
35

Subexponential Parameterized Algorithm

for Interval Completion

IVAN BLIZNETS, St. Petersburg Academic University of the Russian Academy of Sciences, Russia

FEDOR V. FOMIN, Department of Informatics, University of Bergen, Norway

MARCIN PILIPCZUK and MICHAŁ PILIPCZUK, Institute of Informatics,

University of Warsaw, Poland

In the Interval Completion problem we are given an n-vertex graph G and an integer k , and the task is to

transform G by making use of at most k edge additions into an interval graph. This is a fundamental graph

modification problem with applications in sparse matrix multiplication and molecular biology. The question

about fixed-parameter tractability of Interval Completion was asked by Kaplan et al. [FOCS 1994; SIAM

J. Comput. 1999] and was answered affirmatively more than a decade later by Villanger et al. [STOC 2007;

SIAM J. Comput. 2009], who presented an algorithm with running time O (k2kn3m). We give the first subex-

ponential parameterized algorithm solving Interval Completion in time kO (
√

k)nO (1) . This adds Interval

Completion to a very small list of parameterized graph modification problems solvable in subexponential

time.

CCS Concepts: • Theory of computation → Graph algorithms analysis; Fixed parameter tractability;

Additional Key Words and Phrases: Subexponential algorithms, interval graphs, completion problems, graph

modification problems

ACM Reference format:

Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michał Pilipczuk. 2018. Subexponential Parameterized

Algorithm for Interval Completion. ACM Trans. Algorithms 14, 3, Article 35 (June 2018), 62 pages.

https://doi.org/10.1145/3186896

1 INTRODUCTION

In the Interval Completion problem, we are asked if a given graph G can be complemented by
at most k edges into an interval graph, that is, the intersection graph of intervals of the real line.
This is a fundamental NP-complete problem, mentioned as problem GT35 in Garey and Johnson
[17], arising naturally in different areas. In sparse matrix computations, the problem is equivalent
to reordering columns and rows of a matrix, thereby reducing its profile [19]. In molecular biology,
the problem models the task of building a map describing the relative positions of the clones [20,
26]. Interval Completion fits into the broader class of graph modification problems on which
hundreds of papers have been written. The systematic study of the parameterized complexity

Authors’ addresses: I. Bliznets, St. Petersburg Academic University of the Russian Academy of Sciences, 27 Fontanka,

St.Petersburg 191023, Russia; email: ivanbliznets@tut.by; F. V. Fomin, Department of Informatics, University of Bergen,

Postboks 7803, 5020 Bergen, Norway; email: fomin@ii.uib.no; M. Pilipczuk, Institute of Informatics, University of Warsaw,

Banacha 2, 02-097, Warsaw, Poland; email: m.pilipczuk@mimuw.edu.pl; M. Pilipczuk, Institute of Informatics, University

of Warsaw, Banacha 2, 02-097, Warsaw, Poland; email: michal.pilipczuk@mimuw.edu.pl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1549-6325/2018/06-ART35 $15.00

https://doi.org/10.1145/3186896

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

https://doi.org/10.1145/3186896
mailto:permissions@acm.org
https://doi.org/10.1145/3186896

35:2 I. Bliznets et al.

of completion problems was initiated by Kaplan et al. in [24, 25], who showed that Chordal
Completion, Strongly Chordal Completion, and Proper Interval Completion are fixed-
parameter tractable (FPT). The parameterized complexity of Interval Completion remained open
until 2007, when Villanger et al. [22, 30] settled this long-standing open problem in the affirmative
by designing an algorithm with running time O (k2k · n3m). A faster algorithm, with running time
O (6k (n +m)), was recently given by Cao [7–9].

Our main interest in Interval Completion is due to the new developments in parameterized
complexity. It is well known (see, e.g., [13]) that for most of the natural parameterized problems the
existence of subexponential parameterized algorithms can be refuted, unless the Exponential Time
Hypothesis (ETH) [23] fails. Until recently, the only notable exceptions of parameterized subexpo-
nential problems were problems on special classes of graphs like planar graphs, or more generally,
graphs excluding some fixed graph as a minor [10], and on tournaments [1]. Luckily, the struc-
ture of the “parameterized subexponential world” is much more interesting and complicated than
was anticipated for a long time. It appeared very recently that several graph modification prob-
lems, mostly problems of completing to some graph class, like Chordal Completion, Threshold
Completion, Proper Interval Completion , and Trivially Perfect Completion are solvable

in subexponential time kO (
√

k)nO (1) , where n is the input size and k is the number of edges in the
completion [4, 11, 14, 15, 18]. On the other hand, even for completion problems for a vast majority
of graph classes (even very simple ones, like cographs or complements of cluster graphs), it is pos-
sible to rule out the existence of subexponential parameterized algorithms [11, 27] under plausible
complexity assumptions. Thus, subexponential-time solvability is a very unusual and exceptional
property of a parameterized problem.

While the examples of subexponential-time solvability show that some parameterized NP-hard
problems are significantly “easier” than most of the other problems from the same complexity
class, we do not know why this is the case, what the underlying difference is, and how to identify
such problems. The usual “prerequisites” for all parameterized graph modification problems solv-
able in subexponential time prior to this work were that establishing membership in FPT is easy
(in most of the cases a simple branching does the job) and, moreover, the problem admits a poly-
nomial kernel.1 Interval Completion absolutely does not fit into this pattern: All known FPT
algorithms solving this problem are quite non-trivial [7–9, 30] (it took 13 years to design the first
such algorithm) and the existence of a polynomial kernel for Interval Completion stands open
for a long time. This is why we find the subexponential-time solvability of Interval Completion
striking.

Another interesting point about Interval Completion is the following. Completion problems
have deep connections with width measures of graphs. For example, the treewidth of a graph, one
of the most fundamental graph parameters, is the minimum, over all possible completions into a
chordal graph, of the maximum clique size minus one. Similarly, the pathwidth of a graph can be
defined as the minimum, over all possible completions into an interval graph, of the maximum
clique size minus one. See the survey of Bodlaender for more information on these parameters [5].
Another important graph parameter is the treedepth, also known as the vertex ranking number,
the ordered chromatic number, and the minimum elimination tree height. This parameter appears
in various settings, in particular in the theory of sparse graphs developed by Nešetřil and Ossona
de Mendez [29]. Mirroring the connection between treewidth and chordal graphs, pathwidth and
interval graphs, the treedepth of a graph can be defined as the largest clique size in a completion to
a trivially perfect graph. Similarly, we may observe a relation between the class of proper interval

1Recall that a polynomial kernel for a parameterized problem is a polynomial-time preprocessing routine that reduces an

input instance (G, k) to an equivalent one of size bounded polynomially in k , without increasing the parameter.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:3

Fig. 1. Graph classes and corresponding graph parameters. Inequalities on the right side are with ±1

slackness.

graphs and the bandwidth of a graph, as well as the class of threshold graphs and the vertex cover
number of a graph. (For definitions of these graph classeswe refer to [6].) Taking into account rela-
tions between these graph classes and parameters, we arrive at the diagram presented in Figure 1.
It is interesting to note that all completion problems to the graph classes depicted in Figure 1 were
established to be solvable in subexponential parameterized time [4, 11, 15]. This article provides
a subexponential algorithm for the last and the most difficult piece in Figure 1, namely, Interval
Completion.

Our Results and Techniques. Our main result is the following theorem.

Theorem 1.1. Interval Completion is solvable in time kO (
√

k) · nO (1) .

We now describe briefly our techniques employed to prove Theorem 1.1, together with the
main obstacles making our approach significantly different from the approaches used for previous
subexponential algorithms.

The natural way to proceed then would be to follow the approach which worked nicely for other
completion problems: focus on the structural definition of interval graphs (as opposed to the defini-
tion via forbidden induced subgraphs) and build an interval model of the output graph via dynamic
programming. On a very high level, our algorithm works in this fashion: we gradually enumer-
ate more and more rich families of different potential “dividing” structures in the final interval

model—keeping a bound of kO (
√

k)nO (1) on the size of each family—and finally obtain structures
rich enough to perform a dynamic programming algorithm with running time polynomial in the
size of the enumerated families.

The natural “dividing” structures in all graph classes in Figure 1 are maximal cliques and clique
separators, and the core part of the known subexponential algorithms for Chordal Comple-
tion [15], Proper Interval Completion [4], and Trivially Perfect Completion [11] is a com-

binatorial argument that bounds the number of candidates for such structures by nO (
√

k) . This, in

combination with known polynomial kernels for these problems, yields a kO (
√

k) bound on the
number of candidates for maximal cliques and clique separators. A second step is to design a dy-
namic programming algorithm whose states are based on these structures. As the number of states
is subexponential in k , the entire algorithm would run in subexponential parameterized time.

There are two major problems with this approach in the case of Interval Completion. First,

although we are able to provide a combinatorial bound of nO (
√

k) reasonable candidates for max-
imal cliques and clique separators in the output interval graph (see Lemma 3.4), the existence
of the second ingredient—a polynomial kernel for Interval Completion—remains a notorious

open problem. Observe that a nO (
√

k) term is unacceptable in any fixed-parameter algorithm. To
cope with this obstacle, we employ a much more insightful analysis of maximal cliques in the

output interval graph, and arrive at a (finally useful) improved kO (
√

k)n8 bound on the number of
candidates.

The lack of a known polynomial kernel for the problem raises also one more difficulty. One of the
more popular “atomic operations” in the known subexponential algorithms is to choose one vertex

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:4 I. Bliznets et al.

Fig. 2. An example of an interval graph with a large number of choices for left/right alignment. Within
each pattern group (dotted, lined, solid), the small “mushroom” components can swap sides. A state of a
dynamic programming algorithm at the middle clique marked with a dashed line would need to remember
an alignment choice for each pattern group.

v and guess all edges from the solution incident with it, provided that there are at most
√
k edges

of the solution incident with v . In the presence of a polynomial kernel, such a step leads to kO (
√

k)

subcases—perfectly fine if we perform only a constant number of such steps. However, in the case

of Interval Completion, such a step yields an (again) unacceptable nO (
√

k) term in the running
time. Luckily, a deep analysis of the structure of YES-instances to Interval Completion shows

that there are actually only kO (
√

k)nO (1) reasonable ways to choose solution edges incident with
such a “cheap” vertex, making the aforementioned “atomic operation” possible also in our case.

Despite its triviality in the case of previous works, it turns out that the proof of the kO (
√

k)nO (1)

bound is the most technical and involved part of our article.
The second major obstacle in our quest for a subexponential parameterized algorithm for In-

terval Completion appears when we try to develop a dynamic programming algorithm based
on the knowledge of candidates for maximal cliques and clique separators in the output inter-
val graph. Contrary to the case of Chordal Completion and Trivially Perfect Completion,
it turns out that these structures are far from being sufficient to design a dynamic programming
algorithm constructing a model of the output interval graph in a natural “left-to-right” manner.
The reason is that the knowledge of a clique separator Ω in the output interval graph does not
tell us much about which of the components of G \ Ω are to the left, and which are to the right
of the separator Ω in an interval model of the output interval graph. (Recall that in an interval
graph, each clique separator corresponds to a vertical line that pierces intervals belonging to the
separator.) However, the knowledge of which vertices of G were already processed is crucial for
constructing an interval model in a “left-to-right” manner.

An example illustrating why it is hard to deduce the alignment of the components of G \ Ω
for a maximal clique or clique separator Ω is depicted in Figure 2. Here, a maximal clique Ω is
marked with a vertical dashed line. The small “mushrooms” are components of G \ Ω. Observe
that one can swap (take a mirror image) the set of dotted mushrooms, striped mushrooms, and
solid mushrooms independently of each other. Hence, a state of a dynamic programming algorithm
needs to remember, apart from the maximal clique Ω, the alignment choice of each “pattern” group
of mushrooms (dotted, striped, solid)—and there can be many of them.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:5

Looking at the example in Figure 2, it is tempting to develop a different dynamic programming
algorithm that processes the graph in a “top-to-bottom” manner, subsequently taking alignment
decisions on each mushroom group, but not remembering the decision in the state between the
groups. However, observe that if the graph locally looks like a proper interval graph (as opposed
to the example in Figure 2), the “left-to-right” approach seems much more feasible. Hence, to
make the dynamic programming approach work in the case of Interval Completion, we need to
merge the “left-to-right” and “top-to-bottom” approaches, arriving at a quite technical definition
of an actual state of dynamic programming.

We remark that the subexponential algorithm for Interval Completion cannot be obtained by
modifying previous algorithms of Villanger et al. [30] and Cao [7–9]. In all these algorithms, one of
the initial steps is to exhaustively branch on small induced forbidden subgraphs. That is, if the input
graph contains an induced subgraph H of size at most c for some constant c = O (1) such that H is
not an interval graph, the algorithm branches in all possible ways to add an edge to break H . The
subsequent arguments are strongly relying on the structural properties of the graphs excluding all
small forbidden induced subgraphs for interval graphs (cf. the olive ring decomposition of [8, 9]).
However, since such a recursive exhaustive branching cannot lead to time complexity better than
single-exponential, this technique cannot be used in a subexponential algorithm.

A short comparison with the algorithm for seemingly similar Proper Interval Completion
(PIC for short) is also in place. Although both algorithms follow the same general approach paved
by Fomin and Villanger [15], the actual difficulties, and methods to avoid them, are completely
different. First, in the PIC case a polynomial kernel is known [2], and a subexponential bound on
both the number of candidates for maximal cliques Ω, and on the number of left/right choices for
G \ Ω, are not trivial, but relatively simple. The main difficulty in the PIC case lies in the fact that
this information is not sufficient to perform a natural left-to-right dynamic programming, as one
needs to ensure that no interval contains another in the output model; an issue non-existent in
the interval case. To cope with this obstacle, in [4] the dynamic programming structure is also
reengineered, and not only for a completely different reason than here, but also in a completely
different manner—loosely speaking, apart from maximal cliques, the algorithm of [4] uses a type
of separation similar to the classic O�(10n) exact algorithm for bandwidth of Feige [12].

Organization of the Article. We first introduce notation and preliminary results in Section 2, and
give a more detailed, yet informal overview of the proof of Theorem 1.1 in Section 3.

Then, in Sections 4–8, we provide a full proof of Theorem 1.1. Section 4 describes a module-based
reduction rule and introduces some auxiliary results on neighborhood classes in a (near) interval
graph. In Section 5, we prove the subexponential bound on the number of candidates for sections,

a technical notion close to a clique separator. In Section 6, we provide a bound of kO (
√

k)nO (1)

reasonable ways to add solution edges incident to one vertex, provided that there are at most
√
k

such solution edges. After one additional combinatorial lemma in Section 7, we describe the final
dynamic programming algorithm in Section 8.

Section 9 concludes the article and suggests directions of future research.

2 PRELIMINARIES

Graph Notation. In most cases, we follow standard graph notation. For a set of vertices A ⊆ V ,
G[A] denotes the subgraph induced by A, andG \A is a shorthand forG[V \A]. For a graphG, by
cc(G) we denote the family of vertex sets of connected components of G. For a path P and two
vertices x ,y ∈ V (P), by P[x ,y] we denote the subpath of P between x andy, inclusive. For a vertex
v , we use NG (v) and NG [v] to denote the open and the closed neighborhood of v , respectively.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:6 I. Bliznets et al.

Fig. 3. An example of a graph with an interval model and its combinatorial representation. The vertical
dashed line represents one of the maximal cliques of the graph, being section Ωσ (12). We remark that this
is not the canonical model of the represented graph (assuming the natural order on the vertex labels): for
the canonical model, one should swap events ω2 with ω3 and ω7 with ω8.

For a vertex set S ⊆ V , we denote by NG (S) the set
⋃

v ∈S NG (v) \ S . Two disjoint sets A,B ⊆ V are
anti-adjacent if there is no edge with one endpoint in A and the second endpoint in B.

For any graph G we shall speak about, we implicitly fix some arbitrary total ordering ≺ on
V (G). We shall use this ordering to break ties and canonize some objects (interval models, com-
pletion sets, solutions, etc.). Such a canonization will turn out to be helpful when handling greedy
arguments in the final dynamic programming routine.

Interval Graphs. A graphG is an interval graph if it admits an intersection model of the following
form: each vertex is assigned a closed interval on a real line, and two vertices are adjacent if and
only if their intervals intersect.

We formalize the notion of a model in the following combinatorial way. For each v ∈ V (G), we
create two symbols αv andωv , henceforth called events, and denote E (X) =

⋃
v ∈X {αv ,ωv } for any

X ⊆ V (G). An interval model is a permutation (bijection) σ : E (V (G)) → {1, 2, . . . , 2n} such that

(1) for each v ∈ V (G) we have σ (αv) < σ (ωv) (an interval starts before it ends), and
(2) for each u,v ∈ V (G) we have uv � E (G) if and only if σ (ωv) < σ (αu) or σ (ωu) < σ (αv)

(vertices are non-adjacent if and only if their intervals are disjoint).

The numbers 1, 2, . . . , 2n in the codomain of a model σ are called positions.
Informally speaking, the aforementioned combinatorial notion of an interval model corresponds

to a “real” model, where no two endpoints of intervals coincide (which we can assume without loss
of generality). The permutation σ corresponds to the order of endpoints of intervals: αv represents
the starting (left) endpoint of the interval associated with v , and ωv represents the ending (right)
endpoint. See Figure 3 for an example.

Given an interval model σ of a graphG, we say that an event ε1 is before or to the left of an event
ε2 iff σ (ε1) < σ (ε2). In this situation, we also say that ε2 is later or to the right of ε1.

For an interval model σ of a graph G and a set X ⊆ V (G), we denote by ασ (X) and ωσ (X),
respectively, the first and last positions where events of E (X) appear in σ .

For an interval model σ of a graph G and an integer p, the set

Ωσ (p) = {v ∈ V (G) : σ (αv) ≤ p < σ (ωv)}

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:7

is called a section at position p. By somehow abusing the notation, for an event ε we write Ωσ (ε)
for Ωσ (σ (ε)), and call it a section at event ε . We omit the subscript if it is clear from the context.
Note that every section is a clique in G.

Intuitively speaking, a section is a set of vertices whose intervals become “pinned down” by a
vertical line drawn just after event σ−1 (p) (see Figure 3). Thus, all these intervals share a common
point, so they are pairwise adjacent in the graph.

It is worth observing that for any integers p ≤ q and an interval model σ of G, the set Ωσ (p) ∩
Ωσ (q) consists of all vertices v ∈ V (G) whose intervals start not later than p and end after q (i.e.,
with αv ≤ p and ωv > q), while Ωσ (p) ∪ Ωσ (q) consists of all vertices v ∈ V (G) whose intervals
contain a point just after p or a point just after q (i.e., either αv ≤ p < ωv or αv ≤ q < ωv).

We refer to an inclusion-wise maximal clique of a graph G as to a maximal clique. It is well-
known [21] that Ω ⊆ V (G) is a maximal clique in an interval graph G with model σ if and only
if it is a section drawn between a starting and ending event: there exist v1,v2 ∈ V (G) (possibly
v1 = v2) such that Ω = Ωσ (αv2) and σ (αv2) + 1 = σ (ωv1).

We also use the following notions of maximality and minimality in interval models. Let X ⊆
V (G), whereG is an interval graph with a fixed modelσ . We say thatv ∈ X is interval-maximal inX
(w.r.t. σ) if for no otherw ∈ X it holds that σ (αw) < σ (αv) < σ (ωv) < σ (ωw). Analogously,v ∈ X
is interval-minimal in X (w.r.t. σ) if for no other w ∈ X it holds that σ (αv) < σ (αw) < σ (ωw) <
σ (ωv). Clearly, each non-empty set of vertices has an interval-maximal and interval-minimal ver-
tex, but these vertices may not be defined uniquely.

We recall that in linear time we can check if a given graph G is an interval graph, and if this is
the case, find an interval model ofG [21]. In our work, we will need a slightly stronger statement.2

Lemma 2.1 (♠). Given an interval graph G and two cliques Ω1,Ω2 ⊆ V (G), one can in polynomial

time check whether there exists an interval model of G that starts with all starting events of E (Ω1)
and ends with all ending events of E (Ω2).

For the final dynamic programming routine, we need to “canonize” a model of an interval graph
G. Recall that we have fixed a total order ≺ on V (G); assume V (G) = {v1,v2, . . . ,vn } where v1 ≺
v2 ≺ · · · ≺ vn . For a model σ of G, we consider a tuple

(σ (αv1),σ (αv2), . . . ,σ (αvn
),σ (ωvn

),σ (ωvn−1), . . . ,σ (ωv1))

and define a canonical model of G to be the model with the aforementioned tuple being lexico-
graphically minimum among all models of G.

We note two properties of a canonical model σ that are of our interest. The first one is
straightforward.

Lemma 2.2. Assume σ is the canonical model of an interval graph G. Then, for each u,v ∈ V (G),
if σ (αu) + 1 = σ (αv), thenu ≺ v and if σ (ωu) + 1 = σ (ωv), thenu � v . That is, the canonical model

orders consecutive starting/ending points of the intervals according to ≺.

The second one says that canonizing a model fixes an order in which modules with the same
neighborhood appear in the model.

Lemma 2.3 (♠). Let σ be the canonical model of an interval graph G. Let X ⊆ V (G) be a clique,

and letC1,C2, . . . ,Cs be components ofG \ X (not necessarily all of them) such that NG (v) \Ci = X
for every 1 ≤ i ≤ s and every v ∈ Ci . Since the components Ci are pairwise non-adjacent, ωσ (Ci) <
ασ (Cj) or ωσ (Cj) < ασ (Ci) for any i � j. Without loss of generality, assume that

ασ (C1) < ωσ (C1) < ασ (C2) < ωσ (C2) < · · · < ασ (Cs) < ωσ (Cs).

2Proofs marked with ♠ are straightforward and were moved to the Appendix in order not to disturb the reasoning.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:8 I. Bliznets et al.

For each 1 ≤ i ≤ s , let xi ∈ Ci be the first vertex of Ci in the order ≺. Then

x1 ≺ x2 ≺ · · · ≺ xs .

That is, σ sorts the components Ci according to the order of their ≺-minimum vertices.

Interval Completion. For a graphG, a completion ofG is a set F ⊆ (V (G)
2) \ E (G) such thatG + F :=

(V (G),E (G) ∪ F) is an interval graph. A completion is minimal if it is inclusion-wise minimal, and
minimum if it has minimum possible cardinality. In the Interval Completion problem the input
consists of a graph G and an integer k , and we ask for a completion of G of size at most k . For an
instance (G,k) of Interval Completion, a completion of cardinality at most k is called a solution.
The notions of minimal and minimum solutions are defined naturally.

For a completion F in a graph G, we say that v is touched by F if there is an edge in F incident
withv ; otherwise,v is untouched. A set of vertices X is touched if it contains a touched vertex, and
untouched otherwise. We also say that a vertex v ∈ V (G) is cheap (with respect to the completion

F) if at most
√
k edges of F are incident with v ; a vertex is expensive if it is not cheap. Note that

there are at most 2k touched vertices and at most 2
√
k expensive ones. For a completion F and a

vertex v ∈ V (G), by F (v) we denote the set of edges e ∈ F that are incident with v .
We now canonize solutions F to an Interval Completion instance (G,k). Given a partial order
≺ on a finite set U , we define a partial order on the family of subsets of U as follows: if A,B ⊆ U ,
then we first sort the elements ofA and B according to ≺, and then compare the obtained sequences
lexicographically. By somehow abusing the notation, we denote by ≺ the imposed order on the
subsets of U as well.

This definition automatically extends the partial order ≺ on V (G) first onto (V (G)
2), and then

onto the family of completions ofG. We define the canonical solution to (G,k) to be the minimum
solution in the order ≺ among all minimum solutions to (G,k).

Given an instance (G,k) of Interval Completion, we start with augmenting it in the follow-
ing way. We add a universal vertex r adjacent to all vertices of V (G), and two vertices rL and rR ,
adjacent only to r, obtaining a graph G ′. We assume r ≺ rL ≺ v ≺ rR for any v ∈ V (G). Note that
for any completion F ofG, F is also a completion ofG ′: given a model ofG + F , we may construct
a model of G ′ + F by preceding the events of E (V (G)) with αr,αrL ,ωrL and succeeding them with
αrR ,ωrR ,ωr . Consequently, in every minimal completion of G ′, the vertices r, rL , and rR are un-
touched. Thus, henceforth we assume that, whenever we consider an instance (G,k) to Interval
Completion,G already contains vertices r, rL , and rR . By Lemmas 2.2 and 2.3 (applied to X = {r}),
the canonical model of any completion of G starts with αr,αrL ,ωrL and ends with αrR ,ωrR ,ωr .

A short informal rationale for this augmentation is that in some places of the algorithm we
would like to pick the “first/last untouched vertex whose interval ends/starts after/before position
p” or “an untouched vertex whose interval contains the interval of v”; note that rL/rR is always
a good candidate for the first choice, and r for the second one. Also, the addition of r makes G
connected and makes all (interesting to us) sections at positions 1 ≤ p < 2n non-empty.

3 OVERVIEW OF THE ALGORITHM

In this section, we provide an informal overview on the proof of Theorem 1.1.

3.1 Module Reduction Rule

We start with a simple module-based reduction rule. Recall that M ⊆ V (G) is a module in a graph
G if N (v1) \M = N (v2) \M for any v1,v2 ∈ M . (Equivalently, for any v � M we have either M ⊆
N (v) or M ∩ N (v) = ∅.)

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:9

Fig. 4. The alignment of most of the components Mi in the model σ of the interval graph G + F .

Fig. 5. Motivation for the Module Reduction Rule.

Assume that in a YES-instance (G,k) of Interval Completion we have recognized a set X ⊆
V (G) such that many (significantly more than 2k) connected components M1,M2, . . . ,Mr ofG \ X
are modules, fully adjacent to X . Then, it is easy to observe that any solution F to (G,k) needs to
yield an ordering σ ofG + F similar to the one depicted in Figure 4: X becomes a clique, and most
of the components Mi are drawn one after another on the “plateau” formed by all the intervals
of the vertices of X . Moreover, note that all but at most k components Mi need to induce interval
graphs, and all but at most 2k components Mi are left untouched by the solution F .

However, if r ≥ 2k + 2, then there are at least two such untouched Mi ’s—say M1 and M2—and,
in the interval graph G + F they force X to be a clique, reserving space between M1 and M2 for
any other Mi with G[Mi] being an interval graph. Thus, we may reduce the number of such Mi ’s
to 2k + 2, without changing the answer to the instance (G,k).

