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Many problems on graphs can be expressed in the following language: given a graph G =
(V , E) and a terminal set T ⊆ V , find a minimum size set S ⊆ V which intersects all 
“structures” (such as cycles or paths) passing through the vertices in T . We refer to this 
class of problems as terminal set problems. In this paper, we introduce a general method 
to obtain faster exact exponential time algorithms for several terminal set problems. In 
the process, we break the O∗(2n) barrier for the classic Node Multiway Cut, Directed 
Unrestricted Node Multiway Cut and Directed Subset Feedback Vertex Set problems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The goal of the design of moderately exponential time algorithms for NP-complete problems is to establish algorithms 
for which the worst-case running time is provably faster than the one of enumerating all prospective solutions, or loosely 
speaking, algorithms better than brute-force enumeration. For example, for NP-complete problems on graphs on n vertices 
and m edges whose solutions are either subsets of vertices or edges, the brute-force or trivial algorithms basically enumerate 
all subsets of vertices or edges. This mostly leads to algorithms of time complexity O∗(2n) or O∗(2m), based on whether we 
are enumerating vertices or edges.4 Thus the goal of exact algorithms for graph problems is to improve upon the algorithms 
running in time O∗(2n) or O∗(2m). See the book [1] for an introduction to exact exponential algorithms.

One of the most well studied directions in exact algorithms is to delete vertices of the input graph such that the resulting 
graph satisfies some interesting properties. More precisely, a natural optimization problem associated with a graph class G
is the following: given a graph G , what is the minimum number of vertices to be deleted from G to obtain a graph in G? 
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For example, when G is the class of empty graphs, forests or bipartite graphs, the corresponding problems are Vertex Cover 
(VC), Feedback Vertex Set (FVS) and Odd Cycle Transversal (OCT), respectively. The best known algorithms for VC, FVS and 
OCT run in time O∗(1.2002n) [2], O∗(1.7347n) [3] and O∗(1.4661n) [4,5] respectively. The other problems in this class 
for which non-trivial exact algorithms are known include finding an induced r-regular subgraph [6], induced subgraph of 
bounded degeneracy [7] and induced subgraph of bounded treewidth [3].

In this paper we study another class of graph problems which we call terminal set problems. In these problems, the input 
is a graph G = (V , E) and a terminal set T ⊆ V , and the goal is to find a minimum size set S ⊆ V that intersects certain 
structures such as cycles or paths passing through the vertices in T . In this paper we introduce a general method to obtain 
faster exact exponential time algorithms for many terminal set problems. The general algorithmic technique is the following. 
Let the size of the terminal set T be k. We first observe that the size of the optimum solution is at most k (or a function 
of k). Let S be an optimum solution to the problem and let X = S \ T . We guess X and delete it from G . Since S \ X ⊆ T , 
we create an auxiliary graph on T and determine the rest of the solution using either a known polynomial time algorithm, 
or a fixed parameter tractable algorithm, or a non-trivial exact algorithm for the non-terminal version (when T = V ) of 
the same problem. We now provide a list of problems for which we give improved or new algorithms using our method 
together with a short overview of previous work on each application.

Node Multiway Cut and Directed Unrestricted Node Multiway Cut: A fundamental min-max theorem about connectivity 
in graphs is Menger’s Theorem, which states that the maximum number of vertex disjoint paths between two vertices s
and t , is equal to the minimum number of vertices whose removal separates these two vertices. Indeed, a maximum set 
of vertex disjoint paths between s, t and a minimum size set of vertices separating these two vertices can be computed 
in polynomial time. A known generalization of this theorem, commonly known as Mader’s T -path Theorem [8] states that, 
given a graph G and a subset T of vertices, there are either k vertex disjoint paths with only the end points in T (such 
paths are called T -paths), or there is a vertex set of size at most 2k which intersects every T -path. Although computing a 
maximum set of vertex disjoint T -paths can be done in polynomial time by using matching techniques, the decision version 
of the dual problem of finding a minimum set of vertices that intersects every T -path is NP-complete for |T | > 2. Formally, 
this problem is the following classical Node Multiway Cut problem.

NODE MULTIWAY CUT (NMC)
Input: An undirected graph G = (V , E) and a set of terminals T = {t1, t2, . . . , tk}.
Question: Find a set S ⊆ V \ T of minimum size such that G \ S has no path between a 
ti, t j pair for any i �= j.

This is a very well studied problem in terms of approximation, as well as parameterized algorithms [9–12]. A variant of 
this problem where S is allowed to intersect the set T , is known as Unrestricted Node Multiway Cut (UNMC). The best 
known parameterized algorithm for Node Multiway Cut decides in time O∗(2�) whether there is a solution of size at most 
� or not. [13] designed an exact algorithm for UNMC running in time O∗(1.8638n). We improve on this by designing an 
algorithm which runs in time O∗(1.4767n) for UNMC. We also design an algorithm with running time O∗(1.4767n) for 
NMC: this is the first algorithm that improves upon the trivial O∗(2n) algorithm for this problem.

Next we consider the directed variant of Node Multiway Cut, namely Directed Node Multiway Cut (DNMC) where the 
input is a directed graph and a set T = {t1, . . . , tk} of terminals and the objective is to find a set of vertices of minimum 
size which intersects every ti → t j path for every ti, t j ∈ T with i �= j. For the unrestricted version of this problem, namely
Directed Unrestricted Node Multiway Cut (DUNMC), we design an exact algorithm with running time O∗(1.6181n) which 
is the first algorithm improving upon the trivial O∗(2n) algorithm for this problem. The problem of designing any algorithm 
breaking the trivial O∗(2n) barrier for DNMC is still open.

