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Abstract In this paperwe give upper bounds on the number ofminimal separators and
potential maximal cliques of graphs w.r.t. two graph parameters, namely vertex cover
(vc) and modular width (mw). We prove that for any graph, the number of its mini-
mal separators is O∗(3vc) and O∗(1.6181mw), and the number of potential maximal
cliques isO∗(4vc) andO∗(1.7347mw), and these objects can be listed within the same
running times (TheO∗ notation suppresses polynomial factors in the size of the input).
Combined with known applications of potential maximal cliques, we deduce that a
large family of problems, e.g., Treewidth, Minimum Fill- in, Longest Induced

Path, Feedback vertex set and many others, can be solved in time O∗(4vc)
or O∗(1.7347mw). With slightly different techniques, we prove that the Treedepth

problem can be also solved in single-exponential time, for both parameters.
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1 Introduction

The vertex cover of a graph G, denoted by vc(G), is the minimum number of vertices
that cover all edges of the graph. The modular width mw(G) of graph G = (V, E)

is related to modular decompositions (see Sect. 4 and [30] for definitions). A module
of G is a set of vertices M ⊆ V such that, for any vertex x outside the module, x is
either adjacent to all vertices of M , or to none of them. A prime graph is a graph that
has only trivial modules (i.e., formed by a single vertex or the whole vertex set). The
modular width of G is the size of a largest prime induced subgraph of G.

Minimal separators and potential maximal cliques are strongly related to minimal
triangulations of graphs. A triangulation of an arbitrary graphG = (V, E) is a chordal
supergraph H = (V, E ′), i.e., a supergraph on the same vertex set, having no induced
cycles with strictly more than 3 vertices. We say that H is a minimal triangulation is
G has no triangulation strictly contained in H , as a subgraph. A set of verticesΩ of G
is called a potential maximal clique if Ω induces a maximal clique in some minimal
triangulation H of G.

The main results of this paper are of combinatorial nature: we show that the number
of minimal separators and the number of potential maximal cliques of a graph are
upper bounded by a single-exponential function in each of the parameters vertex cover
and modular width. More specifically, we prove the number of minimal separators
in a graph G is at most 3vc(G) and O∗(1.6181mw(G)), and the number of potential
maximal cliques isO∗(4vc(G)) andO∗(1.7347mw(G)). Moreover, these objects can be
listed within the same running time bounds. Recall that the O∗ notation suppresses
polynomial factors in the size of the input, i.e., O∗( f (k)) should be read as f (k) ·
nO(1) where n is the number of vertices of the input graph. Minimal separators and
potential maximal cliques have been used for solving several classical optimization
problems, e.g., Treewidth, Minimum Fill- In [16], Longest Induced Path,
Feedback Vertex Set or Independent Cycle Packing [18]. Pipelined with our
combinatorial bounds, we obtain a series of algorithmic consequences in the area of
FPT algorithms parameterized by the vertex cover and the modular width of the input
graph. In particular, the problems mentioned above can be solved in time O∗(4vc(G))

andO∗(1.7347mw(G)). These results are complementary in the sense that graphs with
small vertex cover are sparse, while graphs with small modular width may be dense.

Vertex cover and modular width are strongly related to treewidth (tw) and
cliquewidth (cw) parameters. It is an easy exercice to show that, since for any graphG,
we have tw(G) ≤ vc(G) and cw(G) ≤ mw(G)+2; see [22] for more parameters and
relations between them. The celebrated theorem of Courcelle [9] states that all prob-
lems expressible in Counting Monadic Second Order Logic (CMSO2) can be solved
in time f (tw) · n for some function f depending on the problem. A similar result for
cliquewidth [11] shows that all CMSO1 problems can be solved in time f (cw) · n,
if the clique-decomposition is also given as part of the input (See the “Appendix 2’
for definitions of different types of logic. Informally, CMSO2 allows logic formulae
with quantifiers over vertices, edges, edge sets and vertex sets, and counting modulo
constants. The CMSO1 formulae are more restricted, we are not allowed to quantify
over edge sets).
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Typically function f is a tower of exponentials, and the height of the tower depends
on the formula. Moreover Frick and Grohe [21] proved that this dependency on the
treewidth/cliquewidth of the input graphG cannot be significantly improved in general.
Lampis [24] shows that the running time for CMSO2 problems can be improved
22

O(vc(G)) · n when parametrized by vertex cover, but he also shows that this cannot be
improved to O∗(22o(vc(G))

) (under the exponential time hypothesis). We are not aware
of similar improvements for the modular width parameter, but we refer to [22] for
discussions on problems parameterized by modular width.

Most of our algorithmic applications concern a restricted, though still large subset
of CMSO2 problems, but we guarantee algorithms that are single exponential in the
vertex cover: O∗(4vc(G)) and in the modular width: O∗(1.7347mw(G)). We point out
that our result for modular width extends the result of [18,19], who show a similar
bound ofO∗(1.7347n) for the number of potential maximal cliques and for the running
times for these problems, but parameterized by the number of vertices of the input
graph.

Maximum induced graph of bounded treewidth We use the following generic problem
proposed by [18], that encompasses many classical optimization problems. Fix an
integer t ≥ 0 and a CMSO2 formula ϕ. Consider the problem of finding, in the
input graph G, an induced subgraph G[F] together with a vertex subset X ⊆ F ,
such that the treewidth of G[F] is at most t , the graph G[F] together with the vertex
subset X satisfying formula ϕ, and X is of maximum size under these conditions. This
optimization problem is called Max Induced Subgraph of tw ≤ t satisfiying
ϕ:

Max |X |
subject to There is a set F ⊆ V such that X ⊆ F;

The treewidth of G[F] is at most t;
(G[F], X) |� ϕ.

(1)

Note that our formula ϕ has a free variable corresponding to the vertex subset X .
For several examples, in formula ϕ the vertex set X is actually equal to F . E.g., even
when ϕ only states that X = F , for t = 0 we obtain the Maximum Independent

set problem, and for t = 1 we obtain the Maximum Induced Forest (and in
this case V \ F is an optimal solution for Feedback Vertex Set). If t = 1 and
ϕ states that X = F and G[F] is a path we obtain the Longest Induced Path

problem. Still under the assumption that X = F , we can express the problem of
finding the largest induced subgraph G[F] excluding a fixed planar graph H as a
minor, or the largest induced subgraph with no cycles of length 0 mod l. But X can
correspond to other parameters, e.g. we can choose the formula ϕ such that |X | is the
number of connected components of G[F]. Based on this we can express problems
like Independent Cycle Packing, where the goal is to find an induced subgraph
with a maximum number of components, and such that each component induces a
cycle.

By the result of [18], Max Induced Subgraph of tw ≤ t satisfiying ϕ is
solvable in time # pmc ·nt+4 · f (ϕ, t)where # pmc is the number of potential maximal
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cliques of the graph, assuming that the set of all potential maximal cliques is also part
of the input, and f is some function of ϕ and t only. Thanks to our combinatorial
bounds, the problem Max Induced Subgraph of tw ≤ t satisfiying ϕ can be
solved in times O(4vc(G)nt+c) and O(1.7347mw(G)nt+c), for some small constant c.

Treewidth, treedepth and other parameters Several other graph problems can be
solved in timeO∗(# pmc) if the input graph is given together with the set of its poten-
tial maximal cliques. Examples of such problems are Treewidth,Minimum Fill- in

[16], their weighted versions [3,23] and several problems related to phylogeny [23],
or Treelength [26]. Pipelined with our main combinatorial result, we deduce that
all these problems can be solved in timeO∗(4vc(G)) orO∗(1.7347mw(G)). Chapelle et
al. [7] provided an algorithm solving Treewidth and Pathwidth inO∗(3vc(G)), but
those completely different techniques do not seem to work for Minimum Fill- in or
Treelength. The interested reader may also refer., e.g., to [12,14] for more (layout)
problems parameterized by vertex cover. The best known parameterized algorithm
deciding whether a given n-vertex graph G is of treewidth at most t runs in time
O(t t

3
n) [2]. The treewidth of a graph can be computed in time O(1.7347n) [18].

