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We give the first linear kernels for the Dominating Set and Connected Dominating Set problems on

graphs excluding a fixed graphH as a topological minor. In other words, we prove the existence of polynomial

time algorithms that, for a given H -topological-minor-free graph G and a positive integer k , output an H -

topological-minor-free graph G ′ on O (k ) vertices such that G has a (connected) dominating set of size k if

and only if G ′ has one.

Our results extend the known classes of graphs on which the Dominating Set and Connected Domi-

nating Set problems admit linear kernels. Prior to our work, it was known that these problems admit linear

kernels on graphs excluding a fixed apex graph H as a minor. Moreover, for Dominating Set, a kernel of size

kc (H ) , where c (H ) is a constant depending on the size of H , follows from a more general result on the kernel-

ization of Dominating Set on graphs of bounded degeneracy. Alon and Gutner explicitly asked whether one

can obtain a linear kernel for Dominating Set onH -minor-free graphs. We answer this question in the affir-

mative and in fact prove a more general result. For Connected Dominating Set no polynomial kernel even

on H -minor-free graphs was known prior to our work. On the negative side, it is known that Connected

Dominating Set on 2-degenerated graphs does not admit a polynomial kernel unless coNP ⊆ NP/poly.

Our kernelization algorithm is based on a non-trivial combination of the following ingredients

• The structural theorem of Grohe and Marx [STOC 2012] for graphs excluding a fixed graph H as a

topological minor;

• A novel notion of protrusions, different than the one defined in [FOCS 2009];

• Our results are based on a generic reduction rule that produces an equivalent instance (in case the

input graph is H -minor-free) of the problem, with treewidth O (
√
k ). The application of this rule in a

divide-and-conquer fashion, together with the new notion of protrusions, gives us the linear kernels.

A protrusion in a graph [FOCS 2009] is a subgraph of constant treewidth which is separated from the rest of

the graph by at most a constant number of vertices. In our variant of protrusions, instead of stipulating that

the subgraph be of constant treewidth, we ask that it contains a constant number of vertices from a solution.
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We believe that this new take on protrusions would be useful for other graph problems and in different

algorithmic settings.
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1 INTRODUCTION

Kernelization is a well-established subarea of parameterized complexity. A parameterized problem
is said to admit a polynomial kernel if there is a polynomial time algorithm (the degree of polyno-
mial being independent of the parameter k), called a kernelization algorithm, that reduces the input
instance down to an instance with size bounded by a polynomialp (k ) ink , while preserving the an-
swer. This reduced instance is called a p (k ) kernel for the problem. If the size of the kernel is O (k ),
then we call it a linear kernel (for a more formal definition, see Section 2). Kernelization has turned
out to be an interesting computational approach both from practical and theoretical perspectives.
There are many real-world applications where even very simple preprocessing can be surprisingly
effective, leading to significant reductions in the size of the input. Kernelization is a natural tool not
only for measuring the quality of preprocessing rules proposed for specific problems but also for
designing new powerful preprocessing algorithms. From the theoretical perspective, kernelization
provides a deep insight into the hierarchy of parameterized problems in FPT, the most interesting
class of parameterized problems. There are also interesting links between lower bounds on the
sizes of kernels and classical computational complexity [11, 19, 30].

The Dominating Set (DS) problem together with its numerous variants, is one of the most
classical and well-studied problems in algorithms and combinatorics [49]. In the Dominating Set
(DS) problem, we are given a graph G and a non-negative integer k , and the question is whether
G contains a set of k vertices whose closed neighborhood contains all the vertices of G. The con-
nected variant of the problem, Connected Dominating Set (CDS) asks, given a graph G and a
non-negative integer k , whether G contains a dominating set D of at most k vertices such that
for every connected componentC ofG, we have thatG[V (C ) ∩ D] is connected. This definition of
CDS differs slightly from the established one where one just demands that the subgraph induced
by the dominating set be connected. Our definition generalizes the established one to include dis-
connected graphs. A considerable part of the algorithmic study of these NP-complete problems has
been focused on the design of parameterized and kernelization algorithms. In general, DS is W[2]-
complete and therefore it cannot be solved by a parameterized algorithm, unless an unexpected
collapse occurs in the Parameterized Complexity hierarchy (see References [27, 36, 55]) and thus
also does not admit a kernel. However, there are interesting graph classes where fixed-parameter
tractable (FPT) algorithms exist for the DS problem. The project of widening the families of graph
classes, on which such algorithms exist, inspired a multitude of ideas that made DS the test bed for
some of the most cutting-edge techniques of parameterized algorithm design. For example, the ini-
tial study of parameterized subexponential algorithms for DS on planar graphs [2, 20, 44] resulted
in the creation of bidimensionality theory characterizing a broad range of graph problems that
admit efficient approximation schemes, fixed-parameter algorithms, or kernels on a broad range
of graphs [21, 23, 26, 39–41].
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Fig. 1. Kernels for DS and CDS on classes of sparse graphs. Arrows represent inclusions of classes. In the

diagram, [J.ACM 04] refers to Albers et al. [3], [FOCS 09] to the Bodlaender et al. [12], [SODA 10] and [SODA

12] to the Fomin et al. [41, 42], [ESA 09] to the Philip et al. [56], and [WG 10] to the Cygan et al. [17].

One of the first results on linear kernels is the celebrated work of Alber et al. on DS on planar
graphs [3]. This work augmented significantly the interest in proving polynomial (or preferably
linear) kernels for other parameterized problems. The result of Alber et al. [3], see also Refer-
ence [15], has been extended to much more general graph classes like graphs of bounded genus
[12] and apex-minor-free graphs [41]. An important step in this direction was made by Alon and
Gutner [4, 48], who obtained a kernel of size O (kh ) for DS on H -minor-free and H -topological-
minor-free graphs, where the constant h depends on the excluded graph H . Later, Philip et al. [56]
obtained a kernel of sizeO (kh ) onKi, j -free andd-degenerate graphs, whereh depends on i, j, andd
respectively. In particular, for d-degenerate graphs, a subclass of Ki, j -free graphs, the algorithm of

Philip et al. [56] produces a kernel of sizeO (kd2
). Similarly, the sizes of the kernels in References [4,

48, 56] are bounded by polynomials in k with degrees depending on the size of the excluded minor
H . Alon and Gutner [4] mentioned as a challenging question whether one can characterize the
families of graphs for which the dominating set problem admits a linear kernel, that is, a kernel of
size f (h) · k , where the function f depends exclusively on the graph family. In this direction, there
are already results for more restricted graph classes. According to the meta-algorithmic results on
kernels introduced in Reference [12], DS has a kernel of size f (д) · k on graphs of genus д. An
alternative meta-algorithmic framework, based on bidimensionality theory [21], was introduced
in Reference [41], implying the existence of a kernel of size f (H ) · k for DS on graphs exclud-
ing an apex1 graph H as a minor. While apex-minor-free graphs form much more general class of
graphs than graphs of bounded genus,H -minor-free graphs andH -topological-minor-free graphs
form much larger classes than apex-minor-free graphs. For example, the class of graphs excluding
H = K6, the complete graph on six vertices, as a minor, contains all apex graphs. Alon and Gutner
[4] and Gutner [48] posed as an open problem whether one can obtain a linear kernel for DS on
H -minor-free graphs. Prior to our work, the only result on linear kernels for DS on graphs ex-
cluding a fixed graphH as a topological minor was the result of Alon and Gutner [4] for the special
case where H = K3,h . See Figure 1 for the relationship between these classes.

It is tempting to conjecture that similar improvements on kernel sizes are possible for more
general graph classes like d-degenerate graphs. For example, for graphs of bounded vertex degree,

1An apex graph is a graph that can be made planar by the removal of a single vertex.
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a subclass of d-degenerate graphs, DS has a trivial linear kernel. Unfortunately, for d-degenerate
graphs the existence of a linear kernel, or even a polynomial kernel with the exponent of the
polynomial being independent of d , is very unlikely. By the recent work of Cygan et al. [16], the
kernelization algorithm of Philip et al. [56] is essentially tight—the existence of a kernel of size

O (k (d−3)(d−1)−ε ) ) for DS on d-degenerate graphs would imply that coNP is contained in NP/poly.
In this work, we show how to generalize the linearity of kernelization for DS from bounded-

degree graphs and apex minor free graphs to the class of graphs excluding a fixed graph H as
a topological minor. Moreover, a modification of the ideas for DS kernelization can be used to
obtain a linear kernel for CDS, which is usually a much more difficult problem to handle due to
the connectivity constraint. For example, CDS does not have a polynomial kernel on 2-degenerate
graphs unless coNP is in NP/poly [17]. We must emphasize that our linear kernels are existential.
That is, we just show the mere existence of polynomial time algorithms computing linear kernels.

The class of graphs excluding a fixed graph H as a topological minor is a wide class of graphs
containing H -minor-free graphs and graphs of constant vertex degrees. The existence of a linear
kernel for DS on this class of graphs significantly extends and improves previous works [4, 42,
48]. The extension of the results for planar graphs from Reference [3] and apex-minor-free graphs
from Reference [41] to the more general family ofH -minor-free graphs requires several new ideas.
Similar difficulties in generlizing algorithmic techniques from apex-minor free to H -minor-free
graphs were observed in approximation [24] and parameterized algorithms [21, 28]. The basic idea
behind kernelization algorithms on apex-minor-free graphs is the bidimensionality of DS. Roughly
speaking, the treewidth of these graphs with dominating set of size k is o(k ). In other words,
excluding an apex graph makes it possible to bound the tree-decomposability of the input graph
by a sublinear function of the size of a dominating set, which is not the case for more general classes
of H -minor-free graphs or a family of graphs excluding a fixed graph H as a topological minor.

A main ingredient of our kernelization algorithms are new reduction rules that allow us to ob-
tain the desired kernels on H -minor-free graphs. This is an important step for our kernel on the
class of graphs excluding a fixed graph H as a topological minor. The main idea behind our algo-
rithm is to identify and remove “irrelevant” vertices without changing the solution such that in the
reduced graph one can select O (k ) vertices whose removal leaves protrusions, that is, subgraphs of
constant treewidth separated from the remaining vertices by a constant number of vertices. If we
are able to obtain such a graph, then we can use the techniques from Reference [41] to construct
the linear kernel. Roughly speaking, our rule to identify “irrelevant” vertices works as follows: We
try specific vertex subsets of constant size, and, for each subset, we try all “feasible” scenarios for
how dominating sets can interact with the subset and find neighbours of theses subsets whose
removal does not change the outcome of any feasible scenario. The main difference of this new
reduction rule in comparison to other rules for DS [3, 15] is that instead of reducing the size of

the graph to O (k ), it reduces the treewidth of the graph to O (
√
k ). Thus ideawise, it is closer to

the “irrelevant vertex” approach developed by Robertson and Seymour for disjoint paths and mi-
nor checking problems [57]. However, the significant difference with this technique is that in all
applications of “irrelevant vertex” the bounds on the treewidth are exponential or even worse [51,
52, 54]. Moreover, Adler et al. [1] provide instances of the disjoint paths problem on planar graphs,
for which the irrelevant vertex approach of Robertson and Seymour produces graphs of treewidth

2Ω(k ) . Our rule provides a reduced graph with sublinear treewidth for DS.
The proof that after deletion of all irrelevant vertices the treewidth of the graph becomes sublin-

ear is non-trivial. For this proof, we need the theorem of Robertson and Seymour [58] on decom-
posing a graph into a set of torsos connected via clique-sums. By making use of this theorem, we
show that, by applying the rule for all subsets of apex vertices of each torso, it is possible to reduce

the treewidth of each torso to O (
√
k ). This implies that the treewidth of the reduced graph is also
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O (
√
k ). However, the number of torsos can be Ω(n) and the sublinear treewidth of the reduced

graph still does not bring us directly to the kernel. To overcome this obstacle, we have to imple-
ment the irrelevant vertex rule in a divide-and-conquer manner, and only after doing this can we
guarantee that the reduced graph admits a linear kernel. The idea of using divide and conquer in
kernelization is our first conceptual contribution.

