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Abstract. Seymour's decomposition theorem for regular matroids is a fundamental result with
a number of combinatorial and algorithmic applications. In this work we demonstrate how this
theorem can be used in the design of parameterized algorithms on regular matroids. We consider
the problem of covering a set of vectors of a given finite dimensional linear space (vector space) by a
subspace generated by a set of vectors of minimum size. Specifically, in the Space Cover problem,
we are given a matrix M and a subset of its columns T ; the task is to find a minimum set F of columns
of M disjoint with T such that the linear span of F contains all vectors of T . For graphic matroids
this problem is essentially Steiner Forest and for cographic matroids this is a generalization of
Multiway Cut. Our main result is the algorithm with running time 2\scrO h(k) \cdot | | M | | \scrO h(1) solving
Space Cover in the case when M is a totally unimodular matrix over rationals, where k is the size
of F . In other words, we show that on regular matroids the problem is fixed-parameter tractable
parameterized by the rank of the covering subspace.
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1. Introduction. We consider the problem of covering a subspace of a given
finite dimensional linear space (vector space) by a set of vectors of minimum size.
The input of the problem is a matrix M given together with a function w assigning
a nonnegative weight to each column of M and a set T of terminal column-vectors
T of M . The task is to find a minimum set of column-vectors F of M (if such a set
exists) which is disjoint with T and generates a subspace containing the linear space
generated by T . In other words, T \subseteq span(F ), where span(F ) is the linear span of F .
We refer to this problem as the Space Cover problem.

The Space Cover problem encompasses various problems arising in different
domains. The Minimum Distance problem in coding theory asks for a minimum
dependent set of columns in a matrix over GF(2). This problem can be reduced to
Space Cover by finding for each column t in matrix M a minimum set of columns in
the remaining part of the matrix that cover T = \{ t\} . The complexity of this problem
was asked by Berlekamp, McEliece, and van Tilborg [2] and remained open for almost
30 years. It was resolved only in 1997, when Vardy showed it to be NP-complete [43].
The parameterized version of the Minimum Distance problem, namely, Even Set,
asks whether there is a dependent set F \subseteq X of size at most k. The parameterized
complexity of Even Set is a long-standing open question in the area; see, e.g., [10].
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COVERING VECTORS BY SPACES: REGULAR MATROIDS 2513

In the language of matroid theory, the problem of finding a minimum dependent set
is known as Matroid Girth, i.e., the problem of finding a circuit in matroid of
minimum length [44]. In machine learning this problem is known as the Subspace
Recovery problem [22]. This problem also generalizes the problem of computing
the rank of a tensor.

For our purposes, it is convenient to rephrase the definition of the Space Cover
problem in the language of matroids. Given a matrix N , let M = (E, \scrI ) denote the
matroid where the ground set E corresponds to the columns of N and \scrI denote the
family of subsets of linearly independent columns. This matroid is called the vector
matroid corresponding to matrix N . Then for matroids, finding a subspace covering
T corresponds to finding F \subseteq E \setminus T , F \in \scrI , such that | F | \leq k and T is spanned
by F . Let us recall that in a matroid set F spans T , denoted by T \subseteq span(F ), if
r(F ) = r(T \cup F ). Here r : 2E \rightarrow \BbbN 0 is the rank function of M . (We use \BbbN 0 to denote
the set of nonnegative integers.)

Then Space Cover is defined as follows:

Space Cover Parameter: k
Input: A binary matroid M = (E, \scrI ) given together with its matrix representa-
tion over GF(2), a weight function w : E \rightarrow \BbbN 0, a set of terminals T \subseteq E, and a
nonnegative integer k.
Question: Is there a set F \subseteq E \setminus T with w(F ) \leq k such that T \subseteq span(F )?

Since a representation of a binary matroid is given as a part of the input, we
always assume that the size ofM is | | M | | = | E| . For regular matroids, testing matroid
regularity can be done efficiently (see, e.g., [42]), and when the input binary matroid
is regular, the requirement that the matroid is given together with its representation
can be omitted.

It is known (see, e.g., [28]) that Space Cover on special classes of binary ma-
troids, namely, graphic and cographic matroids, generalizes two well-studied opti-
mization problems on graphs, namely, Steiner Tree and Multiway Cut. Both
problems play fundamental roles in parameterized algorithms.

Recall that in the Steiner Forest problem we are given a (multi) graph G,
a weight function w : E \rightarrow \BbbN , a collection of pairs of distinct vertices
\{ x1, y1\} , . . . , \{ xr, yr\} of G, and a nonnegative integer k. The task is to decide whether
there is a set F \subseteq E(G) with w(F ) \leq k such that for each i \in \{ 1, . . . , r\} , graph G[F ]
contains an (xi, yi)-path. To see that Steiner Forest is a special case of Space
Cover, for instance, (G,w, \{ x1, y1\} , . . . , \{ xr, yr\} , k) of Steiner Forest, we con-
struct the following graph. For each i \in \{ 1, . . . , r\} , we add a new edge xiyi to G and
assign an arbitrary weight to it; notice that we can create multiple edges this way.
Denote by G\prime the obtained multigraph and let T be the set of added edges and let
M(G\prime ) be the graphic matroid associated with G\prime . Then a set of edges F \subseteq E(G)
forms a graph containing all (xi, yi)-paths if and only if T \subseteq span(F ) in M(G\prime ).

The special case of Steiner Forest when x1 = x2 = \cdot \cdot \cdot = xr, i.e., when set
F should form a connected subgraph spanning all demand vertices, is the Steiner
Tree problem, the fundamental problem in network optimization. By the classical
result of Dreyfus and Wagner [12], Steiner Tree is fixed-parameter tractable (FPT)
parameterized by the number of terminals. The study of parameterized algorithms
for Steiner Tree has led to the design of important techniques, such as fast subset
convolution [3] and the use of branching walks [33]. Research on the parameterized
complexity of Steiner Tree is still ongoing, with recent significant advances for the
planar version of the problem [37]. Algorithms for Steiner Tree are frequently
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2514 FOMIN, GOLOVACH, LOKSHTANOV, AND SAURABH

used as a subroutine in FPT algorithms for other problems; examples include vertex
cover problems [21], near-perfect phylogenetic tree reconstruction [4], and connectivity
augmentation problems [1].

The dual of Space Cover, i.e., the variant of Space Cover asking whether there
is a set F \subseteq E \setminus T with w(F ) \leq k such that T \subseteq span(F ) in the dual matroid M\ast ,
is equivalent to the Restricted Subset Feedback Set problem. In this problem
the task is for a given matroid M , a weight function w : E \rightarrow \BbbN 0, a set T \subseteq E, and
a nonnegative integer k, to decide whether there is a set F \subseteq E \setminus T with w(F ) \leq k
such that matroid M \prime obtained from M by deleting the elements of F has no circuit
containing an element of T . Hence, Space Cover for cographic matroids is equivalent
to Restricted Subset Feedback Set for graphic matroids. Restricted Subset
Feedback Set for graphs was introduced by Xiao and Nagamochi [45], who showed
that this problem is FPT parameterized by | F | . Let us note that in order to obtain an
algorithm for Space Cover with a single-exponential dependence in k, we also need
to design a new algorithm for Space Cover on cographic matroids which improves
significantly the running time achieved by Xiao and Nagamochi [45].

Multiway Cut, another fundamental graph problem, is the special case of
Restricted Subset Feedback Set and therefore of Space Cover. In the
Multiway Cut problem we are given a (multi) graphG, a weight function w : E \rightarrow \BbbN ,
a set S \subseteq V (G), and a nonnegative integer k. The task is to decide whether there
is a set F \subseteq E(G) with w(F ) \leq k such that the vertices of S are in distinct con-
nected components of the graph obtained from G by deleting edges of F . Indeed, let
(G,w, S, k) be an instance of Multiway Cut. We construct graph G\prime by adding a
new vertex u and connecting it to the vertices of S. Denote by T the set of added
edges and assign weights to them arbitrarily. Then (G,w, S, k) is equivalent to the
instance (M(G\prime ), w, T, k) of Restricted Subset Feedback Set. If | S| = 2, Mul-
tiway Cut is exactly the classical min-cut problem which is solvable in polynomial
time. However, as proved by Dahlhaus et al. [6] already for three terminals the prob-
lem becomes NP-hard. Marx, in his celebrated work on important separators [31], has
shown that Multiway Cut is FPT when parameterized by the size of the cut | F | .

While Steiner Tree is FPT parameterized by the number of terminal ver-
tices, the hardness results for Multiway Cut with three terminals yields that Space
Cover parameterized by the size of the terminal set T is Para-NP-complete even if
restricted to cographic matroids. This explains why a meaningful parameterization
of Space Cover is by the rank of the span and not the size of the terminal set.

It follows from the result of Downey et al. [11] on the hardness of the Maximum-
Likelihood Decoding problem that Space Cover is W[1]-hard for binary matroids
when parameterized by k even if restricted to the inputs with one terminal and unit-
weight elements. However, it is still possible to establish the tractability of the problem
on a large class of binary matroids. Sandwiched between graphic and cographic (where
the problem is FPT) and binary matroids (where the problem is intractable) is the
class of regular matroids.

Our results. Our main theorem establishes the tractability of Space Cover
on regular matroids.

Theorem 1. Space Cover on regular matroids is solvable in time 2\scrO (k) \cdot 
| | M | | \scrO (1).

We believe that due to the generality of Space Cover, Theorem 1 will be useful
in the study of various optimization problems on regular matroids. As an example,
we consider the Rank h-Reduction problem; see, e.g., [26]. Here we are given a
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COVERING VECTORS BY SPACES: REGULAR MATROIDS 2515

binary matroid M and positive integers h and k; the task is to decide whether it is
possible to decrease the rank of M by at least h by deleting k elements. For graphic
matroids, this is the h-Way Cut problem, which is for a connected graph G and
positive integers h and k, to decide whether it is possible to separate G into at least
h connected components by deleting at most k edges. By the celebrated result of
Kawarabayashi and Thorup [27], h-Way Cut is FPT parameterized by k even if h is
a part of the input. The result of Kawarabayashi and Thorup cannot be extended to
cographic matroids; we show that for cographic matroids the problem is W[1]-hard
when parameterized by h + k. On the other hand, by making use of Theorem 1, we
solve Rank h-Reduction in time 2\scrO (k) \cdot | | M | | \scrO (h) on regular matroids (Theorem 5).

Let us also remark that the running time of our algorithm is asymptotically
optimal: unless the exponential time hypothesis fails, there is no algorithm of running
time 2o(k) \cdot | | M | | \scrO (1) solving Space Cover on graphic (Steiner Tree) or cographic
(Multiway Cut) matroids; see, e.g., [5].

Related work. The main building block of our algorithm is the fundamental the-
orem of Seymour [38] on a decomposition of regular matroids. Roughly speaking (we
define it properly in section 4), Seymour's decomposition provides a way to decom-
pose a regular matroid into much simpler base matroids that are graphic, cographic,
or of constant size. Then all ``communication"" between base matroids is limited to
``cuts"" of small rank (we refer to the monograph of Truemper [42] and the survey of
Seymour [40] for the introduction to matroid decompositions). This theorem has a
number of important combinatorial and algorithmic applications. Among the classic
algorithmic applications of Seymour's decomposition are the polynomial time algo-
rithms of Truemper [41] (see also [42]) for finding maximum flows and shortest routes
and the polynomial algorithm of Golynski and Horton [20] for constructing a mini-
mum cycle basis. More recent applications of Seymour's decomposition can be found
in approximation, on-line, and parameterized algorithms. Goldberg and Jerrum [19]
used Seymour's decomposition theorem for obtaining a fully polynomial randomized
approximation scheme for the partition function of the ferromagnetic Ising model on
regular matroids. Dinitz and Kortsarz in [8] applied the decomposition theorem for
the Matroid Secretary problem. In [14], Gavenciak, Kr\'al, and Oum initiated the
study of the Minimum Spanning Circuit problem for matroids that generalizes the
classical Cycle Through Elements problem for graphs. The problem asks for a
matroid M , a set T \subseteq E, and a nonnegative integer \ell , whether there is a circuit C
of M with T \subseteq C of size at most \ell . Gavenciak, Kr\'al, and Oum [14] proved that the
problem is FPT when parameterized by \ell if | T | \leq 2. Recently, in [13], we extended
this result by showing that Minimum Spanning Circuit is FPT parameterized by
k = \ell  - | T | .

On a very superficial level, all the algorithmic approaches based on Seymour's
decomposition theorem utilize the same idea: solve the problem on base matroids and
then ``glue"" solutions into a global solution. Of course, such a view is a significant
oversimplification. First of all, the original decomposition of Seymour in [38] was not
meant for algorithmic purposes and almost every time to use it algorithmically one has
to apply nontrivial adjustments to the original decomposition. For example, in order
to solve Matroid Secretary on regular matroids, Dinitz and Kortsarz in [8] have to
give a refined decomposition theorem suitable for their algorithmic needs. Similarly,
in order to use the decomposition theorem for approximation algorithms, Goldberg
and Jerrum in [19] have to add several new ingredients to the original Seymour's
construction. We face exactly the same nature of difficulties in using Seymour's de-
composition theorem. Our starting point is the variant of Seymour's decomposition
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2516 FOMIN, GOLOVACH, LOKSHTANOV, AND SAURABH

theorem proved by Dinitz and Kortsarz in [8]. However, even the decomposition of
Dinitz and Korsatz cannot be used as a black box for our purposes. Our algorithm,
while recursively constructing a solution, has to transform the decomposition ``dy-
namically."" This occurs when the algorithm processes cographic matroids ``glued""
with other matroids and for that part of the algorithm the transformation of the
decomposition is essential.

2. Organization of the paper and outline of the algorithm. In this section
we explain the structure of the paper and give a high-level overview of our algorithm.

2.1. Organization of the paper. The remaining part of the paper is organizied
as follows. In section 3 we give basic definitions and prove some simple auxiliary
results. In section 4 we define decompositions of regular matroids. In section 5
we provide a number of reduction rules for Space Cover which will be used in
the algoritm. In section 6 we provide algorithms for basic matroids: graphic and
cographic. The algorithm for the general case, which is the most technical part of the
paper, is described in section 7. In section 8 we discuss the application of our main
result to the Rank h-Reduction problem. We conclude with some open questions
in section 9.

2.2. Outline of the algorithm. One of the crucial components of our algorithm
is the classical theorem of Seymour [38] on a decomposition of regular matroids and in
section 4 we briefly introduce these structural results. Roughly speaking, the theorem
of Seymour says that every regular matroid can be decomposed via ``small sums"" into
basic matroids which are graphic, cographic, and very special matroid of constant size
called R10. Our general strategy is to first solve Space Cover on basic matroids,
second to move through matroid decomposition and combine solutions from basic
matroids. However, when it comes to the implementation of this approach, many
difficulties arise. In what follows we give an overview of our algorithm.

To describe the decomposition of matroids, we need the notion of ``\ell -sums"" of
matroids; we refer to [36, 42] for a formal introduction to matroid sums. However,
for our purpose, it is sufficient that we restrict ourselves to binary matroids and up
to 3-sums [38].

Definition 2.1 (\oplus -sums of matroids). For two binary matroids M1 and M2,
the sum of M1 and M2, denoted by M1 \oplus M2, is the matroid M with the ground
set E(M1) \bigtriangleup E(M2) whose cycles are all subsets C \subseteq E(M1) \bigtriangleup E(M2) of the form
C = C1 \bigtriangleup C2, where C1 is a cycle of M1 and C2 is a cycle of M2. We will be using
only the following sums:

(\oplus 1) If E(M1) \cap E(M2) = \emptyset and E(M1), E(M2) \not = \emptyset , then M is the 1-sum of M1

and M2 and we write M = M1 \oplus 1 M2.
(\oplus 2) If | E(M1) \cap E(M2)| = 1, the unique e \in E(M1) \cap E(M2) is not a loop or

coloop of M1 or M2, and | E(M1)| , | E(M2)| \geq 3, then M is the 2-sum of M1

and M2 and we write M = M1 \oplus 2 M2.
(\oplus 3) If | E(M1) \cap E(M2)| = 3, the 3-element set Z = E(M1) \cap E(M2) is a

circuit of M1 and M2, Z does not contain a cocircuit of M1 or M2, and
| E(M1)| , | E(M2)| \geq 7, then M is the 3-sum of M1 and M2 and we write
M = M1 \oplus 3 M2.

An \{ 1, 2, 3\} -decomposition of a matroid M is a collection of matroids \scrM , called
the basic matroids, and a rooted binary tree T in which M is the root and the elements
of \scrM are the leaves such that any internal node is 1-, 2-, or 3-sum of its children.

D
ow

nl
oa

de
d 

01
/0

3/
19

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COVERING VECTORS BY SPACES: REGULAR MATROIDS 2517

By the celebrated result of Seymour [38], every regular matroidM has an \{ 1, 2, 3\} -
decomposition in which every basic matroid is either graphic, cographic, or isomorphic
to R10. Moreover, such a decomposition (together with the graphs whose cycle and
bond matroids are isomorphic to the corresponding basic graphic and cographic ma-
troids) can be found in time polynomial in | E(M)| . The matroid R10 is a binary
matroid represented over GF(2) by the 5 \times 10-matrix whose columns are formed by
vectors that have exactly three nonzero entries (or rather three ones) and no two
columns are identical.

In this paper we use a variant of Seymour's decomposition suggested by Dinitz
and Kortsarz in [8]. With a regular matroid one can associate a conflict graph, which
is an intersection graph of the basic matroids. In other words, the nodes of the
conflict graph are the basic matroids and two nodes are adjacent if and only if the
intersection of the corresponding matroids is nonempty. It was shown by Dinitz and
Kortsarz in [8] that every regular matroid M can be decomposed into basic matroids
such that the corresponding conflict graph is a forest. Thus every node of this forest
is one of the basic matroids that are either graphic, or cographic, or isomorphic to
R10 (we can relax this condition and allow variations of R10 obtained by adding
parallel elements to participate in a decomposition). Two nodes are adjacent if the
corresponding matroids have some elements in common, the edge connecting these
nodes corresponds to 2- or 3-sum. We complement this forest into a conflict tree \scrT 
by edges which correspond to 1-sums. As shown by Dinitz and Kortsarz, then regular
matroid M can be obtained from \scrT by taking the sums between adjacent matroids
in any order.

In matroid language, it is much more convenient to speak in terms of minimal
dependent sets, i.e., circuits. In this language, a set F \subseteq E(M) \setminus T spans T \subseteq E(M)
in matroid M if and only if for every t \in T , there is a circuit C of M such that
t \in C \subseteq F \cup \{ t\} . In what follows, we often will use an equivalent reformulation of
Space Cover, namely, the problem of finding a minimum-sized set F , such that for
every terminal element t, the set F \cup \{ t\} contains a circuit with t.

We start our algorithm with solving Space Cover on basic matroids in section 6.
The problem is trivial for R10. If M is a graphic matroid, then there is a graph G
such that M is isomorphic to the cycle matroid M(G) of G. That is, the circuits of
M(G) are exactly the cycles of G. Hence, F \subseteq E(G) spans t = uv \in E(G) if and only
if F contains a (u, v)-path. By this observation, we can reduce an instance of Space
Cover to an instance of Steiner Forest. The solution to Steiner Forest is very
similar to the classical algorithm for Steiner Tree [12].

Recall that Space Cover on cographic matroids is equivalent to Restricted
Edge-Subset Feedback Edge Set. Xiao and Nagamochi proved in [45] that this
problem can be solved in time (12k)6k2k \cdot n\scrO (1) on n-vertex graphs. To get a single-
exponential in k algorithm for regular matroids, we improve this result and construct
a single-exponential algorithm for Space Cover on cographic matroids. We consider
a graph G such that M is isomorphic to the bond matroid M\ast (G) of G. The set of
circuits of M is the set of inclusion-minimal edge cut-sets of G, and we can restate
Space Cover as a cut problem in G: for a given set T \subseteq E(G), we need to find
a set F \subseteq E(G) \setminus T such that the edges of T are bridges of G  - F . To resolve this
problem, we use a powerful technique of Marx [31] based on important separators or
cuts. Unfortunately, for our purposes this technique cannot be applied directly and
we have to introduce special important edge-cuts tailored for Space Cover. We call
such edge-cuts semi-important and obtain structural results for semi-important cuts.
Then a branching algorithm based on the enumeration of semi-important cuts solves
the problem in time 2\scrO (k) \cdot n\scrO (1).
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2518 FOMIN, GOLOVACH, LOKSHTANOV, AND SAURABH

The algorithm for the general case is described in section 7. Suppose that we have
an instance of Space Cover for a regular matroid M . First, we apply some reduction
rules described in section 5 to simplify the instance. In particular, for technical reasons
we allow zero weights of elements, but a nonterminal element of zero weight can always
be taken into a solution. Hence, we can contract such elements. Also, if the set of
terminals T contains a circuit C, then the deletion from M of any e \in C leads to an
equivalent instance of the problem. This way, we can bound the number of terminals
in the parameter k.

In the next step, we construct a conflict tree \scrT . If \scrT has one node, then M is
graphic, cographic, or a copy of R10, and we solve the problem directly. Otherwise, we
select arbitrarily a root node r of \scrT , and its selection defines the parent-child relation
on \scrT . We say that u is a subleaf if its children are leaves of \scrT . Clearly, such a node
exists and can be found in polynomial time. Let a basic matroid Ms be a subleaf of
\scrT . We say that a child of Ms is a 1-, 2-, or 3-leaf, respectively, if the edge between
Ms and the leaf corresponds to 1-, 2-, or 3-sum, respectively. We either reduce a leaf
M\ell that is a child of Ms by deleting M\ell from the decomposition and modifying Ms,
or we branch on M\ell or Ms. For each branch, we delete M\ell or/and modify Ms in such
a way that the parameter k decreases.

The case when there is a 1-leaf M\ell is trivial, because we can solve the problem
for M\ell independently. For the cases of 2- and 3-leaves, we recall that a solution F
together with T is a union of circuits and analyze the possible structure of these
circuits.

If M\ell is a 2-leaf, we have two cases: either M\ell contains a terminal or not. If M\ell 

contains no terminal, we are able to delete M\ell from the decomposition and assign to
the unique element e \in E(Ms) \cap E(M\ell ) the minimum weight of F\ell \subseteq E(M\ell ) \setminus \{ e\} 
that spans e in M\ell . If T\ell = E(M\ell ) \cap T \not = \emptyset , then we have three possible cases for
F\ell = E(M\ell ) \cap F , where F is a (potential) solution:

(i) F\ell spans T\ell and e in M\ell , and then we can use the elements of F\ell that together
with e form a circuit of M\ell to span t \in T \setminus T\ell ,

(ii) the symmetric case where F\ell \cup \{ e\} spans T\ell and we need the elements of
F \setminus F\ell that together with e form a circuit to span the elements of T\ell , and

(iii) F\ell spans T\ell in M\ell and no element of F\ell is needed to span the remaining
terminals.

Respectively, we branch according to these cases. It can be noticed that in (ii), we
have a degenerate possibility that e spans T\ell . Then the branching does not decrease
the parameter. To avoid this situation, we observe that if there is t \in T\ell that is
parallel to e in M\ell , then we modify the decomposition by deleting t from M\ell and by
adding a new element t to M\ell that is parallel to e.

The analysis of the cases when we have only 3-leaves is done in a similar way
but is more complicated. If we have a 3-leaf M\ell that contains terminals, then we
branch. Here we have 6 types of branches, and the total number of branches is 15.
Moreover, for some of branches, we have to solve a special variant of the problem
called Restricted Space Cover for the leaf to break the symmetry. If there is
no 3-leaf with terminals, then our strategy depends on the type of Ms that can be
graphic or cographic.

If Ms is a graphic matroid, then we consider a graph G such that the cycle
matroid M(G) is isomorphic to Ms and assume that M(G) = Ms. If M\ell is a 3-leaf,
then the elements of E(Ms) \cap E(M\ell ) form a cycle Z of size 3 in G. We delete M\ell 

from the decomposition and modify G as follows: construct a new vertex u and join u
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with the vertices of Z be edges. Then we assign the weights to the edges of Z and the
edges incident to u to emulate all possible selections of elements of M\ell for a solution.

As with the basic matroids, the case of cographic matroids proved to be most
difficult. If Ms is cographic, then there is a graph G such that the bond matroid
M\ast (G) is isomorphic toMs. Recall that the circuits ofM

\ast (G) are exactly the minimal
edge cut-sets of G. In particular, the intersections of the sets of elements of the 3-leafs
with E(Ms) are mapped by an isomorphism of Ms and M\ast (G) to minimal cut-sets of
G. We analyze the structure of these cuts. It is well-known that minimum cut-sets
of odd size form a tree-like structure (see [7]). In our case, we can assume that G
has no bridges, but still G is not necessarily 3 connected. We show that we always
can find an isomorphism \alpha of Ms to M\ast (G) and a 3-leaf M\ell such that a minimal
cut-set Z = \alpha (E(Ms)\cap E(M\ell )) separates G into two components in such a way with
the following condition: There is a component H such that H has no bridges, and
moreover, no element of a basic matroid M \prime \not = Ms is mapped by \alpha to an edge of H.
In the case of a graphic subleaf, we are able to get rid of a leaf by making a simple
local adjustment of the corresponding graph. For the cographic case, this approach
does not work as we are working with cuts. Still, if H contains no terminal, then we
make a replacement but we are replacing the leaf M\ell and H in G simultaneously by
a gadget. If H has terminals, we branch on H: we decompose further M\ast (G) into a
sum of two cographic matroids and obtain a new leaf of the considered subleaf from
H. Then we either reduce the new leaf if it is a 1-leaf or branch on it if it is a 2- or
3-leaf.

3. Preliminaries. Parameterized complexity. Parameterized complexity is
a two-dimensional framework for studying the computational complexity of a problem.
One dimension is the input size n and another is a parameter k. It is said that a
problem is FPT if it can be solved in time f(k) \cdot nO(1) for some function f . We
refer to the recent books of Cygan et al. [5] and Downey and Fellows [10] for the
introduction to parameterized complexity.

It is standard for a parameterized algorithm to use (data) reduction rules, i.e.,
polynomial or FPT algorithms that either solve an instance or reduce it to another
one that typically has a smaller input size and/or a lesser value of the parameter. A
reduction rule is safe if it either correctly solves the problem or outputs an equivalent
instance.

Our algorithm for Space Cover uses the bounded search tree technique or
branching. It means that the algorithm includes steps, called branching rules, on
which we either solve the problem directly or recursively call the algorithm on several
instances (branches) for lesser values of the parameter. We say that a branching rule
is exhaustive if either it correctly solves the problem or the considered instance is a
yes-instance if and only if there is a branch with a yes-instance.

Graphs. We consider finite undirected (multi) graphs that can have loops or
multiple edges. We use n and m to denote the number of vertices and edges of the
considered graphs respectively if it does not create confusion. For a graph G and a
subset U \subseteq V (G) of vertices, we write G[U ] to denote the subgraph of G induced by
U . We write G  - U to denote the subgraph of G induced by V (G) \setminus U , and G  - u
if U = \{ u\} . Respectively, for S \subseteq E(G), G[S] denotes the graph induced by S, i.e.,
the graph with the edges S whose vertices are the vertices of G incident to the edges
of S. We denote by G  - S the graph obtained from G by the deletion of the edges
of G; for a single element set, we write G  - e instead of G  - \{ e\} . For e \in E(G),
we denote by G/e the graph obtained by the contraction of e. Since we consider
multigraphs, it is assumed that if e = uv, then to construct G/e, we delete u and v,
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construct a new vertex w, and then for each ux \in E(G) and each vx \in E(G), where
x \in V (G) \setminus \{ u, v\} , we construct new edge wx (and possibly obtain multiple edges),
and for each e\prime = uv \not = e, we add a new loop ww. A set S \subseteq E(G) is an (edge) cut-set
if the deletion of S increases the number of components. A cut-set S is (inclusion)
minimal if any proper subset of S is not a cut-set. A bridge is a cut-set of size one.

Matroids. We refer to the book of Oxley [36] for a detailed introduction to the
matroid theory. Recall that a matroid M is a pair (E, \scrI ), where E is a finite ground
set of M and \scrI \subseteq 2E is a collection of independent sets that satisfy the following three
axioms:

I1. \emptyset \in \scrI ,
I2. if X \in \scrI and Y \subseteq X, then Y \in \scrI ,
I3. if X,Y \in \scrI and | X| < | Y | , then there is e \in Y \setminus X such that X \cup \{ e\} \in \scrI .

We denote the ground set of M by E(M) and the set of independent sets by \scrI (M) or
simply by E and \scrI if it does not create confusion. If a set X \subseteq E is not independent,
then X is dependent. Inclusion maximal independent sets are called bases of M . We
denote the set of bases by \scrB (M) (or simply by \scrB ). The matroid M\ast with the ground
set E(M) such that \scrB (M\ast ) = \scrB \ast (M) = \{ E \setminus B | B \in \scrB (M)\} is dual to M . The bases
of M\ast are cobases of M .

A function r : 2E \rightarrow \BbbZ 0 such that for any Y \subseteq E, r(Y ) = max\{ | X| | X \subseteq 
Y and X \in \scrI \} is called the rank function of M . Clearly, X \subseteq E is independent if
and only if r(X) = | X| . The rank of M is r(M) = r(E). Repectively, the corank
r\ast (M) = r(M\ast ).

