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Abstract. We initiate the algorithmic study of the following “structured augmentation” ques-
tion: is it possible to increase the connectivity of a given graph G by superposing it with another
given graph H? More precisely, graph F is the superposition of G and H with respect to injective
mapping ϕ : V (H) → V (G) if every edge uv of F is either an edge of G or ϕ−1(u)ϕ−1(v) is an
edge of H. Thus F contains both G and H as subgraphs, and the edge set of F is the union of
the edge sets of G and ϕ(H). We consider the following optimization problem. Given graphs G, H,
and a weight function ω assigning nonnegative weights to pairs of vertices of V (G), the task is to
find ϕ of minimum weight ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) such that the edge connectivity of the

superposition F of G and H with respect to ϕ is higher than the edge connectivity of G. Our main
result is the following “dichotomy” complexity classification. We say that a class of graphs C has
bounded vertex-cover number if there is a constant t depending on C only such that the vertex-cover
number of every graph from C does not exceed t. We show that for every class of graphs C with
bounded vertex-cover number, the problems of superposing into a connected graph F and to 2-edge
connected graph F are solvable in polynomial time when H ∈ C. On the other hand, for any hered-
itary class C with unbounded vertex-cover number, both problems are NP-hard when H ∈ C. For
the unweighted variants of structured augmentation problems, i.e., the problems where the task is to
identify whether there is a superposition of graphs of required connectivity, we provide necessary and
sufficient combinatorial conditions on the existence of such superpositions. These conditions imply
polynomial time algorithms solving the unweighted variants of the problems.
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1. Introduction. In connectivity augmentation problems, the input is a (multi)
graph and the objective is to increase edge or vertex connectivity by adding the
minimum number (weight) of additional edges, called links. This is a fundamental
combinatorial problem with a number of important applications; we refer to the books
of Nagamochi and Ibaraki [16] and Frank [7] for a detailed introduction to the topic. In
this paper we initiate the study of a “structural” connectivity augmentation problem,
where the set of additional edges should satisfy some additional constraints. For
example, such constraints can be that all new edges should be visible from one vertex,
i.e., the new set of edges forms a star, forms a cycle, or can be controlled from a small
set of vertices, i.e., the graph formed by the additional edges has a small vertex cover.

It is convenient to model such an augmentation problem as a graph superposition
problem. Let G and H be simple graphs (i.e., graphs without loops and multiple
edges), |V (G)| ≥ |V (H)|, and let ϕ : V (H) → V (G) be an injective mapping of the
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STRUCTURED CONNECTIVITY AUGMENTATION 2613
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Fig. 1. For injective mapping ϕ : V (H) → V (G) such that ϕ(u1) = v1, ϕ(u2) = v4, and
ϕ(u3) = v3, we have F = G⊕ϕ H.

vertices of H to the set of vertices of V (G). We say that a simple graph F is the
superposition of G and H with respect to ϕ and write F = G ⊕ϕ H if V (F ) = V (G)
and two distinct vertices u, v ∈ V (F ) are adjacent in F if and only if uv ∈ E(G) or
u, v ∈ ϕ(V (H)) and ϕ−1(u)ϕ−1(v) ∈ E(H). See Figure 1 for an example. Thus graph
F contains G and H as subgraphs, and the edge set of F is the union of the edge sets
of G and ϕ(H).

We study the algorithmic problem of increasing the edge connectivity of graph G
by superposing it with a graph H. We are interested in the weighted variant of the
problem, where for every pair of vertices v and u of G, mapping the endpoints of an
edge of H to u and v has a specified weight ω(uv). We consider the following problem.

Input: Two graphs G and H, a weight function ω :
(
V (G)

2

)
→ N0, and

a nonnegative integer W.
Task: Decide whether there is an injective mapping ϕ : V (H)→ V (G)

such that graph F = G⊕ϕH is connected and the weight of the
mapping ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) ≤W.

Structured Connectivity Augmentation.

We also study the problem of obtaining a 2-edge connected graph F by superpos-
ing graphs G and H. More precisely, we consider the following problem.

Input: A connected graph G, a graph H, a weight function ω :
(
V (G)

2

)
→

N0, and a nonnegative integer W.
Task: Decide whether there is an injective mapping ϕ : V (H)→ V (G)

of weight at most W such that F = G⊕ϕH is 2-edge connected.

Structured 2-Connectivity Augmentation.

Our results. Our main result is the following “dichotomy” complexity classi-
fication of structured augmentation problems. We say that a class of graphs C has
bounded vertex-cover number if there is a constant t, depending on C only, such that
the vertex-cover number of every graph from C does not exceed t. We show that for
every class of graphs C with bounded vertex-cover number, Structured Connec-
tivity Augmentation and Structured 2-Connectivity Augmentation are
solvable in polynomial time when H ∈ C. We complement this result by showing that
for any hereditary class C with unbounded vertex-cover number, both problems are
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2614 F. V. FOMIN, P. A. GOLOVACH, AND D. M. THILIKOS

NP-complete when H ∈ C. Thus for any hereditary class C both problems with H ∈ C
are NP-complete if and only if C has unbounded vertex-cover number unless P = NP .

The running times of our algorithms solving Structured Connectivity Aug-
mentation and Structured 2-Connectivity Augmentation are of the form
|V (G)|O(f(t)) · logW, where f is some function and t is the vertex-cover number of H.
Thus our algorithms are not fixed-parameter tractable when t is the parameter. We
show that from the perspective of parameterized complexity, this situation is unavoid-
able. More precisely, we show that both problems are W[1]-hard when parameterized
by t. We refer to the books of Downey and Fellows [4] and Cygan et al. [1] for an
introduction to parameterized complexity.

We also consider the unweighted variants of Structured Connectivity Aug-
mentation and Structured 2-Connectivity Augmentation. Here the weight
is ω(uv) = 0 for every pair of vertices of G and W = 0. The task is to identify whether
there is a superposition of graphs G and H of edge connectivity 1 or 2, correspond-
ingly. We obtain necessary and sufficient combinatorial conditions of the existence of
an injective function ϕ such that F = G⊕ϕH is edge k-connected provided that G is
edge (k − 1)-connected, k = 1, 2. These conditions imply polynomial time algorithms
solving the unweighted variants of the problems.

Related work. The problem of increasing graph connectivity by adding addi-
tional edges is the classic and well-studied problem. It was first studied by Eswaran
and Tarjan [5] and Plesńık [17], who showed that increasing the edge connectivity
of a given graph to 2 by adding minimum number of additional augmenting edges
is polynomial time solvable. Subsequent work in [19, 6] showed that this problem is
also polynomial time solvable for any given target value of edge connectivity to be
achieved. However, if the set of augmenting edges is restricted, that is, there are pairs
of vertices in the graph which do not constitute a new edge, or if the augmenting
edges have (nonidentical) weights on them, then the problem of computing the min-
imum size (or weight) augmenting set is NP-complete [5]. Augmentation problems
with constraints like simplicity-preserving augmentations, augmentations with par-
tition constraints, or planarity requirements can be found in the literature; see the
book of Nagamochi and Ibaraki [16] for further references.

Strongly relevant to structural augmentation is the Minimum Star Augmenta-
tion problem; see, e.g., [16, section 3.3.3] and [13]. Here one wants to increase the
edge-connectivity of a given graph by adding a new vertex and connecting it with a
small number of edges to the remaining vertices of the graph. In our setting this cor-
responds to the case of graph G having an isolate vertex and graph H being a star (a
tree with vertex-cover number 1). Jordán and Szigeti [13] studied a generalization of
this problem where one wants to make a graph edge r-connected by attaching p stars
of specified degrees. In particular, they provided combinatorial conditions which are
necessary and sufficient for such an augmentation. Again, this problem can be seen
as a special case of structural augmentation, where graph G has p isolated vertices
and graph H is the union of stars of specified degrees.

2. Preliminaries. We consider only finite undirected graphs. For a graph G,(
V (G)

2

)
denotes the set of unordered pairs of distinct vertices of G. For uniformity, we

denote the elements of
(
V (G)

2

)
in the same way as edges, i.e., we write uv ∈

(
V (G)

2

)
. A

subgraph H of G is spanning if V (H) = V (G). For a graph G and a subset U ⊆ V (G)
of vertices, we write G[U ] to denote the subgraph of G induced by U. We write G−U
to denote the graph G[V (G) \ U ]. Let S ⊆ E(G) for a graph G. By G− S we denote
the graph obtained by the deletion of the edges of S. We write G−e instead of G−{e}
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STRUCTURED CONNECTIVITY AUGMENTATION 2615

for an edge e. For a vertex v, we denote by NG(v) the (open) neighborhood of v, i.e.,
the set of vertices that are adjacent to v in G. Two nonadjacent vertices u and v are
(false) twins if NG(u) = NG(v). A set of edges with pairwise distinct end-vertices is
called a matching. A matching M is induced if the end-vertices of M are pairwise
nonadjacent. A vertex v is saturated in a matching M if v is incident to an edge of
M. We say that the disjoint union of copies of K2 is a matching graph. A graph class
C is said to be hereditary if for every G ∈ C and every induced subgraph H of G,
H ∈ C. A set of vertices X ⊆ V (G) is a vertex cover of a graph G if every edge of G
has at least one of its end-vertices in X. The minimum size of a vertex cover is called
the vertex-cover number of G and is denoted by β(G).

Let k be a positive integer. A graph G is (edge) k-connected if for every S ⊆ E(G)
with |S| ≤ k − 1, G − S is connected. Since we consider only edge connectivity,
whenever we say that a graph G is k-connected, we mean that G is edge k-connected.
We assume that every graph is 0-connected. A set of edges S ⊆ E(G) of a connected
graph G is an edge separator if G−S is disconnected. An edge e of a connected graph
G is a bridge if {e} is a separator. Clearly, a connected graph is 2-connected if and
only if it has no bridge. Let B be the set of bridges of a connected graph G. We call
a component of G−B a biconnected component of G. In other words, a biconnected
component is an inclusionwise maximal induced 2-connected subgraph of G. We say
that a biconnected component L of a graph G is a pendant biconnected component
(or simply a pendant) if a unique bridge of G is incident to V (L). A biconnected
component is trivial if it has a single vertex. For a graph G, we denote by c(G) the
number of components of G, and for a connected graph G, p(G) is the number of
pendants. We also denote by i(G) the number of isolated vertices of G.

Let S be an inclusionwise minimal edge separator of a connected graph G. Then
G − S has exactly two components C1 and C2. Let G be a spanning subgraph of a
graph F. We say that an edge e ∈ E(F ) \ E(G) covers a minimal separator S of G
if e has its end-vertices in C1 and C2. The following observation about separators is
useful.

Observation 1. Let k ≥ 2 be an integer and let a (k− 1)-connected graph G be a
spanning subgraph of a graph F. Then F is k-connected if and only if for each edge
separator S of G with |S| = k − 1, F has an edge that covers it.

We also need some additional terminology and folklore observations for the aug-
mentation of a connected graph to a 2-connected graph. Let G be a connected graph
and let x and y be distinct vertices of G. We say that a bridge uv of G belongs to an
(x, y)-path P if uv ∈ E(P ). Similarly, a biconnected component Q is crossed by P if
V (Q) ∩ V (P ) 6= ∅. The following observations show that the choice of an (x, y)-path
is irrelevant if the biconnected components containing the end-vertices are given.