Reduction Rule 3.1 (Module Reduction Rule). Let (G,k) be an instance of Interval Comple-
tion. Assume there exist X ⊆ V (G) and connected components M1,M2, . . . ,M2k+3 of G \ X that
are modules in G and, moreover, N (Mi) = N (M1) for each 1 ≤ i ≤ 2k + 3. Then proceed as fol-
lows. If for more than k indices i the subgraph G[Mi] is not an interval graph, return that (G,k)
is a NO-instance. Otherwise, pick arbitrary j such that G[Mj] is an interval graph and remove Mj

from G.

We remark here that the Module Reduction Rule can be applied exhaustively in polynomial time,
using the module decomposition of the graphG: It is easy to observe that, if the rule is applicable,
then all components Mi are children of a single union node in the module decomposition tree.

Let us now explain our motivation for introducing the Module Reduction Rule (see also Figure 5).
In many steps of the algorithm, we analyze some clique Ω of the interval graph G + F , and we
would like to control the number of connected components of G \ Ω. There are two types of such
components: the ones that are modules, and the ones that are not modules. If the Module Reduction
Rule has been applied exhaustively, then we have a bound on the number of components of the
first type for a fixed neighborhood X ⊆ Ω; observe that there are only 2(|Ω | + 1) choices for such
neighborhood.

Consider now a component C that is not a module, that is, there are vertices v1,v2 ∈ C s.t.
N (v1) \C � N (v2) \C . If C is not touched by the solution, then an endpoint of a vertex of
(N (v1)�N (v2)) \C needs to be “occupied” byC , that is, one of the events ofw needs to lie between

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:10 I. Bliznets et al.

Fig. 6. Notation around a cheap vertex v .

the first and the last of the events of E ({v1,v2}) ⊆ E (C). Furthermore, no two such untouched
componentsC can “occupy” the same event of E ((N (v1)�N (v2)) \C) as they are nonadjacent. As
N (v1) ∪ N (v2) ⊆ Ω ∪C , there are at most 2|Ω | such events, and every component C that is nei-
ther touched nor a module uses one such event. Together with at most 2k touched components,
we have a bound of 2k + 2|Ω | on the number of components of C that are not modules.

3.2 Dynamic Programming

We now sketch the dynamic programming algorithm for Interval Completion.
Let us first try a somewhat naive approach, based on the subexponential algorithm for the

Chordal Completion problem. We would like to construct an interval completion F of G by
building an interval model for the final graph G + F ; the completion F is formed exactly by the
edges that need to be added to make the built model correct. This interval model will be con-
structed from left to right, intuitively by a “sweeping” dynamic programming algorithm. In such
an approach, a state of the dynamic programming algorithm would need to consist of (i) the cur-
rent section Ω (clique) of the interval graph, and (ii) information for which components of G \ Ω
we have already drawn their interval model and which are still pending. To make the approach
work, we would need to have a subexponential number of candidates for both pieces of a state.

Our first combinatorial result is that there is actually a subexponential number of candidates
for sections.

Theorem 3.1. Given an Interval Completion instance (G,k) where the Module Reduction Rule

is not applicable, one can in kO (
√

k)nO (1) time enumerate a family S of kO (
√

k)n17 subsets of V (G)
such that for any minimal solution F to (G,k), in the canonical model σ of G + F all sections of σ
belong to S.

We sketch the proof of Theorem 3.1 in Section 3.3 and provide a full proof in Section 5.
However, as already explained in Figure 2 in the Introduction, a number of reasonable choices

for the second ingredient—the number of partitions of components of G \ Ω between the left and
right side of a section Ω—can be exponential in |Ω |, and we were unable to design an argument
decreasing this number of choices. Observe that the example in Figure 2 suggests a different direc-
tion: a dynamic programming algorithm should rather sweep such a “pyramid” from top to bottom,
as then it does not need to remember the left/right alignment of already processed “mushrooms.”

What should a state in such a dynamic programming algorithm look like? Consider a vertexv ∈
V (G) and let σ be the canonical model of some minimal solution F . Let pL = σ (αv) and pR = σ (ωv)
be the positions of endpoints of the interval of v and let Ωv

L
= Ωσ (pL) and Ωv

R
= Ωσ (pR) be the

sections and these positions (see Figure 6). Note that, by Theorem 3.1, there are only kO (
√

k)nO (1)

candidates for the defined objects. In the model σ , every connected componentC ofG \ (Ωv
L
∪ Ωv

R
)

lives either before pL , between pL and pR , or after pR ; in the second case, C is fully adjacent to v
in G + F , and in the other cases C is anti-adjacent to v in G + F . If we knew F (v) (or, have a
subexponential number of candidates for it), we could classify the components of G \ (Ωv

L
∪ Ωv

R
)

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:11

Fig. 7. A world W with its most important elements (to the left) and its symbolic notation used in subsequent
figures (to the right).

between the ones that live on top of v in σ (i.e., between pL and pR) and the ones that live before
or after v in σ . Note that such a partition would precisely correspond to the intended dynamic
programming state for the graph in Figure 2: for a vertexv in the main pyramid, it would partition
the graph into the part “above” and “below” v , allowing us to sweep the pyramid top to bottom.

It seems hard to obtain a subexponential number of candidates for F (v) for expensive vertices

v . On the other hand, for a cheap vertex v there is a trivial bound of n
√

k candidates for F (v) that,

in addition, would become kO (
√

k) if a polynomial kernel for Interval Completion was known.
Our second combinatorial result is that one can circumvent the need for a polynomial kernel in
the above reasoning.

Theorem 3.2. Given an Interval Completion instance (G,k) where the Module Reduction Rule

is not applicable, and a designated vertex v ∈ V (G), one can in kO (
√

k)nO (1) time enumerate a family

F of at most kO (
√

k)n70 subsets ofV (G) such that for any minimal solution F to (G,k) for which v is

cheap w.r.t. F , the set {w ∈ V (G) : vw ∈ F } belongs to F .

We sketch the proof of Theorem 3.2 in Section 3.4 and provide a full proof in Section 6.
Armed with Theorem 3.2, for a cheap vertex v w.r.t. a minimal solution F , we define a world

to be tuple W consisting of v , pL , pR , Ωv
L

, Ωv
R

, and F (v) ∈ F as defined above; thus, we have only

kO (
√

k)nO (1) worlds to consider. See Figure 7 for a schematic picture of a world.
In the dynamic programming algorithm, with a world W it is natural to associate the following

computational task: what is the optimum way to arrange the events between positions pL and pR ,
that is, among vertices of NG+F (v)[v]? That is, the area between pL and pR is the “important area”
of a world W. In the pyramid example (Figure 2), this would correspond to computing optimum
arrangements of events for the upper parts of the pyramid; the task becomes more complex as
we move down the pyramid. Observe that a world does not distinguish which vertices of G \
NG+F (v)[v] are before or after v in the model σ . In particular, in the pyramid example it does not
make a decision (yet) on the left/right arrangement of “mushrooms” below the cheap vertexv , and
it does not remember the exact decision on the left/right arrangement of “mushrooms” above the
cheap vertex v .

However, the family of worlds is not rich enough to make transitions from one world to a second
one in the dynamic programming algorithm. Consider a world W = (v,pL,pR ,Ω

v
L
,Ωv

R
, F (v)) and

a second world W
′ = (w,qL,qR ,Ω

w
L
,Ωw

R
, F (w)) that is in some sense close to W; say, the cheap

vertex w of W
′ is the cheap vertex in Ωv

L
with the rightmost endpoints among the cheap vertices

in Ωv
L

. The situation now differs depending on the relative position of the right endpoints pR and
qR .

If the right endpoint qR of w is to the left of pR , then the worlds W and W
′ naturally partition

the positions into segments from qL to pL , pL to qR , and qR to pR (see the left panel of Figure 8).

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:12 I. Bliznets et al.

Fig. 8. Two cases of how two close worlds interact.

Furthermore, from all four sections Ωv
L

, Ωv
R

, Ωw
L

, and Ωw
R

and sets F (v) and F (w) one can de-
duce which events lie in which segments. However, now to compute the optimum arrangement of
events between pL and pR , the dynamic programming algorithm would need to use information
about optimum arrangements between pL and qR and qR and pR . In other words, our dynamic
programming algorithm would need to use not a single world as a state, but a pair of worlds, and
ask for optimum arrangements between two consecutive endpoints of the cheap vertices of these
worlds.

The situation becomes even more complicated in the case whenqR is to the right ofpR , that is, the
worlds are “nested” (see the right panel of Figure 8). In particular, we should expect NG+F (v)[v] ⊆
NG+F (w)[w]. Then, the vertices of G \ (Ωv

L
∪ Ωv

R
∪ Ωw

L
∪ Ωw

R
) can be partitioned into three types:

(1) the vertices u � NG+F (w)[w] live in σ either before qL or after qR , and we do not worry
about them at the moment;

(2) the vertices u ∈ NG+F (v)[v] live in σ between pL and pR , and the entry of the dynamic
programming algorithm for the world W should take care of the optimum arrangement
of their endpoints; and

(3) the vertices u ∈ NG+F (w)[w] \ NG+F (v)[v] can live either between qL and pL or between
pR and qR .

The last case causes problems for two reasons.

Issue A: It is unknown which such vertices u lie between qL and pL , and which between pR

and qR .
Issue B: While the choice ofw implies that only expensive vertices of Ωv

L
can start betweenqL

and pL (and there are at most 2
√
k of them), the gap between pR and qR can be arbitrarily

large, and thus we expect the dynamic programming algorithm to inspect some already
computed entries to determine the optimum arrangement of the events there.

We remedy Issue B by taking into consideration not one “close” world W
′, but two of them: one

W
′ as defined above, and another one defined symmetrically at the endpoint pR . More formally,

a terrace is defined as a tuple of three worlds W
in, W

out
1 , and W

out
2 with their respective cheap

vertices v , v1, and v2 where

• σ (αvi
) < σ (αv) < σ (ωv) < σ (ωvi

) for i = 1, 2, and
• among the cheap vertices satisfying the previous condition, v1 has the rightmost starting

event in the model σ , whereas v2 has the leftmost ending event.

See Figure 9 for some additional notation. Note that we allow W
out
1 =W

out
2 . In a terrace, we are

interested in the optimum way to arrange events in one of the dotted areas in Figure 9. Observe
that each vertex whose interval is fully contained in one of these areas belongs to I := (NG+F (v1) ∩
NG+F (v2)) \ (NG+F (v) ∪ Ω1

L ∪ Ω2
R).

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:13

Fig. 9. A terrace with its most important notation (to the left) and its symbolic notation used in subsequent
figures (to the right). The dotted areas are the “important” areas for a terrace: the left one has borders Ω1

L
,

Ω1
R

, and interior I1, and the right one has borders Ω2
L

, Ω2
R

, and interior I2.

The crucial observation is that, by the choice of v1 and v2, each vertex of Ω1
R ∩ Ω2

L that has

an endpoint in the dotted areas (i.e., does not belong to Ω1
L ∩ Ω2

R) needs to be expensive and,

consequently, there are at most 2
√
k such vertices. Denote the set of these vertices as K , that is,

K = (Ω1
R ∩ Ω2

L) \ (Ω1
L ∩ Ω2

R).
By the above observation, the notion of a terrace with two “outer” worlds W

out
1 and W

out
2 solves

Issue B (uncontrolled complexity of the segment from pR to qR). That is, the space between the
left endpoints of v1 and v is constrained in the following sense: every cheap vertex with the left
endpoint in this space needs to have a right endpoint before the right endpoint of v . A symmetric
statement holds for right endpoints in the space between the right endpoint of v and the right
endpoint of v2.

Issue A, in the language of terraces, means that we would like to reason how the vertices of I
are split between areas I 1 and I 2. In Section 7, we provide a combinatorial argument showing that

the number of left/right choices between I 1 and I 2 is kO (
√

k+ |K |) ; with |K | = O (
√
k) this gives the

desired subexponential bound. In this overview, we provide a simplified argument in Section 3.5

with a worse bound of kO (k3/4) .
To sum up, we have kO (

√
k)nO (1) reasonable choices for a terrace, together with the partition of

the set I into dotted areas I 1 and I 2.
Recall that a terrace was a method to cope with one of the cases with relative position of the

right endpoints of the worlds W and W
′: when the segment of the cheap vertexv of W is contained

in the segment of the cheap vertexw of W
′. In the other case, we argued that it should be sufficient

to consider a state consisting of two worlds and ask for optimum arrangement of events between
two consecutive endpoints of the cheap vertices of the worlds.

This approach meets the notion of a terrace in our final definition of a state of dynamic pro-
gramming. Namely, the states of the final dynamic programming algorithm are pairs of terraces or
worlds, together with their “important areas”; for such a state, we ask for the best way to arrange
events in the intersection of the important areas (see Figure 10). As the number of such dynamic

programming states is bounded by kO (
√

k)nO (1) , the number of states fits within the promised time
bound.

Let us now briefly elaborate why such a definition of a state is rich enough. First, let us be a
bit more precise in the definition. Recall that a terrace T = (Win,Wout

1 ,W
out
2) has two important

areas, to the left and to the right of the world W
in. We fix the notion of the first important area as

the area between p1
L (T) := pL (Wout

1) and p1
R (T) := pL (Win), and the second important area as the

area between p2
L (T) := pR (Win) and p2

R (T) := pR (Wout
2). For a world W, we define both the first

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:14 I. Bliznets et al.

Fig. 10. A final DP state defined by two terraces (above), and by a terrace and a world (below). In this DP
state we ask for the optimal way to arrange events in the gray area.

and the second important areas to be equal to the area “above” the world, that is, this is the area
between p1

L (W) := p2
L (W) := pL (W) and p1

R (W) := p2
R (W) = pR (W).

To be consistent with the notation in Section 8, we define a state to be a pair S = (T1,T2), where
every Ti is a terrace or a world. We require that

p1
L (T2) ≤ p2

L (T1) < p1
R (T2) ≤ p2

R (T1).

Note that this definition allows T1 = T2. For every state S = (T1,T2), the dynamic programming al-
gorithm asks for an optimum way to arrange events between pL (S) := p2

L (T1) and pR (S) := p1
R (T2),

that is, in the intersection of the second important area of T1 and the first important area of T2.
We call this area the important area of the state S. Note that the knowledge of a state S gives us
full knowledge about which events should be arranged there, as well as about the sections at the
boundary of the important area.

The dynamic programming algorithm computes the values for states in the order of increasing

size of their important areas. As a base case, if the important area of a state consists of O (
√
k)

events, we can check all permutations of events there by brute force. On the other hand, an op-
timum ordering of the whole graph will be computed at the cell for the state consisting of twice

the world for the vertex r. At every step, given a state S with Ω(
√
k) events in its important area,

the dynamic programming algorithm tries to partition the important area of S into two or three
smaller important areas of other states (while keeping the condition that in adjacent states the
boundary sections are equal). Note that states with smaller important areas have already precom-
puted value by our choice of the order of computations. To prove that the algorithm is correct, we

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:15

Fig. 11. A computation of the value for DP state S when both endpoints of x lie in the important area of the
state and we glue values from three substates.

need to show that in the canonical model σ of the canonical solution, every state present there can
be decomposed into two or three smaller states.

Consider now a state S = (T1,T2) that is present in σ and that asks for an arrangement of Ω(
√
k)

events; by taking the constant in the Ω-notation to be large, we observe that most of these events
are of cheap vertices.

The crux now lies in the following choice: let x be a cheap vertex that has an endpoint in the
important area of S, and maximizes the span of its interval in the model σ intersected with the
important area of S. More precisely, x maximizes

min(σ (ωx),pR (S) + 1) −max(σ (αx),pL (S)).

We consider two cases, depending on whether in σ both endpoints of x lie in the important area
of S, or only one of them.

Both endpoints of x lie in the important area of S. Let W be the world of x and let T be the
terrace with W

in =W; note that, given σ , the worlds W
out
1 and W

out
2 in T are defined uniquely.

The maximality of x ensures that W
out
1 starts not later than pL (S), while W

out
2 ends not earlier than

pR (S), as otherwise the underlying cheap vertex of W
out
1 or W

out
2 would be a better candidate for

x . Here, the assumption that the important area of W
in is a subset of important areas of W

out
1 and

W
out
2 plays a crucial role. Consequently, the important area of S decomposes into the important

areas of states S
1 = (T1,T), S

2 = (W,W), and S
3 = (T,T2). See Figure 11 for an illustration.

Only one endpoint of x lies in the important area of S. By symmetry, assume that this is the
right endpoint; the other case is symmetric. As in the previous case, let W be the world of x and let
T be the terrace with W

in =W. Again, the maximality of x ensures that the world W
out
2 in T ends

not earlier than pR (S), as otherwise its underlying cheap vertex would be a better candidate for x .
Consequently, the important area of S decomposes into the important areas of states S

1 = (T1,W)
and S

2 = (T,T2). See Figure 12 for an illustration.

Since the dynamic programming algorithm computes the value for every of the kO (
√

k)nO (1)

states by looking into pairs and triples of previously computed states, it runs within the promised
time bound. This concludes the overview of the dynamic programming algorithm in the proof of
Theorem 1.1.

3.3 Candidates for Sections and Maximal Cliques

In this section, we sketch the proof of Theorem 3.1. As an intermediate step, we provide an enu-
meration algorithm for potential maximal cliques in the Interval Completion problem, showing
the following.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:16 I. Bliznets et al.

Fig. 12. A computation of the value for DP state S when only one endpoint of x lies in the important area of
the state and we glue values from two substates.

Theorem 3.3. Given an Interval Completion instance (G,k) where the Module Reduction Rule

is not applicable, one can in kO (
√

k)nO (1) time enumerate a familyK of kO (
√

k)n8 subsets ofV (G) such

that for any minimal solution F to (G,k), all maximal cliques of G + F belong to K .

It is not hard to see that Theorem 3.3 implies Theorem 3.1.

Proof of Theorem 3.1. Let (G,k) be an Interval Completion instance, and F be a minimal
solution to (G,k) with σ being the canonical model of G + F . Clearly, ∅, {r}, {r, rL }, and {r, rR } are
sections of σ ; we include them into S at the beginning.

Let Ωσ (p) be a section of σ . Without loss of generality, assume that Ωσ (p) is not one of the
four aforementioned “obvious” sections. Let p1 ≤ p be the largest integer such that Ωσ (p1) is a
maximal clique of G + F ; such p1 always exists as p1 = 2 with Ωσ (2) = {r, rL } is a candidate value.
Symmetrically, we define p2 to be the smallest integer with p2 ≥ p such that Ωσ (p2) is a maximal
clique of G + F .

Let r = |Ωσ (p1) \ Ωσ (p2) |. We infer that σ places events of {ωv : v ∈ Ωσ (p1) \ Ωσ (p2)} on po-
sitions p1 + 1,p1 + 2, . . . ,p1 + r , and then it places events of {αv : v ∈ Ωσ (p2) \ Ωσ (p1)} on posi-
tions p1 + r + 1,p1 + r + 2, . . . ,p2; otherwise there would be a section between sections Ωσ (p1)
and Ωσ (p2) that would yield a maximal clique, contradicting the choice of p1 or of p2. Moreover,
by Lemma 2.2 the events of {ωv : v ∈ Ωσ (p1) \ Ωσ (p2)} are sorted according to the reversed total
order ≺, while the events of {αv : v ∈ Ωσ (p2) \ Ωσ (p1)} are sorted according to the total order ≺.
Consequently, the set Ωσ (p) can be deduced from the maximal cliques Ωσ (p1) and Ωσ (p2) (both
belonging to the set K given by Theorem 3.3) and the value of p − p1, for which we have n + 1
choices. Indeed,

• if p − p1 ≤ r , then Ωσ (p) equals Ωσ (p1) without the (p − p1) vertices of Ωσ (p1) \ Ωσ (p2)
that are latest in ≺;

• if p − p1 > r , then Ωσ (p) equals Ωσ (p2) without the (p2 − p) vertices of Ωσ (p2) \ Ωσ (p1)
that are latest in ≺.

Theorem 3.1 follows. �

Hence, we now sketch the proof of Theorem 3.3. We first start with an nO (
√

k) bound, and then
argue how to obtain the actual FPT bound of Theorem 3.3.

Let us fix an Interval Completion instance (G,k), its minimal solution F , a model σ of G + F ,
and a maximal clique Ω = Ωσ (p). Recall that σ (αv2) = p and σ (ωv1) = p + 1 for some vertices v1

and v2. Without loss of generality, assume that Ω is different from the two “obvious” maximal
cliques {r, rL } and {r, rR } and, consequently, 3 < p < 2n − 3 and v1,v2 � {r, rL, rR }.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:17

Fig. 13. The anatomy of a maximal clique Ω, with eight important vertices guessed by the algorithm.

We define the following vertices (see also Figure 13):

(1) c1 is the cheap vertex with the rightmost position of ωc1 , among all cheap vertices c satis-
fying σ (ωc) ≤ σ (ωv1) = p + 1;

(2) c2 is the cheap vertex with the leftmost position ofαc2 , among all cheap vertices c satisfying
σ (αc) ≥ σ (αv2) = p;

(3) f1 is the untouched vertex with the rightmost position ofωf1
, among all untouched vertices

f satisfying σ (ωf) ≤ σ (ωv1) = p + 1;
(4) f2 is the untouched vertex with the leftmost position of αf2

, among all untouched vertices
f satisfying σ (αf) ≥ σ (αv2) = p;

(5) д1 is the untouched vertex with the leftmost position of αд1 , among all untouched vertices
of NG [f1] \ {Ω \ {v1}};

(6) д2 is the untouched vertex with the rightmost position of ωд2 , among all untouched ver-
tices of NG [f2] \ {Ω \ {v2}}.

Let us remark that some of these vertices can in fact be equal. We also remark that all quantifi-
cations in the aforementioned definitions are done on non-empty sets: rL is a good candidate for
both c1 and f1, rR is a good candidate for both c2 and f2, f1 is a good candidate for д1, and f2 is a
good candidate for д2. Hence, all these vertices are well-defined.

Also, observe that v1 ∈ NG [v2], as otherwise v1v2 ∈ F and, by swapping the events ωv1 and αv2

in the model σ , we obtain a model for G + (F \ {v1v2}), contradicting the minimality of F .
We say that a vertex v lies to the left of the clique Ω if σ (ωv) ≤ p + 1, and lies to the right if

σ (αv) ≥ p. Clearly, v1, c1, f1,д1 lie to the left of Ω and v2, c2, f2,д2 lie to the right of Ω. Note that,
perhaps a bit counterintuitively, if v = v1 = v2, then v lies both to the left and to the right of Ω.

Let w be any vertex of the graph. Observe that if some vertex of NG+F [w] lies to the left of Ω,
then σ (αw) ≤ p. Similarly, if some vertex of NG+F [w] lies to the right of Ω, then σ (ωw) ≥ p + 1.
In particular, if both these events happen, then w belongs to Ω.

Define now the following sets.

F ◦i = {v ∈ V (G) : vci ∈ F } for i = 1, 2;

X ◦1 = {v ∈ V (G) : σ (ωc1) < σ (ωv) ≤ p + 1};
X ◦2 = {v ∈ V (G) : p ≤ σ (αv) < σ (αc2)}.

As c1 and c2 are cheap, |F ◦1 |, |F ◦2 | ≤
√
k . By the definition of c1 and c2, all vertices ofX ◦1 ∪ X ◦2 are ex-

pensive. Note that |X ◦1 ∩ X ◦2 | ≤ 1 andX ◦1 ∩ X ◦2 is non-empty only if it consists ofv1 = v2. Therefore,

|X ◦1 | + |X ◦2 | ≤ 2
√
k + 1.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:18 I. Bliznets et al.

We now show the main combinatorial observation: the knowledge of vertices v1,v2, c1, c2 and
sets F ◦i and X ◦i for i = 1, 2 already uniquely defines the clique Ω.

Lemma 3.4.

Ω = (NG [{v1, c1} ∪ X ◦1] ∪ F ◦1) ∩ (NG [{v2, c2} ∪ X ◦2] ∪ F ◦2).

Proof. The inclusion “⊇” is immediate from the previous discussion: every vertex v ∈
NG [{v1, c1} ∪ X ◦1] ∪ F ◦1 is either to the left of Ω in G + F , or at least one neighbor of v is to the
left of Ω. Similarly, for everyu ∈ NG [{v2, c2} ∪ X ◦2] ∪ F ◦2 , at least one vertex from NG+F [u] is to the
right of Ω in G + F . Hence, we now focus on the other inclusion.

Without loss of generality, assume there exists a vertex v ∈ Ω that does not belong to F ◦2 or to
NG [{v2, c2} ∪ X ◦2]. In particular, v � {v1,v2, c2}, and hence αv < p. As v � F ◦2 and vc2 � E (G), we
have σ (ωv) < σ (αc2). Moreover, by the definition ofX ◦2 ,v is not adjacent inG to any vertex whose
starting event lies between positions p and σ (αc2) − 1. Hence, v is not adjacent in G to any vertex
whose starting event lies on or after position p.

Consider an ordering σ ′ that is created from the model σ by moving the eventωv to the position
just before the event αv2 (i.e., we move ωv to the position p and shift all events on positions p
and later by one to the right). By our previous arguments, σ ′ is a valid interval model of some
completion F ′ of G. As v ∈ Ω, the event ωv has been moved to the left during this operation, and
F ′ ⊆ F . Moreover, vv2 ∈ F \ F ′, which contradicts the minimality of F . �

As the sets F ◦i and X ◦i are of size O (
√
k), Lemma 3.4 already gives us an nO (

√
k) bound on the

number of candidates for maximal cliques inG + F . However, in the absence of a polynomial kernel
for Interval Completion, we need to work further to obtain the bound promised in Theorem 3.3.
In this quest, we will make use of the vertices fi and дi .

The choice of verticesvi , ci , fi , andдi for i = 1, 2 contributes with factorn8 to the bound of The-

orem 3.3; our goal is to produce kO (
√

k) candidates for a fixed choice of these eight vertices. To this
end, we develop a branching algorithm that maintains a choice of candidate setsX1, X2, F1, and F2

for X ◦1 , X ◦2 , F ◦1 , and F ◦2 , respectively, and a guess K on the clique Ω. At each step of the recursion,

the algorithm outputs the current set K as a possible choice, and branches into kO (1) number of
subcases, choosing one additional vertex to include into one of the setsXi or Fi , updatingK accord-

ingly.3 As the depth can be bounded by O (
√
k), we obtain the promised bound of kO (

√
k) candidates

for the clique Ω.