Recall that a set X \subseteq E spans e \in E if r(X \cup \{ e\} ) = r(X), and span(X) = \{ e \in 
E | X spans e\} . Respectively, X spans a set T \subseteq E if T \subseteq span(X). Let T \subseteq E.
Notice that if F \subseteq T spans every element of T , then an independent set of maximum
size F \prime \subseteq F spans T as well by the definition. Hence, we can observe the following.

Observation 3.1. Let T \subseteq E for a matroid M , and let F \subseteq E \setminus T be an inclusion
minimal set such that F spans T . Then F is independent.

An (inclusion) minimal dependent set is called a circuit of M . We denote the set
of all circuits of M by \scrC (M) or simply \scrC if it does not create a confusion. The circuits
satisfy the following conditions (circuit axioms):

C1. \emptyset /\in \scrC ,
C2. if C1, C2 \in \scrC and C1 \subseteq C2, then C1 = C2,
C3. if C1, C2 \in \scrC , C1 \not = C2, and e \in C1 \cap C2, then there is C3 \in \scrC such that

C3 \subseteq (C1 \cup C2) \setminus \{ e\} .
An one-element circuit is called a loop, and if \{ e1, e2\} is a two-element circuit, then
it is said that e1 and e2 are parallel. An element e is a coloop if e is a loop of M\ast or,
equivalently, e \in B for every B \in \scrB . A circuit of M\ast is called a cocircuit of M . A set
X \subseteq E is a cycle of M if either X is empty or X is a disjoint union of circuits. By
\scrS (M) (or \scrS ) we denote the set of all cycles of M . We often use the property that the
sets of circuits and cycles completely define matroid. Indeed, a set is independent if
and only if it does not contain circuits, and the circuits are exactly inclusion minimal
nonempty cycles.

We can observe the following.

Observation 3.2. Let \{ e1, e2\} \in \scrC for distinct e1, e2 \in E and let C \in \scrC for a
matroid M . If e1 \in C and e2 /\in C, then C \prime = (C \setminus \{ e1\} ) \cup \{ e2\} is a circuit.

Proof. By axiom C3, (\{ e1, e2\} \cup C) \setminus \{ e1\} = (C \setminus \{ e1\} ) \cup \{ e2\} = C \prime contains a
circuit C \prime \prime . Suppose that C \prime \prime \not = C \prime . Notice that because C \setminus \{ e1\} contains no circuit,
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we have that e2 \in C \prime \prime . As e1 /\in C \prime \prime , we obtain that (\{ e1, e2\} \cup C \prime \prime ) \setminus \{ e2\} contains a
circuit, but (\{ e1, e2\} \cup C \prime \prime ) \setminus \{ e2\} is a proper subset of C, which is a contradiction.
Hence, C \prime \prime = C \prime and thus C \prime is a circuit.

Often it is convenient to express the property that a set X spans an element e in
terms of circuits or, equivalently, cycles.

Observation 3.3. Let e \in E and X \subseteq E \setminus \{ e\} for a matroid M . Then e \in span(X)
if and only if there is a circuit (cycle) C such that e \in C \subseteq X \cup \{ e\} .

Proof. Denote by r the rank function of M . Let e \in span(X). Then r(X\cup \{ e\} ) =
r(X). Let Y be an independent set such that Y \subseteq X and r(X) = r(Y ). We have
that r(Y \cup \{ e\} ) \leq r(X \cup \{ e\} ) = r(X) = r(Y ). Hence, Y \cup \{ e\} is not independent.
Therefore, there is a circuit (cycle) C such that C \subseteq Y \cup \{ e\} \subseteq X \cup \{ e\} . Because Y
is independent, we have that C \not \subseteq Y and e \in C. Hence e \in C \subseteq X \cup \{ e\} .

Suppose that there is a circuit C such that e \in C \subseteq X \cup \{ e\} . Let Y = C \cap X.
Since e \in C and e /\in X, we have that Y is a proper subset of C, i.e., Y is independent.
Denote by Z an (inclusion) maximal independent set such that Y \subseteq Z \subseteq X and let
Z \prime be a maximal independent set such that Z \prime \subseteq X\cup \{ e\} . If | Z \prime | > | Z| , then by axiom
I3, there is e\prime \in Z \prime \setminus Z such that Z \cup \{ e\prime \} is independent. Because Z is a maximal
independent set such that Y \subseteq Z \subseteq X, it follows that e\prime /\in X. Hence, e\prime = e, but then
C = Y \cup \{ e\} \subseteq Z \cup \{ e\} , contradicting the independence of Z \cup \{ e\} . It means that
| Z| = | Z \prime | . Therefore, r(X) \leq r(X \cup \{ e\} ) = | Z \prime | = | Z| \leq r(X). Hence, e \in span(X).

Finally, if there is a cycle C such that e \in C \subseteq X \cup \{ e\} , then there is a circuit
C \prime \subseteq C such that e \in C \prime \subseteq X \cup \{ e\} and, therefore, e \in span(X) by the previous
case.

By Observation 3.3, we can reformulate Space Cover in the following equivalent
form.

Space Cover (reformulation) Parameter: k
Input: A binary matroid M = (E, \scrI ) given together with its matrix representa-
tion over GF(2), a weight function w : E \rightarrow \BbbN 0, a set of terminals T \subseteq E, and a
nonnegative integer k.
Question: Is there a set F \subseteq E \setminus T with w(F ) \leq k such that for any e \in T ,
there is a circuit (or cycle) C such that e \in C \subseteq F \cup \{ e\} ?

We use this equivalent definition in the majority of the proofs without referring
to Observation 3.3.

Let M be a matroid and e \in E(M) is not a loop. We say that M \prime is obtained
from M by adding of a parallel to e element if E(M \prime ) = E(M) \cup \{ e\prime \} , where e\prime is a
new element, and \scrI (M \prime ) = \scrI (M) \cup \{ (X \setminus \{ e\} ) \cup \{ e\prime \} | X \in \scrI (M) and e \in X\} . It is
straightforward to verify that \scrI (M \prime ) satisfies the axioms I.1--I.3, i.e., M \prime is a matroid
with the ground set E(M) \cup \{ e\prime \} . It is also easy to see that \{ e, e\prime \} is a circuit, that
is, e and e\prime are parallel elements of M \prime .

Deletions and contractions. Let M be a matroid, e \in E(M). The matroid
M \prime = M  - e is obtained by deleting e if E(M \prime ) = E(M) \setminus \{ e\} and I(M \prime ) = \{ X \in 
\scrI (M) | e /\in X\} . It is said that M \prime = M/e is obtained by contracting e if M \prime =
(M  - e)\ast . In particular, if e is not a loop, then I(M \prime ) = \{ X \setminus \{ e\} | e \in X \in \scrI (M)\} .
Notice that deleting an element in M is equivalent to contracting it in M\ast and vice
versa. Let X \subseteq E(G). Then M  - X denotes the matroid obtained from M by the
deletion of the elements of X and M/X is the matroid obtained by the consecutive
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contractions of the elements of X. The restriction of M to X, denoted by M | X, is
the matroid obtained by the deletion of the elements of E(G) \setminus X.

Matroids associated with graphs. Let G be a graph. The cycle matroid
M(G) has the ground set E(G) and a set X \subseteq E(G) is independent if X = \emptyset or G[X]
has no cycles. Notice that C is a circuit of M(G) if and only if C induces a cycle of
G. The bond matroid M\ast (G) with the ground set E(G) is dual to M(G), and X is
a circuit of M\ast (G) if and only if X is a minimal cut-set of G. It is said that M is
a graphic matroid if M is isomorphic to M(G) for some graph G. Respectively, M
is cographic if there is graph G such that M is isomorphic to M\ast (G). Notice that
e \in E is a loop of a cycle matroid M(G) if and only if e is a loop of G, and e is a
loop of M\ast (G) if and only if e is a bridge of G. Notice also that by the addition of
an element parallel to e \in E for M(G) we obtain M(G\prime ) for the graph G\prime obtained
by adding a new edge with the same end vertices as e. Respectively, by adding an
element parallel to e \in E for M\ast (G) we obtain M\ast (G\prime ) for the graph G\prime obtained by
subdividing e.

Matroid representations. Let M be a matroid and let F be a field. An n\times m-
matrix A over F is a representation of M over F if there is one-to-one correspondence
f between E and the set of columns of A such that for any X \subseteq E, X \in \scrI if and
only if the columns f(X) are linearly independent (as vectors of Fn); if M has such a
representation, then it is said thatM has a representation over F . In other words, A is
a representation of M if M is isomorphic to the column matroid of A, i.e., the matroid
whose ground set is the set of columns of A and a set of columns is independent if
and only if these columns are linearly independent. A matroid is binary if it can be
represented over GF(2). A matroid is regular if it can be represented over any field.
In particular, graphic and cographic matroids are regular. Notice that any matroid
obtained from a regular matroid by deleting and contracting its elements is regular.
Observe also that the matroid obtained from a regular matroid by adding a parallel
element is regular as well.

We stated in the introduction that we assume that we are given a representation
over GF(2) of the input matroid of an instance of Space Cover. Then it can be
checked in polynomial time whether a subset of the ground set is independent by
checking the linear independence of the corresponding columns.

We use the following observation about cycles of binary matroids.

Observation 3.4 (see [36]). Let C1 and C2 be circuits (cycles) of a binary matroid
M . Then C1 \bigtriangleup C2 is a cycle of M .

The dual of SPACE COVER. We recall the definition of Restricted Subset
Feedback Set.

Restricted Subset Feedback Set
Input: A binary matroid M , a weight function w : E \rightarrow \BbbN 0, T \subseteq E, and a
nonnegative integer k.
Question: Is there a set F \subseteq E\setminus T with w(F ) \leq k such that matroidM \prime = M - F
has no circuit containing an element of T?

This problem is dual to Space Cover.

Proposition 3.1. Restricted Subset Feedback Set on matroid M is equiv-
alent to Space Cover on the dual of M .

Proof. Let M be a binary matroid and T \subseteq E. By Observation 3.3, it is sufficient
to show that for every F \subseteq E \setminus T , M  - F has no circuit containing an element of T
if and only if for each t \in T there is a cocircuit C of M such that t \in C \subseteq F \cup \{ t\} .
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Suppose that for each t \in T , there is a cocircuit C of M such that t \in C \subseteq 
F \cup \{ t\} . We show that M  - F has no circuit containing an element of T . To obtain
a contradiction, assume that there is t \in T and a circuit C \prime of M such that t \in C \prime 

and C \prime \cap F = \emptyset . Let C be a cocircuit of M such that t \in C \subseteq F \cup \{ t\} . Then
C \cap C \prime = \{ t\} , but it contradicts the well-known property (see [36]) that for every
circuit and every cocircuit of a matroid, their intersection either is empty or contains
at least two elements.

Suppose now that M - F has no circuit containing an element of T . In particular,
it means that T is independent in M and hence in M  - F . Then there is a basis B of
M - F such that T \subseteq B. Clearly, B is an independent set ofM . Hence, there is a basis
B\prime of M such that B \subseteq B\prime . Consider cobasis B\ast = E \setminus B\prime . Let t \in T . The set B\ast \cup \{ t\} 
contains a unique cocircuit C and t \in C. We claim that C \subseteq F \cup \{ t\} . To obtain a
contradiction, assume that there is e \in C \setminus (F \cup \{ t\} ). Since C \cap B\prime = \{ t\} , e /\in B and,
therefore, e /\in B\prime . The set B \cup \{ e\} contains a unique circuit C \prime of M  - F such that
e \in C \prime . Notice that C \prime is a circuit of M as well. Observe that e \in C \cap C \prime \subseteq \{ e, t\} .
Since C \cap C \prime \not = \emptyset , | C \cap C \prime | \geq 2. Hence, t \in C \prime . We obtain that C \prime is a circuit of M
containing t but C \prime \cap F = \emptyset ; a contradiction.

The variant of Restricted Subset Feedback Set for graphs, i.e.,
Restricted Subset Feedback Set for graphic matroids, was introduced by Xiao
and Nagamochi in [45]. They proved that this problem can be solved in time 2\scrO (k log k)\cdot 
n\scrO (1) for n-vertex graphs. In fact, they considered the problem without weights, but
their result can be generalized for weighted graphs. They also considered the un-
weighted variant of the problem without the restriction F \subseteq E \setminus S. They proved that
this problem can be solved in polynomial time. We observe that this result holds for
binary matroids. More formally, we consider the following problem:

Subset Feedback Set
Input: A binary matroid M , T \subseteq E and a nonnegative integer k.
Question: Is there a set F \subseteq E \setminus T with | F | \leq k such that the matroid M \prime 

obtained from M by the deletion of the elements of F has no circuits containing
elements of T?

Proposition 3.2. Subset Feedback Set is solvable in polynomial time.

Proof. To see that Subset Feedback Set is solvable in polynomial time, it is
sufficient to notice that it is dual to the similar variant of Space Cover without
weights and without the condition F \subseteq E \setminus T . The proof of this claim is almost the
same as the proof of Proposition 3.1; the only difference is that F \subseteq E spans T in M
if and only if for every t \in T \setminus F , there is a circuit C such that t \in C \subseteq F \cup \{ t\} . This
variant of Space Cover is solvable in polynomial time because the set of minimum
size that spans T can be chosen to be a maximal independent subset of T .

Notice also that if we allow weights but do not restrict F \subseteq E \setminus T , then this
variant of Space Cover is at least as hard as the original variant of the problem,
because by assigning the weight k + 1 to the elements of T we can forbid their usage
in the solution.

Restricted SPACE COVER problem. For technical reasons, in the algorithm
we have to solve the following restricted variant of Space Cover on graphic and
cographic matroids:
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Restricted Space Cover Parameter: k
Input: Matroid M with a ground set E, a weight function w : E \rightarrow \BbbN 0, a set of
terminals T \subseteq E, a nonnegative integer k, and e\ast \in E with w(e\ast ) = 0 and t\ast \in T .
Question: Is there a set F \subseteq E \setminus T with w(F ) \leq k such that T \subseteq span(F ) and
t\ast \in span(F \setminus \{ e\ast \} )?

In fact, we have to solve this problem only in one special case (see Branching
Rule 7.2) when we deal with 3-sums in our branching algorithm and have to break
symmetry between summands to be able to recurse. Nevertheless, we cannot avoid
solving this variant of the problem separately for graphic and cographic matroids.

We conclude the section with some hardness observations.

Proposition 3.3. Space Cover is W[1]-hard for binary matroids when parame-
terized by k even if restricted to the inputs with one terminal and unit-weight elements.

Proof. Downey et al. proved in [11] that the following parameterized problem is
W[1]-hard:

Maximum-Likelihood Decoding Parameter: k
Input: A binary n \times m matrix A, a target binary n-element vector s, and a
positive integer k.
Question: Is there a set of at most k columns of A that sum to s?

The W[1]-hardness is proved in [11] for nonzero s; in particular, it holds if s is
the vector of ones.

Let (A, s, k) be an instance of Maximum-Likelihood Decoding for nonzero s.
We define the matrix A\prime by adding the column s to A. Let M be the column matroid
of A\prime and T = \{ s\} . For every e \in E(M), we set w(e) = 1.

Suppose that there are at most k columns of A that sum to s. Then there are at
most k linearly independent columns that sum to s. Clearly, these columns span s in
M . If there is a set F \subseteq E(M) \setminus \{ s\} of size at most k that spans s, then there is a
circuit C of M such that s \in C \subseteq F \cup \{ s\} . It immediately implies that the sum of
columns of C is the zero vector and, therefore, the columns of C \setminus \{ s\} sum to s.

We noticed that Steiner Tree is a special case of Space Cover for the cycle
matroid of an input graph. This reduction together with the result of Dom, Loksh-
tanov, and Saurabh [9] that Steiner Tree has no polynomial kernel (we refer to [5]
for the formal definitions of kernels) unless P \subseteq coNP/poly immediately implies the
following statement.

Proposition 3.4. Space Cover has no polynomial kernel unless
P \subseteq coNP/poly even if restricted to graphic matroids and the inputs with unit-weight
elements.

Finally, it was proved by Dahlhaus et al. [6] that Multiway Cut is NP-complete
even if | S| = 3. It implies as the following proposition.

Proposition 3.5. The version of Space Cover, where the parameter is | T | , is
Para-NP-complete even if restricted to cographic matroids and the inputs with unit-
weight elements.

4. Regular matroid decompositions. In this section we describe matroid de-
composition theorems that are pivotal for algorithm for Space Cover. In particular
we start by giving the structural decomposition for regular matroids given by Sey-
mour [38]. Recall that, for two sets X and Y , X\bigtriangleup Y = (X \setminus Y )\cup (Y \setminus X) denotes the
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COVERING VECTORS BY SPACES: REGULAR MATROIDS 2525

symmetric difference of X and Y . To describe the decomposition of matroids we need
the notion of ``\ell -sums"" of matroids for \ell = 1, 2, 3. We already defined these sums in
section 2, Definition 2.1 (see also [36, 42]). If M = M1 \oplus \ell M2 for some \ell \in \{ 1, 2, 3\} ,
then we write M = M1 \oplus M2.

Definition 4.1. A \{ 1, 2, 3\} -decomposition of a matroid M is a collection of ma-
troids \scrM , called the basic matroids and a rooted binary tree T in which M is the root
and the elements of \scrM are the leaves such that any internal node is either 1-, 2-, or
3-sum of its children.

We also need the special binary matroid R10 to be able to define the decomposition
theorem for regular matroids. It is represented over GF(2) by the 5\times 10-matrix whose
columns are formed by vectors that have exactly three nonzero entries (or rather three
ones) and no two columns are identical. Now we are ready to give the decomposition
theorem for regular matroids due to Seymour [38].

Theorem 2 (see [38]). Every regular matroid M has an \{ 1, 2, 3\} -decomposition
in which every basic matroid is either graphic, cographic, or isomorphic to R10. More-
over, such a decomposition (together with the graphs whose cycle and bond matroids
are isomorphic to the corresponding basic graphic and cographic matroids) can be
found in time polynomial in | E(M)| .

4.1. Modified decomposition. For our algorithmic purposes we will not use
Theorem 2 but rather a modification proved by Dinitz and Kortsarz in [8]. Dinitz
and Kortsarz in [8] first observed that some restrictions in the definitions of 2- and
3-sums are not important for algorithmic purposes. In particular, in the definition
of 2-sum, the unique e \in E(M1) \cap E(M2) is not a loop or coloop of M1 or M2, and
| E(M1)| , | E(M2)| \geq 3 could be dropped. Similarly, in the definition of 3-sum the
conditions that Z = E(M1) \cap E(M2) does not contain a cocircuit of M1 or M2 and
| E(M1)| , | E(M2)| \geq 7 could be dropped. We define extended 1-, 2-, and 3-sums by
omitting these restrictions. Clearly, Theorem 2 holds if we replace sums by extended
sums in the definition of the \{ 1, 2, 3\} -decomposition. To simplify notation, we use
\oplus 1,\oplus 2,\oplus 3, and \oplus to denote these extended sums. Finally, we also need the notion
of a conflict graph associated with a \{ 1, 2, 3\} -decomposition of a matroid M given by
Dinitz and Kortsarz in [8].

Definition 4.2 (see [8]). Let (T,\scrM ) be a \{ 1, 2, 3\} -decomposition of a matroid M .
The intersection (or conflict) graph of (T,\scrM ) is the graph GT with the vertex set \scrM 
such that distinct M1,M2 \in \scrM are adjacent in GT if and only if E(M1)\cap E(M2) \not = \emptyset .

Dinitz and Kortsarz in [8] showed how to modify a given decomposition in order
to make the conflict graph a forest. In fact they proved a slightly stronger condition
that for any 3-sum (which by definition is summed along a circuit of size 3), the
circuit in the intersection is contained entirely in two of the lowest-level matroids. In
other words, while the process of summing matroids might create new circuits that
contain elements that started out in different matroids, any circuit that is used as the
intersection of a sum existed from the very beginning.

Let (T,\scrM ) be a \{ 1, 2, 3\} -decomposition of a matroid M . A node of V (T ) with
degree at least 2 is called an internal node of T . Note that with each internal node t of
T one can associate a matroid Mt but also the set of elements that is the intersection
of the ground sets of its children (and is thus not in the ground set of Mt). This set is
either the empty set (if Mt is the 1-sum of its children), a single element (if it is the 2-
sum), or three elements that form a circuit in both of its children (if it is the 3-sum).
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2526 FOMIN, GOLOVACH, LOKSHTANOV, AND SAURABH

For an internal node t, let ZMt
denote this set. Essentially, corresponding to an

internal node of t \in V (T ) with children t1 and t2, denote by ZMt
= E(Mt1)\cap E(Mt2)

its sum-set.
Let t be an internal node of T and t1 and t2 be its children. Using the terminology

of Dinitz and Kortsarz in [8], we say that ZMt is good if all the elements of ZMt belong
to the same basic matroid that is a descendant ofMt1 in T and they belong to the same
basic matroid that is a descendant of Mt2 in T . We say that a \{ 1, 2, 3\} -decomposition
of M is good if all the sum-sets are good. We state the result of [8] in the following
form that is convenient for us.

Theorem 3 (see [8]). Every regular matroid M has a good \{ 1, 2, 3\} -decomposition
in which every basic matroid is either graphic, cographic, or isomorphic to a matroid
obtained from R10 by (possibly) adding parallel elements. Moreover, such a decompo-
sition (together with the graphs whose cycle and bond matroids are isomorphic to the
corresponding basic graphic and cographic matroids) can be found in time polynomial
in | | M | | .

Using this theorem, for a given regular matroid, we can obtain in polynomial
time a good \{ 1, 2, 3\} -decomposition with a collection \scrM of basic matroids, where
every basic matroid is either graphic or cographic or is isomorphic to a matroid ob-
tained from R10 by deleting some elements and adding parallel elements and deleting.
Then we obtain a conflict forest GT , whose nodes are basic matroids and the edges
correspond to extended 2- or 3-sums such that their sum-sets are the elements of the
basic matroids that are the endpoints of the corresponding edge. By adding bridges
between components of GT corresponding to 1-sums, we obtain a conflict tree \scrT for
a good \{ 1, 2, 3\} -decomposition, whose edges correspond to extended 1-, 2-, or 3-sums
between adjacent matroids. Hence we obtain the following corollary.

Corollary 1. For a given regular matroid M , there is a (conflict) tree \scrT whose
set of nodes is a set of matroids \scrM , where each element of \scrM is a graphic or cographic
matroid, or a matroid obtained from R10 by adding (possibly) parallel elements, that
has the following properties:

(i) if two distinct matroids M1,M2 \in \scrM have nonempty intersection, then M1

and M2 are adjacent in \scrT ,
(ii) for any distinct M1,M2 \in \scrM , | E(M1) \cap E(M2)| = 0, 1, or 3,
(iii) M is obtained by the consecutive performing extended 1-, 2-, or 3-sums for

adjacent matroids in any order.
Moreover, \scrT can be constructed in polynomial time.

If \scrT is a conflict tree for a matroid M , we say that M is defined by \scrT .

5. Elementary reductions for SPACE COVER. In this section we give some
elementary reduction rules that we apply on the instances of Space Cover and
Restricted Space Cover to make it more structured and thus easier to design
an FPT algorithm. Throughout this section we will assume that the input matroid
M = (E, \scrI ) is regular.

5.1. Reduction rules for SPACE COVER. Let (M,w, T, k) be an instance of
Space Cover, where M is a regular matroid. For technical reasons, we permit the
weight function w to assign 0 to the elements of E. However, observe that if M has a
nonterminal element e with w(e) = 0, then we can always include it in a (potential)
solution. This simple observation is formulated in the following reduction rule.

Reduction Rule 5.1 (zero-element reduction rule). If there is an element e \in 
E \setminus T with w(e) = 0, then contract e.
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The next rule is used to remove irrelevant terminals.

Reduction Rule 5.2 (terminal circuit reduction rule). If there is a circuit
C \subseteq T , then delete an arbitrary element e \in C from M .

Lemma 5.1. Reduction Rule 5.2 is safe.

Proof. We first prove the forward direction. Suppose that there is a circuit C \subseteq T
and e \in C. Clearly, if F \subseteq E \setminus T spans T , then F spans T \setminus \{ e\} as well. For the
reverse direction, assume that F \subseteq E \setminus T spans T \setminus \{ e\} . Let C = \{ e, e1, . . . , er\} . Since
F \subseteq E \setminus T spans T \setminus \{ e\} , there are circuits C1, . . . , Cr such that ei \in Ci \subseteq F \cup \{ ei\} .
By Observation 3.4, \~C = (C1\bigtriangleup . . .\bigtriangleup Cr)\bigtriangleup C is a cycle. However, observe that \~C only
contains elements from F \cup \{ e\} . In fact, since e /\in Ci for i \in \{ 1, . . . , r\} , e \in \~C and
thus there is a circuit C \prime such that e \in C \prime \subseteq \~C. This implies that e \in C \prime \subseteq F \cup \{ e\} 
and thus F spans e. This completes the proof.

Now we remove irrelevant nonterminals. It is clearly safe to delete loops as there
always exists a solution F such that F \in \scrI .

Reduction Rule 5.3 (loop reduction rule). If e \in E\setminus T is a loop, then delete e.

We remark that it is safe to apply Reduction Rule 5.3 even for Restricted
Space Cover. Our next rule removes parallel elements.

Reduction Rule 5.4 (parallel reduction rule). If there are two elements e1, e2 \in 
E \setminus T such that e1 and e2 are parallel and w(e1) \leq w(e2), then delete e2.

Lemma 5.2. Reduction Rule 5.4 is safe.

Proof. Let e1, e2 \in E \setminus T be parallel elements such that w(e1) \leq w(e2). Then, by
Observation 3.2, for any F \subseteq E \setminus T that spans T such that e2 \in F , F \prime = (F \setminus \{ e2\} )\cup 
\{ e1\} also spans T . Hence, it is safe to delete e2.

To sort out the trivial yes-instance or no-instance after the exhaustive applications
of the above rules, we apply the next rule.

Reduction Rule 5.5 (stopping rule). If T = \emptyset , then return yes and stop. Else,
if E \setminus T = \emptyset or | T | > k, then return no and stop.

Lemma 5.3. Reduction Rule 5.5 is safe.

Proof. Indeed if T = \emptyset , then we have a yes-instance of the problem, and if T \not = \emptyset 
and E \setminus T = \emptyset , then the considered instance is a no-instance. If we cannot apply
Reduction Rule 5.2 (terminal circuit reduction rule), then T is an independent set of
M . Hence, if F \subseteq E \setminus T spans T , | F | \geq | T | . Since we have no element with zero
weight after the exhaustive application of Reduction Rule 5.1 (zero-element reduction
rule), if k < | T | , then the input instance is a no-instance.

5.2. Reduction rules for RESTRICTED SPACE COVER. For Restricted
Space Cover, we use the following modifications of Reduction Rules 5.1--5.5, where
applicable. Proofs of these rules are analogous to its counterpart for Space Cover
and thus omitted.

Reduction Rule 5.6 (zero-element reduction rule\ast ). If there is an element
e \in E \setminus (T \cup \{ e\ast \} ) with w(e) = 0, then contract e.

Reduction Rule 5.7 (terminal circuit reduction rule\ast ). If there is a circuit
C \subseteq T , then delete an arbitrary element e \in C such that e \not = t\ast from M . If t\ast is a
loop, then delete t\ast .

Reduction Rule 5.8 (parallel reduction rule\ast ). If there are two elements e1, e2 \in 
E \setminus T such that e1 and e2 are parallel, e1 \not = e\ast and w(e1) \leq w(e2), then delete e2.
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Since w(e\ast ) = 0, we obtain the following variant of Reduction Rule 5.5.

Reduction Rule 5.9 (stopping rule\ast ). If T = \emptyset , then return yes and stop.
Else, if E \setminus T = \emptyset or | T | > k + 1, then return no and stop.

5.3. Final lemma. If we have an independence oracle for M = (E, \scrI ) or if
we can check in polynomial time using a given representation of M whether a given
subset of E belongs to \scrI , then we get the following lemma.

Lemma 5.4. Reduction Rules 5.1--5.9 can be applied in time polynomial in | | M | | .

6. Solving SPACE COVER for basic matroids. In this section we solve
(Restricted) Space Cover on basic matroids that are building blocks of the regu-
lar matroid. In particular, we solve Space Cover for R10 and (Restricted) Space
Cover for graphic and cographic matroids. We first give an algorithm on R10, fol-
lowed by algorithms on graphic matroids based on algorithms for Steiner Tree and
its generalization. Finally, we give algorithms on cographic matroids based on ideas
inspired by important separators.

6.1. SPACE COVER on \bfitR \bfone \bfzero . In this section we give an algorithm for Space
Cover about matroids that could be obtained from R10 by either adding parallel
elements or deleting elements or by contracting elements. Observe that an instance
of (Restricted) Space Cover for such a matroid is reduced to an instance with a
matroid that has at most 20 elements by the exhaustive application of the terminal
circuit reduction rule and the parallel reduction rule. Indeed, in the worst case we
obtain the matroid from R10 by adding exactly one parallel element for each element
of R10. Since the matroid, M = (E, \scrI ), of the reduced instance has at most 20
elements we can solve Space Cover by examining all subsets of E of size at most k.
This brings us to the following.

Lemma 6.1. Space Cover can be solved in polynomial time for matroids that can
be obtained from R10 by adding parallel elements, element deletions, and contractions.

6.2. SPACE COVER for graphic matroids. Recall that Steiner Forest
restated below can be seen as a special case of Space Cover on graphic matroids by
a simple reduction.