The second main step of our kernelization algorithm for DS, on the class of graphs excluding a
fixed graph H as a topological minor, is to design reduction rules for graphs of bounded degree.
The ideas introduced for H -minor-free graphs can hardly work on graphs of bounded degree and
hence on graphs excluding a fixed graphH as a topological minor. The reason is that the boundo(k )
on the treewidth of such graphs would imply that DS is solvable in subexponential time on graphs
of bounded degree, which in turn can be shown to contradict the Exponential Time Hypothesis
[50]. This is why the kernelization techniques developed for H -minor-free graphs do not seem to
be applicable directly in our case.

High Level Overview of the Main Ideas. Our kernelization algorithm has two main phases. In the
first phase, we partition the input graph G into subgraphs C0,C1, . . . ,C� , such that |C0 | = O (k );
for every i ≥ 1, the neighbourhood N (Ci ) ⊆ C0, and

∑
1≤i≤� |N (Ci ) | = O (k ). In the second phase,

we replace these graphs by smaller equivalent graphs. Towards this, we treat graphs N [Ci ] = Ci ∪
N (Ci ), i ≥ 1, as t-boundaried graphs with boundary N (Ci ). Our second conceptual contribution
is a polynomial time algorithmic procedure for replacing a t-boundaried graph by an equivalent
graph of size O ( |N (Ci ) |). Observe that as a result of such replacements, the size of the new graph
is ∑

1≤i≤�
|O (N (Ci )) | + |C0 | = O (k ),

and thus we obtain a linear kernel. Kernelization techniques based on replacing a t-boundaried
graph by an equivalent instance or, more specifically, protrusion replacement were used before in
References [12, 38, 41, 53]. At this point, it is also important to mention earlier works [7, 13, 14, 18,
35] on protrusion replacement in the algorithmic setting on graphs of bounded treewidth. The sub-
stantial differences with our replacement procedure and the ones used before in the kernelization
setting are the following:

• In the protrusion replacement procedure, it is assumed that the size of the boundary t and
the treewidth of the replaced graph are constants. In our case, neither the treewidth nor the
boundary size are bounded. In particular, the boundary size could be a linear function of k .

• In earlier protrusion replacements, the size of the equivalent replacing graph is bounded by
some (non-elementary) function of t . In our case, this is a linear function of t .

Our new replacement procedure strongly exploits the fact that graphs Ci possess a set of desired
properties allowing us to apply the irrelevant vertex technique explained earlier. However, not
every graph G excluding some fixed graph as a topological minor can be partitioned into graphs
with the desired properties. We show that, in this case, there is another polynomial time proce-
dure transforming G into an equivalent graph, which in turn can be partitioned. The procedure
is based on a generalized notion of protrusion, which is the third conceptual contribution of this
article. In the new notion of protrusion, we relax the requirement that protrusions are of bounded
treewidth by the condition that they have a bounded size dominating set. Let us note that a similar
notion of a generalized protrusion, bounded by the size of a certificate, can be used for a variety of
graph problems. We show that either a graph does not have the desired partition or it contains a
sufficiently large generalized protrusion, which can be replaced by a smaller equivalent subgraph.
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The construction of the partitioning is heavily based on the recent work of Grohe and Marx on
the structure of such graphs [47].

As a by-product of our results, we obtain the first subexponential time algorithms for Con-
nected Dominating Set, a deterministic algorithm solving the problem on an n-vertex H -minor-

free graph in time 2O (
√

k ) + nO (1) . For Dominating Set, our results imply a significant simplifi-

cation and refinement of a 2O (
√

k )nO (1) algorithm on H -minor-free graphs due to Demaine et al.
[21]. Also our kernels can be used to obtain, subexponential, polynomial-space parameterized al-
gorithms for these problems.

Organization of the Article. The remaining part of this article is organized as follows. In Section 2,
we provide definitions and state known results used in the article. In Section 3, we introduce the
new notion of “generalized protrusions” and build a theory of replacements for such protrusions.
We provide a decomposition lemma in Section 4, which will be used for kernelization algorithms.
In Sections 5 and 6, we give the two main results of the article, linear kernels for DS and CDS on
the class of graphs excluding a fixed graph H as a topological minor. In Section 7, we conclude
with questions for further research and give a short overview of some of the developments that
have happened since the conference versions of this article were published, including work on
kernelization of DS and CDS on graphs of bounded expansion and on nowhere-dense graphs.

2 PRELIMINARIES

In this section, we give various definitions which we make use of in the article. We refer to Diestel’s
book [25] for standard definitions from Graph Theory. Let G be a graph with vertex set V (G ) and
edge set E (G ). A graph G ′ is a subgraph of G if V (G ′) ⊆ V (G ) and E (G ′) ⊆ E (G ). For a subset
V ′ ⊆ V (G ), the subgraph G ′ = G[V ′] of G is called the subgraph induced by V ′ if E (G ′) = {uv ∈
E (G ) | u,v ∈ V ′}. By NG (u), we denote the (open) neighborhood of u in graph G, that is, the set
of all vertices adjacent to u and by NG [u] = NG (u) ∪ {u}. Similarly, for a subset D ⊆ V , we define
NG [D] = ∪v ∈DNG [v] and NG (D) = NG [D] \ D. Given a set S ⊆ V (G ), we define ∂G (S ) as the set
of vertices in S that have a neighbor inV (G ) \ S . We omit the subscripts when they are clear from
the context. A subset of vertices D is called a dominating set of G if N [D] = V (G ). A subset of
vertices D is called a connected dominating set if it is a dominating set and for every connected
component C of G we have that G[D ∩C] is connected. Throughout the article, given a graph G
and vertex subsets Z and S , whenever we say that a subset Zdominates all but (everything but)
S , then we mean that V (G ) \ S ⊆ N [Z ]. Observe that a vertex of S can also be dominated by the
set Z .

We denote byKh the complete graph onh vertices. Also for a given graphG and a vertex subset S ,
by K[S] we mean a clique on the vertex set S . For an integer r ≥ 1 and vertex subsets P ,Q ⊆ V (G ),
we say that a subset Q is r -dominated by P if for every v ∈ Q there is u ∈ P such that the distance
between u and v is at most r . For r = 1, we simply say that Q is dominated by P . We denote by
N r

G
(P ) the set of vertices r -dominated by P .

Throughout this article, we use Z, Z+, and Z− for the sets of integers, non-negative, and non-
positive integers, respectively. Finally, we use N for the set of positive integers.

Minors and Contractions. Given an edge e = xy of a graph G, the graph G/e is obtained from G
by contracting the edge e , that is, the endpoints x and y are replaced by a new vertex vxy that is
adjacent to the old neighbors of x and y (except from x and y). A graph H obtained by a sequence
of edge-contractions is said to be a contraction ofG. We denote it by H ≤c G. A graph H is a minor
of a graph G if H is the contraction of some subgraph of G, and we denote it by H ≤m G. We say
that a graph G is H -minor-free when it does not contain H as a minor. We also say that a graph
class GH is H -minor-free (or excludes H as a minor) when all its members are H -minor-free. An
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apex graph is a graph obtained from a planar graphG by adding a vertex and making it adjacent to
some of the vertices of G. A graph class GH is apex-minor-free if GH excludes a fixed apex graph
H as a minor.

A subdivision of a graph H is obtained by replacing each edge of H by a non-trivial path. We say
that H is a topological minor of G if some subgraph of G is isomorphic to a subdivision of H and
denote it byH 
T G. A graphG excludes a graphH as a (topological) minor ifH is not a (topological)
minor of G. For a graph H , by CH , we denote all graphs that exclude H as topological minors.

Tree-Decompositions. A tree-decomposition of a graphG is a pair (M,Ψ), where M is a rooted tree

and Ψ : V (M ) → 2V (G ) , such that

(1)
⋃

t ∈V (M ) Ψ(t ) = V (G ).
(2) For each edge uv ∈ E (G ), there is a t ∈ V (M ) such that both u and v belong to Ψ(t ).
(3) For each v ∈ V (G ), the nodes in the set {t ∈ V (M ) | v ∈ Ψ(t )} form a subtree of M .

If M is a path, then we call the pair (M,Ψ) as path-decomposition.
The following notations are the same as that in Reference [47]. Given a tree-decomposition of a

graph G, we define mappings σ ,γ : V (M ) → 2V (G ) and κ : E (M ) → 2V (G ) . For all t ∈ V (M ),

σ (t ) =

{
∅ if t is the root of M
Ψ(t ) ∩ Ψ(s ) if s is the parent of t in M

γ (t ) =
⋃

u is a descendant of t

Ψ(u).

For all e = uv ∈ E (M ), κ (e ) = Ψ(u) ∩ Ψ(v ).
For a subgraph M ′ of M by Ψ(M ′) we denote ∪t ∈V (M ′)Ψ(t ).

Let (M,Ψ) be a tree-decomposition of a graph G. The width of (M,Ψ) is

min{|Ψ(t ) | − 1 | t ∈ V (M )},

and the adhesion of the tree-decomposition is

max{|σ (t ) | | t ∈ V (M )}.

We use tw(G ) to denote the treewidth of the input graph. For every node t ∈ V (M ), the torso at t
is the graph

τ (t ) := G[Ψ(t )] ∪ E (K[σ (t )]) ∪
⋃

u child of t
E (K[σ (u)]).

We take the graph induced by Ψ(t ), turn σ (t ) into a clique, and make vertices x ,y adjacent if
they appear together in the separator of some child u of t .

Parameterized Graph Problems. A parameterized graph problem Π is usually defined as a subset
of Σ∗ × Z+ where, in each instance (x ,k ) of Π, x encodes a graph and k is the parameter (we
denote by Z+ the set of all non-negative integers). In this article, we use an extension of this
definition (also used by Bodlaender et al. [12]) that permits the parameter k to be negative with
the additional constraint that either all pairs with non-positive values of the parameter are in Π
or that no such pair is in Π. Formally, a parametrized problem Π is a subset of Σ∗ × Z where for
all (x1,k1), (x2,k2) ∈ Σ∗ × Z with k1,k2 < 0 it holds that (x1,k1) ∈ Π if and only if (x2,k2) ∈ Π.
This extended definition encompasses the traditional one and is needed for technical reasons (see
Section 3.2). In an instance of a parameterized problem (x ,k ), the integer k is called the parameter.
Now we formally define the DS and CDS problems.
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6:8 F. V. Fomin et al.

DS Parameter: k
Input: An undirected graph G and a positive integer k .
Question: Does there exists D ⊆ V (G ) of size at most k such that N [D] = V (G )?

CDS Parameter: k
Input: An undirected graph G and a positive integer k .
Question: Does there exists D ⊆ V (G ) of size at most k such that N [D] = V (G ) and G[D] is
connected?

Kernels and Protrusions. A central notion in parameterized complexity is fixed parameter tractab-
ility, which means, for a given instance (x ,k ), solvability in time f (k ) · p ( |x |), where f is an arbi-
trary function of k and p is a polynomial function in the input size. The notion of kernelization is
formally defined as follows.

Definition 2.1. A kernelization algorithm, or simply a kernel, for a parameterized problem Π is an
algorithm A that, given an instance (x ,k ) of Π, works in polynomial-time and returns an equiv-
alent instance (x ′,k ′) of Π. Moreover, there exists a computable function д(·) such that whenever
(x ′,k ′) is the output for an instance (x ,k ), then it holds that |x ′ | + k ′ ≤ д(k ). If the upper bound
д(·) is a polynomial (linear) function of the parameter, then we say that Π admits a polynomial
(linear) kernel.

We often abuse the notation and call the output of a kernelization algorithm, the “reduced”
equivalent instance, also a kernel.

Definition 2.2. Given a graphG, we say that a setX ⊆ V (G ) is an r -protrusion ofG if tw(G[X ]) ≤
r and the number of vertices in X with a neighbor in V (G ) \ X is at most r .

2.1 Known Decomposition Theorems

We start with the definition of nearly embeddable graphs.

Definition 2.3 (h-nearly embeddable graphs). Let Σ be a surface with boundary cyclesC1, . . . ,Ch ,
that is, each cycle Ci is the border of a disc in Σ. A graph G is h-nearly embeddable in Σ if G
has a subset X of size at most h, called apices, such that there are (possibly empty) subgraphs
G0 = (V0,E0), . . . ,Gh = (Vh ,Eh ) of G \ X such that

• G \ X = G0 ∪ · · · ∪Gh ,
• G0 is embeddable in Σ, we fix an embedding of G0,
• graphs G1, . . . ,Gh (called vortices) are pairwise disjoint,
• for 1 ≤ i ≤ h, letUi := {ui1 , . . . ,uimi

} = V0 ∩Vi ,Gi has a path decomposition (Bi j ,Ψi j ), 1 ≤
j ≤ mi , of width at most h such that
—for 1 ≤ i ≤ h and for 1 ≤ j ≤ mi we have ui j

∈ Bi j

—for 1 ≤ i ≤ h, we have V0 ∩Ci = {ui1 , . . . ,uimi
} and the points ui1 , . . . ,uimi

appear on Ci

in this order (either if we walk clockwise or anti-clockwise).