Observation 2. Let distinct {x1, y1} and {x1, y2} be pairs of distinct vertices of
a connected graph G such that x1 and x2 are in the same biconnected component of
G and, similarly, y1 and y2 are in the same biconnected component of G. Let also P1

and P2 be (x1, y1) and (x2, y2)-paths, respectively. Then the following holds:
• a bridge uv of G belongs to P1 if and only if uv belongs to P2,
• a biconnected component Q is crossed by P1 if and only if Q is crossed by P2.

Observation 3. Let u and v be distinct nonadjacent vertices of a connected graph
G and let F be a graph obtained from G by the addition of the edge uv. Then uv covers
all bridges that belongs to a (u, v)-path P in G, and for the biconnected components
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2616 F. V. FOMIN, P. A. GOLOVACH, AND D. M. THILIKOS

Q1, . . . , Qs that are crossed by P, F [V (Q1)∪· · ·∪V (Qs)] is a biconnected component
of F.

In the remaining part of the paper, we will be always assuming that in the instance
of the structured augmentation problem, we have

(i) |V (H)| ≤ |V (G)|;
(ii) graph H has no isolated vertices.

Indeed, if |V (H)| > |V (G)|, then there is no superposition of G and H, and thus
such an instance is a no-instance. For (ii), it is sufficient to observe that mapping
of isolated vertices of H to vertices of G does not influence the connectivity of the
superposition. Another technical detail should be mentioned here. In Theorems 1 and
2, we evaluate the running times of algorithms as a function of |V (G)| and the vertex-
cover number of H. In order to do this, we should be able to recognize within this
time the (trivial) no-instances, where |V (H)| > |V (G)|. We can verify this condition
in time |V (G)|O(1) just by refuting the instances of size more than |V (G)|O(1) after
reading the first |V (G)|O(1) bits.

3. Augmenting by graphs with small vertex cover. In this section we
consider the situation when graph H is from a graph class C with bounded vertex-cover
number. In subsection 3.1 we show that in this case Structured Connectivity
Augmentation and Structured 2-Connectivity Augmentation are solvable
in polynomial time. In subsection 3.2 we show that this condition is tight by proving
that for any hereditary graph class C with unbounded vertex-cover number, both
problems are NP-hard.

3.1. Algorithms. We start with a solution for Structured Connectivity
Augmentation, which is simpler than Structured 2-Connectivity Augmenta-
tion.

STRUCTURED CONNECTIVITY AUGMENTATION. We need the following
lemma.

Lemma 1. Let G and H be graphs and let ϕ : V (H)→ V (G) be an injection such
that F = G⊕ϕH is connected. Let also X be a vertex cover of H of size t. Then there
is a set Y ⊆ V (H)\X of size at most 2(t−1) such that for graph H ′ = H[X ∪Y ] and
mapping ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y ) are in the same connected component
of F ′ = G⊕ψ H ′.

Proof. If |X| = 1, then the claim of the lemma is trivial. Assume that |X| ≥ 2.
Let X ′ ⊆ X be an inclusionwise maximal set such that there is a set Y ′ ⊆

V (H)\X ′ of size at most 2(|X ′|−1) such that for H ′ = H[X ′∪Y ′] and ψ′ = ϕ|X′∪Y ′ ,
the vertices of ψ′(X ′ ∪ Y ′) are in the same component of F ′ = G⊕ψ′ H ′. Notice that
every one-element subset of X satisfies this property and therefore such a set X ′

exists. If X ′ = X, then the claim of the lemma holds. Suppose that X ′ ⊂ X. Let
s = |X ′| < t. We show that in this case we can extend X ′ which will contradict its
maximality.

More precisely, we claim that there is x ∈ X \X ′ such that for X ′′ = X ′ ∪ {x},
there is a set Y ′′ of size at most 2s such that Y ′ ⊆ Y ′′ ⊆ V (H) \ X ′′ and for
H ′′ = H[X ′′ ∪ Y ′′] and ψ′′ = ϕ|X′′∪Y ′′ , the vertices of ψ′′(X ′′ ∪ Y ′′) are in the same
component of F ′′ = G⊕ψ′′ H ′′.

If there is x ∈ X \X ′ such that x is in the same component of F ′ with the vertices
of ψ′(X ′ ∪ Y ′), then the claim holds for X ′′ = X ′ ∪ {x} and Y ′′ = Y ′. Suppose that
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it is not so, that is, for every x ∈ X \X ′, x does not belong to the component of F ′

with the vertices of ψ′(X ′ ∪ Y ′). Recall that F is connected. We select x ∈ X \ X ′
and a path P joining ϕ(x) and a vertex of ϕ(X ′) in F in such a way that P contains
the minimum number of vertices of ϕ(X).

Let P be a (ϕ(x), ϕ(x′))-path for x′ ∈ X ′. Notice that P has no internal vertex
in ϕ(X). Otherwise (if there is such a vertex v), then either ϕ−1(v) ∈ X ′ or ϕ−1(v) ∈
X \X ′. In the first case the (ϕ(x), v)-subpath of P connects x with a vertex of ϕ(X ′),
and in the second case, the (v, ϕ(x′))-subpath of P connects a vertex of ϕ(X \ X ′)
with x′ ∈ ϕ(X ′). In both cases this contradicts the choice of P. We obtain that
V (P ) ∩ ϕ(X) = {x, x′}.

This implies that P contains at most two edges that are not edges of G. Moreover,
because X is a vertex cover of H, every such edge is incident either with ϕ(x) or with
ϕ(x′). Denote by S the set of endpoints of these edges distinct from ϕ(x) and ϕ(x′).
We have that S ⊆ ϕ(V (H) \X) and |S| ≤ 2. Let X ′′ = X ∪ {x} and Y ′′ = Y ′ ∪ S.
We obtain that Y ′ ⊆ Y ′′ ⊆ V (H) \X ′′ and |Y ′′| ≤ |Y ′|+ 2 ≤ 2s. Let ψ′′ = ϕ|X∪Y ′′ .
Observe that P is a path in F ′′ = G⊕ψ′′H ′′. It implies that the vertices of ψ′′(X ′′∪Y ′′)
are in the same component of F ′′.

We obtain a contradiction that proves X ′ = X, and this completes the proof of
the lemma.

Let us recall that we say that a graph class C has vertex-cover number at most t
if every graph H ∈ C has a vertex cover of size at most t. We are ready to prove the
main theorem about Structured Connectivity Augmentation.

Theorem 1. Let t be a positive integer and C be a graph class of vertex-cover
number at most t. Then for any H ∈ C, Structured Connectivity Augmenta-
tion is solvable in time |V (G)|O(t) · logW.

Proof. Let G and H ∈ C be graphs and let ω :
(
V (G)

2

)
→ N0 be a weight function

(keep in mind that G is not necessarily a graph in C). We show that we can find in
time |V (G)|O(t) · logW an injective mapping ϕ : V (H)→ V (G) such that F = G⊕ϕH
is connected and ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) is minimum if ϕ exists.

Let us recall that without loss of generality, we can assume that |V (H)| ≤ |V (G)|
and H has no isolated vertices.

We start from finding a vertex cover X of size at most t in H. Since we aim for
an algorithm with running time |V (G)|O(t) · logW, vertex cover X can be found by
brute-force checking of all subsets of V (H) of size at most t.

Suppose that there is an injective mapping ϕ : V (H) → V (G) such that F =
G ⊕ϕ H is connected and assume that for ϕ, ω(ϕ) is minimum. By Lemma 1, there
is a set Y ⊆ V (H) \ X of size at most 2(t − 1) such that for H ′ = H[X ∪ Y ] and
ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y ) are in the same component of F ′ = G ⊕ψ H ′.
Considering all possibilities, we guess Y in time |V (H)|O(t).

Now we consider all possible injective mapping ψ : X ∪ Y → V (G) such that the
vertices of ψ(X ∪ Y ) are in the same connected component of F ′ = G ⊕ψ H ′, where
H ′ = H[X ∪ Y ]. Notice that there are at most |V (G)|3t−2 such mappings that can
be generated in time |V (G)|O(t). If we fail to find ψ, we reject the current choice of
Y. Otherwise, for every ψ, we try to extend it to an injection ϕ : V (H)→ V (G) such
that F = G⊕ϕH is connected, and among all extensions we choose one that provides
the minimum weight ω(ϕ).

Let Z = V (H) \ (X ∪ Y ). The vertices of ψ(X ∪ Y ) are in the same component
of F ′. Denote this component by F0 and denote by F1, . . . , Fr the other components
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of this graphs. Recall that Z is an independent set of H and each vertex of Z has an
incident edge with one endpoint in X. It follows that for an injection ϕ : V (H)→ V (G)
such that ψ = ϕ|X∪Y , F = G⊕ϕH is connected if and only if for every i ∈ {1, . . . , r},
there is v ∈ V (Fi) such that v ∈ ϕ(Z). Hence, if r > |Z|, we cannot extend ψ. In this
case we discard the current choice of ψ.

Assume from now that Y and ψ are fixed, F ′ = G⊕ψH ′ is connected, and r ≤ |Z|.
For z ∈ Z and v ∈ V (G) \ ψ(X ∪ Y ), we define the weight of mapping z to v as

w(z, v) =
∑

u∈NG(v)∩ψ(NH(z))

ω(uv),

that is, w(z, x) is the weight of edges that is added to the weight of mapping if
we decide to extend ψ by mapping z to v. Let W = max{w(z, v) | z ∈ Z, v ∈
V (G)\ψ(X∪Y )}+1. We construct the weighted auxiliary bipartite graph G with the
bipartition (A,B) of its vertex set and the weight function f : E(G)→ N0 as follows:

• Set A = (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ · · · ∪ V (Fr) = V (G) \ ψ(X ∪ Y ).
• Construct a set of vertices S0 of size |V (F0)| − |X ∪ Y | and sets Si of size
|V (Fi)| − 1 for i ∈ {1, . . . , r}.

• Set B = Z ∪ S0 ∪ · · · ∪ Sr.
• For each z ∈ Z and v ∈ A, construct an edge zv and set f(zv) = w(z, v).
• For each u ∈ S0 and v ∈ V (F0) \ ψ(X ∪ Y ), construct an edge uv and set
f(uv) = W.

• For each i ∈ {1, . . . , r}, do the following: for each u ∈ Si and v ∈ V (Fi),
construct an edge uv and set f(uv) = W.

We find a minimum weight matching M in G that saturates every vertex of A using
the Hungarian algorithm [9, 14] in time O(|V (G)|3 · logW ).

Observe that a matching that saturates every vertex of A exists, because r ≤
|Z|. We can construct such a matching by selecting one vertex in V (Fi) for each
i ∈ {1, . . . , r} and matching it with a vertex of Z. Then we complement this set of
edges to a matching saturating A by adding edges incident to S0 ∪ · · · ∪ Sr. For the
matching M that has minimum weight, we can also observe the following.

First, note that

every vertex of Z is saturated by M.(3.1)

Indeed, targeting toward a contradiction, assume that z ∈ Z is not saturated. Since
|V (H)| ≤ |V (G)|, there is uv ∈M such that u ∈ S0 ∪ · · · ∪ Sr and v ∈ A. We replace
uv by zv in M. Because f(uv) = W > w(zv), we obtain a matching with a smaller
weight. This contradicts the choice of M.

