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Given a digraph G , two vertices s, t ∈ V (G) and a non-negative integer k, the Long Directed 
(s, t)-Path problem asks whether G has a path of length at least k from s to t. We present 
a simple algorithm that solves Long Directed (s, t)-Path in time O�(4.884k). This results 
also in an improvement upon the previous fastest algorithm for Long Directed Cycle.
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1. Introduction

Given a digraph (directed graph) G , two vertices s, t ∈
V (G) and a non-negative integer k, the Long Directed 
(s, t)-Path problem asks whether G has an (s, t)-path 
(i.e. a path from s to t) of length at least k.1 Here, the term 
length refers to the number of vertices on the path, and 
paths are assumed to be directed simple paths. Observe 
that Long Directed (s, t)-Path and Directed k-(s, t)-Path

are not equivalent problems, where that latter problem 
asks whether G has an (s, t)-path of length exactly k. In-
deed, G may not have any (s, t)-path of length exactly k, 
or more generally, it may not even have any (s, t)-path 
of “short” length (say, length 10k), but it may have an 
(s, t)-path of “long” length (say, 100k). For example, the 
only (s, t)-path of length at least k in G might be a Hamil-
tonian path.

E-mail addresses: fomin@ii.uib.no (F.V. Fomin), daniello@ii.uib.no
(D. Lokshtanov), fahad.panolan@ii.uib.no (F. Panolan), saket@imsc.res.in
(S. Saurabh), meiravze@bgu.ac.il (M. Zehavi).

1 In this paper, we consider only digraphs (our algorithm also works for 
undirected graphs).
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In the classic Directed k-Path problem, the objective is 
to determine whether G has a path of length at least k. 
Both Long Directed (s, t)-Path and Directed k-(s, t)-Path

are generalizations of this problem. For the Directed 
k-Path problem, a large number of algorithms have been 
developed over the years (for some recent developments, 
see [2,8,1,3,7,4,9]). Currently, the fastest deterministic al-
gorithm for this problem runs in time O�(2.597k) [9]. 
Notably, algorithms for Directed k-Path implicitly solve
Directed k-(s, t)-Path. However, in the case of Long Di-

rected (s, t)-Path, these algorithms do not solve the prob-
lem. To substantiate the difficulty posed by Long Directed 
(s, t)-Path, let us consider the related Long Directed Cy-

cle and Directed k-Cycle problems. The first problem asks 
whether G has a cycle of length at least k, while the 
second problem asks whether G has a cycle of length ex-
actly k. It has been known how to solve Directed k-Cycle

in time O�(2O(k)) already in 1994.2 In contrast, only in 
2014 was it first known how to solve Long Directed Cycle

in time O�(2O(k)) [5] (previously, this problem was only 

2 The standard notation O� is used to hide factors polynomial in the 
input size.
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known to be solvable in time O�(kO(k)) [6]). Currently, the 
fastest deterministic and randomized algorithms for Long 
Directed Cycle run in times O�(6.74k) and O�(4k), re-
spectively [10].

In this work, we present a very simple (determinis-
tic) algorithm for Long Directed (s, t)-Path that runs in 
time O�(4.884k). (Our algorithm is the first algorithm that 
solves Long Directed (s, t)-Path.) We remark that as our 
algorithm invokes an algorithm for Directed k-(s, t)-Path

as a black box, a faster deterministic algorithm for Di-

rected k-(s, t)-Path than the current state-of-art (that is, 
the previously mentioned O�(2.597k)-time algorithm [9]) 
would also directly speed-up our algorithm. As a conse-
quence of our result, we also obtain a deterministic algo-
rithm that solves Long Directed Cycle in time O�(4.884k), 
improving upon the previous best O�(6.74k)-time deter-
ministic algorithm for this problem. We remark that our 
algorithm revisits ideas introduced in the papers [5] and 
[10], and employs them in a manner that is (a) clean and 
simple, and (b) results in a faster running time for Long 
Directed Cycle.

Overview Let us give a short, informal overview of our al-
gorithm and its proof. First, if there exists an (s, t)-path in 
G of length at least k and at most αk (for some 1.5 ≤
α ≤ 2), then we detect it using a known algorithm for
Directed k-(s, t)-Path (in Section 4). Else, we aim to re-
duce our problem to a simpler variant of it that is solvable 
in polynomial time. Let us first explain this simpler vari-
ant (handled in Section 2). In this “balanced” variant, it 
is “guaranteed” that if the input graph has a solution (of 
length at least k), then all its solutions have length at least 
2k. Additionally, if it has a solution, then there is a solution 
where the first k vertices are “annotated by L”, and the 
last k vertices are annotated by R . The simplicity of this 
variant is observed by two lemmas with respect to a short-
est “well-annotated” k-path P (the statements are given 
with α rather than 2 in order to reuse them later): the 
first states that the shortest path (in the input graph) be-
tween the first and the (α −1)k-th vertex on P is (α −1)k, 
and the second states that given a shortest path between 
the first and the (α − 1)k-th vertex on P , this path does 
not contain any vertex on the suffix of P that starts at its 
(α−1)k +1-th vertex. Together, we show that these claims 
imply that our variant can be solved by a simple usage of 
BFS (to find the beginning of a solution) and a reachability 
test (to find its end).