The decomposition theorem that we use extensively for our proofs is given in the next theorem.

Theorem 2.4 (References [32, 47, 58]). For every graph H , there exists a constant h, depending
only on the size of H , such that every graph G with H �T G, there is a tree-decomposition (M,Ψ)
of adhesion at most h such that for all t ∈ V (M ), one of the following conditions is satisfied:

(1) τ (t ) is h-nearly embedded in a surface Σ in which H cannot be embedded.
(2) τ (t ) has at most h vertices of degree larger than h.
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Moreover, if G is an H -minor-free then nodes of second type do not exist. Furthermore, there is
an algorithm that, given graphs G, H on n and |V (H ) | vertices, respectively, computes such a tree-

decomposition in time f ( |V (H ) |)nO (1) for some computable function f and, moreover, computes an
apex set Zt of size at most h for every bag of the first type.

One of the main consequence of Theorem 2.4 we need for our purposes is that (in the case when
G is H -minor-free) for every H there exist constants h and h′ such that for every torso L of the
decomposition from Theorem 2.4, there exists a set of vertices A ⊆ V (L) of size at most h, called
apices, such that the graph obtained from L after deleting the apices does not contain some apex
graph H ′ of size h′ as a minor. See, for example, Reference [46, Theorem 13].

Furthermore we can assume that in (M,Ψ), for any x ,y ∈ V (M ), Ψ(x ) � Ψ(y). That is, no bag
is contained in other. See Reference [36, Lemma 11.9] for the proof.

2.2 Known Approximation Algorithms

Recall that by CH we denote the class of graphs that exclude a fixed graphH as a topological minor.
In this subsection, we state known polynomial-time constant factor approximation algorithms for
DS and CDS on CH . It is well known that graphs in CH has bounded degeneracy. The following
is known about the approximation of DS.

Lemma 2.5 (Reference [33]). Let H be a graph. Then there exists a constant η(H ) depending only
on |V (H ) | such that Dominating Set admits a η(H )-factor approximation algorithm on CH .

For CDS we need the following proposition attributed to Reference [31].

Proposition 2.6. Let G be a connected graph and let Q be a dominating set of G such that G[Q]
has at most ρ connected components. Then there exists a set Z ⊆ V (G ) of size at most 2 · (ρ − 1) such
that Q ∪ Z is a connected dominating set in G and, given Q , we can find such a set Z in polynomial
time.

Combining Lemma 2.5 and Proposition 2.6 we arrive at the following:

Lemma 2.7. Let H be a graph and η(H ) the constant from Lemma 2.5. Then CDS admits a 3η(H )-
factor approximation algorithm on CH .

3 A NEW ALGORITHM FOR PROTRUSION REPLACEMENT

In the next section, we introduce the notion of a “generalized protrusion.” Recall that a protrusion
in a graph is a subgraph of constant treewidth that is separated from the rest of the graph by at
most a constant number of vertices. In our variant of protrusions, instead of stipulating that the
subgraph be of constant treewidth, we ask that it contains a constant number of vertices from a
solution. In this section, we show that even if we have a generalized protrusion, then we can find
a replacement for it efficiently. We first start with some relevant definitions and concepts.

3.1 Boundaried Graphs

Here we define the notion of boundaried graphs and various operations on them.

Definition 3.1. (Boundaried Graphs). A boundaried graph is a graph G with a set B ⊆ V (G ) of
distinguished vertices and an injective labelling λ from B to the set Z+. The set B is called the
boundary of G, and the vertices in B are called boundary vertices or terminals. Given a boundaried
graph G, we denote its boundary by δ (G ), we denote its labelling by λG , and we define its label
set by Λ(G ) = {λG (v ) | v ∈ δ (G )}. Given a finite set I ⊆ Z+, we define FI to denote the class of all
boundaried graphs whose label set is I . We also denote by F the class of all boundaried graphs.
Finally, we say that a boundaried graph is a t-boundaried graph if Λ(G ) ⊆ {1, . . . , t }.
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Definition 3.2. (Gluing by ⊕). Let G1 and G2 be two boundaried graphs. We denote by G1 ⊕ G2

the graph (not boundaried) obtained by taking the disjoint union of G1 and G2 and identifying
equally-labeled vertices of the boundaries of G1 and G2. In G1 ⊕ G2, there is an edge between two
vertices if there is an edge between them in G1 or in G2 or both.

We remark that if G1 has a label that is not present in G2, or vice versa, then in G1 ⊕ G2 we just
forget that label.

Definition 3.3. (Gluing by ⊕δ ). The boundaried gluing operation ⊕δ is similar to the normal gluing
operation but results in a boundaried graph rather than a graph. Specifically, G1 ⊕δ G2 results in
a boundaried graph where the graph is G = G1 ⊕ G2 and a vertex is in the boundary of G if it was
in the boundary of G1 or of G2. Vertices in the boundary of G keep their label from G1 or G2.

Let G be a class of (not boundaried) graphs. By slightly abusing notation, we say that a bound-
aried graph belongs to a graph class G if the underlying graph belongs to G.

Definition 3.4. (Replacement). Let G be a t-boundaried graph containing a set X ⊆ V (G ) such
that ∂G (X ) = δ (G ). LetG1 be a t-boundaried graph. The result of replacing X withG1 is the graph
G� ⊕ G1, where G� = G \ (X \ ∂(X )) is treated as a t-boundaried graph with δ (G�) = δ (G ).

3.2 Finite Integer Index

Definition 3.5. (Canonical equivalence on boundaried graphs). Let Π be a parameterized graph prob-
lem whose instances are pairs of the form (G,k ). Given two boundaried graphs G1,G2 ∈ F , we
say that G1≡ΠG2 if Λ(G1) = Λ(G2) and there exists a transposition constantc ∈ Z such that

∀(F ,k ) ∈ F × Z (G1 ⊕ F ,k ) ∈ Π ⇔ (G2 ⊕ F ,k + c ) ∈ Π.

Here, c is a function of the two graphs G1 and G2.

Note that the relation ≡Π is an equivalence relation. Observe that c could be negative in the
preceding definition. This is the reason we allow the parameter in parameterized problem instances
to take negative values.

Next, we define a notion of “transposition-minimality” for the members of each equivalence
class of ≡Π .

Definition 3.6. (Progressive representatives). Let Π be a parameterized graph problem whose in-
stances are pairs of the form (G,k ), and let C be some equivalence class of ≡Π . We say that J ∈ C
is a progressive representative of C if for every H ∈ C there exists c ∈ Z−, such that

∀(F ,k ) ∈ F × Z (H ⊕ F ,k ) ∈ Π ⇔ (J ⊕ F ,k + c ) ∈ Π. (1)

The following lemma guarantees the existence of a progressive representative for each equiva-
lence class of ≡Π .

Lemma 3.7 ([12]). Let Π be a parameterized graph problem whose instances are pairs of the form
(G,k ). Then each equivalence class of ≡Π has a progressive representative.

Notice that two boundaried graphs with different label sets belong to different equivalence
classes of ≡Π . Hence, for every equivalence class C of ≡Π , there exists some finite set I ⊆ Z+
such that C ⊆ FI . We are now in position to give the following definition:

Definition 3.8. (Finite Integer Index). A parameterized graph problem Π whose instances are pairs
of the form (G,k ) has Finite Integer Index (or is FII) if and only if, for every finite I ⊆ Z+, the number
of equivalence classes of ≡Π that are subsets of FI is finite. For each I ⊆ Z+, we define SI to be
a set containing exactly one progressive representative of each equivalence class of ≡Π that is a
subset of FI . We also define S⊆I =

⋃
I ′ ⊆I SI ′ .
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3.3 Replacement Lemma

We first define a notion of monotonicity for parameterized problems.

Definition 3.9. We say that a parameterized graph problem Π is positive monotone if, for every
graph G, there exists a unique � ∈ N such that for all �′ ∈ N and �′ ≥ �, (G, �′) ∈ Π and for all
�′ ∈ N and �′ < �, (G, �′) � Π. A parameterized graph problem Π is negative monotone if for every
graphG there exists a unique � ∈ N such that for all �′ ∈ N and �′ ≥ �, (G, �′) � Π and for all �′ ∈ N
and �′ < �, (G, �′) ∈ Π. Π is monotone if it is either positive monotone or negative monotone. We
denote the integer � by Threshold(G,Π) (in short Thr(G,Π)).

We first give an intuition for the next definition. We are considering monotone functions and
thus for every graph G there is an integer k where the answer flips. However, for our purpose,
we need a corresponding notion for boundaried graphs. If we think of the representatives as some
“small perturbation,” then it is the max threshold over all small perturbations (“adding a represen-
tative = small perturbation”). This leads to the following definition:

Definition 3.10. Let Π be a monotone parameterized graph problem that has FII. Let St be a set
containing exactly one progressive representative of each equivalence class of ≡Π that is a subset
of FI , where I = {1, . . . , t }. For a t-boundaried graph G, we define

ι (G ) = max
G′ ∈St

Thr(G ⊕ G ′,Π).

The next lemma says the following: Suppose we are dealing with some FII problem and we are
given a boundaried graph with constant size boundary. We know it has some constant size repre-
sentative, and we want to find this representative. Now, in general, finding a representative for a
boundaried graph is more difficult than solving the corresponding problem. The next lemma says
basically that if “OPT” of a boundaried graph is low, then we can efficiently find its representative.
Here by “OPT” we mean ι (G ), which is a robust version of the threshold function (under adding
a representative), and by “efficiently,” we mean as efficiently as solving the problem on normal
(unboundaried) graphs if we know that “OPT” is low. Specifically, the main result of this section
is as follows:

Lemma 3.11. Let Π be a monotone parameterized graph problem that has FII. Furthermore, letA be
an algorithm for Π that, given a pair (G,k ), decides whether it is in Π in time f ( |V (G ) |,k ). Then for
every t ∈ N, there exists a ξt ∈ Z+ (depending on Π and t ) and an algorithm that, given a t-boundaried
graph G with |V (G ) | > ξt , outputs, in O (ι (G ) ( f ( |V (G ) | + ξt , ι (G ))) steps, a t-boundaried graph G∗

such that G ≡Π G∗ and |V (G∗) | < ξt . Moreover, we can compute the translation constant c from G to
G∗ in the same time.

Proof. We give prove the claim for positive monotone problems Π; the proof for negative
monotone problems is identical. Let St be a set containing exactly one progressive represen-
tative of each equivalence class of ≡Π that is a subset of FI , where I = {1, . . . , t }, and let ξt =

maxY ∈St
|V (Y ) |. The set St is hardwired in the description of the algorithm. Let Y1, . . . ,Yρ be the

set of progressive representatives in St . Let Ft = FI . Our objective is to find a representative Y�
for G such that

∀(F ,k ) ∈ Ft × Z (G ⊕ F ,k ) ∈ Π ⇔ (Y� ⊕ F ,k − ϑ (X ,Y� )) ∈ Π. (2)

Here, ϑ (X ,Y� ) is a constant that depends onG andY� . Towards this we define the following matrix
for the set of representatives. Let

A[Yi ,Yj ] = Thr(Yi ⊕ Yj ,Π).

The matrix A has constant size and is also hardwired in the description of the algorithm.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 6. Publication date: January 2018.



6:12 F. V. Fomin et al.

Now, given G, we find its representative as follows:

• Compute the following row vectorX = [Thr(G ⊕ Y1,Π), . . . ,Thr(G ⊕ Yρ ,Π))]. For eachYi ,
we decide whether (G ⊕ Yi ,k ) ∈ Π using the assumed algorithm for deciding Π, letting k
increase from 1 until the first time (G ⊕ Yi ,k ) ∈ Π. Since Π is positive monotone, this will
happen for somek ≤ ι (G ). Thus the total time to compute the vectorX isO (ι (G ) ( f ( |V (G ) | +
ξt , ι (G ))).