Subset Feedback Vertex Set and Directed Subset Feedback Vertex Set: A nontrivial exact algorithm for Feedback Vertex 
Set (FVS) – finding a minimum sized vertex subset such that its removal results in an acyclic graph – remained elusive 
for several years. In a breakthrough paper Razgon [14] designed an exact algorithm for this problem running in time 
O∗(1.8899n). Later, Fomin et al. [15] building upon the work in [14] designed an exact algorithm for FVS running in 
time O∗(1.7548n). The current best known algorithm for this problem uses potential maximal clique machinery and runs 
in time O∗(1.7347n) [3]. Razgon studied the directed version of FVS and obtained an exact algorithm running in time 
O∗(1.9977n) [16]. This is the only known non-trivial exact algorithm for Directed Feedback Vertex Set (DFVS). A natural 
generalization of the Feedback Vertex Set problem is when we only want to hit all the cycles passing through a specified 
set of terminals. This leads to the following problem.

SUBSET FEEDBACK VERTEX SET (SFVS)
Input: An undirected graph G = (V , E), a set of terminals T ⊆ V of size k.
Question: Find a minimum set of vertices which hits every cycle passing through T .

Fomin et al. [13] designed an algorithm for SFVS on general graphs which runs in time O∗(1.8638n). It is important to note 
that their algorithm not only finds a minimum sized solution, but also enumerates all minimal solutions in the same time. 
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Using our methodology we design an algorithm for SFVS which runs in time O∗(1.8932n), and if we allow randomization 
then we can design an algorithm with an expected running time of O∗(1.8826n). While our algorithms are currently not 
the fastest ones, as faster FPT or exact algorithm for FVS are devised, the running time of our algorithm will continue to 
improve. Since the running time of our algorithm for SFVS is quite close to the algorithm of [13], we expect that the further 
improvements in the algorithms for FVS will allow our algorithm to take the lead. Golovach et al. [17] initiated the study 
of exact algorithms for SFVS on special graph classes by giving an enumeration algorithm for SFVS on chordal graphs which 
runs in time O∗(1.6708n). They left it as an open question whether there exist algorithms for SFVS on chordal graphs (even 
on split graphs) which are faster than O∗(1.6708n). Though our algorithm using the described methodology for SFVS, in 
general, does not improve on the best known algorithm, it answers this question in the affirmative for SFVS on chordal 
graphs. In particular, we obtain an algorithm with running time O∗(1.6181n). More generally, our algorithm for SFVS runs 
in O∗(1.6181n) on any graph class G which is closed under vertex deletions and edge contractions, and where the weighted 
FVS problem can be solved in polynomial time. Finally, we also consider the directed variant of the SFVS problem, namely
Directed Subset Feedback Vertex Set (DSFVS), and obtain an algorithm with running time O∗(1.9993n). This is the first 
algorithm improving upon the trivial O∗(2n) algorithm for this problem.

2. Preliminaries

Let C be a cycle in a graph G . A chord of C is an edge e /∈ C which connects two vertices of C . A graph G is called a 
chordal graph if every cycle on four or more vertices has a chord. A clique is a graph that has an edge between every pair of 
vertices, and we use Kn for n ≥ 2 to denote a clique on n vertices.

Now we define the contraction of an edge or a subgraph in G . Let G be an undirected graph and let (u, v) be an edge 
in G . Let G ′ be the graph obtained from G in the following manner. We add a new vertex w . For every edge (u, z) where 
z �= v we add an edge (w, z), and for every edge (y, v) where y �= u we add an edge (y, w). Finally we delete the vertices 
u and v , and any parallel edges from the graph. We say that G ′ is obtained from G by contracting the edge (u, v). Let H be 
a subgraph of G . Consider the graph G ′ obtained from G by contracting every edge of H in an arbitrary order. We say that 
G ′ is obtained from G by contracting the subgraph H .

Now we define the torso graph of a subset of vertices in G . Let G = (V , E) be an undirected graph and T and V ′ be 
subsets of V . We denote by torso(T , V ′) the graph defined in the following manner. The vertex set of this graph is T and 
the edge set comprises of all pairs (ti, t j) such that there is a ti − t j path in G whose internal vertices lie in V ′ \ T or there 
is an edge (ti, t j) ∈ E .

We also define an analogous notion of a torso graph in directed graphs. Let D = (V , A) be a directed graph and T and V ′
be subsets of V . We denote by torso(T , V ′) the digraph defined in the following manner. The vertex set of this graph is T
and the edge set comprises of all ordered pairs (ti, t j) such that there is a directed ti − t j path in D whose internal vertices 
lie in V ′ \ T or there is an edge (ti, t j) ∈ A.

Finally, we define a generalization of the torso graphs. Let G = (V , E) be an undirected graph and T1, T2, . . . T� and V ′ be 
subsets of V . We denote by �-torso(T1, . . . , T�, V ′) the graph defined as follows. It has vertex set T = T1 ∪ T2 ∪ · · · ∪ T�

and the edge set comprises of all pairs (ti, t j) such that ti ∈ Ti′ and t j ∈ T j′ for some i′ �= j′ and there is a ti − t j path in G
whose internal vertices lie in V ′ \ T .

3. NODE MULTIWAY CUT

In this section we design an exact algorithm for the Node Multiway Cut problem. We begin by giving an algorithm for 
unrestricted version of this problem.

3.1. Unrestricted Node Multiway Cut

The following observation follows from the fact that the set of terminals in an instance of Unrestricted Node Multiway 
Cut itself is a potential solution.

Observation 3.1. Let (G, T ) be an instance of Unrestricted Node Multiway Cut and S be an optimum solution to this instance. 
Then |S| ≤ |T |.

Now we design an algorithm for Unrestricted Node Multiway Cut using the FPT algorithm for Node Multiway Cut and 
Observation 3.1. This algorithm uses the FPT algorithm for multiway cut of [10]. We will use this algorithm for the instances 
where k is “small”.

Lemma 3.2. Let (G, T ) be an instance of Unrestricted Node Multiway Cut where |T | = k. Then we can find an optimum solution 
to this instance in time O∗(2k).