Treedepth is a graph parameter that encountered a regain of interest in the area
of sparse graphs, cf. the book of Nešetřil and Ossona de Mendes [27]. Actually the
parameter used to be known under different names, e.g., vertex ranking [13]. A graph
has treedepth (vertex ranking) at most t if its vertices can be labeled from 1 to t , such
that each path connecting vertices of the same label i contains an internal vertex with
a label greater than i . The parameter is NP-hard to compute, but one can decide if the
treedepth of an n-vertex graph is at most t in time 2O(t2) · n [28]. The treedepth can
be also computed in time O(1.9602n) [15].

Deogun et al. [13] provide polynomial algorithms computing the vertex ranking
for several graph classes, using minimal separators. Based on their approach and new
combinatorial bounds we show that the treedepth of a graph can also be computed in
parameterized single-exponential time, when parameterized by the vertex cover or by
the modular width of the input graph.

The paper is organized as follows. Section2 introduces the preliminary results on
minimal triangulations, minimal separators and potential maximal cliques. Section3
presents the combinatorial upper bounds on the number of minimal separators and
potential maximal cliques, with respect to vertex cover. Section4 provides similar
bounds, with respect to modular width. Applications of these results are presented in
Sect. 5. The results for treedepth do not rely directly on potential maximal cliques but
on a different tool; they can be found in Sect. 6. Conclusion section discusses further
research directions.

2 Minimal Separators and potential maximal cliqueS

Let G = (V, E) be an undirected, simple graph. We denote by n its number of
vertices and by m its number of edges. The neighborhood of a vertex v is N (v) =
{u ∈ V : {u, v} ∈ E}. We say that a vertex x sees a vertex subset S (or vice-versa) if
N (x) intersects S. For a vertex set S ⊆ V we denote by N (S) the set

⋃
v∈S N (v) \ S.
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We write N [S] (resp. N [x]) for N (S) ∪ S (resp. N (x) ∪ {x}). Also G[S] denotes the
subgraph of G induced by S, and G − S is the graph G[V \ S].

A connected component of graphG is the vertex set of amaximal induced connected
subgraph of G. Consider a vertex subset S of graph G. Given two vertices u and v,
we say that S is a u, v-separator if u and v are in different connected components of
G − S. Moreover, if S is inclusion-minimal among all u, v-separators, we say that S
is a minimal u, v-separator. A vertex subset S is called a minimal separator of G if S
is a u, v-minimal separator for some pair of vertices u and v.

Let C be a component of G − S. If N (C) = S, we say that C is a full component
associated to S.

Proposition 1 (folklore) A vertex subset S of G is a minimal separator if G − S has
at least two full components associated to S. Moreover, S is a minimal x, y-separator
if and only if x and y are in different full components associated to S.

A graph H is chordal or triangulated if every cycle with four or more vertices has a
chord, i.e., an edge between two non-consecutive vertices of the cycle. A triangulation
of a graph G = (V, E) is a chordal graph H = (V, E ′) such that E ⊆ E ′. Graph H is
a minimal triangulation of G if for every edge set E ′′ with E ⊆ E ′′ ⊂ E ′, the graph
F = (V, E ′′) is not chordal.

A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if there
is a minimal triangulation H of G such that Ω is a maximal clique of H .

The following statement due to Bouchitté and Todinca [5] provides a characteriza-
tion of potential maximal cliques, and in particular allows to test in polynomial time
if a vertex subset Ω is a potential maximal clique of G:

Proposition 2 ([5]) Let Ω ⊆ V be a set of vertices of the graph G = (V, E) and
{C1, . . . ,Cp} be the set of connected components of G − Ω . We denote S(Ω) =
{S1, S2, . . . , Sp}, where Si = N (Ci ) for all i ∈ {1, . . . , p}. Then Ω is a potential
maximal clique of G if and only if

1. Each Si ∈ S(Ω) is strictly contained in Ω;
2. The graph on the vertex setΩ obtained from G[Ω] by completing each Si ∈ S(Ω)

into a clique is a complete graph.

Moreover, ifΩ is a potentialmaximal clique, thenS(Ω) is the set ofminimal separators
of G contained in Ω .

Another way of stating the second condition is that for any pair of vertices u, v ∈ Ω ,
if they are not adjacent in G then there is a component C of G − Ω seeing both x and
y.

To illustrate Proposition 2, consider, e.g., the cube graph depicted in Fig. 1. The
set Ω1 = {a, e, g, c, h} is a potential maximal clique and the minimal separators
contained in Ω1 are {a, e, g, c} and {a, h, c}. Another potential maximal clique of the
cube graph is Ω2 = {a, c, f, h} containing the minimal separators {a, c, f }, {a, c, h},
{a, f, h} and {c, f, h}.

Based on Propositions 1 and 2, one can easily deduce:
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Corollary 1 (see e.g., [5]) There is an O(m) time algorithm testing if a given vertex
subset S is a minimal separator of G, and O(nm) time algorithm testing if a given
vertex subset Ω is a potential maximal clique of G.

We also need the following observation.

Proposition 3 ([5]) Let Ω be a potential maximal clique of G and let S ⊂ Ω be a
minimal separator. Then Ω \ S is contained into a unique component C of G − S, and
moreover C is a full component associated to S.

3 Relations to Vertex Cover

A vertex subset W is a vertex cover of G if each edge has at least one endpoint in W .
Note that if W is a vertex cover, then V \ W induces an independent set in G, i.e.,
G − W contains no edges. We denote by vc(G) the size of a minimum vertex cover
of G. The parameter vc(G) is called the vertex cover number or simply (by a slight
abuse of language) the vertex cover of G. After a long sequence of improvements,
the current fastest parameterized algorithm for Vertex Cover is the algorithm of
Chen, Kanj, and Xia, running in timeO(1.2738vc(G) +n vc(G)) [8]. However, for our
purposes even a weaker result will do the job.

Proposition 4 (folklore)There is an algorithm computing the vertex cover of the input
graph G in time O∗(2vc(G)).

Let us show that any graph G has at most 3vc(G) minimal separators.

Lemma 1 Let G = (V, E) be a graph, W be a vertex cover and S ⊆ V be a minimal
separator of G. Consider a three-partition (D1, S, D2) of V such that both D1 and
D2 are formed by a union of components of G − S, and both D1 and D2 contain some
full component associated to S. Denote DW

1 = D1 ∩ W and DW
2 = D2 ∩ W.

Then S \ W = {x ∈ V \ W | N (x) intersects both DW
1 and DW

2 }.
Proof Let C1 ⊆ D1 and C2 ⊆ D2 be two full components associated to S. Let
x ∈ S \ W . Vertex x must have neighbors both in C1 and C2, hence both in D1 and
D2. Since x /∈ W and W is a vertex cover, we have N (x) ⊆ W . Consequently x has
neighbors both in DW

1 and DW
2 .

Conversely, let x ∈ V \ W s.t. N (x) intersects both DW
1 and DW

2 . We prove that
x ∈ S. By contradiction, assume that x /∈ S, thus x is in some component C of G − S.
Supposew.l.o.g. thatC ⊆ D1. Since N (x) ⊆ C∪N (C), wemust have N (x) ⊆ D1∪S.
Thus N (x) cannot intersect D2—a contradiction. �

Theorem 1 Any graph G has at most 3vc(G) minimal separators. Moreover the set of
its minimal separators can be listed in O∗(3vc(G)) time.

Proof Let W be a minimum size vertex cover of G. For each three-partition
(DW

1 , SW , DW
2 ) of W , let S = SW ∪ {x ∈ V \ W | N (x) intersects DW

1 and DW
2 }.