• Find a translate row in the matrix A(Π). That is, find an integer no and a representative Y�
such that

[Thr(G ⊕ Y1,Π),Thr(G ⊕ Y2,Π), . . . ,Thr(G ⊕ Yρ ,Π)]

= [Thr(Y� ⊕ Y1,Π) + n0,Thr(Y� ⊕ Y2,Π) + n0, . . . ,Thr(Y� ⊕ Yρ ,Π) + n0].

Such a row must exist, since St is a set of representatives for Π; the representative Y� for
the equivalence class to which G belongs satisfies the condition.

• Set Y� to be G∗ and the translation constant to be −n0.

From here, it easily follows that G ≡Π G∗. This completes the proof. �

We remark that the algorithm whose existence is guaranteed by the Lemma 3.11 assumes that
the set St of representatives are hardwired in the algorithm. In its full generality, we currently
do not know of a procedure that, for problems having FII, outputs such a representative set. The
application of Lemma 3.11 makes our kernelization algorithm non-constructive.

4 GENERALIZED PROTRUSIONS AND SLICE-DECOMPOSITION

In this section, our objective is to show that in polynomial time we can partition the graph G into
parts that satisfy certain properties. To obtain our decomposition, we need to use a more general
notion of protrusion. Recall that a protrusion in a graph is a subgraph of constant treewidth that
is separated from the rest of the graph by at most a constant number of vertices. In our variant
of protrusions, instead of stipulating that the subgraph be of constant treewidth, we ask that it
contains a constant number of vertices from a solution. More precisely, we need the following kind
of protrusions:

Definition 4.1 (r -DS-protrusion). Given a graph G, we say that a set X ⊆ V (G ) is an r -DS-
protrusion of G if the number of vertices in X with a neighbor in V (G ) \ X is at most r and there
exists a subset S ⊆ X of size at most r such that S is a dominating set of G[X ].

The notion of a r -DS-protrusionX differs from a protrusion in the following way. In a protrusion
tw(X ) is at most r , while in a r -DS-protrusion we require that the dominating set of the graph
induced by X is small. In the case of a r -DS-protrusion, the treewidth could be unbounded. One
can similarly define the notion of a r -Π-protrusion for other graph problems Π. Next we define a
r -CDS-protrusion.

Definition 4.2 (r -CDS-protrusion). Given a graph G, we say that a set X ⊆ V (G ) is an r -CDS-
protrusion of G if the number of vertices in X with a neighbor in V (G ) \ X is at most r and there
exists a subset S ⊆ X of size at most r such that for every connected component C of G[X ] we
have that S ∩C is connected and is a dominating set for C .

A natural question is what can we do if we get a large r -DS-protrusion (or r -CDS-protrusion).
The next lemma shows that in that case we can replace it with an equivalent small graph. We will
also need the following. Let G be a graph class. Given a parameterized graph problem Π and a
graph class G, we denote by Π � G the problem obtained by removing from Π all instances that
encode graphs that do not belong to G. Our result is as follows.
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Lemma 4.3. LetH be a fixed graph. For every t ∈ Z+, there exist a ξt ∈ Z+ (depending on DS (CDS),
t andH ) and an algorithmA such that, given a t-DS-protrusionX (t-CDS-protrusion) with boundary

∂(X ), |V (X ) | > ξt , and H �T X , A outputs in O ( |V (X ) |) time (|V (X ) |O (1) ) time), a t-boundaried
graph X ′ such that H �T X ′ (H �≤m X ′) and X ≡DS X

′ (X ≡CDS X
′) and |V (X ′) | ≤ ξt . Moreover, at

the same time, we can also find the translation constant c from X to X ′.

Proof. Let G be the class of graphs that excludes H as a topological minor. For every t ∈ Z+,
let ξt be the constant as defined in Lemma 3.11. It is known that DS�G (CDS�G) is FII\cal [12]
and monotone (see Reference [12, Lemmas 7.3 and 7.4]). Furthermore, DS and CDS can be

solved in time O ((hk )hkn) [5, Theorem 4] and O (kO (h2 )knO (1) ) [45, Theorem 1], respectively.
Here, h = |V (H ) | and k is the parameter in the definitions of DS and CDS. We use these algo-
rithms in Lemma 3.11 with the parameter value being r . That is, k := r . Thus, if |V (X ) | > ξt , then

by Lemma 3.11 in time O ( |V (X ) |) (|V (X ) |O (1)), we can obtain a t-boundaried graph X ′ such that
X ≡DS X

′ (X ≡CDS X
′), |V (X ′) | < ξt , and H �T X ′. The last assertion that H �T X ′ follows from

the fact that DS�G is FII, and thus all the graphs in the set of representatives with respect to ≡DS

belong to G. Moreover, at the same time, we can also find the translation constant c from X to X ′,
as done in Lemma 3.11.

Let G� be the class of graphs that excludes a fixed graph H as a minor. It is known that DS�G�

(CDS�G�) is FII\cal [12] and monotone. Thus, as in the case of G, we can obtain a t-boundaried
graph X ′ such that X ≡DS X

′ (X ≡CDS X
′), |V (X ′) | < ξt , and H �≤m X ′. �

Throughout this section we work on a graphG that excludes a fixed graph H as a topological
minor. Here, h will denote |V (H ) |.
Furthermore, we assume that we have a (connected) dominating set D such that the size of
D is at most η(H )-factor away (3η(H )-factor away) from the size of an optimal (connected)
dominating set of G, obtained by applying Lemma 2.5 (Lemma 2.7) on the input graph G.

Let (M,Ψ) be a tree-decomposition of a graph G. For a subtree Mi of M , we define E (Mi ) as
the set of edges in M such that it has exactly one endpoint in V (Mi ). Furthermore, we define
R+i = Ψ(Mi ) and

τ (Mi ) := G[R+i ] ∪
⋃

e ∈E (Mi )
E (K[κ (e )]).

To put it simply, R+i denotes the union of bags corresponding to the nodes in Mi and τ (Mi ) is the
graph induced on R+i with “external adhesions” being torsoed.

Our main objective in this section is to obtain the following (α , β )-slice decomposition for α =
β = O (k ).

Definition 4.4 ((α , β )-slice decomposition). Let H be a fixed graph and let G be a graph with
H �T G. Let (M,Ψ) be the tree-decomposition given by Theorem 2.4. An (α , β )-slice decomposition
of a graphG is a collection P of pairwise vertex disjoint subtrees {M1, . . . ,Mα } of M such that the
following hold:

• ⋃1≤i≤α Ψ(Mi ) =
⋃

1≤i≤α (
⋃

t ∈V (Mi ) Ψ(t )) = V (G ).
• There exists a graph H ∗ whose size only depends on h, such that each τ (Mi ) is either H ∗-

minor-free or has at most h vertices of degree at least h.
•

α∑
i=1

��
�
∑

e ∈E (Mi )

|κ (e ) |��� ≤ β .

We refer to the sets R+i , i ∈ {1, . . . ,α }, as the slices of P .
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Essentially, the slice decomposition allows us to partition the input graph G into subgraphs
C0,C1, . . . ,C� , such that |C0 | = O (k ); for every i ≥ 1, the neighbourhood N (Ci ) ⊆ C0, and∑

1≤i≤� |N (Ci ) | = O (k ). To see this consider an instance (G,k ) of DS, where G excludes a fixed
graph H as a topological minor. Now obtain an (α , β )-slice decomposition for α = β = O (k ) forG.
We take

C0 =

α⋃
i=1

(
∪e ∈E (Mi )κ (e )

)
,

andCi = Ψ(Mi ) \C0. One can easily verify that this partition ofV (G ) satisfies the stated properties.
This is the decomposition we were talking about in the Introduction.

Now we give a definitions that is useful in our procedure to find the slice decomposition.

Definition 4.5. Let (M,Ψ) be the tree-decomposition of a graph G given by Theorem 2.4. For a
subset Q ⊆ V (G ) and a subtree M ′ of M , we define μ (M ′,Q ) = |Ψ(M ′) ∩Q |.

Let (M,Ψ) be the tree-decomposition of a graph G given by Theorem 2.4. If we delete an edge
e = uv ∈ E (M ) from the tree M , then we get two trees. We call the trees Mu and Mv based on
whether they contain u or v .

Definition 4.6. Let (M,Ψ) be the tree-decomposition of a graph G given by Theorem 2.4 and
D be the assumed dominating (connected) set of G. We call a tree edge e = uv ∈ E (M )heavy if
μ (Mu ,D) ≥ h + 1 and μ (Mv ,D) ≥ h + 1. We use F to denote the set of heavy edges.

Our main lemma in this section shows that in polynomial time we can find an (O (k ),O (k ))-slice
decomposition or a large r -DS-protrusion (or r -CDS-protrusion) or a large protrusion. In the latter
cases, we can apply either Lemma 4.3 or a similar lemma developed in Reference [12, Lemma 7]
for protrusions and reduce the graph. Before we prove the main result of this section, we prove
some combinatorial properties of the set F . Given F , by “a subgraph of M formed by the edges in
F ,” we mean a subgraph of M whose vertex set consists of the end points of edges in F and the
edge set is F .

Lemma 4.7. Let M∗ be the subgraph of M formed by the edges in F . Then M∗ is a subtree of M .

Proof. Clearly, M∗ is a forest, as it is a subgraph of M . To complete the proof, we need to
show that it is connected. We prove this using contradiction. Suppose M∗ is a forest and M∗i
and M∗j , i � j, are two maximal subtrees in M∗. Then we know that there exists a path P in M
such that the first and the last edges are heavy and the path P contains a light edge. Further-
more, we can assume that the first edge, say, uivi , belongs to M∗i and the last edge, say, ujvj ,
belongs to M∗j . Let a light edge on the path be xy. Now, when we delete the edge xy from M , we

get two trees, Mx and My . We know that either M∗i ⊆ Mx and M∗j ⊆ My or vice versa. Suppose

M∗i ⊆ Mx and M∗j ⊆ My . Since M∗i contains the heavy edge uivi , we have that μ (Mx ,D) ≥ h + 1.

Similarly, we can show that μ (My ,D) ≥ h + 1. This shows that xy is a heavy edge, contradicting
that xy is light. One can similarly argue that xy is a heavy edge when M∗i ⊆ My and M∗j ⊆ Mx .

This contradicts our assumption that M∗ is not a subtree of M . This completes the proof of the
lemma. �

For our next proof, we first give some well-known observations about trees. Given a treeT , we
call a node a leaf, link, or branch if its degree in T is 1, 2, or ≥3, respectively. Let S≥3 (T ) be the
set of branch nodes, S2 (T ) be the set of link nodes, and L(T ) be the set of leaves in the tree T . Let
P2 (T ) be the set of maximal paths consisting entirely of link nodes.
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Fact 1. |S≥3 (T ) | ≤ |L(T ) | − 1.

Fact 2. |P2 (T ) | ≤ 2|L(T ) | − 1.

Proof. Root the tree at an arbitrary node of degree at least 3. If there is no node of degree 3
or more in T , then we know that T is a path and the assertion follows. Consider T [S2], which is
the disjoint union of paths P ∈P2 (T ). With every path P ∈P2 (T ), we associate the unique child
in T of the last node of this path (furtherest from the root) in T . Observe that this association is
injective and the associated node is either a leaf or a branch node. Hence

|P2 (T ) | ≤ |L(T ) | + |S≥3 (T ) | ≤ 2|L(T ) | − 1

follows from Fact 1. �

Lemma 4.8. Let M∗ be the subgraph formed by the edges in F . If (G,k ) is a yes instance of
DS (CDS), then (a) |L(M∗) | ≤ η(H )k ; (b) |S≥3 (M∗) | ≤ η(H )k − 1; and (c) |P2 (M∗) | ≤ 2η(H )k − 1.
Here η(H ) is the factor of approximation in Lemma 2.5 (Lemma 2.7).

Proof. Root the tree at an arbitrary node r of degree at least 3 in M∗. If there is no node of
degree 3 or more in M∗, then we know that M∗ is a path, and the proof follows. We call a pair of
nodes u and v siblings if they do not belong to the same path from the root r in M∗. Observe that
all the leaves of M∗ are siblings.