Proof. We begin by performing the following transformation on the given instance. For each terminal ti ∈ T , we add a new 
vertex t′ and make it adjacent to ti alone. Let T ′ be the set of these new vertices and G ′ be the graph thus constructed. 
i
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It is easy to see that the set of optimum solutions to the instance (G ′, T ′) of Node Multiway Cut and the set of optimum 
solutions to the instance (G, T ) of Unrestricted Node Multiway Cut are in one to one correspondence. Therefore, we may 
utilise the algorithm of [10] which solves Node Multiway Cut in time O∗(2�) where � is the size of the optimum solution. 
By Observation 3.1, we have that � ≤ k and therefore, the statement of the lemma follows. �

Next, we design another algorithm for Unrestricted Node Multiway Cut which will be used for the instances where k
is “large”.

Lemma 3.3. Let (G, T ) be an instance of Unrestricted Node Multiway Cut where G = (V , E) and let S be an optimum solution 
to this instance. Let X = S \ T and Y = S ∩ T . Then Y is a vertex cover of the graph torso(T , V \ X). Conversely, if Y ′ is any vertex 
cover for the graph torso(T , V \ X), then the set X ∪ Y ′ is a solution to this instance.

Proof. We first show that Y is indeed a vertex cover of G ′ = torso(T , V \ X). Let E ′ be the edge set of G ′ . Suppose that 
Y is not a vertex cover of G ′ and there is an edge (ti, t j) ∈ E ′ which is not covered by Y . Observe that (ti, t j) /∈ E , since this 
would contradict the assumption of S being a solution. Therefore, it must be the case that there is a path P between ti and 
t j in G[V \ X] whose internal vertices are disjoint from T . Since this path is disjoint from both X and Y , it is also present 
in the graph G \ S , a contradiction. Hence, we conclude that Y is indeed a vertex cover of torso(T , V \ X).

We now show that for any vertex cover Y ′ of G ′ , the set X ∪ Y ′ is a solution to the instance (G, T ) of Unrestricted Node 
Multiway Cut. Suppose to the contrary that there is a vertex cover Y ′ of G ′ = torso(T , V \ X) such that the set S ′ = X ∪ Y ′
is not a solution to the instance (G, T ). That is, there is a ti -t j path in G \ S ′ for some ti, t j ∈ T . Observe that this implies 
the existence of a ti′ -t j′ path P in G for some ti′ , t j′ ∈ T \ Y ′ such that the internal vertices of P (if any) are disjoint from 
T ∪ S ′ . Therefore the edge (ti′ , t j′ ) is not covered by Y ′ in G ′ , a contradiction. This completes the proof this lemma. �

Using the above lemma and the FPT algorithm for Vertex Cover of [18], we are able to show the following lemma.

Lemma 3.4. There is an algorithm that given an instance (G = (V , E), T ) of Unrestricted Node Multiway Cut returns an optimum 

solution in time O∗
(

1.7851n
(

1.2738
1.7851

)k
)

, where k = |T | and n = |V |.

Proof. The description of the algorithm is as follows. For every X ⊆ (V \ T ) such that |X | ≤ k, we construct the graph 
G X = torso(T , V \ X) and compute a minimum vertex cover Y X for G X . We compute the minimum vertex cover by using 
the FPT algorithm of [18], which runs in time O∗(1.2738�) where � is the size of an optimum vertex cover. Finally, we 
return the set X ∪ Y X which is a smallest solution over all choices of X . The correctness of this algorithm follows from 
Lemma 3.3.

In order to bound the running time of this algorithm, first observe that we can ignore those choices of X for which the 
set Y X has size > k − |X |. Therefore, the FPT algorithm we use to compute a minimum vertex cover of torso(T , V \ X)

runs in time O∗(1.2738k−|X |). Summing over all choices of X , the time taken by our algorithm is upper bounded by

k∑
x=0

(
n − k

x

)
O∗(1.2738k−x)

= O∗(1.2738k
k∑

x=0

(
n − k

x

)(
1

1.2738

)x)

= O∗(1.2738k
(

1 + 1

1.2738

)n−k)

= O∗
(

1.7851n
(

1.2738

1.7851

)k
)

This completes the proof of the lemma. �
Now we are ready to prove the main theorem of this section.

Theorem 3.5. There is an algorithm that given an instance (G = (V , E), T ) of Unrestricted Node Multiway Cut returns an opti-
mum solution in time O∗(1.4767n), where n = |V |.

Proof. Let (G, T ) be a given instance of Unrestricted Node Multiway Cut and |T | = k. Recall that we have described two 
different algorithms for Unrestricted Node Multiway Cut. We now choose either of these algorithms based on the values of 
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k and n. If k ≤ 0.5622n, then we use the algorithm described in Lemma 3.2. In this case, the running time is upper bounded 
by O∗(2k) ≤ O∗(20.5622n) ≤ O(1.4767n). If k > 0.5622n, then we use the algorithm described in Lemma 3.4. This algorithm 

runs in time O∗
(

1.7850n
(

1.2738
1.7850

)k
)

which is a decreasing function of k. Substituting k = 0.5622n, we get an upper bound 

on the running time as O∗(1.4767n). This completes the proof of the theorem. �
3.2. Node Multiway Cut

In this subsection, we give an exact algorithm for the Node Multiway Cut problem. We start with the following observa-
tion which follows from the fact that any solution to an instance of Node Multiway Cut is disjoint from the set of terminals 
in the instance.

Observation 3.6. Let (G, T ) be an instance of Node Multiway Cut. If T is not an independent set in G, then there is no solution to 
the instance (G, T ). Furthermore, if two terminals t1 and t2 have a common neighbor v, then v must be in every solution for the given 
instance.

Due to Observation 3.6, we may assume that the terminal set is independent and the neighborhoods of the terminals in 
G are pairwise disjoint. This reduces the restricted Node Multiway Cut to the following generalization of the Unrestricted 
Node Multiway Cut, also known as the Group Multiway Cut problem.