Obviously, the main technical difficulty lies in the argumentation that there are only kO (1)

reasonable choices in each step of the recursion. Here the guess on the vertices fi and
дi helps: we carefully analyze the structure of connected components of G \ (X1 ∪ X2 ∪ K ∪
{v1,v2, c1, c2, f1, f2,д1,д2}) and argue that only a limited number of vertices may possibly live be-
tween f1 and f2 in the model σ of G + F . Moreover, in this argument we heavily rely on the fact
that the Module Reduction Rule is not applicable, which in various places enables us to bound
the number of components that are considered. For all the details of the reasoning, we refer to
Section 5.

3.4 Guessing Fill-In Edges with Fixed Endpoint

Armed with the bound on the number of possible sections (Theorem 3.1), we move to sketch the
most technical result of our work, namely, Theorem 3.2.

3This statement is not completely true; in some cases we are able only to guess a neighborhood of a vertex in X ◦
i

, without

indicating the vertex itself. However, this is sufficient for the purpose of the reasoning of Lemma 3.4.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:19

Fig. 14. Situation around the vertex v in the proof of Theorem 3.2, together with categories and cases of
Lemma 3.5.

Let (G,k) and v ∈ V (G) be as in the statement. Fix a minimal completion F of the Inter-
val Completion instance (G,k), and fix a model σ of G + F . We define the following (see also
Figure 14).

(1) Denote pv
L
= σ (αv) and pv

R
= σ (ωv).

(2) Let fL be the untouched vertex with the rightmost starting endpoint among untouched
vertices f satisfying σ (αf) ≤ pv

L
< pv

R
≤ σ (ωf).

(3) Let fR be the untouched vertex with the leftmost ending endpoint among untouched ver-
tices f satisfying σ (αf) ≤ pv

L
< pv

R
≤ σ (ωf).

(4) Denote p
f

L
= σ (αfL

) and p
f

R
= σ (ωfR

).

(5) Denote Ω
f

L
= Ωσ (p

f

L
), Ωv

L
= Ωσ (pv

L
), Ωv

R
= Ωσ (pv

R
− 1), and Ω

f

R
= Ωσ (p

f

R
− 1).

Note that r is a good candidate for both fL and fR , thus these vertices exist. We remark also that
it may happen thatv = fL ,v = fR , or fL = fR . However, we may say the following about the order
of these vertices.

σ (αfR
) ≤ p

f

L
≤ pv

L < pv
R ≤ p

f

R
≤ σ (ωfL

).

We start by enumerating all possible choices of vertices fL, fR and sections Ω
f

L
, Ωv

L
, Ωv

R
, Ω

f

R
,

using the family S of Theorem 3.1. By the bound of Theorem 3.1, there are at most kO (
√

k)n70

subcases (henceforth called branches) to consider. In the rest of the proof we aim to compute a
single set B of size O (k5) for a single choice of the aforementioned two vertices and four sections,
such that B contains {w : vw ∈ F } for any minimal solution F to (G,k) for which the choice of

fL, fR and Ω
f

L
, Ωv

L
, Ωv

R
, Ω

f

R
is correct. When the set B is computed, we insert all its subsets of size

at most
√
k into the family F .

Thus, henceforth we fix a choice of fL, fR and Ω
f

L
, Ωv

L
, Ωv

R
, Ω

f

R
and we assume that the guess of

these vertices and sets is correct for a minimal solution F with model σ ofG + F . Observe that we
should expect the following:

v ∈ Ωv
L ∩ Ωv

R ,

fL, fR ∈ Ω
f

L
∩ Ω

f

R
,

Ω
f

L
∩ Ω

f

R
⊆ Ω

f

L
∩ Ωv

R ⊆ Ωv
L ∩ Ωv

R ,

Ω
f

L
∩ Ω

f

R
⊆ Ωv

L ∩ Ω
f

R
⊆ Ωv

L ∩ Ωv
R .

We maintain also a set Bsure of vertices w for which we deduce that vw ∈ F is implied by the

choice of fL, fR and Ω
f

L
, Ωv

L
, Ωv

R
, Ω

f

R
. We start with Bsure = (Ωv

L
∪ Ωv

R
) \ NG (v). If at any point the

size of Bsure exceeds k , we discard the current branch.
We start with the following observation, directly implied by the assumption that fL and fR are

untouched and |F | ≤ k .

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:20 I. Bliznets et al.

Lemma 3.5. For any connected component C of G \ (Ω
f

L
∪ Ωv

L
∪ Ωv

R
∪ Ω

f

R
) the following holds:

(1) IfC ∩ NG (fL) ∩ NG (fR) = ∅, thenωσ (C) < p
f

L
or ασ (C) > p

f

R
. In particular,vw � E (G) ∪ F

for every w ∈ C .

(2) If C contains a vertex of NG (fL) ∩ NG (fR), then p
f

L
< ασ (C) < ωσ (C) < p

f

R
and C ⊆

NG (fL) ∩ NG (fR).
(3) If, moreover, C contains a neighbor of v in G, then pv

L
< ασ (C) < ωσ (C) < pv

R
and vw ∈

E (G) ∪ F for every w ∈ C .

(4) In the last case, if C ⊆ (NG (fL) ∩ NG (fR)) \ NG (v), then one of the following cases holds:

(a) pv
L
< ασ (C) < ωσ (C) < pv

R
andvw ∈ F for everyw ∈ C . Moreover, in this case NG (C) ⊆

Ωv
L
∪ Ωv

R
.

(b) p
f

L
< ασ (C) < ωσ (C) < pv

L
andvw � F for everyw ∈ C . Moreover, in this case NG (C) ⊆

Ω
f

L
∪ Ωv

L
.

(c) pv
R
< ασ (C) < ωσ (C) < p

f

R
andvw � F for everyw ∈ C . Moreover, in this case NG (C) ⊆

Ω
f

R
∪ Ωv

R
.

Moreover, if |C | > k , then the first option does not happen.

By Lemma 3.5, we can sort the connected components of G \ (Ω
f

L
∪ Ωv

L
∪ Ωv

R
∪ Ω

f

R
) into three

categories, depending on whether they fall into point 1, 3, or 4. Naturally, we may ignore the compo-
nents from the first category in the construction of B, while for everyC from the second category,
we need to include C \ N (v) in Bsure. The last category is the most interesting, as we are not able
to directly decide whether the vertices of the component should be inserted into Bsure or not. In-
stead, we resort to constructing a set B of O (k5) size that contains all components that may fall
into case 4a of the last category.

The subpoints of this category (i.e., 4a, 4b, and 4c) are henceforth called cases. Note that for
each connected component C we know its category, but we do not know its case if it falls into
category 4.

We now perform some cleaning. If there exists a componentC ∈ cc(G \ (Ω
f

L
∪ Ωv

L
∪ Ωv

R
∪ Ω

f

R
))

that does not fall into any category (e.g., we haveC � NG (fL) ∩ NG (fR), butC contains a common
neighbor of fL and fR), we discard the current branch. Moreover, we may include into Bsure all non-
neighbors of v that lie in a connected component C that falls into category 3 of Lemma 3.5, that
is, that contains a neighbor of v .

Clearly, only at most k components fall into case 4a of Lemma 3.5, since each such component
induces at least one fill edge incident to v . However, we do not know which of the components
falling into category 4 are in fact those interesting ones. Hence, our main task now is to pinpoint a
set of O (k4) potential components falling into category 4 for which case 4a may possibly happen.
As each such component is of size at most k , this would conclude the proof of Theorem 3.2.

Let C be the family of all connected components C of G \ (Ω
f

L
∪ Ωv

L
∪ Ωv

R
∪ Ω

f

R
) that fall into

category 4 of Lemma 3.5, that is, C ⊆ (NG (fL) ∩ NG (fR)) \ NG (v). We distinguish the following
subfamilies that correspond to the subcases of category 4.

Cv = {C ∈ C : NG (C) ⊆ Ωv
L ∪ Ωv

R },

CL = {C ∈ C : NG (C) ⊆ Ω
f

L
∪ Ωv

L },

CR = {C ∈ C : NG (C) ⊆ Ω
f

R
∪ Ωv

R }.
If Cv ∪ CL ∪ CR � C, we discard the current branch. Moreover, for any C ∈ Cv \ (CL ∪ CR) we
include all vertices of C into Bsure, as such a component will surely fall into case 4a.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:21

Our goal now is to focus on CL and pinpoint a small set of components of CL ∩ Cv that may
possibly fall into case 4a of Lemma 3.5. The arguments for CR will be symmetrical.

To this end, we will construct a family T ⊆ CL of troublesome components. Informally speaking,
a component is troublesome if it is highly unclear where or how it should live in the model σ . We
will argue that there is a bounded number of troublesome components (strictly speaking, O (k2)
of them) and any component that falls into case 4a of Lemma 3.5 is in some sense “close” to a
troublesome component.

We first focus on components C ∈ CL ∩ CR . Observe that for such a component we have

NG (C) ⊆ Ωv
L
∩ Ωv

R
. Denote P = Ω

f

L
∩ Ω

f

R
and K = (Ωv

L
∩ Ωv

R
) \ P . By the choice of fL and fR , each

vertex in K is touched by the solution F and, consequently, |K | ≤ 2k . If there exists a vertex v ∈ C
with P � NG (v), then necessarily C is touched by the solution. Otherwise, P ⊆ NG (v) ⊆ P ∪ K
for any v ∈ C and, since the Module Reduction Rule is not applicable, we infer that there are only
O (k2) components of CL ∩ CR . We treat all of them as troublesome ones, and put them into T .

Furthermore, we put into T all connected components C ∈ CL that cannot be drawn in the

model of a completion of G between sections Ω
f

L
and Ωv

L
without adding a fill-in edge. More

formally, we denote FL = (Ωv

L

2
) \ E (G) ⊆ F and define the following.

Definition 3.6. A componentC ∈ CL ∩ Cv is freely drawable if there exists an interval model σC

of (G + FL)[C ∪ Ωv
L

] that starts with all starting events of E (Ωv
L
∩ Ω

f

L
) and ends with all ending

events of E (Ωv
L

).

Observe that one can recognize freely drawable components in polynomial time using
Lemma 2.1.

It is easy to see that each component that is not freely drawable either is touched by the solution
F , or falls into case 4c. However, in the latter case we haveC ∈ CL ∩ CR , and all such components
have already been considered troublesome. Hence, we expect at most 2k not freely drawable com-
ponents of (CL ∩ Cv) \ CR , and we put all of them into T .

We now inspect the possible order of the starting endpoints of the vertices of Ωv
L
\ Ω

f

L
; all these

endpoints appear between positions p
f

L
and pv

L
. We denote

X =
⋃

C ∈CL\Cv

NG (C) ∩ Ωv
L .

It turns out that any componentC ∈ (CL ∩ Cv) \ CR that contains a vertexw ∈ C withX � NG (w)
is necessarily touched by F : the solution F needs to make w adjacent either to the entire X , or to
some vertices of the connected component of CL \ Cv that neighbors a vertex of X \ NG (w). Thus,
we may treat all such components C as troublesome, and assume henceforth that each remain-
ing component C ∈ (CL ∩ Cv) \ CR is both freely drawable and fully adjacent to X . We refer to
Figure 15 for an illustration.

Now observe that if a componentC ∈ (CL ∩ Cv) \ CR is freely drawable, then there exist vertices
v1,v2 ∈ C with

NG (v1) ∩ Ωv
L = Φ1 (C) :=

⋂

w ∈C
NG (w) ∩ Ωv

L ,

NG (v2) ∩ Ωv
L = Φ2 (C) :=

⋃

w ∈C
NG (w) ∩ Ωv

L .

Consider now two components C1,C2 ∈ (CL ∩ Cv) \ CR . If neither of them is touched by F
(in particular, neither of them falls into case 4a), then we should expect Φ2 (C1) ⊆ Φ1 (C2) or
Φ2 (C2) ⊆ Φ1 (C1), depending on the relative order ofC1 andC2 in the model σ . Hence, if this is not

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:22 I. Bliznets et al.

Fig. 15. The situation between Ω
f
L

and Ωv
L

.

the case, we have a conflict betweenC1 andC2: one of these two components needs to be touched
by F .

We construct an auxiliary conflict graph, where each vertex corresponds to a not-yet-
troublesome component of (CL ∩ Cv) \ CR , and each edge corresponds to a conflict; by the previous
argumentation, the components touched by the solution need to form a vertex cover of this aux-
iliary conflict graph. Hence, we may compute a 2-approximate vertex cover of the conflict graph,
and consider all components of this vertex cover as troublesome.

This step concludes the recognition of troublesome components T .
We now observe that

(G + FL)
[
Ωv

L ∪
⋃

((CL ∩ Cv) \ (CR ∪ T))
]

is an interval graph and, moreover, it admits an interval model that starts with the starting events
of X and ends with the ending events of Ωv

L
. The crucial observation now is the following: if for

someC ∈ (CL ∩ Cv) \ (CR ∪ T), the sets Φ1 (C) and Φ2 (C) differ significantly from sets Φ1 (D) and
Φ2 (D) for all D ∈ T , then no troublesome component will interfere with the representation of C

between positions p
f

L
and pv

L
and, consequently,C is untouched by the solution and falls into case

4b. The exhaustive application of the Module Reduction Rule ensures that only a bounded number
of componentsC may have sets Φ1 (C) and Φ2 (C) similar to some troublesome component. As there
are only O (k2) troublesome components, we are left only with a bounded number of candidates
for case 4a. This concludes the sketch of the proof of Theorem 3.2.

3.5 A Simplified Argument for the Subexponential Number of Left/Right

Choices for a Terrace

Recall that we are considering a terrace consisting of worlds W
in, W

out
1 , and W

out
2 with their

respective cheap vertices v , v1, and v2. All other notation is depicted in Figure 9. We are in-
terested in the optimum way to arrange events in one of the dotted areas in Figure 9. Ob-
serve that each vertex whose interval is fully contained in one of these areas belongs to I :=
(NG+F (v1) ∩ NG+F (v2)) \ (NG+F (v) ∪ Ω1

L ∪ Ω2
R). Our goal is to construct a subexponential num-

ber of reasonable partitions I = I 1 � I 2 between the left and the right dotted area, with a guarantee
that we may restrict our attention only to those partitions.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:23

The critical observation made in Section 3.2 is that the set K = (Ω1
R ∩ Ω2

L) \ (Ω1
L ∩ Ω2

R) consists
only of expensive vertices due to the choice of v1 and v2.

Consider a connected component C of G[I]. We distinguish two cases for the alignment of
C in the interval graph G + F : either there exist two vertices v1,v2 ∈ C with NG+F (v1) ∩ K �
NG+F (v2) ∩ K , or all of the vertices of C have the same neighborhood in K in the graph G + F .
In the latter case, we argue that the componentC may choose its place in the model σ in a greedy

manner, and there are only kO (
√

k) ways to arrange such components. In the first case, observe
that such a componentC “occupies” an endpoint event of a vertex of K and, if two componentsC1

andC2 occupy the same endpoint, they need to be connected by an edge of F . Since |K | ≤ 2
√
k , we

have at most 4
√
k endpoint events of vertices of K . If an endpoint event ε ∈ E (K) is occupied by

aε components, then this means that we need to add at least (aϵ

2) fill-in edges between these com-

ponents. Then we have that |E (K) | ≤ 4
√
k and

∑
ε ∈E (K) (

aε

2) ≤ k , and a simple application of the

Cauchy-Schwarz inequality shows that
∑

ε ∈E (K) aε = O (k3/4), that is, there are only O (k3/4) com-
ponents that fall into the first case. Moreover, the exhaustive application of the Module Reduction

Rule ensures us that there are only kO (1) components of G[I] in total.

Hence, we have kO (k3/4) guesses which components fall into the first case, 2O (k3/4) guesses about
their alignment to I 1 or I 2, and then the remaining components can be processed greedily. In
Section 7, we develop a more careful reasoning that bounds the number of components falling

into the first case by O (
√
k), instead of O (k3/4) as presented in the argument above.

4 MODULES AND NEIGHBORHOOD CLASSES

Sections 4–8 contain a full proof of Theorem 1.1. We start with a study of possible neighborhood
classes in an (almost) interval graph G, and provide the aforementioned module-based reduction
rule in full detail.

4.1 Modules and Module-Based Reduction Rule

Recall thatM ⊆ V (G) is a module in a graphG ifN (v1) \M = N (v2) \M for anyv1,v2 ∈ M . (Equiv-
alently, for any v � M we have either M ⊆ N (v) or M ∩ N (v) = ∅.) A module M is connected if
G[M] is connected. Cao proved the following.

Lemma 4.1 (Theorem 4.2 of [7]). IfM is a connected module inG, and F is a minimum completion

of G, then M is a module in G + F as well.

Motivated by Lemma 4.1, we formulate the following reduction rule.

Reduction Rule 4.1 (Module Reduction Rule). Let (G,k) be an instance of Interval Comple-
tion. Assume there exist X ⊆ V (G) and connected components M1,M2, . . . ,M2k+3 of G \ X that
are modules in G and, moreover, N (Mi) = N (M1) for each 1 ≤ i ≤ 2k + 3. Then proceed as fol-
lows. If for more than k indices i the subgraph G[Mi] is not an interval graph, return that (G,k)
is a NO-instance. Otherwise, pick arbitrary j such that G[Mj] is an interval graph and remove Mj

from G.

Clearly, if G[Mi] is not an interval graph, any completion of G needs to contain an edge with
both endpoints in Mi . Hence, the size of a minimum completion of G is lower bounded by the
number of Mi ’s such that G[Mi] is not an interval graph. Consequently, if the Module Reduction
Rule concludes that (G,k) is a NO-instance, then the conclusion is correct.

Moreover, observe that any solution to Interval Completion in G naturally projects to a so-
lution in G \Mj of at most the same size: if G + F is an interval graph, so is (G + F) \Mj . The

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:24 I. Bliznets et al.

following lemma shows that the deletion of Mj in the Module Reduction Rule actually does not
change our task at all.

Lemma 4.2. Assume that the Module Reduction Rule is applicable to graph G, and its application

deletes a module Mj . Then any solution to (G \Mj ,k) is a solution to (G,k) as well.

Proof. Without loss of generality, assume that j = 2k + 3. Let G ′ = G \Mj , let F be a solution
to (G ′,k), and let σ be an interval model of G ′ + F . As |F | ≤ k , there are at least two modules
Mi (1 ≤ i ≤ 2k + 2) untouched by F ; w.l.o.g. assume M1 and M2 are untouched by the solution. In
the following, we show that M1 and M2 “reserve” a space in the model σ where we can insert Mj

without any further cost.
As M1 and M2 are two connected components of G \ X and both are untouched by F , all events

of E (M1) lie before all events of E (M2), or all events of E (M1) lie after all events of E (M2) in the
model σ ; w.l.o.g., assume the first case. Denote p1 = ωσ (M1) and p2 = ασ (M2); note that p1 < p2.
Let Y = N (M1) = N (M2) ⊆ X . As both M1 and M2 are untouched by F , we infer that Ωσ (p1) =
Ωσ (p2 − 1) = Y , and Y is a clique in G ′ + F .

Let σ̂ be an interval model ofG[Mj]. Consider a model σ ′ created from σ by inserting all events
of E (Mj) after position p1 in σ , in the order according to model σ̂ . As Ωσ (p1) = NG (Mj) = Y , this
is an interval model of G + F , and the lemma is proven. �

We now describe how to apply the Module Reduction Rule efficiently. To this end, we recall the
module decomposition theorem, introduced by Gallai [16].

A module decomposition of a graph G is a rooted tree T , where each node t is labeled by a
module Mt ⊆ V (G), and is one of four types:

leaf: t is a leaf of T , and Mt is a singleton;
union:G[Mt] is disconnected, and the children of t are labeled with different connected com-

ponents of G[Mt];
join: the complement ofG[Mt] is disconnected, and the children of t are labeled with different

connected components of the complement of G[Mt];
prime: neither of the above holds, and the children of t are labeled with different modules of

G that are proper subsets of Mt , and are inclusion-wise maximal with this property.

Moreover, we require that the root ofT is labeled with the moduleV (G). We need the following
properties of the module decomposition.

Theorem 4.3 (see [28]). For a graph G, the following holds.

(1) A module decomposition (T , (Mt)t ∈V (T)) of G exists, is unique, and computable in linear

time.

(2) At any prime node t of T , the labels of the children form a partition of Mt . In particular, for

each vertex v of G there exists exactly one leaf node with label {v}.
(3) Each module M of G is either a label of some node ofT , or there exists a union or join node

t such that M is a union of labels of some children of G.

We now show that the Module Reduction Rule can be applied efficiently using the module de-
composition of a graph.

Lemma 4.4. There is a polynomial-time algorithm that, given an instance (G,k) finds sets

X ,M1, . . . ,M2k+3 ⊆ V (G) on which the Module Reduction Rule is applicable, or correctly concludes

that no such sets exist.

Proof. We claim that, if the Module Reduction Rule is applicable to setsX ,M1, . . . ,M2k+3, then
there exists a union node t such that each set Mi is a label of some child of t .

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:25

From the last property of Theorem 4.3, we infer that, for any two modules M , M ′ of G, we
have M ⊆ M ′, M ′ ⊆ M , or M ∩M ′ = ∅ unless there exists a union or join node t in the module
decomposition of G such that both M and M ′ are unions of labels of some children of t .

Notice now that a union of arbitrary number of sets Mi is a module in G as well. By applying

the conclusion of the last paragraph to the modules
⋃2k+2

i=1 Mi and
⋃2k+3

i=2 Mi , and using the fact
that all Mi ’s are connected and pairwise non-adjacent, we infer that Mi ’s must be, in fact, children
of the same union node t .

Therefore, to look for an application of the Module Reduction Rule it suffices to inspect all
union nodes of the module decomposition ofG, and for each such node t , classify the labels of the
children of t according to their neighborhood. The Module Reduction Rule is applicable if and only
if for some union node t at least 2k + 3 children of t have labels with equal neighborhood. �

By Lemma 4.2, an application of the Module Reduction Rule does not change the answer to the
input instance (G,k). Lemma 4.4 shows that the rule can be applied in polynomial time. Thus,
we may apply the Module Reduction Rule exhaustively and henceforth we assume, sometimes
implicitly, that it is no longer applicable.

4.2 Neighborhood Classes

We now provide some auxiliary structural lemmas about neighborhood classes in the input graph
G.

For a graphG and a setA ⊆ V (G), we say that two verticesv1,v2 � A have the same neighborhood

with respect to A if NG (v1) ∩A = NG (v2) ∩A. Clearly, this is an equivalence relation onV (G) \A;
each equivalence class of this relation is called a neighborhood class w.r.t. A.

The motivation for the results in this section is the following. In many places the algorithm
makes some branching, choosing some vertex or a connected subgraph. In a straightforward anal-

ysis, each such branching will have around n options. With a branching of depth
√
k , and without

a polynomial kernel for Interval Completion, this would lead to undesirable n
√

k factor in the
running time. The structural results developed here limit the number of options in such branchings
to polynomial in k ; in some sense they are “local” kernelization results.

Lemma 4.5. Assume G is a graph with completion set F , and let A ⊆ V (G). Then in G there are

at most (2|A| + 1)2 + |F | neighborhood classes w.r.t. A. In particular, if (G,k) is a YES-instance of

Interval Completion, then there are at most (2|A| + 1)2 + k neighborhood classes w.r.t. A.

Proof. Let X ⊆ V (G) \A be the set of vertices such that there exists some fill-in edge xa ∈ F
with x ∈ X and a ∈ A. Clearly, |X | ≤ |F |. To prove the lemma it suffices to show that there are at
most (2|A| + 1)2 neighborhood classes w.r.t. A in the graph G \ X .

Let σ be an interval model of the graphG + F . Pick anyv ∈ V (G) \ (A ∪ X). Asv � X , the edges
between v and A in G are defined by the interval model σ , that is, va � E (G) for a ∈ A iff σ (ωa) <
σ (αv) or σ (αa) > σ (ωv). Consider the model σ restricted to E (A), and note that there are |E (A) | +
1 = 2|A| + 1 ways to insert the event αv into this model, and at most this number of ways to insert
ωv . Consequently, there at most (2|A| + 1)2 possible neighborhood classes w.r.t. A for vertices
v ∈ V (G) \ (A ∪ X) and the lemma follows. �

Lemma 4.6. Assume (G,k) is a YES-instance of Interval Completion, and the Module Reduction

Rule is not applicable to (G,k). Let r be a positive integer and let A ⊆ V (G). Then the number of

connected components C of G \A for which there exists vC ∈ C with |A \ NG (vC) | ≤ r is at most

12kr + 4k + 18r + 4.

Proof. Let F be a solution to (G,k), and let σ be a model of G + F . Let C be the set of all
connected componentsC ofG \A that are untouched by F and for which there existsvC ∈ C with

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:26 I. Bliznets et al.

Fig. 16. Notation used in the proof of Lemma 4.6.

|A \ NG (vC) | ≤ r . We aim to show that |C| ≤ (6r + 1) (2k + 2) + 6r + 2, which will settle the claim
since at most 2k components of G \A are touched by F .

If |C| ≤ 1, then there is nothing to show, so assume otherwise. Let C1,C2 ∈ C. As both C1 and
C2 are untouched, and there are no edges between the vertices of C1 and the vertices of C2, in
the model σ all events of E (C1) lie before or after all events of E (C2); without loss of generality,
assume that ωσ (C1) < ασ (C2). Denote K = A ∩ NG (vC1) ∩ NG (vC2). Note that |K | ≥ |A| − 2r and
K ⊆ Ω(ωσ (C1)), K ⊆ Ω(ασ (C2) − 1). Consequently, K is a clique in G + F . We refer to Figure 16
for an illustration of the notation used in this proof.

Denote B = A \ K , we have |B | ≤ 2r . Let E ⊆ E (K) be the set of the last r + 1 starting events of
E (K) and the first r + 1 ending events of E (K) in the model σ (or E = E (K) in case |K | ≤ r + 1).
Recall that K is a clique inG + F and K ⊆ Ω(ωσ (C1)), so all starting events of E (K) appear before
position ωσ (C1), and all ending events of E (K) appear after this position.

Let CB be the set of these connected components C ∈ C for which there exists ε ∈ E ∪ E (B)
with

ασ (C) < σ (ε) < ωσ (C). (4.1)

As the components of C are untouched by F and pairwise non-adjacent in G, no two components
of C can satisfy Equation (4.1) with the same event ε . Consequently,

|CB | ≤ |E ∪ E (B) | ≤ 6r + 2.

Denote by p1 and p2 the positions of the first and last events of E, respectively. By the definition
of E, all events of E (A) that lie between p1 and p2 belong to E ∪ E (B).