Let D be an approximate solution to DS (CDS) returned by applying Lemma 2.5 (Lemma 2.7)
on G. Since (G,k ) is a yes instance, we have that |D | ≤ η(H )k . Let w1, . . . ,w� be the leaves of
M∗ and let e1, . . . , e� be the edges in M∗ incident with w1, . . . ,w� , respectively. To prove our first
statement, we will show that for every i , we have a vertex qi ∈ D such that qi ∈ γ (wi ) and for all
j � i , qi � γ (w j ). This will establish an injection from the set of leaves to the dominating set D,
and thus the bound will follow. Towards this, observe that since the edge ei is heavy, we have that
|γ (wi ) ∩ D | ≥ h + 1. Furthermore, for every pair of verticeswi ,w j ∈ L(M∗),wi � w j , we have that
|γ (wi ) ∩ γ (w j ) | ≤ h. The last assertion follows from the fact that for a pair of siblings wi and w j

the only vertices that can be in the intersection of γ (wi ) and γ (w j ) must belong to both σ (wi ) and
σ (w j ). However, the size of any σ (wi ) is upper bounded by h. This, together with the fact that
|γ (wi ) ∩ D | ≥ h + 1 implies that for every i , we have a vertex qi ∈ D such that qi ∈ γ (wi ) and for
all j � i , qi � γ (w j ). This implies that |L(M∗) | ≤ |D |. However, since (G,k ) is a yes instance to DS,
we have that |D | ≤ η(H )k . This completes the proof of part (a) of the lemma. Proofs for part (b)
and part (c) of the lemma follow from Facts 1 and 2. �

Before we prove our next lemma we show a lemma about dominating sets of subgraphs of G.

Lemma 4.9. Let H be a fixed graph and let G be a graph with H �T G. Let (M,Ψ) be the tree-
decomposition of G given by Theorem 2.4 and let D be a dominating set of G. If M ′ is a subtree of M ,
then

(D ∩ Ψ(M ′)) ∪
e ∈E (M ′)

κ (e )

is a dominating set for G[Ψ(M ′)].

Proof. The proof follows from the fact that D ∩ Ψ(M ′) dominates all the vertices in Ψ(M ′)
except possibly the ones that have neighbors in V (G ) \ (∪e ∈E (M ′) κ (e )). Thus,

(D ∩ Ψ(M ′)) ∪
e ∈E (M ′)

κ (e )

is a dominating set for G[Ψ(M ′)]. �

Let P1, . . . , P� be the paths in P2 (M∗). We use si and ti to denote the first and the last vertices,
respectively, of the path Pi . Since Pi is a path consisting of link vertices, we have that si and ti have
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unique neighbors s∗i and t∗i , respectively, in M∗. Observe that since M∗ is a subtree of M , then we
have that for every i , Pi is also a path in M . If we delete the edges s∗i si and t∗i ti from the tree M , then
there is a subtree of M that contains the path Pi ; we call this subtree M (Pi ). For any two vertices
a and b on the path Pi , we use Pi (a,b) to denote the subpath between a and b in Pi . Furthermore,
for any subpath Pi (a,b), if we delete the edges incident to a and b on Pi and not present in Pi (a,b)
from the tree M , then there is a subtree of M that contains the path Pi (a,b); we call this subtree
M (Pi (a,b)).

Now we recall the definition of ξt . Let Π be a monotone parameterized graph problem that is
FII. Then, for every t ∈ N, there exists a ξt ∈ Z+ (depending on Π and t ), such that, given a t-
boundaried graph G with |V (G ) | > ξt , there exists a t-boundaried graph G∗ such that G ≡Π G∗

and |V (G∗) | < ξt . In the next lemma, we show that if any of the paths is “too long,” then using a
simple application of pigeonhole principle, we can get a 2h-DS-protrusion. We use |Pi | to denote
the number of vertices in the path Pi .

Lemma 4.10. Let (G,k ) be an instance of DS (CDS) and let P1, . . . , P� be the paths in P2 (M∗).
Further, let D be a dominating set of G. Then, for some path Pi , i ∈ {1, . . . , �}, if |Pi | > ξ2h (2(2h +
ki ) + 1), thenG contains a 2h-DS-protrusion (2h-CDS-protrusion) of size at least ξ2h . Here, ki = |D ∩
Ψ(M (Pi )) |. Furthermore, we can find such a 2h-DS-protrusion (2h-CDS-protrusion) in polynomial
time.

Proof. Let Pi be the the path such that |Pi | > 2ξ2h ( |D ∩ Ψ(M (Pi )) |. Let Pi := si = ai
1 · · ·ai

�
= ti .

For every vertex

w ∈ (D ∩ Ψ(M (Pi ))) ∪ κ (sis
∗
i ) ∪ κ (tit

∗
i ),

we mark two vertices of the path Pi . We mark the first and the last vertices on Pi , say, ai
wfirst

and

ai
wlast

, such that w ∈ Ψ(ai
wfirst

) and w ∈ Ψ(ai
wlast

). That is, w ∈ Ψ(ai
wfirst

) and w ∈ Ψ(ai
wlast

) and for

all z < wfirst or z > wlast we have thatw � Ψ(ai
z ). This way, we will only mark at most 2(2h + |D ∩

Ψ(M (Pi )) |) = 2(2h + ki ) vertices of the path Pi . However, the path is longer than 2ξ2h (2h + ki ), and
thus, by the pigeonhole principle, we have that there exists a subpath of Pi , say, Pi (ai

x ,a
i
y ), such

that no vertex of this subpath is marked and |Pi (ai
x ,a

i
y ) | > ξ2h . LetW = Ψ(M (Pi (ai

x ,a
i
y ))). Let a∗

and b∗ be the neighbors of ai
x and ai

y , respectively, that are not present on Pi (ai
x ,a

i
y ). Clearly, the

only vertices inW that have neighbors inV (G ) \W belong to κ (ai
xa
∗) ∪ κ (ai

yb
∗). Thus the vertices

in W that have neighbors in V (G ) \W is upper bounded by 2h. Furthermore, since no vertex on
the path Pi (ai

x ,a
i
y ) is marked, we have that all the vertices in D belonging to W also belong to

κ (ai
xa
∗) ∪ κ (ai

yb
∗). Then, by Lemma 4.9, we have that κ (ai

xa
∗) ∪ κ (ai

yb
∗) dominates all the vertices

in W . Furthermore, in (M,Ψ), no bag is contained in another and thus |W | > ξ2h (see discussion
after Theorem 2.4). This shows thatW is a 2h-DS-protrusion of the desired size. �

The final result of this section is the following decomposition lemma:

Lemma 4.11. Let H be a fixed graph and CH be the class of graphs that excluds a fixed graph H
as a topological minor. Then there exist two constants δ1 and δ2 (depending on DS (CDS)) such that
given a yes instance (G,k ) of DS (CDS), in polynomial time, we can find

• a (δ1k,δ2k )-slice decomposition,
• a 2h-DS-protrusion (or 2h-CDS-protrusion) of size more than ξ2h , or
• an h′-protrusion of size more than ξh′ where h′ depends only on h.

Proof. Let (G,k ) be a yes instance of DS (CDS). This implies that the size of the (connected)
dominating set D returned by Lemma 2.5 (Lemma 2.7) is at most η(H )k . Let M∗ be the subtree of
M formed by heavy edges. By Lemma 4.8, we know that

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 6. Publication date: January 2018.



Kernels for (Connected) Dominating Set on Graphs with Excluded Topological Minors 6:17

Fig. 2. An illustration of the decomposition. The heavy edges are shown in red.

(a) |L(M∗) | ≤ η(H )k ,
(b) |S≥3 (M∗) | ≤ η(H )k − 1, and
(c) |P2 (M∗) | ≤ 2η(H )k − 1.

Recall that for every path Pi ∈P2 (M∗), we defined ki = |D ∩ Ψ(M (Pi )) |. If for any path Pi ∈
P2 (M∗) we have that |Pi | > ξ2h2(2h + ki ), then by Lemma 4.10 G contains a 2h-DS-protrusion of
size at least ξ2h , and we can find this protrusion in polynomial time. Thus we assume that for all
paths Pi ∈P2 (M∗) we have that |Pi | ≤ ξ2h (2(2h + ki ) + 1).

Let k∗i denote the number of vertices in D ∩ Ψ(M (Pi )) that are not present in any other D ∩
Ψ(M (Pj )) for i � j. Furthermore, for all i � j, we have that

|Ψ(M (Pi )) ∩ D ∩ Ψ(M (Pj ) | ≤ h.

The last assertion is based on the following arguments. The sets Ψ(M (Pi )) and Ψ(M (Pj )) can be
separated by a separator of size at most h and the vertices of D that appear in both sets are present
in this separator. Observe that ki ≤ 2h + k∗i . This implies that

|V (M∗) | = |L(M∗) | + |S≥3 | + |S2 |
≤ η(H )k + η(H )k − 1 +

∑
Pj ∈P2 (M∗ )

(4h + 2kj + 2)ξ2h

= 2η(H )k − 1 + (4h + 2) |P2 (M∗) |ξ2h +
∑

Pj ∈P2 (M∗ )

2(2h + k∗j )ξ2h

≤ 2η(H )k − 1 + (8h + 2) |P2 (M∗) |ξ2h + 2|D |ξ2h

≤ (2 + (16h + 4)ξ2h + 2ξ2h )η(H )k .

Let Γ = (2 + (16h + 4)ξ2h + 2ξ2h )η(H )k . This implies that the number of heavy edges is upper
bounded by |F | ≤ Γ − 1. Let M1, . . . ,Mα be the subtrees of M obtained by deleting all the edges
in M∗, that is, by deleting all the edges in F , see Figure 2 for an illustration. Note that

α ≤ Γ = (2 + (16h + 4)ξ2h + 2ξ2h )η(H )k .

We now argue that either the collection M1, . . . ,Mα forms a (δ1k,δ2k )-slice decomposition of G
or we have found a 2h-protrusion or a 2h-DS-protrusion of size more than ξ2h in G.

First, we show that

α∑
i=1

��
�
∑

e ∈E (Mi )

|κ (e ) |��� = O (k ).
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Note that, by construction, each e ∈ E (Mi ) is a heavy edge. Now observe that each e belongs to at
most two distinct edge sets E (Mi ), we have that

α∑
i=1

∑
e ∈E (Mi )

|κ (e ) | ≤ ��
�2

∑
e ∈E (M∗ )=F

|κ (e ) |��� ≤ 2h |F | ≤ 2hΓ.

We set δ2 = 2h(2 + (16h + 4)ξ2h + 2ξ2h )η(H ), and δ1 =
α
k

. Since α = O (k ), we have that δ1 is a
constant; indeed, α ≤ Γ = (2 + (16h + 4)ξ2h + 2ξ2h )η(H )k .

SinceM∗ is connected, we have that for every treeMi there is a unique node inMi that is incident
with edges in F . We denote this special node by ri . We root the tree Mi at ri . Let w be a child of
ri in M and let Mw and Mri

be the subtrees of M obtained after deleting the edge riw . Since at
least one edge incident with ri is heavy, we have that μ (Mri

,D) ≥ h + 1. However, the edge riw is
not heavy, and thus it must be the case that μ (Mw ,D) ≤ h. LetW = Ψ(Mw ). Then, by Lemma 4.9,
we have that (D ∩W ) ∪ κ (riw ) is a dominating set of size at most 2h for G[W ]. Furthermore, the
only vertices inW that have neighbors inV (G ) \W belong to κ (riw ), and thus its size is also upper
bounded by h. This implies that if |W | > ξ2h , then it is a 2h-DS-protrusion of size at least ξ2h . Thus,
from now onwards, we assume that this is not the case. This implies that, for every subtree rooted
at ri and every child w of ri , we have that |W = Ψ(Mw ) | ≤ ξ2h . Next, we look at τ (ri ) and based
on its type. Recall from Theorem 2.4 that they are of the following types.

