x is at distance 1 from any vertex of W \Wi. Suppose that there
is a vertex x ∈ V (H) at distance 1 from each vertex of W . Let Xi be the module
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containing x. If i ∈ {1, . . . , h}, then i ∈ {1, . . . , h}\I and distF ′(vi, vj) = 1 for vj ∈ Z.
Hence, p = true. If i ∈ {h + 1, . . . , s}, then pi = true, because x is at distance 1
from the vertices of Wi. Because x is at distance 1 from the vertices of W \ Wi,
distF ′(vi, vj) = 1 for vj ∈ Z \ {vi}. Therefore, p = true.

Similarly, by (g), q = true if and only if there is i ∈ {1, . . . , h} \ I such that
distF ′(vi, vj) = 2 for vj ∈ Z or there is i ∈ {h + 1, . . . , s} such that qi = true
and distF ′(vi, vj) = 2 for vj ∈ Z \ {vi}. If there is i ∈ {1, . . . , h} \ I such that
distF ′(vi, vj) = 2, then the unique vertex x ∈ Xi is at distance 2 from any vertex of W .
If there is i ∈ {h+1, . . . , s} such that qi = true and distF ′(vi, vj) = 2 for vj ∈ Z \{vi},
then there is a vertex x ∈ Xi at distance 2 from each vertex of Wi, because qi = true,
and as distF ′(vi, vj) = 2 for vj ∈ Z \ {vi}, x is at distance 2 from any vertex of
W \Wi. Suppose that there is a vertex x ∈ V (H) at distance 2 from each vertex of
W . Let Xi be the module containing x. If i ∈ {1, . . . , h}, then i ∈ {1, . . . , h} \ I and
distF ′(vi, vj) = 2 for vj ∈ Z. Hence, q = true. If i ∈ {h + 1, . . . , s}, then qi = true,
because x is at distance 2 from the vertices of Wi. Because x is at distance 2 from
the vertices of W \Wi, distF ′(vi, vj) = 2 for vj ∈ Z \ {vi}. Therefore, q = true.

We conclude that
(i) W resolves V (H) in H ′,
(ii) H has a vertex x such that distH′(x, v) = 1 for every v ∈ W if and only if

p = true, and
(iii) H has a vertex x such that distH′(x, v) = 2 for every v ∈ W if and only if

q = true.
Therefore, w(H, p, q) ≤ |W | = ω(p, q, I, ph+1, qh+1, . . . , ps, qs).

This concludes Case 3.
Our next aim is to explain how to compute md(G).
Recall that to compute w(H, p, q), we construct the auxiliary graph H ′ by adding

a universal vertex to H. We do it to capture the property that for each module X that
occur in the modular decomposition of G, the distance between every two vertices of
X in G is at most 2. Notice that for the set of vertices of G, we not necessarily have
this property, that is, it can happen that diam(G) ≥ 3. Hence, for the root node of
the modular decomposition that corresponds to G, we have to use some additional ar-
guments. Nevertheless, if diam(G) ≤ 2, then for the graph G′ obtained from G by the
addition of a universal vertex, we have that distG′(u, v) = distG(u, v) for u, v ∈ V (G).
It immediately implies that in this case

md(G) = min
p,q∈{true,false}

w(G, p, q)

by the definition of w(G, p, q).
Assume from now on that diam(G) ≥ 3. Recall that G is a connected graph of

modular-width at most t. Hence, V (G) can be partitioned into s ≤ t nonempty
modules X1, . . . , Xs and s ≥ 3. Let F be the corresponding prime graph with
V (F ) = {v1, . . . , vs} such that vi is adjacent to vj if and only if the vertices of Xi are
adjacent to the vertices of Xj for distinct i, j ∈ {1, . . . , s}. Notice that F is connected.
We assume that X1, . . . , Xh are trivial, i.e, |Xi| = 1 for i ∈ {1, . . . , h}; it can happen
that h = 0. Then we adjust Case 3 of the algorithm for computing w(H, p, q) for the
case when diam(F ) = diam(G) ≥ 3. For a set of indices I ⊆ {1, . . . , h} and boolean
variables pi, qi, where i ∈ {h+ 1, . . . , s}, we define

ω∗(I, ph+1, qh+1, . . . , ps, qs) = |I|+
s∑

i=h+1

w(G[Xi], pi, qi)
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if the following holds:
(a∗) the set Z = {vi | i ∈ I ∪ {h+ 1, . . . , s}} is a resolving set for F ,
(b∗) if pi = true for some i ∈ {h + 1, . . . , s}, then for each j ∈ {1, . . . , h} \ I,

distF (vi, vj) ≥ 2 or there is vr ∈ Z such that r 6= i and distF (vr, vi) 6=
distF ′(vr, vj),

(c∗) if qi = true for some i ∈ {h + 1, . . . , s}, then for each j ∈ {1, . . . , h} \ I,
distF (vi, vj) 6= 2 or there is vr ∈ Z such that r 6= i and distF (vr, vi) 6=
distF ′(vr, vj),

(d∗) if pi = pj = true for some distinct i, j ∈ {h+ 1, . . . , s}, then distF (vi, vj) ≥ 2
or there is vr ∈ Z such that r 6= i, j and distF ′(vr, vi) 6= distF (vr, vj),

(e∗) if qi = qj = true for some distinct i, j ∈ {h+ 1, . . . , s}, then distF (vi, vj) 6= 2
or there is vr ∈ Z such that r 6= i, j and distF ′(vr, vi) 6= distF (vr, vj),

and ω∗(I, ph+1, qh+1, . . . , ps, qs) = +∞ in all other cases. Clearly, (a∗)–(e∗) are ana-
logues of (a)–(e) of Case 3. Notice that we do not need the analogues of (f) and (g).