GROUP MULTIWAY CUT

Input: An undirected graph G = (V , E) and pairwise disjoint sets of terminals 
{T1, T2, . . . , T�}.
Question: Find a set S ⊆ V (G) of minimum size such that G \ S has no u − v path for 
any u ∈ Ti, v ∈ T j and i �= j.

In the following, we describe an exact algorithm for Group Multiway Cut. The ideas and arguments are similar to those 
used in the proof of Theorem 3.5. First we give a structural lemma about the vertices in Ti .

Lemma 3.7. Let (G, T1, . . . , T�) be an instance of Group Multiway Cut. Let G ′ be the graph obtained by removing from G, the edges 
in G[Ti] for every i ∈ {1, . . . , �}. Then, S ⊆ V is a solution to the instance (G, T1, . . . , T�) if and only if it is also a solution to the 
instance (G ′, T1, . . . , T�).

Proof. Since G ′ is a subgraph of G , any solution for (G, T1, . . . , T�) is also a solution for (G ′, T1, . . . , T�). We now consider 
the reverse direction. Let S be a solution for (G ′, T1, . . . , T�). We claim that S is also a solution for (G, T1, . . . , T�). Suppose 
that this is not the case, that is, there is a path P in G from ui ∈ Ti to u j ∈ T j disjoint from S . Furthermore, we can assume 
without loss of generality that the internal vertices of P (if any) are disjoint from Tr for every 1 ≤ r ≤ �. Observe that P is 
also present in the graph G ′ , and therefore S intersects P by definition, a contradiction. �

Due to Lemma 3.7, henceforth we can assume that each Ti is an independent set in G . We have the following observation 
similar to Observation 3.1.

Observation 3.8. Let (G, T1, . . . , T�) be an instance of Group Multiway Cut. Let S be an optimum solution to this instance and 
T̂ = ∪�

i=1Ti . Then, |S| ≤ |T̂ |.

We have the following lemma which gives us an algorithm for the instances where k = | ∪�
i=1 Ti | is “small”. The proof of 

this lemma is very similar to the proof of Lemma 3.2.

Lemma 3.9. Let (G, T1, . . . , T�) be an instance of Group Multiway Cut, let T̂ = ∪�
i=1Ti and let |T̂ | = k. Then we can find an optimum 

solution to the given instance of Group Multiway Cut in time O∗(2k).

Proof. We first reduce this instance to an instance of Node Multiway Cut, by creating a new terminal ti , for each set Ti , 
which is then made adjacent to all vertices in Ti . We then apply the FPT algorithm of Cygan et al [10] for Node Multiway 
Cut to obtain the required solution. This takes time O∗(2k). �

Next, we describe another algorithm for Group Multiway Cut. We will use this algorithm for those instances where 
k = | ∪� Ti | is “large”. We have the following lemma, whose proof is very similar to the proof of Lemma 3.3.
i=1
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Lemma 3.10. Let (G, T1, . . . , T�) be an instance of Group Multiway Cut where G = (V , E) and let S be an optimum solution to this 
instance. Let X = S \ T̂ and Y = S ∩ T̂ where T̂ = ∪�

i=1Ti . Then, Y is a vertex cover of �-torso(T1, . . . , T�, V \ X) and conversely, 
for any vertex cover Y ′ for the graph �-torso(T1, . . . , T�, V \ X), the set X ∪ Y ′ is a solution to this instance.

Proof. We first show that Y is indeed a vertex cover of G ′ = �-torso(T1. . . . , T�, V \ X). Let E ′ be the edge set of G ′ . 
Suppose that Y is not a vertex cover of G ′ and there is an edge (ti, t j) ∈ E ′ which is not covered by Y . Observe that if 
ti ∈ Ti′ and t j ∈ T j′ for i′ �= j′ then (ti, t j) /∈ E since it contradicts the assumption of S being a solution. Furthermore, if 
i′ = j′ , then (ti, t j) /∈ E ′ by definition of torso. Therefore, it must be the case that there is a path P between ti and t j in 
G[V \ X] whose internal vertices are disjoint from T . Since this path is disjoint from both X and Y , it is also present in the 
graph G \ S , a contradiction. Hence, we conclude that Y is indeed a vertex cover of G ′ .

We now show that for any vertex cover Y ′ of G ′ , the set X ∪ Y ′ is a solution to the instance (G, T1, . . . , T�) of Group 
Multiway Cut. Suppose to the contrary that there is a vertex cover Y ′ of G ′ such that the set S ′ = X ∪ Y ′ is not a solution 
to the instance (G, T1, . . . , T�). That is, there is a ti -t j path in G \ S ′ for some ti ∈ Ti′ and t j ∈ T j′ where i′ �= j′ . Observe 
that this implies the existence of a tp -tq path in G \ S ′ for some tp ∈ T p′ and tq ∈ Tq′ where p′ �= q′ such that the internal 
vertices of P (if any) are disjoint from T̂ ∪ S ′ . Therefore the edge (tp, tq) is not covered by Y ′ in G ′ , a contradiction. This 
completes the proof of the lemma. �

Next, using Lemma 3.10 we can show the following lemma.

Lemma 3.11. There is an algorithm that given an instance (G = (V , E), T1, . . . , T�) of Group Multiway Cut returns an optimum 

solution in time O∗
(

1.7851n
(

1.2738
1.7851

)k
)

, where k = | ∪�
i=1 Ti | and n = |V |.

Proof. Let T̂ = ∪�
i=1Ti . The description of the algorithm is as follows. For every X ⊆ (V \ T̂ ) such that |X | ≤ k, we construct 

the graph G X = �-torso(T1, T2, . . . , T�, V \ X) and compute a minimum vertex cover Y X for G X . We compute the minimum 
vertex cover by using the FPT algorithm of [18], which runs in time O∗(1.2738�) where � is the size of an optimum vertex 
cover. Finally, we return the set X ∪ Y X which is a smallest solution over all choices of X . The correctness of this algorithm 
follows from Lemma 3.10.

