
Information Processing Letters 140 (2018) 8–12
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Long directed (s, t)-path: FPT algorithm

Fedor V. Fomin a, Daniel Lokshtanov a, Fahad Panolan a, Saket Saurabh a,b,
Meirav Zehavi c

a University of Bergen, Bergen, Norway
b The Institute of Mathematical Sciences, HBNI, Chennai, India
c Ben-Gurion University, Beersheba, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 January 2018
Received in revised form 8 April 2018
Accepted 10 April 2018
Available online 28 May 2018
Communicated by Marcin Pilipczuk

Keywords:
Parameterized algorithm
Long directed (s, t)-path
Long directed cycle

Given a digraph G , two vertices s, t ∈ V (G) and a non-negative integer k, the Long Directed
(s, t)-Path problem asks whether G has a path of length at least k from s to t. We present
a simple algorithm that solves Long Directed (s, t)-Path in time O�(4.884k). This results
also in an improvement upon the previous fastest algorithm for Long Directed Cycle.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Given a digraph (directed graph) G , two vertices s, t ∈
V (G) and a non-negative integer k, the Long Directed
(s, t)-Path problem asks whether G has an (s, t)-path
(i.e. a path from s to t) of length at least k.1 Here, the term
length refers to the number of vertices on the path, and
paths are assumed to be directed simple paths. Observe
that Long Directed (s, t)-Path and Directed k-(s, t)-Path

are not equivalent problems, where that latter problem
asks whether G has an (s, t)-path of length exactly k. In-
deed, G may not have any (s, t)-path of length exactly k,
or more generally, it may not even have any (s, t)-path
of “short” length (say, length 10k), but it may have an
(s, t)-path of “long” length (say, 100k). For example, the
only (s, t)-path of length at least k in G might be a Hamil-
tonian path.

E-mail addresses: fomin@ii.uib.no (F.V. Fomin), daniello@ii.uib.no
(D. Lokshtanov), fahad.panolan@ii.uib.no (F. Panolan), saket@imsc.res.in
(S. Saurabh), meiravze@bgu.ac.il (M. Zehavi).

1 In this paper, we consider only digraphs (our algorithm also works for
undirected graphs).
https://doi.org/10.1016/j.ipl.2018.04.018
0020-0190/© 2018 Elsevier B.V. All rights reserved.
In the classic Directed k-Path problem, the objective is
to determine whether G has a path of length at least k.
Both Long Directed (s, t)-Path and Directed k-(s, t)-Path

are generalizations of this problem. For the Directed
k-Path problem, a large number of algorithms have been
developed over the years (for some recent developments,
see [2,8,1,3,7,4,9]). Currently, the fastest deterministic al-
gorithm for this problem runs in time O�(2.597k) [9].
Notably, algorithms for Directed k-Path implicitly solve
Directed k-(s, t)-Path. However, in the case of Long Di-

rected (s, t)-Path, these algorithms do not solve the prob-
lem. To substantiate the difficulty posed by Long Directed
(s, t)-Path, let us consider the related Long Directed Cy-

cle and Directed k-Cycle problems. The first problem asks
whether G has a cycle of length at least k, while the
second problem asks whether G has a cycle of length ex-
actly k. It has been known how to solve Directed k-Cycle

in time O�(2O(k)) already in 1994.2 In contrast, only in
2014 was it first known how to solve Long Directed Cycle

in time O�(2O(k)) [5] (previously, this problem was only

2 The standard notation O� is used to hide factors polynomial in the
input size.

https://doi.org/10.1016/j.ipl.2018.04.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:fomin@ii.uib.no
mailto:daniello@ii.uib.no
mailto:fahad.panolan@ii.uib.no
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://doi.org/10.1016/j.ipl.2018.04.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.04.018&domain=pdf

F.V. Fomin et al. / Information Processing Letters 140 (2018) 8–12 9
known to be solvable in time O�(kO(k)) [6]). Currently, the
fastest deterministic and randomized algorithms for Long
Directed Cycle run in times O�(6.74k) and O�(4k), re-
spectively [10].

In this work, we present a very simple (determinis-
tic) algorithm for Long Directed (s, t)-Path that runs in
time O�(4.884k). (Our algorithm is the first algorithm that
solves Long Directed (s, t)-Path.) We remark that as our
algorithm invokes an algorithm for Directed k-(s, t)-Path

as a black box, a faster deterministic algorithm for Di-

rected k-(s, t)-Path than the current state-of-art (that is,
the previously mentioned O�(2.597k)-time algorithm [9])
would also directly speed-up our algorithm. As a conse-
quence of our result, we also obtain a deterministic algo-
rithm that solves Long Directed Cycle in time O�(4.884k),
improving upon the previous best O�(6.74k)-time deter-
ministic algorithm for this problem. We remark that our
algorithm revisits ideas introduced in the papers [5] and
[10], and employs them in a manner that is (a) clean and
simple, and (b) results in a faster running time for Long
Directed Cycle.