We claim that

md(G) = minω∗(I, ph+1, qh+1, . . . , ps, qs),

where the minimum is taken over all I ⊆ {1, . . . , h} and pi, qi ∈ {true, false} for
i ∈ {h+ 1, . . . , s}.

The proof repeats the arguments that were used above in Case 3.
First, we show that md(G) ≥ minω∗(p, q, I, ph+1, qh+1, . . . , ps, qs). We con-

sider a resolving set W ⊆ V (G) of minimum size. Then we define Wi = W ∩ Xi

for i ∈ {1, . . . , s} and I = {i|i ∈ {1, . . . , h},Wi 6= ∅}. Notice that Wi 6= ∅ for
i ∈ {h + 1, . . . , s} by Lemma 4.1. For i ∈ {h + 1, . . . , s}, let pi = true if there is a
vertex x ∈ Xi such that distG(x, u) = 1 for u ∈ Wi, and let qi = true if there is a
vertex x ∈ Xi such that distG(x, u) = 2 for u ∈Wi. Then by the same arguments as in
Case 3, we show that |W | ≥ |I|+

∑s
i=h+1 w(G[Xi], pi, qi) and (a∗)–(e∗) are fulfilled for

I and the defined values of pi, qi. Then md(G) ≥ |W | ≥ |I|+
∑s
i=h+1 w(G[Xi], pi, qi)

and |I|+
∑s
i=h+1 w(G[Xi], pi, qi) = ω∗(I, ph+1, qh+1, . . . , ps, qs) and the claim follows.

Now we show that md(G) ≤ minω∗(I, ph+1, qh+1, . . . , ps, qs). Assume that I and
the values of ph+1, qh+1, . . . , ps, qs are chosen such that ω∗(I, ph+1, qh+1, . . ., ps, qs)
has the minimum possible value. If ω∗(I, ph+1, qh+1, . . . , ps, qs) = +∞, then, triv-
ially, we have that md(G) ≤ ω∗(I, ph+1, qh+1, . . . , ps, qs). On the other hand, suppose
that ω∗(I, ph+1, qh+1, . . . , ps, qs) < +∞. Then ω∗(I, ph+1, qh+1, . . . , ps, qs) = |I| +∑s
i=h+1 w(H[Xi], pi, qi) and (a∗)–(e∗) are fulfilled for I and the values of ph+1, qh+1,

. . . , ps, qs. Notice that w(G[Xi], pi, qi) < +∞ for i ∈ {h + 1, . . . , s}. For i ∈
{h+ 1, . . . , s}, let Wi ⊆ Xi be a set om minimum size such that

(i) Wi resolves Xi in the graph H ′i obtained from G[Xi] by the addition of a
universal vertex,

(ii) Xi has a vertex x such that distH′
i
(x, v) = 1 for every v ∈ Wi if and only if

pi = true, and
(iii) Xi has a vertex x such that distH′

i
(x, v) = 2 for every v ∈ Wi if and only if

qi = true.
By the definition, w(G[Xi], pi, qi) = |Wi| for i ∈ {h+ 1, . . . , s}. Let

W = (∪i∈IXi) ∪
(
∪si=h+1Wi

)
.

We have that |W | = ω∗(p, q, I, ph+1, qh+1, . . . , ps, qs). In the same way as in Case 3,
we show that W is a resolving set for G and, therefore, we conclude that md(G) ≤ |W |
=ω∗(I, ph+1, qh+1, . . . , ps, qs).
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Recall that the modular-width of a graph can be computed in linear time by the al-
gorithm of Tedder et al. [23], and this algorithm outputs the algebraic expression of G
corresponding to the procedure of its construction from isolated vertices by the disjoint
union and join operation and decomposing H into at most t modules. We construct
such a decomposition and consider the rooted tree corresponding to the algebraic ex-
pression. We compute the values of w(H, p, q) for the graphs H corresponding to the
internal nodes of the tree and then compute md(G) for the root corresponding to G.

To evaluate the running time, observe that computing w(H, p, q) for the disjoint
union or join of two graphs demands O(1) operations. To compute w(H, p, q) in the
case when V (H) is partitioned into s ≤ t modules, we consider at most 4t possibilities
to choose I and pi, qi for i ∈ {h+ 1, . . . , s}. Then the conditions (a)–(g) can be ver-
ified in time O(t3). Hence, the total time is O(t34t). Similarly, the final computation
of md(G) can be performed in time O(t34t). We conclude that the running time is
O(t34t · n) for a given decomposition. Since the algorithm of Tedder et al. [23] is
linear, we solve Minimum Metric Dimension in time O(t34t · n+m).

5. Conclusions. We have shown that Metric Dimension can be solved in
polynomial time on graphs of constant degree and tree-length. For this, among other
things, we used the fact that such graphs have constant treewidth. Therefore, the
most natural step forward would be to attempt to extend these results to graphs of
constant treewidth which do not necessarily have bounded degree or tree-length. In
fact, we point out that it is not known whether Metric Dimension is polynomial-
time solvable even on graphs of treewidth at most 2.
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