According to Lemma 1, each minimal separator of G will be generated this way, by an
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Fig. 1 Cube graph (left) and watermelon graph (right)

appropriate partition (DW
1 , SW , DW

2 ) of W . Thus the number of minimal separators
is at most 3vc(G), the number of three-partitions of W .

These arguments can be easily turned into an enumeration algorithm, we simply
need to compute an optimum vertex cover then test, for each set S generated from a
three-partition, if S is indeed a minimal separator. The former part takes O∗(2vc(G))

time by Proposition 4, and the latter takes polynomial time for each set S using
Corollary 1. �

Observe that the bound of Theorem 1 is tight up to a constant factor. Indeed consider
thewatermelongraphWk,3 formedby k disjoint paths of three vertices plus twovertices
u and v adjacent to the left, respectively right ends of the paths (see Fig. 1). Note that
this graph has vertex cover k + 2 (the minimum vertex cover contains the middle of
each path and vertices u and v) and it also has 3k minimal u, v-separators, obtained
by choosing arbitrarily one of the three vertices on each of the k paths.

We now extend Theorem 1 to a similar result on potential maximal cliques. Let
us distinguish a particular family of potential maximal cliques, which have active
separators. They have a particular structure which makes them easier to handle.

Definition 1 ([6]) Let Ω ⊆ V be a potential maximal clique of graph G = (V, E),
let {C1, . . . ,Cp} be the set of connected components of G − Ω and let Si = N (Ci ),
for 1 ≤ i ≤ p.

Consider the graph G+ obtained from G by completing into a clique all minimal
separators S j , 2 ≤ j ≤ p, such that S j is not contained in S1.

We say that S1 is an active separator for Ω if Ω is not a clique in this graph G+.
A pair of vertices x, y ∈ Ω that are not adjacent in G+ is called an active pair. Note
that, by Proposition 2, we must have x, y ∈ S1.

The following statement characterizes potential maximal cliques with active sepa-
rators.

Proposition 5 Let Ω be a potential maximal clique having an active separator S ⊂
Ω , with an active pair x, y ∈ S.Denote byC the unique component of G−S containing
Ω \ S. Then Ω \ S is a minimal x, y-separator in the graph G[C ∪ {x, y}].

Again on the cube graph of Fig. 1, for the potential maximal clique Ω1 =
{a, e, g, c, h}, both minimal separators are active. E.g., for the minimal separator
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Fig. 2 Four-partition of V (left) and a four-partition of W (right)

S = {a, e, g, c} the pair {e, g} is active. Not all potential maximal cliques have active
separators, as illustrated by the potential maximal cliqueΩ2 = {a, c, f, h} of the same
graph.

Let us first focus on potential maximal cliques having an active separator. We give
a result similar to Lemma 1, showing that such a potential maximal clique can be
determined by a certain partition of the vertex cover W of G.

Lemma 2 Let G = (V, E) be a graph and W be a vertex cover of G. Consider a
potential maximal cliqueΩ of G having an active separator S ⊂ Ω and an active pair
x, y ∈ S. Let C be the unique connected component of G − S intersecting Ω and let
DS be the union of all other connected components of G − S. Denote by Dx the union
of components of G − Ω contained in C, seeing x, by Dy the union of components of
G − Ω contained in C not seeing x.

Now let DW
S = DS ∩ W, DW

x = Dx ∩ W and DW
y = Dy ∩ W.

Then one of the following holds:

1. There is a vertex t ∈ Ω such that Ω \ S = N (t) ∩ C.
2. There is a vertex t ∈ Ω such that Ω = N [t].
3. A vertex z /∈ W is in Ω if and only if

(a) z sees DW
S and DW

x ∪ DW
y , or

(b) z does not see DW
S but it sees DW

x ∪ {x}, DW
y ∪ {y} and DW

x ∪ DW
y .

Proof Note that Dx , Dy, DS and Ω form a partition of the vertex set V . This induces
a four-partition of the vertex cover W (see Fig. 2).

We first prove that any vertex z /∈ W satisfying conditions 3a or 3b must be in Ω .
Consider first the case 3a when z sees DW

S and DW
x ∪ DW

y . So z sees DS and C ; we
can apply Lemma 1 to partition (DS, S,C) thus z ∈ S. Consider now the case 3b when
z sees DW

x ∪ DW
y , Dx ∪ {x} and Dy ∪ {y} but not DW

S . Again by Lemma 1 applied to
partition (DS, S,C), vertex z cannot be in S. Since z has a neighbor in Dx ∪ Dy , we
have z ∈ C . Let H = G[C ∪ {x, y}] and T = Ω ∩C (thus we also have T = Ω \ S).
Recall that T is an x, y-minimal separator in H by Proposition 5. By definition of set
Dx , we have that Dx ∪ {x} is exactly the component of H − T containing x . Note
that Dy ∪ {y} is the union of the component of H − T containing y and of all other
components of H − T (that no not see x nor y). By applying Lemma 1 on graph H ,
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with vertex cover (W ∩ C) ∪ {x, y} and with partition (Dx ∪ {x}, T, Dy ∪ {y}) we
deduce that z ∈ T .

Conversely, let z ∈ Ω \W . Wemust prove that either z satisfies conditions 3a or 3b,
or we are in one of the first two cases of the Lemma.We distinguish the cases z ∈ S and
z ∈ T .When z ∈ S, by Lemma 1 applied to partition (DS, S,C), zmust see DS andC .
If z sees some vertex inC \Ω , we are done because z sees DW

x ∪DW
y so we are in case

3a. Assume now that N (z)∩C ⊆ Ω , we prove that actually N (z)∩C = Ω ∩C = T ,
so we are in case 1. Assume there is u ∈ T \ N (z). By Proposition 2, there must
be a connected component D of G − Ω such that z, u ∈ N (D). Since u ∈ C , this
component D must be a subset of C , so D ⊆ C \ Ω . Together with z ∈ N (D), this
contradicts the assumption N (z) ∩ C ⊆ Ω .

It remains to treat the case z ∈ T . Clearly z ∈ C cannot see DS because S separates
C from DS . We again take graph H , with vertex cover (W ∩ C) ∪ {x, y}, and apply
Lemma 1 with partition (Dx ∪{x}, T, Dy ∪{y}). We deduce that z sees both DW

x ∪{x}
and DW

y ∪ {y}. Assume that z does not see DW
x ∪ DW

y . So N (z) ∩ C \ Ω = ∅ thus
N [z] ⊆ Ω . IfΩ contains some vertex u /∈ N [z], no component ofG−Ω can see both
z and u (because N (z) ⊆ Ω), contradicting Proposition 2. We conclude that either z
sees DW

x ∪ DW
y (so satisfies condition 3b) or Ω = N [z] (thus we are in the second

case of the Lemma). �

Theorem 2 Every graphG containsO∗(4vc(G)) potentialmaximal cliqueswith active
separators. Moreover the set of its potential maximal cliques with active separators
can be listed in O∗(4vc(G)) time.

Proof The number of potential maximal cliques with active separators satisfying the
second condition of Lemma 2 is at most n, and they can all be listed in polynomial
time by checking, for each vertex t , if N [t] is a potential maximal clique.

For enumerating the potential maximal cliques with active separators satisfying the
first condition of Lemma 2, we enumerate all minimal separators S using Theorem 1;
there are at most 3vc(G) such sets. Then, for each t ∈ S and each of the at most n
components C of G − S we check if S ∪ (C ∩ N (t)) is a potential maximal clique.
Recall that testing if a vertex set is a potentialmaximal clique can be done in polynomial
time by Corollary 1. Thus the whole process takes O∗(3vc(G)) time, and this is also
an upper bound on the number of listed objects.

It remains to enumerate the potential maximal cliques with active separators sat-
isfying the third condition of Lemma 2. For this purpose, we “guess” the sets DW

S
DW
x , DW

y as in the Lemma and then we compute Ω . More formally, we enumerate all

four-partitions (DW
S , DW

x , DW
y ,ΩW ) of W ; there are exactly 4vc(G) such partitions.