Next, we claim that

for every i ∈ {1, . . . , r} there is zv ∈M such that z ∈ Z and v ∈ V (Fi).(3.2)

Indeed, this is because the vertices of V (Fi) are adjacent to |V (Fi)| − 1 vertices of Si
and all other neighbors are in Z.

Finally, we have that among all matching saturating A, M is a matching satis-
fying (3.1) and (3.2) such that for M ′ = {zv ∈ M | z ∈ Z}, f(M ′) is minimum. To
see it, observe that f(uv) = W for uv ∈ M \M ′. Hence, f(M \M ′) = (|A| − |Z|)W,
because |M \M ′| = |A| − |Z| by (3.1). Therefore, f(M ′) = f(M) − f(M \M ′) =
f(M)− (|A| − |Z|)W.

For every z ∈ Z, we define ϕ(z) = v, where zv ∈ M ′ and ϕ(x) = ψ(x) for
x ∈ X ∪ Y. Clearly, ϕ is an extension of ψ. By (3.1), ϕ is an injective mapping
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STRUCTURED CONNECTIVITY AUGMENTATION 2619

of V (H) to V (G). By (3.2) and the choice of X and Y, we obtain that G ⊕ϕ H is
connected. We claim that ϕ is an extension of ψ such that F = G⊕ϕH is connected
that has the minimum total weight ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)).

Recall that by the definition of the weight function f, f(zv) = w(z, v) for z ∈
Z and v ∈ A, and w(z, v) =

∑
u∈NG(v)∩ψ(NH(z)) ω(uv) in this case. Let R =∑

xy∈E(H), x,y∈X∪Y ω(ψ(x)ψ(y)). It follows that

ω(ϕ) =
∑

xy∈E(H)

ω(ϕ(x)ϕ(y))

=
∑

xy∈E(H), x,y∈X∪Y

ω(ψ(x)ψ(y)) +
∑

xz∈E(H),x∈X,z∈Z

ω(ψ(x)ϕ(z))

= R+
∑
zv∈M ′

w(z, v) = R+ f(M ′).(3.3)

Suppose that ϕ′ : V (H)→ V (G) is an injection that extends ψ such that F ′ = G⊕ϕ′H
is connected. We construct the matching M̃ in G as follows. We start by constructing
the matching M̃ ′ ⊆ M̃ that for every z ∈ Z contains zϕ′(z). Notice that every
vertex of Z is saturated in M̃ ′ and, therefore, there are |Z| vertices of A that are
saturated in M̃ ′. In particular, M̃ ′ satisfies (3.1). Since F ′ is connected, at least
one vertex of V (Fi) is saturated for i ∈ {1, . . . , r} and, therefore, M̃ ′ satisfies (3.2).
Then we complement M̃ ′ to M̃ : for every nonsaturated vertex v ∈ A, we arbitrarily
pick a nonsaturated neighbor u ∈ B \ Z and include vu in M̃. This choice is possible
because |S0| = |V (F0)| − |X ∪ Y | and |Si| = |V (Fi)| − 1 for i ∈ {1, . . . , r}. Since
M̃ ′ and, therefore, M̃ satisfy (3.1) and (3.2), we obtain that f(M) ≤ f(M̃) and
f(M ′) ≤ f(M̃ ′). In the same way as in (3.3), we have that ω(ϕ′) = R+ f(M̃ ′). Then
ω(ϕ′) ≥ ω(ϕ) by (3.3) and this proves the claim.

Recall that we try all possible choices of Y, and for every choice of Y, we consider
all possible choices of ψ. If we fail to find an injection ϕ : V (H)→ V (G) such that ϕ is
an extension of ψ and F = G⊕ϕH is connected we return the answer NO. Otherwise,
we return ϕ that provides the minimum weight.

To complete the proof, observe that the total running time of the algorithm is
|V (G)|O(t) · logW.

STRUCTURED 2-CONNECTIVITY AUGMENTATION. The algorithm for Struc-
tured 2-Connectivity Augmentation is more technical. We start with a lemma,
which is similar to Lemma 1.

Lemma 2. Let G and H be graphs such that G is connected, and let ϕ : V (H)→
V (G) be an injection such that F = G ⊕ϕ H is 2-connected. Suppose that X is a
vertex cover of H and t = |X|. Then there is a set Y ⊆ V (H) \ X of size at most
2(t− 1) such that for H ′ = H[X ∪ Y ] and ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y ) are
in the same biconnected component of F ′ = G⊕ψ H ′.

Proof. For |X| = 1 the lemma is trivial, so we assume that |X| ≥ 2.
Let X ′ ⊆ X be an inclusionwise maximal set among all sets with the following

property: there is a set Y ′ ⊆ V (H) \ X ′ of size at most 2(|X ′| − 1) such that for
H ′ = H[X ′ ∪ Y ′] and ψ′ = ϕ|X′∪Y ′ , the vertices of ψ′(X ′ ∪ Y ′) are in the same
biconnected component of F ′ = G⊕ψ′H ′. Since every one-element subset of X satisfies
this property such a set X ′ exists.

In order to prove the lemma, we prove that X ′ = X.
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Targeting toward a contradiction, suppose that X ′ is a proper subset of X. Let
s < t be the size of X ′. We show that then we can extend X ′ contradicting its maxi-
mality. More precisely, we claim that there is x ∈ X \X ′ such that for X ′′ = X ′∪{x},
there is a set Y ′ ⊆ Y ′′ ⊆ V (H)\X ′′ of size at most 2s such that for H ′′ = H[X ′′∪Y ′′]
and ψ′′ = ϕ|X′′∪Y ′′ , the vertices of ψ′′(X ′′ ∪ Y ′′) are in the same biconnected compo-
nent of F ′′ = G⊕ψ′′ H ′′.

If there is x ∈ X \X ′ such that x is in the same biconnected component of F ′ with
the vertices of ψ′(X ′ ∪ Y ′), then the claim holds for X ′′ = X ′ ∪ {x} and Y ′′ = Y ′.
Suppose that it is not so, that is, for every x ∈ X \ X ′, x does not belong to the
biconnected component of F ′ with the vertices of ψ′(X ′ ∪ Y ′).

Recall that G is connected. Therefore, F ′ is connected as well. Since the vertices
of ϕ(X) do not belong to the same biconnected component, F ′ is not 2-connected.
Let B be the set of bridges of F ′.

Suppose that there is an edge x′y ∈ E(H) with x′ ∈ X ′ such that there is a
biconnected component Q of F ′ that is crossed by a (ϕ(x′), ϕ(y))-path P in F ′ and
Q contains a vertex v ∈ ϕ(X \ X ′). Let x = ϕ−1(v). Consider X ′′ = X ′ ∪ {x} and
Y ′′ = Y ′ ∪ {y}. Clearly, Y ′ ⊆ Y ′′ ⊆ V (H) \X ′′ and |Y ′′| ≤ 2s. Let H ′′ = H[X ∪ Y ′′]
and ψ′′ = ϕ|X∪Y ′′ . Then by Observation 3, the vertices of ψ′′(X ′′ ∪ Y ′′) are in the
same biconnected component of F ′′ = G⊕ψ′′ H ′′. This contradicts the choice of X ′.

Suppose now that there is an edge xy ∈ E(H) with x ∈ X \ X ′ such that the
biconnected component Q of F ′ that contains the vertices of ϕ(X ′ ∪Y ′) is crossed by
a (ϕ(x), ϕ(y))-path P in F ′. Consider X ′′ = X ′ ∪ {x} and Y ′′ = Y ′ ∪ {y}. We have
that Y ′ ⊆ Y ′′ ⊆ V (H) \X ′′ and |Y ′′| ≤ 2s. Let H ′′ = H[X ∪ Y ′′] and ψ′′ = ϕ|X∪Y ′′ .
Then again by Observation 3, we have that the vertices of ψ′′(X ′′ ∪ Y ′′) are in the
same biconnected component of F ′′ = G ⊕ψ′′ H ′′. Again, this contradicts the choice
of X ′.

Now we assume that the two previous cases do not hold. In particular, in this
situation, not all bridges of F ′ are covered by edges pq ∈ E(F )\E(F ′) with ϕ−1(p) ∈
X ′ or ϕ−1(q) ∈ X ′ and not all bridges of F ′ are covered by edges pq ∈ E(F ) \ E(F ′)
with ϕ−1(p) ∈ X \X ′ or ϕ−1(q) ∈ X \X ′. Since F is 2-connected, by Observation 1
all bridges of G should be covered by edges of F. Hence, there are distinct uv, u′v′ ∈ B
such that u, u′ ∈ V (Q) for some biconnected component Q of F ′, uv is covered by
pq ∈ E(F ) \E(F ′) with ϕ−1(p) ∈ X \X ′, and u′v′ is covered by p′q′ ∈ E(F ) \E(F ′)
with ϕ−1(p′) ∈ X ′. Let x = ϕ−1(u), y = ϕ−1(v), and y′ = ϕ−1(v′). Consider X ′′ =
X ′ ∪ {x} and Y ′′ = Y ′ ∪ {y, y′}. Clearly, Y ′ ⊆ Y ′′ ⊆ V (H) \X ′′ and |Y ′′| ≤ 2s. Let
H ′′ = H[X ∪ Y ′′] and ψ′′ = ϕ|X∪Y ′′ . By Observation 3, the vertices of ψ′′(X ′′ ∪ Y ′′)
are in the same biconnected component of F ′′ = G⊕ψ′′ H ′′, which, again, contradicts
the choice of X ′.

Hence X ′ = X and the lemma holds.

Theorem 2. Let t be a positive integer and C be a graph class of vertex-cover
number at most t. Then for any H ∈ C, Structured 2-Connectivity Augmen-
tation is solvable in time |V (G)|O(2t) logW.

Proof. Let G and H be graphs such that G is connected and H ∈ C. Let also
ω :
(
V (G)

2

)
→ N0 be a weight function. Similarly to the proof of Theorem 1 we

show that we can find in time |V (G)|O(2t) · logW the minimum value of ω(ϕ) =∑
xy∈E(H) ω(ϕ(x)ϕ(y)) for an injective mapping ϕ : V (H) → V (G) such that F =

G⊕ϕ H is 2-connected if such a mapping ϕ exists.
The first steps of our algorithm are the same as in the proof of Theorem 1. Again,

we recall that |V (H)| ≤ |V (G)| and that H has no isolated vertices.
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Next, we find a vertex cover X of minimum size in H of size at most t in time
|V (G)|O(t).

Suppose that there is an injective mapping ϕ : V (H) → V (G) such that F =
G⊕ϕH is 2-connected and assume that for ϕ, ω(ϕ) is minimum. By Lemma 2, there
is a set Y ⊆ V (H) \ X of size at most 2(t − 1) such that for H ′ = H[X ∪ Y ] and
ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y ) are in the same biconnected component of
F ′ = G⊕ψ H ′. Considering all possibilities, we guess Y in time |V (H)|O(t).

Now we consider all possible injective mapping ψ : X ∪ Y → V (G) such that the
vertices of ψ(X ∪ Y ) are in the same biconnected component of F ′ = G⊕ψ H ′ where
H ′ = H[X ∪Y ]. Notice that there are at most |V (G)|3t−2 such mappings that can be
generated in time |V (G)|O(t). If we fail to find ψ, we reject the current choice of Y.
Otherwise, for every ψ, we try to extend it to an injection ϕ : V (H)→ V (G) such that
F = G ⊕ϕ H is 2-connected, and among all extensions we choose one that provides
the minimum weight ω(ϕ).