Case 1: τ (ri ) has at most h vertices of degree larger than h. In this case, we show that
there exists an h∗ depending only on h such that either τ (Mi ) has at most h∗ = ξh+ξ2h

+ h vertices
of degree larger than h∗ or G contains an h′-protrusion of size more than ξh′ . Here h′ = ξ2h + h.
Suppose some vertexv in τ (ri ) has degree at most h in τ (ri ) but has degree at least h∗ in τ (Mi ). Let
N be the closed neighbourhood ofv in τ (ri ) and N ′ be the neighborhood ofv in τ (Mi ). Each vertex
in N ′ \ N must lie in a connected component C of τ (Mi ) \ N on at most ξ2h vertices. Towards
this end, observe that no vertex in C sees any vertex outside N even in the graph G. Thus, if
|C | > ξ2h , then we will get 2h-DS-protrusion. Let X be N plus the union of all such components.
By assumption, |N ′ \ N | ≥ ξh+ξ2h

and hence |X | ≥ ξh+ξ2h
. Finally, the only vertices in X that have

neighbors outside of X in G are in N , and |N | ≤ h. The treewidth of G[X ] is at most ξ2h + h, since
removing N from X leaves components of size ξ2h . Thus X is an h′-protrusion of size more than
ξh′ . If no such X exists, then it follows that every vertex of degree at most h in τ (ri ) has degree
at most h∗ in τ (Mi ). The vertices of τ (Mi ) that are not in τ (ri ) have degree at most ξ2h + h < h∗.
Thus τ (Mi ) has at most h < h∗ vertices of degree at least h∗.

Case 2: τ (ri ) is h-nearly embedded in a surface Σ in which H cannot be embedded. In
this case, we have that τ (ri ) excludes some graph H ′ depending only on h as a minor. The graph
τ (Mi ) can be obtained from τ (ri ) by joining constant size graphs (of size at most ξ2h ) to vertex
sets that form cliques in τ (ri ). Thus there exists a graph H ∗ depending only on h such that τ (Mi )
excludes H ∗ as a minor. This completes the proof of this lemma. �

5 Kernelization Algorithm for DS

In this section, we use the slice decomposition obtained in the last section to obtain linear kernels
for DS, and in the next section we outline an algorithm for CDS.

Given an instance (G,k ) of DS, we first apply Lemma 2.5 and find a dominating set D of G. If
|D | > η(H )k , then we return that (G,k ) is a no instance of DS. Else, we apply Lemma 4.11 and

• either find a (δ1k,δ2k )-slice decomposition,
• a 2h-DS-protrusion X of G of size more than ξ2h , or
• a h′-protrusion of size more than ξh′ where h′ depends only on h.
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In the second case, we apply Lemma 4.3. Given X , by making use of Lemma 4.3, we obtain a
boundaried graphX ′ such that |X ′ | ≤ ξ2h andX ≡DS X

′. We also compute the translation constant
c between X and X ′. Now we replace the graph X with X ′ and obtain a new equivalent instance
(G ′,k + c ). See Definition 3.4 for the notion of replacement. (Recall that c is a non-positive integer.)
In the third case, we apply the protrusion replacement lemma of Reference [12, Lemma 7] to obtain
a new equivalent instance (G ′,k ′) for k ′ ≤ k with |V (G ′) | < |V (G ) |. We repeat this process until
Lemma 4.11 returns a slice decomposition. For simplicity, we denote by (G,k ) itself the graph on
which Lemma 4.11 returns the slice decomposition. Since the number of times this process can be
repeated is upper bounded by n = |V (G ) |, we can obtain a (δ1k,δ2k )-slice decomposition for (G,k )
in polynomial time.

Let P be the pairwise vertex disjoint subtrees {M1, . . . ,Mα } of M coming from the slice decom-
position of G. Recall that R+i = Ψ(Mi ). Let Qi =

⋃
e ∈E (Mi ) κ (e ), Bi = (D ∩ R+i ) ∪Qi , and bi = |Bi |.

In this section, we will treatGi := G[R+i ] as a graph with boundary Bi . Observe that by Lemma 4.9,
it follows that Bi is a dominating set for Gi .

We have two kinds of graphs Gi . In one case, we have that Gi is H ∗-minor-free for a graph H ∗

whose size depends only on h. In the other case, we have that the graphGi has at most h′ vertices
of degree at least h′. To obtain our kernel, we will show the following two lemmas:

Lemma 5.1. There exists a constant δ such that if G is a graph with boundary S such that S is a
dominating set for G and G has at most h′ vertices of degree at least h′, then in polynomial time, we
can obtain a graph G ′ with boundary S such that

G ′ ≡DS G and |V (G ′) | ≤ δ |S |.
Furthermore, we can also compute the translation constant c of G and G ′ in polynomial time.

The second lemma is for H -minor-free graphs.

Lemma 5.2. There exists a constant δ such that given an H -minor-free graph G with boundary S
such that S is a dominating set for G we can obtain, in polynomial time, a graph G ′ with boundary S
such that

G ′ ≡DS G and |V (G ′) | ≤ δ |S |.
Furthermore, we can also compute the translation constant c of G and G ′ in polynomial time.

Once we have proved Lemmas 5.1 and 5.2, we construct the linear sized kernel for DS as follows.
Given the graphG we obtain the slice decomposition and check if any ofGi has size more than δbi .
(Recall that Bi = (D ∩ R+i ) ∪Qi andbi = |Bi |.) If yes, then we either apply Lemma 5.1 or Lemma 5.2
based on the type ofGi and obtain a graphG ′i such thatG ′i ≡DS Gi and |V (G ′i ) | ≤ δbi . We thinkG =
Gi ⊕ G�, where G� = G \ (R+i \ Bi ) as a bi -boundaried graph with boundary Bi . Then we obtain a
smaller equivalent graphG ′ = G� ⊕ G ′i and k ′ = k + c . After this, we can repeat the whole process
once again. This implies that when we cannot apply Lemmas 5.2 or 5.1 on (G,k ), we have that
each of |V (Gi ) | ≤ δbi . Furthermore, notice that by the definition of the slice decomposition, we
have that ∪α

i=1R
+
i = V (G ). This implies that in this case we have the following:

α∑
i=1

|R+i | ≤ δ
α∑

i=1

bi = δ ��
α∑

i=1

( |Qi | + |(D ∩ R+i ) \Qi |)��
= δ ��

α∑
i=1

|Qi | +
α∑

i=1

|(D ∩ R+i ) \Qi |�� ≤ δδ2k + δη(H )k = O (k ).

The last inequality follows from the fact that
∑α

i=1 |Qi | is upper bounded by the second component
of the slice decomposition and

∑α
i=1 |(D ∩ R+i ) \Qi |) is upper bounded by the size of the approxi-

mate dominating set D. This brings us to the following theorem:
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Theorem 5.3. DS admits a linear kernel on graphs excluding a fixed graph H as a topological
minor.

It only remains to prove Lemmas 5.1 and 5.2 to complete the proof of Theorem 5.3.

5.1 Irrelevant Vertex Rule and proofs for Lemmas 5.1 and 5.2

For the proofs of Lemmas 5.1 and 5.2, we will introduce a reduction rule that removes irrelevant
vertices. If the graphG is Kh′-minor-free, then the irrelevant vertex rule will be used in a recursive
fashion. In each recursive step, it is used to reduce the treewidth of torsos and hence also the entire
graph. Then the graph is split into two pieces and the procedure is applied recursively to the two
pieces. In the leaf of the recursion tree, when the graph becomes smaller, but is still big enough,
then we apply Lemma 4.3 on it and obtain an equivalent instance.

LetG be a graph given with its tree-decomposition (M,Ψ) as described in Theorem 2.4 and τ (t )
be one of its torsos. Let S be a dominating set of G, and Zt = A, |A| ≤ h, be the set of apices of
τ (t ). The reduction rule essentially “preserves” all dominating sets of size at most |S | inG, without
introducing any new ones. To describe the reduction rule, we need several definitions. The first
step in our reduction rule is to classify different subsets A′ of A into feasible and infeasible sets.
The intuition behind the definition is that a subset A′ of A is feasible if there exists a set D in G of
size at most |S | + 1 such that D dominates all but S and D ∩A = A′. However, we cannot test in
polynomial time whether such a set D exists. We will therefore say that a subset A′ of A is feasible
if the η(H )-approximation for DS (Lemma 2.5) outputs a set D of size at most η(H ) ( |S | + 2) such
thatD dominatesV (G ) \ (A ∪ S ) andD ∩A = A′. Observe that if such a setD of size at most |S | + 1
exists, thenA′ is surely feasible in the first sense, while if no such setD of size at most η(H ) ( |S | + 2)
exists, then A′ is surely not feasible (again in the first sense). We will frequently use this in our
arguments. Let us remark that there always exists a feasible set A′ ⊆ A. In particular, A′ = S ∩A
is feasible, since S dominates G. For feasible sets A′, we will denote by D (A′) the set D output by
the approximation algorithm.

For every subset A′ ⊆ A, we select a vertex v of G such that A′ ⊆ NG [v]. If such a vertex exists,
then we call it a representative of A′. Let us remark that some sets can have no representatives
and some distinct subsets of A may have the same representative. We define R to be the set of
representative vertices for subsets ofA. The size ofR is at most 2 |A | . ForA′ ⊆ A, the set of dominated
vertices (by A′) isW (A′) = N (A′) \A. We say that a vertex v ∈ V (G ) \A is fully dominated by A′

if N [v] \A ⊆W (A′). A vertex w ∈ V (G ) \A is irrelevant with respect to A′ if w � R, w � S , and w
is fully dominated by A′.

Now we are ready to state the irrelevant vertex rule.

Irrelevant Vertex Rule: If a vertex w is irrelevant with respect to every feasible A′ ⊆ A,
then delete w from G.

Lemma 5.4. Let S be a dominating set inG, andG ′ be the graph obtained by applying the Irrelevant
Vertex Rule on G, where w was the deleted vertex. Then G ′ ≡DS G.

Proof. We view G and G ′ as graphs with boundary S . Let the transposition constant be 0.
To prove that G ′ ≡DS G, we show that given a |S |-boundaried graph G1 and a positive integer �,
we have that (G ⊕ G1, �) ∈ DS ⇔ (G ′ ⊕ G1, �) ∈ DS . Let Z ⊂ V (G ⊕ G1) be a dominating set for
G ⊕ G1 of size at most �. Let Z1 = V (G ) ∩ Z . If |Z1 | > |S |, then (Z \ Z1) ∪ S is a smaller dominating
set forG ⊕ G1. Therefore, we assume that |Z1 | ≤ |S |. LetA′ = Z ∩A, and observe thatA′ is feasible,
because Z1 dominates all but S . If w � Z , then Z ′ = Z is a dominating set of size at most � for
G ′ ⊕ G1. So assumew ∈ Z . Observe thatw ∈ Z1 andw � S and therefore all the neighbors ofw lie
in G. Since w is irrelevant with respect to all feasible subsets of A and A′ is feasible, we have that
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w is irrelevant with respect to A′. Hence NG⊕G1 (w ) \ NG⊕G1 (Z \w ) ⊆ A. There is a representative
w ′ ∈ R,w ′ � w (sincew � R), such that (NG⊕G1 (w ) = NG (w )) ∩A ⊆ NG (w ′) ∩A. HenceZ ′ = (Z ∪
{w ′}) \ {w } is a dominating set of G ′ ⊕ G1 of size at most �.

Now, let Z ′ ⊆ V (G ′ ⊕ G1) be a dominating set of size at most � forG ′ ⊕ G1. Let Z ′1 = V (G ′) ∩ Z ′.
As in the forward direction, we can assume that |Z ′1 | ≤ |S |. We show that Z ′ also dominates w in
G ⊕ G1. Specifically Z ′1 ∪ {w } is a set dominating all but S in G of size at most |S | + 1 so Z ′1 ∩A is
feasible. Since {w } is irrelevant with respect to Z ′1 ∩A, we have w ∈ NG (Z ′1 ∩A), and thus Z ′ is a
dominating set for G ⊕ G1 of size at most �. This concludes the proof. �

For a graph G and its dominating set S , we apply the Irrelevant Vertex Rule exhaustively on all
torsos ofG, obtaining an induced subgraphG ′ ofG. By Lemma 5.4 and transitivity of ≡DS, we have
that G ′ ≡DS G. We now prove that a graph G that cannot be reduced by the irrelevant vertex rule
has a property that each of its torso has a small 2-dominating set.

Lemma 5.5. LetG be a graph that is irreducible by the Irrelevant Vertex Rule and S be a dominating
set of G. For every torso τ (t ) of the tree-decomposition (M,Ψ) of G, we have that τ (t ) \ Zt has a 2-

dominating set of size O ( |S |). Furthermore, if G is a H -minor-free graph, then tw(G ) = O (
√
|S |).