For each of them we let ΩW be the set of vertices z /∈ W satisfying conditions 3a
or 3b of Lemma 2, and we test using Corollary 1 if Ω = ΩW ∪ ΩW is indeed a
potential maximal clique. If so, we store Ω in a list of potential maximal cliques.
By Lemma 2, this enumerates all potential maximal cliques of this type. The running
time is O∗(4vc(G)) because for each four-partition (DW

S , DW
x , DW

y ,ΩW ) of W we
performed a polynomial-time operation, computing the unique associated set Ω and
testing whether it is a potential maximal clique. �
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For counting and enumerating all potential maximal cliques of graph G = (V, E),
including the ones with no active separators, we apply the same ideas as in [6], based
on the following statement.

Proposition 6 ([6]) Let G = (V, E) be a graph, let u be an arbitrary vertex of G and
Ω be a potential maximal clique of G. Denote by G − u the graph G[V \ {u}]. Then
one of the following holds:

1. Ω has an active minimal separator S.
2. Ω is a potential maximal clique of G − u.
3. Ω \ {u} is a potential maximal clique of G − u.
4. Ω \ {u} is a minimal separator of G.

Theorem 3 Any graph G has O∗(4vc(G)) potential maximal cliques. Moreover the
set of its potential maximal cliques can be listed in O∗(4vc(G)) time.

Proof Let (v1, . . . , vn) be an arbitrary ordering of the vertices of V . Denote by Gi

the graph G[{v1, . . . , vi }] induced by the first i vertices, for all i, 1 ≤ i ≤ n. Let
k = vc(G). Note that for all i we have vc(Gi ) ≤ k. Actually, ifW is a vertex cover of
G, thenWi = W∩{v1, . . . , vi } is a vertex cover ofGi . In particular, byTheorems 1 and
2, each Gi has at most 3k minimal separators and O∗(4k) potential maximal cliques
with active separators.

For i = 1, graph G1 has a unique potential maximal clique equal to {v1}.
For each i from 2 to n, in increasing order, we compute the potential maximal

cliques of Gi from those of Gi−1 using Proposition 6. Observe that Gi−1 = Gi − vi .
We initialize the set of potential maximal cliques of Gi with the ones having active
separators. This can be done in O∗(4k) time by Theorem 2. Then for each minimal
separator S of Gi we check if Ω = S ∪ {vi } is a potential maximal clique of Gi

and if so we add it to the set. This takes O∗(3k) time by Theorem 1 and Corollary 1.
Eventually, for each potential maximal clique Ω ′ of Gi−1, we test using Corollary 1
if Ω ′ (resp. Ω ′ ∪ {vi }) is a potential maximal clique of Gi . If so, we add it to the set
of potential maximal cliques of Gi . The running time of this last part is the number of
potential maximal cliques of Gi−1 times nm. Altogether, it takes O∗(4k) time.

ByProposition 6, this algorithm covers alls cases and thus lists all potentialmaximal
cliques of Gi . Hence for i = n we obtain all potential maximal cliques of G, and they
have been enumerated in O∗(4k) time. �

4 Relations to Modular Width

A module of graph G = (V, E) is a set of vertices W such that, for any vertex
x ∈ V \ W , either W ⊆ N (x) or W does not intersect N (x). For the reader familiar
with the modular decompositions of graphs, the modular width mw(G) of a graph G
is the maximum size of a prime node in the modular decomposition tree. Equivalently,
graph G is of modular width at most k if:

1. G has at most one vertex (the base case).
2. G is a disjoint union of graphs of modular width at most k.
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3. G is a join of graphs of modular width at most k. I.e., G is obtained from a family
of disjoint graphs of modular width at most k by taking the disjoint union and then
adding all possible edges between these graphs.

4. The vertex set of G can be partitioned into p ≤ k modules V1, . . . , Vp such that
G[Vi ] is of modular width at most k, for all i, 1 ≤ i ≤ p.

Themodularwidth of a graph canbe computed in linear time, using e.g. [30].Moreover,
this algorithm outputs the algebraic expression of G corresponding to the grammar
above. The canonical way of defining such an expression is themodular decomposition
tree of graph G, which is a rooted tree with labeled nodes of different types (see [30]
for full details). If G has a unique vertex (first item above), the tree is reduced to a
single node, of type leaf, labeled with the vertex itself. If G is not connected (second
item), letC1, . . . ,Cp be the connected components ofG. The modular decomposition
of G is obtained by taking a root node of type disjoint union, whose sons are the roots
of the modular decompositions of G[C1], . . . ,G[Cp]. If G (the complement of graph
G) is not connected, then we are in the case of the third item. Let C1, . . . ,Cp be
the connected components of G. The modular decomposition of G is obtained with
a root node of type join, whose sons are the roots of the modular decompositions of
G[C1], . . . ,G[Cp]. When bothG andG are connected (fourth item), there is a unique
partition (V1, . . . , Vp) of its vertex set V into maximal modules strictly contained in
V . The modular decomposition of G has a root node of type prime, whose sons are
the roots of the modular decompositions of G[V1], . . . ,G[Vp], in this order. The root
is labeled with a graph G[{v1, . . . , vp}] obtained by choosing a vertex vi in each Vi
(observe that any such choice produces isomorphic labels). This label is a prime graph
(hence the type of the root node). Equivalently, graph G has modular width at most k
if all the prime nodes of its modular decomposition have at most k sons.

Let G = (V, E) be a graph with vertex set V = {v1, . . . , vk} and let Mi =
(Vi , Ei ) be a family of pairwise disjoint graphs, for all i , 1 ≤ i ≤ k. Denote by
H the graph obtained from G by replacing each vertex vi by the module Mi . I.e.,
H = (V1 ∪ · · · ∪ Vk, E1 ∪ · · · ∪ Ek ∪ {ab | a ∈ Vi , b ∈ Vj s.t. viv j ∈ E}). We say
that graph H has been obtained from G by expanding each vertex vi by the module
Mi .

A vertex subsetW of H is an expansion of vertex subsetWG ofG ifW = ∪vi∈WGVi .
Given a vertex subset W of H , the contraction of W is {vi | Vi intersects W }.
Lemma 3 Let S be a minimal y, z-separator of H, for y, z ∈ Vi . Then S ∩ Vi is a
minimal separator of Mi and S \ Vi = NH (Vi ).

Proof Note that all vertices of NH (Vi ) are in NH (y) ∩ NH (z), by construction of
graph H and the fact that y and z are in the same module Vi . Therefore NH (Vi ) must
be contained in S. Let Si = S∩Vi . Since H [Vi ] = Mi , we have that Si separates z and
y in graph Mi . Assume that Si is not a minimal y, z-separator of Mi , so let S′

i � Si be
a minimal y, z-separator in graph Mi . We claim that S′

i ∪ NH (Vi ) is a y, z-separator
in H . Indeed each y, z-path of H is either contained in Vi (in which case it intersects
S′
i ) or intersects NH (Vi ). In both cases, it passes through S′

i ∪ NH (Vi ), which proves
the claim. Since S′

i ∪ NH (Vi ) is a subset of S and S is a y, z-minimal separator of H ,
the only possibility is that S = S′

i ∪ NH (Vi ). This proves that S ∩ Vi is a minimal
separator of Mi and S \ Vi = NH (Vi ). �
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Lemma 4 Let S be a minimal separator of H. Assume that some Vi intersects S, but
is not contained in S. Then Vi intersects all full components of H − S associated to
S. In particular S ∩ Vi is a minimal separator in Mi and S \ Vi = NH (Vi ).

Proof Let (x, t) be a pair of vertices with x ∈ Vi ∩ S and t ∈ Vi \ S. By Proposition 1,
there are at least two full components of H − S, associated to S. Let C be one of them,
not containing t . Let z be a neighbor of x in C , we prove that z ∈ Vi . If z /∈ Vi , then
z ∈ NH (Vi ), and since Vi is a module in H we also have z ∈ NH (t). This contradicts
the fact that t and z are in different components of H − S. It follows that z ∈ Vi .
By applying the same arguments to the pair (x, z) instead of (x, t), it follows that Vi
intersects each full component D of H − S and moreover x has a neighbor in D ∩ Vi .