Let C ∈ C \ CB . We have ωC > p1, as otherwise C would be nonadjacent to the r + 1 vertices of
K that have their starting points on or after p1, which contradicts |A \ NG (vC) | ≤ r (or C is non-
adjacent to the whole A in case of |K | ≤ r + 1, which contradicts the connectivity of G). Similarly,
we have αC < p2. Since C � CB , we have actually αC > p1 and ωC < p2, that is, in the model σ all
events of E (C) lie between the first and the last event of E. Consequently, by the definition of
CB , C is a module in G + F ; as C is untouched by F , C is a module in G as well. Moreover, if for
two components C,C ′ ∈ C \ CB the events of E (C) and E (C ′) lie between the same two events of
E ∪ E (B), then NG (C) = NG (C ′). Therefore, if more than 2k + 2 such components lie between two
consecutive events of E ∪ E (B), the Module Reduction Rule would be applicable. Consequently,
|C \ CB | ≤ (6r + 1) (2k + 2), and the lemma is proven. �

5 LISTING POTENTIAL MAXIMAL CLIQUES AND SECTIONS

The main result of this section is Theorem 3.1, which we recall here for completeness.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:27

Fig. 17. The anatomy of a maximal clique Ω, with eight vertices guessed by the algorithm.

Theorem 3.1. Given an Interval Completion instance (G,k) where the Module Reduction Rule

is not applicable, one can in kO (
√

k)nO (1) time enumerate a family S of kO (
√

k)n17 subsets of V (G)
such that for any minimal solution F to (G,k), in the canonical model σ of G + F all sections of σ
belong to S.

As already shown in Section 3, Theorem 3.1 follows from the following enumeration algorithm
for potential maximal cliques in the Interval Completion problem.

Theorem 3.3. Given an Interval Completion instance (G,k) where the Module Reduction Rule

is not applicable, one can in kO (
√

k)nO (1) time enumerate a familyK of kO (
√

k)n8 subsets ofV (G) such

that for any minimal solution F to (G,k), all maximal cliques of G + F belong to K .

The rest of this section is devoted to the proof of Theorem 3.3.

5.1 Eight Important Vertices and the Structure of the Clique

Let us fix an Interval Completion instance (G,k), its minimal solution F , a model σ ofG + F , and
a maximal clique Ω = Ωσ (p). Recall that σ (αv2) = p and σ (ωv1) = p + 1 for some vertices v1 and
v2 (possiblyv1 = v2). Without loss of generality, assume that Ω is different from the two “obvious”
maximal cliques {r, rL } and {r, rR } and, consequently, 3 < p < 2n − 3 and v1,v2 � {r, rL, rR }.

Define the following vertices (see also Figure 17):

(1) c1 is the cheap vertex with rightmost position ofωc1 , among the cheap vertices c satisfying
σ (ωc) ≤ σ (ωv1) = p + 1;

(2) c2 is the cheap vertex with leftmost position of αc2 , among the cheap vertices c satisfying
σ (αc) ≥ σ (αv2) = p;

(3) f1 is the untouched vertex with rightmost position of ωf1
, among the untouched vertices

f satisfying σ (ωf) ≤ σ (ωv1) = p + 1;
(4) f2 is the untouched vertex with leftmost position of αf2

, among the untouched vertices f
satisfying σ (αf) ≥ σ (αv2) = p;

(5) д1 is the untouched vertex with leftmost position of αд1 , among all untouched vertices of
NG [f1] \ {Ω \ {v1}};

(6) д2 is the untouched vertex with rightmost position of ωд2 , among all untouched vertices
of NG [f2] \ {Ω \ {v2}}.

Let us remark that some of these vertices can in fact be equal. We also remark that all quantifi-
cations in the aforementioned definitions are done on non-empty sets: rL is a good candidate for
both c1 and f1, rR is a good candidate for both c2 and f2, f1 is a good candidate for д1, and f2 is a
good candidate for д2. Hence, all these vertices are well-defined.

We observe the following relations between the positions of endpoints of the previously defined
vertices.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:28 I. Bliznets et al.

Lemma 5.1. The following inequalities hold:

σ (ωд1) ≤ σ (ωf1
) ≤ σ (ωc1) ≤ σ (ωv1) = p + 1,

σ (αд2) ≥ σ (αf2
) ≥ σ (αc2) ≥ σ (αv2) = p.

Proof. Recall that, according to our definitions, an untouched vertex is cheap as well. The first
inequality in each line follows from the definition of f1 and f2, as otherwise д1 or д2 would be
a better candidate for f1 or f2, respectively. The remaining inequalities follow directly from the
definitions of the corresponding vertices. �

We also need the following observation.

Lemma 5.2. v1 ∈ NG [v2] and v2 ∈ NG [v1].

Proof. Ifv1 = v2, then the claim is obvious, so assume otherwise. For the sake of contradiction,
supposev1v2 � E (G), sov1v2 ∈ F sincev1v2 ∈ E (G + F). Note that by swapping the eventsωv1 and
αv2 in the model σ we obtain a model for G + (F \ {v1v2}), contradicting the minimality of F . �

We say that a vertex v lies to the left of the clique Ω if σ (ωv) ≤ p + 1, and lies to the right if
σ (αv) ≥ p. Clearly, v1, c1, f1,д1 lie to the left of Ω and v2, c2, f2,д2 lie to the right of Ω. Note that,
perhaps a bit counterintuitively, if v = v1 = v2, then v lies both to the left and to the right of Ω.

We note the following straightforward observation.

Lemma 5.3. For every vertex w ∈ V (G) the following holds. If some vertex of NG+F [w] lies to the

left of Ω, then σ (αw) ≤ p. If some vertex of NG+F [w] lies to the right of Ω, then σ (ωw) ≥ p + 1. In

particular, if both these events happen, w belongs to Ω.

Define now the following sets.

F ◦i = {v ∈ V (G) : vci ∈ F } for i = 1, 2;

X ◦1 = {v ∈ V (G) : σ (ωc1) < σ (ωv) ≤ p + 1};
X ◦2 = {v ∈ V (G) : p ≤ σ (αv) < σ (αc2)}.

As c1 and c2 are cheap, |F ◦1 |, |F ◦2 | ≤
√
k . By the definition of c1 and c2, all vertices ofX ◦1 ∪ X ◦2 are ex-

pensive. Note that |X ◦1 ∩ X ◦2 | ≤ 1 andX ◦1 ∩ X ◦2 is non-empty only if it consists ofv1 = v2. Therefore,

|X ◦1 | + |X ◦2 | ≤ 2
√
k + 1.

The following lemma characterizes Ω in terms of previously defined vertices and sets, and is a
starting point of our algorithm.

Lemma 5.4.

Ω = (NG [{v1, c1, f1} ∪ X ◦1] ∪ F ◦1) ∩ (NG [{v2, c2, f2} ∪ X ◦2] ∪ F ◦2).

Proof. The inclusion “⊇” follows directly from Lemma 5.3: vertices of NG [{v1, c1, f1} ∪ X ◦1] ∪
F ◦1 either are or have at least one neighbor on the left of Ω inG + F , while vertices NG [{v2, c2, f2} ∪
X ◦2] ∪ F ◦2 either are or have at least one neighbor on the right of Ω in G + F . Hence, we now focus
on the other inclusion.

Without loss of generality, assume there exists a vertex v ∈ Ω that does not belong to F ◦2 or to
NG [{v2, c2, f2} ∪ X ◦2]. In particular, v � {v1,v2, c2} by Lemma 5.2, and hence αv < p. As v � F ◦2 and
vc2 � E (G), we have σ (ωv) < σ (αc2). Moreover, by the definition of X ◦2 , v is not adjacent in G to
any vertex whose starting event lies between positions p and σ (αc2) − 1. Hence, v is not adjacent
in G to any vertex whose starting event lies on or after position p.

Consider an ordering σ ′ that is created from the model σ by moving the eventωv to the position
just before the event αv2 (i.e., we move ωv to the position p and shift all events on positions p

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:29

and later by one to the right). By our previous arguments, σ ′ is a valid interval model of some
completion F ′ of G. As v ∈ Ω, the event ωv has been moved to the left during this operation, and
F ′ ⊆ F . Moreover, vv2 ∈ F \ F ′, which contradicts the minimality of F . �

We note that, if a polynomial kernel for Interval Completion had been known, Lemma 5.4

would have finished the proof of Theorem 3.3, as it provides us with a way to enumerate nO (
√

k)

candidates for maximal cliques in G + F , by guessing the vertices vi , ci , fi and sets F ◦i , X ◦i for
i = 1, 2.4 However, the question of existence of such a kernel is widely open. Hence, we need to
employ a careful and involved analysis of the structure of the clique Ω and the sets defined above to
show the following: we may replace brute-force guessing of sets F ◦i ,X ◦i with a branching procedure
that selects each vertex of F ◦i , X ◦i among poly(k) potential candidates, instead of n.

5.2 Structure of the Recursion

We now proceed to the description of the algorithm of Theorem 3.3. The algorithm first iterates
through all possible choices of the vertices vi , ci , fi ,дi for i = 1, 2; for each choice, we seek for
maximal cliques where the chosen vertices correspond to their definitions in the previous section.
This step yields the promised n8 factor in the bound on the size of the family K .

Hence, for fixed choice of verticesvi , ci , fi ,дi , we aim to output kO (
√

k) sets in the familyK . The
algorithm now becomes a branching algorithm: at each recursive call, in polynomial time we will
insert at most one set into the familyK , invoke at most poly(k) recursive calls, and the depth of the

recursion will be bounded by O (
√
k). Intuitively, we aim to guess the sets F ◦i and X ◦i , and at each

step we want to identify a set of only poly(k) candidate vertices, such that one of the candidates
certainly belongs to one of the sets F ◦i , X ◦i . Thus, we describe the algorithm in the language of
“guessing” the maximal clique Ω.

More formally, during the course of the recursive branching algorithm we keep five sets
X1,X2, F1, F2,K ⊆ V (G), and we are looking for maximal cliques Ω satisfying the following:

(1) {v1, c1, f1} ⊆ X1 ⊆ X ◦1 ∪ {v1, c1, f1} and {v2, c2, f2} ⊆ X2 ⊆ X ◦2 ∪ {v2, c2, f2}.
(2) F1 ⊆ F ◦1 and F2 ⊆ F ◦2 .
(3) (NG [X1] ∪ F1) ∩ (NG [X2] ∪ F2) ⊆ K ⊆ Ω.

The set Xi is our “current guess” on the set X ◦i ∪ {vi , ci , fi } and the set Fi is our “current guess”
on the set F ◦i . By Lemma 5.4, already properties 1 and 2 imply (NG [X1] ∪ F1) ∩ (NG [X2] ∪ F2) ⊆ Ω;
the set K is our “current guess” for the clique Ω.

However, in some cases we will not be able to guess a vertex of X1 or X2, but instead we will
be guessing its neighborhood class with respect to Ω. The results of Section 4.2 help us to limit the
number of choices in such a step. For this reason, we allow the set K to be a proper superset of
(NG [X1] ∪ F1) ∩ (NG [X2] ∪ F2), that is, to contain more than the vertices definitely included in Ω
by Lemma 5.4.

We initially define X1 = {v1, c1, f1}, X2 = {v2, c2, f2}, F1 = F2 = ∅, and K = NG [X1] ∩ NG [X2]. It
is straightforward to verify that these sets satisfy all aforementioned properties. We note the
following.

Lemma 5.5.

|Ω \ (NG [v1] ∩ NG [v2]) | ≤ k .

Proof. Note that for any v ∈ Ω \ (NG [v1] ∩ NG [v2]), either vv1 or vv2 belongs to F . �

4Actually, one may observe that the vertices f1 and f2 are not needed for the argumentation of Lemma 5.4. We include

them for convenience, as they will be needed in further arguments.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:30 I. Bliznets et al.

Let us now focus on one recursive call, where the sets X1,X2, F1, F2,K are given. We consider
connected components of G \ (X1 ∪ X2 ∪ K) and classify them into four classes, depending on
whether they contain a vertex of NG (X1) ∪ F1 and whether they contain a vertex of NG (X2) ∪ F2.
That is, we partition the set cc(G \ (X1 ∪ X2 ∪ K)) into four classes Cab for a,b ∈ {0, 1}:C ∈ C10 ∪
C11 iff C ∩ (NG (X1) ∪ F1) � ∅ and C ∈ C01 ∪ C11 iff C ∩ (NG (X2) ∪ F2) � ∅. Formally,

C ∈ C00 ⇔ C ∩ (NG (X1) ∪ F1) = ∅ ∧C ∩ (NG (X2) ∪ F2) = ∅,
C ∈ C01 ⇔ C ∩ (NG (X1) ∪ F1) = ∅ ∧C ∩ (NG (X2) ∪ F2) � ∅,
C ∈ C10 ⇔ C ∩ (NG (X1) ∪ F1) � ∅ ∧C ∩ (NG (X2) ∪ F2) = ∅,
C ∈ C11 ⇔ C ∩ (NG (X1) ∪ F1) � ∅ ∧C ∩ (NG (X2) ∪ F2) � ∅.

5.3 Case One: Components Knowing Both Sides of the Clique

Assume there existsC ∈ C11. Note thatv1,v2 � C , sincev1 ∈ X1 andv2 ∈ X2. Hence, by Lemma 5.3,
C contains a vertex whose interval starts before position p in the model σ , and a vertex whose
interval ends after position p + 1. As G[C] is connected, C ∩ (Ω \ K) � ∅.

Let P be a shortest path between NG (X1) ∪ F1 and NG (X2) ∪ F2 in the subgraphG[C]. Note that
P contains at least two vertices, as otherwise the single vertex of P should be included in K . We
note the following.

Lemma 5.6. Either V (P) ⊆ Ω or V (P) contains a vertex of (F ◦1 \ F1) ∪ (X ◦1 \ X1) ∪ (F ◦2 \ F2) ∪
(X ◦2 \ X2).

Proof. Assume there exists v ∈ V (P) \ Ω. Without loss of generality, assume that v is to the
right of Ω, that is, σ (αv) > p + 1 (as v � {v1,v2}). Moreover, assume that v is the first vertex on
the path P (when traversed from NG (X1) ∪ F1 to NG (X2) ∪ F2) that lies to the right of Ω.

As the first vertex of P belongs to NG (X1) ∪ F1, v is not the first vertex of P . Let w be the
predecessor of v on the path P . Since w does not lie to the right of Ω (by the choice of v), and
vw ∈ E (G), we infer that w ∈ Ω. As P is a shortest path between NG (X1) ∪ F1 and NG (X2) ∪ F2,
we have w � F2 and wc2 � E (G).

If σ (ωw) ≥ σ (αc2), then wc2 ∈ F , but w � F2. Hence, w ∈ F ◦2 \ F2. Otherwise, if σ (ωw) < σ (αc2),
then we have p + 1 < σ (αv) < σ (ωw) < σ (αc2). By the choice of c2, we infer that v ∈ X ◦2 . Clearly,
v � X2, so v ∈ X ◦2 \ X2 and the lemma is proven. �

Lemma 5.6 enables us to do a good branching providing that P is short. Luckily, this is always
the case.

Lemma 5.7. |V (P) | ≤ 3k .

Proof. Denote H = G + F . Let R be a shortest path between the first and the last vertex of
P in the graph H [V (P)]. We first claim that each vertex on R is touched by the solution F and,
consequently, |V (R) | ≤ 2k .

Clearly, each vertex v ∈ V (R) ∩ Ω is touched by F , as vv1 or vv2 needs to belong to F . Consider
thenv ∈ V (R) \ Ω and, without loss of generality, assume thatv lies to the left of Ω, that is,σ (ωv) <
p. We now show that σ (ωv) > σ (ωf1

); this would prove the claim as then v is touched by the
definition of f1. Assume otherwise. Clearly, v is not the last vertex of P (and R), and the vertex w
succeedingv onR needs to satisfy σ (αw) ≤ σ (ωf1

). Consequently, there exists a vertexw ′ onR that
lies later than v on R, and which neighbors f1 in H . As f1 is untouched, we have thatw ′ f1 ∈ E (G),
which means that w ′ ∈ NG (X1). Since w ′ is not the first vertex of P , this contradicts the choice
of P .

To finish the proof, we now show that |V (P) | − |V (R) | ≤ |F | ≤ k . Let s = |V (P) | andx1,x2, . . . ,xs

be the vertices of P in the order of their appearance. The essence of the proof lies in the fact

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:31

that whenever R uses some edge xaxb ∈ F , a < b, then F needs to contain a triangulation of the
cycle xa − xa+1 − · · · − xb − xa , consisting of (b − a − 2) edges. Thus, we need to “pay” with (b −
a − 1) edges of F (including xaxb) to shorten the length of P by, again, (b − a − 1). The formal
argumentation follows.

Define the sequence a1,a2, . . . ,ar as follows. Let a1 = 1 and, given 1 ≤ ai < s , define ai+1 to be
such an index, such that xai+1 is the vertex from the set {xai+1,xai+2, . . . ,xs } that appears earliest
on the path R. Clearly, by the definition, xai+1 appears on R later than xai

and ai < ai+1. This
definition ends when ar = s for some index r .

Consider now an edge ei+1 := xbi+1
xai+1 on the path R, that is, xbi+1

is the predecessor of xai+1

on R. Clearly, bi+1 ≤ ai , since otherwise bi+1 would be a better candidate for ai+1. If ei+1 ∈ E (G),
then we have bi+1 = ai = ai+1 − 1 since P is an induced path in G. Otherwise, ei+1 ∈ F . By the
definition of ai+1, all internal vertices xb of R[xai

,xai+1] satisfy b < ai ,
5 as otherwise they would

be better candidates for ai+1. Hence, as P is an induced path in G and R is an induced path in
H = G + F , F needs to contain a triangulation of the cycle consisting of the subpath R[xai

,xai+1]
and the subpath P[xai

,xai+1]. This triangulation consists of at least (ai+1 − ai − 2) edges. Moreover,
since R is an induced path in H = G + F , all the edges of the triangulation need to have at least
one endpoint in the set {xai+1,xai+2, . . . ,xai+1−1}; note that the second endpoint always lies in the
set {x1,x2, . . . ,xai+1 }. Together with the edge ei+1, we infer that there are at least (ai+1 − ai − 1)
edges xaxb of F such that a < b and ai < b ≤ ai+1. Note that this statement also trivially holds in
the first case, when ei+1 ∈ E (G).

Observe that the specified set of edges of F are pairwise disjoint for different edges ei+1. We
infer that

|V (P) | − |V (R) | ≤ s − r =
r−1∑

i=1

(ai+1 − ai − 1) ≤ |F | ≤ k,

and the lemma is proven. �

Lemmas 5.6 and 5.7 enable us to perform the following branching strategy. In a loop, as long as
C11 is not empty, we pick arbitraryC ∈ C11, compute a shortest path P inG[C] between NG (X1) ∪
F1 andNG (X2) ∪ F2, and proceed as follows. First, if the bound of Lemma 5.7 does not hold, that is, if
|V (P) | > 3k , then we conclude that the current guesses are incorrect and we terminate the current
branch. Second, we invoke at most 4|V (P) | recursive calls (branches), in each branch assigning
one of the verticesv ∈ V (P) to one of the sets F1, F2, X1, X2 that does not contain v already. Third,
we put the entire V (P) into K and go back to the beginning of the loop. By Lemma 5.5, we may
terminate the current branch if the size of the set K increased by more than k since the root of
the recursion. Consequently, by the bound of Lemma 5.7, the aforementioned loop produces O (k2)
recursive calls, and leaves us with a situation where C11 = ∅.

5.4 Case Two: Components not Knowing Any Side of the Clique

We now focus on a componentC ∈ C00, that is, a connected component of G \ (X1 ∪ X2 ∪ K) that
does not contain any vertices of NG (X1 ∪ X2) ∪ F1 ∪ F2. In particular, note that for any such com-
ponent it holds that NG (C) ⊆ K \ {v1,v2}.

We now prove a few properties of such componentsC , assumingC ∩ Ω � ∅. Our goal is to prove
that each such component contains a vertex of F ◦1 ∪ X ◦1 ∪ F ◦2 ∪ X ◦2 , and, moreover, both the sizes
and the number of candidates for such components are bounded polynomially in k .

Lemma 5.8. If C ∈ C00 and C ∩ Ω � ∅, then σ (ωf1
) < ασ (C) < ωσ (C) < σ (αf2

).

5Recall that for a path P and two vertices x, y on P , by P [x, y] we denote the subpath of P between x and y , inclusive.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:32 I. Bliznets et al.

Proof. Recall that f1 and f2 are untouched by the solution F , both belong to X1 ∪ X2, and C
does not contain any neighbor of X1 ∪ X2. �

Lemma 5.9. If C ∈ C00 and C ∩ Ω � ∅, then all vertices of C are touched by the solution, and,

consequently, |C | ≤ 2k .

Proof. Let v ∈ C . If v ∈ Ω, v is touched by F as vv1,vv2 ∈ F . If v lies to the left of Ω then, by
Lemma 5.8, σ (ωv) > σ (ωf1

), and v is touched by the choice of f1. The case of v lying to the right
of Ω is symmetrical. �

Lemma 5.10. If C ∈ C00 and C ∩ Ω � ∅, then there exists v ∈ C such that |K \ NG (v) | ≤ k .

Proof. Observe that any vertex ofC ∩ Ω needs to be adjacent to all vertices of K inG + F , and
|F | ≤ k . �

Lemma 5.11. If C ∈ C00 and C ∩ Ω � ∅, then C contains a vertex of (F ◦1 \ F1) ∪ (X ◦1 \ X1) ∪ (F ◦2 \
F2) ∪ (X ◦2 \ X2).

Proof. We first show that C � Ω. Assume the contrary. Let |C | = s and x1,x2, . . . ,xs be the
vertices of C . Consider a model σ ′ created from σ by taking out all events of E (C) and insert-
ing them, in the order αx1 ,αx2 , . . . ,αxs

,ωxs
,ωxs−1 , . . . ,ωx1 between positions p − 1 and p (i.e., just

before the event αv2 at position p. As NG (C) ⊆ K \ {v1,v2}, σ ′ is a valid interval model of some
completion F ′ of G. As C ⊆ Ω \ {v1,v2} and, in particular, C is a clique in G + F , for any xi ∈ C
we have σ (αxi

) < p < σ (ωxi
) and, consequently, F ′ ⊆ F . Moreover, xiv2 ∈ F \ F ′ for any xi ∈ C ,

contradicting the minimality of F .
SinceC is connected inG, we may pickv,w ∈ C such thatvw ∈ E (G),v ∈ Ω andw � Ω; w.l.o.g.

assume that w lies to the left of Ω. If σ (αv) ≤ σ (ωc1), then vc1 ∈ F and v ∈ F ◦1 \ F1. Otherwise, we
have σ (ωc1) < σ (ωw) < p and w ∈ X ◦1 \ X1. This finishes the proof of the lemma. �

By Lemmas 5.9 and 5.10, all components C ∈ C00 that may have a non-empty intersection with
Ω need to (a) be of size at most 2k and (b) have a vertex with at most k non-neighbors in K .
By Lemma 4.6, applied to the set A := K and parameter r := k , in a YES-instance we expect O (k2)
components satisfying the second requirement. (Formally, we conclude that (G,k) is a NO-instance
and return K = ∅ if the bound of Lemma 4.6 turns out to be violated.) Consequently, all compo-
nents satisfying both requirements (a) and (b) have O (k3) vertices in total. This, together with
Lemma 5.11, motivates the following branching step. First, we invoke O (k3) recursive calls, in
each call picking a vertex from a component satisfying both (a) and (b) and inserting it into one of
the sets F1, X1, F2, X2. Finally, we pass the instance to the next case, assuming that no component
of C00 contains a vertex of Ω.

5.5 Case Three: Components Knowing One Side of the Clique

We are left with the components of C01 ∪ C10. By symmetry, we may focus on C10 only.
Consider C ∈ C10. The main obstacle we obtain in this section is that an analog of Lemma 5.9

does not hold (in particular, C may contain a lot of vertices in NG (f1)) and, consequently, C may
be large. To apply arguments similar to the previous case, we need to further analyze the structure
of such component C .

To this end, we define D1 = cc(G[
⋃C10 \ NG (f1)]). Now, for each D ∈ D1 we have not only

D ∩ (NG (X2) ∪ F2) = ∅ but also D ∩ NG (f1) = ∅, and we can state analogs of Lemmas 5.8 and 5.9.

Lemma 5.12. For any D ∈ D1, either ωσ (D) < σ (αf1
) or σ (ωf1

) < ασ (D) < ωσ (D) < σ (αf2
).

Moreover, if the second option happens, then all vertices of D are touched by F and |D | ≤ 2k .

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:33

Proof. As D is connected and does not contain any neighbor of the untouched vertices f1 and
f2, we need only to exclude the possibility ασ (D) > σ (ωf2

). However, this clearly follows from the
fact that there exists a connected component C ∈ C10 containing D: NG+F (C) contains a vertex of
X1 and does not contain f2. This proves the first assertion of the lemma.

Assume now that σ (ωf1
) < ασ (D) < ωσ (D) < σ (αf2

). Pick anyv ∈ D. Ifv ∈ Ω, thenv is touched
by F as vv2 ∈ F . Otherwise, σ (ωf1

) < σ (ωv) < p or σ (αf2
) > σ (αv) > p + 1. In both cases v is

touched by the choice of f1 or f2. �

The following lemma shows formally why we are interested in components of D1.

Lemma 5.13. A component C ∈ C10 contains an element of Ω if and only if there exists D ∈ D1,

D ⊆ C , such that D ∩ Ω � ∅ or ασ (D) > p + 1. In particular, such a component D satisfies the second

option of Lemma 5.12.

Proof. Assume first that such a component D exists for someC ∈ C10. If D contains a vertex of
Ω, then clearly so doesC , so assume ασ (D) > p + 1. Then NG+F (D) ∩ X1 = ∅ but NG+F (C) ∩ X1 �
∅. Hence, as G[C] is connected and D is a connected component of G[C] \ NG (f1), we infer that
there exists some z ∈ NG (D) ∩ NG (f1). Such a z clearly belongs to Ω by Lemma 5.3.

In the other direction, assume thatC ∩ Ω � ∅. Suppose first that there exists x ∈ C with σ (αx) >
p + 1. Then x � NG (f1) and x ∈ D for some D ∈ D1. If D ∩ Ω � ∅, we are done. Otherwise, by the
connectivity of D we have ασ (D) > p + 1 and the claim is proven.