The crux of the algorithm lies in the reduction of the 
general problem (once we know that no solution on at 
most αk vertices exists). Here, we use two levels of an-
notations. First, we annotate the first (α − 1)k vertices of 
a solution by L′ and the last k vertices of that solution by 
R ′ (in Section 4). Specifically, we use the tool of universal 
sets (see Preliminaries) to ensure that if there is a solu-
tion, then we will annotate it well (at least once and using 
an exponential number of tries). We call the problem that 
results (informally, the original problem where the sought 
solution should respect our annotations) an “unbalanced” 
variant of our problem. Then, to solve this unbalanced vari-
ant (in Section 3), we first “guess” the (α − 1)k-th vertex 
on the sought solution and compute a shortest path from 
s to it. Then, we remove the vertices of this path from the 
graph (this removal is justified by relying on the two lem-
mas mentioned earlier), and annotate it using the tool of 
universal sets. In this second level of annotations, we aim 
to annotate the first (2 − α)k vertices of the sought solu-
tion by L, and the last (2 − α)k vertices of it by R . At this 
point, we actually have the simpler variant at hand, since 
we only need to find a solution on at least (2 − α)k ver-
tices, and we know that there is no solution on at most 
2(2 − α)k vertices (since α ≥ 1.5).

Preliminaries Given a graph G , let V (G) and E(G) denote 
the vertex and edge sets of G , respectively, and denote 
n = |V (G)|. For a set A ⊆ V (G), let G[A] denote the sub-
graph of G induced by A, and define G − A as G[V (G) \ A]. 
Given two vertices s, t ∈ V (G) and an integer k, let �k

G(s, t)
denote the minimum length of an (s, t)-path in G whose 
length is at least k, where �k

G (s, t) = −∞ if no such path 
exists.

For a universe U , we let 2U denote the family of all 
subsets of U . Our algorithm relies on the notion of univer-
sal set:

Definition 1.1. Let U be an n-element universe, and p, q ∈
N0. A family F ⊆ 2U is an (n, p, q)-universal set if for all 
disjoint A, B ⊆ U such that |A| ≤ p and |B| ≤ q, there ex-
ists F ∈F such that A ⊆ F and B ∩ F = ∅.

It is known that small universal sets can be computed 
efficiently:

Proposition 1.1 ([5]). Given an n-element universe, and p, q ∈
N0 , an (n, p, q)-universal set F of size O(

(p+q
p

)
2o(p+q) · log n)

can be computed in time O(
(p+q

p

)
2o(p+q) · n log n).

2. Balancedly annotated long (s, t)-paths

The purpose of this section is to handle the special case 
of Long Directed (s, t)-Path where it is assumed that no 
“short” path of length at least k exists (that is, a path of 
length shorter than 2k but at least k), and that the pre-
fix and suffix of a solution (if one exists) are “annotated”. 
Here, by annotating a solution we mean that its k first ver-
tices (those closest to s) belong to a set L, and its last k
vertices belong to a set R . Specifically, we prove the fol-
lowing lemma.

Lemma 2.1. There is a deterministic polynomial-time algo-
rithm, Alg1, that given an instance (G, s, t, k) of Long Directed 
(s, t)-Path, and a partition (L, R) of V (G), satisfies the follow-
ing.3

• If �k
G(s, t) ≥ 2k and G has an (s, t)-path s = v1 → v2 →

·· · → v� = t such that � = �k
G(s, t), v1, v2, . . . , vk ∈ L

and v�−k+1, v�−k+2, . . . , v� ∈ R, then Alg1 accepts.
• If �k

G(s, t) = −∞, then Alg1 rejects.

3 In cases not covered by these conditions, Alg1 can either accept or 
reject.
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Towards the proof of this lemma, we need to establish 
two results. We prove them in a general form in order to 
reuse them in the next section.