Let Z = V (H) \ (X ∪ Y ). The vertices of ψ(X ∪ Y ) are in the same biconnected
component of F ′. Denote this biconnected component by F0 and denote by F1, . . . , Fr
the pendant biconnected components of F ′ that are distinct from F0. Recall that Z is
an independent set of H and each vertex of Z has an incident edge with one endpoint
in X. By Observation 1, we obtain the following crucial property.

For an injection ϕ : V (H) → V (G) such that ψ = ϕ|X∪Y , F = G ⊕ϕ H is 2-
connected if and only if

(i) for every i ∈ {1, . . . , r}, there is v ∈ V (Fi) such that v ∈ ϕ(Z), and
(ii) if for some i ∈ {1, . . . , r}, it holds that v is the unique element of V (Fi)∩ϕ(Z)

and v is incident to a bridge vu of G, then there is x ∈ X such that ϕ(x) 6= u
and x is adjacent to ϕ−1(v) in H.

Similarly to the proof of Theorem 1, we solve auxiliary matching problems to find
the minimum weight of ϕ but now, due to condition (ii), the algorithm becomes more
complicated and we are using dynamic programming.

For z ∈ Z and v ∈ V (G) \ ψ(X ∪ Y ), we define the weight of mapping z to v as

(3.4) w(z, v) =
∑

u∈NG(v)∩ψ(NH(z))

ω(uv),

that is, w(z, x) is the weight of edges that is added to the weight of mapping if we
decide to extend ψ by mapping z to v. Our aim is to find the extension ϕ of ψ that
satisfies (i) and (ii) such that the total weight of the mapping of the vertices of Z to
the vertices of V (G) \ ψ(X ∪ Y ) by ϕ is minimum.

Since X is a vertex cover of H of size t, the set Z can be partitioned into s ≤ 2t

classes of false twins Z1, . . . , Zs. Let pi = |Zi| for i ∈ {1, . . . , s}. We exploit the
following property of false twins in Z: if x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈
V (G) \ ψ(X ∪ Y ).

For each s-tuple of integers (q1, . . . , qs) such that 0 ≤ qi ≤ pi, for i ∈ {1, . . . , s}
and each h ∈ {0, . . . , r}, we define

(3.5) αh(q1, . . . , qs) = min
ξ

∑
z∈Z′

w(z, ξ(z)),

where Z ′ ⊆ Z such that |Z ′ ∩ Zi| = qi for i ∈ {1, . . . , s} and the minimum is taken
over all injective mappings ξ : Z ′ → (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ · · · ∪ V (Fh) such
that the following conditions are satisfied:
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(a) for every i ∈ {1, . . . , h}, there is v ∈ V (Fi) such that v ∈ ξ(Z ′), and
(b) if v is a unique element of V (Fi) ∩ ξ(Z ′) for some i ∈ {1, . . . , h} and v is

incident to a bridge vu of G, then there is x ∈ X such that ψ(x) 6= u and x
is adjacent to ξ−1(v) in H.

If such a mapping ξ does not exist, then we assume that αh(q1, . . . , qs) = +∞. Recall
that if x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ). It implies that the
function αh(q1, . . . , qs) depends only on the values of q1, . . . , qs.

We claim that computing αr(p1, . . . , ps) is equivalent to finding an extension ϕ of
ψ of minimum weight such that F = G⊕ϕ H is 2-connected.

Assume that αr(p1, . . . , ps) < +∞. Notice that Z ′ = Z if qi = pi for i ∈ {1, . . . , s}.
Let ξ : Z → (V (F0)\ψ(X∪Y ))∪V (F1)∪· · ·∪V (Fh) be an injection that provides the
minimum in (3.5), that is, αr(p1, . . . , ps) =

∑
z∈Z w(zξ(z)). We define ϕ(z) = ξ(z)

for z ∈ Z and ϕ(x) = ψ(x) for x ∈ X ∪ Y. Clearly, ϕ is an extension of ψ. Because ξ
is an injection, we have that ϕ is an injective mapping. Since ξ satisfies (a) and (b),
we obtain that ϕ satisfies (i) and (ii) and, therefore, F = G⊕ϕH is 2-connected. Let
R =

∑
xy∈E(H), x,y∈X∪Y ω(ψ(x)ψ(y)). Then using (3.4), we have that

ω(ϕ) =
∑

xy∈E(H)

ω(ϕ(x)ϕ(y))

=
∑

xy∈E(H), x,y∈X∪Y

ω(ϕ(x)ϕ(y)) +
∑

xz∈E(H), x∈X,z∈Z

ω(ϕ(x)ϕ(y))

= R+
∑
z∈Z

w(z, ϕ(z)) = R+
∑
z∈Z

w(z, ξ(z)) = R+ αr(p1, . . . , ps).(3.6)

Let ϕ′ : V (H) → V (G) be an injection that extends ψ such that F ′ = G ⊕ϕ′ H
is 2-connected. We define ξ′ : Z → (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ · · · ∪ V (Fh) by
setting ξ′(z) = ϕ′(z) for z ∈ Z. Since ϕ′ is an injection, ξ′ is also an injection.
Because F ′ is 2-connected, ϕ satisfies (i) and (ii). This implies that ξ′ satisfies (a)
and (b). Therefore,

∑
z∈Z w(z, ξ′(z)) ≥ αr(p1, . . . , ps). Similarly to (3.6), we have

that ω(ϕ′) = R +
∑
z∈Z w(z, ξ′(z)) ≥ R + αr(p1, . . . , ps). We conclude that ϕ is an

extension ϕ of ψ of minimum weight such that F = G⊕ϕ H is 2-connected.
Suppose that αr(p1, . . . , ps) = +∞. It implies that there is no injection ξ : Z →

(V (F0)\ψ(X ∪Y ))∪V (F1)∪· · ·∪V (Fh) satisfying (a) and (b). But this immediately
implies that there is no injective extension ϕ of ψ satisfying (i) and (ii). This completes
the proof of the claim.

We use dynamic programming to compute αh consequently for h = 0, 1, . . . , r.
We start with computing α0(q1, . . . , qs) for each s-tuple (q1, . . . , qs). Notice that

the conditions (a) and (b) are irrelevant in this case, because they concern only
h ≥ 1. We construct the auxiliary complete bipartite graph G0 with the bipartition
(V (F0)\ψ(X∪Y ), Z ′) of its vertex set and define the weight of each edge zv for z ∈ Z ′
and v ∈ V (F0)\ψ(X∪Y ) as w(z, v). We find a matching M in G0 that saturates every
vertex of Z ′ and has the minimum weight using the Hungarian algorithm [9, 14] in time
O(|V (G)|3 · logW ). If there is no matching saturating Z ′, we set α0(q1, . . . , qs) = +∞.
Otherwise, α0(q1, . . . , qs) = w(M). It is straightforward to verify the correctness of
computing α0(q1, . . . , qs) by the definition of this function.

Assume that h ≥ 1 and the table of values of αh−1(q1, . . . , qs) is already computed.
We explain how to construct the table of values of αh(q1, . . . , qs). The computation
is based on the observation that an injective mapping ξ : Z ′ → (V (F0) \ ψ(X ∪ Y )) ∪
V (F1) ∪ · · · ∪ V (Fh) can be seen as the union of two injections ξ′ : Z ′′ → (V (F0) \
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ψ(X ∪Y ))∪V (F1)∪ · · · ∪V (Fh−1) and λ : Z ′′′ → V (Fh) for the appropriate partition
(Z ′′, Z ′′′) of Z ′.

For each s-tuple of integers (q1, . . . , qs) such that 0 ≤ qi ≤ pi for i ∈ {1, . . . , s},
we define

(3.7) α′h(q1, . . . , qs) = min
λ

∑
z∈Z′

w(z, λ(z)),

where Z ′ ⊆ Z such that |Z ′∩Zi| = qi for i ∈ {1, . . . , s} and the minimum is taken over
all injective mappings λ : Z ′ → V (Fh) such that the following conditions are fulfilled:

(a∗) there is v ∈ V (Fh) such that v ∈ λ(Z ′), and
(b∗) if v is the unique element of V (Fh)∩λ(Z ′) and v is incident to a bridge vu of

G, then there is x ∈ X such that ψ(x) 6= u and x is adjacent to λ−1(v) in H.
If such a mapping λ does not exist, then we assume that α′h(q1, . . . , qs) = +∞. As
for αh(q1, . . . , qs), α

′
h(q1, . . . , qs) depends only on the values of q1, . . . , qs, because if

x, y ∈ Zi, then w(x, v) = w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ).
Let uv be the unique bridge of G with v ∈ V (Fh). Suppose that for an s-tuple

(q1, . . . , qs), we obtain that |Z ′| = 1 and for the unique vertex z ∈ Z ′, z has a
unique neighbor x ∈ X in H and ψ(x) = u. Then we set α′h(q1, . . . , qs) = +∞ if
|V (Fh)| = 1 and α′h(q1, . . . , qs) = min{w(z, v′) | v′ ∈ V (Fh) \ {v}} otherwise. For
other s-tuples (q1, . . . , qs), we compute α′h(q1, . . . , qs) as follows. We construct the
auxiliary complete bipartite graph Gh with the bipartition (V (Fh), Z ′) of its vertex set
and define the weight of each edge zv for z ∈ Z ′ and v ∈ V (Fh) as w(z, v). We find a
matching M in Gh that saturates every vertex of Z ′ and has the minimum weight using
the Hungarian algorithm [9, 14] in time O(|V (G)|3 · logW ). If there is no matching
saturating Z ′, we set α′h(q1, . . . , qs) = +∞. Otherwise, α′h(q1, . . . , qs) = w(M). It is
again straightforward to verify the correctness of computing α′h(q1, . . . , qs) using the
definition of this function.

Now, to compute αh(q1, . . . , qs), we use the equation

(3.8) αh(q1, . . . , qs) = min{αh−1(q′1, . . . , q
′
s) + α′h(q′′1 , . . . , q

′′
s )},

where the minimum is taken over all s-tuples (q′1, . . . , q
′
s) and (q′′1 , . . . , q

′′
s ) such that

qi = q′i + q′′i for i ∈ {1, . . . , s}.
To show correctness, we prove first that

(3.9) αh(q1, . . . , qs) ≥ min{αh−1(q′1, . . . , q
′
s) + α′h(q′′1 , . . . , q

′′
s )}.

The inequality is trivial if αh(q1, . . . , qs) = +∞. Assume that αh(q1, . . . , qs) < +∞.
Then there is an injective mapping ξ : Z ′ → (V (F0)\ψ(X ∪Y ))∪V (F1)∪ · · ·∪V (Fh)
satisfying (a) and (b) such that αh(q1, . . . , qs) =

∑
z∈Z′ w(z, ξ(z)). Let Z ′′ = {z ∈ Z |

ξ(z) ∈ (V (F0)\ψ(X∪Y ))∪V (F1)∪· · ·∪V (Fh−1)} and Z ′′′ = {z ∈ Z | ξ(z) ∈ V (Fh)}.
Denote by ξ′ the restriction of ξ on (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ · · · ∪ V (Fh−1) and
let λ = ξ|Z′′′ .