Steiner Forest Parameter: k
Input: A (multi) graph G, a weight function w : E \rightarrow \BbbN , a collection of pairs
of distinct vertices (demands) \{ x1, y1\} , . . . , \{ xr, yr\} of G, and a nonnegative
integer k
Question: Is there a set F \subseteq E(G) with w(F ) \leq k such that for any
i \in \{ 1, . . . , r\} , G[F ] contains an (xi, yi)-path?

In this section, we ``reverse this reduction"" in a sense and use this reversed re-
duction to solve (Restricted) Space Cover. In particular we utilize an algorithm
for Steiner Forest to give an FPT algorithm for (Restricted) Space Cover on
graphic matroids. It seems to be folklore knowledge that Steiner Forest is FPT
when parameterized by the number of edges in a solution. We provide this algorithm
here for completeness.

6.2.1. A single-exponential algorithm for STEINER FOREST. Our algo-
rithm is based on the FPT algorithm for the following well-known parameterization
of Steiner Tree. Let us recall that in Steiner Tree, we are given a (multi) graph
G, a weight function w : E \rightarrow \BbbN , a set of vertices S \subseteq V (G) called terminals, and a
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COVERING VECTORS BY SPACES: REGULAR MATROIDS 2529

nonnegative integer k. The task is to decide whether there is a set F \subseteq E(G) with
w(F ) \leq k such that the subgraph of G induced by F is a tree that contains the
vertices of S.

It was already shown by Dreyfus and Wagner [12] in 1971 that Steiner Tree
can be solved in time 3p \cdot n\scrO (1), where p is the number of terminals. The current best
FPT algorithms for Steiner Tree are given by Bj\"orklund et al. [3] and Nederlof [33]
(the first algorithm demands exponential in p space and the latter uses polynomial
space) and runs in time 2p \cdot n\scrO (1). Finally, we are ready to describe the algorithm for
Steiner Forest.

Lemma 6.2. Steiner Forest is solvable in time 4k \cdot n\scrO (1).

Proof. Let (G,w, \{ x1, y1\} , . . . , \{ xr, yr\} , k) be an instance of Steiner Forest.
Consider the auxiliary graph H with V (H) =

\bigcup r
i=1\{ xi, yi\} and E(H) = \{ x1, y1\} , . . . ,

\{ xr, yr\} . Let S1, . . . , St denote the sets of vertices of the connected components of
H. Recall that a set F \subseteq E(G) with w(F ) \leq k is said to be a solution-forest for
Steiner Forest if for any i \in \{ 1, . . . , r\} , G[F ] contains an (xi, yi)-path. Now
notice that F \subseteq E(G), of weight at most k, is a solution-forest to an instance
(G,w, \{ x1, y1\} , . . . , \{ xr, yr\} , k) of Steiner Forest if and only if the vertices of Si

are in the same component of G[F ] for every i \in \{ 1, . . . , t\} . We will use this corre-
spondence to obtain an algorithm for Steiner Forest.

Now we bound the number of vertices in V (H). Let F be a minimal forest-
solution. First of all observe that since the weights on edges are positive, we have
that | F | \leq k. The vertices of Si must be in the same component of G[F ], thus we
have that | F | \geq 

\sum t
i=1(| Si|  - 1). Hence,

\sum t
i=1 | Si| \leq | F | + t. If

\sum t
i=1 | Si| > | F | + t we

return that (G,w, \{ x1, y1\} , . . . , \{ xr, yr\} , k) is a no-instance. So from now on assume
that

\sum t
i=1 | Si| \leq | F | + t. Furthermore, since F is a minimal forest-solution, each

connected component of G[F ] has size at least 2 and thus t \leq k. Thus, we have an
instance with | V (H)| \leq 2k and t \leq k.

For I \subseteq \{ 1, . . . , t\} , let W (I) denote the minimum weight of a Steiner tree for the
set of terminals \cup i\in ISi. We assume that W (I) = +\infty if such a tree does not exist.
Furthermore, if the minimum weight of a Steiner tree is at least k + 1, then also we
assign W (I) = +\infty . All the 2t values of W (I) corresponding to I \subseteq \{ 1, . . . , t\} can be
computed in time 2| V (H)| \cdot n\scrO (1) = 4k \cdot n\scrO (1) using the results of [3] or [33].

For J \subseteq \{ 1, . . . , t\} , let W \prime (J) denote the minimum weight of a solution-forest for
the sets Sj , where j \in J . That is, W \prime (J) is assigned the minimum weight of a set
F \subseteq E(G) such that the vertices of Sj for j \in J are in the same component of G[F ].
Furthermore, if such a set F does not exist or the weight is at least k+1, then W \prime (J)
is assigned +\infty . Clearly, W \prime (\emptyset ) = 0. Notice that (G,w, \{ x1, y1\} , . . . , \{ xr, yr\} , k) is a
yes-instance for Steiner Forest if and only if W \prime (\{ 1, . . . , t\} ) \leq k. Next, we give the
recurrence relation for the dynamic programming algorithm to compute the values of
W \prime (J).

(6.1) W \prime (J) = min
I\subseteq J
I \not =\emptyset 

\Bigl\{ 
W \prime (J \setminus I) +W (I)

\Bigr\} 
.

We claim that the above recurrence holds for every J \subseteq \{ 1, . . . , t\} . To prove the
forward direction of the claim, assume that F \subseteq E(G) is a set of edges of minimum
weight such that the vertices in Sj , j \in J , are in the same component of G[F ]. Let X
be a set of vertices of an arbitrary component of G[F ] and L denote the set of edges
of this component. Let I = \{ i \in J | Si \subseteq X\} . Notice that by the minimality of F ,
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I \not = \emptyset . Since W (I) \leq w(L) and W \prime (J \setminus I) \leq w(F \setminus L), we have that

W \prime (J) = w(F ) = w(F \setminus L) + w(L) \geq W \prime (J \setminus I) +W (I) \geq min
I\subseteq J
I \not =\emptyset 

\Bigl\{ 
W \prime (J \setminus I) +W (I)

\Bigr\} 
.

To show the opposite inequality, consider a nonempty set I \subseteq J , and let L be the set
of edges of a Steiner tree of minimum weight for the set of terminals \cup i\in ISi and let
F be the set of edges of a Steiner forest of minimum weight for the sets of terminals
Sj for j \in J \setminus I. Then we have that for F \prime = L\cup F , the vertices of Si are in the same
component of G[F \prime ] for each i \in J . Hence,

(6.2) W \prime (J) \leq w(L) + w(F ) = W \prime (J \setminus I) +W (I).

Because (6.2) holds for any nonempty I \subseteq J , we have that

W \prime (J) \leq min
I\subseteq J
I \not =\emptyset 

\Bigl\{ 
W \prime (J \setminus I) +W (I)

\Bigr\} 
.

We compute the values for W \prime (J) in the increasing order of the sizes of J \subseteq 
\{ 1, . . . , t\} . Toward this we use (6.1) and the fact that W \prime (\emptyset ) = 0. Each entry of W \prime (J)
can be computed by taking a minimum over 2| J| precomputed entries in W \prime and W .
Thus, the total time to compute W \prime takes (

\sum t
i=0

\bigl( 
t
i

\bigr) 
2i) \cdot n\scrO (1) = 3t \cdot n\scrO (1) = 3k \cdot n\scrO (1).

Having computed W \prime , we return yes or no based on whether W \prime (\{ 1, . . . , t\} ) \leq k. This
completes the proof.

6.2.2. An algorithm for SPACE COVER on graphic matroids. Now using
the algorithm for Steiner Forest mentioned in Lemma 6.2, we design an algorithm
for Space Cover on graphic matroids.

Lemma 6.3. Space Cover can be solved in time 4k \cdot | | M | | \scrO (1) on graphic ma-
troids.

Proof. Let (M,w, T, k) be an instance of Space Cover where M is a graphic
matroid. First, we exhaustively apply Reduction Rules 5.1--5.5. Thus, by Lemma 5.4,
in polynomial time we either solve the problem or obtain an equivalent instance, where
M has no loops and the weights of nonterminal elements are positive. To simplify
notation, we also denote the reduced instance by (M,w, T, k). Observe that M re-
mains graphic. It is well-known that given a graphic matroid, in polynomial time
one can find a graph G such that M is isomorphic to the cycle matroid M(G) [39].
Assume that T = \{ x1y1, . . . , xryr\} is the set of edges of G corresponding to the ter-
minals of the instance of Space Cover. We define the graph G\prime = G  - T . Recall
that F \subseteq E(G) \setminus T spans T if and only if for each e \in T , there is a cycle C of
G such that e \in C \subseteq F \cup \{ e\} . Clearly, the second condition can be rewritten as
follows: for any i \in \{ 1, . . . , r\} , G[F ] contains an (xi, yi)-path. It means that the
instance (G\prime , w, \{ x1, y1\} , . . . , \{ xr, yr\} , k) of Steiner Forest is equivalent to the in-
stance (M,w, T, k) of Space Cover. Now we apply Lemma 6.2 on the instance
(G\prime , w, \{ x1, y1\} , . . . , \{ xr, yr\} , k) of Steiner Forest to solve the problem.

6.2.3. An algorithm for RESTRICTED SPACE COVER on graphic ma-
troids. Besides solving Space Cover, we need to solve Restricted Space Cover
on graphic matroids. In fact, Restricted Space Cover can be reduced to Steiner
Forest. On the other hand, we can solve this problem by modifying the algorithm
for Steiner Forest from Lemma 6.2; this provides a better running time.
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Lemma 6.4. Restricted Space Cover can be solved in time 6k \cdot | | M | | \scrO (1) on
graphic matroids.

Proof. Let (M,w, T, k, e\ast , t\ast ) be an instance of Restricted Space Cover,
where M is a graphic matroid. First, we exhaustively apply Reduction Rules 5.3
and 5.6--5.9. Thus, by Lemma 5.4, in polynomial time we either solve the problem
or obtain an equivalent instance. Notice that it can happen that e\ast is deleted by
Reduction Rules 5.3 and 5.6--5.9. For example, if e\ast is a loop, then it can be deleted
by Reduction Rule 5.3. In this case we obtain an instance of Space Cover and can
solve it using Lemma 6.3. From now on we assume that e\ast is not deleted by our
reduction rules.

To simplify notation, we use (M,w, T, k, e\ast , t\ast ) to denote the reduced instance.
If we started with graphic matroid, then it remains so even after applying Reduc-
tion Rules 5.3 and 5.6--5.9. Furthermore, given M , in polynomial time we can
find a graph G such that M is isomorphic to the cycle matroid M(G) [39]. Let
T = \{ x1y1, . . . , xryr\} denote the set of edges of G corresponding to the terminals of
the instance of Restricted Space Cover. Without loss of generality assume that
t\ast = x1y1. Let G

\prime and G\ast 
e denote the graphs G - T and G - \{ e\ast \} , respectively. Recall

that F \subseteq E(G) \setminus T spans T if and only if for each e \in T , there is a cycle C of G that
contains e and all the edges in C are contained in F \cup \{ e\} . Clearly, the second condi-
tion can be rewritten as follows: for every i \in \{ 1, . . . , r\} , G[F ] contains a (xi, yi)-path.
For Restricted Space Cover, we additionally have the condition that F \setminus \{ e\ast \} 
spans t\ast . That is, G[F ] contains a (x1, y1)-path that does not contain e\ast . In terms
of graphs, we obtain a special variant of Steiner Forest. We solve the problem by
slightly modifying the algorithm of Dreyfus and Wagner [12] and Lemma 6.2.

As in the proof of Lemma 6.2, we consider the auxiliary graph H with V (H) =
\cup r
i=1\{ xi, yi\} and E(H) = \{ x1, y1\} , . . . , \{ xr, yr\} . Let S1, . . . , St denote the sets of

vertices of the connected components of H. Without loss of generality we assume
that x1, y1 \in S1. Let F be a minimal solution. It is clear that G[F ] is a forest.
Notice that F \subseteq E(G) - T , of weight at most k, is a minimal solution to an instance
(G,w, \{ x1, y1\} , . . . , \{ xr, yr\} , e\ast , t\ast , k) of Restricted Space Cover if and only if the
vertices of Si are in the same component of G[F ] for every i \in \{ 1, . . . , t\} and the
unique path between x1 and y1 in the component containing S1 does not contain
e\ast . We will use this correspondence to obtain an algorithm for the special variant of
Steiner Forest and hence Restricted Space Cover.

Now we bound the number of vertices in V (H). Let F be a minimal solution. First
of all observe that since the weights on edges are positive, with an exception of e\ast , we
have that | F | \leq k+1. The vertices of Si must be in the same component of G[F ], thus
we have that | F | \geq 

\sum t
i=1(| Si|  - 1). Hence,

\sum t
i=1 | Si| \leq | F | + t. If

\sum t
i=1 | Si| > | F | + t

we return that (G,w, \{ x1, y1\} , . . . , \{ xr, yr\} , e\ast , t\ast , k) is a no-instance. So from now on
assume that

\sum t
i=1 | Si| \leq | F | + t. Furthermore, since F is a minimal solution each

connected component of G[F ] has size at least 2 and thus t \leq k + 1. Thus, we have
an instance with | V (H)| \leq 2k + 1 and t \leq k + 1.

Given I \subseteq \{ 1, . . . , t\} , by ZI , we denote \cup i\in ISi. For I \subseteq \{ 1, . . . , t\} , let W (I)
denote the minimum weight of a tree R in G\prime such that ZI \subseteq V (R) and if x1, y1 \in ZI ,
then the (x1, y1)-path in R does not contain e\ast . We assume that W (I) = +\infty if such
a tree does not exist. Furthermore, if the minimum weight of such a tree R is at least
k+1, then also we assign W (I) = +\infty . Notice that if | ZI | > k+2, then W (I) \geq k+1
as any tree that contains ZI has at least | ZI |  - 1 > k + 1 edges and only e\ast can have
weight 0. In this case we can safely set W (I) = +\infty , because we are interested in
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trees of weight at most k. Thus from now on we can assume that | ZI | \leq k + 2. We
compute the values of I \subseteq \{ 1, . . . , t\} such that 1 \in I by modifying the algorithm of
Dreyfus and Wagner [12]. Next we present this modified algorithm to compute the
values of W .

For a vertex v \in V (G) and X \subseteq ZI , let c(v,X, \ell ) be the minimum weight of a
subtree R\prime of G\prime with at most \ell edges such that

(i) X \subseteq V (R\prime ),
(ii) v \in V (R),
(iii) if x1, y1 \in X, then the (x1, y1)-path in R\prime does not contain e\ast ,
(iv) if x1 \in X and y1 /\in X, then the (x1, v)-path in R\prime does not contain e\ast , and
(v) if y1 \in X and x1 /\in X, then the (y1, v)-path in R\prime does not contain e\ast .

We assume that c(v,X, \ell ) = +\infty if such a tree R\prime does not exist.
Initially we set

c(v,X, 0) =

\Biggl\{ 
0 if \{ v\} = X,

+\infty if \{ v\} \not = X.

We compute c(v,X, \ell ) using the following auxiliary recurrences. For an ordered pair
of vertices (u, v) such that uv \in E(G\prime ),

c\prime (u, v,X, \ell ) =

\Biggl\{ 
+\infty if uv = e\ast and | X \cap \{ x1, y1\} | = 1,

c(v,X, \ell  - 1) + w(uv) otherwise.

For an ordered pair of vertices (u, v) such that uv \in E(G\prime ), a nonempty Y \subseteq X, and
two nonnegative integers \ell 1 and \ell 2 such that \ell = \ell 1 + \ell 2 + 1,

c\prime \prime (u, v,X, Y, \ell 1, \ell 2) =

\left\{         
+\infty if uv = e\ast and

| Y \cap \{ x1, y1\} | = 1,

c(u,X \setminus Y, \ell 1)
+ c(v, Y, \ell 2) + w(uv) otherwise.

Finally,

c(u,X, \ell ) = min

\biggl\{ 
c(u,X, \ell  - 1), min

v\in NG\prime (u)
c\prime (u, v,X),

min
v\in NG\prime (u)

\Bigl\{ 
c\prime \prime (u, v,X \setminus Y, Y, \ell 1, \ell 2) | \emptyset \not = Y \subseteq X, \ell 1 + \ell 2 = \ell  - 1

\Bigr\} \biggr\} 
.

For all v \in V (G), we fill the table c(v, \cdot , \cdot ) as follows. We iteratively consider the
values of \ell starting from 1 and ending at k and for each value of \ell we consider the
subsets of ZI in the increasing order of their size. If there is a vertex v \in V (G) with
c(v, ZI , k + 1) \leq k, then we set W (I) = c(v, ZI , k + 1); else, we set W (I) = +\infty .

The correctness of the computation of W (I) can be proved by standard dynamic
programming arguments. In fact, it essentially follows along the lines of the proof of
Dreyfus and Wagner [12]. The only difference is that we have to take into account the
conditions (iii) to (v) that are used to ensure that the (x1, y1)-path in the obtained
tree avoids e\ast . Since | Z| \leq k+ 2, the computation of W (I) for a given I can be done
in time 3k \cdot n\scrO (1). Thus, all the 2t values of W (I) corresponding to I \subseteq \{ 1, . . . , t\} 
such that 1 \in I can be computed in time 6k \cdot n\scrO (1).

Next, we show how we can compute W (I) for I \subseteq \{ 2, . . . , t\} . Recall that x1, y1 \in 
S1 and thus for I \subseteq \{ 2, . . . , t\} , W (I) just denotes the minimum weight of a Steiner tree
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for the set of terminals ZI in the graph G\prime . Hence, for I \subseteq \{ 2, . . . , t\} , we can compute
W (I) by using the algorithm of Dreyfus and Wagner [12] without modification. We
could also compute W (I) using the results of [3] or [33]. Thus, we can compute all
the 2t values of W (I) corresponding to I \subseteq \{ 1, . . . , t\} in 6k \cdot n\scrO (1) time.

Now we use the table W to solve the instance (M,w, T, k, e\ast , t\ast ) of Restricted
Space Cover. As in the proof of Lemma 6.2, for each J \subseteq \{ 1, . . . , t\} , denote by
W \prime (J) the minimum weight of a set F \subseteq E(G\prime ) such that the vertices of ZJ are in
the same component of G\prime [F ] and if 1 \in J , then the (x1, y1)-path in G\prime [F ] avoids e\ast .
Furthermore, if such a set F does not exist or has weight at least k + 1, then we set
W \prime (J) = +\infty .

Clearly, W \prime (\emptyset ) = 0. Notice that (M,w, T, k, e\ast , t\ast ) is a yes-instance for
Restricted Space Cover if and only if W \prime (\{ 1, . . . , t\} ) \leq k. Next we give the
recurrence relation for the dynamic programming algorithm to compute the values of
W \prime (J).

(6.3) W \prime (J) = min
I\subseteq J
I \not =\emptyset 

\Bigl\{ 
W \prime (J \setminus I) +W (I)

\Bigr\} 
.

The proof of the correctness of the recurrence given in (6.3) is verbatim the same as
the proof of recurrence given in (6.1) in the proof of Lemma 6.2.

We compute the values for W \prime (J) in the increasing order of size of J \subseteq \{ 1, . . . , t\} .
Toward this we use (6.3) and the fact that W \prime (\emptyset ) = 0. Each entry of W \prime (J) can be
computed by taking a minimum over 2| J| precomputed entries in W \prime and W . Thus,
the total time to compute W \prime takes (

\sum t
i=0

\bigl( 
t
i

\bigr) 
2i) \cdot n\scrO (n) = 3t \cdot n\scrO (1) = 3k \cdot n\scrO (1).

Having computed W \prime we return yes or no based on whether W \prime (\{ 1, . . . , t\} ) \leq k. This
completes the proof.

6.3. (RESTRICTED) SPACE COVER for cographic matroids. In this sec-
tion we design algorithms for (Restricted) Space Cover on co-graphic matroids.
By the results of Xiao and Nagamochi [45], Space Cover can be solved in time
2\scrO (k log k) \cdot | | M | | \scrO (1), but to obtain a single-exponential in k algorithm we use a dif-
ferent approach based on the enumeration of important separators proposed by Marx
in [31]. However, for our purpose we use the similar notion of important cuts and we
follow the terminology given in [5] to define these objects.

To introduce this technique, we need some additional definitions. Let G be a
graph and let X,Y \subseteq V (G) be disjoint. A set of edges S is an X  - Y separator if S
separates X and Y in G, i.e., every path that connects a vertex of X with a vertex
of Y contains an edge of S. If X is a single element set \{ u\} , we simply write that S
is a u  - Y separator. An X  - Y -separator is minimal if it is an inclusion minimal
X - Y separator. It will be convenient to look at minimal (X,Y )-cuts from a different
perspective, viewing them as edges on the boundary of a certain set of vertices. If G
is an undirected graph and R \subseteq V (G) is a set of vertices, then we denote by \Delta G(R)
the set of edges with exactly one endpoint in R, and we denote dG(R) = | \Delta G(R)| 
(we omit the subscript G if it is clear from the context). We say that a vertex y is
reachable from a vertex x in a graph G if G has an (x, y)-path. For a set X, a vertex y
is reachable from X if it is reachable from a vertex of X. Let S be a minimal (X,Y )-
cut in G and let RG(X) be the set of vertices reachable from X in G \setminus S; clearly, we
have X \subseteq RG(X) \subseteq V (G) \setminus Y . Then it is easy to see that S is precisely \Delta (RG(X)).
Indeed, every such edge has to be in S (otherwise a vertex of V (G) \setminus R would be
reachable from X) and S cannot have an edge with both endpoints in RG(X) or both
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endpoints in V (G)\setminus RG(X), as omitting any such edge would not change the fact that
the set is an (X,Y )-cut, contradicting minimality. When the context is clear we omit
the subscript and the set X while defining R.

Proposition 6.1 (see [5]). If S is a minimal (X,Y )-cut in G, then S = \Delta G(R),
where R is the set of vertices reachable from X in G \setminus S.

Therefore, we may always characterize a minimal (X,Y )-cut S as \Delta (R) for some
set X \subseteq R \subseteq V (G) \setminus Y .

Definition 6.1 (important cut [5, Definition 8.6]). Let G be an undirected graph
and let X,Y \subseteq V (G) be two disjoint sets of vertices. Let S \subseteq E(G) be an (X,Y )-
cut and let R be the set of vertices reachable from X in G \setminus S. We say that S is
an important (X,Y )-cut if it is inclusionwise minimal and there is no (X,Y )-cut S\prime 

with | S\prime | \leq | S| such that R \subset R\prime , where R\prime is the set of vertices reachable from X in
G \setminus S\prime .

Theorem 4 (see [30, 32], [5, Theorems 8.11 and 8.13]). Let X,Y \subseteq V (G) be
two disjoint sets of vertices in graph G and let k \geq 0 be an integer. There are at most
4k important (X,Y )-cuts of size at most k. Furthermore, the set of all important
(X,Y )-cuts of size at most k can be enumerated in time \scrO (4k \cdot k \cdot (n+m)).

For a partition (X,Y ) of the vertex set of a graph G, we denote by E(X,Y ) the
set of edges with one end vertex in X and the other in Y . For a set of bridges B
of a graph G and a bridge uv \in B, we say that u is a leaf with respect to B if the
component of G  - B that contains u has no end vertex of any edge of B \setminus \{ uv\} .
Clearly, for any set of bridges, there is a leaf with respect to it. Also we can make the
following observation.

Observation 6.1. For the bond matroid M\ast (G) of a graph G and T \subseteq E(G), a
set F \subseteq E(G) \setminus T spans T if and only if the edges of T are bridges of G - F .

6.3.1. An algorithm for SPACE COVER on cographic matroids. For our
purpose we need a slight modification to the definition of important cuts. We start
by defining the object we need and proving a combinatorial upper bound on it.

Definition 6.1. Let G be a graph, s \in V (G) be a vertex, and T \subseteq V (G) \setminus \{ s\} 
be a subset of terminals. We say that a set W \subseteq V (G) is interesting if (a) G[W ] is
connected and (b) s \in W and | T \cap W | \leq 1.

Next we define a partial order on all interesting sets of a graph.

Definition 6.2. Let G be a graph, s \in V (G) be a vertex, and T \subseteq V (G) \setminus \{ s\} 
be a subset of terminals. Given two interesting sets W1 and W2, we say that W1 is
better than W2 and denote by W2 \preceq W1 if (a) W2 \subseteq W1, (b) | \Delta (W1)| \leq | \Delta (W2)| and
(c) T \cap W1 \subseteq T \cap W2.

Definition 6.3. Let G be a graph s \in V (G) be a vertex, T \subseteq V (G) \setminus \{ s\} be a
subset of terminals, and k be a nonnegative integer. We say that an interesting set
W is an (s, T, k)-semi-important set if | \Delta (W )| \leq k and there is no set W \prime such that
W \preceq W \prime . That is, W is a maximal set under the relation \preceq . Furthermore, \Delta (W )
corresponding to an (s, T, k)-semi-important set is called an (s, T, k)-semi-important
cut.

Now we have all the necessary definitions to state our lemma that upper bounds
the number of semi-important sets and semi-important cuts.
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Lemma 6.5. For every graph G, a vertex s \in V (G), a subset T \subseteq V (G) \setminus \{ s\} ,
and a nonnegative integer k, there are at most 4k(1 + 4k+1) (s, T, k)-semi-important
cuts with | \Delta (W )| = k. Moreover, all such sets can be listed in time 16kn\scrO (1).

Proof. Observe that (s, T, k)-semi-important cuts and (s, T, k)-semi-important
sets are in bijective correspondence and thus bounding one implies a bound on the
other. In what follows we upper bound the number of (s, T, k)-semi-important sets.
Let \scrF denote the set of all (s, T, k)-semi-important sets. There are two kinds of
(s, T, k)-semi-important sets: those that do not contain any vertex of T and those
that contain exactly one vertex of T . We denote the set of (s, T, k)-semi-important
sets of the first kind by \scrF 0 and of the second kind by \scrF 1. We first bound the size of
\scrF 0. We claim that for every set W \in \scrF 0, \Delta (W ) is an important (s, T )-cut of size k in
G. For a contradiction assume that there is a set W \in \scrF 0 such that \Delta (W ) is not an
important (s, T )-cut of size k in G. Then there exists a set W \prime such that W \subsetneq W \prime ,
s \in W \prime , W \prime \cap T = \emptyset , and | \Delta (W \prime )| \leq | \Delta (W )| . However, this implies that W \preceq W \prime ---a
contradiction. Thus, for every set W \in \scrF 0, \Delta (W ) is an important (s, T )-cut of size k
in G and thus by Theorem 4 we have that | \scrF 0| \leq 4k.

Now we bound the size of \scrF 1. Toward this we first modify the given graph G
and obtain a new graph G\prime . We first add a vertex t /\in V (G) as a sink terminal. Then
for every vertex vi \in T we add k + 1 new vertices Zi = \{ v1i , . . . , v

k+1
i \} and add an

edge viz for all z \in Zi. Now for every vertex vji \in Zi we make 2k + 3 new vertices

Zj
i = \{ vj1i , . . . , v

j2k+3

i \} and add an edge tz for all z \in Zj
i . Now we claim that for every

set W \in \scrF 1, \Delta (W ) is an important (s, t)-cut of size 2k+1 in G\prime . For a contradiction
assume that there is a set W \in \scrF 1 such that \Delta (W ) is not an important (s, t)-cut of
size 2k+1 in G\prime . Then there exists a set W \prime such that W \subsetneq W \prime , s \in W \prime , W \prime \cap \{ t\} = \emptyset ,
and | \Delta (W \prime )| \leq | \Delta (W )| . That is, \Delta (W \prime ) is an important cut dominating \Delta (W ). Since
W \in \scrF 1, there exists a vertex (exactly one), say, w \in T such that w \in W . Observe
that W \prime cannot contain (a) any vertex but w from T and (b) any vertex from the
set Zi, vi \in T . If it does, then | \Delta (W \prime )| will become strictly more than 2k + 1. This
together with the fact that G[W \prime ] is connected means we have that it does not contain
any newly added vertex. That is, W \prime \subseteq V (G) and contains only w from T . However,
this implies that W \preceq W \prime ---a contradiction. Thus, for every set W \in \scrF 1, \Delta (W )
is an important (s, t)-cut of size 2k + 1 in G\prime and thus by Theorem 4 we have that
| \scrF 1| \leq 42k+1. Thus, | \scrF 0| + | \scrF 1| \leq 4k + 42k+1. This concludes the proof.

Lemma 6.6. Let M\ast (G) be the bond matroid of G, T \subseteq E(G), and suppose that
F \subseteq E(G) \setminus T spans T . Let also x be an end vertex of an edge xy of T such that
x is either in a leaf block or in a degree two block in G  - F , Y is the set of end
vertices of the edges of T distinct from x, G\prime = G  - T , and let W = RG\prime  - F (x).
Then there is an (x, Y, k)-semi-important set W \prime such that | \Delta G\prime (W \prime )| \leq | \Delta G\prime (W )| 
and F \prime = (F \setminus \Delta G\prime (W )) \cup \Delta G\prime (W \prime ) spans T in M\ast (G).