Lemma 2.2. Fix 1 ≤ α. Let (G, s, t, k) be an instance of Long 
Directed (s, t)-Path, and (L, R) be a partition of V (G). Sup-
pose that �k

G(s, t) ≥ �αk�, and G has an (s, t)-path s =
v1 → v2 → ·· · → v� = t such that � = �k

G(s, t), v1, v2, . . . ,
v�(α−1)k� ∈ L and v�−k+1, v�−k+2, . . . , v� ∈ R. Then, the length 
of a shortest path from v1 to v�(α−1)k� in G[L] is �(α − 1)k�.

Proof. Let P be a shortest (v1, v�(α−1)k�)-path in G[L]. It is 
clear that |V (P )| ≤ �(α−1)k�. Thus, to prove that |V (P )| =
�(α − 1)k�, suppose by way of contradiction that |V (P )| ≤
�(α − 1)k� − 1. Denote P = u1 → u2 → ·· · → ur , where 
s = u1 and v�(α−1)k� = ur . Since v�−k+1, v�−k+2, . . . , v� ∈
R , we have that V (P ) ∩{v�−k+1, v�−k+2, . . . , v�} = ∅. Then, 
s = u1 → u2 → ·· · → ur → vk+1 → vk+2 → v�−k is a walk 
in G that avoids the vertices v�−k+1, v�−k+2, . . . , v� . In par-
ticular, as r ≤ �(α − 1)k� − 1, this means that G has an 
(s, v�−k)-path of length at most � − k − 1 that avoids the 
vertices v�−k+1, v�−k+2, . . . , v� . By traversing this path and 
then the path v�−k → v�−k+1 → ·· · → v� , we exhibit an 
(s, t)-path in G of length strictly smaller than � (but of 
length at least k and where the last k vertices belong to 
R), which is a contradiction to � = �k

G(s, t). �
Lemma 2.3. Fix 1 ≤ α. Let (G, s, t, k) be an instance of Long 
Directed (s, t)-Path, and (L, R) be a partition of V (G). Sup-
pose that �k

G(s, t) ≥ �αk�, and G has an (s, t)-path s =
v1 → v2 → ·· · → v� = t such that � = �k

G(s, t), v1, v2, . . . ,
v�(α−1)k� ∈ L and v�−k+1, v�−k+2, . . . , v� ∈ R. Then, for any 
path P of length �(α − 1)k� from v1 to v�(α−1)k� in G[L], there 
exists a path from v�(α−1)k� to v� in G − (V (P ) \ {v�(α−1)k�})
of length at least k + 1.

Proof. Let P be a (v1, v�(α−1)k�)-path of length �(α − 1)k�
in G[L]. Since v�−k+1, v�−k+2, . . . , v� ∈ R , to prove the 
lemma it is sufficient to show that P does not con-
tain any vertex from {v�(α−1)k�+1, v�(α−1)k�+2, . . . , v�−k}. 
Suppose, by way of contradiction, that this claim is 
false, and let i be the largest index of a vertex in 
{v�(α−1)k�+1, v�(α−1)k�+2, . . . , v�−k} such that vi ∈ V (P ). 
Now, consider the path obtained by traversing P from v1
until vi , then traversing vi → vi+1 → ·· · → v�−k , and fi-
nally traversing v�−k → v�−k+1 → ·· · → v� . Notice that 
this is an (s, t)-path in G of length strictly smaller than 
� (but of length at least k and where the last k vertices 
belong to R), which is a contradiction to � = �k

G(s, t). �
We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. Let (G, s, t, k) be an instance of Long 
Directed (s, t)-Path, and a partition (L, R) of V (G). For ev-
ery vertex v ∈ L, Alg1 executes the following procedure. 
First, it uses BFS to find a shortest path P from s to v in 
G[L]. If such a path P exists and its length is k, then Alg1
proceeds as follows. It uses BFS to determine whether t is 
reachable from v in G − (V (P ) \ {v}). If the answer is posi-
tive, Alg1 accepts. Eventually, if Alg1 did not accept for any 
v ∈ L, then it rejects. Clearly, the algorithm runs in polyno-
mial time.