So we have σ (αx) < p for any x ∈ C , as v1,v2 � C . Consider an interval model σ ′ created from
σ by taking all events of E (C) that are placed at positions at least p, and putting them (in the same
order) just before position p (i.e., between positions p − 1 and p). As NG (C) ⊆ (X1 ∪ K) \ {v2}, this
is a valid interval model of G + F ′ for some completion F ′. As σ (αx) < p for any x ∈ C , we have
F ′ ⊆ F . Moreover, xv2 ∈ F \ F ′ for any x ∈ C ∩ Ω. By the minimality of F , we have C ∩ Ω = ∅,
which contradicts our assumption about C and concludes the proof. �

Hence, we now focus on components D and try to deduce which of them may possibly satisfy
one of the conditions imposed in Lemma 5.13. We first make use of the untouched vertex д1 to
filter out some clearly “useless” components of D1.

Lemma 5.14. If for D ∈ D1, we have D ∩ NG (д1) � ∅, then ωσ (D) < σ (αf1
) (i.e., the first option of

Lemma 5.12 happens).

Proof. Follows directly from the inequality σ (ωд1) ≤ σ (ωf1
) (Lemma 5.1). �

We denote D2 = {D ∈ D1 : д1 � NG (D)} and define Z =
⋃

D∈D2
NG (D) \ (K ∪ X1). Note that

NG (D) ⊆ X1 ∪ K ∪ NG (f1) by the definition of C10 and D1. Consequently, Z ⊆ NG (f1) ∩⋃C10.
The following observation is the main reason to introduce the vertex д1 and “filter out” compo-
nents of D1 \ D2 in Lemma 5.14.

Lemma 5.15. All vertices of Z are touched by F and, consequently, |Z | ≤ 2k .

Proof. Let z ∈ Z and let D ∈ D2 such that z ∈ NG (D). If z ∈ Ω, then zv2 ∈ F and z is touched,
so assume otherwise. As z ∈ NG (f1), we infer that σ (ωz) < p.

Consider two cases for component D given by Lemma 5.12. If ωσ (D) < σ (αf1
), then, as D ∈ D2

and д1 ∈ NG [f1], we have actually ωσ (D) < σ (αд1). Hence, σ (αz) < σ (αд1). As z ∈ NG (f1) and
z � Ω, we infer that z is touched by the choice of д1. In the second case, if σ (ωf1

) < ασ (D), then
σ (ωz) > σ (ωf1

). As σ (ωz) < p, we infer that z is touched by the choice of f1. �

Formally, if the bound of Lemma 5.15 does not hold, we terminate the current branch. Otherwise,

any D ∈ D2 satisfies NG (D) ⊆ K ∪ X1 ∪ Z , and |Z | + |X1 | ≤ 2k + O (
√
k).

We now focus on the possibility of D ∩ Ω � ∅ for some D ∈ D2.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:34 I. Bliznets et al.

Lemma 5.16. If D ∩ Ω � ∅ for some D ∈ D2, then D ∩ ((F ◦2 \ F2) ∪ (X ◦2 \ X2)) � ∅.

Proof. We first show that if D ∩ Ω � ∅, then there exists w ∈ D with σ (αw) > p + 1. Assume
the contrary, and consider a model σ ′ created from σ by taking all events of E (D) that are placed by
σ on positions to the right of Ω (i.e., at positions with numbers at leastp) and move them just before
position p (i.e., the event αv2), in the same order as they appear in σ . As NG (D) ⊆ X1 ∪ NG (f1), σ ′

is an interval model of some completion F ′ ofG. Since we supposed that no vertex of D starts in σ
after position p, we have F ′ ⊆ F . Moreover, vv2 ∈ F \ F ′ for any v ∈ D ∩ Ω, a contradiction to the
minimality of F .

By the connectivity of D, there exist v,w ∈ D such that vw ∈ E (G), v ∈ Ω, and σ (αw) > p + 1.
Consider two cases. If σ (ωv) ≥ σ (αc2), then vc2 ∈ F and v ∈ F ◦2 \ F2. Otherwise, we have σ (αw) <
σ (ωv) < σ (αc2), and hence, by the choice of c2, w is expensive. Consequently, w ∈ X ◦2 \ X2. �

We now note that if D ∩ Ω � ∅, then any v ∈ D ∩ Ω needs to satisfy |K \ NG (v) | ≤ k . LetD3 ⊆
D2 be the family of these connected components D of D2 that (a) have size at most 2k , and (b)
contain a vertex v that has at most k non-neighbors in K . By Lemma 5.12, if D ∩ Ω � ∅, then
D ∈ D3. By Lemma 4.6 applied to the set A := K ∪ X1 ∪ Z and r = k + |Z | + |X1 | = O (k), we infer
that in a YES-instance we expect |D3 | = O (k2) (formally, we terminate the algorithm and return
K = ∅ if this is not the case). Consequently, |⋃D3 | = O (k3). Hence, Lemma 5.16 allows us to
branch into O (k3) recursive calls: in each call we put one of the vertices of

⋃D3 into one of the
sets F2, X2. We proceed further with the assumption that no vertex of

⋃D2 belongs to Ω, and we
focus on the possibility that ασ (D) > p + 1 for some D ∈ D2.

Lemma 5.17. If ασ (D) > p + 1 for some D ∈ D2, then either Z ∩ (F ◦2 \ F2) � ∅ or there exists w ∈
D ∩ (X ◦2 \ X2) such that NG (w) ∩ Z = NG (w) ∩ (Ω \ K) � ∅.

Proof. First note that, as ασ (D) > p + 1, then NG (D) ⊆ K ∪ Z , and D does not contain any
vertex of F ◦1 . Moreover, as D ⊆ C for some C ∈ C10, we have that NG (D) ∩ Z � ∅.

Pick any z ∈ NG (D) ∩ Z . As z f1 ∈ E (G) and ασ (D) > p + 1, we have z ∈ Ω \ K . If σ (ωz) ≥
σ (αc2), then we have z ∈ F ◦2 \ F2 and we are done. Otherwise, any neighborw ∈ NG (z) ∩ D satisfies
σ (αw) < σ (ωz) < σ (αc2) and, by the choice of c2, we infer thatw ∈ X ◦2 \ X2. As NG (w) ⊆ D ∪ K ∪
Z , such w satisfies the requirements of the lemma; the fact that NG (w) ∩ Z = NG (w) ∩ (Ω \ K)
follows easily from the assumptions about D and the definition of Z . �

Lemma 5.17, together with the bound |Z | ≤ 2k of Lemma 5.15, allows us to perform the following
branching. In the first |Z | recursive calls we pick a vertex of Z and insert it into F2. Then, we
invoke Lemma 4.5 on the set A := Z , expecting O (k2) neighborhood classes w.r.t. Z in the graphG
(formally, if this is not the case, we conclude that (G,k) is a NO-instance and return an empty set
K). We branch into O (k2) subcases, in each recursive call picking a neighborhood class R w.r.t. Z
with non-empty neighborhood NG (R) ∩ Z and inserting this neighborhood into K .

Finally, we are left with the case where the conclusion is that no component D ∈ D2 satisfies
ασ (D) > p + 1; recall that we have already concluded before that no component D ∈ D2 has a
non-empty intersection with Ω. By Lemma 5.13, we infer that in fact there are no vertices of Ω at
all in the components of C10.

Therefore, we pass the instance to the symmetric case of C01 and we perform all the symmetric
branchings. In the remaining subcase, we can finally conclude that K = Ω: We have C11 = ∅, and
we have already concluded that there are no vertices of Ω in the components of C00, of C10, nor of
C01. Hence, we insert the set K into the constructed family K .

It remains to argue that we output kO (
√

k) sets for each choice of the verticesvi , ci , fi ,дi , i = 1, 2.
Clearly, each step of the recursion invokes poly(k) recursive calls. To see that the depth of the

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:35

Fig. 18. Situation around the vertex v in the proof of Theorem 3.2, together with categories and cases of
Lemma 6.3.

recursion can be bounded by O (
√
k), note that whenever we make a recursive call, we either

insert a new vertex into one of the sets F1, X1, F2, X2, or we put into K all vertices of a non-
empty set NG (w) ∩ (Ω \ K) for some w ∈ (X ◦1 \ X1) ∪ (X ◦2 \ X2)—hence, this step can be done at

most once for every w ∈ X ◦1 ∪ X ◦2 during the whole branching process. As |F ◦1 |, |F ◦2 | ≤
√
k and

|X ◦1 | + |X ◦2 | ≤ 2
√
k + 1, we can prune the recursion tree at depth 6

√
k + 2, obtaining the claimed

bound on the size of K . This concludes the proof of Theorem 3.3.

6 GUESSING FILL-IN EDGES WITH FIXED ENDPOINT

In this section, we prove Theorem 3.2, which we restate here for completeness.

Theorem 3.2. Given an Interval Completion instance (G,k) where the Module Reduction Rule

is not applicable, and a designated vertex v ∈ V (G), one can in kO (
√

k)nO (1) time enumerate a family

F of at most kO (
√

k)n70 subsets ofV (G) such that for any minimal solution F to (G,k) for which v is

cheap w.r.t. F , the set {w ∈ V (G) : vw ∈ F } belongs to F .

We will mostly use Theorem 3.2 to guess the incident fill-in edges of a cheap vertex.

Corollary 6.1. Given an Interval Completion instance (G,k), where the Module Reduction Rule

is not applicable, and a designated vertex v ∈ V (G), one can in kO (
√

k)nO (1) time enumerate a family

F ′ of at most kO (
√

k)n70 subsets of V (G), such that for any minimal solution F to (G,k) for which v
is cheap w.r.t. F , the set {w ∈ V (G) : vw ∈ F } belongs to F ′.

Proof. We first enumerate the family F of Theorem 3.2 and then define

F ′ = {A ⊆ V (G) : |A| ≤
√
k ∧ ∃B∈FA ⊆ B}.

The correctness and the size bound follows directly from Theorem 3.2. �

We remark that, similarly to the arguments of the previous section, a polynomial kernel for
Interval Completion would save us a lot of effort. In fact, Theorem 3.2 becomes obvious as
we could then return F = {V (G)} (possibly worsening the polynomial bound on the size of a
single element of F). However, the question of existence of a polynomial kernel for Interval
Completion remains widely open, and we need to employ a careful analysis to obtain the promised
results.

6.1 Important Vertices and Sections

We fix a minimal completion F of the Interval Completion instance (G,k), and a model σ of
G + F . We define the following (see also Figure 18).

(1) Denote pv
L
= σ (αv) and pv

R
= σ (ωv).

(2) Let fL be the untouched vertex with the rightmost starting endpoint among untouched
vertices f satisfying σ (αf) ≤ pv

L
< pv

R
≤ σ (ωf).

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:36 I. Bliznets et al.

(3) Let fR be the untouched vertex with the leftmost ending endpoint among untouched ver-
tices f satisfying σ (αf) ≤ pv

L
< pv

R
≤ σ (ωf).

(4) Denote p
f

L
= σ (αfL

) and p
f

R
= σ (ωfR

).

(5) Denote Ω
f

L
= Ωσ (p

f

L
), Ωv

L
= Ωσ (pv

L
), Ωv

R
= Ωσ (pv

R
− 1) and Ω

f

R
= Ωσ (p

f

R
− 1).

Note that r is a good candidate for both fL and fR , thus these vertices exist. We remark also that
it may happen thatv = fL ,v = fR , or fL = fR . However, we may say the following about the order
of these vertices.

Lemma 6.2. σ (αfR
) ≤ p

f

L
≤ pv

L
< pv

R
≤ p

f

R
≤ σ (ωfL

).

Proof. The first and the last inequalities follow from the fact that fR is a good candidate for fL

and vice versa. The remaining inequalities are straightforward from the definition. �

We start by enumerating all possible choices of vertices fL, fR and sections Ω
f

L
, Ωv

L
, Ωv

R
, Ω

f

R
,

using the family S of Theorem 3.1. By the bound of Theorem 3.1, there are at most kO (
√

k)n70

subcases (henceforth called branches) to consider. In the rest of the proof, we aim to output a
single set B of size O (k5) for a single choice of the aforementioned two vertices and four sections.

That is, given fL, fR and Ω
f

L
, Ωv

L
, Ωv

R
, Ω

f

R
we show how to deduce a set B ⊆ V (G) of size O (k5),

such that B contains {w : vw ∈ F } for any minimal solution F to (G,k) for which the choice of

fL, fR and Ω
f

L
, Ωv

L
, Ωv

R
, Ω

f

R
is correct.

Thus, henceforth we fix a choice of fL, fR and Ω
f

L
, Ωv

L
, Ωv

R
, Ω

f

R
and we assume that the guess of

these vertices and sets is correct for a minimal solution F with model σ ofG + F . We note that, by
Lemma 6.2, we should expect that

v ∈ Ωv
L ∩ Ωv

R ,

fL, fR ∈ Ω
f

L
∩ Ω

f

R
,

Ω
f

L
∩ Ω

f

R
⊆ Ω

f

L
∩ Ωv

R ⊆ Ωv
L ∩ Ωv

R ,

Ω
f

L
∩ Ω

f

R
⊆ Ωv

L ∩ Ω
f

R
⊆ Ωv

L ∩ Ωv
R .

If this is not the case, we discard the branch in question.
Moreover, we maintain a set Bsure of vertices w for which we deduce that vw ∈ F is implied by

the choice of fL, fR and Ω
f

L
, Ωv

L
, Ωv

R
, Ω

f

R
. We start with Bsure = (Ωv

L
∪ Ωv

R
) \ NG (v). If at any point

the size of Bsure exceeds k , we discard the current branch.

6.2 Preliminary Observations and Categories of Connected Components

We start with the following observation, directly implied by the assumption that fL and fR are
untouched and |F | ≤ k .

Lemma 6.3. For any connected component C of G \ (Ω
f

L
∪ Ωv

L
∪ Ωv

R
∪ Ω

f

R
) the following holds:

(1) IfC ∩ NG (fL) ∩ NG (fR) = ∅, thenωσ (C) < p
f

L
or ασ (C) > p

f

R
. In particular,vw � E (G) ∪ F

for every w ∈ C .

(2) If C contains a vertex of NG (fL) ∩ NG (fR), then p
f

L
< ασ (C) < ωσ (C) < p

f

R
and C ⊆

NG (fL) ∩ NG (fR).
(3) If, moreover, C contains a neighbor of v in G, then pv

L
< ασ (C) < ωσ (C) < pv

R
and vw ∈

E (G) ∪ F for every w ∈ C .

(4) In the last case, if C ⊆ (NG (fL) ∩ NG (fR)) \ NG (v), then one of the following cases holds:

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:37

(a) pv
L
< ασ (C) < ωσ (C) < pv

R
andvw ∈ F for everyw ∈ C . Moreover, in this case NG (C) ⊆

Ωv
L
∪ Ωv

R
.

(b) p
f

L
< ασ (C) < ωσ (C) < pv

L
andvw � F for everyw ∈ C . Moreover, in this case NG (C) ⊆

Ω
f

L
∪ Ωv

L
.

(c) pv
R
< ασ (C) < ωσ (C) < p

f

R
andvw � F for everyw ∈ C . Moreover, in this case NG (C) ⊆

Ω
f

R
∪ Ωv

R
.

Moreover, if |C | > k , then the first option does not happen.

By Lemma 6.3, we can sort the connected components of G \ (Ω
f

L
∪ Ωv

L
∪ Ωv

R
∪ Ω

f

R
) into three

categories, depending on whether they fall into point (1), (3), or (4). Obviously, the last category is
the most interesting, as we are not able to directly decide whether the vertices of the component
should be inserted into B or not. The subpoints of this category (i.e., (4a), (4b), and (4c)) are hence-
forth called cases. Note that for each connected componentC we know its category, but we do not
know its case if it falls into category (4).

We now perform some cleaning. If there exists a componentC ∈ cc(G \ (Ω
f

L
∪ Ωv

L
∪ Ωv

R
∪ Ω

f

R
))

that does not fall into any category (e.g., we haveC � NG (fL) ∩ NG (fR), butC contains a common
neighbor of fL and fR), we discard the current branch. Moreover, we may include into Bsure all non-
neighbors of v that lie in a connected component C that falls into category (3) of Lemma 6.3, that
is, that contains a neighbor of v .

Clearly, only at most k components fall into case (4a) of Lemma 6.3, since each such component
induces at least one fill edge incident to v . However, we do not know which of the components
falling into category (4) are in fact those interesting ones. Hence, our main task now is to pinpoint
a set of roughly O (k4) potential components falling into category (4) for which case (4a) may
possibly happen. As each such component is of size at most k , this would conclude the proof of
Theorem 3.2.

Let C be the family of all connected components C of G \ (Ω
f

L
∪ Ωv

L
∪ Ωv

R
∪ Ω

f

R
) that fall into

category (4) of Lemma 6.3, that is, C ⊆ (NG (fL) ∩ NG (fR)) \ NG (v). We distinguish the following
subfamilies that correspond to the subcases of category (4).

Cv = {C ∈ C : NG (C) ⊆ Ωv
L ∪ Ωv

R },

CL = {C ∈ C : NG (C) ⊆ Ω
f

L
∪ Ωv

L },

CR = {C ∈ C : NG (C) ⊆ Ω
f

R
∪ Ωv

R }.
If Cv ∪ CL ∪ CR � C, we discard the current branch. Moreover, for any C ∈ Cv \ (CL ∪ CR) we
include all vertices of C into Bsure, as such a component will surely fall into case (4a).

In the sequel, we will consider components that belong to different combinations of sets
Cv ,CL,CR . The following fact, used often implicitly, follows directly from the definitions of

Cv ,CL,CR and inclusion relations between Ω
f

L
,Ωv

L
,Ωv

R
,Ω

f

R
.

Lemma 6.4. The following holds:

• If C ∈ CL ∩ Cv , then NG (C) ⊆ Ωv
L

. If, moreover, C � CR , then NG (C) ∩ (Ωv
L
\ Ωv

R
) � ∅.

• If C ∈ CR ∩ Cv , then NG (C) ⊆ Ωv
R

. If, moreover, C � CL , then NG (C) ∩ (Ωv
R
\ Ωv

L
) � ∅.

• If C ∈ CL ∩ CR , then NG (C) ⊆ Ωv
L
∩ Ωv

R
and in particular C ∈ Cv .

6.3 Troublesome Components

Our goal now is to focus on CL and pinpoint a small set of components of CL ∩ Cv that may
possibly fall into case (4a) of Lemma 6.3. The arguments for CR will be symmetrical.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:38 I. Bliznets et al.

To this end, we will construct a family T ⊆ CL of troublesome components. Informally speaking,
a component is troublesome if it is highly unclear where or how it should live in the model σ . We
will argue that there is a bounded number of troublesome components (strictly speaking, O (k2)
of them) and any component that falls into case (4a) of Lemma 6.3 is in some sense “close” to a
troublesome component.

We start by putting into T all connected componentsC ∈ CL that cannot be drawn in the model

of a completion of G between sections Ω
f

L
and Ωv

L
without an incident edge of the solution. More

formally, we denote FL = (Ωv

L

2
) \ E (G) ⊆ F and define the following.

Definition 6.5. A componentC ∈ CL ∩ Cv is freely drawable if there exists an interval model σC

of (G + FL)[C ∪ Ωv
L

] that starts with all starting events of E (Ωv
L
∩ Ω

f

L
) and ends with all ending

events of E (Ωv
L

).

We now state the formerly informal motivation for this definition.

Lemma 6.6. If C ∈ (CL ∩ Cv) \ CR is not freely drawable, then it is touched by F .

Proof. As C � CR , it cannot fall into case (4c) of Lemma 6.3. If C falls into case (4a), then it is
touched due to the fill-in edges incident tov . Otherwise, unlessC is touched, the model σ restricted
to C ∪ Ωv

L
witnesses that C is freely drawable. �

Finally, we remark that we may recognize freely drawable components in polynomial time.

Lemma 6.7. Given C ∈ CL ∩ Cv , we can recognize if C is freely drawable in polynomial time.

Proof. We simply use Lemma 2.1 for the graph (G + FL)[C ∪ Ωv
L

] and cliques Ωv
L
∩ Ω

f

L
and

Ωv
L

. �

Using Lemma 6.7, we recognize all components of (CL ∩ Cv) \ CR that are not freely drawable.
If there are more than 2k of them, by Lemma 6.6 we may discard the current branch. Otherwise,
we put all not freely drawable components of (CL ∩ Cv) \ CR into T .

We remark that if C is freely drawable, then Ωv
L
∩ Ω

f

L
⊆ NG (w) for any w ∈ C .

As we needed to exclude the components of CR for Lemma 6.6, we now proceed to the compo-

nents of CL ∩ CR . Denote P = Ω
f

L
∩ Ω

f

R
and K = (Ωv

L
∩ Ωv

R
) \ P . It turns out that the choice of fL

and fR implies that K is small.

Lemma 6.8. All vertices of K are touched by F and, consequently, |K | ≤ 2k .

Proof. Consider any x ∈ K . As x ∈ Ωv
L
∩ Ωv

R
, we have σ (αx) ≤ pv

L
< pv

R
≤ σ (ωx). As x � Ω

f

L
∩

Ω
f

R
, we have σ (αx) > p

f

L
or σ (ωx) < p

f

R
. If x is untouched by F , x would be a better candidate for

fL in the first case, and a better candidate for fR in the second case. �

Note that by Lemma 6.4, we have NG (C) ⊆ P ∪ K for anyC ∈ CL ∩ CR . Lemma 6.8 allows us to
use the bound of Lemma 4.6.

Lemma 6.9. |CL ∩ CR | = O (k2).

Proof. There are at most 2k connected components of CL ∩ CR that are touched by F . Consider

now untouched C ∈ CL ∩ CR . As p
f

L
< ασ (C) < ωσ (C) < p

f

R
, we have aw ∈ E (G) for any w ∈ C ,

a ∈ P . The lemma follows from an application of Lemma 4.6 to A = P ∪ K and r = |K | ≤ 2k . �

Thus, if |CL ∩ CR | is too large, we discard the current branch. Moreover, we can also discard the
current branch if there exists C ∈ CL ∩ CR with |(C × P) \ E (G) | > k : such a component C would

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:39

Fig. 19. A closer insight into the area between Ω
f
L

and Ωv
L

.

need too much fill-in edges between itself and P . If neither of the above situations happen, we
insert CL ∩ CR into T , that is, we treat all components of CL ∩ CR as troublesome.

We now inspect the possible order of the starting endpoints of the vertices of Ωv
L
\ Ω

f

L
; all these

endpoints appear between positions p
f

L
and pv

L
. We denote

X =
⋃

C ∈CL\Cv

NG (C) ∩ Ωv
L

and observe the following.

Lemma 6.10. For anyC ∈ (CL ∩ Cv) \ CR , if there existsw ∈ C withX � NG (w), thenC is touched

by F .

Proof. Consider such component C and vertex w ∈ C . As C � CR , either case (4a) or case (4b)
of Lemma 6.3 applies toC . If case (4a) applies, thenwv ∈ F and we are done, so assume otherwise.

Let D ∈ CL \ Cv such that there exists x ∈ (NG (D) ∩ Ωv
L

) \ NG (w). Note that, in particular,C �
D and hencew does not have any neighbor in D in the graphG. As D ∈ CL \ Cv , there exists some

y ∈ (Ω
f

L
\ Ωv

L
) ∩ NG (D). Since C ∈ Cv , then we have y � NG (C), so in particular, wy � E (G).

Let P be a path in G with endpoints in x and y and all internal vertices in D; such a path exists

since D is connected. Note that P contains no neighbor of w in G, but connects y ∈ Ω
f

L
= Ωσ (p

f

L
)

with x ∈ Ωv
L
= Ωσ (pv

L
). As p

f

L
< σ (αw) < σ (ωw) < pv

L
,w neighbors some vertex of P inG + F , and

hence w is touched by F . �

By Lemma 6.10, we expect at most 2k components of (CL ∩ Cv) \ CR for which X � NG (w) for
some w ∈ C . If there are more such components, we discard the current branch. Otherwise, we
include all such components into T .

We refer to Figure 19 for an illustration of some of the introduced notation.
We now define the following relation � on the components of (CL ∩ Cv) \ CR : for two compo-

nentsC1,C2 ∈ (CL ∩ Cv) \ CR we haveC1 � C2 iff for anyv1 ∈ C1 and for anyv2 ∈ C2 it holds that
NG (v1) ∩ Ωv

L
⊆ NG (v2) ∩ Ωv

L
. Clearly, � is a transitive and reflexive relation on (CL ∩ Cv) \ CR .

Intuitively, � should be close to a total quasi-order, and should resemble the order in which the
components of (CL ∩ Cv) \ CR that fall into case (4b) of Lemma 6.3 appear in the modelσ , and com-
ponents that are equivalent with respect to � should be interchangeable modules. This intuition
is partially formalized in the following lemma.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:40 I. Bliznets et al.

Lemma 6.11. If two componentsC1,C2 ∈ (CL ∩ Cv) \ CR are incomparable with respect to �, then

at least one of them is touched by F .

Proof. If a component of CL falls into case (4a) of Lemma 6.3, then all its vertices are touched.
Hence, assume that both C1 and C2 fall into case (4b).

If v1v2 ∈ F for some v1 ∈ C1, v2 ∈ C2, then both components are touched by F . Otherwise,
ωσ (C1) < ασ (C2) or ωσ (C2) < ασ (C1); w.l.o.g., assume the first option. However, then for any
v1 ∈ C1 and v2 ∈ C2 it holds that NG+F (v1) ∩ Ωv

L
⊆ NG+F (v2) ∩ Ωv

L
. Hence, C1 � C2 unless C2 is

touched. �

Consider now an auxiliary graph GC with vertex set (CL ∩ Cv) \ CR and two components C1

and C2 being adjacent iff they are incomparable w.r.t. �. By Lemma 6.11, the family of touched
components is a vertex cover ofGC of size at most 2k . We run a 2-approximation algorithm to find
a vertex coverV of GC . If |V | > 4k , we discard the current branch. Otherwise, we insertV into
T .

This concludes the construction of the family T of troublesome components. Note that |T | =
O (k2) and |T \ (CL ∩ CR) | = O (k). Let D = (CL ∩ Cv) \ T be the set of not troublesome compo-
nents. We summarize the properties of the components of D.

(1) Every C ∈ D is freely drawable.
(2) NG (C) ⊆ Ωv

L
for any C ∈ D.

(3) Each component C ∈ D does not belong to CR . That is, NG (C) contains a vertex of Ωv
L
\

Ωv
R

.
(4) The relation �, restricted to D, is a total quasi-order.
(5) For every component C ∈ D and each w ∈ C , we have X ⊆ NG (w).

6.4 Being Close and Far from a Troublesome Component

In this section, we show that any component that is far from all components of T , in a specific
meaning defined later, is left untouched by F . This, together with a bound on the number of com-
ponents close to T will conclude the proof of Theorem 3.2.