In order to bound the running time of this algorithm, first observe that we can ignore those choices of X for 
which the set Y X has size > k − |X |. Therefore, the FPT algorithm we use to compute a minimum vertex cover of 
�-torso(T1, T2, . . . , T�, V \ X) runs in time O∗(1.2738k−|X |).

Summing over all choices of X , the time taken by our algorithm is
k∑

x=0

(
n − k

x

)
O∗(1.2738k−x)

= O∗(1.2738k
k∑

x=0

(
n − k

x

)(
1

1.2738

)x)

= O∗(1.2738k)

(
1 + 1

1.2738

)n−k)

= O∗
(

1.7851n
(

1.2738

1.7851

)k
)

This completes the proof of the lemma. �
Combining the algorithms from Lemma 3.9 and Lemma 3.11, we can show the next theorem.

Theorem 3.12. There is an algorithm that, given an instance (G = (V , E), T1, . . . , T�) of Group Multiway Cut, runs in time 
O∗(1.4767n) and returns an optimum solution, where n = |V |.

Proof. Let (G, T1, . . . , T�) be the given instance of Group Multiway Cut and T̂ = ∪�
i=1Ti and |T̂ | = k. Recall that we have 

described two different algorithms for Group Multiway Cut. We now choose either of these algorithms based on the values 
of k and n. If k ≤ 0.5622n, then we use the algorithm described in Lemma 3.9. In this case, the running time is upper 
bounded by O∗(2k) ≤ O∗(1.4767n). If k > 0.5622n, then we use the algorithm described in Lemma 3.11. This algorithm 

runs in time O∗
(

1.7851n
(

1.2738
1.7851

)k
)

which is a decreasing function of k. Substituting k = 0.5622n, we get an upper bound 

on the running time as O∗(1.4767n). This completes the proof of the theorem. �
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The following theorem follows from Theorem 3.12 and Observation 3.6.

Theorem 3.13. There is an algorithm that given an instance (G = (V , E), T ) of Node Multiway Cut returns an optimum solution in 
time O∗(1.4767n), where n = |V |.

4. DIRECTED UNRESTRICTED NODE MULTIWAY CUT

In this section, we consider the Directed Unrestricted Node Multiway Cut problem.

DIRECTED UNRESTRICTED NODE MULTIWAY CUT

Input: A directed graph D = (V , A) and a set of terminals T = {t1, t2, . . . , tk}.
Question: Find a set S ⊆ V of minimum size such that G \ S has no ti → t j path for any 
i �= j.

Since we consider the version where the terminals can be deleted, we have the following observation.

Observation 4.1. Let (G, T ) be an instance of Directed Unrestricted Node Multiway Cut and S be an optimum solution to this 
instance. Then, |S| ≤ |T |.

The proof of the next lemma is identical to the proof of Lemma 3.3 and therefore, we do not repeat it.

Lemma 4.2. Let (D, T ) be an instance of Directed Unrestricted Node Multiway Cut where D = (V , A) and let S be an optimum 
solution to this instance. Let X = S \ T and Y = S ∩ T . Then Y is a vertex cover of the graph torso(T , V \ X). Conversely if Y ′ is any 
vertex cover of the graph torso(T , V \ X), then the set X ∪ Y ′ is a solution to this instance.

Note that torso(T , V \ X) is a directed graph. So by a vertex cover of torso(T , V \ X) we mean a vertex cover of the 
underlying undirected graph of torso(T , V \ X). Now we describe our algorithm for Directed Unrestricted Node Multiway 
Cut.

Theorem 4.3. Directed Unrestricted Node Multiway Cut can be solved in O∗(1.6181n) time.

Proof. The description of the algorithm is as follows. For every X ⊆ (V \ T ) such that |X | ≤ k, we construct the graph 
D X = torso(T , V \ X) and compute a minimum vertex cover Y X for D X . Note that we can ignore those choices of X for 
which the set Y X has size > k −|X |. We compute the minimum vertex cover by using the FPT algorithm of [18], which runs 
in time O∗(1.2738�) where � is the size of an optimum vertex cover. Finally, we return the set X ∪ Y X which is a smallest 
solution over all choices of X . The correctness of this algorithm follows from Lemma 4.2. We now bound the running time 
T of our algorithm. For every choice of X we run the FPT algorithm for vertex cover, which takes time O∗(1.2738k−|X |). 
Therefore we have,

T =
k∑

x=0

(
n − k

x

)
O∗(1.2738k−x)

≤
k∑

x=0

(
n − k

x

)
O∗(1.6181k−x)

= O∗(1.6181k)

k∑
x=0

(
n − k

x

)(
1

1.6181

)x

≤ O∗(1.6181k)

(
1

1.6181
+ 1

)n−k)

= O∗(1.6181k × (1.6181)n−k
)

= O∗(1.6181n)

This completes the proof of the theorem. �
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5. SUBSET FEEDBACK VERTEX SET

In this section we design an exact algorithm for Subset Feedback Vertex Set. We actually design two different algorithms 
for the problem, and then use these two algorithms to construct our final exact algorithm.

Let (G, T ) be the given instance of Subset Feedback Vertex Set. Recall that we are allowed to pick terminal vertices into 
a solution. The following observation follows from the fact that the set of terminals itself is a solution.

Observation 5.1. Let (G, T ) be an instance of Subset Feedback Vertex Set, and let S be an optimum solution to this instance. Then 
|S| ≤ |T |.

Lemma 5.2.

1. There is an algorithm that given an instance (G = (V , E), T ) of Subset Feedback Vertex Set returns an optimum solution in 

time O∗
(

1.2611n
(

3.619
1.2611

)k
)

, where k = |T | and n = |V |.
2. There is an algorithm that given an instance (G = (V , E), T ) of Subset Feedback Vertex Set returns an optimum solution in 

time O∗
(

2n
(

1.7347
2

)k
)

, where k = |T | and n = |V |.