By Proposition 1, S is a minimal y, z-separator in H , for some y, z ∈ NH (x) ∩ Vi .
The rest follows by Lemma 3. �
Lemma 5 Let S be a minimal separator of H. Then one of the following holds

1. S is the expansion of a minimal separator SG of G.
2. There is i ∈ {1, . . . , k} such that S∩Vi is a minimal separator of Mi and S \Vi =

NH (Vi ).

Proof Assume there is a set Vi intersecting S but not contained in it. By Lemma 4,
S∩Vi is a minimal separator of Mi and S \Vi = NH (Vi ). Hence we are in the second
case of the Lemma.

Otherwise, for any Vi intersecting S, we have Vi ⊆ S. Thus S is the expansion of a
vertex subset SG of G, formed exactly by the vertices vi of G such that Vi intersects
S. Let C and D be two full components of H − S associated to S and let a ∈ C ,
b ∈ D. Recall that, by Proposition 1, S is a minimal a, b-separator of H . Let Vk be the
set containing a and Vl the set containing b. Consider first the possibility that k = l.
Then, by Lemma 3, S satisfies the second condition of this lemma, for i = k = l (This
case may occur when Mk is disconnected and S = NH (Vk)).

Finally, we consider the case k �= l. We prove that SG is a minimal vk, vl -separator
of G. Consider a vk, vl path of G. If this path does not intersect SG in G, then there is
a path from a to b in H − S, obtained by replacing each vertex v j of the path by some
vertex of Vj (vk and vl are replaced by a and b respectively). This would contradict
the fact that S separates a and b in H . Therefore SG is indeed a vk, vl -separator in
G. Assume that SG is not minimal among the vk, vl -separators of G, and let v j ∈ SG
such that SG \ {v j } separates vk and vl in G. We claim that S \ Vj also separates a
from b in H . By contradiction, assume there is a path from a ∈ C ∩ Vk to b ∈ D ∩ Vl
in H , avoiding S \ Vj . By contracting, on this path, all vertices belonging to a same
Vi into vertex vi , we obtain a path (or a connected subgraph) joining vk to vl in G.
This contradicts the fact that all such paths should intersect SG \ {v j }. Therefore SG
is a minimal separator of G. �

Lemma 5 provides an injective mapping from the set of minimal separators of H
to the union of the sets of minimal separators of G and of the graphs Mi . Therefore
we have:

Corollary 2 The number of minimal separators of H is at most the number of minimal
separators of G plus the number of minimal separators of each Mi .
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We now aim to prove a statement equivalent of Corollary 2, for potential maximal
cliques instead of minimal separators.

Lemma 6 Let Ω be a potential maximal clique of H, and let ΩG = {vi |
Vi intersects Ω}. Assume that Ω is the expansion of ΩG, i.e. Ω = ∪vi∈ΩG Vi . Then
ΩG is a potential maximal clique of G.

Proof We prove thatΩG satisfies, in graph G, the conditions of Proposition 2. For the
first condition, let CG be a component of G − ΩG and let SG = NG(CG). Assume
that SG is not strictly contained in ΩG , hence SG = ΩG . Let C be the expansion
of CG in H and note that NH (C) is the expansion of NG(CG), thus NH (C) = Ω .
If CG is formed by at least two vertices, since G[CG] is connected then so is H [C].
Therefore, in graph H , we have NH (C) = Ω and C is a component of H − Ω . But
this contradicts the first condition of Proposition 2 applied to the potential maximal
clique Ω of H . In the case that CG is formed by a unique vertex vk , its expansion
C = Vk might not induce a connected subset in H (if Mk is disconnected). But it is
sufficient to consider a connected component V ′

k of H [Vk], and again this is also a
component of H − Ω with the property that its neighborhood in H is the whole set
Ω , contradicting Proposition 2 applied to Ω .

For the second condition of Proposition 2, let v j , vk ∈ ΩG such that v jvk is not
an edge of G. Let a ∈ Vj and b ∈ Vk . These vertices are non-adjacent in H , so
by Proposition 2 applied to the potential maximal clique Ω of H there must be a
component C of H − Ω seeing both a and b. Consider an a, b-path in H [C ∪ {a, b}].
The contraction of this path contains a v j , vk-path in G, whose internal vertices are
not in ΩG . This proves that v j and vk are in the neighborhood of a same component
of G − ΩG , thus ΩG satisfies the second condition of Proposition 2. �
Lemma 7 Let Ω be a potential maximal clique of H, and assume that there is some
set Vi that intersects Ω but is not contained in Ω . Then Ω ∩Vi is a potential maximal
clique of Mi and Ω \ Vi = NH (Vi ).

Proof Let Vi be a vertex set that intersectsΩ , but is not contained inΩ .We distinguish
two cases.

Case 1 There is a minimal separator S ⊆ Ω of H , such that S intersects Vi .
By Lemma 4, S ∩ Vi is a minimal separator of Mi and Vi intersects all full compo-

nents of H − S associated to S. Let C be the unique component of H − S intersecting
Ω; recall that it exists and moreover it is full w.r.t. S, by Proposition 3. Then, by
Lemma 4, C also intersects Vi . Also by Lemma 4, S \ Vi = NH (Vi ). We claim that
actuallyC ⊆ Vi andC is also a full component ofMi−Si . Recall that S\Vi = NH (Vi )
separates in graph H the vertices of Vi from the rest of the graph. Since C intersects
Vi , H [C] is connected and NH (Vi ) separates Vi from all other vertices, we must have
C ⊆ Vi . Since H [C] is connected, so is Mi [C], thus C is contained in some compo-
nent of Mi − Si . But each such component is also a component of H − S, hence C is
both a component of H − S and of Mi − Si . In particular Ω ∩ C ⊆ Vi .

It remains to prove that Ωi = Ω ∩ Vi is a potential maximal clique of Mi . By the
above observations, we also have Ωi = Ω \ NH (Vi ). We show that Ωi satisfies, in
graph Mi , the conditions of Proposition 2. Let D be a component of Mi −Ωi . Observe
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that D is also a component of H−Ω and let T = NMi (D). Either D is a component of
Mi −Ωi disjoint fromC , or it is contained inC . In the former case, T is a subset of Si ,
hence T is a strict subset of Ωi (since Si is itself a strict subset of Ωi by Proposition 2
applied to potential maximal clique Ω of H ). In the latter case, if T = Ωi , note that
NH (D) = Ω because Ω \ Vi = NH (Vi ) is also contained in the neighborhood of D
in H . This contradicts Proposition 2 applied to potential maximal clique Ω of H .

For the second condition, let x, y ∈ Ωi , non-adjacent in Mi . Then there is a com-
ponent F of H −Ω seeing, in graph H , both x and y (by Proposition 2 applied to Ω).
Since this component sees Vi , it must be contained in Vi . So F is also a component
of Mi − Ωi seeing both x and y in Mi , which concludes our proof for this case.

Case 2 There is no minimal separator S ⊆ Ω of H , intersecting Vi .
Let us prove that, in this case, for any x ∈ Ωi we have that Ω = NH [x]. By

Proposition 3, if x has a neighbor outside Ω , hence in some component D of H − Ω ,
then NH (D) is a minimal separator of H containing x — a contradiction. Therefore
NH [x] ⊆ Ω . If there is y ∈ Ω \ NH [x], then by the same proposition, x and y must
see a same component of H − Ω , contradicting the fact that NH (x) ⊆ Ω . We deduce
that Ω = NH [x].