For any component C ∈ CL , we define the following two measures.

ϕ1 (C) = min
w ∈C
|NG (w) ∩ Ωv

L |,

ϕ2 (C) = max
w ∈C
|NG (w) ∩ Ωv

L |.

Note that ϕ2 (C1) ≤ ϕ1 (C2) wheneverC1 � C2. Observe moreover that ϕ1 (C) ≥ |X | for eachC ∈ D.
Consider now someC ∈ D. We first observe that NG (w) ∩ Ωv

L
= NG (w) \C for anyw ∈ C . Sec-

ond, note that, as C is freely drawable, for any w1,w2 ∈ C we have NG (w1) ∩ Ωv
L
⊆ NG (w2) ∩ Ωv

L

or vice versa. In particular, for C ∈ D, if we define sets

Φ1 (C) =
⋂

w ∈C
NG (w) ∩ Ωv

L ,

Φ2 (C) =
⋃

w ∈C
NG (w) ∩ Ωv

L ,

then there exist w1,w2 ∈ C with NG (w1) ∩ Ωv
L
= Φ1 (C) and NG (w2) ∩ Ωv

L
= Φ2 (C). In particular,

|Φ1 (C) | = ϕ1 (C) and |Φ2 (C) | = ϕ2 (C).
Enumerate now D = {C1,C2, . . . ,C |D | } such that

C1 � C2 � . . . � C |D | .

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:41

Note that the aforementioned numeration is not unique, as � is a quasi-order: they may exist
C1,C2 ∈ D with C1 � C2 and C2 � C1. However, we note that such a situation is somehow limited
by inapplicability of the Module Reduction Rule.

Lemma 6.12. IfC1 � C2 andC2 � C1 for someC1,C2 ∈ D, thenC1,C2 andC1 ∪C2 are modules in

G. Moreover, if D′ ⊆ D such that C1 � C2 and C2 � C1 for any C1,C2 ∈ D′, then |D′| ≤ 2k + 2.

Proof. By the definition of the relation �, we infer that

NG (v1) \C1 = NG (v1) ∩ Ωv
L = NG (v2) ∩ Ωv

L = NG (v2) \C2

for any v1 ∈ C1, v2 ∈ C2. The first claim follows. For the second claim, note that if |D′| ≥ 2k + 3,
then the Module Reduction Rule would be applicable to any 2k + 3 components ofD′, and the set
Ωv

L
. �

Corollary 6.13. For any 1 ≤ a ≤ b ≤ |D|, we have

ϕ1 (Cb) − ϕ2 (Ca) ≥
⌈
b − a
2k + 3

⌉
− 1.

Proof. Let a < c1 < c2 < · · · < cs < b be the sequence of all indices a < c < b such that
ϕ2 (Cc−1) < ϕ2 (Cc). By Lemma 6.12, ci+1 − ci ≤ 2k + 3 for any 1 ≤ i < s and c1 − a ≤ 2k + 3, b −
cs ≤ 2k + 3. Consequently, (2k + 3) (s + 1) ≥ b − a. The lemma follows from the observation that
s ≤ ϕ2 (Ccs) − ϕ2 (Ca) ≤ ϕ1 (Cb) − ϕ2 (Ca). �

Given the orderingC1,C2, . . . ,C |D | , we can also observe the following corollary of the fact that
all components of D are freely drawable.

Lemma 6.14. For any 1 ≤ a ≤ b ≤ |D|, if we define F ′ = (Φ2 (Cb)
2) \ E (G), then the graph

(G + F ′)
⎡⎢⎢⎢⎢⎣Φ2 (Cb) ∪

b⋃

c=a

Cc
⎤⎥⎥⎥⎥⎦

is interval and admits a model that starts with the starting events of E (Φ1 (Ca)) and ends with the

ending events of E (Φ2 (Cb)).

Proof. We prove the lemma by induction on b − a. For the base case a = b, observe that the
claim is equivalent to the definition ofCa being freely drawable. In the induction step, pick any a <
c ≤ b and use the induction hypothesis for components Ca ,Ca+1, . . . ,Cc−1 and Cc ,Cc+1, . . . ,Cb ,
obtaining models σ1 and σ2. Create the desired model σ0 by concatenating

(1) the model σ1, with removed suffix consisting of the ending events of E (Φ2 (Cc−1)),
(2) the starting events of E (Φ1 (Cc) \ Φ2 (Cc−1)), and
(3) the model σ2, with removed prefix consisting of the starting events of E (Φ1 (Cc)).

It is straightforward to verify that σ0 satisfies all the promised properties. �

We now turn our attention to the troublesome components and inspect how they interact with
the family D. For each T ∈ T , define the following.

a1 (T) = min{x : ϕ2 (Cx) ≥ ϕ1 (T)},
a2 (T) = max{x : ϕ1 (Cx) ≤ ϕ2 (T)},
b1 (T) = min{x : ϕ1 (Cx) > ϕ1 (T) + k },
b2 (T) = max{x : ϕ2 (Cx) < ϕ2 (T)}.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:42 I. Bliznets et al.

Fig. 20. The indices defined in the proof of Lemma 6.16.

All of these values can attain +∞ or −∞ if the corresponding set for minimization or maximization
is empty.

Clearly, a1 (T) ≤ b1 (T), a2 (T) ≥ b2 (T), and a1 (T) ≤ a2 (T) + 1. We note that, by Corollary 6.13,
we have b1 (T) − a1 (T) = O (k2) and a2 (T) − b2 (T) = O (k). We claim the following.

Lemma 6.15. If b2 (T) − b1 (T) > 2k , then T does not fall into case (4b) of Lemma 6.3.

Proof. Let x ,y ∈ T such that |NG (x) ∩ Ωv
L
| = ϕ1 (T) and |NG (y) ∩ Ωv

L
| = ϕ2 (T). If b2 (T) −

b1 (T) > 2k , then there exists a component Cc that is untouched by F for some b1 (T) ≤ c ≤ b2 (T).
Hence, for any w ∈ Cc we have

|NG+F (x) ∩ Ωv
L | ≤ |NG (x) ∩ Ωv

L | + k < |NG (w) ∩ Ωv
L | = |NG+F (w) ∩ Ωv

L | < |NG (y) ∩ Ωv
L |

≤ |NG+F (y) ∩ Ωv
L |.

Summarizing, |NG+F (x) ∩ Ωv
L
| < |NG+F (w) ∩ Ωv

L
| < |NG+F (y) ∩ Ωv

L
|. As T is connected in G and

no edge of G + F connects Cc with T , it cannot happen that both Cc and T fall into case (4b) of
Lemma 6.3. However, since Cc is untouched and does not belong to CR , Cc falls into case (4b) of
Lemma 6.3. This finishes the proof of the lemma. �

Let T ′ = {T ∈ T : b2 (T) − b1 (T) ≤ 2k } be the set of these troublesome components for which
Lemma 6.15 is not applicable. Note also that for anyT ∈ T ′, we have −1 ≤ a2 (T) − a1 (T) = O (k2).

We say that a componentCc ∈ D is far from a troublesome componentT if either a2 (T) < c − η
or a1 (T) > c + ζ , where

γ = (2k + 3) (k + 2) + 1, δ = 2(2k + 3) + 1,

η = γ · (2k + 2), ζ = δ · (2k + 3).

A component C is close to T if it is not far from T . Define D0 to be the set of these components
Cc ∈ D such that Cc is far from all components of T ′ and, moreover, η < c < |D| − ζ .

With this definition, we are now ready for the crucial argumentation of this section.

Lemma 6.16. Any component C ∈ D0 is untouched by F . Consequently, such C falls into case (4b)

of Lemma 6.3.

Proof. Let Cc ∈ D be far from all components of T ′. Denote a = c − η and b = c + ζ . By the
assumptions of the lemma, 1 ≤ a < b ≤ |D| and, for each T ∈ T ′ we have either ϕ2 (T) < ϕ1 (Ca)
or ϕ1 (T) > ϕ2 (Cb). We refer to Figure 20 for indices defined in the course of this proof.

By the Pigeonhole Principle, there exists some a, a ≤ a ≤ c − γ , such that all components

Ca ,Ca+1, . . . ,Ca+γ−1 are untouched by F . Symmetrically, there exists some b, c + δ < b ≤ b − δ +
1, such that all components Cb ,Cb+1, . . . ,Cb+δ−1 are untouched by F . By Corollary 6.13, we have

k < ϕ1 (Ca+γ−1) − ϕ2 (Ca), (6.1)

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:43

0 < ϕ1 (Cb+δ−1) − ϕ2 (Cb), (6.2)

0 < ϕ1 (Cb) − ϕ2 (Cc) ≤ ϕ1 (Cb) − ϕ2 (Ca+γ−1). (6.3)

Recall that an untouched component of D needs to fall into case (4b) of Lemma 6.3. Moreover,
such components need to lie one after another in the model σ , that is, ifC1,C2 ∈ D are untouched,
then ωσ (C1) < ασ (C2) or ωσ (C2) < ασ (C1). Note that the first case is possible only ifC1 � C2, and
the second one only if C2 � C1.

Let p1 = ωσ (Ca+γ−1) and p2 = ασ (Cb). From Equation (6.3), we infer that p1 < p2. Denote K1 =

Φ2 (Ca+γ−1) and K2 = Φ1 (Cb) and observe that Ωσ (p1) = K1 ⊆ Ωσ (p2 − 1) ⊆ K2.
For anyC ∈ CL , we have either ωσ (C) ≤ p1, ασ (C) ≥ p2 or p1 < ασ (C) < ωσ (C) < p2. We claim

the following.

Claim 6.17. Let C ∈ CL . If p1 < ασ (C) < ωσ (C) < p2, then C ∈ D and C = Cd for some d with

ϕ2 (Ca+γ−1) ≤ ϕ1 (Cd) ≤ ϕ2 (Cd) ≤ ϕ1 (Cb) (in particular, a < d < b + δ − 1, by Corollary 6.13).

Proof. Observe that if C satisfies p1 < ασ (C) < ωσ (C) < p2, then for every w ∈ C it must hold
thatK1 ⊆ NG+F (w) ∩ Ωv

L
⊆ K2. Since |F | ≤ k , we infer that |NG (w) ∩ K1 | ≥ |K1 | − k and NG (w) ⊆

K2, for each w ∈ C . We now consider a few cases depending on the category C belongs to.
IfC � Cv , then ϕ2 (C) ≤ |X | ≤ ϕ1 (C1) as NG (C) ∩ Ωv

L
⊆ X by the definition ofX . Hence, by (6.1),

ϕ2 (C) + k < |K1 |, and the edges of F cannot make C adjacent to the entire K1.
IfC ∈ T \ T ′, then Lemma 6.15 implies thatC cannot lie between positions p1 and p2. IfC ∈ T ′

then, by the choice of Cc , a, and b, we have either ϕ2 (C) < ϕ1 (Ca) or ϕ1 (C) > ϕ2 (Cb+δ−1). In the
first case, by Equation (6.1) we infer that ϕ2 (C) + k < |K1 |. In the second case, by Equation (6.2)
we infer that ϕ1 (C) > |K2 |. In both cases, the argumentation of the first paragraph shows that C
cannot lie between positions p1 and p2.

We are left with the case where C ∈ D and C = Cd for some 1 ≤ d ≤ |D|. By contradiction,

assume first that ϕ1 (Cd) < ϕ2 (Ca+γ−1). If d ≥ a, then Cd is untouched and the vertex w ∈ Cd that
has only ϕ1 (Cd) < |K1 | neighbors in Ωv

L
cannot be placed after position p1. Otherwise, by Equa-

tion (6.1) we haveϕ2 (Cd) + k < |K1 |, and the edges of F are not sufficient to makeCd fully adjacent

to K1. In the second case, when ϕ2 (Cd) > ϕ1 (Cb) = |K2 |, clearly Cd cannot be placed before posi-
tion p2 as there exists a vertex of Cd that has more than |K2 | neighbors in Ωv

L
. This finishes the

proof of the claim. �

Define now indices â and b̂ as follows: â is minimum such thatϕ1 (C â) ≥ |K1 | (equivalently,K1 ⊆
Φ1 (C â)) and b̂ is maximum such that ϕ2 (Cb̂) ≤ |K2 | (equivalently, K2 ⊇ Φ2 (Cb̂)). By the definition

ofK1 andK2, we have a < â ≤ a + γ andb − 1 ≤ b̂ ≤ b + δ − 1. Denote FK = (K2

2) \ E (G); note that
FK ⊆ F . By Lemma 6.14, it is easy to see that there exists an interval model σ0 of

(G + FK)

⎡⎢⎢⎢⎢⎢⎣K2 ∪
b̂⋃

d=â

Cd

⎤⎥⎥⎥⎥⎥⎦
that starts with the starting events of E (K1) and ends with the ending events of E (K2).

Let us create a model σ ′ from σ by

(1) removing all events of
⋃b̂

d=â
E (Cd) as well as all starting events of E (K2 \ K1); observe

that, by Claim 6.4, we have, in particular, removed all events that lie inσ between positions
p1 and p2, exclusive;

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:44 I. Bliznets et al.

(2) inserting all events of σ0, except for the prefix consisting of the starting events of E (K1)
and the ending events of E (K2), in the place between former positions p1 and p2 in σ , in
the original order.

Since K1 = Ωσ (p1) and K2 = Φ1 (Cb), we infer that σ ′ is an interval model of G + F ′ for some

completion F ′. As FK ⊆ F , we have F ′ ⊆ F . Moreover, as â ≤ c ≤ b̂, Cc is untouched by F ′. By the
inclusion-wise minimality of F , F ′ = F and the lemma is proven.

We now show that almost all elements of D in fact belong to D0.

Lemma 6.18. |D \ D0 | = O (k4).

Proof. Clearly, a component T ∈ T ′ is close to O (k3) components of D. Moreover, note that
for any T ∈ CL ∩ CR , we have that NG (T) ⊆ P ∪ K , but, as |(T × P) \ E (G) | ≤ k and |K | ≤ 2k
(Lemma 6.8), it implies |P | − k ≤ ϕ1 (T) ≤ ϕ2 (T) ≤ |P | + 2k . Consequently, by Corollary 6.13 there
are O (k2) components of D that are close to some T ∈ CL ∩ CR . As |T \ (CL ∩ CR) | = O (k), the
lemma follows. �

Let Csmall be the family of those components C ∈ C for which |C | ≤ k . Note that a component
C ∈ C can fall into case (4a) only if C ∈ Cv ∩ Csmall, since each vertex of a component falling into
case (4a) must have a fill-in edge to v , and the number of such edges is at most k .

Finally, denote

BL =
⋃

((D \ D0) ∩ Csmall) ∪
⋃

(T ∩ Cv ∩ Csmall).

By Lemma 6.18 and the definition of Csmall, we have that |⋃ ((D \ D0) ∩ Csmall) | = O (k5). Since
|T | = O (k2), we have |⋃ (T ∩ Cv ∩ Csmall) | = O (k3). As a result, we obtain |BL | = O (k5). Sym-
metrically, by inspecting CR instead of CL , we obtain a set BR of size O (k5).

Define now B = Bsure ∪ BL ∪ BR . As Cv \ T ⊆ D, Lemma 6.16 ensures that {w ∈ V (G) : vw ∈
F } ⊆ B. Hence, we insert B into the constructed family F and conclude the proof of Theorem 3.2.

7 SMALL-SEPARATION LEMMA

In this short section, we prove the following structural result.

Theorem 7.1. Let (G,k) be a YES-instance to Interval Completion, let F be a minimum solution

to (G,k), and let σ be the canonical model of G + F . Let pL < pR be two integers and denote ΩL =

Ωσ (pL), ΩR = Ωσ (pR − 1). AssumeK ⊆ V (G) is such thatK ⊆ ΩL \ ΩR orK ⊆ ΩR \ ΩL . Then there

are at most 3
√
k + |K | connected components C of G \ (ΩL ∪ ΩR) that satisfy the following three

conditions:

(1) NG (C) ⊆ K ∪ (ΩL ∩ ΩR),
(2) pL < ασ (C) < ωσ (C) < pR , and

(3) there exists ε ∈ E (K) such that ασ (C) < σ (ε) < ωσ (C).

7.1 A few words on motivation

Before we proceed to the proof of Theorem 7.1, let us now shortly elaborate on the motivation of
this result.

Consider the following setting. Assume we have two vertices x and y, and we know (have
guessed) that they are cheap with respect to the minimum solution F we are looking for. Moreover,
in the canonical model σ of G + F , we have σ (αx) < σ (αy) < σ (ωy) < σ (ωx). By Corollary 6.1,

there are only kO (
√

k)n70 choices for each of the set F (x), F (y), so assume we know them as well.
Similarly, there is only a subexponential number of choices for the sections at the endpoints of x

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:45

Fig. 21. Motivation for Theorem 7.1: we would like to reason about the alignment of the vertices of category
(2) in the dotted areas.

and y. Hence, assume we have guessed them and denote them by Ωx
L

, Ω
y

L
, Ω

y

R
, and Ωx

R
. Note that

we may assume that standard inclusions between these sections: Ωx
L
∩ Ω

y

R
⊆ Ω

y

L
, Ω

y

L
∩ Ωx

R
⊆ Ω

y

R
,

and Ωx
L
∩ Ωx

R
⊆ Ω

y

L
∩ Ω

y

R
.

Consider any vertex v ∈ V (G) \ (Ωx
L
∪ Ω

y

L
∪ Ω

y

R
∪ Ωx

R
). Note that, by inspecting whether vx ∈

E (G) ∪ F (x) and whether vy ∈ E (G) ∪ F (y), we may classify v into one of three categories (see
also Figure 21):

(1) vx � E (G) ∪ F (x) and vy � E (G) ∪ F (y), hence σ (ωv) < σ (αx) or σ (αv) > σ (ωx);
(2) vx ∈ E (G) ∪ F (x) but vy � E (G) ∪ F (y), hence σ (αx) < σ (αv) < σ (ωv) < σ (αy) or

σ (ωy) < σ (αv) < σ (ωv) < σ (ωx);
(3) vx ∈ E (G) ∪ F (x) and vy ∈ E (G) ∪ F (y), hence σ (αy) < σ (αv) < σ (ωv) < σ (ωy).

Moreover, the choice of the category needs to be homogeneous among each connected compo-
nent of G \ (Ωx

L
∪ Ω

y

L
∪ Ω

y

R
∪ Ωx

R
).

We will be interested mostly in the second category, and we would like to guess which com-
ponents C of this category lie, in the model σ , to the left of the vertex y, and which lie to the
right of it. If such a component C has a neighbor in Ωx

L
\ Ω

y

L
or in Ω

y

L
\ Ω

y

R
, then C needs to lie

in the left; similarly, a component C with a neighbor in Ωx
R
\ Ω

y

R
or in Ω

y

R
\ Ω

y

L
needs to lie in the

space to the right. That is, we may deduce this choice from the neighborhood of a component C
unless NG (C) ⊆ Ω

y

L
∩ Ω

y

R
. In what follows, let us call a component C of the second category with

NG (C) ⊆ Ω
y

L
∩ Ω

y

R
a difficult component.

We now argue that Theorem 7.1 is helpful if K := (Ω
y

L
∩ Ω

y

R
) \ (Ωx

L
∩ Ωx

R
) is small. This is, in

particular, the case if K contains only expensive vertices and thus its cardinality is bounded by

2
√
k .
Observe that a difficult component has neighbors in K and in Ωx

L
∩ Ω

y

L
. Consequently,

Lemma 4.6, applied to r = |K | and A = Ω
y

L
∩ Ω

y

R
ensures that there are only poly(k + |K |) diffi-

cult components.
In the canonical model σ , a difficult componentC may “occupy” an event of K (i.e., may contain

an event of E (K) between ασ (C) andωσ (C)). For such components, Theorem 7.1 plays crucial role:

it ensures that there are O (
√
k + |K |) such components. In the scenario when |K | = O (

√
k), we can

afford to guess which difficult components are of this type and to guess the left/right alignment of
the chosen components. For the remaining difficult components, we provide a greedy argument:
in the canonical model they do not occupy any event of any of the vertices from the cliques Ωx

L
,

Ωx
R

, Ω
y

L
, Ω

y

R
, hence they are modules in G + F and can be arranged in a greedy manner.

7.2 Proof

By symmetry, let us assume that K ⊆ ΩR \ ΩL . In particular, all starting events and no ending
event of E (K) lie between pL and pR . We say that a component C occupies the event ε ∈ E (K)

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:46 I. Bliznets et al.

Fig. 22. Notation in proof of Theorem 7.1.

if ασ (C) < σ (ε) < ωσ (C). Let C be the family of components of G \ (ΩL ∪ ΩR) that satisfy all
conditions of Theorem 7.1, that is, we are to bound |C|.

First, note that a much weaker bound 2k + |K | for Theorem 7.1 is straightforward: there are at
most 2k components C touched by F , and no two untouched components may occupy the same
event of E (K). However, such a bound is useless from the point of view of the aforementioned
motivation.

Second, we remark that it is quite easy to obtain a bound of order O (
√
k |K | + |K |). For each

C ∈ C, pick one endpoint εC ∈ E (K) occupied by C . For a starting event ε , denote nε = |{C ∈ C :
ε = εC }|. We are to bound |C| = ∑ε nε , where the number of non-zero values nε is bounded by |K |.
Observe that

∑
ε (nε

2) ≤ |F | ≤ k , as there exists at least one edge of F between each pair of com-
ponents that occupy the same endpoint. The promised bound follows from the Cauchy-Schwarz
inequality.

An O (
√
k |K | + |K |) bound is sufficient to establish a subexponential algorithm for Interval

Completion, but the final dependency on k in the exponent would be O (k2/3 logk). Hence, we
employ a more careful analysis of the components of C to obtain the bound promised in Theo-

rem 7.1, and, consequently, reduce the dependency on k to exponential in O (
√
k logk).

For any position pL ≤ p < pR and any component C ∈ C we define

f (p) = |Ωσ (p) |, fC (p) = |Ωσ (p) \C |.
Recall that for eachC ∈ C, we havepL < ασ (C) < ωσ (C) < pR andNG (C) ⊆ K ∪ (ΩL ∩ ΩR) ⊆ ΩR .
We refer to Figure 22 for an overview of the notation used in this proof.

Informally speaking, the aforementioned inclusion allows us to compare the model σ with its
modification σ ′, where some prefix of events of E (C) are shifted a bit to the right, that is, NG (C) ⊆
ΩR ensures that σ ′ still representsG + F ′ for some completion F ′. If fC for someC ∈ C has a small
value at some local minimum at p ≥ ασ (C), we may shift all events of E (C) that lie before p to this
local minimum, obtaining a smaller completion F ′. We infer that f is in some sense increasing,
and we need to “pay” at least one in the value of f for each component C ∈ C. Theorem 7.1 will
follow from an observation that the value of f cannot change by much more than |K |.

We proceed to a formal argumentation. In the next three lemmas, we establish the fact that f is
in some sense increasing.

Lemma 7.2. For each C ∈ C and each ασ (C) ≤ p < ωσ (C), we have fC (p) ≥ f (ασ (C) − 1).

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:47

Proof. Assume the contrary, and let p be the smallest position such that ασ (C) ≤ p < ωσ (C)
and fC (p) < f (ασ (C) − 1). Note that f (ασ (C) − 1) = fC (ασ (C) − 1).

Consider a model σ ′ constructed from σ as follows: all events of E (C) that lie before or on
the position p in the model σ are moved (without changing their internal order) to the place just
after position p. As NG (C) ⊆ K ∪ (ΩL ∩ ΩR) ⊆ ΩR , this is an interval model of G + F ′ for some
completion F ′ of G. We claim that |F ′ | < |F |.

Note that any e ∈ F�F ′ connects C with V (G) \C (� denotes the symmetric difference). Thus,
it suffices to show that for each v ∈ C we have |{w : vw ∈ F ′} \C | ≤ |{w : vw ∈ F } \C |, or equiv-
alently |F ′(v) | ≤ |F (v) |, and that for at least one vertex of C the inequality is sharp.

Consider anyv ∈ C . If σ (αv) > p, we have F ′(v) = F (v), so there is nothing to show. If σ (αv) ≤
p < σ (ωv), then, while constructing σ ′, we did not move ωv while we moved αv to the right,
thus F ′(v) ⊆ F (v). Moreover, as p is the leftmost position with fC (p) < f (ασ (C) − 1), there exists
x ∈ V (G) \C such that σ (ωx) = p. We havevx ∈ F \ F ′ and, consequently, F ′(v) � F (v). Note that
there is at least one vertex that falls into the currently considered case by the connectivity of C .

We are left with the case σ (ωv) ≤ p. However, now

(NG (v) \C) � ({w : vw ∈ F ′} \C) = Ωσ (p) \C,
whereas

(NG (v) \C) � ({w : vw ∈ F } \C) ⊇ Ωσ (αv) \C;

here, � denotes a disjoint union of sets. The lemma follows from the definition of the position p:

|Ωσ (p) \C | = fC (p) < fC (σ (αv)) = |Ωσ (αv) \C |. �

Lemma 7.3. For every C ∈ C there exists an index q, ασ (C) ≤ q < ωσ (C), such that fC (q) >
f (ασ (C) − 1).

Proof. By Lemma 7.2, it suffices to prove that fC is not constantly to equal f (ασ (C) − 1) =
fC (ασ (C) − 1) for arguments between ασ (C) (inclusive) and ωσ (C) (exclusive). However, by the
definition of C, there exists a starting endpoint ε ∈ E (K) occupied by C . For such ε we have
fC (σ (ε)) � fC (σ (ε) − 1) and the lemma follows. �

Lemma 7.4. For every C ∈ C and every position p such that ωσ (C) ≤ p < pR , we have f (p) >
f (ασ (C) − 1).

Proof. By contradiction, assume there exists such position p with ωσ (C) ≤ p < pR and f (p) ≤
f (ασ (C) − 1). Consider a model σ ′ constructed from σ by taking all events of E (C) and putting
them (without changing their internal order) between former positions p and p + 1. As NG (C) ⊆
K ∪ (ΩL ∩ ΩR) ⊆ ΩR , this is an interval model of G + F ′ for some completion F ′ of G. Again, we
claim that |F ′ | < |F |.

Note that any e ∈ F�F ′ connects C with V (G) \C . Thus, it suffices to show that for any v ∈ C
we have |{w : vw ∈ F ′} \C | ≤ |{w : vw ∈ F } \C | and for at least one vertex of C the inequality is
sharp.