Proof. For every X ⊆ (V \ T ) such that |X | ≤ k, let T X be the set of terminals t such that G \ X contains a cycle passing 
through t which contains no other terminal vertex. Let G X be the graph obtained from G \ (X ∪ T X ) by contracting every 
connected component of G \ (T ∪ X). Given X , we can compute both T X and G X in polynomial time. Let Y X be a minimum 
feedback vertex set for G X containing only vertices of T .

For the first algorithm, we compute Y X in the following manner. We assign a weight of k + 1 to the vertices not in T
and 1 to the vertices in T . We then use an FPT algorithm to compute a minimum feedback vertex set of G X of weight at 
most k. The current fastest deterministic FPT algorithm for checking if there is a feedback vertex set of weight p in a graph 
with integral weights is due to [19], who extend the algorithm of Kociumaka and Pilipczuk [20] to weighted graphs, and it 
runs in time O∗(3.619p). The current fastest randomized algorithm weighted feedback vertex set with integral weights is 
due to Cygan et al. [10], and it runs in time O∗(3p).

For the second algorithm we compute Y X by computing a maximum induced forest of G X which contains all the non-
terminal vertices and taking its complement. Let F be the set of all non-terminal vertices in G X and let q = |V (G X )| − |F |
be the number of terminal vertices in G X . We use the O∗(1.7347q) algorithm of Fomin and Villanger [3] on (G X , F ) and 
compute a maximum induced forest of G X containing F .

Let S X = X ∪ T X ∪ Y X . We compute S X for every X and output the one with the smallest number of vertices as our 
solution.

Correctness The correctness of both the algorithms follows from the following claims.

Claim 5.3. Let S be an optimum solution to the given instance of Subset Feedback Vertex Set and let X = S \ T . Let T X be the set of 
terminals t such that G \ X contains a cycle passing through t which contains no other terminal vertices. Then T X ⊆ S.

Proof. Let t ∈ T X and Ct is a cycle passing through T in G \ X which doesn’t contain any other terminal vertex. If t /∈ S , 
then S doesn’t intersect Ct . This is a contradiction. Thus T X ⊆ S . This completes the proof of this claim. �

The above claim shows the correctness of adding T X to the solution. Once T X is added to the solution then there are no 
cycles containing exactly one vertex from T . In this case, the following lemma shows that it suffices to compute a minimum 
feedback vertex set for the graph G X .

Claim 5.4. Let S be an optimum solution to the given instance of Subset Feedback Vertex Set and let X = S \ T and Y = S ∩ T . 
Furthermore, suppose that there are no cycles in G \ X containing a unique vertex of T , i.e., perform the update T ← T \ T X . Let G X

be obtained from G \ X by contracting every connected component of G \ (T ∪ X). Then Y is a minimum feedback vertex set of G X . 
Conversely if Y ′ is any feedback vertex set of G X , then the set X ∪ Y ′ is a solution for the given instance of Subset Feedback Vertex 
Set.

Proof. We first show that for any W ⊆ T , there is a cycle in G X \ W if and only if there is a cycle in G \ (X ∪ W ) which 
passes through T \ W . The claim then follows by setting W = Y and W = Y ′ . First, observe that there is a unique connected 
component Hu in G \ (T ∪ X) corresponding to each non-terminal vertex u ∈ G X .

Now consider a cycle C in G X \ W and observe that all the terminal vertices in C lie in T \ W . We can replace each 
non-terminal vertex u in C with a path Pu in Hu to obtain a closed walk in G . However this closed walk is actually a cycle, 
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since the paths {Pu} are pairwise vertex disjoint (they belong to different connected components of G \ (T ∪ X)). Thus we 
obtain a cycle in G \ (X ∪ W ).

Conversely let C be a cycle in G \ (X ∪ W ) that passes through a terminal t ∈ T . We assume that C visits each connected 
component of G \ (T ∪ X) at most once: suppose the cycle C visits the component Hu (corresponding to the non-terminal 
u ∈ G X ) of G \ (T ∪ X) at least twice. Let y, y′ be the first, last5 vertices of C ∩ Hu . Since Hu is connected, there is a 
y − y′ path P ′ contained completely within Hu . We replace the y − y′ path in C which contained at least one other vertex 
of Hu (since C visited Hu at least twice) by P ′ . Hence (the modified) C visits Hu exactly once now. If there are any more 
connected components of G \(T ∪ X) which are visited by C more than once, then we repeat the above process for each such 
connected component. The final modified version of the cycle satisfies the desired condition that it visits each connected 
component of G \ (T ∪ X) at most once.

By our assumption that there are no cycles in G \ X containing exactly one terminal from T , we know that every 
terminal in T \ W has at most one edge to a connected component in G \ (T ∪ X). Let Pu be a maximal subpath of C which 
is contained in the connected component Hu of G \ (T ∪ X). Consider the closed walk C ′ obtained from C by contracting 
the maximal subpath Pu to the vertex u, for every u. Observe that C ′ is actually a cycle since no vertex is repeated in C ′ , 
and C ′ is present in G X \ W . This completes the proof of this claim. �
Running time Let T1 be the running time of the first algorithm and, T2 be the running time of the second algorithms. The 
following two claims establish the running times of both the algorithms.

Claim 5.5. T1 =O∗
(

1.2611n ×
(

3.619
1.2611

)k )
.

Proof. For a set X the potential solution we output has size |Y X | +|X | +|T X |. We know that the optimum is at most |T | = k
since deleting T itself is a feasible solution. Hence if |Y X | > k − |X | then we have |Y X | + |X | + |T X | ≥ |Y X | + |X | > k, and 
hence we can ignore this choice of X as it will never lead to an optimum solution. Hence we have that

T1 =
k∑

x=0

(
n − k

x

)
O∗(3.619k−x)

= O∗(3.619k)

k∑
x=0

(
n − k

x

)( 1

3.619

)x

≤ O∗(3.619k ×
(

1 + 1

3.619

)n−k)
= O∗(3.619k × (1.2611)n−k

)

= O∗(1.2611n ×
(

3.619

1.2611

)k ) �

Claim 5.6. T2 =O∗
(

2n ×
(

1.7347
2

)k )
.