Proof. Let τ (t )∗ = τ (t ) \A, where A are the apices of τ (t ). We will obtain a 2-dominating set
of size O ( |S |) in τ (t )∗. Towards this end, consider the following set:

Q =
⋃

A′ ⊆A,A′is feasible

D (A′) ∪ R ∪ (S \A).

The number of representative vertices R and the number of feasible subsetsA′ is at most 2 |A | ≤ 2h ,
where h is a constant depending only on H . The size of D (A′) is at most η(H ) ( |S | + 2) for every
A′. Thus |Q | ≤ 2h (η(H ) ( |S | + 2)) + 2h + |S | = O ( |S |). We prove that Q is a 2-dominating set of
V (G ) \A. Let w ∈ V (G ) \A. If w ∈ R or w ∈ S , then Q dominates w . So suppose w � R ∪ S . Then,
sincew is not irrelevant, we have that there is a feasible subsetA′ ofA such thatw is relevant with
respect to A′. Hence w is not fully dominated by A′ and so w has a neighbour w ′ ∈ V (G ) \ N [A′].
But w ′ is dominated by D (A′) ⊆ Q , and thus w is 2-dominated by Q in G \A. Hence, G \A has a
2-dominating set of size O ( |S |).

The graph τ (t )∗ can be obtained from G \A by contracting all edges in E (G \A) \ E (τ (t )∗) and
adding all edges in E (τ (t )∗) \ E (G \A). Since contracting and adding edges does not increase the
size of a minimum 2-dominating set of a graph, τ (t )∗ has a 2-dominating set of size O ( |S |). This
completes the proof for the first part.

Now assume thatG is a H -minor-free graph. It is well known that the treewidth of a H -minor-
free graph is at most the maximum treewidth of its torsos, see, for example, Reference [21]. Thus
to show that tw(G ) = O (

√
|S |) it is sufficient to show that its torsos have small treewidth. To

conclude, τ (t )∗ excludes an apex graph as a minor (see, for example, Reference [46, Theorem
13]) and it has a 2-dominating set of size O ( |S |). By the bidimensionality of 2-dominating set,
we have that tw(τ (t )∗) = O (

√
|S |) [21, 37]. Now we add all the apices of A to all the bags of

the tree-decomposition of τ (t )∗ to obtain a tree-decomposition for τ (t ) of width O (
√
|S |) + h =

O (
√
|S |). �

Let us also remark that Irrelevant Vertex Rule is based on the performance of a polynomial time
approximation algorithm. Thus by Lemmas 2.5, 5.4, and 5.5, and the fact that the treewidth of a
graph is at most the maximum treewidth of its torsos, see for example, Reference [21], we obtain
the following lemma:

Lemma 5.6. There is a polynomial time algorithm that for a given graphG and a dominating set S
of G, outputs graph G ′ such that G ′ ≡DS G and for every torso τ (t ) of the tree-decomposition (M,Ψ)
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of G, we have that τ (t ) \ Zt has a 2-dominating set of size O ( |S |). Furthermore, if G is a H -minor-

free graph, then tw(G ) = O (
√
|S |).

Before we proceed further, we show the power of Lemma 5.6 by deriving a simple subexpo-
nential time algorithm for DS on H -minor-free graph. This is one of the cornerstone results in
Reference [21] and is based on a non-trivial two-layer dynamic programming over clique-sum
decomposition tree of a H -minor-free graphs. Lemma 5.6 can be used to obtain much simpler
algorithm. Given a graph G and a positive integer k , we first apply a factor 2-approximation al-
gorithm given in References [22, 39] for DS on G and obtain a set S . If the size of S is more than
2k , then we return that G does not have a dominating set of size at most k . Otherwise, we apply

Lemma 5.6 and obtain an equivalent graph G ′ such that tw(G ′) = O (
√
k ). Now applying a con-

stant factor approximation algorithm developed in Reference [21] for computing the treewidth on

G ′, we get a tree-decomposition of width O (
√
k ). It is well known that checking whether a graph

with treewidth t has a dominating set of size at most k can be done in time O (3tnO (1) ) [59]. This,
together with the preceding bound on the treewidth, gives us an alternative proof of the following
theorem:

Theorem 5.7 ([22]). Given an n-vertex graph G excluding a fixed graph H as a minor, one can

check whether G has a dominating set of size at most k in time 2O (
√

k )nO (1) .

Having Lemma 5.6 proving Lemma 5.1 becomes simple.

Proof of Lemma 5.1. We apply Lemma 5.6 to G with a decomposition that has a single bag
containing the entire graph and the apices A of the bag being the vertices of degree at least h′. By
Lemma 5.6, G \A has a 2-dominating set of size δ3 |S |. Since all vertices of G \A have degree at
most h′, it follows that |V (G ) | ≤ h′ + δ3 |S | + δ3h |S | + δ3h

2 |S | ≤ δ |S |. �

We need the following well-known lemma, see, for example, Reference [9], on separators in
graphs of bounded treewidth for the proof of Lemma 5.2.

Lemma 5.8. Let G be a graph given with a tree-decomposition of width at most t and w : V (G ) →
{0, 1} be a weight function. Then, in polynomial time, we can find a bag X of the given tree-
decomposition such that for every connected componentG[C] ofG \ X ,w (C ) ≤ w (V (G ))/2. Further-
more, the connected componentsC1, . . . ,C� ofG \ X can be grouped into two setsV1 andV2 such that
w (V (G ))−w (X )

3 ≤ w (Vi ) ≤ 2(w (V (G ))−w (X ))
3 for i ∈ {1, 2}.

Proof of Lemma 5.2. By (G, S ), we denote the graph with boundary S . By Lemma 5.6, we may
assume that tw(G ) = O (

√
|S |). We prove the lemma using induction on |S |. If |S | = O (1), then we

are done, as, in this case, we know thatG is a |S |-DS protrusion. Thus, if |V (G ) | > ξ |S | , then we can
apply Lemma 4.3 and in polynomial time obtain a graphG∗ such thatG∗ ≡DS G and |V (G∗) | ≤ ξ |S | .
At the same time, we can compute the translation constant depending on G and G∗ and return it.
Thus, we return G∗ and the translation constant c .

Otherwise, using a constant factor approximation of treewidth on H -minor-free graphs [34],
we compute a tree-decomposition of G of width d

√
|S | for some constant d . Now, by applying

Lemma 5.8 on this decomposition, we find a partitioning ofV (G ) intoV1,V2, andX such that there
are no edges from V1 to V2, |X | ≤ d

√
|S | + 1, and |Vi ∩ S | ≤ 2|S |/3 for i ∈ {1, 2}. Let S ′ = S ∪ X .

Observe that S ′ is also a dominating set.
Let S1 = S ′ ∩ (V1 ∪ X ) and S2 = S ′ ∩ (V2 ∪ X ). LetG1 = G[V1 ∪ X ] andG2 = G[V2 ∪ X ]. We now

apply the algorithm recursively on (G1, S1) and (G2, S2) and obtain graphs G ′1, G ′2 such that for
i ∈ {1, 2}, Gi ≡DS Gi . Let c1 and c2 be the translation constants returned by the algorithm. Since
X ⊆ S ′, we have that Si is a dominating set of Gi , and hence we actually can run the algorithm
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recursively on the two subcases. The algorithm returns G ′1 and G ′2 and translation constants c1

and c2. Let G ′ = G ′1 ⊕δ G ′2 and S ′ = S1 ∪ S2. We will show that G ′ ≡DS G. Let G3 be a graph with
boundary S ′ and k be a positive integer. Then

((G1 ⊕δ G2) ⊕ G3,k ) ∈ DS

⇐⇒ ((G1 ⊕δ G3) ⊕ G2,k ) ∈ DS

⇐⇒ ((G1 ⊕δ G3) ⊕ G ′2,k + c2) ∈ DS

⇐⇒ ((G ′2 ⊕δ G3) ⊕ G1,k + c2) ∈ DS

⇐⇒ ((G ′2 ⊕δ G3) ⊕ G ′1,k + c2 + c1) ∈ DS

⇐⇒ ((G ′2 ⊕δ G ′1) ⊕ G3,k + c2 + c1) ∈ DS.

This proves that G ′ ≡DS G. Now we will show that |V (G ′) | ≤ O ( |S |).
Let μ ( |S |) be the largest possible size of the set |V (G ′) | output by the algorithm when run on a

graph G with a dominating set S . We upper bound |V (G ′) | by the following recursive formula:

|V (G ′) | ≤ max
1/3≤α ≤2/3

{
μ
(
α |S | + d

√
|S |
)
+ μ ((1 − α ) |S |) + d

√
|S |

}
.

Using simple induction, one can show that the preceding solves to O ( |S |). See for an example
Reference [39, Lemma 2]. Hence, we conclude that |V (G ′) | = O ( |S |) = O (k ). This completes the
proof of the lemma. �

The algorithm of Demaine et al. [22] computing a dominating set of size k in an n-vertex H -

minor-free graph uses exponential (in k) space 2O (
√

k )nO (1) . Theorem 5.3 implies almost directly
the following refinement of Theorem 5.7.

Theorem 5.9. Given an n-vertex graph G excluding a fixed graph H as a minor, one can check

whether G has a dominating set of size at most k in time 2O (
√

k ) + nO (1) and space (nk )O (1) .

Proof. Our algorithm first applies Theorem 5.3 to obtain a graph with O (k ) vertices. Now we
are assuming that the number of vertices inG isn = O (k ). We solve a slightly more general version
of domination, where we are given a subset S and the requirement is to find a set D of size at most
k such that for everyv ∈ V (G ) \ S , N [v] ∩ D � ∅. When S = ∅, the set D is a dominating set of size
k . By the separator theorem of Alon et al. [6] for H -minor-free graphs, one can find in polynomial
time a partition ofV (G ) intoV1,V2, andX such that |X | ≤ O (

√
n), and there are no edges fromV1 to

V2 and |Vi | ≤ 2n/3 for i ∈ {1, 2}. The algorithm finds such a partition and guesses how D interacts
with X .

In particular, first the algorithm correctly guesses D ′ = D ∩ X (by looping over all subsets of
X ). For each guess, it puts N (D ′) into S and removes D ′ and S ∩ X from G (these vertices are
already dominated and will not be used in the future to dominate even more vertices). For every
remaining vertex v in X , the algorithm guesses whether it will be dominated by a vertex in V1, in
which case the algorithm deletes all edges from v to vertices in V2, or by a vertex in V2, in which
case the algorithm deletes all edges from v to vertices in V1. Let V ′i be Vi plus all the vertices in
X \ S that we guessed were dominated from Vi . At this point, V ′1 and V ′2 are distinct components
of the instance and can be solved independently. The running time is governed by the following
recurrence:

T (n) = nO (1) · 2O (
√

n) · 2 ·T (2n/3) = 2O (
√

n) .

The space used is clearly polynomial. This concludes the proof. �
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6 KERNELIZATION ALGORITHM FOR CDS

The kernelization algorithm for CDS is similar to DS—we also use slice decomposition to obtain
a linear kernel. However, the irrelevant vertex rule is a bit different. The kernelization algorithm
for CDS follows from the results analogous to Lemmas 5.2 and 5.1 for DS. For completeness, we
spell out all the steps.

In particular, given an instance (G,k ) of CDS, we first apply Lemma 2.5 and find a dominating
set D of G. If |D | > η(H )k , then we return that (G,k ) is a no instance of CDS. Else, we apply
Lemma 4.11 and

• either find (δ1k,δ2k )-slice decomposition,
• a 2h-CDS-protrusion of size more than ξ2h , or
• a h′-protrusion of size more than ξh′ where h′ depends only on h.

In the second case, we apply Lemma 4.3. For a givenX , we apply Lemma 4.3 and construct a bound-
aried graph X ′ such that |X ′ | ≤ ξ2h and X ≡CDS X

′. We also compute the translation constant c
between X and X ′. Now we replace the graph X with X ′ and obtain a new equivalent instance
(G ′,k + c ), here we remind that c is a non-positive integer. In the third case we apply the protru-
sion replacement lemma of Reference [12, Lemma 7] to obtain a new equivalent instance (G ′,k ′)
for k ′ ≤ k with |V (G ′) | < |V (G ) |. We repeat this process until Lemma 4.11 returns a slice decom-
position. For simplicity, we denote by (G,k ) itself the graph on which Lemma 4.11 returns the slice
decomposition. The number of times this process can be repeated does not exceed n = |V (G ) |, and
a (δ1k,δ2k )-slice decomposition for (G,k ) is constructed in polynomial time.