Overview Let us give a short, informal overview of our al-
gorithm and its proof. First, if there exists an (s, t)-path in
G of length at least k and at most αk (for some 1.5 ≤
α ≤ 2), then we detect it using a known algorithm for
Directed k-(s, t)-Path (in Section 4). Else, we aim to re-
duce our problem to a simpler variant of it that is solvable
in polynomial time. Let us first explain this simpler vari-
ant (handled in Section 2). In this “balanced” variant, it
is “guaranteed” that if the input graph has a solution (of
length at least k), then all its solutions have length at least
2k. Additionally, if it has a solution, then there is a solution
where the first k vertices are “annotated by L”, and the
last k vertices are annotated by R . The simplicity of this
variant is observed by two lemmas with respect to a short-
est “well-annotated” k-path P (the statements are given
with α rather than 2 in order to reuse them later): the
first states that the shortest path (in the input graph) be-
tween the first and the (α −1)k-th vertex on P is (α −1)k,
and the second states that given a shortest path between
the first and the (α − 1)k-th vertex on P , this path does
not contain any vertex on the suffix of P that starts at its
(α−1)k +1-th vertex. Together, we show that these claims
imply that our variant can be solved by a simple usage of
BFS (to find the beginning of a solution) and a reachability
test (to find its end).

The crux of the algorithm lies in the reduction of the
general problem (once we know that no solution on at
most αk vertices exists). Here, we use two levels of an-
notations. First, we annotate the first (α − 1)k vertices of
a solution by L′ and the last k vertices of that solution by
R ′ (in Section 4). Specifically, we use the tool of universal
sets (see Preliminaries) to ensure that if there is a solu-
tion, then we will annotate it well (at least once and using
an exponential number of tries). We call the problem that
results (informally, the original problem where the sought
solution should respect our annotations) an “unbalanced”
variant of our problem. Then, to solve this unbalanced vari-
ant (in Section 3), we first “guess” the (α − 1)k-th vertex
on the sought solution and compute a shortest path from
s to it. Then, we remove the vertices of this path from the
graph (this removal is justified by relying on the two lem-
mas mentioned earlier), and annotate it using the tool of
universal sets. In this second level of annotations, we aim
to annotate the first (2 − α)k vertices of the sought solu-
tion by L, and the last (2 − α)k vertices of it by R . At this
point, we actually have the simpler variant at hand, since
we only need to find a solution on at least (2 − α)k ver-
tices, and we know that there is no solution on at most
2(2 − α)k vertices (since α ≥ 1.5).

Preliminaries Given a graph G , let V (G) and E(G) denote
the vertex and edge sets of G , respectively, and denote
n = |V (G)|. For a set A ⊆ V (G), let G[A] denote the sub-
graph of G induced by A, and define G − A as G[V (G) \ A].
Given two vertices s, t ∈ V (G) and an integer k, let �k

G(s, t)
denote the minimum length of an (s, t)-path in G whose
length is at least k, where �k

G (s, t) = −∞ if no such path
exists.

For a universe U , we let 2U denote the family of all
subsets of U . Our algorithm relies on the notion of univer-
sal set:

Definition 1.1. Let U be an n-element universe, and p, q ∈
N0. A family F ⊆ 2U is an (n, p, q)-universal set if for all
disjoint A, B ⊆ U such that |A| ≤ p and |B| ≤ q, there ex-
ists F ∈F such that A ⊆ F and B ∩ F = ∅.

It is known that small universal sets can be computed
efficiently:

Proposition 1.1 ([5]). Given an n-element universe, and p, q ∈
N0 , an (n, p, q)-universal set F of size O(

(p+q
p

)
2o(p+q) · log n)

can be computed in time O(
(p+q

p

)
2o(p+q) · n log n).

2. Balancedly annotated long (s, t)-paths

The purpose of this section is to handle the special case
of Long Directed (s, t)-Path where it is assumed that no
“short” path of length at least k exists (that is, a path of
length shorter than 2k but at least k), and that the pre-
fix and suffix of a solution (if one exists) are “annotated”.
Here, by annotating a solution we mean that its k first ver-
tices (those closest to s) belong to a set L, and its last k
vertices belong to a set R . Specifically, we prove the fol-
lowing lemma.