We have that ξ′ is an injective mapping of Z ′′ to (V (F0) \ ψ(X ∪ Y )) ∪ V (F1)
∪ · · · ∪ V (Fh−1) such that the following holds:

(a′) for every i ∈ {1, . . . , h− 1}, there is v ∈ V (Fi) such that v ∈ ξ′(Z ′′), and
(b′) if v is a unique element of V (Fi)∩ ξ′(Z ′) for some i ∈ {1, . . . , h− 1} and v is

incident to a bridge vu of G, then there is x ∈ X such that ψ(x) 6= u and x
is adjacent to ξ′−1(v) in H.

Let q′i = |Z ′′ ∩ Zi| for i ∈ {1, . . . , s}. By the definition of αh−1, we have that

(3.10) αh−1(q′1, . . . , q
′
s) ≤

∑
z∈Z′′

w(z, ξ′(z)).
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Similarly, we obtain that λ is an injective mapping of Z ′′′ to V (Fh) such that the
following holds:

(a∗∗) there is v ∈ V (Fh) such that v ∈ λ(Z ′′′), and
(b∗∗) if v is the unique element of V (Fh) ∩ λ(Z ′′′) and v is incident to a bridge vu

of G, then there is x ∈ X such that ψ(x) 6= u and x is adjacent to λ−1(v)
in H.

Let q′′i = |Z ′′′ ∩ Zi| for i ∈ {1, . . . , s}. By the definition of α′h, we obtain that

(3.11) α′h(q′′1 , . . . , q
′′
s ) ≤

∑
z∈Z′′′

w(z, λ(z)).

Using (3.10) and (3.11), we conclude that

αh(q1, . . . , qs) =
∑
z∈Z′

w(z, ξ(z)) =

(∑
z∈Z′′

w(z, ξ′(z))

)
+

( ∑
z∈Z′′′

w(z, λ(z))

)
≥ αh−1 (q′1, . . . , q

′
s) + α′h (q′′1 , . . . , q

′′
s ) ,

and this immediately implies (3.9).
Now we prove that

(3.12) αh(q1, . . . , qs) ≤ min{αh−1(q′1, . . . , q
′
s) + α′h(q′′1 , . . . , q

′′
s )}.

Consider s-tuples (q′1, . . . , q
′
s) and (q′′1 , . . . , q

′′
s ) such that qi = q′i + q′′i for i ∈ {1, . . . , s}

for which the minimum in the right part of (3.12) is achieved. If αh−1(q′1, . . . , q
′
s) =

+∞ or α′h(q′′1 , . . . , q
′′
s ) = +∞, then (3.12) is trivial. Assume that αh−1(q′1, . . . , q

′
s) <

+∞ and α′h(q′′1 , . . . , q
′′
s ) < +∞.

Since αh−1(q′1, . . . , q
′
s) < +∞, there is an injective mapping ξ′ : Z ′′ → (V (F0) \

ψ(X∪Y ))∪V (F1)∪· · ·∪V (Fh−1) satisfying (a′) and (b′) such that αh−1(q′1, . . . , q
′
s) =∑

z∈Z′′ w(z, ξ(z)), where Z ′′ ⊆ Z with |Z ′′ ∩ Zi| = q′i for i ∈ {1, . . . , s}. Because
α′h(q′′1 , . . . , q

′′
s ) < +∞, there is an injection λ of Z ′′′ to V (Fh) such that (a∗∗) and (b∗∗)

are fulfilled and α′h(q′′1 , . . . , q
′′
s ) =

∑
z∈Z′′′ w(z, λ(z)) for Z ′′′ ⊆ Z with |Z ′′′ ∩ Zi| = q′i

for i ∈ {1, . . . , s}.
Recall that the values of αh−1(q′1, . . . , q

′
s) and α′h(q′′1 , . . . , q

′′
s ) depend only on the

values of q′1, . . . , q
′
s and q′′1 , . . . , q

′′
s , respectively, because if x, y ∈ Zi, then w(x, v) =

w(y, v) for v ∈ V (G) \ ψ(X ∪ Y ). Hence, we can assume that (Z ′′, Z ′′′) is a partition
of Z ′. We define ξ : Z ′ → (V (F0) \ ψ(X ∪ Y )) ∪ V (F1) ∪ · · · ∪ V (Fh) by setting

ξ(z) =

{
ξ′(z) if z ∈ Z ′′,
λ(z) if z ∈ Z ′′′.

Because ξ′ and λ are injections and ξ′(Z ′′)∩λ(Z ′′′) = ∅, ξ is an injection. Since ξ′ and
λ satisfy (a′), (b′) and (a∗∗), (b∗∗), respectively, ξ satisfies (a) and (b). Therefore,

αh(q1, . . . , qs) ≤
∑
z∈Z′

w(z, ξ(z)) =

(∑
z∈Z′′

w(z, ξ′(z))

)
+

( ∑
z∈Z′′′

w(z, λ(z))

)
= αh−1(q′1, . . . , q

′
s) + α′h(q′′1 , . . . , q

′′
s ),

and (3.12) follows.
Combining (3.9) and (3.12), we obtain that (3.8) holds, and this completes the

correction proof of our algorithm.
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To evaluate the running time, observe that there are at most |V (G)|s s-tuples
(q1, . . . , qs). Since s ≤ 2t, it implies that the table of values of α0(q1, . . . , qs) can be

computed in time |V (G)|O(2t) · logW. Similarly, the table of values of α′h(q1, . . . , qs)
for each h ∈ {1, . . . , r} can be computed in the same time. To compute αh(q1, . . . , qs)
for a given s-tuple (q1, . . . , qs) using (3.8), we have to consider at most |V (G)|s pairs
of s-tuples (q′1, . . . , q

′
s) and (q′′1 , . . . , q

′′
s ). Hence, we can compute the table of values

αh(q1, . . . , qs) from the tables of values of αh−1(q1, . . . , qs) and α′h(q1, . . . , qs) in time

|V (G)|O(2t) · logW for each h ∈ {1, . . . , r}. We conclude that the total running time

is |V (G)|O(2t) · logW.

3.2. Hardness of structured augmentation. In this section we show that
Theorems 1 and 2 are tight in the sense that if the vertex-cover number of graphs in a
hereditary graph class C is unbounded, then both structured augmentation problems
are NP-complete. Our hardness proof actually holds for any k-edge connectivity
augmentation. For a positive integer k, we define the following problem.

Input: Two graphs G and H such that G is edge (k − 1)-connected, a

weight function ω :
(
V (G)

2

)
→ N0, and a nonnegative integer W.

Task: Decide whether there is an injective mapping ϕ : V (H)→ V (G)
such that F = G ⊕ϕ H is edge k-connected and the weight of
the mapping ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) ≤W.

Structured k-Connectivity Augmentation.

Let us note that for k = 1 this is Structured Connectivity Augmentation
and for k = 2 this is Structured 2-Connectivity Augmentation. Also we
observe that it is unlikely that we can avoid the dependency on t in the exponents of
polynomial bounding the running time when solving Structured k-Connectivity
Augmentation for H with β(H) ≤ t.

Recall that the Subgraph Isomorphism problem asks, given two graphs G and
H, whether G contains H as a (not necessarily induced) subgraph. We can observe
that Structured k-Connectivity Augmentation when H restricted to be in a
graph class C is at least as hard as Subgraph Isomorphism with the same restriction.

Lemma 3. Let C be a graph class. If Subgraph Isomorphism is NP-complete
for H ∈ C, then for every positive integer k, Structured k-Connectivity Aug-
mentation is NP-complete for H ∈ C even if the weight of every pair of vertices of
G is restricted to be either 0 or 1. Also if Subgraph Isomorphism is W[1]-hard
for H ∈ C when parameterized by |V (H)|, then so is Structured k-Connectivity
Augmentation.

Proof. Let k be a positive integer, and let (G,H) be an instance of Subgraph
Isomorphism. Assume without loss of generality that |V (G)| > k. We construct
the complete graph F with the set of vertices V (G) and define the weight function

ω :
(
V (G)

2

)
→ {0, 1} by setting

ω(uv) =

{
0 if uv ∈ E(G),

1 if uv /∈ E(G).

Then we let W = 0. Notice that F is k-connected and H is a subgraph of G if and only
if there is an injection ϕ : V (H) → V (G) with ω(ϕ) =

∑
xy∈E(G) ω(ϕ(x)ϕ(y)) = 0.

Then (G,H) is a yes-instance of Subgraph Isomorphism if and only if (F,H, ω,W )
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is a yes-instance of Structured k-Connectivity Augmentation and the claim
follows.

The Clique problem asks, given a graph G and a positive integer k, whether G
has a clique of size k or, in other words, whether the complete graph Kk is a subgraph
of G. It is well-known that Clique is NP-complete [10]. Then Lemma 3 implies the
following lemma.

Lemma 4. Let C be a hereditary graph class that contains Kn for arbitrary pos-
itive integer n. Then for every positive integer k, Structured k-Connectivity
Augmentation is NP-complete for H ∈ C even if the weight of every pair of vertices
of G is restricted to be ether 0 or 1.

Let us note that Clique is W[1]-hard when parameterized by k [4]. Notice that
β(Kk) = k − 1. Then Lemma 3 implies the following proposition.

Proposition 1. For every positive integer k, Structured k-Connectivity
Augmentation is W[1]-hard when parameterized by β(H) even if the weight of every
pair of vertices of G is restricted to be ether 0 or 1.

This proposition implies that unless FPT =W[1], we cannot solve Structured
k-Connectivity Augmentation for k = 1, 2 in time f(β(H))·|V (G)|O(1). Hence the
running time of the form |V (G)|f(t) of an algorithm solving Structured
k-Connectivity Augmentation for graphs H with β(H) ≤ t is probably
unavoidable.

The Balanced Biclique asks, given a graph G and a positive integer k, whether
G contains Kk,k as a subgraphs. It is known that Balanced Biclique is NP-
complete [10]. Using Lemma 3 we obtain the next lemma.

Lemma 5. Let C be a hereditary graph class that contains Kn,n for arbitrary pos-
itive integer n. Then for every positive integer k, Structured k-Connectivity
Augmentation is NP-complete for H ∈ C even if the weight of every pair of vertices
of G is restricted to be ether 0 or 1.

Now we consider Structured k-Connectivity Augmentation for k ≥ 1 for
matching graphs. In the next lemma we address the case k = 1.

Lemma 6. Let C be a hereditary graph class that contains a matching graph of
arbitrary size. Then Structured Connectivity Augmentation is NP-complete
for H ∈ C even if the weight of every pair of vertices of G is at most 2.

Proof. Clearly, it is sufficient to prove that Structured Connectivity Aug-
mentation is NP-complete if H is a matching graph. We reduce from the Hamil-
tonian Path problem. Recall that this problem asks whether a graph G has a path
containing all the vertices of G. Hamiltonian Path is known to be NP-complete for
cubic graphs [10].

Let G be a cubic graph with n vertices. We construct the graph G′ as follows:
• Construct a copy of V (G).
• For each edge e = uv ∈ E(G), construct two vertices ue and ve and make

them adjacent to u and v, respectively.
Notice that G′ is the disjoint union of n copies of K1,3. We define H to be the

matching graph with 2n − 1 edges. Now we define ω :
(
V (G′)

2

)
→ N0. For each edge

e = uv ∈ E(G), we set ω(uue) = ω(vve) = 0 and ω(ueve) = 1. For all remaining pairs
of distinct vertices x and y, we set ω(xy) = 2. Finally, let W = n− 1.