Proof. It is clear that W is an interesting set. If W is a semi-important set and
\Delta G\prime (W ) is an (x, Y, k)-semi-important cut of G\prime , then the claim holds for W \prime = W .
Assume that \Delta G\prime (W ) is not an (x, Y, k)-semi-important cut. Then there is an (x, Y, k)-
semi-important set W \prime of G\prime such that W \preceq W \prime . Recall that this implies that (a)
G\prime [W \prime ] is connected, (b) W \subsetneq W \prime , (c) s \in W \prime , and (d) | Y \cap W \prime | \leq 1 and | \Delta G\prime (W \prime )| \leq 
| \Delta G\prime (W )| . Since G\prime does not have any edge of T we have that \Delta G\prime (W \prime ) \cap T = \emptyset .
Hence, F \prime = (F \setminus \Delta G\prime (W )) \cup \Delta G\prime (W \prime ) is disjoint from T . That is, F \prime \subseteq E(G) \setminus T .

To prove that F \prime spans T , it is sufficient to show that for every uv \in T , there
is a minimal cut-set C\ast 

uv of G such that uv \in C\ast 
uv \subseteq F \prime \cup \{ uv\} . Let uv \in T \setminus \{ xy\} .
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To obtain a contradiction, suppose there is no minimal cut-set \^Cuv in G such that
uv \in \^Cuv \subseteq F \prime \cup \{ uv\} . Then, there is a (u, v)-path P in G such that P has no edge
of F \prime \cup \{ uv\} . On the other hand G has a cut-set Cuv such that uv \in Cuv \subseteq F \cup \{ uv\} .
This implies that every path between u and v that exists in G - (F \prime \cup \{ uv\} ), including
P , must contain an edge of Cuv such that it is present in \Delta G\prime (W ) (these are the only
edges we have removed from F ). By our assumption we know that P does not contain
any edge from \Delta G\prime (W ) (else we will be done). Now we know that W can contain at
most one vertex from Y . Since W does not contain both endpoints of an edge in T we
have that at most one of u or v belongs to W . First let us assume that W \cap \{ u, v\} = \emptyset .
Thus by the definition of the semi-important set, W \prime \cap Y \subseteq W \cap Y , we have that u, v
is outside of W \prime . However, we know that \Delta G\prime (W ) contains an edge of P and thus
contains a vertex z \in W that is on P . Since W \subsetneq W \prime we have that \Delta G(W

\prime ) contains
at least two edges of P . However, none of these edges are present in \Delta G\prime (W \prime ). The
only edges G\prime misses are those in T and thus the edges present in \Delta G(W

\prime ) \cap E(P )
must belong to T . Let Z denote the set of endpoints of edges in \Delta G(W

\prime ) \cap E(P ).
Observe that Z \cap S\prime = Z \cap S. Let z1 denote the first vertex on P belonging to W \prime (or
W ) and z2 denote the last vertex on P belonging to W \prime (or W ), respectively, when
we walk along the path P starting from u. Since z1 and z2 belong to W and G[W ] is
connected we have that there is a path Qz1z2 in G[W ]. Let Puz1 denote the subpath
of P between u and z1 and let Pz2v denote the subpath of P between z2 and v. This
implies that the path P \prime between u and v obtained by concatenating Puz1Qz1z2Pz2v

does not intersect \Delta G\prime (W ). Observe that P \prime does not contain any edge of \Delta G\prime (W )
and F \prime \cup \{ uv\} . This is a contradiction to our assumption that every path between
u and v that exists in G  - (F \prime \cup \{ uv\} ) must contain an edge of Cuv such that it is
present in \Delta G\prime (W ).

Now we consider the case when | W \cap \{ u, v\} | =1 and say W \cap \{ u, v\} is u. We know
that \Delta G\prime (W ) contains an edge of P . Since W \subsetneq W \prime we have that \Delta G(W

\prime ) also con-
tains at least one edge of P . However, none of these edges are present in \Delta G\prime (W \prime ).
The only edges G\prime misses are those in T and thus the edges present in \Delta G(W

\prime )\cap E(P )
must belong to T . Let Z denote the set of endpoints of edges in \Delta G(W

\prime )\cap E(P ).
Observe that Z \cap S\prime = Z \cap S. Let z1 denote the first vertex on P belonging to W \prime 

(or W ) when we walk along the path P starting from v. Since z1 and u belongs to W
and G[W ] is connected we have that there is a path Quz1 in G[W ]. Let Pw1v denote
the subpath of P between w2 and v. This implies that the path P \prime between u and
v obtained by concatenating Puz1Pz1v does not intersect \Delta G\prime (W ). Observe that P \prime 

does not contain any edge of \Delta G\prime (W ) and F \prime \cup \{ uv\} . This is a contradiction to our as-
sumption that every path between u and v that exists in G - (F \prime \cup \{ uv\} ) must contain
an edge of Cuv such that it is present in \Delta G\prime (W ). This completes the proof.

Lemma 6.7. Space Cover can be solved in time 2\scrO (k) \cdot | | M | | \scrO (1) on cographic
matroids.

Proof. Let (M,w, T, k) be an instance of Space Cover, where M is a cographic
matroid.

First, we exhaustively apply Reduction Rules 5.1--5.5. Thus, by Lemma 5.4, in
polynomial time we either solve the problem or obtain an equivalent instance, where
M has no loops, the weights of nonterminal elements are positive, and | T | \leq k. To
simplify notation, we also denote the reduced instance by (M,w, T, k). Observe that
M remains cographic. It is well-known that given a cographic matroid, in polyno-
mial time one can find a graph G such that M is isomorphic to the bond matroid
M\ast (G) [39].
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Next, we replace the weighted graph G by the unweighted graph G\prime as follows.
For any nonterminal edge uv, we replace uv by w(uv) parallel edges with the same end
vertices u and v if w(uv) \leq k, and we replace uv by k+1 parallel edges if w(uv) > k.
There is F \subseteq E(G) \setminus T of weight at most k such that F spans T in G if and only if
there is F \prime \subseteq E(G\prime ) \setminus T of size at most k such that F \prime spans T in G\prime . In other words,
we have that I = (M\ast (G\prime ), w\prime , T, k), where w\prime (e) = 1 for e \in E(G\prime ), is an equivalent
instance of the problem. Notice that Reduction Rule 5.2 (terminal circuit reduction
rule) for M\ast (G\prime ) can be restated as follows: if there is a minimal cut-set R \subseteq T , then
contract any edge e \in R in the graph G\prime .

It is well-known that if H is a forest on n vertices, then there are at least n
2

vertices of degree at most two. Suppose that I is a yes-instance, and F \subseteq E(G\prime )\setminus T of
size at most k spans T . We know that in G\prime  - F every edge of T is a bridge and we let
the degree of a connected component C of G\prime  - F  - T , denoted by d\ast (C,G\prime  - F  - T ),
be equal to the number of edges of T it is incident to. Notice that if we shrink each
connected component to a single vertex, then we get a forest on at most | T | +1 \leq k+1
vertices and thus there are at least | T | /2 components such that d\ast (C,G\prime  - F  - T )
is at most two. Let I = (M\ast (G\prime ), w\prime , T, k) denote our instance. Let Q denote the
set of end vertices of edges in T and Z \subseteq Q. We assume by guessing all possibilities
in step 3 that Z has the following property: If I is a yes-instance with a solution
F \subseteq E(G\prime )\setminus T , then Z is the set of end vertices of terminals that are in the connected
components C of G - F  - T such that d\ast (C,G\prime  - F  - T ) \leq 2. Initially Z = \emptyset .

Algorithm ALG-CGM takes as instance (I,Q, Z) and executes the following steps:
1. While there is a minimal cut-set R \subseteq T of G do the following. Denote by

Z1 \subseteq Z the set of z \in Z such that z is incident to exactly one t \in T , and let
Z2 \subseteq Z be the set of z \in Z such that z is incident to two edges of T . Clearly,
Z1 and Z2 form a partition of Z. Find a minimal cut-set R \subseteq T and select
xy \in R. Contract xy and denote the contracted vertex by z. Set T = T \setminus \{ xy\} 
and recompute Q. If x, y \in Z1 or if x /\in Z or y /\in Z, then set Z = Z \setminus \{ x, y\} .
Otherwise, if x, y \in Z and \{ x, y\} \cap Z2 \not = \emptyset , set Z = (Z \setminus \{ x, y\} ) \cup \{ z\} .

2. If Z is empty go to the next step. Else, pick a vertex s \in Z and find all
the (s, Y, k) semi-important set W in G\prime  - T such that \Delta (W ) \leq k, where
Y = W \setminus \{ s\} , using Lemma 6.5. For each such semi-important set W , we call
the algorithm ALG-CGM on (M\ast (G\prime  - \Delta (W )), w\prime , T, k - | \Delta (W )| ), W , and Z.
By Lemma 6.6, I is a yes-instance if and only if one of the obtained instances
is a yes-instance of Space Cover.

3. Guess a subset Z \subseteq Q with the property that if I is a yes-instance with a
solution F \subseteq E(G\prime )\setminus T , then Z is the set of end vertices of terminals that are
in the connected components C of G - F  - T such that d\ast (C,G\prime  - F  - T ) \leq 2.
In particular, we do not include in Z the vertices that are incident to at least
three edges of T . Now call ALG-CGM on (I,Q, Z). By the properties of the

forest we know that the size of | Z| \geq | T | 
2 .

Notice that because in step 2 there are no minimal cut-sets R \subseteq T , for each
considered semi-important set W , \Delta (W ) is not empty. It means that the parameter
decreases in each recursive call. Moreover, by considering semi-important cuts of size i
for i = \{ 1, . . . , k\} , we decrease the parameter by at least i. Let \ell = | Q|  - | Z| . Because
there are at most 4i(1 + 4i+1) semi-important sets of size i, we have the following
recurrences for the algorithm:

T (\ell , k) \leq 2\ell T

\biggl( 
\ell  - \ell 

4
, k

\biggr) 
,(6.4)
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T (\ell , k) \leq 
k\sum 

i=1

(4i(1 + 4i+1))T (\ell , k  - i) .(6.5)

By the induction hypothesis we can show that the above recurrences solve to 16\ell 84k.
Since \ell \leq 2k we get that the above algorithm runs in time 2\scrO (k) \cdot n\scrO (1). This completes
the proof.

6.3.2. An algorithm for RESTRICTED SPACE COVER. For Restricted
Space Cover we need the following variant of Lemma 6.6.

Lemma 6.8. Let M\ast (G) be the bond matroid of G, T \subseteq E(G), t\ast \in T , e\ast =
uv \in E(G). Suppose that F \subseteq E(G) \setminus T spans T and F \setminus \{ e\ast \} spans t\ast . Let also
x be an end vertex of an edge xy of T such that x is either in a leaf block or in a
degree two block in G  - F , Y is the set of end vertices of the edges of T distinct
from x, G\prime = G  - T , and let W = RG\prime  - F (x). If u, v /\in RG\prime  - F (x), then there is
a (x, Y \cup \{ u, v\} , k)-semi-important set W \prime such that | \Delta G\prime (W \prime )| \leq | \Delta G\prime (W )| and for
F \prime = (F \setminus \Delta G\prime (W ))\cup \Delta G\prime (W \prime ), it holds that u, v /\in RG\prime  - F \prime (x), F \prime spans T in M\ast (G),
and F \prime \setminus \{ e\ast \} spans t.

The proof of Lemma 6.8 uses exactly the same arguments as the proof of Lemma 6.6.
The only difference is that we have to find an (x, Y \cup \{ u, v\} , k)-semi-important set W \prime 

that separates x and \{ u, v\} . To guarantee it, we can replace e\ast by k+1 parallel edges
for k = | \Delta G\prime (W \prime )| with the end vertices being u and v and use an (x, Y \cup \{ u, v\} , k)-
semi-important set in the obtained graph. Modulo this modification, the proof is
analogous to Lemma 6.6 and hence omitted. Next we give the algorithm for Re-
stricted Space Cover on cographic matroids.

Lemma 6.9. Restricted Space Cover can be solved in time 2\scrO (k) \cdot | | M | | \scrO (1)

on cographic matroids.

Proof. The proof uses the same arguments as the proof of Lemma 6.7. Hence, we
only sketch the algorithm here.

Let (M,w, T, k, e\ast , t\ast ) be an instance of Restricted Space Cover, where M is
a cographic matroid. First, we exhaustively apply Reduction Rules 5.3 and 5.6--5.9.
Thus, by Lemma 5.4, in polynomial time we either solve the problem or obtain an
equivalent instance, where M has no loops, the weights of nonterminal elements are
positive, and | T | \leq k + 1. Notice that it can happen that e\ast is deleted by Reduction
Rules 5.3 and 5.6--5.9. For example, if e\ast is a loop, then it can be deleted by Reduction
Rule 5.3. In this case we obtain an instance of Space Cover and can solve it using
Lemma 6.7. From now on we assume that e\ast is not deleted by our reduction rules.

To simplify notation, we use (M,w, T, k, e\ast , t\ast ) to denote the reduced instance. If
we started with cographic matroid, then it remains so even after applying Reduction
Rules 5.3 and 5.6--5.9. Furthermore, given M , in polynomial time we can find a graph
G such that M is isomorphic to the bond matroid M\ast (G) [39]. Let e\ast = pq.

Next, we replace the weighted graph G by the unweighted graph G\prime as follows.
For any nonterminal edge uv \not = e\ast , if w(uv) \leq k, then we replace uv by w(uv) parallel
edges with the same end vertices u and v. On the other hand if w(uv) > k, then we
replace uv by k+1 parallel edges. Recall that w(e\ast ) = 0. Nevertheless, we replace e\ast 

by k + 1 parallel edges with the end vertices p and q to forbid including pq to a set
that spans t\ast .

Suppose that (M,w, T, k, e\ast , t\ast ) is a yes-instance and let F \subseteq E(G) \setminus T be a
solution. Recall that in G  - F every edge of T is a bridge and the degree of a
connected component C of G\prime  - F  - T , denoted by d\ast (C,G  - F  - T ), is equal to
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the number of edges of T it is incident to. Notice that if we shrink each connected
component to a single vertex, then we get a forest on at most | T | +1 \leq k+1 vertices
and thus there are at least | T | /2 components such that d\ast (C,G - F  - T ) is at most
two. Only two components can contain p or q. Hence, there are at least | T | /2 - 2 such
components that do not include p, q. Moreover, there is at least one such component,
because F \setminus \{ e\} spans t\ast . Let Q denote the set of end vertices of edges in T and
Z \subseteq Q. Initially Z = \emptyset , but we assume that Z is the set of end vertices of terminals
that are in the connected components C of degree one of the graph obtained from G\prime 

by deleting the edges of a solution and the terminals and, moreover, p, q /\in C.
Our algorithm ALG-CGM-restricted takes as instance (G\prime , T, k,Q,Z) and proceeds

as follows:
1. While there is a minimal cut-set R \subseteq T of G do the following. Denote by

Z1 \subseteq Z the set of z \in Z such that z is incident to exactly one t \in T , and let
Z2 \subseteq Z be the set of z \in Z such that z is incident to two edges of T . Clearly,
Z1 and Z2 form a partition of Z. Find a minimal cut-set R \subseteq T and select
xy \in R such that xy \not = t\ast if R \not = \{ t\ast \} and let xy = t\ast otherwise. Contract
xy and denote the obtained vertex z. Set T = T \setminus \{ xy\} and recompute W . If
x, y \in Z1 or if x /\in Z or y /\in Z, then set Z = Z \setminus \{ x, y\} . Otherwise, if x, y \in Z
and \{ x, y\} \cap Z2 \not = \emptyset , set Z = (Z \setminus \{ x, y\} ) \cup \{ z\} .

2. If t\ast /\in T , then delete the edges pq. Notice that t\ast /\in T only if we already
constructed a set that spans t\ast . Hence, it is safe to get rid of e\ast of weight 0.

3. If Z is empty go to the next step. Else, pick a vertex s \in Z and find all the
(s, Y, k) semi-important sets W in G\prime  - T such that \Delta (W ) \leq k, where

Y =

\Biggl\{ 
(Q \setminus \{ s\} ) \cup \{ p, q\} if t\ast \in T,

Q \setminus \{ s\} if t\ast /\in T,

using Lemma 6.5. Notice that if t\ast \in T , then there are k + 1 copies of pq.
Hence, W separates s from p and q. For each such semi-important set W , we
call the algorithm ALG-CGM-restricted on (G\prime  - \Delta (W ), T, k  - | \Delta (W )| , Q, Z).
We use Lemma 6.8 to argue that the branching step is safe.

4. Guess a subset Z \subseteq Q with the property that Z is the set of end vertices
of terminals that are in the connected components C of degree at most two
of the graph obtained from G\prime by the deletion of edges of a solution and the
terminals and, moreover, p, q /\in C. In particular, we do not include in Z the
vertices that are incident to at least three edges of T . Now call ALG-CGM-
restricted on (G\prime , T, k,W,Z). Notice, that by the properties of the forest we

know that Z \not = \emptyset and the size of | Z| \geq | T | 
2  - 2.

Notice that because of step 3 there are no minimal cut-sets R \subseteq T and thus
for each considered semi-important set W , \Delta (W ) is not empty. It means that the
parameter decreases in each recursive call. Moreover, by considering semi-important
cuts of size i for i = \{ 1, . . . , k\} , we decrease the parameter by at least i. Let \ell =
| Q|  - | Z| . Because there are at most 4i(1 + 4i+1) semi-important sets of size i, we
have the following recurrences for the algorithm:

T (\ell , k) \leq 2\ell T

\biggl( 
\ell  - \ell 

4
+ 2, k

\biggr) 
,(6.6)

T (\ell , k) \leq 
k\sum 

i=1

(4i(1 + 4i+1))T (\ell , k  - i) .(6.7)
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As in the proof of Lemma 6.7, using the induction hypothesis we can show that the
above recurrences solve to 16\ell 84k. Since \ell \leq 2k + 1 we get that the above algorithm
runs in time 2\scrO (k) \cdot n\scrO (1). This completes the proof.

7. Solving SPACE COVER for regular matroids. In this section we conjure
all that have developed so far and design an algorithm for Space Cover on regular
matroids, running in time 2\scrO (k) \cdot | | M | | \scrO (1). To give a clean presentation of our algo-
rithm we have divided the section into three parts. We first give some generic steps,
followed by steps when the matroid in consideration is either graphic or cographic,
and ending with a result that ties them all.

Let (M,w, T, k) be the given instance of Space Cover. First, we exhaustively
apply Reduction Rules 5.1--5.5. Thus, by Lemma 5.4, in polynomial time we either
solve the problem or obtain an equivalent instance, where M has no loops and the
weights of nonterminal elements are positive. To simplify notation, we also denote
the reduced instance by (M,w, T, k). We say that a matroid M is basic if it can be
obtained from R10 by adding parallel elements or M is graphic or cographic. If M
is a basic matroid, then we can solve Space Cover using Lemma 6.1, or 6.3, or 6.7
respectively in time 2\scrO (k) \cdot | | M | | \scrO (1). This results in the following lemma.

Lemma 7.1. Let (M,w, T, k) be an instance of Space Cover. If M is a basic
matroid, then Space Cover can be solved in time 2\scrO (k) \cdot | | M | | \scrO (1).

From now on we assume that the matroid M in the instance (M,w, T, k) is not
basic. Now using Corollary 3, we find a conflict tree \scrT . Recall that the set of nodes
of \scrT is the collection of basic matroids \scrM and the edges correspond to 1-, 2-, and
3-sums. The key observation is that M can be constructed from \scrM by performing the
sums corresponding to the edges of \scrT in an arbitrary order. Our algorithm is based
on performing bottom-up traversal of the tree \scrT . We select an arbitrarily node r as
the root of \scrT . Selection of r, as the root, defines the natural parent-child, descendant,
and ancestor relationship on the nodes of \scrT . We say that u is a subleaf if its children
are leaves of \scrT . Observe that there always exists a subleaf in a tree on at least two
nodes. Just take a node which is not a leaf and is farthest from the root. Clearly, this
node can be found in polynomial time.

Throughout this section we fix a subleaf of \scrT ---a basic matroid Ms. We say that
a child of Ms is a 1-, 2-, or 3-leaf, respectively, if the edge between Ms and the leaf
corresponds to a 1-, 2-, or 3-sum, respectively.

We first modify the decomposition by an exhaustive application of the following
rule.

Reduction Rule 7.1 (terminal flipping rule). If there is a child M\ell of a subleaf
Ms such that there is e \in E(Ms)\cap E(M\ell ) that is parallel to a terminal t \in E(M\ell )\cap T
in M\ell , then delete t from M\ell and add t to Ms as an element parallel to e.

The safeness of Reduction Rule 7.1 follows from the following observation.

Observation 7.1 (see [8]). Let M = M1\oplus M2. Suppose that there is e
\prime \in E(M2)\setminus 

E(M1) such that e\prime is parallel to e \in E(M1) \cap E(M2). Then M = M \prime 
1 \oplus M \prime 

2, where
M \prime 

1 is obtained from M1 by adding a new element e\prime parallel e and M \prime 
2 is obtained

from M \prime 
2 by the deletion of e\prime .

The proof of Observation 7.1 is implicit in [8]. Furthermore, Reduction Rule 7.1
can be applied in polynomial time. Notice also that it is allowed to a matroid obtained
from R10 by adding parallel elements to be a basic matroid of a decomposition. Thus,
we get the following lemma.
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Lemma 7.2. Reduction Rule 7.1 is safe and can be applied in polynomial time.

From now on we assume that there is no child M\ell of Ms such that there exists
an element e \in E(Ms) \cap E(M\ell ) that is parallel to a terminal t \in E(M\ell ) \cap T in M\ell .
In what follows we do a bottom-up traversal of \scrT and at each step we delete one of
the children of Ms. A children of Ms is deleted either because of an application of a
reduction rule or because of recursively solving the problem on a smaller sized tree.
It is possible that while recursively solving the problem, we could possibly modify
(or replace) Ms to encode some auxiliary information that we have already computed
while solving the problem. We start by giving some generic steps that do not depend
on the types of either Ms or its child. Throughout the section, given the conflict tree
\scrT , we denote by M\scrT the matroid defined by \scrT .

7.1. A few generic steps. We start by giving a reduction rule that is useful
when we have a 1-leaf. The reduction rule is as follows.

Reduction Rule 7.2 (1-leaf reduction rule). If there is a child M\ell of Ms that
is a 1-leaf, then do the following:

(i) If E(M\ell ) \cap T = \emptyset , then delete M\ell from \scrT .
(ii) If E(M\ell ) \cap T \not = \emptyset , then find the minimum k\prime \leq k such that (M\ell , w\ell , T \cap 

E(M\ell ), k
\prime ) is a yes-instance of Space Cover using Lemma 6.1, or 6.3, or

6.7, respectively, depending on which primary matroid M\ell is. Here, w\ell is the
restriction of w on E(M\ell ). If (M\ell , w\ell , T \cap E(M\ell ), k

\prime ) is a no-instance for
every k\prime \leq k, then we return no. Let \scrT \prime be obtained from \scrT by deleting the
node M\ell . Furthermore, for simplicity, let M\scrT \prime be denoted by M \prime , restric-
tion of w to E(M\scrT \prime ) by w\prime , and T \cap E(M\scrT \prime ) by T \prime . Our new instance is
(M \prime , w\prime , T \prime , k  - k\prime ).

Safeness of the reduction rule follows by the definition of 1-sum, and it can be
applied in time 2\scrO (k) \cdot | | M | | \scrO (1). Thus we get the following result.

Lemma 7.3. Reduction Rule 7.2 is safe and can be applied in 2\scrO (k) \cdot | | M | | \scrO (1)

time.

7.1.1. Handling 2-leaves. For 2-leaves, we either reduce a leaf or apply a re-
cursive procedure based on whether the leaf contains a terminal.

Reduction Rule 7.3 (2-leaf reduction rule). If there is a child M\ell of Ms that
is a 2-leaf with E(Ms) \cap E(M\ell ) = \{ e\} and T \cap E(M\ell ) = \emptyset , then find the minimum
k\prime \leq k such that (M\ell , w\ell , \{ e\} , k\prime ) is a yes-instance of Space Cover using Lemmas
6.1, or 6.3, or 6.7, respectively, depending on which primary matroid M\ell is. Here,
w\ell (e

\prime ) = w(e\prime ) for e\prime \in E(M\ell )\setminus \{ e\} and w\ell (e) = 0. If (M\ell , w\ell , \{ e\} , k\prime ) is a no-instance
for every k\prime \leq k, then we set k\prime = k+1. Let \scrT \prime be obtained from \scrT by deleting the node
M\ell . Furthermore, for simplicity, let M\scrT \prime be denoted by M \prime . We define w\prime on E(M \prime )
as follows: for every e\ast \in E(M\scrT \prime ), e\ast \not = e, set w\prime (e\ast ) = w(e\ast ) and let w\prime (e) = k\prime .
Our new instance is (M \prime , w\prime , T, k).

Lemma 7.4. Reduction Rule 7.3 is safe and can be applied 2\scrO (k) \cdot | | M | | \scrO (1) time.

Proof. To show that the rule is safe, denote by M \prime the matroid defined by \scrT \prime =
\scrT  - M\ell and let w\prime (e\prime ) = w(e\prime ) for e\prime \in E(M \prime ) \setminus \{ e\} and w\prime (e) = k\prime . By the 2-leaf
reduction rule, there is a cycle C of M\ell such that e \in C and the weight w(C\setminus \{ e\} ) = k\prime 

is minimum among all cycles that include e.
Suppose that (M,w, T, k) is a yes-instance of Space Cover. Let F \subseteq E(M) \setminus T

be a set of weight at most k that spans T . If F \cap E(M\ell ) = \emptyset , then F spans T in M \prime 
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and because e /\in F , the weight of F is the same as before. Hence, (M \prime , w\prime , T, k) is a
yes-instance. Assume that F\cap E(M\ell ) \not = \emptyset . Let F \prime = (F\cap E(M \prime )\cup \{ e\} . For each t \in T ,
there is a circuit Ct of M such that t \in Ct \subseteq F \cup \{ t\} . Because F \cap E(M\ell ) \not = \emptyset , there
is t \in T such that Ct \cap E(M\ell ) \not = \emptyset . By the definition of 2-sums, there are cycles C \prime 

t of
M \prime and C \prime \prime 

t of M\ell such that Ct = C \prime 
t\bigtriangleup C \prime \prime 

t and we have that e \in C \prime 
t\cap C \prime \prime 

t , because Ct is
a circuit, i.e., an inclusion-minimal nonempty cycle. Since w(C \prime \prime 

t \setminus \{ e\} ) \geq w(C \setminus \{ e\} ),
we have that w(F \prime ) \leq k. To show that F \prime spans T , consider t \in T and a cycle Ct of
M such that t \in Ct \subseteq F \cup \{ t\} . If Ct \subseteq E(M \prime ), then Ct \subseteq F \prime \cup \{ t\} and F \prime spans t
in M \prime . If Ct \cap E(M\ell ) \not = \emptyset , then there are cycles C \prime 

t of M \prime and C \prime \prime 
t of M\ell such that

e \in C \prime 
t \cap C \prime \prime 

t and Ct = C \prime 
t \bigtriangleup C \prime \prime 

t . Because C \prime 
t \subseteq F \prime \cup \{ t\} , we have that F \prime spans t.

Assume now that (M \prime , w\prime , T, k) is a yes-instance. Let F \prime \subseteq E(M \prime ) \setminus T be a set of
weight at most k that spans T in M \prime . If e /\in F \prime , then F \prime spans T in M and (M,w, T, k)
is a yes-instance. Suppose that e \in F \prime . Let F = F \prime \bigtriangleup C. Clearly, w(F ) = w(F \prime ) \leq k.
We have to show that F spans T . Let t \in T . There is a cycle C \prime 

t in M \prime such that
t \in C \prime 

t \subseteq F \prime \cup \{ t\} . If e /\in C \prime , then C \prime 
t \subseteq F \cup \{ t\} and F spans t. If e \in C \prime 

t, then for
Ct = C \prime 

t \bigtriangleup C, we have that t \in Ct \subseteq F \cup \{ t\} and it implies that F spans t.
The rule can be applied in time 2\scrO (k) \cdot | | M | | \scrO (1) by Lemma 7.1. In fact, it can

be done in polynomial time, because we are solving Space Cover for the sets of
terminal of size one. It is easy to see that if M\ell is graphic, then the problem can be
reduced to finding a shortest path, and if M\ell is cographic, then we can reduce it to
the minimum cut problem.

Reduction Rule 7.3 takes care of the case when M\ell has no terminal. If it has
a terminal, then we recursively solve the problem as described below in Branching
Rule 7.1, and if any of these recursive calls of the algorithm returns yes, then we
return that the given instance is a yes-instance. Recall that F \subseteq E(M) \setminus T is a
solution for (M,w, T, k) if and only if for every t \in T , there is a circuit Ct such
that t \in Ct \subseteq F \cup \{ t\} . The three branches in the rule correspond to the structure
of these circuits Ct in a potential solution with respect to Ms \oplus 2 M\ell : (i) there is
t \in T \cap E(M\ell ) such that Ct contains elements of both M\ell and Ms, (ii) there is
t \in T \cap E(Ms) such that Ct contains elements of both M\ell and Ms, and (iii) for every
t \in T , either Ct \subseteq E(M\ell ) or Ct \subseteq E(Ms).