Lemma 2.1. There is a deterministic polynomial-time algo-
rithm, Alg1, that given an instance (G, s, t, k) of Long Directed
(s, t)-Path, and a partition (L, R) of V (G), satisfies the follow-
ing.3

• If �k
G(s, t) ≥ 2k and G has an (s, t)-path s = v1 → v2 →

·· · → v� = t such that � = �k
G(s, t), v1, v2, . . . , vk ∈ L

and v�−k+1, v�−k+2, . . . , v� ∈ R, then Alg1 accepts.
• If �k

G(s, t) = −∞, then Alg1 rejects.

3 In cases not covered by these conditions, Alg1 can either accept or
reject.

10 F.V. Fomin et al. / Information Processing Letters 140 (2018) 8–12
Towards the proof of this lemma, we need to establish
two results. We prove them in a general form in order to
reuse them in the next section.

Lemma 2.2. Fix 1 ≤ α. Let (G, s, t, k) be an instance of Long
Directed (s, t)-Path, and (L, R) be a partition of V (G). Sup-
pose that �k

G(s, t) ≥ �αk�, and G has an (s, t)-path s =
v1 → v2 → ·· · → v� = t such that � = �k

G(s, t), v1, v2, . . . ,
v�(α−1)k� ∈ L and v�−k+1, v�−k+2, . . . , v� ∈ R. Then, the length
of a shortest path from v1 to v�(α−1)k� in G[L] is �(α − 1)k�.

Proof. Let P be a shortest (v1, v�(α−1)k�)-path in G[L]. It is
clear that |V (P)| ≤ �(α−1)k�. Thus, to prove that |V (P)| =
�(α − 1)k�, suppose by way of contradiction that |V (P)| ≤
�(α − 1)k� − 1. Denote P = u1 → u2 → ·· · → ur , where
s = u1 and v�(α−1)k� = ur . Since v�−k+1, v�−k+2, . . . , v� ∈
R , we have that V (P) ∩{v�−k+1, v�−k+2, . . . , v�} = ∅. Then,
s = u1 → u2 → ·· · → ur → vk+1 → vk+2 → v�−k is a walk
in G that avoids the vertices v�−k+1, v�−k+2, . . . , v� . In par-
ticular, as r ≤ �(α − 1)k� − 1, this means that G has an
(s, v�−k)-path of length at most � − k − 1 that avoids the
vertices v�−k+1, v�−k+2, . . . , v� . By traversing this path and
then the path v�−k → v�−k+1 → ·· · → v� , we exhibit an
(s, t)-path in G of length strictly smaller than � (but of
length at least k and where the last k vertices belong to
R), which is a contradiction to � = �k

G(s, t). �
Lemma 2.3. Fix 1 ≤ α. Let (G, s, t, k) be an instance of Long
Directed (s, t)-Path, and (L, R) be a partition of V (G). Sup-
pose that �k

G(s, t) ≥ �αk�, and G has an (s, t)-path s =
v1 → v2 → ·· · → v� = t such that � = �k

G(s, t), v1, v2, . . . ,
v�(α−1)k� ∈ L and v�−k+1, v�−k+2, . . . , v� ∈ R. Then, for any
path P of length �(α − 1)k� from v1 to v�(α−1)k� in G[L], there
exists a path from v�(α−1)k� to v� in G − (V (P) \ {v�(α−1)k�})
of length at least k + 1.

Proof. Let P be a (v1, v�(α−1)k�)-path of length �(α − 1)k�
in G[L]. Since v�−k+1, v�−k+2, . . . , v� ∈ R , to prove the
lemma it is sufficient to show that P does not con-
tain any vertex from {v�(α−1)k�+1, v�(α−1)k�+2, . . . , v�−k}.
Suppose, by way of contradiction, that this claim is
false, and let i be the largest index of a vertex in
{v�(α−1)k�+1, v�(α−1)k�+2, . . . , v�−k} such that vi ∈ V (P).
Now, consider the path obtained by traversing P from v1
until vi , then traversing vi → vi+1 → ·· · → v�−k , and fi-
nally traversing v�−k → v�−k+1 → ·· · → v� . Notice that
this is an (s, t)-path in G of length strictly smaller than
� (but of length at least k and where the last k vertices
belong to R), which is a contradiction to � = �k

G(s, t). �
We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. Let (G, s, t, k) be an instance of Long
Directed (s, t)-Path, and a partition (L, R) of V (G). For ev-
ery vertex v ∈ L, Alg1 executes the following procedure.
First, it uses BFS to find a shortest path P from s to v in
G[L]. If such a path P exists and its length is k, then Alg1
proceeds as follows. It uses BFS to determine whether t is
reachable from v in G − (V (P) \ {v}). If the answer is posi-
tive, Alg1 accepts. Eventually, if Alg1 did not accept for any
v ∈ L, then it rejects. Clearly, the algorithm runs in polyno-
mial time.