Proof. Observe the number of terminals is q = |T | −|T X | ≤ |T | = k. Therefore the exact algorithm runs in time O∗(1.7347k). 
Therefore we have,

T2 =
k∑

x=0

(
n − k

x

)
O∗(1.7347k)

= O∗(1.7347k)

k∑
x=0

(
n − k

x

)

= O∗(1.7347k × 2n−k
)

= O∗(2n ×
(

1.7347

2

)k ) �
This completes the proof of the lemma. �

5 That is, exactly one of the two y − y′ paths in C contains vertices from Hu .
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Theorem 5.7. There is an deterministic (resp. randomized) algorithm that given an instance (G = (V , E), T ) of Subset Feedback 
Vertex Set returns an optimum solution in time O∗(1.8932n) (resp. O∗(1.8826n)), where n = |V |.

Proof. Let (G, T ) be the given instance of Subset Feedback Vertex Set, where G is a graph on n vertices and |T | = k. Based 
on the values of n and k we run one of the two algorithms described above.

Note that T1, T2 are increasing, decreasing functions when k ∈ [0, n]. Setting T1 = T2 gives k = 0.3855n. If k ≤ 0.3855n, 
then we run the first algorithm described in Lemma 5.2. The running time is upper bounded by O∗

(
1.2611n ×(

3.619
1.2611

)0.3855n )
= O∗(1.8932n). Otherwise if k > 0.3855n, then we run the second algorithm described in Lemma 5.2. 

This algorithm runs in time

O∗(2n ×
(

1.7347

2

)k )
which is a decreasing function of k. Substituting k = 0.3855n, we get an upper bound of O∗(1.8932n) on the running time 
in this case as well.

We obtain the improved running time of O∗(1.8826n) for a randomized algorithm by using the randomized O∗(3k)

algorithm of [21] in Claim 5.5 (instead of the deterministic O∗(3.619k) algorithm of [19]). �
5.1. Subset Feedback Vertex Set on chordal graphs

In this section we give an algorithm for Subset Feedback Vertex Set on chordal graphs which improves upon the previous 
best algorithm of [17], and is much simpler. The main difference between this algorithm and the algorithm for Subset 
Feedback Vertex Set described earlier is that we use a polynomial time algorithm to solve weighted Feedback Vertex Set

on chordal graphs ([22,23]), instead of an FPT or an exact algorithm. Recall that a graph is chordal if it does not contain 
any Ct (for t ≥ 4) as an induced subgraph. It is easy to see from this definition that chordal graphs are closed under vertex 
deletions and edge contractions: neither of these operations create larger induced cycles.

We are now ready to prove the main theorem of this section:

Theorem 5.8. There is an algorithm that, given an instance (G = (V , E), T ) of Subset Feedback Vertex Set on chordal graphs, 
returns an optimum solution in O∗(1.6181n) time, where n = |V |.

Proof. The algorithm is the same as the two algorithms described in Lemma 5.2 except that we use the polynomial time 
algorithm for Feedback Vertex Set on chordal graphs instead of the FPT or the exact exponential algorithm. For every choice 
of X , we compute T X and G X in polynomial time. Observe that the graph G X is obtained from G by vertex deletions and 
edge contractions, implying that G X is also a chordal graph. We assign weight 1 to each terminal vertex and weight k + 1
to each non-terminal vertex, and compute in polynomial time a minimum weight feedback vertex set Y X of G X . This can 
be done by using a polynomial time algorithm of Yannakakis and Gavril [23] that computes a maximum weight induced 
forest in a chordal graph. Alternatively, we can use an algorithm of Corneil and Fonlupt [22]. We now analyze the running 
time of our algorithm.

Let S be any optimum solution and let X = S \ T . Observe that |X | ≤ |S| ≤ |T |. We now bound the number of choices 
for X

number of choices for X ≤
k∑

x=0

(
n − k

x

)
(since |T | = k)

≤
k∑

x=0

(
n − k

x

)
O∗(1.6181k−x) (since 1.6181 > 1)

= O∗(1.6181k)

k∑
x=0

(
n − k

x

)
O∗(1.6181−x)

≤ O∗(1.6181k)
(

1 + 1

1.6181

)n−k
(by Binomial theorem)

= O∗(1.6181k)(1.6181)n−k (since 1.6181 is a root of x2 − x − 1 = 0)

= O∗(1.6181n)

Since after choosing X we do only a polynomial time computation, the running time of our algorithm is O∗(1.6181n). �
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We remark that we can use the above method to obtain faster exact algorithm for Subset Feedback Vertex Set on other 
graph classes, such as AT-free graphs [24], which are closed under vertex deletions and edge contractions, and Feedback 
Vertex Set is solvable in polynomial time on them.

6. DIRECTED SUBSET FEEDBACK VERTEX SET

In this section we give an exact algorithm for the Directed Subset Feedback Vertex Set problem running in time 
O∗(1.9993n). The problem is defined as follows.

DIRECTED SUBSET FEEDBACK VERTEX SET

Input: A directed graph D = (V , A) and a set of terminal vertices T of size k.
Question: Find a minimum set of vertices in D which intersects every cycle in D which 
contains at least one vertex of T .

Next we observe the following property of directed graphs.

Observation 6.1. Let D = (V , A) be a directed graph. For any vertex v ∈ V , the following holds: v belongs to a closed walk in D if and 
only if v belongs to a cycle in D.

Lemma 6.2. Let (D = (V , A), T ) be an instance of Directed Subset Feedback Vertex Set. Let S be an optimum solution to this 
instance and X = S \ T , Y = S ∩ T . Furthermore, suppose that every cycle in D \ X that intersects T , contains at least two vertices 
of T . Then Y is a directed feedback vertex set in the graph torso(T , V \ X) if and only if X ∪ Y is a directed subset feedback vertex 
set for the instance (D, T ).