We claim that G has a Hamiltonian path if and only if (G′, H, ω,W ) is a yes-
instance of Structured Connectivity Augmentation.
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Suppose that P = v1 . . . vn is a Hamiltonian path in G. Denote the edges of H
by x1y1, . . . , x2n−1y2n−1. We consider the following injection ϕ : V (H)→ V (G′):

• for i ∈ {1, . . . , n− 1}, set ϕ(xi) = v
vivi−1

i and ϕ(yi) = v
vivi+1

i+1 ,
• for each i ∈ {1, . . . , n}, find an edge e in G incident to vi such that e /∈ E(P )

and then set ϕ(xn−1+i) = vi and ϕ(yn−i+1) = vei+1.
It is straightforward to verify that F = G′ ⊕ϕ H is connected and

ω(ϕ) =
∑

xy∈E(H)

ω(ϕ(x)ϕ(y)) = n− 1 ≤W.

Assume now that there is an injection ϕ : V (H)→ V (G′) such that F = G′⊕ϕH
is connected and ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) ≤ n−1 = W. Let A = E(F )\E(G′).

Observe that |A| ≥ n − 1, because G′ contains n components. For each a ∈ A,
ω(a) ≥ 1 and ω(a) = 1 if and only if a = ueve for some edge e = uv ∈ E(G). Then
A contains exactly n − 1 edges and for each a ∈ A, there is ea = uv ∈ E(G) such
that a = ueavea . Notice that the edges ea for a ∈ A are pairwise distinct, because ϕ
is an injection. Let X = {xy ∈ E(H) | ϕ(x)ϕ(y) ∈ A} and Y = E(H) \ X. Since
H has 2n − 1 edges and |A| = n − 1, |Y | = n. Because ω(A) = W, we have that for
each xy ∈ Y, ω(ϕ(x)ϕ(y)) = 0, that is, ϕ(x)ϕ(y) ∈ E(G′). Because each component
of G′ is a copy of K1,3, we have that for each vertex u ∈ V (G), there is an edge e
incident to u in G such that for an edge xy ∈ Y, ϕ({x, y}) = {u, ue}. Because ϕ is an
injective mapping, this implies that at most two edges of A have their endpoints in
the same component of G′. Therefore, every vertex v ∈ G is incident to at most two
edges of the set B = {ea | a ∈ A}. Since F is connected, we conclude that the edges
of B compose a Hamiltonian path in G.

Lemma 7. Let C be a hereditary graph class that contains a matching graph of ar-
bitrary size. Then for every k ≥ 2, Structured k-Connectivity Augmentation
is NP-complete for H ∈ C in the strong sense.

Proof. Let k ≥ 2 be an integer. Clearly, it is sufficient to prove that Structured
k-Connectivity Augmentation is NP-complete if H is a matching graph. We
reduce from the Biconnectivity Augmentation problem that asks, given a graph
G, a weight function c :

(
V (G)

2

)
\E(G)→ N0, and a positive integer W, whether there

is A ⊆
(
V (G)

2

)
\E(G) with c(A) ≤W such that the graph G′ obtained from G by the

addition of edges of A is 2-connected. This problem was shown to be NP-complete by
Frederickson and JáJá in [8] even if G restricted to be a tree and c(uv) ∈ {1, 2} for

uv ∈
(
V (G)

2

)
\ E(G).

Let (T, c,W ) be an instance of Biconnectivity Augmentation where T is a

tree and c :
(
V (T )

2

)
\ E(T ) → {1, 2}. Let r = max{k,W}. We construct the graph G

as follows:
• Construct a copy of V (T ).
• For each e = uv ∈ E(T ), construct a clique Qe of size k and make the vertices

of Q adjacent to u and v.
• For each u ∈ V (T ), construct a clique Ru of size 2r, denote its vertices by
xu1 , . . . , x

u
r , y

u
1 , . . . , y

u
r , and make them adjacent to u.

Observe that G is (k − 1)-connected and its minimum edge separators correspond
to the edges of T. More precisely, for an edge e = uv ∈ V (T ), G has two minimum
separators S1 = {uz ∈ E(G) | z ∈ Qe} and S2 = {vz ∈ E(G) | z ∈ Qe}. We define
H to be the matching graph with W edges and denote its edges by p1q1, . . . , pW qW .
Finally, we define the weight function ω :

(
V (G)

2

)
→ N0 as follows:
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• For each uv ∈
(
V (T )

2

)
\ E(T ), ω(xui y

v
j ) = c(uv) for i, j ∈ {1, . . . , r}.

• For each u ∈ V (T ) and i ∈ {1, . . . , r}, ω(xui y
u
i ) = 0.

• We set ω(pq) = W + 1 for the remaining pairs of distinct vertices of G.
We claim that (T, c,W ) is a yes-instance of Biconnectivity Augmentation if

and only if (G,H, ω,W ) is a yes-instance of Structured k-Connectivity Aug-
mentation.

Suppose that (T, c,W ) is a yes-instance of Biconnectivity Augmentation.

Then there is A ⊆
(
V (G)

2

)
\E(G) with c(A) ≤ w such that the graph T ′ obtained from

T by the addition of edges of A is 2-connected. Let A = {a1b1, . . . asbs}. Since c(e) ∈
{1, 2} for e ∈ E(G), s ≤W. We construct the injective mapping ϕ : V (H)→ V (G) as
follows:

• For i ∈ {1, . . . , s}, if aibi = uv for nonadjacent distinct u, v ∈ V (T ), then set
ϕ(pi) = xiu and ϕ(qi) = xiv.

• For i ∈ {s+ 1,W}, select u ∈ V (T ) and set ϕ(pi) = xui and ϕ(qi) = yui .
By the definition of ω, ω(ϕ) =

∑w
i=1 ω(ϕ(pi)ϕ(qi)) = c(A) ≤W. Consider F = G⊕ϕH.

Recall that T ′ is 2-connected. Then for every bridge uv of T, that is, for every edge
uv, there is aibi that covers uv by Observation 1. By the definition of ϕ, there is
an edge e ∈ E(F ) \ E(G) with its endpoints in Rai and Rbi . Then this edges covers
the separators S1 = {uz ∈ E(G) | z ∈ Quv} and S2 = {vz ∈ E(G) | z ∈ Quv}. It
implies that all edge separators of G of size k−1 are covered by edges of E(F )\E(G).
By Observation 1, we conclude that F is k-connected. Therefore, (G,H, ω,W ) is a
yes-instance of Structured k-Connectivity Augmentation.

Assume that (G,H, ω,W ) is a yes-instance of Structured k-Connectivity
Augmentation. Then there is an injection ϕ : V (H) → V (G) such that ω(ϕ) ≤ W
and F = G ⊕ϕ H is k-connected. By Observation 1, we have that for each edge
uv ∈ E(T ), there is e ∈ E(F ) \ E(G) such that e covers the separator {uz ∈ E(G) |
z ∈ Quv} of G. Since ω(e) ≤ W, we obtain that e has its end-vertices in xiu′ and xjv′
for some i, j ∈ {1, . . . , r} and two nonadjacent u′, v′ ∈ V (T ). Denote ae = u′v′. Notice
that if we add ae to T, then ae covers uv in the obtained graph. Observe also that
c(ae) = ω(e). We consider the set A of distinct ae ∈

(
V (T )

2

)
\E(T ) constructed in the

described way for e ∈ E(F ) \ E(G) covering the separators {uz ∈ E(G) | z ∈ Quv}
of G. We have that the graph T ′ obtained from T by the addition of the edges of
A is 2-connected by Observation 1. Since c(A) ≤ ω(E(F ) \ E(G)) ≤ ω(ϕ) ≤ W, we
conclude that (T, c,W ) is a yes-instance of Biconnectivity Augmentation.

To obtain the classification of the computational complexity of Structured
k-Connectivity Augmentation for hereditary graph classes, we use the Ramsey’s
theorem (see, e.g., [2] for the introduction). For two positive integers p and q, we
denote by R(p, q) the Ramsey number, that is, the smallest n such that every graph
on n vertices has either a clique of size p or an independent set of size q. Those
numbers are all finite by the Ramsey’s theorem. In particular, Marx and Wollan
in [15] observed the following corollary.

Lemma 8. Let H be a graph and n ≥ 1 a positive integer. If H contains a
matching with 510n edges, then H either contains the matching graph with n edges as
an induced subgraph or H contains Kn,n as a subgraph.

Now we are ready to prove the main theorem of this section.

Theorem 3. Let k be a positive integer. Let also C be a hereditary graph class.
Then if the vertex-cover number of C is unbounded, Structured k-Connectivity
Augmentation is NP-complete for H ∈ C in the strong sense.

D
ow

nl
oa

de
d 

01
/0

3/
19

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRUCTURED CONNECTIVITY AUGMENTATION 2629

Proof. Suppose that the vertex-cover number of C is unbounded. It means that
for any positive integer n, C contains a graph with a matching M of size at least n.
Lemma 8 implies that either C contains matching graphs of arbitrary size or, for any
positive n, C contains a graph H that has a spanning subgraph isomorphic to Kn,n.
If C contains matching graphs of arbitrary size, then Structured k-Connectivity
Augmentation is NP-complete for H ∈ C by Lemmata 6 and 7 for k = 1 and
k ≥ 2 respectively. Suppose that for any positive n, C contains a graph H that has
a spanning subgraph isomorphic to Kn,n. If Kr ∈ C for r ≥ 1, then Structured
k-Connectivity Augmentation is NP-complete for H ∈ C by Lemma 4. Assume
that there is a constant p ≥ 1 such that Kr /∈ C for r ≥ p. Then for any positive q, we
have that C contains a graph H that has a spanning subgraph isomorphic to Kn,n for
n = R(p, q). It immediately implies that Kq,q is an induced subgraph of H. Therefore,
for every positive n, Kn,n ∈ C, and Structured k-Connectivity Augmentation
is NP-complete for H ∈ C by Lemma 5.

4. Augmenting unweighted graphs. In this section we consider unweighted
Structured Connectivity Augmentation and Structured 2-Connectivity
Augmentation. Let us recall that in the unweighted cases of the structured aug-
mentation problems the task is to identify whether there is a superposition of graphs
G and H of edge connectivity 1 or 2, correspondingly. In other words, we have the
weight ω(uv) = 0 for every pair of vertices of G and W = 0. Recall also that c(G),
i(G), and p(G) denote the number of connected components of G, the number of
isolated vertices, and the number of pendant biconnected components, respectively.
We obtain structural characterizations of yes-instances for both problems.

4.1. Unweighted STRUCTURED CONNECTIVITY AUGMENTATION. It is con-
venient to consider the special case when H is connected separately.

Lemma 9. Let G and H be graphs such that |V (H)| ≤ |V (G)| and H is connected.
Then there is an injective mapping ϕ : V (H) → V (G) such that F = G ⊕ϕ H is
connected if and only if c(G) ≤ |V (H)|.

Proof. Suppose that there is an injective mapping ϕ : V (H) → V (G) such that
F = G⊕ϕH is connected. Then for each component G′ of G, there is v ∈ V (G′) such
that v ∈ ϕ(V (H)). Since ϕ is injective, then c(G) ≤ |V (H)|.