In one direction, it is clear that if the algorithm ac-
cepts, then G has an (s, t)-path of length at least k. For
the other direction, suppose that �k

G (s, t) ≥ 2k, and G has
an (s, t)-path s = v1 → v2 → . . . → v� = t such that � =
�k

G(s, t), v1, v2, . . . , vk ∈ L and v�−k+1, v�−k+2, . . . , v� ∈ R .
Then, there exists a path of length k from v1 to vk in G[L].
By Lemma 2.2 (with α = 2), we also know that no shorter
path exists. Moreover, Lemma 2.3 (with α = 2) states that
for any path P of length k from s to vk in G[L], t is reach-
able from vk in G − (V (P) \ {vk}). Thus, at the latest, Alg1
accepts in the iteration where it examines v = vk . �
3. Unbalancedly annotated long (s, t)-paths

In this section we handle another special case of Long
Directed (s, t)-Path where the prefix and suffix of a so-
lution (if one exists) are “annotated”. However, the cur-
rent annotation may not be balanced as in Lemma 2.1
(specifically, the number of annotated vertices closer to s
is smaller), and the paths whose absence is assumed are
not as long as those in Lemma 2.1. This special case lies
at the heart of our algorithm, and it invokes the algorithm
developed in the previous section as a black box. Specifi-
cally, we prove the following lemma.

Lemma 3.1. Fix 1.5 ≤ α ≤ 2. There is a deterministic
O�(4(2−α)k2o(k))-time algorithm, Alg2, that given an instance
(G, s, t, k) of Long Directed (s, t)-Path, and a partition (L, R)

of V (G), satisfies the following.

• If �k
G(s, t) ≥ �αk�, and G has an (s, t)-path s = v1 →

v2 → ·· · → v� = t such that � = �k
G(s, t), v1, v2, . . . ,

v�(α−1)k� ∈ L and v�−k+1, v�−k+2, . . . , v� ∈ R, then Alg2
accepts.

• If �k
G(s, t) = −∞, then Alg2 rejects.

Proof. Let (G, s, t, k) be an instance of Long Directed
(s, t)-Path, and let (L, R) be a partition of V (G). For
every vertex v ∈ L, Alg2 executes the following proce-
dure. First, it uses BFS to find a shortest path P from
s to v in G[L]. If such a path P exists and its length
is �(α − 1)k�, then Alg2 executes the following. It first
uses Proposition 1.1 to compute an (n, k − �(α − 1)k�, k −
�(α − 1)k�)-universal set F . For every F ∈ F and vertex
u /∈ V (P) that is an outgoing neighbor of v , Alg2 calls Alg1
with (G ′ := G − V (P), u, t, k −�(α −1)k�) and the partition
(F \ V (P), V (G) \ (F ∪ V (P))) as input. Eventually, Alg2 ac-
cepts if and only if at least one call to Alg1 accepted.

By Proposition 1.1 and Lemma 2.1, Alg2 runs in time
O�(

(2(k−�(α−1)k�)
k−�(α−1)k�

)
2o(k)), which implies the bound

O�(4(2−α)k2o(k)).
In one direction, suppose that Alg2 accepted. Then, by

Lemma 2.1, there is a vertex v ∈ V (G) and an out-neighbor
u of v for which there exist vertex disjoint paths P and P ′
in G such that P is a path of length at least �(α − 1)k�
from s to v , and P ′ is a path of length k − �(α − 1)k� from
u to t . Thus, G has an (s, t)-path of length at least k.