Since this holds for each vertex of Ωi , we have that Ωi is a clique in H (thus in
Mi ), and the vertices of Ωi cannot have neighbors in Vi \Ωi . Therefore Ωi is a clique
and a connected component of Mi . By Proposition 3, it is a potential maximal clique
of Mi . The fact thatΩ = NH [x] also implies thatΩ \Vi = NH (Vi ), which concludes
our proof. �

From Lemmata 6 and 7, we directly deduce:

Lemma 8 Let Ω be a potential maximal clique of H. One of the following holds

1. Ω is the expansion of a potential maximal clique ΩG of G.
2. There is some i ∈ {1, . . . , k} such that Ω ∩ Vi is a potential maximal clique of Mi

and Ω \ Vi = NH (Vi ).

The previous lemma provides an injective mapping from the set of potential maxi-
mal cliques of H to the union of the sets of potential maximal cliques of G and of the
graphs Mi . Therefore we have:

Corollary 3 The number of potential maximal cliques of H is at most the number of
potential maximal cliques of G plus the number of potential maximal cliques of each
Mi .

The following proposition bounds the number of minimal separators and potential
maximal cliques of arbitrary graphs with respect to n.

Proposition 7 ([19,20]) Every n-vertex graph hasO(ρn) minimal separators, where
ρ < 1.6181 is the golden ratio, andO(1.7347n) potential maximal cliques. Moreover,
these objects can be enumerated within the same running times.

We can now prove the main result of this section.

Theorem 4 For any graph G = (V, E), the number of its minimal separators isO(n ·
ρmw(G)) where ρ < 1.6181 is the golden ratio. The number of its potential maximal
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cliques is O(n · 1.7347mw(G)). Moreover, the minimal separators and the potential
maximal cliques can be enumerated in time O∗(1.6181mw(G)) and O∗(1.7347mw(G))

time respectively.

Proof Let k = mw(G). By definition of modular width, there is a modular decom-
position tree of graph G, each node corresponding to a leaf, a disjoint union, a join
or a decomposition into at most k modules. The leaves of the decomposition tree are
disjoint graphs with a single vertex, thus these vertices form a partition of V . In partic-
ular, there are at most n leaves and, since each internal node is of degree at least two,
there are O(n) nodes in the decomposition tree. For each node Node, let G(Node) be
the graph associated to the subtree rooted at Node. I.e., G(Node) is the graph whose
modular decomposition is the subtree rooted at Node; it is also subgraph of G induced
by the vertices of G mapped on leaves of the subtree rooted at Node. We prove that
G(Node) hasO(n(Node) ·ρk)minimal separators andO(n(Node) ·1.7347k) potential
maximal clique, where n(Node) is the number of nodes of the subtree rooted at Node.
We proceed by induction from bottom to top. The statement is clear when Node is a
leaf.

Let Node be an internal node Node1,Node2, . . . ,Nodep be its children in the tree.
Graph G(Node) is the expansion of some graph G ′(Node) by replacing the i-th vertex
with module G(Nodei ). If Node is a join node, then G ′(Node) is a clique. When
Node is a disjoint union node, graph G ′(Node) is an independent set, and in the last
case G ′(Node) is a graph of at most k vertices. In all cases, by Proposition 7 graph
G ′(Node) has O(ρk) minimal separators. Thus G(Node) has at most O(ρk) more
minimal separators than all graphs G(Nodei ) taken together, which completes our
proof for minimal separators.

Concerning potential maximal cliques, whenG ′(Node) is a clique it has exactly one
potential maximal clique, and when G ′(Node) is of size at most k is has O(1.7347k)
potential maximal cliques. We must be more careful in the case when G ′(Node) is
an independent set (i.e., Node is a disjoint union node), since in this case it has p
potential maximal cliques, one for each vertex, and p can be as large as n. Consider
a potential maximal clique Ω of G(Node) corresponding to an expansion of vertices
of G ′(Node) (see Lemma 8). It follows that this potential maximal clique is exactly
the vertex set of some G(Nodei ), for a child Nodei of Node. By construction this
vertex set is disconnected from the rest of G(Node), and by Proposition 2 the only
possibility is that this vertex set induces a clique in G(Node). But in this case Ω is
also a potential maximal clique of G(Nodei ). This proves that, when Node is of type
disjoint union, G(Node) has no more potential maximal cliques than the sum of the
numbers of potential maximal cliques of all G(Nodei ), 1 ≤ i ≤ p. We conclude that
thewhole graphG hasO(n ·1.7347k) potential maximal cliques. All our arguments are
constructive and can be turned directly into enumeration algorithms for these objects.

�

5 Applications

The treewidth of graph G = (V, E), denoted tw(G), is the minimum number k such
thatG has a triangulation H = (V, E ′) of clique size atmost k+1. Theminimumfill-in
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of G is the minimum size of F , over all (minimal) triangulations H = (V, E ∪ F) of
G. The treelength ofG is the minimum k such that there exists a minimal triangulation
H , with the property that any two vertices adjacent in H are at distance at most k in
graph G.

Proposition 8 Let ΠG denote the set of potential maximal cliques of graph G. The
following problems are solvable in O∗(|ΠG |) time, when ΠG is given in the input:
(Weighted) Treewidth [4,16], (Weighted) Minimum Fill- In [16,23], Tree-
length [26].

Let us also recall theMax Induced Subgraph of tw ≤ t satisfiyingϕ problem
where, for a fixed integer t and a fixed CMSO2 formula ϕ, the goal is to find a pair of
vertex subsets X ⊆ F ⊆ V such that tw(G[F]) ≤ t , (G[F], X) models ϕ and X is of
maximum size.

Proposition 9 ([18]) For any fixed integer t > 0 and any fixed CMSO2 formula
ϕ, problem Max Induced Subgraph of tw ≤ t satisfiying ϕ is solvable in
O(|ΠG | · nt+4) time, when ΠG is given in the input.

Pipelined with Theorems 3 and 4, we deduce:

Theorem 5 For an input graph G, the problems Max Induced Subgraph of-
tw ≤ t satisfiying ϕ, (Weighted) Treewidth, (Weighted) Minimum Fill- In

and Treelength are solvable in time O∗(4vc(G)), and in time O∗(1.7347mw(G)).

We recall that problem Max Induced Subgraph of tw ≤ t satisfiying ϕ gen-
eralizes many classical problems, e.g., Maximum Independent Set, Maximum

Induced Forest, Longest Induced Path, Maximum Induced Match-

ing, Independent Cycle Packing, k- in- a- Path, k- in- a- Tree, Maximum

Induced Subgraph With a Forbidden Planar Minor. More examples of
particular cases are given in “Appendix 1” (see also [18]).

The polynomial factors hidden by the O∗ notation depend on the problem and on
the parameter, they are typically between n5 to n7.

6 Treedepth

In [13], Deogun et al. give the following formula for computing the treedepth of a
graph. Note that, for technical reasons, the formula uses a super-set Δ+

G of the set of
all minimal separators of G.

Proposition 10 ([13]) Let G be a graph and Δ+
G a set of vertex subsets, containing

all minimal separators of G. Then

td(G) = min
S∈Δ+

G

(

|S| + max
C

td(G[C])
)

where the maximum is taken over all components C of G − S.
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Note that if G is a complete graph, then its treedepth is the number of vertices of
G.

Following [13], we recursively define a piece D of G = (V, E) as a vertex subset
such that D = V , or there exists a larger piece C of G and a minimal separator S of
G[C] such that D is a connected component of G[C] − S.

Let us say that (C, S) is a piece-separator pair ofG ifC is a piece and S is aminimal
separator of G[C]. Proposition 10 leads in [13] to a natural dynamic programming
algorithm for computing the treedepth. Let us restate it for our convenience.

Lemma 9 Given as input a graph G together with the set PS of all its piece-separator
pairs (or a superset of this set), the treedepth of G can be computing in O∗(|PS|)
time.