Assume now that c(G) ≤ |V (H)|. Let G1, . . . , Gs be the components of G. Since
|V (H)| ≤ |V (G)|, there are distinct vertices x1, . . . , xs ∈ V (H). We select arbi-
trarily a vertex vi ∈ V (Gi) for i ∈ {i, . . . , s}. We construct the injective mapping
ϕ : V (H)→ V (G) as follows. We set ϕ(xi) = vi for i ∈ {1, . . . , s} and then extend ϕ
on other vertices of H selecting their images in V (G) \ {v1, . . . , vs} arbitrarily. It is
straightforward to verify that F = G⊕ϕ H is connected.

Now we consider the case when H is not connected.

Lemma 10. Let G and H be graphs such that |V (H)| ≤ |V (G)|, H has no isolated
vertices and is disconnected. Then there is an injective mapping ϕ : V (H) → V (G)
such that F = G⊕ϕ H is connected if and only if

(i) i(G) ≤ |V (H)| − c(H), and
(ii) c(G) ≤ |V (H)| − c(H) + 1.

Proof. Suppose that there is an injective mapping ϕ : V (H) → V (G) such that
F = G⊕ϕ H is connected.

We prove (i) by contradiction. Assume that i(G) > |V (H)| − c(H). Then there
is a component H ′ of H such that every vertex of ϕ(V (H ′)) is an isolated vertex of
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G. We obtain that F [ϕ(V (H ′))] isomorphic to H ′ is a component of F contradicting
the connectivity of F.

To show (ii), denote by G1, . . . , Gs and H1, . . . ,Hr the components of G and
H, respectively. Consider the auxiliary bipartite graph R whose vertices are the
components of G and H, {G1, . . . , Gs} and {H1, . . . ,Hr} form the bipartition of the
vertex set, and for each i ∈ {1, . . . , s} and j ∈ {1, . . . , r}, Gi is adjacent to Hj if and
only if ϕ maps a vertex of Hj to a vertex of Gi. Since F is connected, we obtain that
R is connected as well. Therefore, |V (R)| ≤ |E(R)| + 1. Because ϕ is an injection,
|E(R)| ≤ |V (H)|. Then

c(G) + c(H) = s+ r = |V (R)| ≤ |E(R)|+ 1 ≤ |V (H)|+ 1

and (ii) follows.
Suppose now that (i) and (ii) are fulfilled. Denote by H1, . . . ,Hr the components

of H.
Assume that i(G) = |V (H)| − c(H). By (ii), we have that G has at most i(G) + 1

components. Hence, because |V (H)| ≤ |V (G)|, G has exactly i(G) + 1 components:
i(G) isolated vertices and a component G′ with at least c(H) vertices. We select a
vertex xi in each component Hi for i ∈ {1, . . . , s} and s distinct vertices v1, . . . , vs
in G′. We construct the injective mapping ϕ : V (H) → V (G) as follows. We set
ϕ(xi) = vi for i ∈ {1, . . . , s} and then extend ϕ on other vertices of H by mapping
them into isolated vertices of G. It is straightforward to verify that F = G ⊕ϕ H is
connected.

Suppose from now that i(G) < |V (H)| − c(H). We select the minimum h ∈
{1, . . . , r} such that (

∑h
j=1 |V (Hj)|)−h > i(G). For each i ∈ {1, . . . , h− 1}, we select

xi ∈ V (Hi) if h > 1. We start constructing the injective mapping ϕ : V (H) → V (G)
by mapping the vertices of V (Hi) \ {xi} to isolated vertices of G. Then we map

|V (Hh)| −∑h−1
i=1 (|V (Hi)| − 1) vertices of Hh to the remaining isolated vertices of

G. Notice that by the choice of h, at least two vertices of Hh and the vertices of
Hh1

, . . . ,Hr are not mapped yet. Denote by W the set of these vertices. Recall
also that each component of H has at least two vertices. Denote by G1, . . . , Gs the
components of G with at least two vertices each. Since |V (H)| ≤ |V (G)|, we have that
these components exist and that the total number of vertices in these components is
at least W + (h− 1). By (ii), we have that s+ i(G) ≤ |V (H)| − c(H) + 1. Therefore,
s ≤ |W | − (r − h+ 1) + 1.

If s ≤ r − h+ 2, then we select vi ∈ V (Gi) for i ∈ {1, . . . , s− 1} and v′i ∈ V (Gi)
for i ∈ {2, . . . , s} such that vi 6= v′i. Then for each i ∈ {1, . . . , s − 1}, we pick two
vertices in Hh+i−1 and map them to vi and v′i+1, respectively. The remaining vertices
of W and the vertices x1, . . . , xh−1 are mapped into distinct vertices of G that were
not used for constructing ϕ yet. It is again straightforward to see that F = G⊕ϕ H
is connected.

Suppose that s > r − h + 2. We select vi ∈ V (Gi) for i ∈ {1, . . . , r − h + 1} and
v′i ∈ V (Gi) for i ∈ {2, . . . , r − h+ 2} such that vi 6= v′i. Then for each i ∈ {h, . . . , r},
we pick two vertices in Hi and map them to vi−h+1 and v′i−h+2, respectively. For
every i ∈ {r− h+ 3, . . . , s}, we pick a vertex ui ∈ Gi and yi ∈W that is not mapped
yet. Notice that since s ≤ |W | − (r − h + 1) + 1, this selection is possible. Then
we set ϕ(yi) = ui for i ∈ {r − h + 3, . . . , s}. The remaining vertices of W and the
vertices x1, . . . , xh−1 are mapped into distinct vertices of G that were not used for
constructing ϕ yet. Again, we have that F = G⊕ϕ H is connected.

Lemmata 9 and 10 immediately imply the following theorem.
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Theorem 4. Let G and H be graphs such that H has no isolated vertices and
|V (H)| ≤ |V (G)|. Then there is an injective mapping ϕ : V (H) → V (G) such that
F = G ⊕ϕ H is connected if and only if c(G) ≤ |V (H)| − c(H) + 1 and one of the
following holds:

(i) H is connected,
(ii) H is disconnected graph and i(G) ≤ |V (H)| − c(H).

The next statement is a straightforward corollary of Theorem 4.

Corollary 1. Unweighted Structured Connectivity Augmentation is
solvable in time O(|V (G)|+ |E(G)|+ |E(H)|).

4.2. Unweighted STRUCTURED 2-CONNECTIVITY AUGMENTATION. Now
we consider the case Structured 2-Connectivity Augmentation. Our struc-
tural results are based on the following observation.

Observation 4. Let G and H be graphs and let ϕ : V (H)→ V (G) be an injective
mapping such that F = G⊕ϕH is 2-connected. Then for every pendant biconnected
component G′ of G, there is x ∈ V (H) such that ϕ(x) ∈ V (G′).

In particular, Observation 4 implies the following.

Observation 5. Let G and H be graphs and let ϕ : V (H)→ V (G) be an injective
mapping with the property that F = G⊕ϕ H is 2-connected. Then p(G) ≤ |V (H)|.

To simplify the proofs of our structural lemmata, we use the following straight-
forward observation.

Observation 6. Let G and H be graphs such that |V (H)| ≤ |V (G)|. If H has
a subgraph H ′ such that there is an injective mapping ϕ : V (H ′) → V (G) with the
property that F ′ = G⊕ϕH ′ is k-connected, then for every injective extension ψ of ϕ
on V (H), F = G⊕ϕ H is k-connected.

This allows us to use the following strategy to increase the connectivity of a graph
G. Let ` = p(G) ≥ 2. We select ` pairwise nonadjacent vertices v1, . . . , v` in distinct
pendant biconnected components of G. Then we find an induced subgraph H ′ of H
with ` vertices and construct a bijection ϕ : V (H ′) → {v1, . . . , v`} with the property
that F = G ⊕ϕ H ′ is 2-connected. Notice that if H1, . . . ,Hr are the components of
H ′, then F = G ⊕ϕ H ′ = (. . . ((G ⊕ϕ1

H1) ⊕ϕ2
H2) . . . ⊕ϕr

Hr, where ϕi = ϕ|V (Hi)

for i ∈ {1, . . . , r}. The construction of ϕ is inductive and is based on the following
lemma.

Lemma 11. Let G be a connected graph with ` = p(G) ≥ 2. Let also P =
{P1, . . . , P`} be the set of pendant biconnected components of G, vi ∈ V (Pi) for
i ∈ {1, . . . , `} and v1, . . . , v` are pairwise nonadjacent. Let also H be a connected
graph such that 2 ≤ |V (H)| ≤ ` and `− |V (H)| 6= 1. Then there is an injective map-
ping ϕ : V (H)→ {v1, . . . , v`} such that for F = G⊕ϕH, the set of pendant biconnected
components is P \ {Pi | vi ∈ ϕ(V (H))}.

Proof. Suppose first that |V (H)| = `. Because H is connected and the ver-
tices v1, . . . , v` are pairwise nonadjacent, we have that for any bijection ϕ : V (H) →
{v1, . . . , v`}, F = G ⊕ϕ H is 2-connected by Observations 1 and 3. Then the set of
pendant biconnected components of F is empty and the claim of the lemma holds.

Assume from now that |V (H)| < `. Since `− |V (H)| 6= 1, |V (H)| ≤ `− 2.
Consider the graph T obtained by contracting edges of each biconnected compo-

nent of G. To simplify notation, assume that the vertex obtained by contracting of
each Pi is vi for i ∈ {1, . . . , `}. Notice that v1, . . . , v` are the leaves of T. Notice also
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that the edges of T are exactly the bridges of G. Also for every e ∈ E(T ), we have
the following property: e belongs to a (vi, vj)-path in G if and only if e belongs to the
unique (vi, vj)-path in T.

Since ` ≥ |V (H)| + 2 ≥ 4, there are two distinct leaves vs and vt of T such that
for the unique (vs, vt)-path P in T, there are two leaves vi and vj that are in two
distinct components of T −V (P ). We select L ⊆ {v1, . . . , v`} of size |V (H)| such that
vs, vt ∈ L and vi, vj /∈ L. Let ϕ : V (H)→ L be a bijection. Because H is connected, by
Observation 3, the vertices of G from the biconnected components that are crossed by
(vp, vq)-paths in G for vp, vq ∈ L induce a biconnected component Q of F = G⊕ϕH.
Moreover, because of the choice of vi and vj , at least two bridges of G have incident
vertices in Q. Therefore, P \ {Pi | vi ∈ ϕ(V (H))} is the set of pendant biconnected
components of F.

Using Lemma 11, we obtain the next lemma.

Lemma 12. Let G be a connected graph with ` = p(G) ≥ 2. Let also P =
{P1, . . . , P`} be the set of pendant biconnected components of G, vi ∈ V (Pi) for
i ∈ {1, . . . , `} and v1, . . . , v` are pairwise nonadjacent. Let also H be a graph with
` vertices such that each component of H contains at least two vertices. Then there
is a bijection ϕ : V (H)→ {v1, . . . , v`} such that F = G⊕ϕ H is 2-connected.

Proof. The proof is by the induction on the number of components of H. If H is
connected, then Lemma 11 implies the claim. Assume that H is disconnected and let
H ′ be a component of H.