F.V. Fomin et al. / Information Processing Letters 140 (2018) 8–12 11
For the other direction, suppose that �k
G(s, t) ≥ �αk�,

and G has an (s, t)-path s = v1 → v2 → ·· · → v� =
t such that � = �k

G(s, t), v1, v2, . . . , v�(α−1)k� ∈ L and
v�−k+1, v�−k+2, . . . , v� ∈ R . Then, there exists a path of
length �(α − 1)k� from v1 to v�(α−1)k� in G[L]. By
Lemma 2.2, we also know that no shorter path ex-
ists. Let us now examine iterations where v = v�(α−1)k� .
Then, by the former arguments, Alg2 computes a path
P of length exactly �(α − 1)k� from s to v�(α−1)k� . By
Lemma 2.3, there exists a path from v�(α−1)k� to v� in
G − (V (P) \ {v�(α−1)k�}) of length at least k + 1. Let us
denote a shortest such path by P ′ . Define P � as P ′ from
which we remove v�(α−1)k� . Next, consider the iteration
where u is selected to be the first vertex on P � .

We claim that the length of P � is �
k−�(α−1)k�
G−V (P) (u, t)

(which means that �
k−�(α−1)k�
G−V (P) (u, t) ≥ k). To prove this

claim, we need to show that G − V (P) has no (u, t)-path of
length at least k − �(α − 1)k� that is shorter than k. Sup-
pose, by way of contradiction, that such a path P̂ exists.
Then, by traversing first P , then the edge from v to u and
next the path P̂ , we exhibit a path Q such that |V (Q)| =
|V (P)| + |V (P̂)| ≥ �(α − 1)k� + (k − �(α − 1)k�) = k and
|V (Q)| = |V (P)| +|V (P̂)| ≤ �(α−1)k� +k −1 < �αk�. How-
ever, this is a contradiction to �k

G (s, t) ≥ �αk�.
Let us observe that k − �(α − 1)k� ≤ 0.5k because

α ≥ 1.5. Thus, by Definition 1.1, there exists F ∈ F such
that each of the first k − �(α − 1)k� vertices on P � be-
long to F and none of the last k − �(α − 1)k� vertices
on P � belongs to F . Consider an iteration where such F
is examined. In order to complete the proof, it is suffi-
cient to show that Alg1 accepts (G − V (P), u, t, k − �(α −
1)k�) with the partition (F \ V (P), V (G) \ (F ∪ V (P))).
To this end, by Lemma 2.1, it remains to show that
�

k−�(α−1)k�
G−V (P) (u, t) ≥ 2(k − �(α − 1)k�). However, we have

shown that �k−�(α−1)k�
G−V (P) (u, t) ≥ k, and k ≥ 2(k −�(α − 1)k�)

because α ≥ 1.5. �
4. (Normal) long (s, t)-paths

Having proved Lemma 3.1, we now proceed to prove a
lemma that, together with Proposition 4.1, will lead us to
our main theorem.

Lemma 4.1. Fix 1.5 ≤ α ≤ 2. There is a deterministic

O�((
42−ααα

(α − 1)α−1)k · 2o(k))-time algorithm, LongAlg, that given

an instance (G, s, t, k) of Long Directed (s, t)-Path where ei-
ther �k

G(s, t) ≥ �αk� or �k
G(s, t) = −∞, accepts if and only if

G has an (s, t)-path of length at least k.

Proof. Let (G, s, t, k) be an instance of Long Directed
(s, t)-Path where either �k

G(s, t) ≥ �αk� or �k
G(s, t) = −∞.

LongAlg first uses Proposition 1.1 to compute an (n, �(α −
1)k�, k)-universal set F . For every F ∈ F , LongAlg calls
Alg2 with (G, s, t, k) and the partition (F , V (G) \ F) as in-
put. Eventually, LongAlg accepts if and only if at least one
call to Alg2 accepted.

By Proposition 1.1 and Lemma 3.1, LongAlg runs in
time O�(

(�αk�)2o(k) · 4(2−α)k), which implies (by Stirling’s
k
approximation) the bound O�((42−ααα

(α−1)α−1)k · 2o(k)). In one
direction, Lemma 3.1 directly implies that if LongAlg ac-
cepts, then G has an (s, t)-path of length at least k. For
the other direction, suppose that G has an (s, t)-path of
length at least k. Then, G has a path s = v1 → v2 → ·· · →
v� = t such that � = �k

G(s, t) ≥ �αk�. By Definition 1.1,
there exists F ∈ F such that v1, v2, . . . , v�(α−1)k� ∈ F and
v�−k+1, v�−k+2, . . . , v� /∈ F . By Lemma 3.1, when this set
F is examined, Alg2 accepts. Thus, LongAlg eventually ac-
cepts. �

Our algorithm also relies on the following proposition.

Proposition 4.1 ([9]). There is a deterministic algorithm,
ShortAlg, that solves Directed k-(s, t)-Path in time
O�(2.59606k).

Finally, we prove our main theorem.