Branching Rule 7.1 (2-leaf branching). If there is a child M\ell of Ms that is a
2-leaf with E(Ms) \cap E(M\ell ) = \{ e\} and T \cap E(M\ell ) = T\ell \not = \emptyset , then do the following.
Let M \prime be the matroid defined by \scrT \prime = \scrT  - M\ell and let T \prime = T \setminus T\ell . Consider the
following three branches:

(i) Let w\prime (e\prime ) = w(e\prime ) for e\prime \in E(M \prime ) \setminus \{ e\} and w\prime (e) = 0. Define w\ell (e
\prime ) = w(e\prime )

for e\prime \in E(M\ell ) \setminus \{ e\} and w\ell (e) = 0. Find the minimum k1 \leq k such that
(M\ell , w\ell , T\ell \cup \{ e\} , k1) is a yes-instance of Space Cover using Lemma 6.1, or
6.3, or 6.7, respectively, depending on the type of M\ell . If (M\ell , w\ell , T\ell \cup \{ e\} , k1)
is a no-instance for every k1 \leq k, then we return no and stop. Otherwise,
solve the problem on the instance (M \prime , w\prime , T \prime , k  - k1).

(ii) Let w\prime (e\prime ) = w(e\prime ) for e\prime \in E(M \prime ) \setminus \{ e\} and w\prime (e) = 0. Define w\ell (e
\prime ) = w(e\prime )

for e\prime \in E(M\ell ) \setminus \{ e\} and w\ell (e) = 0. Find the minimum k2 \leq k such that
(M\ell , w\ell , T\ell , k2) is a yes-instance of Space Cover using Lemma 6.1, or 6.3,
or 6.7, respectively, depending on the type of M\ell . If (M\ell , w\ell , T\ell , k2) is a no-
instance for every k2 \leq k, then we return no and stop. Otherwise, solve the
problem on the instance (M \prime , w\prime , T \prime \cup \{ e\} , k  - k2).

(iii) Let w\prime (e\prime ) = w(e\prime ) for e\prime \in E(M \prime ) \setminus \{ e\} and w\prime (e) = k + 1. Define w\ell (e
\prime ) =

w(e\prime ) for e\prime \in E(M\ell )\setminus \{ e\} and w\ell (e) = k+1. Find the minimum k3 \leq k such
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that (M\ell , w\ell , T\ell , k3) is a yes-instance of Space Cover using Lemma 6.1, or
6.3, or 6.7, respectively, depending on the type of M\ell . If (M\ell , w\ell , T\ell , k3) is a
no-instance for every k3 \leq k, then we return no and stop. Otherwise, solve
the problem on the instance (M \prime , w\prime , T \prime , k  - k3).

Lemma 7.5. Branching Rule 7.1 is exhaustive and in each recursive call the pa-
rameter strictly reduces. Each call of the rule takes 2\scrO (k) \cdot | | M | | \scrO (1) time.

Proof. To show correctness, assume first that (M,w, T, k) is a yes-instance of
Space Cover. Let F \subseteq E(M) \setminus T be a set of weight at most k that spans T .
Without loss of generality we assume that F is inclusion-minimal and, therefore, F is
independent by Observation 3.1. For each t \in T , there is a circuit Ct of M such that
t \subseteq Ct \subseteq F \cup \{ t\} . We have the following three cases.

Case 1. There is Ct such that t \in T \prime and Ct \cap E(M\ell ) \not = \emptyset . Let F\ell = F \cap E(M\ell )
and F \prime = (F \cap E(M \prime ))\cup \{ e\} . We claim that F\ell spans T\ell \cup \{ e\} in M\ell and F \prime spans T \prime 

in M \prime .
First, we show that F\ell spans T\ell \cup \{ e\} in M\ell . Since there is a circuit Ct such

that t \in T \prime and Ct \cap E(M\ell ) \not = \emptyset , there are cycles C \prime 
t of M \prime and C \prime \prime 

t of M\ell such that
Ct = C \prime 

t \bigtriangleup C \prime \prime 
t and e \in C \prime 

t \cap C \prime \prime 
t . Because e \in C \prime \prime 

t and C \prime \prime 
t \setminus \{ e\} \subseteq F\ell , we have that

F\ell spans e in M\ell . Let t
\prime \in T\ell . Since F spans t\prime in M , there is a cycle Ct\prime of M such

that t\prime \in Ct\prime \subseteq F \cup \{ t\prime \} . If Ct\prime \setminus t\prime \subseteq E(M\ell ), then F\ell spans t
\prime , because Ct\prime \setminus \{ t\prime \} \subseteq F\ell .

Suppose that Ct\prime \cap E(M \prime ) \not = \emptyset . Then by the definition of 2-sum, there are cycles C \prime 
t\prime of

M \prime and C \prime \prime 
t\prime of M\ell such that e \in C \prime 

t\prime \cap C \prime \prime 
t\prime and Ct\prime = C \prime 

t\prime \bigtriangleup C \prime \prime 
t\prime . Consider C = C \prime \prime 

t \bigtriangleup C \prime \prime 
t\prime .

By Observation 3.4, C is a cycle. As C \setminus \{ e\} \subseteq F\ell , e \in C \prime \prime 
t\prime \cap C \prime \prime 

t , and t\prime /\in C \prime \prime 
t , we

obtain that C is a cycle of M\ell and t\prime \in C \subseteq F\ell \cup \{ t\prime \} . Therefore, F\ell spans t\prime .
To prove that F \prime spans T \prime in M \prime , consider t\prime \in T \prime . Since F spans t\prime in M , there

is a circuit Ct\prime of M such that t\prime \in Ct\prime \subseteq F \cup \{ t\prime \} . If Ct\prime \setminus t\prime \subseteq E(M \prime ), then F \prime 

spans t\prime , because Ct\prime \setminus \{ t\prime \} \subseteq F \prime . Suppose that Ct\prime \cap E(M\ell ) \not = \emptyset . Then by the
definition of 2-sum, there are cycles C \prime 

t\prime of M
\prime and C \prime \prime 

t\prime of M\ell such that e \in C \prime 
t\prime \cap C \prime \prime 

t\prime 

and Ct\prime = C \prime 
t\prime \bigtriangleup C \prime \prime 

t\prime . Observe that C \prime 
t\prime \setminus \{ t\prime \} \subseteq F \prime and, therefore, F \prime spans t\prime in M \prime .

Since F\ell spans T\ell \cup \{ e\} in M\ell , w(F\ell ) \geq k1. Because w(F \prime ) + w(F\ell ) = w(F ) \leq k
if the weight of e in M \prime is 0, w(F \prime ) \leq k  - k1 in this case. Hence, (M \prime , w\prime , T \prime , k  - k1)
is a yes-instance for the first branch.

Case 2. There is Ct such that t \in T\ell and Ct\cap E(M \prime ) \not = \emptyset . This case is symmetric
to Case 1, and by the same arguments we show that (M \prime , w\prime , T \prime \cup \{ e\} , k  - k2) is a
yes-instance for the second branch.

Otherwise, we have the remaining case.
Case 3. For any t \in T \prime , Ct \subseteq E(M \prime ) \setminus \{ e\} , and for any t \in T\ell , Ct \subseteq E(M\ell ) \setminus \{ e\} .

Let F\ell = F \cap E(M\ell ) and F \prime = (F \cap E(M \prime )). Observe that F\ell spans T\ell in M\ell and
F \prime spans T \prime in M \prime . In particular, w(F\ell ) \geq k3. Since w(F \prime ) + w(F\ell ) = w(F ) \leq k,
(M \prime , w\prime , T \prime , k  - k3) is a yes-instance for the third branch.

Suppose now that we have a yes-answer for one of the branches. We consider
three cases depending on the branch.

Case 1. (M \prime , w\prime , T \prime , k - k1) is a yes-instance for the first branch. Let F\ell \subseteq E(M\ell )
be a set of weight at most k1 that spans T\ell \cup \{ e\} in M\ell and let F \prime be a set of weight
at most k  - k1 that spans T \prime in M \prime . Consider F = F \prime \bigtriangleup F\ell . Clearly, w(F ) \leq k.
We claim that F spans T . Let t \in T . Suppose that t \in T\ell . Notice that e /\in F\ell , as
e is a terminal in the instance (M\ell , w\ell , T\ell \cup \{ e\} , k1). It implies that F\ell spans t in
M . Assume now that t \in T \prime . Since F \prime spans t, there is a cycle Ct of M \prime such that
t \in Ct \subseteq F \prime \cup \{ t\} . If e /\in Ct, then Ct \setminus \{ t\} and, therefore, F spans t in M . Suppose
that e \in Ce. The set F\ell spans e in M\ell . Hence, there is a cycle Ce of M\ell such that
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e \in Ce \subseteq F\ell \cup \{ e\} . Let C \prime 
t = Ct \bigtriangleup Ce. By definition, C \prime 

t is a cycle of M . Because
t \in C \prime 

t and e /\in Ct\prime , we have that C \prime 
t \setminus \{ t\} spans t. As C \prime 

t \subseteq F , F spans t. Because F
is a set of weight at most k that spans T , (M,w, T, k) is a yes-instance.

Case 2. (M \prime , w\prime , T \prime \cup \{ e\} , k  - k2) is a yes-instance for the second branch. This
case is symmetric to Case 1, and we use the same arguments to show that (M,w, T, k)
is a yes-instance.

Case 3. (M \prime , w\prime , T \prime , k - k3) is a yes-instance for the third branch. Let F\ell \subseteq E(M\ell )
be a set of weight at most k1 that spans T\ell in M\ell and let F \prime be a set of weight at
most k  - k1 that spans T \prime in M \prime . Notice that e /\in F\ell and e /\in F \prime , because the weight
of e is k + 1 in M\ell and M \prime . Let F = F \prime \cup F\ell . Clearly, w(F ) \leq k. Let t \in T . Then
F\ell spans t in M . If t \in T \prime , then F \prime spans t in M . Hence, F spans T . Therefore,
(M,w, T, k) is a yes-instance.

Notice that M\ell has no nonterminal elements of zero weight for the first and third
branches and the elements of T\ell are not loops, because of the application of the
reduction rules. Hence, k1, k3 \geq 1. For the second branch, e has the zero weight, but
F\ell has no terminals parallel to e, because of the terminal flipping rule, hence, k2 \geq 1
as well. We conclude that all recursive calls are done for the parameters that are
strictly lesser that k.

The claim that each call of the rule (without recursive steps) takes 2\scrO (k) \cdot | | M | | \scrO (1)

time follows from Lemma 7.1.

7.1.2. Handling 3-leaves. In this section we assume that all the children of
Ms are 3-leaves. The analysis of this cases is done along the same lines as for the case
of 2-leaves. However, this case is significantly more complicated.

Observation 7.2. Let M be a matroid obtained from R10 by adding some parallel
elements. Then any circuit of M has even size.

It immediately implies thatMs and its children are graphic or cographic matroids.
For 3-sums, it is convenient to make the following observation.

Observation 7.3. Let M = M1 \oplus 3 M2. If C is a cycle of M , then there are cycles
C1 and C2 of M1 and M2 respectively such that C = C1\bigtriangleup C2 and either C1\cap C2 = \emptyset or
| C1\cap C2| = 1. Moreover, if C is a circuit of M , then either C is a circuit of M1 or M2,
or there are circuits C1 and C2 of M1 and M2, respectively, such that C = C1 \bigtriangleup C2

and | C1 \cap C2| = 1.

Proof. Let Z = C1\cap C2. Recall that Z is a circuit ofM1 andM2. Let C = C1\bigtriangleup C2

and | C1 \cap C2| \geq 2. Consider C \prime 
1 = C1 \bigtriangleup Z and C \prime 

2 = C2 \bigtriangleup Z. We have that C \prime 
1 and

C \prime 
2 are cycles of M1 and M2, respectively, by Observation 3.4 and | C \prime 

1 \cap C \prime 
2| \leq 1. It

remains to notice that C = C \prime 
1 \bigtriangleup C \prime 

2. The second claim immediately follows from the
fact that a circuit is an inclusion-minimal nonempty cycle.

We use Observation 7.3 to analyze the structure of a solution of Space Cover
for matroid sums. If M = M1 \oplus 3 M2 and for t \in T , a circuit C such that t \in C \subseteq 
F \cup \{ t\} for a solution F has nonempty intersection with E(M1) and E(M2), then
C = C1\bigtriangleup C2 for cycles C1 and C2 of M1 and M2, respectively and, moreover, it could
be assumed that C1 and C2 are circuits. By Observation 7.3, we can always assume
that C1 \cap C2 = \{ e\} for e \in E(M1) \cap E(M2). Using this assumption, we say that C
goes through e in this case.

We also need the following observation about circuits of size 3.

Observation 7.4. Let M be a binary matroid, w : E(M) \rightarrow \BbbN 0. Let also C =
\{ e1, e2, e3\} be a circuit of M . Suppose that F \subseteq E(M) \setminus C is a set of minimum

D
ow

nl
oa

de
d 

01
/0

3/
19

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COVERING VECTORS BY SPACES: REGULAR MATROIDS 2545

weight such that M has circuits (cycles) C1 and C2 such that e1 \in C1 \subseteq F \cup \{ e1\} and
e2 \in C2 \subseteq F \cup \{ e2\} . Then F is a subset of E(M)\setminus C of minimum weight such that for
each i \in \{ 1, 2, 3\} , M has a circuit (cycle) Ci such that ei \in Ci \subseteq F \cup \{ ei\} . Moreover,
for any distinct i, j \in \{ 1, 2, 3\} , F is a subset of minimum weight of E(M)\setminus C such that
M has circuits (cycles) Ci and Cj such that ei \in Ci \subseteq F\cup \{ ei\} and ej \in Cj \subseteq F\cup \{ ej\} .

Proof. Let C \prime = C1 \bigtriangleup C2 \bigtriangleup C. Because M is binary, C \prime is a cycle by Observa-
tion 3.4. Since \{ e1\} = C \cap C1, \{ e2\} = C \cap C2, and e3 /\in C1 \cup C2 = F , C \prime contains
a circuit C3 such that e3 \in C3 \subseteq C \prime \subseteq F \cup \{ e3\} . Hence, the first claim holds by
symmetry. Also by symmetry, the second claim is fulfilled.

If a child of Ms has terminals, then we recursively solve the problem as described
below in Branching Rule 7.2 and if any of these recursive calls returns yes, then we
return that the given instance is a yes-instance. Similarly to Reduction Rule 7.1, each
branch corresponds to the behavior of circuits Ct with the property that for t \in T ,
there is t \in Ct \subseteq F \cup \{ t\} for a potential solution F . Since for 3-sums the structure is
more complicated, we obtain 15 branches of 6 types.

Branching Rule 7.2 (3-leaf branching). If there is a child M\ell of Ms that is a
3-leaf with E(Ms)\cap E(M\ell ) = Z and T \cap E(M\ell ) = T\ell \not = \emptyset , then let M \prime be the matroid
defined by \scrT \prime = \scrT  - M\ell and let T \prime = T \setminus T\ell . We set w\prime (e) = w(e) for e \in E(M \prime ) \setminus Z
and w\ell (e) = w(e) for e \in E(M\ell ) \setminus Z. We let Z = \{ e1, e2, e3\} and consider the
following branches of six types:

(i) Let w\ell (eh) = k + 1 for h \in \{ 1, 2, 3\} . For each i \in \{ 1, 2, 3\} do the following.
Set w\prime (ei) = 0 and w\prime (eh) = k + 1 for h \in \{ 1, 2, 3\} such that h \not = i. Find

the minimum k
(1)
i \leq k such that (M\ell , w\ell , T\ell \cup \{ ei\} , k(1)i ) is a yes-instance

of Space Cover using Lemma 6.3 or 6.7, respectively, depending on the

type of M\ell . If (M\ell , w\ell , T\ell \cup \{ ei\} , k(1)i ) is a no-instance for every k
(1)
i \leq k,

then we return no and stop. Otherwise, solve the problem on the instance

(M \prime , w\prime , T \prime , k  - k
(1)
i ).

(ii) Let w\ell (eh) = k + 1 for h \in \{ 1, 2, 3\} . Set w\prime (e1) = w\prime (e2) = 0 and w\prime (e3) =
k + 1. Find the minimum k(2) \leq k such that (M\ell , w\ell , T\ell \cup \{ e1, e2\} , k(2)) is a
yes-instance of Space Cover using Lemma 6.3 or 6.7, respectively, depending
on the type of M\ell . If (M\ell , w\ell , T\ell \cup \{ e1, e2\} , k(2)) is a no-instance for every
k(2) \leq k, then we return no and stop. Otherwise, solve the problem on the
instance (M \prime , w\prime , T \prime , k  - k(2)).

(iii) For any two distinct i, j \in \{ 1, 2, 3\} , do the following. Let h \in \{ 1, 2, 3\} 
such that h \not = i, j. Set w\ell (ei) = 0 and w\ell (ej) = w\ell (eh) = k + 1. Let

w\prime (ej) = 0 and w\prime (ei) = w\prime (eh) = k + 1. Find the minimum k
(3)
ij \leq k

such that (M\ell , w\ell , T\ell \cup \{ ej\} , k(3)ij , ei, ej) is a yes-instance of Restricted
Space Cover using Lemma 6.4 or 6.9, respectively, depending on the type

of M\ell . If (M\ell , w\ell , T\ell \cup \{ ej\} , k(3)ij , ei, ej) is a no-instance for every k
(3)
ij \leq k,

then we return no and stop. Otherwise, solve the problem on the instance

(M \prime , w\prime , T \prime \cup \{ ei\} , k  - k
(3)
ij ).

(iv) Let w\prime (eh) = k + 1 for h \in \{ 1, 2, 3\} . For each i \in \{ 1, 2, 3\} do the following.
Set w\ell (ei) = 0 and w\ell (eh) = k + 1 for h \in \{ 1, 2, 3\} such that h \not = i. Find

the minimum k
(4)
i \leq k such that (M\ell , w\ell , T\ell , k

(4)
i ) is a yes-instance of Space

Cover using Lemma 6.3 or 6.7, respectively, depending on the type of M\ell . If

(M\ell , w\ell , T\ell , k
(4)
i ) is a no-instance for every k

(4)
i \leq k, then we return no and

stop. Otherwise, solve the problem on the instance (M \prime , w\prime , T \prime \cup \{ ei\} , k - k
(4)
i ).
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(v) Let w\ell (e1) = w\ell (e2) = 0 and w\ell (e3) = k+ 1. Set w\prime (e1) = w\prime (e2) = w\prime (e3) =
k + 1. Find the minimum k(5) \leq k such that (M\ell , w\ell , T\ell , k

(5)) is a yes-
instance of Space Cover using Lemma 6.3 or 6.7, respectively, depending
on the type of M\ell . If (M\ell , w\ell , T\ell , k

(5)) is a no-instance for every k(5) \leq k,
then we return no and stop. Otherwise, solve the problem on the instance
(M \prime , w\prime , T \prime \cup \{ e1, e2\} , k  - k(5)).

(vi) Set w\ell (e1) = w\ell (e2) = w\ell (e3) = k + 1 and w\prime (e1) = w\prime (e2) = w\prime (e3) = k + 1.
Find the minimum k(6) \leq k such that (M\ell , w\ell , T\ell , k

(6)) is a yes-instance of
Space Cover using Lemma 6.3 or 6.7, respectively, depending on the type of
M\ell . If (M\ell , w\ell , T\ell , k

(6)) is a no-instance for every k(6) \leq k, then we return no
and stop. Otherwise, solve the problem on the instance (M \prime , w\prime , T \prime , k  - k(6)).

Note that the branching of the third type is the only place of our algorithm where
we are solving Restricted Space Cover.

Lemma 7.6. Branching Rule 7.2 is exhaustive and in each recursive call the pa-
rameter strictly reduces. Each call of the rule takes 2\scrO (k) \cdot | | M | | \scrO (1) time.

Proof. To show correctness, assume first that (M,w, T, k) is a yes-instance of
Space Cover. Let F \subseteq E(M) \setminus T be a set of weight at most k that spans T .
Without loss of generality we assume that F is inclusion minimal and, therefore, F
is independent by Observation 3.1. For each t \in T , there is a circuit Ct of M such
that t \subseteq Ct \subseteq F \cup \{ t\} . We have the following five cases corresponding to the types of
branches.

Case 1. There is i \in \{ 1, 2, 3\} such that (a) there is t \in T \prime such that Ct\cap E(M\ell ) \not = \emptyset 
and Ct goes through ei, and (b) for any t \in T , there is no circuit Ct that goes through
eh \in Z for h \not = i. Let F\ell = F \cap E(M\ell ) and F \prime = (F \cap E(M \prime )) \cup \{ ei\} . We claim that
F\ell spans T\ell \cup \{ ei\} in M\ell and F \prime spans T \prime in M \prime .

First, we show that F\ell spans T\ell \cup \{ ei\} in M\ell . By (a), there is t \in T \prime such that
Ct \cap E(M\ell ) \not = \emptyset and Ct goes through ei. Hence, there are cycles C \prime 

t of M
\prime and C \prime \prime 

t of
M\ell , respectively, such that Ct = C \prime 

t\bigtriangleup C \prime \prime 
t and C \prime 

t\cap C \prime \prime 
t = \{ ei\} . Because C \prime \prime 

t \setminus \{ ei\} \subseteq F\ell ,
we obtain that F\ell spans ei in M\ell . Let t\prime \in T\ell . Since F spans t\prime in M , there is a
circuit Ct\prime of M such that t\prime \in Ct\prime \subseteq F \cup \{ t\prime \} . If Ct\prime \setminus t\prime \subseteq E(M\ell ), then F\ell spans t\prime ,
because Ct\prime \setminus \{ t\prime \} \subseteq F\ell . Suppose that Ct\prime \cap E(M \prime ) \not = \emptyset . By (b), Ct\prime goes through
ei. Then there are cycles C \prime 

t\prime of M \prime and C \prime \prime 
t\prime of M\ell such that \{ ei\} = C \prime 

t\prime \cap C \prime \prime 
t\prime and

Ct\prime = C \prime 
t\prime \bigtriangleup C \prime \prime 

t\prime . Consider C = C \prime \prime 
t \bigtriangleup C \prime \prime 

t\prime . By Observation 3.4, C is a cycle. As
C \setminus \{ ei\} \subseteq F\ell , \{ ei\} = C \prime \prime 

t\prime \cap C \prime \prime 
t and t\prime /\in C \prime \prime 

t , we obtain that C is a cycle of M\ell and
t\prime \in C \subseteq F\ell \cup \{ t\prime \} . Therefore, F\ell spans t\prime .

To prove that F \prime spans T \prime in M \prime , consider t\prime \in T \prime . Since F spans t\prime in M , there
is a circuit Ct\prime of M such that t\prime \in Ct\prime \subseteq F \cup \{ t\prime \} . If Ct\prime \setminus t\prime \subseteq E(M \prime ), then F \prime spans
t\prime , because Ct\prime \setminus \{ t\prime \} \subseteq F \prime . Suppose that Ct\prime \cap E(M\ell ) \not = \emptyset . Then by the definition of
3-sum and (b), there are cycles C \prime 

t\prime of M \prime and C \prime \prime 
t\prime of M\ell such that \{ ei\} = C \prime 

t\prime \cap C \prime \prime 
t\prime 

and Ct\prime = C \prime 
t\prime \bigtriangleup C \prime \prime 

t\prime . Observe that C \prime 
t\prime \setminus \{ t\prime \} \subseteq F \prime and, therefore, F \prime spans t\prime in M \prime .

Since F\ell spans T\ell \cup \{ ei\} in M\ell , w(F\ell ) \geq k
(1)
i . Because w(F \prime )+w(F\ell ) = w(F ) \leq k

if the weight of ei in M \prime is 0, w(F \prime ) \leq k - k
(1)
i in this case. Hence, (M \prime , w\prime , T \prime , k - k

(1)
i )

is a yes-instance for a branch of type (i).
Case 2. There are distinct i, j \in \{ 1, 2, 3\} such that (a) there is t \in T \prime such that

Ct\cap E(M\ell ) \not = \emptyset and Ct goes through ei, and (b) there is t \in T \prime such that Ct\cap E(M\ell ) \not =
\emptyset and Ct goes through ej . Let F\ell = F \cap E(M\ell ) and F \prime = (F \cap E(M \prime ))\cup \{ e1, e2\} . We
claim that F\ell spans T\ell \cup \{ e1, e2\} in M\ell and F \prime spans T \prime in M \prime .
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We prove first that F\ell spans T\ell \cup \{ ei, ej\} in M\ell . By (a), there is t \in T \prime such
that Ct \cap E(M\ell ) \not = \emptyset and Ct goes through ei. Hence, there are cycles C \prime 

t of M \prime 

and C \prime \prime 
t of M\ell , respectively, such that Ct = C \prime 

t \bigtriangleup C \prime \prime 
t and C \prime 

t \cap C \prime \prime 
t = \{ ei\} . Because

C \prime \prime 
t \setminus \{ ei\} \subseteq F\ell , we obtain that F\ell spans ei in M\ell . By the same arguments and (b),

we have that F\ell spans ej in M\ell . Let h \in \{ 1, 2, 3\} such that h \not = i, j. Since F\ell spans
ei and ej in M\ell , there are cycles Ci and Cj of M\ell such that ei \in Ci \subseteq F\ell \cup \{ ei\} 
and ej \in Cj \subseteq F\ell \cup \{ ej\} . Consider C = Ci \bigtriangleup Cj \bigtriangleup Z. By Observation 3.4, C is a
cycle of M\ell . Notice that eh \in C \subseteq F\ell \cup \{ eh\} . Hence, F\ell spans eh. Because F\ell spans
Z = \{ e1, e2, e3\} , in particular, F\ell spans e1 and e2. Let t \in T\ell . Since F spans t in M ,
there is a circuit Ct of M such that t \in Ct \subseteq F \cup \{ t\} . If Ct \setminus t \subseteq E(M\ell ), then F\ell 

spans t, because Ct \setminus \{ t\} \subseteq F\ell . Suppose that Ct \cap E(M) \not = \emptyset . We have that Ct goes
through eh for some h \in \{ 1, 2, 3\} . Then there are cycles C \prime 

t of M
\prime and C \prime \prime 

t of M\ell such
that \{ eh\} = C \prime 

t\cap C \prime \prime 
t and Ct = C \prime 

t\bigtriangleup C \prime \prime 
t . Consider C = Ch\bigtriangleup C \prime \prime 

t\prime . By Observation 3.4,
C is a cycle of M\ell . Notice that t \in C \subseteq F\ell \cup \{ t\} and, therefore, F\ell spans t.

Now we show that F \prime spans T \prime in M \prime . Let t \in T \prime . Since F spans t in M , there is a
circuit Ct of M such that t \in Ct \subseteq F \cup \{ t\} . If Ct\setminus t \subseteq E(M \prime ), then F \prime spans t, because
Ct \setminus \{ t\} \subseteq F \prime . Suppose that Ct \cap E(M\ell ) \not = \emptyset . Then there are cycles C \prime 

t of M
\prime and C \prime \prime 

t

of M\ell such that \{ eh\} = C \prime 
t \cap C \prime \prime 

t for some h \in \{ 1, 2, 3\} and Ct = C \prime 
t\prime \bigtriangleup C \prime \prime 

t . If h = 1
or h = 2, then C \prime 

t \setminus \{ t\} \subseteq F \prime and, therefore, F \prime spans t\prime in M \prime . Let h = 3. Consider
C = C \prime 

t \bigtriangleup Z. Now t \in C \subseteq F \prime \cup \{ t\} . Because C is a cycle of M \prime by Observation 3.4,
F \prime spans t in M \prime .

Since F\ell spans T\ell \cup \{ e1, e2\} in M\ell , w(F\ell ) \geq k(2). Because w(F \prime ) + w(F\ell ) =
w(F ) \leq k, w(F \prime ) \leq k - k(2) in this case. Hence, (M \prime , w\prime , T \prime , k - k(2)) is a yes-instance
for a branch of type (ii).

Case 3. There are distinct i, j \in \{ 1, 2, 3\} such that (a) there is t \in T\ell such that
Ct\cap E(M \prime ) \not = \emptyset and Ct goes through ei, (b) there is t

\prime \in T \prime such that Ct\prime \cap E(M\ell ) \not = \emptyset 
and Ct\prime goes through ej , and (c) for any t\prime \prime \in T , there is no circuit Ct\prime \prime that goes
through eh \in Z for h \not = i, j. Let F\ell = (F \cap E(M\ell ))\cup \{ ei\} and F \prime = (F \cap E(M \prime ))\cup \{ ej\} .
We claim that F\ell spans T\ell \cup \{ ej\} and F\ell \setminus \{ ei\} spans ej in M\ell and F \prime spans T \prime \cup \{ ei\} 
in M \prime .

We prove that F\ell spans T\ell \cup \{ ej\} . By (b), there is t\prime \in T \prime such that Ct\prime \cap E(M\ell ) \not = \emptyset 
and Ct\prime goes through ej . Then there are cycles C \prime 

t\prime and C \prime \prime 
t\prime of M

\prime and M\ell , respectively,
such that Ct\prime = C \prime 

t\prime \bigtriangleup C \prime \prime 
t\prime and C \prime 

t\prime \cap C \prime \prime 
t\prime = \{ ej\} . Because ej \in C \prime \prime 

t\prime \subseteq F\ell \cup \{ ej\} and
ei /\in C \prime \prime 

t\prime , F\ell \setminus \{ ei\} spans ej in M\ell . Let t
\prime \prime \in T\ell . There is a circuit Ct\prime \prime of M such that

t\prime \prime \in Ct\prime \prime \subseteq F \cup \{ t\prime \prime \} . If Ct\prime \prime \setminus \{ t\prime \prime \} \subseteq E(M\ell ), then Ct\prime \prime \setminus \{ t\prime \prime \} \subseteq F\ell and F\ell spans t\prime \prime in
M\ell . Assume that Ct\prime \prime \cap E(M \prime ) \not = \emptyset . Then there are cycles C \prime 

t\prime \prime and C \prime \prime 
t\prime \prime of M

\prime and M\ell ,
respectively, such that Ct\prime \prime = C \prime 

t\prime \prime \bigtriangleup C \prime \prime 
t\prime \prime and C \prime 

t\prime \prime \cap C \prime \prime 
t\prime \prime = \{ eh\} for some h \in \{ 1, 2, 3\} .