Consider any v ∈ C . We have

(NG (v) \C) � ({w : vw ∈ F ′} \C) = Ωσ (p),

whereas for any position q such that σ (αv) ≤ q < σ (ωv) we have

(NG (v) \C) � ({w : vw ∈ F } \C) ⊇ Ωσ (q) \C .
By the definition of the position p and Lemma 7.2, we have

|Ωσ (p) | = f (p) ≤ f (ασ (C) − 1) ≤ fC (q) = |Ωσ (q) \C |.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:48 I. Bliznets et al.

Hence, |F ′(v) | ≤ |F (v) |.
Consider now a position q given by Lemma 7.3. By the connectivity of C , there exists v ∈ C

such that σ (αv) ≤ q < σ (ωv). For this position we have f (ασ (C) − 1) < fC (q) and thus |F ′(v) | <
|F (v) |. �

Concluding, we obtain the following corollary.

Corollary 7.5. For anyC ∈ C and any position ασ (C) ≤ p < pR , we have f (p) > f (ασ (C) − 1).

Proof. For p < ωσ (C), the claim follows from Lemma 7.2 as fC (p) < f (p) for every p
with ασ (C) ≤ p < ωσ (C). In the remaining case of p ≥ ωσ (C), the claim follows directly from
Lemma 7.4. �

We now conclude the proof of Theorem 7.1 by showing that the value of f cannot change too
much. A componentC ∈ C is ending expensively if the vertexv ∈ C with σ (ωv) = ωσ (C) (i.e.,ωv is
the last event of E (C) in the model σ) is an expensive vertex w.r.t. F , and ending cheaply otherwise.

Note that there are at most 2
√
k components that end expensively. Consider a component C ∈

C with maximum ωσ (C) among components that end cheaply (if there are none, the bound of
Theorem 7.1 holds trivially). Let v ∈ C satisfy σ (ωv) = ωσ (C). Note that

f (ωσ (C)) ≤ |NG (v) ∪ F (v) | ≤ |ΩL ∩ ΩR | + |K | +
√
k,

as v is cheap. On the other hand, for any pL ≤ p < pR we have ΩL ∩ ΩR ⊆ Ωσ (p), thus

f (p) ≥ |ΩL ∩ ΩR |.
By Corollary 7.5, there are at most

f (ωσ (C)) − min
pL ≤p<pR

f (p) ≤ |K | +
√
k

components of C that end cheaply. Together with at most 2
√
k components ending expensively,

we obtain the bound of Theorem 7.1.
We remark here that one can obtain a slightly better 2

√
2k + |K | bound by redefining a cheap

vertex to be one with at most
√

2k incident edges from the solution. However, we prefer to stick
with the thresholds defined in the preliminaries for the sake of clarity of the presentation.

8 DYNAMIC PROGRAMMING

In this final section, we describe a dynamic programming algorithm to solve Interval Comple-

tion in O�(kO (
√

k)) time. To this end, fix an Interval Completion instance (G,k) and, without
loss of generality, assume that the Module Reduction Rule is not applicable to (G,k).

A straightforward approach, based on the subexponential algorithm for the Chordal Comple-
tion problem, would be to enumerate all possible sections via Theorem 3.1 and, for each section
Ω, try to deduce (or guess) which components of G \ Ω lie to the left and which lie to the right
to the section Ω. However, if Ω is large, there may be many such components with many differ-
ent neighborhoods in Ω and, consequently, such a guessing step seems expensive. Thus, we need
to employ a more involved definition of a “separation” to define a subproblem for the dynamic
programming.

8.1 Worlds

We first make use of Corollary 6.1 to observe that, for a fixed vertex v that is cheap in a given
minimal solution F , we can afford classifying vertices w ∈ V (G) \ {v} depending on whether they
are included in one of the sections at endpoints of v , or are incident to v .

Definition 8.1. A world is a tuple W = (v,ΩL,ΩR ,pL,pR , Fv) where

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:49

Fig. 23. A world with its most important elements (to the left) and its symbolic notation used in subsequent
figures (to the right).

(1) v ∈ V (G), ΩL,ΩR ⊆ V (G), Fv ⊆ ({v} × (V \ {v})) \ E (G) and 1 ≤ pL ≤ pR ≤ 2n − 1;
(2) v ∈ ΩL ∩ ΩR ;
(3) pR − pL = |ΩL�ΩR | + 2|NG+Fv

(v) \ (ΩL ∪ ΩR) |;
(4) for any w ∈ ΩL ∪ ΩR either w = v or vw ∈ E (G) ∪ Fv ;
(5) for any connected componentC ofG \ (ΩL ∪ ΩR) eitherC ⊆ NG+Fv

(v) orC ∩ NG+Fv
(v) =

∅; and
(6) |Fv | ≤

√
k .

For a world W = (v,ΩL,ΩR ,pL,pR , Fv) we denote (see also Figure 23):

v (W) = v, Fv (W) = Fv ,

ΩL (W) = ΩL, ΩR (W) = ΩR ,

pL (W) = pL, pR (W) = pR ,

Γ(W) = NG+Fv
[v], I (W) = Γ(W) \ (ΩL ∪ ΩR).

Definition 8.2. Let F be a completion of G and σ be a model of G + F . We say that the world W

appears in the model σ if

(1) Fv (W) = F (v (W)),
(2) pL (W) = σ (αv (W)) and pR (W) = σ (ωv (W)) − 1, and
(3) ΩL (W) = Ωσ (pL (W)) and ΩR (W) = Ωσ (pR (W)).

The following observation is straightforward from the definition of a world.

Lemma 8.3. For any solution F to (G,k) with model σ of G + F , and any vertex v ∈ V (G) that is

cheap w.r.t. F , the following tuple is in fact a world appearing in σ :

(v,Ωσ (αv),Ωσ (σ (ωv) − 1),σ (αv),σ (ωv) − 1, F (v)).

We denote the world defined in Lemma 8.3 by W(σ ,v).
We also remark that for a world W appearing in a model σ , we have for every w � ΩL (W) ∪

ΩR (W) that

pL (W) < σ (αw) < σ (ωw) ≤ pR (W) ⇔ wv (W) ∈ E (G) ∪ Fv (W) ⇔ w ∈ I (W).

On the other hand, Theorem 3.1 and Corollary 6.1, together with an observation that the prop-
erties of a world can be verified in polynomial time, allow us to claim the following.

Lemma 8.4. One can in O�(kO (
√

k)) time enumerate a family W of kO (
√

k)n106 worlds in G such

that for any minimal solution F to (G,k), all worlds that appear in the canonical model of G + F
belong toW.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:50 I. Bliznets et al.

We remark that the exponent 106 = 70 + 2 · 17 + 2 (obtained by enumerating all possible choices
v ,pL , ΩL , ΩR , and Fv) is a very rough estimation. For example, one can observe that the sections ΩL

and ΩR were already guessed in the course of guessing Fv in the proof of Theorem 3.2. However,
as the exponent in the dependency on n became unholy already a few sections ago, we refrain
from optimizing it.

Worlds are first basic building blocks for our states of dynamic programming: there are only
relatively few interesting worlds (Lemma 8.4) while a world W allows us to distinguish vertices
that lie between the endpoints of v (W) in the model we are looking for.

8.2 Terraces

Unfortunately, worlds are not sufficient to capture all relevant DP states. We need a second building
block, which we call a terrace. Intuitively, a terrace describes the behavior either in one world
(called a flat terrace) or in the neighborhood of a world (called a nested terrace).

8.2.1 Flat Terraces.

Definition 8.5. A flat terrace T consists of a single world W.

For a flat terrace T =W we denote

I 1 (T) = I 2 (T) = I (W),

Ω1
L (T) = Ω2

L (T) = ΩL (W),

Ω1
R (T) = Ω2

R (T) = ΩR (W),

p1
L (T) = p2

L (T) = pL (W),

p1
R (T) = p2

R (T) = pR (W).

8.2.2 Nested Terrace. The definition of a nested terrace is more involved. We start with the
following definition.

Definition 8.6. A nested half-terrace T is a triple of worlds (Win,Wout
1 ,W

out
2) such thatv (Wout

1) �
v (Win) � v (Wout

2),

pL (Wout
2) ≤ pL (Wout

1) < pL (Win) ≤ pR (Win) < pR (Wout
2) ≤ pR (Wout

1),

and

|(ΩL (Win) ∩ ΩR (Win)) \ (ΩL (Wout
1) ∩ ΩR (Wout

2)) | ≤ 2
√
k .

Note that we allow W
out
1 =W

out
2 . For a nested half-terrace T = (Win,Wout

1 ,W
out
2) we denote (see

also Figure 24)

Ω1
L (T) = ΩL (Wout

1), Ω2
L (T) = ΩR (Win),

Ω1
R (T) = ΩL (Win), Ω2

R (T) = ΩR (Wout
2),

p1
L (T) = pL (Wout

1), p2
L (T) = pR (Win),

p1
R (T) = pL (Win), p2

R (T) = pR (Wout
2).

However, to properly define I 1 (T) and I 2 (T) we need to enhance a nested half-terrace T with
an information, for each vertex v ∈ (I (Wout

1) ∩ I (Wout
2)) \ Γ(Win) whether it should lie before or

after v (Win) in the model σ we are looking for.

Definition 8.7. A nested terrace T is a quadruple (Win,Wout
1 ,W

out
2 ,д) where (Win,Wout

1 ,W
out
2) is a

nested half-terrace andд : (I (Wout
1) ∩ I (Wout

2)) \ Γ(Win) → {1, 2} is a function such that whenever

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:51

Fig. 24. A nested terrace with its most important notation (to the left) and its symbolic notation used in
subsequent figures (to the right). The dotted areas are the “important” areas for a terrace: the left one has
borders Ω1

L
, Ω1

R
and interior I1, and the right one has borders Ω2

L
, Ω2

R
and interior I2.

two vertices x and y in the domain of д are adjacent, then д(x) = д(y) (i.e., д is constant on each
connected component in the graph induced by its domain).

We may now denote for a nested terrace T = (Win,Wout
1 ,W

out
2 ,д)

I 1 (T) = д−1 (1), I 2 (T) = д−1 (2).

Definition 8.8. Let F be a completion ofG and σ be a model ofG + F . We say that a nested terrace
T = (Win,Wout

1 ,W
out
2 ,д) appears in the model σ if all W

in,Wout
1 ,W

out
2 appear in σ and, moreover,

for any w ∈ (I (Wout
1) ∩ I (Wout

2)) \ Γ(Win) we have σ (ωw) < σ (αv (Win)) if and only if д(w) = 1.

A direct check from the definition shows the following.

Lemma 8.9. Let F be a completion of G and σ be a model of G + F . Let x ∈ V (G) be an arbitrary

cheap vertex different than r. Let y1 be the cheap vertex with rightmost σ (αy1) and y2 be the cheap

vertex with leftmost σ (ωy2) among the cheap vertices y satisfying σ (αy) < σ (αx) < σ (ωx) < σ (ωy).
Then (W(σ ,x),W(σ ,y1),W(σ ,y2)) is a nested half-terrace that appears in σ .

Moreover, if we denote

X 1 = {w ∈ V (G) : σ (αy1) < σ (αw) < σ (ωw) < σ (αx)},
X 2 = {w ∈ V (G) : σ (ωx) < σ (αw) < σ (ωw) < σ (ωy2)},
д = (X 1 × {1}) ∪ (X 2 × {2}),

thenX 1 ∪ X 2 = (I (W(σ ,y1)) ∩ I (W(σ ,y2))) \ Γ(W(σ ,x)) and (W(σ ,x),W(σ ,y1),W(σ ,y2),д) is a

nested terrace that appears in σ .

Proof. Note that the verticesy1 andy2 exist, as r is a candidate for both of them. The only claim

that is not straightforward is that there are at most 2
√
k vertices with σ (αw) < σ (αx) < σ (ωx) <

σ (ωw) and σ (αw) > σ (αy1) or σ (ωw) < σ (ωy2). However, this follows from the definition ofy1 and
y2: all such w are expensive w.r.t. F . �

We denote the nested terrace defined in Lemma 8.9 by T(σ ,x). Note that the vertices y1 and y2

can be deduced from the model σ and vertex x ; for fixed σ and x , we denote them by y1 (σ ,x) and
y2 (σ ,x).

At the end of this section, we would like to include a few words about the intuition. Every
terrace T has two “active” areas, I 1 (T) and I 2 (T), whose best possible completions we would like to
compute. In a nested terrace these areas are in fact disjoint, and we have p1

L (T) ≤ p1
R (T) ≤ p2

L (T) ≤
p2

R (T). A flat terrace, however, is a degenerated case where these two areas are in fact the same.

Thus, only the first and the last inequality holds, that is, we trivially have p1
L (T) ≤ p1

R (T) and

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:52 I. Bliznets et al.

p2
L (T) ≤ p2

R (T), but not necessarily p1
R (T) ≤ p2

L (T) (and in fact this inequality will be most often

false). Hence, when talking about an arbitrary terrace we will use only inequalities p1
L (T) ≤ p1

R (T)

and p2
L (T) ≤ p2

R (T), which are true in both cases. Intuitively, in the sequel we combine pairs of
terraces, and in this combination we look at only one active area of each participating terrace.
Thus, we in fact have no chance of attempting using any inequality that relates the placements of
two active areas of the same terrace.

8.2.3 Enumerating Terraces. We now show that we can enumerate a relatively small family of
potential terraces.

Theorem 8.10. One can in O�(kO (
√

k)) time enumerate a family T of kO (
√

k)n318 terraces such

that if (G,k) is a YES-instance of Interval Completion, then, for the canonical solution F and the

canonical model σ of G + F , all terraces that appear in σ belong to T.

Proof. Enumeration of potential flat terraces follows directly from Lemma 8.4. Similarly, we can

enumerate a family of kO (
√

k)n318 nested half-terraces such that all nested half-terraces appearing
in σ belong to this family. To finish the proof we need to show that, for a fixed nested half-terrace

(Win,Wout
1 ,W

out
2), we may enumerate a family of kO (

√
k) potential functions д. Henceforth, we as-

sume that we have a fixed nested half-terrace (Win,Wout
1 ,W

out
2) that appears in σ . We describe the

algorithm as a branching algorithm that generates kO (
√

k) subcases and outputs a single function
д in each subcase. We argue that in the case (Win,Wout

1 ,W
out
2) indeed appears in σ , the correct

function д completing (Win,Wout
1 ,W

out
2) to a nested terrace appearing in σ will be among the

enumerated candidates.
Let C0 be the family of these components C ∈ cc(G \ (ΩL (Wout

1) ∪ ΩL (Win) ∪ ΩR (Win) ∪
ΩR (Wout

2))) for which C ⊆ (I (Wout
1) ∩ I (Wout

2)) \ Γ(Win). That is,
⋃C0 is the domain of the func-

tion д in any nested terrace (Win,Wout
1 ,W

out
2 ,д).

Denote P = ΩL (Wout
1) ∩ ΩR (Wout

2) and K = (ΩL (Win) ∩ ΩR (Win)) \ P . Note that we may as-

sume P ⊆ ΩL (Win) ∩ ΩR (Win), as otherwise clearly (Win,Wout
1 ,W

out
2) does not appear in σ and

we may discard such a choice of a nested half-terrace. Moreover, by the definition of a nested

half-terrace, |K | ≤ 2
√
k .

Pick any C ∈ C0. Note that, unless NG (C) ⊆ P ∪ K , we may deduce whether the vertices of
C lie to the left or to the right of v (Win) in the model σ , and, consequently, fix д(w) for every
w ∈ C . Hence, in the rest of the proof we focus on the family C ⊆ C0 of these componentsC where
NG (C) ⊆ P ∪ K .

Claim 8.11. Providing (Win,Wout
1 ,W

out
2) appears in σ , it holds that |C| = O (k2).

Proof. If F is a solution to (G,k), for any C ∈ C we have |(C × P) \ E (G) | ≤ k . We obtain the
claim by applying Lemma 4.6 to the set A := P ∪ K and threshold r := k + |K |. �

Thus, if |C| exceeds the bound of Lemma 4.6, we discard the choice of the nested half-terrace.
We proceed further with the assumption |C| = O (k2).

Now we filter out components of C that are handled by Theorem 7.1. To this end, define C′ ⊆ C
to be the family of components C ∈ C such that ασ (C) < σ (ε) < ωσ (C) for some ε ∈ E (K).

Claim 8.12. |C′| ≤ 10
√
k .

Proof. The claim follows from two applications of Theorem 7.1: one to the pair of sections
ΩL (Wout

1),ΩL (Win) and the set (ΩL (Win) ∩ ΩR (Win)) \ ΩL (Wout
1) and one to the pair of sections

ΩR (Win),ΩR (Wout
2) and the set (ΩL (Win) ∩ ΩR (Win)) \ ΩR (Wout

2). �

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:53

We guess the subfamily C′ and for each such C ∈ C′ we guess whether all vertices of C lie to

the left or to the right of v (Win) in the model σ . As |C| = O (k2) and |C′| ≤ 10
√
k , such a guess

leads to kO (
√

k) subcases. We denote D = C \ C′ the family of the remaining components.

Let {x1
L,x

2
L, . . . ,x

sL−1
L
} be the set of these x ∈ K such that σ (αx) > pL (Wout

1), enumerated such

that σ (αx 1
L

) < σ (αx 2
L

) < · · · < σ (α
x

sL−1

L

). Symmetrically, let {x1
R ,x

2
R , . . . ,x

sR−1
R
} be the set of these

x ∈ K such that σ (ωx) ≤ pR (Wout
2), enumerated such that σ (ωx 1

R

) < σ (ωx 2
R

) < . . . < σ (ω
x

sR−1

R

).

Denote x0
L
= v (Wout

1), xsR

R
= v (Wout

2) and xsL

R
= x0

R
= v (Win). Recall that |K | ≤ 2

√
k ; at the cost

of branching into kO (
√

k) subcases, we guess the sequences x i
L

and x i
R

.
Let us now investigate how the components of D lie in the model σ .

Claim 8.13. For any C ∈ D, all events of E (C) are consecutive events in the model σ . That is, for

any ε � E (C) either σ (ε) < ασ (C) or σ (ε) > ωσ (C).

Proof. For the sake of contradiction, assume that there exists an event ε � E (C) such that
ασ (C) < σ (ε) < ωσ (C). Let ε ∈ {αw ,ωw } for some w � C . By the definition of D, w � K . Clearly,
w � P = ΩL (Wout

1) ∩ ΩR (Wout
2). Hence, w � NG (C), as C ∈ D ⊆ C.

Take now any positionp such that ασ (C) − 1 ≤ p ≤ ωσ (C) and consider a model σ ′ created from
σ by taking out all events of E (C) and inserting them between former positions p and p + 1 in the
original order. As every event not in E (C) that lies between ασ (C) and ωσ (C) is an endpoint of a
non-neighbor ofC , σ ′ is an interval model ofG + F ′ for some completion F ′ ofG. Moreover, F�F ′
consists only of edges between C and V (G) \C .

Pick any v ∈ C . Clearly,

(NG (v) \C) � ({w : vw ∈ F ′} \C) = Ωσ (p) \C .

On the other hand, for any position q with σ (αv) ≤ q < σ (ωv) we have

(NG (v) \C) � ({w : vw ∈ F } \C) ⊇ Ωσ (q) \C .

Thus, if we choosep so that |Ωσ (p) \C | is minimum possible, we obtain |{w : vw ∈ F ′} \C | ≤ |{w :
vw ∈ F } \C | for every v ∈ C and, consequently, |F ′ | ≤ |F |. Consider now any v ∈ C with σ (αv) <
σ (ε) < σ (ωv); let (q,q′) = (σ (ε) − 1,σ (ε)) if ε is a closing event, and let (q,q′) = (σ (ε),σ (ε) − 1)
if ε is an opening event. We infer that |Ωσ (q) \C | = |Ωσ (q′) \C | + 1, and hence, in particular,
|Ωσ (q) \C | > |Ωσ (p) \C | by the choice of p. We thus obtain |{w : vw ∈ F ′} \C | < |{w : vw ∈ F } \
C |, which implies |F ′ | < |F |, a contradiction with the choice of F . �

By Claim 8.13, we infer that the components ofD are put into the model σ in a somewhat inde-
pendent and greedy manner. More precisely, define for a position p a set B (p) := Ωσ (p) \ (

⋃D).
On the sets B (p) we define an order as follows: B (p) � B (q) if |B (p) | < |B (q) | or |B (p) | = |B (q) | and
B (p) � B (q), where ≺ is the order ≺ on V (G) extended to subsets of V (G) compared lexicograph-
ically. Note that � is a total order.

For any 0 ≤ i < sL , we define pi
L

to be any index σ (αx i

L

) ≤ pi
L
< σ (αx i+1

L

) with minimum B (pi
L

)

according to the order �. Moreover, by Claim 8.13 we can observe that for every C ∈ D, the set
B (p) is constant for all p with ασ (C) − 1 ≤ p ≤ ωσ (C). Hence, we can always choose pi

L
in such

a way that pi
L
< ασ (C) or pi

L
≥ ωσ (C) for each C ∈ D. Consequently, Ωσ (pi

L
) ∩ (
⋃D) = ∅ and

B (pi
L

) = Ωσ (pi
L

). Symmetrically, we define pi
R

for 0 ≤ i < sR ; again, we can do it in such a manner

that Ωσ (pi
R

) ∩ (
⋃D) = ∅ and B (pi

R
) = Ωσ (pi

R
) for each 0 ≤ i < sR .

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:54 I. Bliznets et al.

We now denote

PL := P ∪ (K ∩ Ωσ (pL (Wout
1))) = Ωσ (pL (Wout

1)) ∩ Ωσ (pR (Win)),

PR := P ∪ (K ∩ Ωσ (pR (Wout
2))) = Ωσ (pL (Win)) ∩ Ωσ (pR (Wout

2)).

Formally, if any of the equalities above does not hold, we may discard the choice of the half-terrace.
We now claim the following.

Claim 8.14. For every C ∈ D and for every position p with ασ (C) − 1 ≤ p ≤ ωσ (C), the set B (p)
is the minimum (in the order �) set among sets B (q) for q ∈ PC , where PC is defined as

PC = {pi
L : NG (C) ⊆ PL ∪ {x j

L
: j ≤ i}} ∪ {pi

R : NG (C) ⊆ PR ∪ {x j
R

: j > i}}.

Proof. As we already argued, the set B (p) is constant for all p with ασ (C) − 1 ≤ p ≤ ωσ (C),
and equals Ωσ (p0) \C for any such p0, which we henceforth fix.

Assume that C lies to the left of v (Win) in the model σ . Let 0 ≤ ι < sL be such that σ (αx ι

L
) <

ασ (C) < ωσ (C) < σ (αx ι+1
L

). Then, by the definition of pι
L

we have B (pι
L

) � B (p0). Moreover,

NG (C) ⊆ (P ∪ K) ∩ B (p0) = PL ∪ {x j
L

: j ≤ ι} and hence pι
L
∈ PC . The argument forC lying on the

right of v (Win) is symmetric. Hence, we infer that minq∈PC B (q) � B (p0).

In the other direction, take q0 ∈ PC that yields the minimum set B (q) with respect to �; note
that B (q0) � B (p0), so in particular, |B (q0) | ≤ |B (p0) |. Observe that we can construct a model σ ′

from σ by taking out all events of E (C) and placing them between position q0 and q0 + 1. By
the definition of PC , such a model σ ′ is an interval model of G + F ′ for some completion F ′ of
G. Observe now in G + F the edges between C and V (G) \C constitute the whole set B (p0) ×C ,
which in particular contains all the edges betweenC andV (G) \C that were present in the original
graph G. Moreover, since B (q0) = Ωσ (q0) because of q0 ∈ PC , in G + F ′ the edges between C and
V (G) \C constitute the whole set B (q0) ×C , which again contains all the edges between C and
V (G) \C that were present in G. Consequently, |F ′ | − |F | = |B (q0) ×C | − |B (p0) ×C |. By the fact
that F is a minimum solution, we infer that |B (q0) | ≥ |B (p0) |, which together with the previously
proven reverse inequality shows that |B (p0) | = |B (q0) |. If now it happens that B (q0) ≺ B (p0), then
it is easy to observe that F ′ is lexicographically smaller than F , a contradiction to the assumption
that F is the canonical solution. This concludes the proof of the claim. �

As the cost of kO (
√

k) additional subcases, we may guess the order � restricted to the sections
B (pi

L
) and B (pi

R
); note that we do not want to guess either positions pi

L
,pi

R
or sets B (pi

L
),B (pi

R
)

themselves, only the relative order of the sets B (pi
L

) and B (pi
R

) with respect to the order �. Observe

also that some of the sets B (pi
L

), B (pi
R

) might be actually equal (which we also guess), but this can

happen only for pairs from the opposite sides: sets B (pi
L

) are pairwise different because of having

different intersections with {x i
L

: 0 ≤ i ≤ sL }, and likewise sets B (pi
R

) are pairwise different. Once

we know the order of these sets w.r.t. � and the sequences x i
L

and x i
R

, Claim 8.14 allows for each
component C ∈ D to choose its place in the model σ in a greedy manner.

More precisely, consider C ∈ D and the set PC defined in Claim 8.14. Knowing the order �, by
Claim 8.14 we know thatC is placed in the model σ between αx i

L

and αx i+1
L

for any 0 ≤ i < sL such

that B (pi
L

) is �-minimum in {B (q) : q ∈ PC } or betweenωx i

R

and ωx i+1
R

for any 0 ≤ i < sR such that

B (pi
R

) is �-minimum in {B (q) : q ∈ PC }. Hence, we know whether C lies to the left or to the right

ofv (Win) in the model σ unless the minimum {B (q) : q ∈ PC } is attained by some pi
L

and q j
L

at the
same time.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:55

We now inspect more closely how such a situation could happen. As B (pi
L

) = B (p j
R

), we have

B (pi
L

),B (p j
R

) ⊆ ΩL (Win) ∩ ΩR (Win) = P ∪ K . Hence,

B (pi
L) = PL ∪ {x �L : � ≤ i} = PR ∪ {x �R : � > j} = B (p j

R
).