Proof. Suppose X ∪ Y is a solution in D where X ∩ T = ∅ and Y ⊆ T . If Y is not a directed feedback vertex set in D X =
torso(T , V \ X), then there is a cycle C X in D X \ Y . From C X in D X we can obtain a closed walk C ′ in D in the following 
manner. We replace every edge (ti, t j) of C X which is not present in A, with a path Pij from ti to t j in D \ X whose internal 
vertices lie in V \ (T ∪ X). Therefore we get a closed walk C ′ in D \ (X ∪ Y ) which contains a terminal. By Observation 6.1, 
there is a cycle in D which passes through a terminal in D , which is not covered by X ∪ Y . This is a contradiction.

Conversely suppose that Y be a directed feedback vertex set in D X , but X ∪ Y is not a solution for (D, T ). Then there is a 
cycle C in D \ (X ∪ Y ) that contains at least two vertices of T . Further assume that C is the shortest such cycle. Observe that 
every subpath Pij of C from terminals ti to t j whose internal vertices lie in V \ T , implies an edge (ti, t j) in D X . Therefore 
we can obtain a cycle C ′ in D X from C by replacing the subpath Pij with the edge (ti, t j), for every pair of terminals ti, t j
in C . Observe that this cycle is not covered by Y . This is a contradiction.

This completes the proof of the lemma. �
The following observation is immediate since the set T forms a potential solution.

Observation 6.3. Let (D, T ) be an instance of Directed Subset Feedback Vertex Set and let S be an optimum solution for this 
instance. Then, |S| ≤ |T |.

We are now ready to prove the main theorem of this section.

Theorem 6.4. There is an algorithm that given an instance (D = (V , A), T ) of Directed Subset Feedback Vertex Set returns an 
optimum solution in time O∗(1.9993n), where n = |V |.

Proof. The description of the algorithm is as follows. For every X ⊆ (V \ T ) such that |X | ≤ k, we first compute (in polyno-
mial time) the set T X which is the set of terminals t ∈ T such that there is a directed cycle in the graph D[(V \(T ∪ X)) ∪{t}]. 
Clearly T X must be included in every optimum solution. In polynomial time, construct the graph D X = torso(T \T X , V \ X). 
Then we compute a minimum directed feedback vertex set Y X for D X by using the exact exponential algorithm by Raz-
gon [16] for Directed Feedback Vertex Set, which runs in time O(1.9977�) where � = |V (D X )| = |T \ T X | ≤ |T | = k. Finally, 
we return the set X ∪ T X ∪ Y X which is a smallest solution over all choices of X . The correctness of the algorithm follows 
from Lemma 6.2.

Running time The running time T of our algorithm is upper bounded by

T ≤
k∑

x=0

(
n − k

x

)
O∗(1.9977k).

To compute an upper bound on T only as a function of n, we need to examine the values of n and k. The following claim 
analyzes the running time of our algorithm, and completes the proof of the theorem.
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Claim 6.5. T =O(1.9993n).

Proof. Let ε > 0 be a constant which we fix later. Based on the values taken by n and k we consider the following two 
cases:

Case (1.) k ≤ n − k

2 + ε
. To address this case, we require the following well known result (see for example Lemma 3.13 in [1]).

Claim 6.6. Let 0 < α < 1. Then(
n

αn

)
= O∗(( 1

αα(1 − α)1−α

)n)
.

By Claim 6.6 for every 0 ≤ x ≤ k we have(
n − k

x

)
≤

(
n − k

k

)
(since k < n−k

2 )

≤
(

n − k
n−k
2+ε

)
(since k < n−k

2 )

= O∗( 2 + ε

(1 + ε)
1+ε
2+ε

)n−k
(by Claim 6.6)

The first restriction we impose on ε is that( 2 + ε

(1 + ε)
1+ε
2+ε

)
≥ 1.9977 (1)

So, in this case we have

T ≤ O∗(1.9977k ·
( 2 + ε

(1 + ε)
1+ε
2+ε

)n−k) = O∗( 2 + ε

(1 + ε)
1+ε
2+ε

)n
(2)

Case (2.) k >
n − k

2 + ε
. In this case we have

T =
k∑

x=0

(
n − k

x

)
O∗(1.9977k)

= O∗(1.9977k) ·
k∑

x=0

(
n − k

x

)

≤ O∗(1.9977k · 2n−k) (by Binomial theorem)

= O∗(2n ·
(1.9977

2

)k)
≤ O∗(2n ·

(1.9977

2

) n
3+ε

)
(since k > n−k

2+ε )

Equating the upper bound from Case (2.) with that from Equation 2 gives ε = 0.0565. Note that this value of ε also satisfies 
Equation 1. Hence, we have that

T = O∗(2n ·
(1.9977

2

) n
3.0565

)
= O∗(1.9993n) �

This completes the proof of the theorem. �
7. Conclusion

We introduced a methodology of obtaining non-trivial exact exponential algorithms for several terminal set problems. We 
conclude with open problems which seems to be evasive to our approach. Designing an algorithm faster than O∗(2n) for
Directed Node Multiway Cut remains an interesting question. Another interesting problem is Subset Odd Cycle Transver-

sal, where the task is to find a vertex subset of minimum size hitting all cycles of odd length containing at least one 
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terminal. Again, the problem is trivially solvable in O∗(2n) but no faster algorithm for this problem is known. We conclude 
by remarking that an approach based on our methodology might result in such an algorithm since Odd Cycle Transver-
sal is solvable in time O∗(1.4661n) [4,5]. Finally designing an algorithm for Multicut on directed graphs, faster than the 
trivial O∗(2n) algorithm, remains an interesting open problem. Only recently, it has been settled for undirected graphs. In 
particular, Lokshtanov et al. [25] obtained an algorithm for Multicut on undirected graphs running in time O∗(1.987n).
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