In one direction, it is clear that if the algorithm ac-
cepts, then G has an (s, t)-path of length at least k. For 
the other direction, suppose that �k

G (s, t) ≥ 2k, and G has 
an (s, t)-path s = v1 → v2 → . . . → v� = t such that � =
�k

G(s, t), v1, v2, . . . , vk ∈ L and v�−k+1, v�−k+2, . . . , v� ∈ R . 
Then, there exists a path of length k from v1 to vk in G[L]. 
By Lemma 2.2 (with α = 2), we also know that no shorter 
path exists. Moreover, Lemma 2.3 (with α = 2) states that 
for any path P of length k from s to vk in G[L], t is reach-
able from vk in G − (V (P ) \ {vk}). Thus, at the latest, Alg1
accepts in the iteration where it examines v = vk . �
3. Unbalancedly annotated long (s, t)-paths

In this section we handle another special case of Long 
Directed (s, t)-Path where the prefix and suffix of a so-
lution (if one exists) are “annotated”. However, the cur-
rent annotation may not be balanced as in Lemma 2.1
(specifically, the number of annotated vertices closer to s
is smaller), and the paths whose absence is assumed are 
not as long as those in Lemma 2.1. This special case lies 
at the heart of our algorithm, and it invokes the algorithm 
developed in the previous section as a black box. Specifi-
cally, we prove the following lemma.

Lemma 3.1. Fix 1.5 ≤ α ≤ 2. There is a deterministic
O�(4(2−α)k2o(k))-time algorithm, Alg2, that given an instance 
(G, s, t, k) of Long Directed (s, t)-Path, and a partition (L, R)

of V (G), satisfies the following.

• If �k
G(s, t) ≥ �αk�, and G has an (s, t)-path s = v1 →

v2 → ·· · → v� = t such that � = �k
G(s, t), v1, v2, . . . ,

v�(α−1)k� ∈ L and v�−k+1, v�−k+2, . . . , v� ∈ R, then Alg2
accepts.

• If �k
G(s, t) = −∞, then Alg2 rejects.

Proof. Let (G, s, t, k) be an instance of Long Directed 
(s, t)-Path, and let (L, R) be a partition of V (G). For 
every vertex v ∈ L, Alg2 executes the following proce-
dure. First, it uses BFS to find a shortest path P from 
s to v in G[L]. If such a path P exists and its length 
is �(α − 1)k�, then Alg2 executes the following. It first 
uses Proposition 1.1 to compute an (n, k − �(α − 1)k�, k −
�(α − 1)k�)-universal set F . For every F ∈ F and vertex 
u /∈ V (P ) that is an outgoing neighbor of v , Alg2 calls Alg1
with (G ′ := G − V (P ), u, t, k −�(α −1)k�) and the partition 
(F \ V (P ), V (G) \ (F ∪ V (P ))) as input. Eventually, Alg2 ac-
cepts if and only if at least one call to Alg1 accepted.

By Proposition 1.1 and Lemma 2.1, Alg2 runs in time 
O�(

(2(k−�(α−1)k�)
k−�(α−1)k�

)
2o(k)), which implies the bound

O�(4(2−α)k2o(k)).
In one direction, suppose that Alg2 accepted. Then, by 

Lemma 2.1, there is a vertex v ∈ V (G) and an out-neighbor 
u of v for which there exist vertex disjoint paths P and P ′
in G such that P is a path of length at least �(α − 1)k�
from s to v , and P ′ is a path of length k − �(α − 1)k� from 
u to t . Thus, G has an (s, t)-path of length at least k.
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For the other direction, suppose that �k
G(s, t) ≥ �αk�, 

and G has an (s, t)-path s = v1 → v2 → ·· · → v� =
t such that � = �k

G(s, t), v1, v2, . . . , v�(α−1)k� ∈ L and 
v�−k+1, v�−k+2, . . . , v� ∈ R . Then, there exists a path of 
length �(α − 1)k� from v1 to v�(α−1)k� in G[L]. By
Lemma 2.2, we also know that no shorter path ex-
ists. Let us now examine iterations where v = v�(α−1)k� . 
Then, by the former arguments, Alg2 computes a path 
P of length exactly �(α − 1)k� from s to v�(α−1)k� . By 
Lemma 2.3, there exists a path from v�(α−1)k� to v� in 
G − (V (P ) \ {v�(α−1)k�}) of length at least k + 1. Let us 
denote a shortest such path by P ′ . Define P � as P ′ from 
which we remove v�(α−1)k� . Next, consider the iteration 
where u is selected to be the first vertex on P � .

We claim that the length of P � is �
k−�(α−1)k�
G−V (P ) (u, t)

(which means that �
k−�(α−1)k�
G−V (P ) (u, t) ≥ k). To prove this 

claim, we need to show that G − V (P ) has no (u, t)-path of 
length at least k − �(α − 1)k� that is shorter than k. Sup-
pose, by way of contradiction, that such a path P̂ exists. 
Then, by traversing first P , then the edge from v to u and 
next the path P̂ , we exhibit a path Q such that |V (Q )| =
|V (P )| + |V ( P̂ )| ≥ �(α − 1)k� + (k − �(α − 1)k�) = k and 
|V (Q )| = |V (P )| +|V ( P̂ )| ≤ �(α−1)k� +k −1 < �αk�. How-
ever, this is a contradiction to �k