Because each component of H has size at least 2 and |V (H)| = `, |V (H ′)| ≥ 2
and ` − |V (H)| 6= 1. By Lemma 11, there is an injective mapping ϕ′ : V (H ′) →
{v1, . . . , v`} such that for G′ = G⊕ϕ′ H ′, the set of pendant biconnected components
is P ′ = P \ {Pi | vi ∈ ϕ′(V (H ′))}. Let `′ = |P ′|.

Consider H ′′ = H − V (H ′). Clearly, H ′′ has less components than H. We also
have that |V (H ′′)| = `′ and each component of H ′′ has size at least 2. We apply
the inductive hypothesis for G′ and H ′′. Hence there is a bijection ϕ′′ : V (H) →
{v1, . . . , v`} \ {vi | vi ∈ ϕ′(V (H ′))} such that F = G′ ⊕ϕ′′ H ′′ is 2-connected.

For x ∈ V (H), let

ϕ(x) =

{
ϕ′(x) if x ∈ V (H ′),

ϕ′′(x) if x ∈ V (H ′′).

Clearly, ϕ maps V (H) to {v1, . . . , v`} bijectively. Then F = G′ ⊕ϕ′′ H ′′ = (G ⊕ϕ′
H ′)⊕ϕ′′ H ′′ = G⊕ϕ H and is 2-connected.

Now we are ready to prove the main structural results for unweighted Struc-
tured 2-Connectivity Augmentation. First, we observe that the case when G
is 2-connected is trivial.

Observation 7. Let G and H be graphs such that |V (H)| ≤ |V (G)| and G is
2-connected. Then for any injection ϕ : V (H)→ V (G), F = G⊕ϕ H is 2-connected.

From now we can assume that G is connected but not 2-connected. In particular,
p(G) ≥ 2. It is convenient to consider separately the case when H is a matching graph.

Lemma 13. Let G be a connected graph and let H be a matching graph with
2 ≤ p(G) ≤ |V (H)| ≤ |V (G)|. Then there is an injection ϕ : V (H)→ V (G) such that
F = G⊕ϕ H is 2-connected unless G is a star K1,n where n is odd.

Proof. If G is a star K1,n where n is odd, then because p(G) ≤ |V (H)| ≤ |V (G)|,
|V (H)| = |V (G)|. Then for every injection ϕ : V (H) → V (G), there is an edge xy ∈
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E(H) such that u = ϕ(x) is the central vertex of the star G and v = ϕ(y) is a leaf of
G. We have that uv is a bridge of F = G⊕ϕ H and, therefore, F is not 2-connected.
Assume from now on that G is not a star with the odd number of leaves.

Let P = {P1, . . . , P`} be the set of pendant biconnected components of G. We
select vi ∈ V (Pi) for i ∈ {1, . . . , `} in such a way that v1, . . . , v` are pairwise nonad-
jacent. Notice that it always can be done because G is distinct from K2 as this is the
star K1,1.

Suppose that ` is even. Since ` ≤ |V (H)|, H has an induced subgraph H ′

that contains `/2 components with ` vertices. By Lemma 12, there is a bijection
ϕ : V (H ′)→ {v1, . . . , v`} such that G⊕ϕH ′ is 2-connected. By Observation 6, ϕ can
be extended to V (H) in such a way that F = G⊕ϕ H is 2-connected.

Assume now that ` is odd. Let H ′ be a component of H and denote by x and y
its vertices. Consider a shortest (v1, v2)-path in G. Notice that this path contains a
vertex u that does not belong to the biconnected components P1 and P2. Moreover,
this vertex does not belong to any pendant biconnected component of G. Define
ϕ′(x) = v` and ϕ′(y) = u. Let G′ = G ⊕ϕ′ H ′. Observe that G′ has `′ = ` − 1
pendant biconnected components P ′1, . . . , P

′
`′ . Since `′ is even, we can use the already

proved claim and obtain that there is an injection ϕ′′ : V (H ′′) → V (G′) such that
F = G′ ⊕ϕ H ′′ is 2-connected for H ′′ = H − {x, y}. Let

ϕ(x) =

{
ϕ′(x) if x ∈ V (H ′),

ϕ′′(x) if x ∈ V (H ′′)

for x ∈ V (H). We have that F = G′ ⊕ϕ′′ H ′′ = (G⊕ϕ′ H ′)⊕ϕ′′ H ′′ = G⊕ϕ H and is
2-connected.

Lemma 14. Let G and H be graphs with 2 ≤ p(G) ≤ |V (H)| ≤ |V (G)| such that
G is connected, and H has no isolated vertex and has a component with at least three
vertices. Then there is an injection ϕ : V (H) → V (G) such that F = G ⊕ϕ H is
2-connected.

Proof. Let P = {P1, . . . , P`} be the set of pendant biconnected components of G.
Observe that G is distinct from K2. Otherwise, we have that H = K2, i.e., this is
a matching graph contradicting the condition that H has a component with at least
three vertices. We select vi ∈ V (Pi) for i ∈ {1, . . . , `} in such a way that v1, . . . , v` are
pairwise nonadjacent. Notice that it always can be done because G is distinct from
K2.

Let H1, . . . ,Hr be the components of H and assume that |V (H1)| ≤ · · · ≤
|V (Hr)|. Since ` ≤ |V (H)|, there is minimum s ∈ {1, . . . , r} such that it holds that

p =
∑s
i=1 |V (Hi)| ≥ `. Denote by q =

∑s−1
i=1 |V (Hi)|. We construct the induced sub-

graph H ′ of H as follows. If p = `, then H ′ is the subgraph of H composed by the
components H1, . . . ,Hs. Suppose that p > `. If ` − q ≥ 2, then we find a connected
induced subgraph H ′s of Hs and define H ′ as the subgraph of H with the components
H1, . . . ,Hs−1, H

′
s. Let `− q = 1. Notice that this implies that s ≥ 2. We consider two

cases depending on |V (Hs−1)|.
Suppose that |V (Hs−1)| = 2. Recall that H has a component Hi with at least

three vertices and i ≥ s− 1 by the ordering of the components. We find a connected
induced subgraph H ′i of Hi with three vertices. Then we define H ′ as the subgraph
of H with the components H1, . . . ,Hs−1, H

′
i.
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Assume now that t = |V (Hs−1)| ≥ 3. We find a connected induced subgraph
H ′s−1 of Hs with t− 1 vertices and a connected induced subgraph H ′s of Hs with two
vertices. Then H ′ is the subgraph of H with the components H1, . . . ,Hs−2, H

′
s−1, H

′
s.

In all the cases, H ′ has exactly ` vertices and each component of H ′ has at least
two vertices. By Lemma 12, there is a bijection ϕ : V (H) → {v1, . . . , v`} such that
F = G⊕ϕ H ′ is 2-connected. By Observation 6, ϕ can be extended to V (H) in such
a way that F = G⊕ϕ H is 2-connected.

Recall that the bridges and biconnected components of a graph G can be found
in linear time by the algorithm of Tarjan [18]. Combining this fact with Observations
5 and 7 and Lemmata 13 and 14 we obtain the following theorem.

Theorem 5. Let G and H be graphs such that G is connected, H has no isolated
vertices, and |V (H)| ≤ |V (G)|. Then there is an injective mapping ϕ : V (H)→ V (G)
such that F = G⊕ϕH is 2-connected if and only if p(G) ≤ |V (H)| unless G is a star
K1,n where n is odd and H is a matching graph.

Theorem 5 immediately implies the next corollary.

Corollary 2. Unweighted Structured 2-Connectivity Augmentation is
solvable in time O(|V (G)|+ |E(G)|+ |E(H)|).

5. Conclusion. We initiated the investigation of the structured connectivity
augmentation problems where the aim is to increase the edge connectivity of the input
graphs by adding edges when the added edges compose a given graph. In particular,
we proved that Structured Connectivity Augmentation and Structured 2-
Connectivity Augmentation are solvable in polynomial time when H is from a
graph class C with bounded vertex-cover number. It is natural to ask about increasing
connectivity of a (k − 1)-connected graph to a k-connected graph for every positive
integer k. For the “traditional” edge connectivity augmentation problem (see [7, 16]),
the augmentation algorithms are based on the classic work of Dinic, Karzanov, and
Lomonosov [3] about the structure of minimum edge separators. However, for the
structural augmentation, the structure of the graph H is an obstacle for implement-
ing this approach directly. Due to this, we could not push further our approach
to establish the complexity of Structured k-Connectivity Augmentation for
k > 2 when H is of bounded vertex cover. This remains a natural open question. Re-
call that our hardness results showing that it is NP-hard to increase the connectivity
of a (k − 1)-connected graph to a k-connected graph when H belongs to a class with
unbounded vertex-cover number are proved for every k.

As the first step, it could be interesting to consider the variant of the problem
for multigraphs. In this case, we allow parallel edges and assume that for a mapping
ϕ : V (H) → V (G), the multiplicity of ϕ(x)ϕ(y) in G ⊕ϕ H is the sum of the multi-
plicities of ϕ(x)ϕ(y) in G and xy in H. Notice that all our algorithmic and hardness
results can be restated for this variant of the problem. Actually, some of the proofs
for this variant of the problem become even simpler.

The question of obtaining a k-connected graph for k ≥ 3 is also open for the
unweighted problem. Here we ask whether it is possible to derive structural necessary
and sufficient conditions for a (k − 1)-connected graph G and a graph H such that
there exists an injective mapping ϕ : V (H)→ V (G) such that G⊕ϕH is k-connected.

Another direction of the research is to consider vertex connectivity. As indicated
by the existing results about vertex connectivity augmentation (see, e.g., [11, 12]),
this variant of the problem could be more complicated.
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[8] G. N. Frederickson and J. JáJá, Approximation algorithms for several graph augmentation

problems, SIAM J. Comput., 10 (1981), pp. 270–283, https://doi.org/10.1137/0210019.
[9] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network

optimization algorithms, J. ACM, 34 (1987), pp. 596–615, https://doi.org/10.1145/28869.
28874.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[11] B. Jackson and T. Jordán, Independence free graphs and vertex connectivity augmentation,
J. Comb. Theory, Ser. B, 94 (2005), pp. 31–77, https://doi.org/10.1016/j.jctb.2004.01.004,
http://dx.doi.org/10.1016/j.jctb.2004.01.004.

[12] T. Jordán, On the optimal vertex-connectivity augmentation, J. Combin. Theory Ser. B, 63
(1995), pp. 8–20, https://doi.org/10.1006/jctb.1995.1002.

[13] T. Jordán and Z. Szigeti, Detachments preserving local edge-connectivity of graphs, SIAM
J. Discrete Math., 17 (2003), pp. 72–87, https://doi.org/10.1137/S0895480199363933.

[14] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quart.,
2 (1955), pp. 83–97, https://doi.org/10.1002/nav.3800020109.

[15] D. Marx and P. Wollan, An exact characterization of tractable demand patterns for maxi-
mum disjoint path problems, in Proceedings of the 26th Annual ACM-SIAM Symposium
on Discrete Algorithms, SIAM, Philadelphia, 2015, pp. 642–661.

[16] H. Nagamochi and T. Ibaraki, Algorithmic Aspects of Graph Connectivity, Encyclopedia
Math. Appl. 123, Cambridge University Press, Cambridge, UK, 2008, https://doi.org/10.
1017/CBO9780511721649.
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