By (c), either h = i or h = j. If h = i, then eh \in F\ell and, therefore, C \prime \prime 
t\prime \prime \setminus \{ t\prime \} \subseteq F\ell .

Hence, F\ell spans t\prime \prime in this case. Assume that h = j and consider C = C \prime \prime 
t\prime \prime \bigtriangleup C \prime \prime 

t\prime .
Notice that C is a cycle of M\ell by Observation 3.4 and t\prime \prime \in C \subseteq F\ell \cup \{ t\prime \prime \} . Hence, F\ell 

spans t\prime \prime .
The proof of the claim that F \prime spans T \prime \cup \{ ei\} inM \prime is done by the same arguments

using symmetry.

Since F\ell spans T\ell \cup \{ ej\} in M\ell , w(F\ell ) \geq k
(3)
ij . Because w(F \prime )+w(F\ell ) = w(F ) \leq k,

w(F \prime ) \leq k - k
(3)
ij in this case. Hence, (M \prime , w\prime , T \prime \cup \{ ei\} , k - k

(3)
ij ) is a yes-instance for

a branch of type (iii).
Case 4. There is i \in \{ 1, 2, 3\} such that (a) there is t \in T\ell such that Ct\cap E(M \prime ) \not = \emptyset 

and Ct goes through ei, and (b) for any t \in T , there is no circuit Ct that goes through
eh \in Z for h \not = i. Notice that this case is symmetric to Case 1. Using the same
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2548 FOMIN, GOLOVACH, LOKSHTANOV, AND SAURABH

arguments, we prove that (M \prime , w\prime , T \prime \cup \{ ei\} , k - k
(4)
i ) is a yes-instance for a branch of

type (iv).
Case 5. There are distinct i, j \in \{ 1, 2, 3\} such that (a) there is t \in T\ell such

that Ct \cap E(M \prime ) \not = \emptyset and Ct goes through ei, and (b) there is t \in T \prime such that
Ct \cap E(M \prime ) \not = \emptyset and Ct goes through ej . This case is symmetric to Case 2. Using the
same arguments, we obtain that (M \prime , w\prime , T \prime \cup \{ e1, e2\} , k - k(5)) is a yes-instance for a
branch of type (v).

If the conditions of Cases 1--5 are not fulfilled, we get the last case.
Case 6. For any t \in T , either Ct \subseteq E(M\ell ) or Ct \subseteq E(M \prime ). Let F\ell = F \cap E(M\ell )

and F \prime = F \cap E(M \prime ). We have that F\ell spans T\ell and F \prime spans T \prime . Notice that
w(F\ell ) \geq k(6). Because w(F \prime )+w(F\ell ) = w(F ) \leq k, we have that (M \prime , w\prime , T \prime , k - k(6))
is a yes-instance for a branch of type (vi).

Assume now that for one of the branches, we get a yes-answer. We show that
the original instance (M,w, T, k) is a yes-instance. To do it, we consider six cases
corresponding to the types of branches. We use essentially the same arguments in all
the cases: we take a solution F \prime for the instance obtained in the corresponding branch
and combine it with a solution F\ell of the instance for M\ell to obtains a solution for the
original instance.

Case 1. (M \prime , w\prime , T \prime , k  - k
(1)
i ) is a yes-instance of a branch of type (i). Let F\ell \subseteq 

E(M\ell ) \setminus (T\ell \cup \{ ei\} ) with w\ell (F\ell ) \leq k
(1)
i be a set that spans T\ell \cup \{ ei\} in M\ell . Clearly,

k
(1)
i \leq k. Consider F \prime \subseteq E(M \prime ) \setminus T \prime with w\prime (F \prime ) \leq k  - k

(1)
i that spans T \prime in M \prime . Let

F = (F \prime \setminus \{ ei\} )\cup F\ell . Notice that Z \cap F\ell = \emptyset , because w\ell (eh) = k+1 for h \in \{ 1, 2, 3\} .
Similarly, eh /\in F \prime for h \in \{ 1, 2, 3\} such that h \not = i, because w\prime (eh) = k + 1. Hence,
F \subseteq E(M) \setminus T . It is easy to see that w(F ) \leq k. We show that F spans T in M .

Let t \in T . Suppose first that t \in T\ell . There is a circuit Ct of M\ell such that
t \in Ct \subseteq F\ell \cup \{ t\} . It is sufficient to notice that Ct is a cycle of M and, therefore, F
spans t in M . Let t \in T \prime . There is a circuit Ct of M \prime such that t \in Ct \subseteq F \prime \cup \{ t\} .
If Ct \setminus \{ t\} \subseteq F , i.e., ei /\in Ct, then F \prime spans t. Suppose that ei \in Ct. Recall that F\ell 

spans ei in M\ell . Hence, there is a cycle C(i) of M\ell such that ei \in C(i) \subseteq F\ell \cup \{ ei\} .
Let C \prime 

t = Ct \bigtriangleup C(i). By the definition of 3-sums, C \prime 
t is a cycle of M . We have that

t \in C \prime 
t \subseteq F \cup \{ t\} and, therefore, F spans t.
Case 2. (M \prime , w\prime , T \prime , k  - k(2)) is a yes-instance of a branch of type (ii). Let

F\ell \subseteq E(M\ell ) \setminus (T\ell \cup \{ e1, e2\} ) with w\ell (F\ell ) \leq k
(1)
i be a set that spans T\ell \cup \{ e1, e2\} in

M\ell . Clearly, k(2) \leq k. Consider F \prime \subseteq E(M \prime ) \setminus T \prime with w\prime (F \prime ) \leq k = k(2) that spans
T \prime in M \prime . Let F = (F \prime \setminus \{ e1, e2\} )\cup F\ell . Notice that Z\cap F\ell = \emptyset , because w\ell (eh) = k+1
for h \in \{ 1, 2, 3\} . Similarly, e3 /\in F \prime , because w\prime (e3) = k + 1. Hence, F \subseteq E(M) \setminus T .
It is easy to see that w(F ) \leq k. We show that F spans T in M .

Let t \in T . Suppose first that t \in T\ell . There is a circuit Ct of M\ell such that
t \in Ct \subseteq F\ell \cup \{ t\} . It is sufficient to notice that Ct is a cycle of M and, therefore, F
spans t in M . Let t \in T \prime . There is a circuit Ct of M \prime such that t \in Ct \subseteq F \prime \cup \{ t\} .
If Ct \setminus \{ t\} \subseteq F , i.e., e1, e2 /\in Ct, then F \prime spans t. Suppose that e1 \in Ct and
e2 /\in Ct. Recall that F\ell spans e1 in M\ell . Hence, there is a cycle C(1) of M\ell such that
e1 \in C(1) \subseteq F\ell \cup \{ e1\} . Let C \prime 

t = Ct \bigtriangleup C(1). By the definition of 3-sums, C \prime 
t is a

cycle of M . We have that t \in C \prime 
t \subseteq F \cup \{ t\} and, therefore, F spans t. If e1 /\in Ct

and e2 \in Ct, then we observe that F\ell spans e2 in M\ell and there is a cycle C(2) of
M\ell such that e2 \in C(2) \subseteq F\ell \cup \{ e1\} . Then we conclude that F spans t using the
same arguments as before using symmetry. Suppose that e1, e2 \in Ct. Consider the
cycle C \prime 

t = Ct \bigtriangleup C(1) \bigtriangleup C(2) of M . We have that t \in C \prime 
t \subseteq F \cup \{ t\} and, therefore,

F spans t.
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COVERING VECTORS BY SPACES: REGULAR MATROIDS 2549

Case 3. (M \prime , w\prime , T \prime \cup \{ ei\} , k  - kij(3)) is a yes-instance of a branch of type (iii).

Let F\ell \subseteq E(M\ell ) \setminus (T\ell \cup \{ ej\} ) with w\ell (F\ell ) \leq k
(3)
ij be a set that spans T\ell \cup \{ ej\} in M\ell 

such that F \setminus \{ ei\} spans ej . Clearly, k
(3)
ij \leq k. Consider F \prime \subseteq E(M \prime )\setminus (T \prime \cup \{ ei\} ) with

w\prime (F \prime ) \leq k  - k
(3)
ij that spans T \prime \cup \{ e  - i\} in M \prime . Let F = (F \prime \setminus \{ ej\} ) \cup (F\ell \setminus \{ ei\} ).

Notice that eh /\in F\ell = \emptyset for h \in \{ 1, 2, 3\} such that h \not = i, because w\ell (eh) = k + 1,
and eh /\in F \prime = \emptyset for h \in \{ 1, 2, 3\} such that h \not = j, because w\prime (eh) = k + 1. Hence,
F \subseteq E(M) \setminus T . It is straightforward that w(F ) \leq k. We show that F spans T in M .

Let t \in T . Suppose first that t \in T\ell . There is a circuit Ct of M\ell such that
t \in Ct \subseteq F\ell \cup \{ t\} . If ei /\in F\ell , then Ct \setminus \{ t\} \subseteq F and, therefore, F spans t in M .
Suppose that ei \in Ct. Because F \prime spans ei in M \prime , there is a cycle C(i) of M \prime such
that ei \in C(i) \subseteq F \prime \cup \{ ei\} . Suppose that ej /\in C(i). Let C \prime 

t = Ct \bigtriangleup C(i). We
have that C \prime 

t is a cycle of M and t \in C \prime 
t \subseteq F \cup \{ t\} . Hence, F spans t. Suppose

now that ej \in C(i). Since F\ell \setminus \{ ei\} spans ej , there is a cycle C(j) of M\ell such that
ej \subseteq C(j) \subseteq (F\ell \setminus \{ ei\} ) \cup \{ ej\} . Let C \prime 

t = Ct \bigtriangleup C(i) \bigtriangleup C(j). We obtain that C \prime 
t is a

cycle of M and t \in C \prime 
t \subseteq F \cup \{ t\} . Hence, F spans t. The proof for the case t \in T \prime 

uses the same arguments using symmetry.
Case 4. (M \prime , w\prime , T \prime \cup \{ ei\} , k  - ki(4)) is a yes-instance of a branch of type (iv).

This case is symmetric to Case 1 and is analyzed in the same way. We consider a set

F\ell \subseteq E(M\ell ) \setminus T\ell with w\ell (F\ell ) \leq k
(4)
i that spans T\ell in M\ell and F \prime \subseteq E(M \prime ) \setminus T \prime with

w\prime (F \prime ) \leq k - k
(4)
i that spans T \prime \cup \{ ei\} in M \prime . Let F = F \prime \cup (F\ell \setminus \{ ei\} ). We have that

F \subseteq E(M) \setminus T has weight at most k and spans T in M .
Case 5. (M \prime , w\prime , T \prime \cup \{ e1, e2\} , k  - k(5)) is a yes-instance of a branch of type (v).

This case is symmetric to Case 2 and is analyzed in the same way. We consider a set
F\ell \subseteq E(M\ell ) \setminus T\ell with w\ell (F\ell ) \leq k(5) that spans T\ell in M\ell and F \prime \subseteq E(M \prime ) \setminus T \prime with
w\prime (F \prime ) \leq k  - k(5) that spans T \prime \cup \{ e1, e2\} in M \prime . Let F = F \prime \cup (F\ell \setminus \{ e1, e2\} ). We
have that F \subseteq E(M) \setminus T has weight at most k and spans T in M .

It remains to consider the last case.
Case 6. (M \prime , w\prime , T \prime , k  - k(6)) is a yes-instance of a branch of type (v). Let F\ell \subseteq 

E(M\ell ) \setminus T\ell with w\ell (F\ell ) \leq k(6) be a set that spans T\ell in M\ell and let F \prime \subseteq E(M \prime ) \setminus T \prime 

be a set with w\prime (F \prime ) \leq k  - k(6) that spans T \prime in M \prime . Notice that for i \in \{ 1, 2, 3\} ,
ei /\in F\ell and ei /\in F \prime , because w\ell (ei) = w\prime (ei) = k+1. Consider F = F \prime 

F \cup F\ell . Clearly,
w(F ) \leq k. We show that F spans T in M .

Let t \in T . If t \in T\ell , then there is a circuit Ct of M\ell such that t \in Ct \subseteq F\ell \cup \{ t\} .
Since Ct \subseteq E(M\ell ), we have that F\ell spans t in M . If t \in T \prime , then by the same
arguments, F \prime spans t not only in M \prime but also in M .

Since we always have that k
(1)
i , k(2), k

(3)
ij , k

(4)
i , k(5), k(6) \geq 1, the recursive calls are

done for the parameters that are strictly less than k. This completes the proof.
The claim that each call of the rule (without recursive steps) takes 2\scrO (k) \cdot | | M | | \scrO (1)

time follows from Lemmas 6.4, 6.9, and 7.1.

From now on we assume that there is no child of Ms with terminals. Recall that
Ms is either a graphic or cographic matroid. The subsequent steps depend on the
type of Ms and are considered in separate sections.

7.2. The case of a graphic subleaf. Throughout this section we assume that
Ms is a graphic matroid. Let G be a graph such that its cycle matroid M(G) is
isomorphic to Ms. We assume that M(G) = Ms. Recall that the circuits of M(G)
are exactly the cycles of G. We reduce leaves in this case by the following reduction
rule. In this reduction rule we first solve a few instances of Space Cover and later
use the solutions to these instances to reduce the graph and re-define the weight
function.
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Reduction Rule 7.4 (graphic 3-leaf reduction rule). For a child M\ell of Ms

with T \cap E(M\ell ) = \emptyset , do the following. Let Z = \{ e1, e2, e3\} = E(Ms) \cap E(M\ell ). Set
w\ell (e) = w(e) for e \in E(M\ell ) \setminus Z, w\ell (e1) = w\ell (e2) = w\ell (e3) = k + 1.

(i) For each i \in \{ 1, 2, 3\} , find the minimum ki \leq k such that (M\ell , w\ell , \{ ei\} , ki)
is a yes-instance of Space Cover using Lemma 6.3 or 6.7, respectively,
depending on the type of M\ell . If (M\ell , w\ell , \{ ei\} , ki) is a no-instance for every
ki \leq k, then we set ki = k + 1.

(ii) Find the minimum k\prime \leq k such that (M\ell , w\ell , \{ e1, e2\} , k\prime ) is a yes-instance of
Space Cover using Lemma 6.3 or 6.7, respectively, depending on the type
of M\ell . If (M\ell , w\ell , \{ e1, e2\} , k\prime ) is a no-instance for every k\prime \leq k, then we set
k\prime = k + 1. If k\prime \leq k, then we find an inclusion minimal set F\ell \subseteq E(M\ell ) \setminus Z
of weight k\prime that spans e1 and e2. Observe that Lemmas 6.3 and 6.7 are only
for a decision version. However, we can apply standard self-reducibility tricks
to make them output a solution also. There are circuits C1 and C2 of M\ell ,
such that e1 \in C1 \subseteq F\ell \cup \{ e1\} , e2 \in C2 \subseteq F\ell \cup \{ e2\} , and F\ell = (C1 \setminus \{ e1\} ) \cup 
(C2 \setminus \{ e2\} ). Notice that C1 and C2 can be found by finding inclusion minimal
subsets of F\ell that span e1 and e2, respectively.

Recall that Z induces a cycle of G. Denote by v1, v2, and v3 the vertices of the cycle.
Furthermore, let v1, v2, and v3 be incident to e3, e1, e1, e2, and e2, e3, respectively.
We construct the graph G\prime by adding a new vertex u and making it adjacent to v1, v2,
and v3. Notice that because the circuits of M(G) are cycles of G, any circuit of M(G)
is also a circuit of M(G\prime ). Let M \prime be the matroid defined by the conflict tree \scrT \prime =
\scrT  - M\ell and where Ms is replaced by M(G\prime ). The weight function w\prime : E(M \prime ) \rightarrow \BbbN is
defined by setting w\prime (e) = w(e) for e \in E(M \prime ) \setminus (Z \cup \{ v1u, v2u, v3u\} ), w\prime (e1) = k1,
w\prime (e2) = k2, and w\prime (e3) = k3. If if k\prime \leq k, then we set w\prime (v1u) = w(C1 \setminus (C2\cup \{ e1\} )),
w\prime (v3u) = w(C1 \setminus (C2 \cup \{ e2\} )) and w\prime (v1u) = w(C1 \cap C2); else we set w\prime (v1u) =
w\prime (v2u) = w\prime (v3u) = k + 1. The reduced instance is denoted by (M \prime , w\prime , T, k).

The construction of G\prime and Observation 7.4 immediately imply the following
observation.

Observation 7.5. For any distinct i, j \in \{ 1, 2, 3\} ,

w\prime (ei) + w\prime (ej) = ki + kj \geq k\prime = w\prime (v1u) + w\prime (v2u) + w\prime (v3u)

and if k\prime \leq k, then w\prime (viu)+w\prime (vju) \geq w\prime (vivj). Also, if w\prime (ei)+w\prime (ej) \leq k for some
distinct i, j \in \{ 1, 2, 3\} , then k\prime \leq k.

We use Observation 7.5 to prove that the rule is safe.

Lemma 7.7. Reduction Rule 7.4 is safe and can be applied in 2\scrO (k) \cdot | | M | | \scrO (1)

time.

Proof. Denote by M \prime \prime the matroid defined by \scrT \prime = \scrT  - M\ell . To prove that the
rule is safe, first assume that (M,w, T, k) is a yes-instance. Then there is an inclusion
minimal set F \subseteq E(M) \setminus T of weight at most k that spans T . If F \cap E(M\ell ) = \emptyset , then
F spans T in M \prime as well and (M \prime , w\prime , T, k) is a yes-instance. Suppose from now that
F \cap E(M\ell ) \not = \emptyset .

For each t \in T , there is a circuit Ct of M such that t \in C \subseteq F \cup \{ t\} . If
Ct \cap E(M\ell ) \not = \emptyset , Ct = C \prime 

t \bigtriangleup C \prime \prime 
t , where C \prime 

t is a cycle of M \prime \prime and C \prime \prime 
t is a cycle of M\ell .

By Observation 7.3, we can assume that C \prime 
t \cap C \prime \prime 

t contains the unique element ei, i.e.,
Ct goes through ei. To simplify notation, it is assumed that v4 = v1. We consider
the following three cases.
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Case 1. There is a unique ei \in Z such that for any t \in T , either Ct \subseteq E(M \prime \prime ) or
Ct goes through ei. Let F

\prime = (F \cap E(M \prime \prime )) \cup \{ ei\} .
We show that F \prime spans T in M \prime . Let t \in T . If Ct \subseteq E(M \prime \prime ), then t \in Ct \subseteq 

(F \cap E(M \prime \prime )) \cup \{ t\} and, therefore, F \prime spans t in M \prime . Suppose that Ct \cap E(M\ell ) \not = \emptyset .
Then Ct = C \prime 

t\bigtriangleup C \prime \prime 
t , where C

\prime 
t is a cycle of M \prime \prime , C \prime \prime 

t is a cycle of M\ell and C \prime 
t\cap C \prime \prime 

t = \{ ei\} .
We have that t \in C \prime 

t \cup \{ t\} and C \prime 
t \setminus \{ t\} \subseteq F \prime spans t.

Because F \cap E(M\ell ) \not = \emptyset and F is inclusion minimal spanning set, there is t \in T
such that Ct goes through ei. Let Ct = C \prime 

t \bigtriangleup C \prime \prime 
t , where C \prime 

t is a cycle of M \prime \prime , C \prime \prime 
t is

a cycle of M\ell and C \prime 
t \cap C \prime \prime 

t = \{ ei\} . Notice that C \prime \prime 
t \setminus \{ ei\} spans ei in M\ell . Hence,

w\ell (C
\prime \prime 
t \setminus \{ ei\} ) \geq ki. Because w\prime (ei) = ki, we conclude that w\prime (F \prime ) \leq w(F ).
Since F \prime \subseteq E(M \prime ) \setminus T spans T and has the weight at most k in M \prime , (M \prime , w\prime , T, k)

is a yes-instance.
Case 2. There are two distinct ei, ej \in Z such that for any t \in T , either Ct \subseteq 

E(M \prime \prime ), or Ct goes through ei, or Ct goes through ej , and at least one Ct goes through
ei and at least one Ct goes through ej . Let F

\prime = (F \cap E(M \prime \prime )) \cup \{ v1u, v2u, v3u\} .
We claim that F \prime spans T in M \prime . Let t \in T . If Ct \subseteq E(M \prime \prime ), then t \in Ct \subseteq (F \cap 

E(M \prime \prime )) \cup \{ t\} and, therefore, F \prime spans t in M \prime . Suppose that Ct \cap E(M\ell ) \not = \emptyset . Then
Ct = C \prime 

t\bigtriangleup C \prime \prime 
t , where C

\prime 
t is a cycle ofM

\prime \prime , C \prime \prime 
t is a cycle ofM\ell , and either C \prime 

t\cap C \prime \prime 
t = \{ ei\} 

or C \prime 
t \cap C \prime \prime 

t = \{ ej\} . By symmetry, let C \prime 
t \cap C \prime \prime 

t = \{ ei\} . Because ei, viu, vi+1u induce a
cycle of the graph G\prime , \{ ei, viu, vi+1u\} is a circuit of M \prime and C \prime \prime \prime 

t = C \prime 
t\bigtriangleup \{ ei, viu, vi+1u\} 

is a cycle of M \prime . We have that t \in C \prime \prime \prime 
t \cup \{ t\} and C \prime \prime \prime 

t \setminus \{ t\} \subseteq F \prime spans t.
Because F \cap E(M\ell ) \not = \emptyset , there is t \in T such that Ct goes through ei and there is

t\prime \in T such that Ct\prime goes through ej . Let Ct = C \prime 
t \bigtriangleup C \prime \prime 

t and Ct\prime = C \prime 
t\prime \bigtriangleup C \prime \prime 

t\prime \prime , where
C \prime 

t, C
\prime 
t\prime are cycles of M

\prime \prime , C \prime \prime 
t , C

\prime \prime 
t\prime are cycles of M\ell , and C \prime 

t\cap C \prime \prime 
t = \{ ei\} , C \prime 

t\prime \cap C \prime \prime 
t\prime = \{ ej\} .

Notice that C \prime \prime 
t \setminus \{ ei\} spans ei in M\ell , and C \prime \prime 

t\prime \setminus \{ ej\} spans ej . Hence, w\ell ((C
\prime \prime 
t \setminus \{ ei\} )\cup 

(C \prime \prime 
t\prime \setminus \{ ej\} )) \geq w\ell (F\ell ) = k\prime by Observation 7.4. Because w\prime (\{ v1u, v2u, v3u\} ) = k\prime ,

w\prime (F \prime ) \leq w(F ).
Since F \prime \subseteq E(M \prime ) \setminus T spans T and has the weight at most k in M \prime , (M \prime , w\prime , T, k)

is a yes-instance.
Case 3. For each i \in \{ 1, 2, 3\} , there is t \in T such that Ct goes through ei. As in

Case 1, we set F \prime = (F \cap E(M \prime \prime )) \cup \{ v1u, v2u, v3u\} and use the same arguments to
show that F \prime \subseteq E(M \prime ) \setminus T spans T and has the weight at most k in M \prime .

Assume now that the reduced instance (M \prime , w\prime , T, k) is a yes-instance. Let F \prime \subseteq 
E(M \prime ) \setminus T be an inclusion minimal set of weight at most k that spans T in M \prime . Let
S = \{ e1, e2, e3, v1u, v2u, v3u\} . If F \prime \cap S = \emptyset , then F \prime \subseteq E(M) and, therefore, F \prime 

spans T in M as well. Assume from now on that F \prime \cap S \not = \emptyset . By Observation 3.1
and because \{ v1, v2, v3\} separates u from V (G)\setminus \{ v1, v2, v3\} in G\prime , the edges of F \prime \cap S
induce a tree in G\prime . Moreover, u is incident to either two or three edges of this tree.
We consider the following cases depending on the structure of the tree.

Case 1. One of the following holds: (i) v1u, v2u, v3u \in F \prime or (ii) | \{ v1u, v2u, v3u\} \cap 
F \prime | = 2 and \{ e1, e2, e3\} \cap F \prime \not = \emptyset or (iii) | \{ e1, e2, e3\} \cap F \prime | \geq 2. We define F =
(F \prime \setminus S)\cup F\ell . Clearly, F \subseteq E(M)\setminus T . Notice also that w\prime (F\cap S) \geq k\prime by Observation 7.5
and, therefore, w(F ) \leq k. To show that (M,w, T, k) is a yes-instance, we prove that
F spans T in M .

Let t \in T . Since F \prime spans t in M \prime , there is a circuit Ct of M
\prime such that t \in Ct \subseteq 

F \prime \cup \{ t\} . If Ct \cap S = \emptyset , then Ct \setminus \{ t\} spans t in M . Suppose that Ct \cap S \not = \emptyset . As
S induces a complete graph on four vertices in G\prime and \{ v1, v2, v3\} separate u from
V (G)\setminus \{ v1, v2, v3\} , we conclude that there is i \in \{ 1, 2, 3\} such that C \prime 

t = (Ct\setminus S)\cup \{ ei\} 
is a cycle of M \prime . Notice that C \prime 

t is also a cycle of M \prime \prime . By the definition of F\ell and
Observation 7.4, there is a cycle C \prime \prime 

t of M\ell such that ei \in C \prime \prime 
t \subseteq F\ell \cup \{ ei\} . Consider

the cycle C \prime \prime \prime 
t = C \prime 

t \bigtriangleup C \prime \prime 
t of M . We have that t \in C \prime \prime \prime 

t \subseteq F and, therefore, F spans t.
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If the conditions (i)--(iii) of Case 1 are not fulfilled, then F \prime \cap S = \{ ei\} for some
i \in \{ 1, 2, 3\} .

Case 2. F \prime \cap S = \{ ei\} for some i \in \{ 1, 2, 3\} . By the definition of w\prime (ei) = ki,
there is a circuit C of M\ell such that ei \in C \subseteq (E(M\ell )\setminus Z)\cup \{ ei\} and w\ell (C \setminus \{ ei\} ) = ki.
Let F = F \prime \bigtriangleup C. Clearly, w(F ) \leq k. We show that F spans T .

Let t \in T . Since F \prime spans t in M \prime , there is a circuit Ct of M \prime such that t \in 
Ct \subseteq F \prime \cup \{ t\} . If Ct \cap S = \emptyset , then Ct spans t in M . Suppose that Ct \cap S \not = \emptyset , i.e.,
Ct \cap S = \{ ei\} . Notice that Ct is also a cycle of M \prime \prime . Consider the cycle C \prime 

t = Ct \bigtriangleup C.
Since t \in C \prime 

t \subseteq F \cup \{ t\} , F spans t.
From the description of Reduction Rule 7.4 and Lemma 7.1, it can be deduced

that Reduction Rule 7.4 can be applied in time 2\scrO (k) \cdot | | M | | \scrO (1).

7.3. The case of a cographic subleaf. Now we have reached the final step of
our algorithm. Throughout this section we assume that Ms is a cographic matroid.
Let G be a graph such that the bond matroid of G is isomorphic to Ms. The algorithm
that constructs a good \{ 1, 2, 3\} -decomposition could also be used to output the graph
G. Without loss of generality, we can assume that G is connected. Also, recall that
the circuits of the bond matroid M\ast (G) are exactly minimal cut-sets of G.

The isomorphism between Ms and M\ast (G) is not necessarily unique. We could
choose any isomorphism between Ms and M\ast (G) that is beneficial for our algorithmic
purposes. Indeed, in what follows we fix an isomorphism that is useful in designing

our algorithm. Let M
(1)
\ell , . . . ,M

(s)
\ell denote those leaves of the conflict tree \scrT that are

also the children of Ms. Let Zi = E(Ms)\cap E(M
(i)
\ell ), i \in \{ 1, . . . , s\} . If Ms has a parent

M\ast in \scrT and E(Ms) \cap E(M\ast ) \not = \emptyset , then let Z\ast denote Z\ast = E(Ms) \cap E(M\ast ); we
emphasize that Z\ast may not exist. Next we define the notion of clean cut.

Definition 7.1. We say that \alpha (Zi) \subseteq E(G) is a clean cut with respect to an
isomorphism \alpha : Ms \rightarrow M\ast (G) if there is a component H of G - \alpha (Zi) such that

(i) H has no bridge,
(ii) E(H) \cap \alpha (Zj) = \emptyset for j \in \{ 1, . . . , s\} , and
(iii) E(H) \cap \alpha (Z\ast ) = \emptyset if Z\ast exists.

We call H a clean component of G - \alpha (Zi).

Next we show that given any isomorphism between Ms and M\ast (G), we can obtain
another isomorphism between Ms and M\ast (G) with respect to which we have at least
one clean component.

Lemma 7.8. There is an isomorphism \alpha : Ms \rightarrow M\ast (G) and a child M
(i)
\ell of

Ms such that \alpha (Zi) is a clean cut with respect to \alpha . Moreover, given any arbitrary
isomorphism from Ms to M\ast (G), one can obtain such an isomorphism and a clean
cut together with a clean component in polynomial time.