G (s, t) ≥ �αk�.
Let us observe that k − �(α − 1)k� ≤ 0.5k because 

α ≥ 1.5. Thus, by Definition 1.1, there exists F ∈ F such 
that each of the first k − �(α − 1)k� vertices on P � be-
long to F and none of the last k − �(α − 1)k� vertices 
on P � belongs to F . Consider an iteration where such F
is examined. In order to complete the proof, it is suffi-
cient to show that Alg1 accepts (G − V (P ), u, t, k − �(α −
1)k�) with the partition (F \ V (P ), V (G) \ (F ∪ V (P ))). 
To this end, by Lemma 2.1, it remains to show that 
�

k−�(α−1)k�
G−V (P ) (u, t) ≥ 2(k − �(α − 1)k�). However, we have 

shown that �k−�(α−1)k�
G−V (P ) (u, t) ≥ k, and k ≥ 2(k −�(α − 1)k�)

because α ≥ 1.5. �
4. (Normal) long (s, t)-paths

Having proved Lemma 3.1, we now proceed to prove a 
lemma that, together with Proposition 4.1, will lead us to 
our main theorem.

Lemma 4.1. Fix 1.5 ≤ α ≤ 2. There is a deterministic

O�((
42−ααα

(α − 1)α−1 )k · 2o(k))-time algorithm, LongAlg, that given 

an instance (G, s, t, k) of Long Directed (s, t)-Path where ei-
ther �k

G(s, t) ≥ �αk� or �k
G(s, t) = −∞, accepts if and only if 

G has an (s, t)-path of length at least k.

Proof. Let (G, s, t, k) be an instance of Long Directed 
(s, t)-Path where either �k

G(s, t) ≥ �αk� or �k
G(s, t) = −∞. 

LongAlg first uses Proposition 1.1 to compute an (n, �(α −
1)k�, k)-universal set F . For every F ∈ F , LongAlg calls 
Alg2 with (G, s, t, k) and the partition (F , V (G) \ F ) as in-
put. Eventually, LongAlg accepts if and only if at least one 
call to Alg2 accepted.

By Proposition 1.1 and Lemma 3.1, LongAlg runs in 
time O�(

(�αk�)2o(k) · 4(2−α)k), which implies (by Stirling’s 
k
approximation) the bound O�(( 42−ααα

(α−1)α−1 )k · 2o(k)). In one 
direction, Lemma 3.1 directly implies that if LongAlg ac-
cepts, then G has an (s, t)-path of length at least k. For 
the other direction, suppose that G has an (s, t)-path of 
length at least k. Then, G has a path s = v1 → v2 → ·· · →
v� = t such that � = �k

G(s, t) ≥ �αk�. By Definition 1.1, 
there exists F ∈ F such that v1, v2, . . . , v�(α−1)k� ∈ F and 
v�−k+1, v�−k+2, . . . , v� /∈ F . By Lemma 3.1, when this set 
F is examined, Alg2 accepts. Thus, LongAlg eventually ac-
cepts. �

Our algorithm also relies on the following proposition.

Proposition 4.1 ([9]). There is a deterministic algorithm,
ShortAlg, that solves Directed k-(s, t)-Path in time
O�(2.59606k).

Finally, we prove our main theorem.

Theorem 1. There is a deterministic algorithm, MainAlg, that 
solves Long Directed (s, t)-Path in time O�(4.884k).

Proof. Fix 1.5 ≤ α ≤ 2 (to be determined). Given an in-
stance (G, s, t, k) of Long Directed (s, t)-Path, MainAlg
executes the following computation. For all � ∈ {k, k +
1, . . . , �αk�}, it calls ShortAlg with (G, s, t, �) as input, and 
accepts if ShortAlg accepts. If it did not accept in any it-
eration, then it calls LongAlg with (G, s, t, k) as input, and 
accepts if and only if LongAlg accepts.

The correctness of the algorithm directly follows from 
Lemma 4.1 and Proposition 4.1. Moreover, by Lemma 4.1
and Proposition 4.1, the running time of MainAlg is

O�(max{2.59606αk, (
42−ααα

(α − 1)α−1 )k · 2o(k)}).
By choosing α = 1.6624, we derive that MainAlg runs in 
time O�(4.884k). �

As one can solve Long Directed Cycle by running, for 
every edge e ∈ E(G), MainAlg with s and t being the target 
and source of e, respectively, we have the following corol-
lary.

Corollary 4.1. There is a deterministic algorithm that solves
Long Directed Cycle in time O�(4.884k).
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