In particular, for any q ∈ PC \ {pi
L
,p j

R
} we have B (pi

L
) � B (q). Recall also that for any 0 ≤ i < sL ,

we have at most one j = j (i) such that B (pi
L

) = B (p j
R

).
Let 0 ≤ i < sL be such that j (i) exists. Let Di ⊆ D be the family of such components C ∈ D

such that the minimum of {B (q) : q ∈ PC } is attained atX := B (pi
L

) = B (p j (i)
R

). Note that NG+F (v) \
C = X for each v ∈ C . Hence, Lemma 2.3 applies and, as σ is the canonical model of G + F , the
components of Di are arranged according to their minimum elements in the order ≺. That is, for
any C1,C2 ∈ Di such that C1 lies before v (Win) and C2 lies after v (Win) in the model σ , we have
that the ≺-minimum vertex of C1 precedes the ≺-minimum vertex of C2 in the order ≺. Thus, to
know which components of Di lie in the model σ before v (Win) it suffices to know how many of

them lie there. As |C| = O (k2) and sL = O (
√
k), guessing, for each 0 ≤ i < sL with defined j (i), how

many components ofDi lie beforev (Win) in the model σ leads to kO (
√

k) subcases. This concludes
the proof of Theorem 8.10.

8.3 Dynamic Programming: States and Computation

8.3.1 DP States. Armed with the notion of terraces, we are ready to define the state of our
dynamic programming algorithm.

Definition 8.15. A state S is a pair of terraces (T1,T2) such that p1
L (T2) ≤ p2

L (T1) < p1
R (T2) ≤

p2
R (T1) and

p1
R (T2) − p2

L (T1) = 2|I 2 (T1) ∩ I 1 (T2) | + |Ω2
L (T1)�Ω1

R (T2) |.

We remark that each of the terraces participating in a state might be either flat or nested. More-
over, it can happen that T1 = T2. For a state S = (T1,T2) we define (see also Figure 25)

ΩL (S) = Ω2
L (T1), ΩR (S) = Ω1

R (T2),

pL (S) = p2
L (T1), pR (S) = p1

R (T2),

I (S) = I 2 (T1) ∩ I 1 (T2), Γ(S) = I (S) ∪ ΩL (S) ∪ ΩR (S).

Definition 8.16. Let F be a completion of G and σ be a model of G + F . We say that a state
S = (T1,T2) appears in the model σ if both T1 and T2 appear in σ .

A direct check shows the following.

Lemma 8.17. If S appears in a model σ of a completion G + F , then the events that appear on

positions p satisfying pL (S) < p ≤ pR (S) are exactly

E (S) := E (I (S)) ∪ {ωv : v ∈ ΩL (S) \ ΩR (S)} ∪ {αv : v ∈ ΩR (S) \ ΩL (S)}.

Note that we have |E (S) | = 2|I 2 (T1) ∩ I 1 (T2) | + |Ω2
L (T1)�Ω1

R (T2) | = pL (S) − pR (S) by the defi-
nition of a state. Observe that an immediate corollary of Theorem 8.10 is an enumeration algorithm
for states.

Corollary 8.18. One can in O�(kO (
√

k)) time enumerate a family S of kO (
√

k)n636 states such

that if (G,k) is a YES-instance of Interval Completion, then, for the canonical solution F and the

canonical model σ of G + F , all states that appear in σ belong to S.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:56 I. Bliznets et al.

Fig. 25. A DP state defined by two nested terraces (above) and a nested terrace and a flat terrace (below).
The DP state asks for the optimal way to arrange events in the gray area. Observe that the gray area is
defined as an intersection of the second important area of the first terrace and the first important area of the
second terrace. Furthermore, its borders are the left border of the second important area of the first terrace
and the right border of the first important area of the second terrace.

8.3.2 DP Table. Thus, a state (similarly as a world and a terrace) describes which events of
E (V (G)) lie between positions pL (S) and pR (S). Moreover, there is only a subexponential number
of reasonable states. However, contrary to worlds and terraces, the family of states is rich enough
to allow us to perform dynamic programming on a table indexed by the family S of Corollary 8.18.

Formally, we say that a bijection π : E (S) → {pL (S) + 1,pL (S) + 2, . . . ,pR (S)} is a completion of
a state S if π , treated as a permutation of E (S), preceded with the starting events of ΩL (S) and suc-
ceeded with the ending events of ΩR (S) (in any order) is an interval model ofG[Γ(S)] + Fπ for some
completion Fπ ofG[Γ(S)]. With a completion π we associate a sequence π (ε1),π (ε2), . . . ,π (ε |E (S) |)
where ε1, ε2, . . . , ε |E (S) | is the ordering of E (S) defined as follows: we first take all starting events
of E (S), sorted according to ≺, and then all ending events of E (S), sorted according to reversed
order ≺. For two completions π and π ′ of S, we say that π � π ′ if

(1) |Fπ | < |Fπ ′ |, or
(2) |Fπ | = |Fπ ′ | and Fπ ≺ Fπ ′ , or
(3) Fπ = Fπ ′ and the sequence associated with π is lexicographically smaller than the se-

quence associated with π ′.

Note that � is a total order on completions of S. For a state S, we define π S to be the �-minimum
completion of S.

We also observe the following.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:57

Lemma 8.19. For any S that appears in the canonical model σ , we have π S = σ |E (S) .

Proof. Clearly, π := σ |E (S) is a completion of S and Fπ = F ∩ (Γ(S)
2). Moreover, if we consider a

model σ ′ defined as
σ ′ = σ |E (V (G))\E (S) ∪ π S,

then we obtain an interval model for F ′ := (F \ Fπ) ∪ Fπ S . Observe the following:

(1) |Fπ S | ≤ |Fπ | by the minimality of π S, whereas if |Fπ | > |Fπ S |, then |F ′ | < |F |, contradicting
the minimality of F ; hence, |Fπ | = |Fπ S |.

(2) Fπ S � Fπ by the minimality of π S, whereas if Fπ � Fπ S , then F ′ ≺ F , contradicting the fact
that F is canonical; hence, Fπ = Fπ S and F ′ = F .

(3) The sequence associated with π S is lexicographically not larger than the sequence asso-
ciated with π , whereas, if it would be lexicographically strictly smaller, then σ ′ would be
a lexicographically smaller model than σ , contradicting the fact that σ is the canonical
model of G + F . Hence, π S = π . �

In our dynamic programming algorithm, for each S ∈ S, we compute a value M[S] that is a
completion of S. While we will not necessarily obtain M[S] = π S for every state S ∈ S, we will
ensure that this equality is true for each S that appears in the canonical model σ .

8.3.3 DP Computation. We now proceed to the description of computation ofM[S] for S ∈ S. In

the base case, if |E (S) | ≤ 4
√
k + 4, we find M[S] = π S by brute-force in O�(kO (

√
k)) time by trying

all possible bijections.

Consider now a state S where |E (S) | > 4
√
k . We claim that the family of sets is rich enough so

that we can compute M[S] by “gluing” the solution of at most three substates.
More formally, to compute M[S] we iterate through all possible choices of sequences (Si)s

i=1 for
s = 2, 3 where

(1) pL (S1) = pL (S) and ΩL (S1) = ΩL (S),
(2) pR (Ss) = pR (S) and ΩR (Ss) = ΩR (S),
(3) pR (Si) = pL (Si+1) and ΩR (Si) = ΩL (Si+1) for each 1 ≤ i < s ,
(4) E (S) =

⊎s
i=1 E (Si), and

(5) pR (Si) − pL (Si) < pR (S) − pL (S) for each 1 ≤ i ≤ s .

For each such sequence, we consider a candidate permutation π defined as a union (concate-
nation) of permutations (M[Si])s

i=1. As M[S], we chose the permutation π which is �-minimum
among all considered permutations that are completions of S. Note that the last condition for the
states S

i ensures that, if we compute M[S] in the order of increasing value pR (S) − pL (S), then in
the computation we use already known values of M[Si] for 1 ≤ i ≤ s .

If no candidate completion of S is found, we pick any permutation of M[S]; as we shall see in
the next lemma, such a state S cannot appear in the canonical model σ .

Lemma 8.20. For any S that appears in the canonical model σ , we have

M[S] = σ |E (S) = π S.

Proof. The second equality is due to Lemma 8.19. We prove that M[S] = σ |E (S) for any state S

that appears in σ , by induction on |E (S) | = pR (S) − pL (S). Note that M[S] is defined via the same
minimization condition as π S but on a smaller family of permutations, so it suffices to prove that
σ |E (S) is among the candidate permutations considered when computing M[S]. For states where

|E (S) | ≤ 4
√
k + 4 this is clearly true, as the brute-force algorithm in fact considers all the possible

candidate permutations.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:58 I. Bliznets et al.

Fig. 26. A computation of the value for DP state S when x ∈ I (S) and we glue values from three substates.

Fig. 27. A computation of the value for DP state S when x � I (S) and we glue values from two substates.

Consider then S = (T1,T2) with |E (S) | > 4
√
k + 4. Observe that in this case we have at least three

vertices x ∈ (ΩL (S)�ΩR (S)) ∪ I (S) that are cheap w.r.t. F . Pick one such vertex with maximum
possible value of

min(σ (ωx),pR (S) + 1) −max(σ (αx),pL (S)). (8.1)

In case of a tie, we prefer x belonging to I (S).
We consider two cases: whether x ∈ I (S) or not. If x ∈ I (S), consider the flat terrace Tf =

W(σ ,x) and the nested terrace Tn = T(σ ,x), with vertices y1 = y1 (σ ,x) and y2 = y2 (σ ,x) (see
Figure 26). Observe that, by the choice of x , we have

σ (αy2) ≤ σ (αy1) ≤ pL (S) = p2
L (T1) < σ (αx) < σ (ωx) ≤ pR (S) = p1

R (T2) < σ (ωy2) ≤ σ (ωy1). (8.2)

That is, the claim that σ (αyi
) ≤ pL (S) < pR (S) < σ (ωyi

) for i = 1, 2 follows from Equation (8.1)
in the choice of x , since otherwise yi would be a better candidate for x . Consider now states
S

1 = (T1,Tn), S
2 = (Tf ,Tf) and S

3 = (Tn ,T2). From Equation (8.2), we infer that

pL (S) = pL (S1) < pR (S1) = pL (S2) ≤ pR (S2) = pL (S3) < pR (S3) = pR (S),

and, consequently, the last condition for considering states (Si)3
i=1 holds. A direct check shows that

these three states appear in σ , and the algorithm indeed considers concatenatingM[S1],M[S2], and
M[S3] to obtain M[S]. By induction hypothesis, M[Si] = σ |E (Si) for i = 1, 2, 3 and the inductive
claim follows in this case.

In the second case, without loss of generality assume that x ∈ ΩL (S) \ ΩR (S) (see Figure 27).
Note that, by the criterion (8.1), x is such a cheap vertex with maximum σ (ωx). Consider the flat
terrace Tf =W(σ ,x) and the nested terrace Tn = T(σ ,x), with vertices y1 = y1 (σ ,x) and y2 =

y2 (σ ,x). Observe that, by the choice of x , we have

σ (αy2) ≤ σ (αy1) < σ (αx) ≤ pL (S) = p2
L (T1) < σ (ωx) ≤ pR (S) = p1

R (T2) < σ (ωy2) ≤ σ (ωy1). (8.3)

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:59

That is, the inequality pR (S) < σ (ωy2) follows from the choice of rightmost possible σ (ωx). Con-

sider now states S
1 = (T1,Tf), S

2 = (Tn ,T2). Using Equation (8.3), we observe that, unless σ (ωx) =
pL (S) + 1, we have that

pL (S) = pL (S1) < pR (S1) = pL (S2) < pR (S2) = pR (S).

However, if σ (ωx) = pL (S) + 1, then the value of Equation (8.1) for the vertex x equals 1, and is
the minimum possible. There can be at most one such x ∈ ΩL (S) \ ΩR (S) and at most one such
x ∈ ΩR (S) \ ΩL (S). Since there are at least three cheap vertices in (ΩL (S)�ΩR (S)) ∪ I (S), we infer
that there exists one such x ′ ∈ I (S). As the value of Equation (8.1) for x ′ is at least 1, this contradicts
the tie-breaking rule in the choice of x .

A direct check shows that both S
1 and S

2 appear in σ , and the algorithm considers concatenating
M[S1] with M[S2] to obtain M[S]. By induction hypothesis, M[Si] = σ |E (Si) for i = 1, 2 and the
inductive claim follows in this case as well. This concludes the proof of Lemma 8.20. �

We now observe that the world Wr :=W(σ , r) is easy to guess:

v (Wr) = r, Fv (Wr) = ∅,
pL (Wr) = 1, pR (Wr) = 2n − 1,

ΩL (Wr) = {r}, ΩR (Wr) = {r}.
Hence, we may proceed as follows: we compute the table M , read the cell M[S(Wr,Wr)], and add
the events αr andωr before and after the permutation found in this cell. By Lemma 8.20, if (G,k) is
a YES-instance, the obtained permutation is the canonical model forG + F where F is the canonical
solution to (G,k). This concludes the proof of Theorem 1.1.

9 CONCLUSIONS

We would like to conclude our article with two suggestions for future research. First, in the light
of our techniques, the question for a polynomial kernel for Interval Completion is appealing.
We think that the techniques developed in our work to cope with the lack of a kernel, in some
sense being local kernelization arguments, can help with obtaining an affirmative answer to this
question. The question if Interval Completion admits a polynomial kernel is important from
practical considerations too. Although the running time of our algorithm is subexponential in k ,
so far our result is mainly of theoretical importance due to the high degree polynomial of n. This
is why the most promising approach to significantly reduce the polynomial dependency on n is
to actually develop a polynomial kernel for Interval Completion. A polynomial kernel for IC
would also significantly reduce the exponent in the running time by making the arguments of
Section 6 obsolete. Needless to say, the argumentation of Sections 5 and 6 could be tremendously
simplified if such a polynomial kernel was at our disposal. We remark here that it is also possible
that the very recent techniques of Cao [8, 9], that lead to a linear dependency on the size of the
graph in the “forbidden subgraph” branching algorithm, may help decrease the dependency on the
size of the graph in our algorithm.

For the second suggestion, we observe that except for the case of proper interval graphs, the ob-
tained subexponential parameterized algorithms for completion problems to graph classes present

in Figure 1 run in time kO (
√

k)nO (1) . As an algorithm with running time bound 2o (
√

k)nO (1) would

actually be a 2o (n)-time algorithm, we suspect that 2O (
√

k) or even kO (
√

k) may be the best possible
dependency on k in the running time for these problems. In an unpublished manuscript, Bliznets
et al. [3] corroborate this suspicion by linking the question with the approximability of the Min
Bisection problem. However, proving appropriate lower bounds under more widely believed con-
jectures, like the Exponential Time Hypothesis (ETH), is still open. Another, perhaps more modest

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

35:60 I. Bliznets et al.

question can be asked about the necessity of the logk factor in the exponent. Maybe it is possible
to solve the completion problem to at least one of the graph classes in Figure 1 within running

time 2O (
√

k)nO (1) , thus shaving off this factor.

APPENDIX

Proof of Lemma 2.1. Without loss of generality, assume that Ω1 and Ω2 are non-empty, as
otherwise we may with polynomial overhead guess the first or the last event of the model.

First observe that if G is disconnected, but Ω1 and Ω2 are in the same connected component of
G, then clearly no such interval model of G exists, as any interval model of G needs to arrange
connected components of G one-by-one. Hence, assume in the rest of the proof that either G
is connected or Ω1 and Ω2 are contained in two different connected components of G. Let C1 be
the connected component containing Ω1 and C2 the one containing Ω2.

Consider a graph H created from G by adding two 3-vertex paths x1,x2,x3 and y1,y2,y3 and
making x1 fully adjacent to Ω1 and y1 fully adjacent to Ω2. We claim that there exists an interval
model ofG as requested in the statement of the lemma if and only ifH is an interval graph. Observe
that such a claim would finish the proof of the lemma, as H can be constructed in linear time.

In one direction, consider the model σ of G as in the statement of the lemma. Precede the or-
dering σ with events αx3 ,αx2 ,ωx3 ,αx1 ,ωx2 and insert the event ωx1 immediately after all starting
events of E (Ω1). Symmetrically, succeed the ordering σC with events αy2 ,ωy1 ,αy3 ,ωy2 ,ωy3 and in-
sert the event αy1 immediately before all ending events of E (Ω2). It is straightforward to verify
that this is an interval model of the graph H .

In the other direction, let σ be an interval model of H and consider events αx2 and ωx2 . Ob-
serve that if σ (αx1) < σ (αx2) and simultaneously σ (ωx2) < σ (ωx1) (i.e., the interval of x1 con-
tains the interval of x2), then there is no place to put the endpoints of x3 into the model, as
x1x3 � E (H) but x2x3 ∈ E (H). Consequently, either σ (αx2) < σ (αx1) < σ (ωx2) < σ (ωx1) (case (1.i))
or σ (αx1) < σ (αx2) < σ (ωx1) < σ (ωx2) (case (1.ii)). Assume first that the case (1.i) happens. As x1

is adjacent to x2 and to every vertex of Ω1, but no vertex ofV (G) is adjacent to x2, we infer that the
events between ωx2 and ωx1 in the model σ are first all starting events of E (Ω1) and then possibly
some ending events of E (Ω1), and, moreover, all other events of E (C1) appear in σ to the right
of ωx1 . Consequently, the model σ , restricted to E (C1), starts with the starting events of E (Ω1).
Observe that in the case (1.ii), that is,σ (αx1) < σ (αx2) < σ (ωx1) < σ (ωx2), we obtain the symmetric
conclusion: the model σ , restricted to E (C1), ends with the ending events of E (Ω1).

An analogous reasoning can be made for the path y1,y2,y3; let us denote the respective cases
(2.i) and (2.ii). Consider first the case when C1 = C2 = V (G) and G is connected, and examine the
model σ restricted to E (C1) = E (C2) = E (V (G)). From our study, we infer that this model starts
with all the starting events of E (Ω1) providing that (1.i) happens, or with all the starting events of
E (Ω2) providing that (2.i) happens. Moreover, this model ends with all the ending events of E (Ω1)
providing that (1.ii) happens, or with all the ending events of E (Ω2) providing that (2.ii) happens.
Observe, however, that if (1.i) and (2.i) happened simultaneously, then the first event of σ restricted
to E (V (G)) would be αv for some v ∈ Ω1 ∩ Ω2. In this case, we would have αx1 < αv < ωx1 and
αy1 < αv < ωy1 , which means that the intervals of x1 and y1 would overlap, contradicting the fact
that x1 and y1 are not adjacent in H . Similarly, (1.ii) and (2.ii) cannot happen simultaneously. Since
either (1.i) or (1.ii) happens, and either (2.i) or (2.ii) happens, we infer that either ((1.i) and (2.ii))
happens, or ((1.ii) and (2.i)) happens. In case ((1.i) and (2.ii)) we are already done, since σ restricted
to E (V (G)) has exactly the desired property. In case ((1.ii) and (2.i)) it suffices to revert the model
σ restricted to E (V (G)).

Examine now the case whenC1 � C2. Consider model σ ′ ofV (G) constructed from σ by the fol-
lowing reshuffling of connected components ofG: We first place the model ofC1, possibly reversing

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

Subexponential Parameterized Algorithm for Interval Completion 35:61

it if (1.ii) happened instead of (1.i). Then we arrange the models of all the connected components of
G other thanC1,C2 in any order. Finally, we place the model ofC2, possibly reversing it if (2.i) hap-
pened instead of (2.ii). It is straightforward to see that this model ofG has the desired property. �

Proof of Lemma 2.3. Assume otherwise, and let i be the smallest index such that xi ≺ xi−1.
Denote p = ασ (Ci). As i > 1 and NG (v) \Cj = X for every 1 ≤ j ≤ s and v ∈ Cj , we have that
Ωσ (p − 1) = X .

Consider a model σ ′ of G that is constructed as follows:

(1) First, we take all events of σ−1 ({1, 2, . . . ,p − 1}) \ E (Ci−1), in the order as they appear
in σ .

(2) Second, we take all events of E (Ci), in the order as they appear in σ .
(3) Third, we take all events of E (Ci−1), in the order as they appear in σ .
(4) Finally, we take all events of σ−1 ({p,p + 1, . . . , 2n}) \ E (Ci), in the order as they appear

in σ .

A direct check shows that σ ′ is an interval model of G. We now claim the following: for every
vertex u � Ci−1, we have σ ′(αu) ≤ σ (αu). This claim is trivial for the vertices u ∈ Ci , and for the
vertices u � Ci−1 with σ (αu) < p. Consider then any vertex u � Ci−1 such that σ (αv) ≥ p. Since
i > 1 and NG (v) \C1 = X for every v ∈ C1, we infer that all the vertices of X have starting events
before position p in σ , and hence u � X . Therefore, u � NG (Ci), so in fact σ (αu) > ωσ (Ci). By the
definition of σ ′, we infer that σ (αu) = σ ′(αu), and the claim is proven.

Now observe that

• σ ′(αv) ≤ σ (αv) for any v � xi , as only for vertices v ∈ Ci−1 is it possible that σ ′(αv) >
σ (αv) and all vertices of Ci−1 are at least as late as xi−1 � xi in the order ≺;

• σ ′(αxi
) < σ (αxi

), since Ci−1 is non-empty.

Hence, σ is not the canonical model and the lemma is proven. �

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agree-
ment n. 267959. An extended abstract of this work has been presented at SODA 2016 [31].

REFERENCES

[1] Noga Alon, Daniel Lokshtanov, and Saket Saurabh. 2009. Fast FAST. In ICALP 2009, Lecture Notes in Computer

Science, Vol. 5555. Springer, 49–58.

[2] Stephane Bessy and Anthony Perez. 2013. Polynomial kernels for proper interval completion and related problems.

Information and Computation 231, 0 (2013), 89–108. DOI:http://dx.doi.org/10.1016/j.ic.2013.08.006

[3] Ivan Bliznets, Marek Cygan, Paweł Komosa, Lukás Mach, and Michał Pilipczuk. 2016. Lower bounds for the param-

eterized complexity of minimum fill-in and other completion problems. In SODA 2016. SIAM, 1132–1151.

[4] Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michał Pilipczuk. 2015. A subexponential parameterized algo-

rithm for proper interval completion. SIAM Journal on Discrete Mathematics 29, 4 (2015), 1961–1987.

[5] Hans L. Bodlaender. 1998. A partial k-arboretum of graphs with bounded treewidth. Theoretial Computer Science 209,

1–2 (1998), 1–45.

[6] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. 1999. Graph Classes. A Survey. SIAM.

[7] Yixin Cao. 2013. An efficient branching algorithm for interval completion. CoRR abs/1306.3181 (2013).

[8] Yixin Cao. 2014. Linear recognition of almost interval graphs. CoRR abs/1403.1515 (2014).

[9] Yixin Cao. 2016. Linear recognition of almost interval graphs. In SODA 2016. SIAM, 1096–1115.

[10] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos. 2005. Subexponential

parameterized algorithms on graphs of bounded genus and H -minor-free graphs. Journal of the ACM 52, 6 (2005),

866–893.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

http://dx.doi.org/10.1016/j.ic.2013.08.006

35:62 I. Bliznets et al.

[11] Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. 2015. Exploring the subexponential com-

plexity of completion problems. ACM Transactions on Computation Theory (TOCT) 7, 4 (2015), 14:1–14:38.

[12] Uriel Feige. 2000. Coping with the NP-hardness of the graph bandwidth problem. In SWAT 2000 Lecture Notes in

Computer Science, Vol. 1851. Springer, 10–19.

[13] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer-Verlag, Berlin. 493 pages.

[14] Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve Villanger. 2014. Tight bounds for

parameterized complexity of cluster editing with a small number of clusters. Journal of Computer and System Sciences

80, 7 (2014), 1430–1447.

[15] Fedor V. Fomin and Yngve Villanger. 2013. Subexponential parameterized algorithm for minimum fill-in. SIAM Journal

on Computing 42, 6 (2013), 2197–2216.

[16] T. Gallai. 1967. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungarica 18, 1–2 (1967),

25–66. DOI:http://dx.doi.org/10.1007/BF02020961

[17] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability, A Guide to the Theory of NP-Completeness.

W.H. Freeman and Company, New York.

[18] Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh Rai, and M. S. Ramanujan.

2015. Faster parameterized algorithms for deletion to split graphs. Algorithmica 71, 4 (2015), 989–1006. DOI:http://

dx.doi.org/10.1007/s00453-013-9837-5

[19] Norman E. Gibbs, William G. Poole, Jr., and Paul K. Stockmeyer. 1976. A comparison of several bandwidth and profile

reduction algorithms. ACM Transactions on Mathematical Softwaaare 2, 4 (Dec. 1976), 322–330. DOI:http://dx.doi.org/

10.1145/355705.355707

[20] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. 1995. Four strikes against physical mapping of DNA.

Journal of Computational Biology 2, 1 (1995), 139–152.

[21] M. C. Golumbic. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.

[22] Pinar Heggernes, Christophe Paul, Jan Arne Telle, and Yngve Villanger. 2007. Interval completion with few edges. In

STOC 2007. 374–381.

[23] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential com-

plexity?Journal of Computer and System Sciences 63, 4 (2001), 512–530.

[24] Haim Kaplan, Ron Shamir, and Robert Endre Tarjan. 1994. Tractability of parameterized completion problems on

chordal and interval graphs: Minimum fill-in and physical mapping. In FOCS 1994. IEEE Computer Society, 780–791.

[25] Haim Kaplan, Ron Shamir, and Robert E. Tarjan. 1999. Tractability of parameterized completion problems on chordal,

strongly chordal, and proper interval graphs. SIAM Journal on Computing 28, 5 (May 1999), 1906–1922. DOI:http://

dx.doi.org/10.1137/S0097539796303044

[26] Richard M. Karp. Mapping the genome: Some combinatorial problems arising in molecular biology. In STOC 1993.

ACM, 278–285.

[27] Christian Komusiewicz and Johannes Uhlmann. 2012. Cluster editing with locally bounded modifications. Discrete

Applied Mathematics 160, 15 (2012), 2259–2270.

[28] Ross M. McConnell and Jeremy Spinrad. 1999. Modular decomposition and transitive orientation. Discrete Mathemat-

ics 201, 1–3 (1999), 189–241.

[29] Jaroslav Nešetřil and Patrice Ossona de Mendez. 2012. Sparsity - Graphs, Structures, and Algorithms. Algorithms and

Combinatorics, Vol. 28. Springer. I–XXIII, 1–457 pages.

[30] Yngve Villanger, Pinar Heggernes, Christophe Paul, and Jan Arne Telle. 2009. Interval completion is fixed parameter

tractable. SIAM Journal on Computing 38, 5 (2009), 2007–2020.

[31] Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Subexponential parameterized algorithm

for Interval Completion. SODA 2016. SIAM, 1116–1131.

Received February 2017; revised October 2017; accepted February 2018

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 35. Publication date: June 2018.

http://dx.doi.org/10.1007/BF02020961
http://dx.doi.org/10.1007/s00453-013-9837-5
http://dx.doi.org/10.1145/355705.355707
http://dx.doi.org/10.1137/S0097539796303044