Proof. We prove the lemma first assuming that Z\ast exists. Let \alpha : Ms \rightarrow M\ast (G)
be an isomorphism. Clearly \alpha maps E(Ms) to the edges of G. Suppose that there is
p \in \{ 1, . . . , s\} such that there is a component H of G - \alpha (Zp) with E(H)\cap \alpha (Z\ast ) = \emptyset .
Then we set \alpha 0 = \alpha , H(0) = H, and i0 = p. Otherwise, let p \in \{ 1, . . . , s\} . Denote by
H1 and H2 the components of G - \alpha (Zp). Because | Z\ast | \leq 3, E(H1)\cap \alpha (Z\ast ) \not = \emptyset , and
E(H2) \cap \alpha (Z\ast ) \not = \emptyset , there is Hj for j \in \{ 1, 2\} such that | E(Hj) \cap \alpha (Z\ast )| = 1. Let
\{ e\} = E(Hj)\cap \alpha (Z\ast ). Since \alpha (Z\ast ) is a cut-set, e is a bridge of Hj . By the minimality
of \alpha (Z\ast ), every component of H  - e contains an end vertex of an edge of \alpha (Zp).
Since | \alpha (Zp)| = 3, we obtain that there is e\prime \in \alpha (Zp) such that \{ e, e\prime \} is a minimal
cut-set of G. Let \alpha \prime (x) = \alpha (x) for x \in E(Ms) \setminus \{ \alpha  - 1(e), \alpha  - 1(e\prime )\} , \alpha \prime (\alpha  - 1(e)) = e\prime 

and \alpha \prime (\alpha  - 1(e\prime )) = e. By Observation 3.2, \alpha \prime is an isomorphism of Ms to M\ast (G).
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Notice that now we have a component H of G  - \alpha \prime (Zp) with E(H) \cap \alpha \prime (Z\ast ) = \emptyset .
Respectively, we set \alpha 0 = \alpha \prime , H(0) = H and i0 = p.

Assume inductively that we have a sequence (\alpha 0, i0, H
(0)), . . . , (\alpha q, iq, H

(q)),
where \alpha 0, . . . , \alpha q are isomorphisms of Ms to M\ast (G), i0, . . . , iq \in \{ 1, . . . , s\} , H(j)

is a component of G - \alpha j(Zij ) for j \in \{ 1, . . . , q\} , Z\ast \cap E(H(j)) = \emptyset for j \in \{ 1, . . . , s\} ,
and V (H(0)) \supset \cdot \cdot \cdot \supset V (H(q)).

If \alpha (Ziq ) is a clean cut with respect to \alpha q, the algorithm returns (\alpha q, iq, H
(q)) and

stops. Suppose that \alpha (Ziq ) is not a clean cut with respect to \alpha q. We show that we
can extend the sequence in this case. To do it, we consider the following three cases.

Case 1. H(q) has a bridge e. Because loops of M are deleted by the loop reduction
rule, e is not a bridge of G. Hence, each of the two components ofH(q) contains an end
vertex of an edge of \alpha q(Ziq ). Since | Ziq | = 3, there is a component H \prime of H(q) - e that

contains an end vertex of a unique edge e\prime of \alpha q(Ziq ) and the other component H(q+1)

contains end vertices of two edges of \alpha q(Ziq ). We obtain that \{ e, e\prime \} is a minimal cut-
set of G. Let \alpha q+1(x) = \alpha q(x) for x \in E(Ms) \setminus \{ \alpha  - 1

q (e), \alpha  - 1
q (e\prime )\} , \alpha q+1(\alpha 

 - 1
q (e)) = e\prime 

and \alpha q+1(\alpha 
 - 1
q (e\prime )) = e. By Observation 3.2, \alpha q+1 is an isomorphism of Ms to M\ast (G).

Clearly, H(q+1) is a component of G  - \alpha q+1(Ziq ) and V (H(q+1)) \subset V (H(q)). Hence,

we can extend the sequence by (\alpha q+1, iq+1, H
(q+1)) for iq+1 = iq.

Case 2. There is iq+1 \in \{ 1, . . . , s\} such that \alpha q(Ziq+1
) \subseteq E(H(q)). Because

\alpha q(Ziq+1
) is a minimal cut-set of G, we obtain that there is a component H(q+1)

of G  - \alpha q(Ziq+1) such that V (H(q+1)) \subset V (H(q)). We extend the sequence by

(\alpha q+1, iq+1, H
(q+1)) for \alpha q+1 = \alpha q.

Case 3. There is iq+1 \in \{ 1, . . . , s\} such that \alpha q(Ziq+1
) \cap E(H(q)) \not = \emptyset but

| \alpha q(Ziq+1
) \cap E(H(q))| \leq 2. If | \alpha q(Ziq+1

) \cap E(H(q))| = 1, then the unique edge

e \in \alpha q(Ziq+1) \cap E(H(q)) is a bridge of H(q), because \alpha q(Ziq+1) is a minimal cut-

set. Hence, we have Case 1. Assume that | \alpha q(Ziq+1
) \cap E(H(q))| = 1. Let H \prime be

the component of G  - \alpha q(Ziq ) distinct from H(q). Since | Ziq+1
| = 3, we have that

| \alpha q(Ziq+1
) \cap E(H \prime )| = 1; then the unique edge e \in \alpha q(Ziq+1

) \cap E(H \prime ) is a bridge of
H \prime . By the same arguments as in Case 1, there is e\prime \in \alpha q(Ziq ) such that \{ e, e\prime \} is
a minimal cut-set of G. Using Observation 3.2, we construct the isomorphism \alpha q+1

of Ms to M\ast (G) by defining \alpha q+1(x) = \alpha q(x) for x \in E(Ms) \setminus \{ \alpha  - 1
q (e), \alpha  - 1

q (e\prime )\} ,
\alpha q+1(\alpha 

 - 1
q (e)) = e\prime , and \alpha q+1(\alpha 

 - 1
q (e\prime )) = e. It remains to observe that G - \alpha q+1(Ziq+1

)

has a component H(q+1) such that V (H(q+1)) \subset V (H(q)) and extend the sequence by
(\alpha q+1, iq+1, H

(q+1)).
For each j \geq 1 we have that V (H(j) \subset V (H(j - 1)). This implies that the sequence

(\alpha 0, i0, H
(0)), . . . , (\alpha q, iq, H

(q))

has length at most n. Hence, after at most n iterations we obtain an isomorphism
\alpha and a clean cut with respect to \alpha together with a clean component. Since every
step in the iterative construction of the sequence (\alpha 0, i0, H

(0)), . . . , (\alpha q, iq, H
(q)) can

be done in polynomial time, the algorithm is polynomial.
Recall that in the beginning we assume that Z\ast is present. The case when Z\ast is

absent is more simple and could be proved as in the case when Z\ast is present and thus
it is omitted.

Using Lemma 7.8, we can always assume that we have an isomorphism of Ms to
M\ast (G) such that for a childM\ell ofMs in (T ), Z = E(Ms)\cap E(M\ell ) is mapped to a clean
cut. To simplify notation, we assume that Ms = M\ast (G) and Z is a clean cut with
respect to this isomorphism. Denote by H the clean component. Let Z = \{ e1, e2, e3\} 
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2554 FOMIN, GOLOVACH, LOKSHTANOV, AND SAURABH

and let ei = xiyi for i \in \{ 1, 2, 3\} , where y1, y2, y3 \in V (H). Notice that some y1, y2, y3
can be the same. We first handle the case when E(H) \cap T = \emptyset .

7.3.1. Cographic subleaf: \bfitE (\bfitH ) \cap \bfitT = \emptyset . In this case we give a reduction
rule that reduces the leaf M\ell . Recall that E(M\ell ) \cap T = \emptyset . Now we are ready to give
a reduction rule analogous to the one for graphic matroid.

Reduction Rule 7.5 (cographic 3-leaf reduction rule). If E(H) \cap T = \emptyset , then
do the following. Set w\ell (e) = w(e) for e \in E(M\ell ) \setminus Z, w\ell (e1) = w\ell (e2) = w\ell (e3) =
k + 1.

(i) For each i \in \{ 1, 2, 3\} , find the minimum k
(1)
i \leq k such that (M\ell , w\ell , \{ ei\} , k(1)i )

is a yes-instance of Space Cover using Lemma 6.3 or 6.7, respectively,

depending on the type of M\ell . If (M\ell , w\ell , \{ ei\} , k(1)i ) is a no-instance for every

k
(1)
i \leq k, then we set k

(1)
i = k + 1.

(ii) Find the minimum p(1) \leq k such that (M\ell , w\ell , \{ e1, e2\} , p(1)) is a yes-instance
of Space Cover using Lemma 6.3 or 6.7, respectively, depending on the type
of M\ell . If (M\ell , w\ell , \{ e1, e2\} , p(1)) is a no-instance for every p(1) \leq k, then
we set p(1) = k + 1. If p(1) \leq k, then we find an inclusion minimal set
F\ell \subseteq E(M\ell ) \setminus Z of weight p(1) that spans e1 and e2. Observe that Lemmas
6.3 and 6.7 are only for a decision version. However, we can apply standard
self-reducibility tricks to make them output a solution also. There are circuits
C1 and C2 of M\ell such that e1 \in C1 \subseteq F\ell \cup \{ e1\} , e2 \in C2 \subseteq F\ell \cup \{ e2\} ,
and F\ell = (C1 \setminus \{ e1\} ) \cup (C2 \setminus \{ e2\} ). Notice that C1 and C2 can be found by
finding inclusion minimal subsets of F\ell that span e1 and e2, respectively. Let

p
(1)
1 = w\ell (C1\setminus (C2\cup \{ e1\} )), p(1)2 = w\ell (C2\setminus (C1\cup \{ e2\} )), and p

(1)
3 = w\ell (C1\cap C2).

If p(1) = k + 1, we set p
(1)
1 = p

(1)
2 = p

(1)
3 = k + 1.

Construct an auxiliary graph H \prime from H by adding a vertex u and edges e\prime 1, e
\prime 
2, e

\prime 
3,

where e\prime i = uyi for i \in \{ 1, 2, 3\} ; notice that this could result in multiple edges. Set
wh(e) = w(e) for e \in E(H) and set wh(e

\prime 
1) = wh(e

\prime 
2) = wh(e

\prime 
3) = k + 1.

(iii) For each i \in \{ 1, 2, 3\} , find the minimum k
(2)
i \leq k such that (M\ast (H \prime ), wh,

\{ e\prime i\} , k
(2)
i ) is a yes-instance of Space Cover using Lemma 6.7. If (M\ast (H \prime ),

wh, \{ e\prime i\} , k
(2)
i ) is a no-instance for every k

(1)
i \leq k, then we set k

(2)
i = k + 1.

(iv) Find the minimum p(2) \leq k such that (M\ast (H \prime ), wh, \{ e\prime 1, e\prime 2\} , p(2)) is a yes-
instance of Space Cover using Lemma 6.7. If (M\ast (H \prime ), wh, \{ e\prime 1, e\prime 2\} , p(2))
is a no-instance for every p(2) \leq k, then we set p(2) = k+1 . If p(2) \leq k, then
we find an inclusion minimal set Fh \subseteq E(H \prime ) \setminus Z of weight p(2) that spans e\prime 1
and e\prime 2. Observe that Lemma 6.7 is only for a decision version. However, we
can apply standard self-reducibility tricks to make it output a solution also.
There are circuits C1, and C2 of M\ast (H \prime ) such that e\prime 1 \in C1 \subseteq Fh \cup \{ e\prime 1\} ,
e2 \in C2 \subseteq Fh \cup \{ e\prime 2\} , and Fh = (C1 \setminus \{ e\prime 1\} )\cup (C2 \setminus \{ e\prime 2\} ). Notice that C1 and
C2 can be found by finding inclusion minimal subsets of Fh that span e\prime 1 and

e\prime 2, respectively. Let p
(2)
1 = wh(C1 \setminus (C2 \cup \{ e\prime 1\} )), p

(2)
2 = wh(C2 \setminus (C1 \cup \{ e\prime 2\} )),

and p
(3)
3 = wh(C1 \cap C2). If p(2) = k + 1, we set p

(2)
1 = p

(2)
2 = p

(2)
3 = k + 1.

Construct the graph G\prime from G  - V (H) by adding three pairwise adjacent vertices
z1, z2, z3 and edges x1z1, x2z2, x3z3. Let M \prime the matroid defined by \scrT \prime = \scrT  - M\ell ,
where Ms is replaced by M\ast (G\prime ). The weight function w\prime : E(M \prime ) \rightarrow \BbbN is defined by
setting w\prime (e) = w(e) for e \in E(M \prime ) \setminus \{ x1z1, x2z2, x2z3, z1z2, z2z3, z1z3\} , w\prime (xizi) =

min\{ k1i , k2i \} for i \in \{ 1, 2, 3\} . If p(1) \leq p(2), then w\prime (z1z3) = p
(1)
1 , w\prime (z2z3) = p

(1)
2 , and
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w\prime (z1z2) = p
(1)
3 , and w\prime (z1z3) = p

(2)
1 , w\prime (z2z3) = p

(2)
2 , and w\prime (v1v2) = p

(2)
3 otherwise.

The reduced instance is (M \prime , w\prime , T, k).

Similarly to Observation 7.5, we observe the following using Observation 7.4.

Observation 7.6. For each i \in \{ 1, 2, 3\} , and j, q \in \{ 1, 2, 3\} \setminus \{ i\} we have that
w\prime (zizj) + w\prime (zizq) \geq w\prime (xizi). Also, for any distinct i, j \in \{ 1, 2, 3\} and q \in \{ 1, 2\} , if
k
(q)
i + k

(q)
j \leq k, then p(q) \leq k

(q)
i + k

(q)
j .

The next lemma proves the safeness of the Reduction Rule 7.5.

Lemma 7.9. Reduction Rule 7.5 is safe and can be applied in 2\scrO (k) \cdot | | M | | \scrO (1)

time.

Proof. Denote by M \prime \prime the matroid defined by \scrT \prime = \scrT  - M\ell . To prove that the
rule is safe, assume first that (M,w, T, k) is a yes-instance. Then there is an inclusion
minimal set F \subseteq E(M) \setminus T of weight at most k that spans T .

Suppose that F \cap E(M\ell ) = \emptyset and F \cap E(H) = \emptyset . By the definition of G\prime , any
minimal cut-set C of G such that C \cap Z and C \cap E(H) = \emptyset is a minimal cut-set of G\prime ,
because H is a connected graph. We obtain that F spans T in M \prime and (M \prime , w\prime , T, k)
is a yes-instance.

Assume that F \cap E(M\ell ) \not = \emptyset and F \cap E(H) = \emptyset . The proof for this case is, in
fact, almost identical to the proof for the graphic 3-leaf reduction rule.

For each t \in T , there is a circuit Ct of M such that t \in C \subseteq F \cup \{ t\} . If
Ct \cap E(M\ell ) \not = \emptyset , Ct = C \prime 

t \bigtriangleup C \prime \prime 
t , where C \prime 

t is a cycle of M \prime \prime and C \prime \prime 
t is a cycle of

M\ell . By Observation 7.3, we can assume that C \prime 
t and C \prime \prime 

t are circuits of M \prime \prime and M\ell ,
respectively, and C \prime 

t \cap C \prime \prime 
t contains the unique element ei, i.e., Ct goes through ei.

Notice that every (C \prime 
t \setminus \{ ei\} ) \cup \{ xizi\} is a minimal cut-set of G\prime and, therefore, a

circuit of M\ast (G\prime ). We consider the following three cases.
Case 1. There is a unique ei \in Z such that for any t \in T , either Ct \subseteq E(M \prime \prime ) or

Ct goes through ei. Let F
\prime = (F \cap E(M \prime \prime )) \cup \{ xizi\} .

We show that F \prime spans T in M \prime . Let t \in T . If Ct \subseteq E(M \prime \prime ), then t \in Ct \subseteq (F \cap 
E(M \prime \prime )) \cup \{ t\} and, therefore, F \prime spans t in M \prime . Suppose that Ct \cap E(M\ell ) \not = \emptyset . Then
Ct = C \prime 

t\bigtriangleup C \prime \prime 
t , where C

\prime 
t is a circuit of M \prime \prime , C \prime \prime 

t is a circuit of M\ell , and C \prime 
t \cap C \prime \prime 

t = \{ ei\} .
We have that t \in C \prime 

t \cup \{ t\} and ((C \prime 
t \setminus \{ ei\} ) \cup \{ xizi\} ) \setminus \{ t\} \subseteq F \prime spans t.

Because F \cap E(M\ell ) \not = \emptyset and F is an inclusion minimal spanning set, there is t \in T
such that Ct goes through ei. Let Ct = C \prime 

t \bigtriangleup C \prime \prime 
t , where C \prime 

t is a circuit of M \prime \prime , C \prime \prime 
t is

a circuit of M\ell , and C \prime 
t \cap C \prime \prime 

t = \{ ei\} . Notice that C \prime \prime 
t \setminus \{ ei\} spans ei in M\ell . Hence,

w\ell (C
\prime \prime 
t \setminus \{ ei\} ) \leq k

(1)
i . Because w\prime (xizi) \leq k

(1)
i , we conclude that w\prime (F \prime ) \leq w(F ).

Since F \prime \subseteq E(M \prime ) \setminus T spans T and has the weight at most k in M \prime , (M \prime , w\prime , T, k)
is a yes-instance.

Case 2. There are two distinct ei, ej \in Z such that for any t \in T , either Ct \subseteq 
E(M \prime \prime ), or Ct goes through ei, or Ct goes through ej , and at least one Ct goes through
ei and at least one Ct goes through ej . Let F

\prime = (F \cap E(M \prime \prime )) \cup \{ z1z2, z2z3, z1z3\} .
We claim that F \prime spans T in M \prime . Let t \in T . If Ct \subseteq E(M \prime \prime ), then t \in Ct \subseteq 

(F \cap E(M \prime \prime )) \cup \{ t\} and, therefore, F \prime spans t in M \prime . Suppose that Ct \cap E(M\ell ) \not = \emptyset .
Then Ct = C \prime 

t \bigtriangleup C \prime \prime 
t , where C \prime 

t is a circuit of M \prime \prime , C \prime \prime 
t is a circuit of M\ell , and either

C \prime 
t \cap C \prime \prime 

t = \{ ei\} or C \prime 
t \cap C \prime \prime 

t = \{ ej\} . By symmetry, let C \prime 
t \cap C \prime \prime 

t = \{ ei\} . Because
\{ xizi, zizi - 1, zizi+1\} (here and further it is assumed that z0 = z3 and z4 = z1) is a
minimal cut-set of G, \{ xizi, zizi - 1, zizi+1\} is a circuit of M \prime and C \prime \prime \prime 

t = ((C \prime 
t \setminus \{ ei\} )\cup 

\{ xizi\} ) \bigtriangleup \{ xizi, zizi - 1, zizi+1\} is a cycle of M \prime . We have that t \in C \prime \prime \prime 
t \cup \{ t\} and

C \prime \prime \prime 
t \setminus \{ t\} \subseteq F \prime spans t.
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Because F \cap E(M\ell ) \not = \emptyset , there is t \in T such that Ct goes through ei and there
is t\prime \in T such that Ct\prime goes through ej . Let Ct = C \prime 

t \bigtriangleup C \prime \prime 
t and Ct\prime = C \prime 

t\prime \bigtriangleup 
C \prime \prime 

t\prime \prime , where C \prime 
t, C

\prime 
t\prime are cycles of M \prime \prime , C \prime \prime 

t , C
\prime \prime 
t\prime are cycles of M\ell , and C \prime 

t \cap C \prime \prime 
t = \{ ei\} ,

C \prime 
t\prime \cap C \prime \prime 

t\prime = \{ ej\} . Notice that C \prime \prime 
t \setminus \{ ei\} spans ei in M\ell and C \prime \prime 

t\prime \setminus \{ ej\} spans ej .
Hence, w\ell ((C

\prime \prime 
t \setminus \{ ei\} ) \cup (C \prime \prime 

t\prime \setminus \{ ej\} )) \geq w\ell (F\ell ) = p(1) by Observation 7.4. Because
w\prime (\{ z1z2, z2z3, z1z3\} ) \geq p(1), w\prime (F \prime ) \leq w(F ).

Since F \prime \subseteq E(M \prime ) \setminus T spans T and has the weight at most k in M \prime , (M \prime , w\prime , T, k)
is a yes-instance.

Case 3. For each i \in \{ 1, 2, 3\} , there is t \in T such that Ct goes through ei. As in
Case 2, we set F \prime = (F \cap E(M \prime \prime ))\cup \{ z1z2, z2z3, z1z3\} and use the same arguments to
show that F \prime \subseteq E(M \prime ) \setminus T spans T and has the weight at most k in M \prime .

Suppose that F \cap E(M\ell ) = \emptyset and F \cap E(H) \not = \emptyset .
For each t \in T , there is a circuit Ct of M such that t \in C \subseteq F \cup \{ t\} . By the

definition of 1-, 2-, and 3-sums and Observation 7.3, we have that Ct = C \prime 
t \bigtriangleup C(1) \bigtriangleup 

. . .\bigtriangleup C(q), where C \prime 
t is a circuit of Ms and each C(1), . . . , C(q) is a circuit of child of

Ms in \scrT or a circuit in the matroid defined by the conflict tree \scrT \prime \prime obtained from \scrT 
by the deletion of Ms and its children. Notice that if Ct \cap E(H) \not = \emptyset , then Ct \cap E(H)
is a minimal cut-set of H. Moreover, each component of H  - Ct \cap E(H) contains a
vertex from the set \{ y1, y2, y3\} .

We consider the following three cases.
Case 1. There is a unique i \in \{ 1, 2, 3\} such that for any t \in T , either Ct\cap E(H) = \emptyset 

or yi is in one component of H  - Ct \cap E(H) and yi - 1, yi+1 are in the other. Let
F \prime = (F \setminus E(H)) \cup \{ xizi\} .

We show that F \prime spans T in M \prime . Let t \in T . If Ct \cap E(H) = \emptyset , then F \prime spans t in
M \prime , because Ct is a circuit of M\ast (G\prime ) as H is connected. Suppose that Ct\cap E(H) \not = \emptyset .
Consider C \prime \prime 

t = (Ct \setminus (Ct \cap E(H))) \cup \{ xizi\} . Since (C \prime 
t \setminus (Ct \cap E(H))) \cup \{ xizi\} is a

minimal cut-set of G, we obtain that C \prime \prime 
t \setminus \{ t\} \subseteq F \prime spans t in M \prime .

Because F \cap E(H) \not = \emptyset , there is t \in T such that Ct \cap E(H) \not = \emptyset . Observe that

w(Ct \cap E(H)) \geq k
(2)
i \geq w\prime (xizi). Hence, w\prime (F \prime ) \leq w(F ).

Since F \prime \subseteq E(M \prime ) \setminus T spans T and has the weight at most k in M \prime , (M \prime , w\prime , T, k)
is a yes-instance.

Case 2. There are two distinct i, j \in \{ 1, 2, 3\} such that for any t \in T , either (i)
Ct \cap E(H) = \emptyset or (ii) yi is in one component of H  - Ct \cap E(H) and yi - 1, yi+1 are
in the other or (iii) yj is in one component of H  - Ct \cap E(H) and yj - 1, yj+1 are in
the other, and for at least one t, (ii) holds and for at least one t (iii) is fulfilled. Let
F \prime = (F \setminus E(H)) \cup \{ z1z2, z2z3, z1z3\} .

We claim that F \prime spans T in M \prime . Let t \in T . If Ct \cap E(H) = \emptyset , then F \prime spans t in
M \prime , because C \prime 

t is a circuit of M\ast (G\prime ) as H is connected. Suppose that Ct\cap E(H) \not = \emptyset .
By symmetry, assume without loss of generality that (ii) is fulfilled for Ct. Consider
C \prime \prime 

t = (Ct \setminus (Ct \cap E(H))) \cup \{ zizi - 1, zizi+1\} . Since (C \prime 
t \setminus (Ct \cap E(H))) \cup \{ xizi\} is a

minimal cut-set of G, we obtain that C \prime \prime 
t \setminus \{ t\} \subseteq F \prime spans t in M \prime .

Because there are distinct i, j \in \{ 1, 2, 3\} such that (ii) holds for some t \in T
and (iii) for some t\prime \in T , we have that w(Ct \cap E(H)) + w(Ct\prime \cap E(H)) \geq k2 \geq 
w\prime (\{ z1z2, z2z3, z1z3\} ). Hence, w\prime (F \prime ) \leq w(F ). As F \prime \subseteq E(M \prime ) \setminus T spans T and has
the weight at most k in M \prime , (M \prime , w\prime , T, k) is a yes-instance.

Case 3. For each i \in \{ 1, 2, 3\} , there is t \in T such that yi is in one component
of H  - Ct \cap E(H) and yi - 1, yi+1 are in the other. As in Case 2, we set F \prime = (F \setminus 
E(H))\cup \{ z1z2, z2z3, z1z3\} and use the same arguments to show that F \prime \subseteq E(M \prime ) \setminus T
spans T and has the weight at most k in M \prime .
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Finally, assume that F \cap E(M\ell ) \not = \emptyset and F \cap E(H) \not = \emptyset . For each t \in T , there
is a circuit Ct of M such that t \in C \subseteq F \cup \{ t\} . Then there is i \in \{ 1, 2, 3\} such that
Ct = C \prime 

t \bigtriangleup C \prime \prime 
t , where C \prime 

t and C \prime \prime 
t are circuits of M \prime \prime and M\ell , and Ct goes through

ei, i.e., C
\prime 
t \cap C \prime \prime 

t = \{ ei\} . Also there is j \in \{ 1, 2, 3\} such that yj is in one component
of H  - Ct \cap E(H) and yj - 1, yj+1 are in the other. Notice that i \not = j, as otherwise
F contains a dependent set (Ct \cap E(H)) \cup \{ ei\} , where yi is in one component of
H  - Ct \cap E(H) and yi - 1, yi+1 are in the other, contradicting minimality of F . Let
F \prime = ((F \cap E(M \prime \prime )) \setminus E(H))\cup \{ xizi, xjzj\} . Denote by q \in \{ 1, 2, 3\} the element of the
set distinct from i and j.

We claim that F \prime spans T in M \prime . Let t \in T .
If Ct \cap E(H) = \emptyset and Ct \subseteq E(M \prime \prime ), then it is straightforward to verify that

Ct \setminus \{ t\} spans t in M \prime and, therefore, F \prime spans t.
Suppose that Ct\cap E(H) \not = \emptyset and Ct \subseteq E(M \prime \prime ). Then Ct\cap E(H) is a minimal cut-

set of H such that a vertex yf is in one component of H  - Ct \cap E(H) and yf - 1, yf+1

are in the other. If f = i or f = j, then in the same way as in the case where
F \cap E(M\ell ) = \emptyset and F \cap E(H) \not = \emptyset , we have that ((Ct \setminus E(H)) \cup \{ xfzf\} ) \setminus \{ t\} spans
t. Suppose that f = q. Then we observe that ((Ct \setminus E(H))\cup \{ xizi, xjyj\} ) \setminus \{ t\} spans
t. Hence, F \prime spans t.

Suppose that Ct \cap E(H) = \emptyset and Ct \cap E(M\ell ) \not = \emptyset . Then Ct = C \prime 
t \bigtriangleup C \prime \prime 

t , where
C \prime 

t and C \prime \prime 
t are cycles of M \prime \prime and M\ell , respectively, and Ct goes through some ef

for f \in \{ 1, 2, 3\} . If f = i or f = j, then in the same way as in the case where
F \cap E(M\ell ) \not = \emptyset and F \cap E(H) = \emptyset , we have that ((C \prime 

t\setminus \{ ef\} )\cup \{ xfzf\} )\setminus \{ t\} \subseteq F \prime spans
t. Suppose that f = q. Then we observe that ((C \prime 

t \setminus \{ ef\} ) \cup \{ xizi, xjyj\} ) \setminus \{ t\} \subseteq F \prime 

spans t, because \{ x1z1, x2z2, x3z3\} is a circuit of M \prime .
Suppose now that Ct \cap E(H) \not = \emptyset and Ct \cap E(M\ell ) \not = \emptyset . Then Ct \cap E(H) is a

minimal cut-set of H such that a vertex yf is in one component of H  - Ct \cap E(H)
and yf - 1, yf+1 are in the other. Also Ct = C \prime 

t \bigtriangleup C \prime \prime 
t , where C \prime 

t and C \prime \prime 
t are circuits of

M \prime \prime and M\ell , respectively, and Ct goes through some eg for g \in \{ 1, 2, 3\} . Notice that
f \not = g, as otherwise C \prime 

t contains a dependent set (Ct \cap E(H)) \cup \{ ef\} contradicting
minimality of circuits. If \{ f, g\} = \{ i, j\} , we obtain that (((C \prime 

t \setminus E(H)) \setminus \{ ef\} ) \cup 
\{ xfzf , xgzg\} ) \setminus \{ t\} \subseteq F \prime spans t by the same arguments as in previous cases. If
\{ f, g\} \not = \{ i, j\} , then let q\prime \in \{ 1, 2, 3\} be distinct from f, g. Clearly, q\prime \in \{ i, j\} . Then
(((C \prime 

t \setminus E(H))\setminus \{ ef\} )\cup \{ xq\prime zq\prime \} )\setminus \{ t\} \subseteq F \prime spans t spans t, because \{ x1z1, x2z2, x3z3\} 
is a circuit of M \prime .