Proof Let Pieces be the set of all sets C such that (C, S) ∈ PS (hence Pieces is a
superset of all pieces). Assume that the elements of Pieces are ordered by inclusion,
or simply by size, using bucket sort. The goal is to compute, in this order, a quantity
that corresponds to the treedepth of G[C], if C is really a piece. (Technically, we may
encounter sets C that do not correspond to pieces, because when we will generate the
sets C we will not be able to test that we only generate pieces). For the minimal sets
C ∈ Pieces, we set td[C] ← |C |. Then for each C ∈ Pieces, sorted by inclusion,
for each S such that (C, S) ∈ PS, we check that all components D of G[C] − S
belong to Pieces. If this is not the case, then C is not a piece. Otherwise, we compute
|S| + ∑

D td[D] (the sum is taken over all components D), and we set td[C] to
the minimum among these values, over all such S. (If no such S exist, we can set
td[C] ← |C |). By Proposition 10, at the end of the algorithm, td(G) = td[V ]. �

Following the same ideas as in Theorem 1, we can list the piece-separator pairs of
G in a running time which is single-exponential in its vertex cover.

Lemma 10 Let W be a vertex cover of graph G = (V, E).
For each piece C of G, either C is a singleton or there is a three-partition

(CW , TW , RW ) of W such that C ∩ W = CW and C \ W is formed by the vertices
x ∈ V \ W such that N (x) is contained in CW ∪ TW and intersects CW .

Proof The proof goes by induction, from larger to smaller pieces. The base case
corresponds to piece C = V . The condition holds, for the partition (W,∅,∅).

Let now C be a piece obtained as a component of G[F]− Q, for some larger piece
F and some minimal separator Q of G[F]. We may assume w.l.o.g. that C is a full
component associated to Q inG[F]. Indeed, if this is not the case, then Q′ = NG[F](C)

is also a minimal separator of G[F] (C is one of the full components associated to Q′
in G[F]; another one can be obtained from a full component D associated to Q, by
taking the component of G[F] − Q′ containing D, see Proposition 1). Thus we can
replace Q by Q′.

By induction hypothesis, there is a partition (FW , TW
F , RW

F ) such that F∩W = FW

and for any vertex y ∈ F \ W , y is in F if and only if NG(y) intersects FW and is
contained in FW ∪ TW

F . Consider the partition (C, S, D2) of F and apply Lemma 1 to
G[F], this partition and the vertex cover W ′ = W ∩ F of G[F]. Let CW = C ∩ W ′,
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SW = S∩W ′ and DW
2 = D2 ∩W ′ (we obtain the same intersections if we replaceW ′

byW ). Denote TW = TW
F ∪ SW , and RW = RW

F ∪DW
2 . Observe that (CW , TW , RW )

is a three-partition of W . It remains to prove that, if C has more than one vertex, then
this three-partition of W satisfies the condition of the lemma.

Let x be a vertex of C \W , in particular x ∈ F . Since C is not a singleton, x has at
least one neighbor inC∩W = CW , in graphG. Since x ∈ F , its neighborhood NG(x)
is contained in F ∪ TW

F by induction hypothesis. Now if NG(x) intersects DW
2 , we

would have that NG[F](x) intersects both CW and DW
2 , contradicting (by Lemma 1)

the fact that x ∈ C . It remains that NG(x) is contained in CW ∪ TW .
Conversely, let x ∈ V \ W such that NG(x) intersects CW and is contained in

CW ∪ T F . Note that x ∈ F , by induction hypothesis. We cannot have x ∈ S (its
neighborhood would intersect DW

2 , hence RW , by Lemma 1 applied on (C, S, D2)

in G[F]), nor x ∈ D2 (because S separates C from D2 in G[F], so NG(D2) cannot
intersect C). It remains that x ∈ C , concluding the proof of the lemma. �
Theorem 6 A graph G has at most n + 3vc(G) pieces and at most n + 5vc(G) piece-
separator pairs. Moreover, the piece-separator pairs of G can be listed inO∗(5vc(G))

time.

Proof The fact that G has at most n + 3vc(G) pieces is a straightforward consequence
of Lemma 10: each piece C is either a single vertex, or is completely determined by
some three-partition (CW , TW , RW ) of a minimum vertex coverW . We point out that
the singleton condition of Lemma 10 is crucial. Indeed, if G is a star, its minimum
vertex cover is of size one, and each of the other n − 1 vertices is a piece formed by a
single vertex.

Let us enumerate and upper bound the number of piece-separator pairs (C, S).
There are at most n such pairs where C is a singleton, so assume that C has at least
two vertices. For each such pair, let (CW , TW , RW ) be a partition of a minimum
vertex cover W , like in Lemma 10. Since S is a minimal separator of G[C], there
is (by Lemma 1) a partition (DW

1 , SW , DW
2 ) of CW such that S \ W corresponds to

vertices of x ∈ C \ W whose neighborhood in G[C] intersects both DW
1 and DW

2 .
Conversely, by Lemmata 10 and 1, the pair (C, S) is completely determined by the
five-partition (DW

1 , SW , DW
2 , TW , RW ) ofW . Indeed, given this five-partition, we set

CW = DW
1 ∪ SW ∪ DW

2 . By Lemma 10, we can fix C as the vertex set formed by CW

and the vertices z ∈ V \W such that N (x) intersectsCW and is contained inCW ∪TW .
By Lemma 1 applied to G[C], S is formed by SW and the vertices y ∈ C \ W seeing
both DW

1 and DW
2 . Hence there are at most 5vc(G) such piece-separator pairs, which

proves the upper bound.
The enumeration algorithm firstly enumerates all pairs of type (C,∅) where |C | =

1. Then it enumerates the 5vc(G) five-partitions (DW
1 , SW , DW

2 , TW , RW ) of W , and
for each of them it constructs as described before the unique associated pair (C, S).
Therefore the algorithm enumerates a superset of the piece-separator pairs ofG within
the required running time. �

A similar result can be obtained using parameter modular width. As in Sect. 4, let
G = (V, E) be a graph with vertex set V = {v1, . . . , vk} and let Mi = (Vi , Ei ) be
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a family of pairwise disjoint graphs, for all i , 1 ≤ i ≤ k. We denote by H the graph
obtained from G by expanding each vertex vi by the module Mi .

Lemma 11 Let S be a minimal separator of H and C be a connected component of
H − S. Then one of the following holds:

1. C is the expansion of a vertex subset CG of G.
2. There is i ∈ {1, . . . , k} and a minimal separator Si of Mi = H [Vi ] such that C is

a connected component of Mi − Si .

In particular, each piece of H is an expansion of a vertex subset of G, or a piece of
some module Mi .

Proof The two conditions are a straightforward consequence of Lemma 5. Recall that,
by this Lemma, S is the expansion of a minimal separator SG of G (in which case the
first condition holds), or there is some i and a minimal separator Si of Mi such that
S = Si ∪ NH (Vi ). In the latter case, the component C is either contained in Vi (and
the second condition holds), or does not intersect Vi , so it is the expansion of some
component of G − NG(vi ) (implying the first condition of the lemma).

For the last part, we use the recursive definition of pieces. Consider a piece of H [C],
for some component C of H − S. If C is a component of Mi − Si for some i , then
pieces of H [C] are also pieces of Mi [C] and hence of Mi . If C is an expansion of a
vertex subsetCG of G, then H [C] is an expansion of H ′ = G[CG] and we recursively
apply the same argument on H ′. �
Theorem 7 For any graph G, the number of its pieces isO∗(2mw(G)), and a superset
of its piece-separator pairs can be listed in time O∗(3.2361mw(G)).