Theorem 1. There is a deterministic algorithm, MainAlg, that
solves Long Directed (s, t)-Path in time O�(4.884k).

Proof. Fix 1.5 ≤ α ≤ 2 (to be determined). Given an in-
stance (G, s, t, k) of Long Directed (s, t)-Path, MainAlg
executes the following computation. For all � ∈ {k, k +
1, . . . , �αk�}, it calls ShortAlg with (G, s, t, �) as input, and
accepts if ShortAlg accepts. If it did not accept in any it-
eration, then it calls LongAlg with (G, s, t, k) as input, and
accepts if and only if LongAlg accepts.

The correctness of the algorithm directly follows from
Lemma 4.1 and Proposition 4.1. Moreover, by Lemma 4.1
and Proposition 4.1, the running time of MainAlg is

O�(max{2.59606αk, (
42−ααα

(α − 1)α−1)k · 2o(k)}).
By choosing α = 1.6624, we derive that MainAlg runs in
time O�(4.884k). �

As one can solve Long Directed Cycle by running, for
every edge e ∈ E(G), MainAlg with s and t being the target
and source of e, respectively, we have the following corol-
lary.

Corollary 4.1. There is a deterministic algorithm that solves
Long Directed Cycle in time O�(4.884k).

References

[1] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Narrow sieves for
parameterized paths and packings, J. Comput. Syst. Sci. 87 (2017)
119–139.

[2] J. Chen, J. Kneis, S. Lu, D. Molle, S. Richter, P. Rossmanith, S.H. Sze,
F. Zhang, Randomized divide-and-conquer: improved path, matching,
and packing algorithms, SIAM J. Comput. 38 (6) (2009) 2526–2547.

[3] F.V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, Representative sets
of product families, in: ESA, 2014, pp. 443–454.

[4] F.V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, Efficient compu-
tation of representative families with applications in parameterized
and exact algorithms, J. ACM 63 (4) (2016) 1–60.

[5] F.V. Fomin, D. Lokshtanov, S. Saurabh, Efficient computation of rep-
resentative sets with applications in parameterized and exact algo-
rithms, in: SODA, 2014, pp. 142–151.

http://refhub.elsevier.com/S0020-0190(18)30111-X/bib6E6172726F77536965s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib6E6172726F77536965s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib6E6172726F77536965s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib646976416E64436F6Cs1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib646976416E64436F6Cs1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib646976416E64436F6Cs1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib70726F6475637446616Ds1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib70726F6475637446616Ds1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib44424C503A6A6F75726E616C732F6A61636D2F466F6D696E4C50533136s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib44424C503A6A6F75726E616C732F6A61636D2F466F6D696E4C50533136s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib44424C503A6A6F75726E616C732F6A61636D2F466F6D696E4C50533136s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib726570726573656E746174697665s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib726570726573656E746174697665s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib726570726573656E746174697665s1

12 F.V. Fomin et al. / Information Processing Letters 140 (2018) 8–12
[6] H.N. Gabow, S. Nie, Finding a long directed cycle, ACM Trans. Algo-
rithms 4 (1) (2008).

[7] H. Shachnai, M. Zehavi, Representative families: a unified tradeoff-
based approach, J. Comput. Syst. Sci. 82 (3) (2016) 488–502.

[8] R. Williams, Finding paths of length k in O ∗(2k) time, Inf. Process.
Lett. 109 (6) (2009) 315–318.
[9] M. Zehavi, Mixing color coding-related techniques, in: ESA, 2015,
pp. 1037–1049.

[10] M. Zehavi, A randomized algorithm for long directed cycle, Inf. Pro-
cess. Lett. 116 (6) (2016) 419–422.

http://refhub.elsevier.com/S0020-0190(18)30111-X/bib6761626F774E69653038s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib6761626F774E69653038s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib72657046616D556E69417070s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib72657046616D556E69417070s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib77696C6C69616D734B50617468s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib77696C6C69616D734B50617468s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib6D6978696E67s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib6D6978696E67s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib44424C503A6A6F75726E616C732F69706C2F5A65686176693136s1
http://refhub.elsevier.com/S0020-0190(18)30111-X/bib44424C503A6A6F75726E616C732F69706C2F5A65686176693136s1

	Long directed (s,t)-path: FPT algorithm
	1 Introduction
	2 Balancedly annotated long (s,t)-paths
	3 Unbalancedly annotated long (s,t)-paths
	4 (Normal) long (s,t)-paths
	References