Now we show that w\prime (F ) \leq k. Recall that there is Ct = C \prime 
t \bigtriangleup C \prime \prime 

t , where C \prime 
t

and C \prime \prime 
t are circuits of M \prime \prime and M\ell , and Ct goes through ei. Observe that w\prime (ei) \leq 

k
(1)
i \leq w(C \prime \prime 

t \setminus \{ ei\} ). Recall also that there is Ct such that Ct \cap E(H) \not = \emptyset and yj is
in one component of H  - Ct \cap E(H) and yj - 1, yj+1 are in the other. We have that

w\prime (xjzj) \leq k
(2)
j \leq w(Ct \cap E(H)). It implies that w\prime (F ) \leq k.

We considered all possible cases and obtained that if the original instance
(M,w, T, k) is a yes-instance, then the reduced instance (M \prime , w\prime , T, k) is also a yes-
instance. Assume now that the reduced instance (M \prime , w\prime , T, k) is a yes-instance. Let
F \prime \subseteq E(M \prime ) \setminus T be an inclusion minimal set of weight at most k that spans T in M \prime .

Let S = \{ x1z1, x2z2, x3z3, z1z2, z2z3, z1z3\} . If F \prime \cap S = \emptyset , then we have that F \prime 

spans T in M as well. Assume from now on that F \prime \cap S \not = \emptyset .
Notice that | F \prime \cap \{ z1z2, z2z3, z1z3\} | \not = 1, because z1z2, z2z3, z1z3 induce a cycle

in C \prime . Observe also that if F \prime \cap \{ z1z2, z2z3, z1z3\} = \{ zi - 1zi, zizi+1\} for some i \in 
\{ 1, 2, 3\} , then by Observation 7.6 we can replace zi - 1zi, zizi+1 by xizi in F using the
fact that zi - 1zi, zizi+1, xizi is a cut-set of G\prime . Hence, without loss of generality we
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assume that either F \prime \cap \{ z1z2, z2z3, z1z3\} = \emptyset or z1z2, z2z3, z1z3 \in F \prime . We have that
| F \prime \cap \{ x1z1, x2z2, x3z3\} | \leq 2, because \{ x1z1, x2z2, x3z3\} is a minimal cut-set of G\prime ,
and if z1z2, z2z3, z1z3 \in F \prime , then F \prime \cap \{ x1z1, x2z2, x3z3\} = \emptyset by the minimality of F \prime .
We consider the cases according to these possibilities.

Case 1. z1z2, z2z3, z1z3 \in F \prime .
If p(1) \leq p(2), then recall that (M\ell , w\ell , \{ e1, e2\} , p(1)) is a yes-instance of Space

Cover. Let F\ell be a set of weight at most p(1) that spans e1 and e2 M\ell . Notice
that F\ell spans e3 by Observation 7.4. Notice also that e1, e2, e3 /\in F\ell . We de-
fine F = (F \prime \setminus \{ z1z2, z2z3, z1z3\} ) \cup F\ell . Clearly, F \subseteq E(M) \setminus T and w(F ) \leq k as
w\prime (\{ z1z2, z2z3, z1z3\} ) = p(1). We claim that F spans T in M . Consider t \in T . There
is a circuit C \prime 

t of M \prime such that t \in C \prime 
t \subseteq F \prime \cup \{ t\} . If C \prime 

t \cap \{ z1z2, z2z3, z1z3\} = \emptyset ,
then C \prime 

t \setminus \{ t\} spans t in M . Suppose that C \prime 
t \cap \{ z1z2, z2z3, z1z3\} \not = \emptyset . Notice that

because z1z2, z2z3, z1z3 form a triangle in G\prime , C \prime 
t contains exactly two elements of

\{ z1z2, z2z3, z1z3\} . By symmetry, assume without loss of generality that z1z2, z2z3 \in 
C \prime 

t. There is a circuit C of M\ell such that e1 \in C \subseteq F\ell \cup \{ e1\} . Observe that for
any X \subseteq E(G\prime ) such that X \cap S = \{ z1z2, z1z3\} , X is a minimal cut-set of G\prime 

if and only if (X \setminus \{ z1z2, z1z3\} ) \cup \{ e1\} is a minimal cut-set of G. It implies that
Ct = (C \prime 

t \setminus \{ z1z2, z1z3\} ) \cup (C \setminus \{ e1\} ) \subseteq F is a cycle of M . Hence, F spans t.
Suppose that p(2) < p(1). Recall that (M\ast (H \prime ), wh, \{ e\prime 1, e\prime 2\} , p(2)) is a yes-instance

of Space Cover. Let Fh be a set of weight at most p(2) that spans e\prime 1 and e\prime 2 in
M\ast (H \prime ). Notice that Fh spans e\prime 3 by Observation 7.4. Notice also that e\prime 1, e

\prime 
2, e

\prime 
3 /\in Fh.

We define F = (F \prime \setminus \{ z1z2, z2z3, z1z3\} ) \cup Fh. Clearly, F \subseteq E(M) \setminus T and w(F ) \leq k
as w\prime (\{ z1z2, z2z3, z1z3\} ) = p(2). We claim that F spans T in M . Consider t \in T .
There is a circuit C \prime 

t of M
\prime such that t \in C \prime 

t \subseteq F \prime \cup \{ t\} . If C \prime 
t \cap \{ z1z2, z2z3, z1z3\} = \emptyset ,

then C \prime 
t \setminus \{ t\} spans t in M . Suppose that C \prime 

t \cap \{ z1z2, z2z3, z1z3\} \not = \emptyset . Notice that
because z1z2, z2z3, z1z3 form a triangle in G\prime , C \prime 

t contains exactly two elements of
\{ z1z2, z2z3, z1z3\} . By symmetry, assume without loss of generality that z1z2, z2z3 \in 
C \prime 

t. There is a circuit C of Mh such that e\prime 1 \in C \subseteq Fh \cup \{ e\prime 1\} . Notice that for any
X \subseteq E(G\prime ) such that X \cap S = \{ z1z2, z1z3\} , X is a minimal cut-set of G\prime if and only
if (X \setminus \{ z1z2, z1z3\} ) \cup Y is a minimal cut-set of G for a minimal cut-set Y of H such
that y1 is in one component of H  - Y and y2, y3 are in the other. It implies that
Ct = (C \prime 

t \setminus \{ z1z2, z1z3\} ) \cup (C \setminus \{ e\prime 1\} ) \subseteq F is a cycle of M . Hence, F spans t.
Case 2. F \prime \cap S = \{ xizi\} for i \in \{ 1, 2, 3\} .
Suppose first that k

(1)
i \leq k

(2)
i . Then (M\ell , w\ell , \{ ei\} , k(1)i ) is a yes-instance of Space

Cover. Let F\ell be a set of weight at most k
(1)
i that spans ei in M\ell . Notice e1, e2, e3 /\in 

F\ell . We define F = (F \prime \setminus \{ xizi\} ) \cup F\ell . Clearly, F \subseteq E(M) \setminus T and w(F ) \leq k as

w\prime (xizi) = k
(1)
i . We claim that F spans T in M . Consider t \in T . There is a circuit

C \prime 
t of M \prime such that t \in C \prime 

t \subseteq F \prime \cup \{ t\} . If xizi /\in C \prime 
t, then C \prime 

t \setminus \{ t\} spans t in M .
Suppose that xizi \in C \prime 

t. There is a circuit C of M\ell such that ei \in C \subseteq F\ell \cup \{ ei\} .
Observe that for any X \subseteq E(G\prime ) such that X \cap S = \{ xizi\} , X is a minimal cut-set
of G\prime if and only if (X \setminus \{ xizi\} ) \cup \{ ei\} is a minimal cut-set of G. It implies that
Ct = (C \prime 

t \setminus \{ xizi\} ) \cup (C \setminus \{ ei\} ) \subseteq F is a cycle of M . Hence, F spans t.

Assume that k
(2)
i < k

(1)
i . Recall that (M\ast (H \prime ), wh, \{ e\prime i\} , k

(2)
i ) is a yes-instance

of Space Cover. Let Fh be a set of weight at most k
(2)
i that spans e\prime i in M\ast (H \prime ).

Notice that e\prime 1, e
\prime 
2, e

\prime 
3 /\in Fh. We define F = (F \prime \setminus \{ xizi\} )\cup Fh. Clearly, F \subseteq E(M) \setminus T

and w(F ) \leq k as w\prime (\{ xizi\} ) = k
(2)
i . We claim that F spans T in M . Consider

t \in T . There is a circuit C \prime 
t of M \prime such that t \in C \prime 

t \subseteq F \prime \cup \{ t\} . If xizi /\in C \prime 
t, then

C \prime 
t \setminus \{ t\} spans t in M . Suppose that xizi \in C \prime 

t. There is a circuit C of Mh such that
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e\prime i \in C \subseteq Fh \cup \{ e\prime i\} . Observe that any X \subseteq E(G\prime ) such that X \cap S = \{ xizi\} , X is
a minimal cut-set of G\prime if and only if (X \setminus \{ xizi\} ) \cup Y is a minimal cut-set of G for
a minimal cut-set Y of H such that yi is in one component of H  - Y and yi - 1, yi+1

are in the other. It implies that Ct = (C \prime 
t \setminus \{ xIzi\} ) \cup (C \setminus \{ e\prime i\} ) \subseteq F is a cycle of M .

Hence, F spans t.
Case 3. F \prime \cap S = \{ xizi, xjzj\} for two distinct i, j \in \{ 1, 2, 3\} .
Suppose that w\prime (xizi) = k

(1)
i and w\prime (xjzj) = k

(1)
j . By Observation 7.6, p(1) \leq 

k
(1)
i +k

(1)
j . We have that (M\ell , w\ell , \{ e1, e2\} , p(1)) is a yes-instance of Space Cover. Let

F\ell be a set of weight at most p(1) that spans e1 and e2 inM\ell . Notice that F\ell spans e3 by
Observation 7.4. Notice also that e1, e2, e3 /\in F\ell . We define F = (F \prime \setminus \{ xizi, xjzj\} )\cup F\ell .
Clearly, F \subseteq E(M) \setminus T and w(F ) \leq k as w\prime (\{ xizi, xjzj\} ) \geq p(1). In the same way as
in Case 1, we obtain that F spans T in M .

Assume that w\prime (xizi) = k
(2)
i and w\prime (xjzj) = k

(2)
j . By Observation 7.6, p(2) \leq 

k
(2)
i +k

(2)
j . Recall that (M\ast (H \prime ), wh, \{ e\prime 1, e\prime 2\} , p(2)) is a yes-instance of Space Cover.

Let Fh be a set of weight at most p(2) that spans e\prime 1 and e\prime 2 in M\ast (H \prime ). Notice
that Fh spans e\prime 3 by Observation 7.4. Notice also that e\prime 1, e

\prime 
2, e

\prime 
3 /\in Fh. We define

F = (F \prime \setminus \{ xizi, xjzj\} )\cup Fh. Clearly, F \subseteq E(M)\setminus T and w(F ) \leq k as w\prime (\{ xizi, xjzj\} ) \geq 
p(2). By the same arguments as in Case 1, we have that F spans T in M .

Suppose now that w\prime (xizi)=k
(1)
i and w\prime (xjzj)=k

(2)
j or, symmetrically, w\prime (xizi) =

k
(2)
i and w\prime (xjzj)=k

(1)
j . Assume that w\prime (xizi) = k

(1)
i and w\prime (xjzj) = k

(2)
j , as the sec-

ond possibility is analyzed by the same arguments. We have that (M\ell , w\ell , \{ ei\} , k(1)i )

is a yes-instance of Space Cover. Let F\ell be a set of weight at most k
(1)
i that spans

ei in M\ell . Notice e1, e2, e3 /\in F\ell . We have also that (M\ast (H \prime ), wh, \{ e\prime i\} , k
(2)
j ) is a yes-

instance of Space Cover. Let Fh be a set of weight at most k
(2)
j that spans e\prime j in

M\ast (H \prime ). Notice that e\prime 1, e
\prime 
2, e

\prime 
3 /\in Fh. We define F = (F \prime \setminus \{ xizi, xjzj\} ) \cup F\ell \cup Fh.

Clearly, F \subseteq E(M) \setminus T and w(F ) \leq k as w\prime (\{ xizi\} ) \leq k
(1)
i and w\prime (\{ xizi\} ) \leq k

(1)
i .

We show that F spans T . Consider t \in T . There is a circuit C \prime 
t of M \prime such that

t \in C \prime 
t \subseteq F \prime \cup \{ t\} . There is a circuit C of M\ell such that ei \in C \subseteq F\ell \cup \{ ei\} , and there

is a circuit C \prime ofMh such that e\prime j \in C \subseteq Fh\cup \{ e\prime j\} . If xizi, xjzj /\in C \prime 
t, then C \prime 

t\setminus \{ t\} spans
t in M . Suppose that xizi \in C \prime 

t but xjzj /\in C \prime 
t. Then by the same arguments as used

to analyze the first possibility of Case 2, we show that Ct = (C \prime 
t \setminus \{ xizi\} )\cup (C \setminus \{ ei\} )

is a cycle of M such that t \in Ct \subseteq F \cup \{ t\} . If xizi /\in C \prime 
t and xjzj \in C \prime 

t, then by
the same arguments as used to analyze the second possibility of Case 2, we obtain
that Ct = (C \prime 

t \setminus \{ xjzj\} ) \cup (C \prime \setminus \{ e\prime j\} ) is a cycle of M such that t \in Ct \subseteq F \cup \{ t\} .
Finally, if xizi, xjzj \in C \prime 

t, we consider Ct = (C \prime 
t \setminus \{ xjzj\} ) \cup (C \setminus \{ ei\} ) \cup (C \prime \setminus \{ e\prime j\} )

and essentially by the same arguments as in Case 2 obtain that Ct is a cycle of M
and t \in Ct \subseteq F \cup \{ t\} . Hence, in all possible cases F spans t.

This completes the correctness proof. From the description of Reduction Rule 7.9
and Lemma 7.1, it follows that Reduction Rule 7.4 can be applied in time 2\scrO (k) \cdot 
| | M | | \scrO (1).

7.3.2. Cographic subleaf: \bfitE (\bfitH ) \cap \bfitT \not = \emptyset . From now on we assume that
E(H) \cap T \not = \emptyset . We either reduce H or recursively solve the problem on smaller H.
Rather than describing these steps, we observe that we can decompose Ms further and
apply the already described Reduction Rule 7.2 (1-leaf reduction rule) or Branching
Rules 7.1 (2-leaf branching) and 7.2 (3-leaf branching).

We use the following fact about matroid decompositions (see [42]). Since we apply
the decomposition theorem for the specific case of bond matroids, for convenience we
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state it in terms of graphs. Let G be a graph. A pair (X,Y ) of nonempty subsets
X,Y \subset V (G) is a separation of G if X \cup Y = V (G) and no vertex of X \setminus Y is adjacent
to a vertex of Y \setminus Y . For our convenience we assume that (X,Y ) is an ordered pair.
The next lemma either can be derived from the general results of [42, Chapter 8] or
can be proved directly using the definitions of 1-, 2-, and 3-sums and the fact that
the circuits of the bond matroid of G are exactly the minimal cut-sets of G.

Lemma 7.10. Let (X,Y ) be a separation of a graph G, H1 = G[X] and H2 =
G[Y ] - E(G1). Then the following holds:

(i) If | X \cap Y | = 1, then M\ast (G) = M\ast (H1)\oplus 1 M
\ast (H2).

(ii) If | X \cap Y | = 2, then M\ast (G) = M\ast (H \prime 
1) \oplus 2 M

\ast (H \prime 
2), where H \prime 

i is the graph
obtained from Hi by adding a new edge e with its end vertices in the two
vertices of X \cap Y for i = 1, 2; E(H \prime 

1) \cap E(H \prime 
2) = \{ e\} .

(iii) If | X \cap Y | = 3 and X \cap Y = \{ v1, v2, v3\} , then M\ast (G) = M\ast (H \prime \prime 
1 )\oplus 2M

\ast (H \prime \prime 
2 ),

where for i = 1, 2, H \prime \prime 
i is the graph obtained from Hi by adding a new vertex

v and edges ej = vvj for j \in \{ 1, 2, 3\} ; E(H \prime 
1) \cap E(H \prime 

2) = \{ e1, e2, e3\} .

We use this lemma to decompose Ms = M\ast (G). Let Y be the set of end vertices
of e1, e2, e3 in V (H). The set Y contains y1, y2, y3, but some of these vertices could
be the same. Let X = (V (G) \setminus V (H)) \cup Y . We have that (V (H), X) is a separation
of G. We apply Lemma 7.10 to this separation. Recall that Z is a clean cut of G.
That means that no edge of H is an element of a matroid that is a node of \scrT distinct
from Ms. Therefore, in this way we obtain a good \{ 1, 2, 3\} -decomposition with the
conflict tree \scrT \prime that is obtained form \scrT by adding a leaf adjacent to Ms. Then we
either reduce the new leaf if it is a 1-leaf or branch on it if it is a 2- or 3-leaf. More
formally, we do the following:

\bullet If | Y | = 1, then let G\prime = G[X], decompose M\ast (G) = M\ast (G\prime ) \oplus 1 M\ast (H),
and construct a new conflict tree \scrT \prime for the obtained decomposition of M :
we replace the node Ms in \scrT by M\ast (G\prime ) that remains adjacent to the same
nodes as Ms in \scrT and then add a new child M\ast (H) of M\ast (G\prime ) that is a leaf
of \scrT \prime . Thus we can apply Reduction Rule 7.2 (1-leaf reduction rule) on the
new leaf.

\bullet If | Y | = 2, then let G\prime be the graph obtained from G[X] by adding a new
edge e with its end vertices being the two vertices of Y . Furthermore, let H \prime 

be the graph obtained from H by adding a new edge e with its end vertices
being the two vertices of Y . Now decompose M\ast (G) = M\ast (G\prime ) \oplus 2 M

\ast (H \prime )
and consider a new conflict tree \scrT \prime for the obtained decomposition: Ms is
replaced byM\ast (G\prime ) and a new leafM\ast (H \prime ) that is a child ofM\ast (G\prime ) is added.
Notice that because H has no bridges, no terminal t \in T \cap E(H) is parallel
to e in M\ast (H \prime ). Thus we can apply Branching Rule 7.1 (2-leaf branching) on
the new leaf.

\bullet If | Y | = 3, then Y = \{ y1, y2, y3\} . Let G\prime be the graph obtained from G[X]
by adding a new vertex v and the edges e\prime 1 = y1v, e

\prime 
2 = y2v, e

\prime 
3 = y3v. Let

H \prime be the graph obtained from H by adding a new vertex v and the edges
e\prime 1 = y1v, e

\prime 
2 = y2v, e

\prime 
3 = y3v. Then decompose M\ast (G) = M\ast (G\prime )\oplus 3M

\ast (H \prime )
and consider a new conflict tree \scrT \prime for the obtained decomposition: Ms is
replaced by M\ast (G\prime ) and a new leaf M\ast (H \prime ) that is a child of M\ast (G\prime ) is
added. Notice that because H has no bridges, no terminal t \in T \cap E(H) is
parallel to e\prime 1, e

\prime 
2, e

\prime 
3 in M\ast (H \prime ). Thus we can apply Branching Rule 7.2 (3-leaf

branching) on the new leaf.

D
ow

nl
oa

de
d 

01
/0

3/
19

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COVERING VECTORS BY SPACES: REGULAR MATROIDS 2561

Lemma 7.10 together with Lemmas 7.5 and 7.6 implies the correctness of the above
procedure. Furthermore, all the reduction and branching rules can be performed in
2\scrO (k) \cdot | | M | | \scrO (1) time.

7.4. Proof of Theorem 1. Given an instance (M,w, T, k) of Space Cover
we apply either a reduction rule or a branching rule and if either of these applications
(reduction rule or branching rule) returns no, we return the same. Correctness of the
answer follows from the correctness of the corresponding rules.

Let (M,w, T, k) be the given instance of Space Cover. First, we exhaustively
apply elementary Reduction Rules 5.1--5.5. Thus, by Lemma 5.4, in polynomial time
we either solve the problem or obtain an equivalent instance, where M has no loops
and the weights of nonterminal elements are positive. To simplify notation, we also
denote the reduced instance by (M,w, T, k). If M is a basic matroid (obtained from
R10 by adding parallel elements or M is graphic or cographic), then we can solve
Space Cover using Lemma 7.1 in time 2\scrO (k) \cdot | | M | | \scrO (1).

From now on we assume that the matroid M in the instance (M,w, T, k) is not
basic. Now using Corollary 3, we find a conflict tree \scrT . Recall that the set of nodes
of \scrT is the collection of basic matroids \scrM and the edges correspond to 1-, 2-, and
3-sums. The key observation is that M can be constructed from \scrM by performing the
sums corresponding to the edges of \scrT in an arbitrary order. Our algorithm is based
on performing a bottom-up traversal of the tree \scrT . We select an arbitrarily node r as
the root of \scrT . Selection of r, as the root, defines the natural parent-child, descendant
and ancestor relationship on the nodes of \scrT . We say that u is a subleaf if its children
are leaves of \scrT . Observe that there always exists a subleaf in a tree on at least two
nodes. Just take a node which is not a leaf and is farthest from the root. Clearly,
this node can be found in polynomial time. The rest of our argument is based on
selection of a subleaf Ms. We say that a child of Ms is a 1-, 2-, or 3-leaf, respectively,
if the edge between Ms and the leaf corresponds to a 1-, 2-, or 3-sum, respectively. If
there is a child M\ell of Ms such that there is e \in E(Ms) \cap E(M\ell ) that is parallel to a
terminal t \in E(M\ell ) \cap T in M\ell , then we apply Reduction Rule 7.1 (terminal flipping
rule). We apply Reduction Rule 7.1 exhaustively. Correctness of this step follows
from Lemma 7.2.

From now on we assume that there is no child M\ell of Ms such that there exists
an element e \in E(Ms) \cap E(M\ell ) that is parallel to a terminal t \in E(M\ell ) \cap T in M\ell .
Now given a subleaf Ms and a child M\ell of Ms, we apply the first rule (reduction or
branching) among

\bullet Reduction Rule 7.2 (1-leaf reduction rule),
\bullet Reduction Rule 7.3 (2-leaf reduction rule),
\bullet Branching Rule 7.1 (2-leaf branching),
\bullet Branching Rule 7.2 (3-leaf branching),
\bullet Reduction Rule 7.4 (graphic 3-leaf reduction rule),
\bullet Reduction Rule 7.5 (cographic 3-leaf reduction rule)

which is applicable. If none of the above is applicable, then we are in a specific
subcase of Ms being a cographic matroid, that is, the case which is being handled in
section 7.3.1. However, even in this case we modify our instance to fall into one of
the cases above. Note that we do not recompute the decompositions of the matroids
obtained by the application of the rules but use the original decomposition modified
by the rules. Observe additionally that the elementary Reduction Rules 5.1--5.5 also
could be used to modify the decomposition. Clearly, graphic and cographic remain
graphic and cographic, respectively, and we just modify the corresponding graphs,
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but we can delete or contract an element of a copy R10. For this case, observe that
Lemma 6.1 still could be applied and these matroids are not participating in 3-sums.
Each of the above rules reduces the \scrT by one and thus these rules are only applied
\scrO (| E(M)| )) times. The correctness of the algorithm follows from Lemmas 7.3, 7.4,
7.5, 7.6, 7.7, and 7.9. The only thing that is remaining is the running time analysis.

We apply reduction rules either in polynomial time or in 2\scrO (k) \cdot | | M | | \scrO (1) time.
Thus all the reduction rules can be carried out in \scrO (| E(M)| ))\cdot 2\scrO (k) = 2\scrO (k) \cdot | | M | | \scrO (1)

time. By Lemmas 7.5 and 7.6 we know that when we apply Branching Rules 7.1 and
7.2 then the parameter reduces in each branch and thus the number of leaves in the
search tree is upper bounded by the recurrence, T (k) \leq 15T (k - 1), corresponding to
Branching Rule 7.2. Thus, the number of nodes in the search tree is upper bounded
by 15k and since at each node we take 2\scrO (k) \cdot | | M | | \scrO (1) time, we have that the overall
running time of the algorithm is upper bounded by 2\scrO (k) \cdot | | M | | \scrO (1). This completes
the proof.

8. Reducing rank. In the h-Way Cut problem, we are given a connected
graph G and positive integers h and k; the task is to find at most k edges whose
removal increases the number of connected components by at least h. The problem
has a simple formulation in terms of matroids: Given a graph G and an integers k,
h, find k elements of the cycle matroid of G whose removal reduces its rank by at
least h. This motivated Joret and Vetta [26] to introduce the Rank h-Reduction
problem on matroids. Here we define Rank h-Reduction on binary matroids.

Rank h-Reduction Parameter: k
Input: A binary matroid M = (E, \scrI ) given together with its matrix representa-
tion over GF(2) and two positive integers h and k.
Question: Is there a set X \subseteq E with | X| \leq k such that r(M) - r(M  - X) \geq h?

As a corollary of Theorem 1, we show that on regular matroidsRank h-Reduction
is FPT for any fixed h.

We use the following lemma.

Lemma 8.1. Let M be a binary matroid and let k \geq h be positive integers. Then
M has a set X \subseteq E with | X| \leq k such that r(M) - r(M  - X) \geq h if and only if there
are disjoint sets F, T \subseteq E such that | T | = h, | F | \leq k  - h, and T \subseteq span(F ) in M\ast .

Proof. Notice that deletion of one element cannot decrease the rank by more than
one. Moreover, deletion of e \in E decreases the rank if and only if e belongs to every
basis of M . Recall that e belongs to every basis of M if and only if e is a coloop (see
[36]). It follows that M has a set X \subseteq E with | X| \leq k such that r(M) - r(M - X) \geq h
if and only if there are disjoint sets F, T \subseteq E such that | T | = h, | F | \leq k  - h and
every e \in T is a coloop of M  - F . Switching to the dual matroid, we rewrite this as
follows: M has a set X \subseteq E with | X| \leq k such that r(M)  - r(M  - X) \geq h if and
only if there are disjoint sets F, T \subseteq E such that | T | = h, | F | \leq k - h and every e \in T
is a loop of M\ast /F . It remains to observe that every e \in T is a loop of M\ast /F if and
only if T \subseteq span(F ) in M\ast .

For graphic matroids, when Rank h-Reduction is equivalent to h-Way Cut,
the problem is FPT parameterized by k even if h is a part of the input [27]. Unfor-
tunately, a similar result does not hold for cographic matroids.

Proposition 8.1. Rank h-Reduction is W[1]-hard for cographic matroids pa-
rameterized by h+ k.

D
ow

nl
oa

de
d 

01
/0

3/
19

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COVERING VECTORS BY SPACES: REGULAR MATROIDS 2563

Proof. Consider the bond matroid M\ast (G) of a simple graph G. By Lemma 8.1,
(M\ast (G), h, k) is a yes-instance of Rank h-Reduction if and only if there are disjoint
sets of edges F, T \subseteq E(G) such that | T | = h and | F | \leq k  - h and T \subseteq span(F ) in
M(G). Recall that T \subseteq span(F ) in M(G) if and only if for every uv \in T , G[F ] has a
(u, v)-path. Let p \geq 3 be an integer, k = (p  - 1)p/2, and h = (p  - 1)(p  - 2)/2. It is
easy to see that for this choice of h and k, G has disjoint sets of edges F, T \subseteq E(G)
such that | T | = h, | F | \leq k  - h and for every uv \in T , G[F ] has a (u, v)-path if and
only if G has a clique with p vertices. Since it is well-known that it is W[1]-complete
with the parameter p to decide whether a graph G has a clique of size p (see [10]), we
conclude that Rank h-Reduction is W[1]-hard when parameterized by h+ k.

However, by Theorem 1, for fixed h, Rank h-Reduction is FPT parameterized
by k on regular matroids.

Theorem 5. Rank h-Reduction can be solved in time 2\scrO (k) \cdot | | M | | \scrO (h) on reg-
ular matroids.

Proof. Let (M,h, k) be an instance of Rank h-Reduction. By Lemma 8.1,
(M,h, k) is a yes-instance if and only if there are disjoint sets F, T \subseteq E such that
| T | = h, | F | \leq k - h and T \subseteq span(F ) in M\ast . There are at most | | M | | h possibilities to
choose T . For each choice, we check whether there is F \subseteq E \setminus T such that | F | \leq k - h
and T \subseteq span(F ) in M\ast . By Theorem 1, it can be done in time 2\scrO (k) \cdot | | M | | \scrO (1).
Then the total running time is 2\scrO (k) \cdot | | M | | \scrO (h).

9. Conclusion. In this paper, we used the structural theorem of Seymour for
designing parameterized algorithm for Space Cover. While structural graph the-
ory and graph decompositions serve as one of the most usable tools in the design
of parameterized algorithms, the applications of structural matroid theory in param-
eterized algorithms are limited. There is a series of papers about width-measures
and decompositions of matroids (see, in particular, [23, 24, 25, 29, 34, 35] and the
bibliographies therein) but, apart of this specific area, we are not aware of other ap-
plications except the work of Gavenciak, Kr\'al, and Oum [14] and our recent work
[13]. In spite of the tremendous progress in understanding the structure of matroids
representable over finite fields [18, 15, 16, 17], this rich research area still remains to
be explored from the perspective of parameterized complexity.

As a concrete open problem, what about the parameterized complexity of Space
Cover on any proper minor-closed class of binary matroids?
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