Proof Let us count the pieces ofG. Consider themodular-decomposition tree ofG, like
in the proof of Theorem 4. For each node Node of the decomposition (corresponding
to a leaf, a disjoint union, a join or a decomposition into at most mw(G) modules), let
G(Node) be the graph whose corresponding decomposition tree is the subtree rooted
at Node, and G ′(Node) be the prime, complete or independent graph corresponding to
node Node. By Lemma 11, the pieces of G(Node) are either pieces of G(Nodei ) for
some child Nodei of Node, or correspond to an expansion of G ′(Node). If G ′(Node)
is prime, there are at most 2mw(G) such expansions. Also observe that if G ′(Node)
is independent then the only pieces of G(Node) that are expansions of G ′(Node)
correspond to single vertices of G ′(Node). Hence, there are at most n such pieces. In
the case when G ′(Node) is a complete graph, the only possible piece of G(Node) that
is an expansion of G ′(Node) is the whole graph G(Node), hence this piece is unique.
Altogether, G has O∗(2mw(G)) pieces.

For each piece C of G, there areO∗(ρmw(G))minimal separators in G[C], where ρ

is the golden ratio, by Theorem 4 and the fact that themodular width ofG[C] is at most
mw(G). Hence the number of piece-separator pairs of G is O∗((2 · ρ)mw(G)), thus
O∗(3.2361mw(G)). The counting arguments can be transformed into an enumeration
algorithm for a superset of all possible such pairs,within the same running timebounds.

�
From Lemma 9 and Theorems 6 and 7 we deduce:
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Theorem 8 The treedepth of a graph G is computable in timeO∗(5vc(G)) and in time
O∗(3.2361mw(G)).

7 Conclusion

Wehave proved single exponential upper bounds for the number ofminimal separators
and the number of potential maximal cliques of graphs, with respect to parameters
vertex cover and modular width. As a consequence, we provide a unified framework
for solving several classical optimization problems in single-exponential time with
respect to these parameters (e.g.,Treewidth,Minimum Fill- In,Longest Induced

Path, Independent Cycle Packing, see also Theorem 5 and “Appendix 1” for
more applications). Some of these results have been proved before, but using ad-hoc
algorithms (for example Treewidth parameterized by vertex cover [7] and modular
width [3]), others are new.

A natural question is whether the technique can be extended to other natural graph
parameters, by obtaining upper bounds of type O∗( f (k)) on the number of potential
maximal cliques, for any function f (here k is the parameter). To the best of our
knowledge, prior to our work this question has not been investigated for any relevant
parameter except for n, the number of vertices of the graph. We point out that for
parameters like feedback vertex set, clique-width or maximum leaf spanning tree, one
cannot obtain such upper bounds. A counterexample is provided by the graph Wp,q ,
formed by p disjoint paths of q vertices plus two vertices u and v seeing the left,
respectively right ends of the paths (similar to the watermelon graph of Fig. 1). Indeed
this graph has feedback vertex set 1, a maximum leaf spanning tree with p leaves and a
clique-width of no more than 2p+1, but it has roughly pn/p minimal u, v-separators.
Skodinis [29] observes that, if we chose as parameter d the maximum degree of the
complement graph, then the number of minimal separators is bounded byO∗(2O(d)).
The argument is that each a, b-minimal separator contains all common neighbors of
a and b, hence all but 2d vertices of the graph. A similar bound holds for the number
of potential maximal cliques.

A different extension of this technique was recently considered by Liedloff et al.
[25], with different parameters including feedback vertex set. They can solve the
problem Max Induced Subgraph of tw ≤ t satisfiying ϕ in FPT time, but
unfortunately the running time is not single exponential, and their result does not
extend to problems like Treewidth or Treedepth.

Finally, we point out that our bounds on the number of potential maximal cliques
w.r.t. vertex cover and to modular width do not seem to be tight. Any improvement on
these bounds and of the enumeration algorithm of potential maximal cliques would
imply faster algorithms for the problems mentioned in Sect. 5.

Appendix 1: More Applications

We give in this Appendix several problems that are all known to be particular cases
of Max Induced Subgraph of tw ≤ t satisfiying ϕ (see [18] proofs and more
applications). Proposition 9 also extends to the weighted version and the annotated
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version of the problems (in the annotated version, a fixed vertex subset must be part
of the solution F).

Let Fm be the set of cycles of length 0 (mod m). Let � ≥ 0 be an integer. Our first
example is the following problem.

Maximum Induced Subgraph with ≤ � copies of Fm- cycles

Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F] contains at most �

vertex-disjoint cycles from Fm .

Maximum Induced Subgraph with ≤ � copies of Fm- cycles encompasses
several interesting problems. For example, when � = 0, the problem is to find a
maximum induced subgraph without cycles divisible by m. For � = 0 and m = 1 this
isMaximum Induced Forest.

For integers � ≥ 0 and p ≥ 3, the problem related to Maximum Induced Sub-

graph with ≤ � copies of Fm- cycles is the following.

Maximum Induced Subgraph with ≤ � copies of p- cycles
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F] contains at most �

vertex-disjoint cycles of length at least p.

Next example concerns properties described by forbidden minors. Graph H is a
minor of graph G if H can be obtained from a subgraph of G by a (possibly empty)
sequence of edge contractions. A model M of minor H in G is a minimal subgraph
of G, where the edge set E(M) is partitioned into c-edges (contraction edges) and
m-edges (minor edges) such that the graph resulting from contracting all c-edges is
isomorphic to H . Thus, H is isomorphic to a minor of G if and only if there exists a
model of H in G. For an integer � and a finite set of graphs Fplan containing a planar
graph we define he following generic problem.

Maximum Ind. Subgraph with ≤ � copies of Minor Models from F
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F] contains at most �

vertex disjoint minor models of graphs from Fplan .

Even the special case with � = 0, this problem and its complementary version
called theMinimum F- Deletion, encompass many different problems.

Let t ≥ 0 be an integer and ϕ be a CMSO-formula. Let G(t, ϕ) be a class of
connected graphs of treewidth at most t and with property expressible by ϕ. Our next
example is the following problem.

Independent G(t, ϕ)- Packing

Input: A graph G.
Task: Find a set F ⊆ V (G) with maximum number of connected components
such that each connected component of G[F] is in G(t, ϕ).

As natural sub cases studied in the literature we can cite Independent Triangle

Packing or Independent Cycle Packing.
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The next problem is an example of annotated version of optimization problem
Max Induced Subgraph of tw ≤ t satisfiying ϕ.

k- in- a- Graph From G(t, ϕ)

Input: A graph G, with k terminal vertices.
Task: Find an induced graph from G(t, ϕ) containing all k terminal vertices.

Many variants of k- in- a- Graph From G(t, ϕ) can be found in the literature, like
k- in- a- Path, k- in- a- Tree, k- in- a- Cycle.

Appendix 2: Monadic Second-Order Logic

We use Counting Monadic Second Order Logic (CMSO2), an extension of MSO2, as
a basic tool to express properties of vertex and edge sets in graphs.

The syntax of Monadic Second Order Logic (MSO2) of graphs includes the logical
connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices, and sets
of edges, the quantifiers ∀, ∃ that can be applied to these variables, and the following
five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;
2. d ∈ D where d is an edge variable and D is an edge set variable;
3. inc(d, u),where d is an edge variable, u is a vertex variable, and the interpretation

is that the edge d is incident with the vertex u;
4. adj(u, v), where u and v are vertex variables and the interpretation is that u and

v are adjacent;
5. Equality of variables representing vertices, edges, sets of vertices, and sets of

edges.

The MSO1 is a restriction of MSO2 in which one cannot use edge set variables (in
particular the incidence relation becomes unnecessary). For example Hamiltonicity
is expressible in MSO2 but not in MSO1.

In addition to the usual features of monadic second-order logic, if we have atomic
sentences testing whether the cardinality of a set is equal to q modulo r, where q and
r are integers such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO2 (resp.
MSO1) is called the counting monadic second-order logicCMSO2 (resp. CMSO1). So
essentially CMSO2 (resp. CMSO1) is MSO2 (resp. MSO1) with the following atomic
sentence for a set S:

cardq,r (S) = true if and only if |S| ≡ q (mod r).

We refer to [1,9] and the book of Courcelle and Engelfriet [10] for a detailed
introduction on different types of logic.
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