The pairwise disjoint connected subtrees {M1, . . . ,Mα } of M coming from the slice decom-
position of G is denoted by P, and we put R+i = Ψ(Mi ). We define Qi =

⋃
e ∈E (Mi ) κ (e ), Bi =

(D ∩ R+i ) ∪Qi , and bi = |Bi |. As in the previous section, we treat Gi := G[R+i ] as a graph with
boundary Bi . Then, by Lemma 4.9, Bi is a dominating set for Gi .

For two kinds of graphsGi , we use different reductions. In the first case, we have that the graph
Gi has at most h′ vertices of degree at least h′.

Lemma 6.1. There exists a constant δ such that if G is a graph with boundary S such that S is a
dominating set forG andG has at most h′ vertices of degree at least h′, and then, in polynomial time,
we can obtain a graph G ′ with boundary S such that

G ′ ≡CDS G and |V (G ′) | ≤ δ |S |.
Furthermore, we can also compute the translation constant c of G and G ′ in polynomial time.

In the other case, we have that Gi is H ∗-minor-free for a graph H ∗ whose size only depends on
h.

Lemma 6.2. There exists a constant δ such that given an H -minor-free graph G with boundary S
such that S is a dominating set for G, in polynomial time, we can obtain a graph G ′ with boundary S
such that

G ′ ≡CDS G and |V (G ′) | ≤ δ |S |.
Furthermore, we can also compute the translation constant c of G and G ′ in polynomial time.

To obtain the linear sized kernel for CDS, the proof of Lemmas 6.1 and 6.2 suffices. Indeed,
for graph G, we obtain the slice decomposition and check if any Gi has size more than δbi . If
yes, then we either apply Lemma 6.1 or Lemma 6.2 based on the type of Gi and obtain a graph
G ′i such that G ′i ≡CDS Gi and |V (G ′i ) | ≤ δbi . We view G = Gi ⊕ G�, where G� = G \ (R+i \ Bi ) as a
bi -boundaried graph with boundary Bi . Then we obtain a smaller equivalent graph G ′ = G� ⊕ G ′i
and k ′ = k + c . After this, we can repeat the whole process once again. This implies that when we
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cannot apply Lemmas 6.2 or 6.1 on (G,k ), we have that each of |V (Gi ) | ≤ δbi . Furthermore, notice
that ∪α

i=1R
+
i = V (G ). This implies that

α∑
i=1

|R+i | ≤ δ
α∑

i=1

bi = δ ��
α∑

i=1

( |Qi | + |(D ∩ R+i ) \Qi |)��
= δ ��

α∑
i=1

|Qi | +
α∑

i=1

|(D ∩ R+i ) \Qi |�� ≤ δδ2k + δη(H )k = O (k ).

Thus (subject to the proof of two lemmas) we have the following theorem:

Theorem 6.3. CDS admits a linear kernel on graphs excluding a fixed graph H as a topological
minor.

6.1 Irrelevant Vertex Rule and Proofs for Lemmas 6.1 and 6.2

As with DS, we will reduce the treewidth of a torso not only in the beginning of the procedure
but also when we apply it recursively. Let G be an H -minor-free graph, S be a dominating set of
G (not necessarily connected), τ (t ) be one of its torsos, and A, |A| ≤ h, be the set of apices of τ (t ),
where h is some constant depending only on H . We will define a reduction rule that essentially
“preserves” all dominating sets of size at most 3|S | + 3 with “good-enough” connectivity properties,
without introducing new such sets. Just as for DS, we will say that a subset A′ of A is feasible if
the factor η(H )-approximation for DS (Lemma 2.5) concludes that there exists a set D of size at
most η(H ) (3|S | + 3) that dominates V (G ) \ (A ∪ S ) and D ∩A = A′. If such a set exists and A′ is
feasible, then we denote this set by D (A′).

Recall that for DS we had the notion of a representative element for every subset A′ ⊆ A. The
representative vertex was crucially used in establishing Lemma 5.4, where we used it to simulate
all the domination properties of the deleted vertex “w .” We need a similar notion of representatives
for CDS; however, here the representatives will be vertex subsets rather than single vertices. With
vertex subsets, we will be able to simulate not only domination properties but also the connectivity
properties of an irrelevant vertex. More precisely, for every subsetA′ ⊆ A, we compute a minimum
size vertex set T ⊆ V (G ) \A such that G[T ] is connected and A′ ⊆ N [T ]. If the size of such a
minimum set is at most 4h, then we say that T = T (A′) is a representative of A′, and add all the
vertices inT to the set R. Note that |R | ≤ 4h · 2h . For each A′ we can test whether a representative

exists in time 2 |A
′ |nO (1) = 2hnO (1) by making a modification of the algorithm for the Steiner tree

problem from Reference [8]. Alternatively, we can test it in time n4h+O (1) by brute force. Let S4h

denote the set of vertices in N 4h
G\A[S] = N 4h

G\A[S \A]. Here N 4h
G\A[w] is the set of vertices at distance

at most 4h from w in the graph G \A (not in G). The set of vertices covered by A′ is W (A′) =
N [A′] \ (A ∪ S ∪ S4h ). Note that a vertex inN 4h

G\A[S] is never covered by a setA′. Let CutVert denote

the set of verticesw inG such thatG − {w } has more connected components thanG. Observe that if
G will be connected then CutVert is essentially the set of cut vertices. However, for a disconnected
graph, it is the union of cut vertices for each connected component.

The definition of an irrelevant vertex with respect to A is different than for DS. A vertex

w � (S ∪ S4h ∪ R ∪ CutVert)

is called irrelevant with respect to A′ if N 4h
G\A[w] ⊆W (A′). The irrelevant vertex rule for CDS is

exactly the same as in Section 5 for DS but the correctness proof and analysis is more compli-
cated. Recall that a subset A′ of A is feasible if the factor η(H )-approximation for DS (Lemma 2.5)
concludes that there exists a set D of size at most η(H ) (3|S | + 3) which dominates all but S , such
that S ∩A = A′.
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Irrelevant Vertex Rule: If a vertex w is irrelevant with respect to every feasible A′ ⊆ A, then
delete w from G.

Lemma 6.4. Let S be a dominating set inG, andG ′ be the graph obtained by applying the Irrelevant
Vertex Rule on G, where w was the deleted vertex. Then G ′ ≡CDS G.

Proof. We view G and G ′ as graphs with boundary S . Let the transposition constant be 0. To
show that G ′ ≡CDS G, we show that, given any boundaried graph G1 and a positive integer �, we
have that (G ⊕ G1, �) ∈ CDS ⇔ (G ′ ⊕ G1, �) ∈ CDS . Let Z ⊂ V (G ⊕ G1) be a connected dominat-
ing set forG ⊕ G1 of size at most �. Observe that since S is a dominating set ofG, we have that there
exists a connected dominating set S ⊆ S∗ such that |S∗ | ≤ 3|S | (Proposition 2.6). LetZ1 = V (G ) ∩ Z .
If |Z1 | > 3|S |, then (Z \ Z1) ∪ S∗ is a smaller connected dominating set for G ⊕ G1. Thus, we as-
sume that |Z1 | ≤ 3|S |. Let A′ = Z1 ∩A, and observe that A′ is feasible, since Z1 dominates all but S
and has size at most 3|S |. Ifw � Z , then Z ′ = Z is a connected dominating set of size � forG ′ ⊕ G1.
So assume w ∈ Z . Since w is irrelevant with respect to A′, we have that N 4h

G\A[w] ⊆W (A′).

Let Q be the connected component of G ⊕ G1 that contains w . Since w is not a cut vertex of G,
we have the following easy observation.

Observation 1. Q \ {w } is connected.

Let ZQ = Z ∩Q be the connected dominating set of Q , |ZQ | = p. We will show that Q \ {w } has
a connected dominating set of size at most p and that will show that (G ′ ⊕ G1, �) ∈ CDS. Observe
that since w ∈W (A′) and the only vertices that are common between G and G1 belong to S , we
have that N 4h

(G⊕G1 )\A[w] = N 4h
G\A[w] ⊆ V (G ) \ S3h .

Let X be the vertex set of the connected component of G ⊕ G1[ZQ ∩ N 4h
G\A[w]] that contains w .

If |X | < 4h, then there is a subset X ′ = T (N (X ) ∩A) such that X ′ ⊂ R, |X ′ | ≤ |X |, G[X ′] is con-
nected and NG (X ′) ∩A ⊇ NG (X ) ∩A. Furthermore, since |X | < 4h, we have that every connected
component of G ⊕ G1[ZQ \ X ] contains a vertex of A′. This implies that Z ′Q = (ZQ \ X ) ∪ X ′ is

connected. Since X ⊆W (A′) and |X | < 4h, we have that NG⊕G1 (X ) = NG (X ). This implies that
NG (X ) ⊆ NG (X ′ ∪A′) ⊆ NG⊕G1 (X ′ ∪A′) and thus Z ′Q is a connected dominating set of size at

most p of Q that avoids w and thus by Observation 1, it is also a connected dominating set of
Q \ {w }. This implies that in this case (G ′ ⊕ G1, �) ∈ CDS.

Now suppose that |X | ≥ 4h. Let A∗ = NG (X ) ∩A. The vertex set A∗ is a dominating set of size
at most h in the connected graphG[A∗ ∪ X ] and so G[A∗ ∪ X ] has a connected dominating set X ∗

that contains A∗ of size at most 3h. Let P be the connected component of G[X ∗] \A that contains
w . Notice that |P | ≤ 2h, and so there is a connected set P ′ ⊆ R such that |P ′ | ≤ |P | and N (P ) ∩
A ⊆ N (P ′) ∩A. Finally, let Y be the set of vertices in X that are at distance exactly 4h from w in
G \A. Note that |X \ Y | ≥ 4h − 1 (as every path from w to a vertex in Y has length at least 4h −
1) and that NG [Y ] ∩A ⊆ A∗. Set X ′ = (X ∗ \ P ) ∪ P ′, and Z ′Q = (ZQ \ (X \ Y )) ∪ X ′. We have that

|X ′ | ≤ |X ∗ | ≤ 3h while |X \ Y | ≥ 4h − 1 ≥ 3h. Hence |Z ′Q | ≤ |ZQ |. Note that G[X ′] is connected.

Furthermore, by our choice of (X \ Y ), we have that every connected component of G ⊕ G1[ZQ \
X ] contains a vertex of Y and hence a vertex of A∗. However, A∗ ⊆ X ′ and G[X ′] (or G ⊕ G1[X ′])
is connected, and thus G ⊕ G1[Z ′Q ] is connected. Observe that NG⊕G1 (X \ Y ) = NG (X \ Y ). This

implies that NG (X \ Y ) ⊆ NG (X ′ ∪A∗) ⊆ NG⊕G1 (X ′ ∪A∗), and thusZ ′Q is a connected dominating

set of size at most p of Q that avoidsw and thus, by Observation 1, is also a connected dominating
set of Q \ {w }. This implies that in this case (G ′ ⊕ G1, �) ∈ CDS.

Now we prove the reverse direction. Let Z ′ ⊂ V (G ′ ⊕ G1) be a connected dominating set for
G ′ ⊕ G1 of size at most �. By Observation 1, we know that Q \ {w } and Q are connected and thus
Z ′ is also a connected dominating set of size at most � for G ⊕ G1. This concludes the proof. �
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Next we prove an auxiliary lemma that upper bounds the number of cut vertices in terms of the
dominating set of the graph.

Cuts and Blocks. A maximal connected subgraph without a cut vertex is called a block. Every
block of a graph G is either a maximal 2-connected subgraph, a bridge, or an isolated vertex. By
maximality, different blocks of G overlap in at most one vertex, which is then a cut vertex of G.
Therefore, every edge of G lies in a unique block, and G is the union of its blocks.

Definition 6.5. Let A denote the set of cut vertices of G and B the set of its blocks. The bipartite
graph on A ∪ B where a ∈ A and b ∈ B are adjacent when a ∈ b is called the block graph of G.

Proposition 6.6 (reference [25]). The block graph of a connected graph is a tree.

Lemma 6.7. Let G be a graph and S be a dominating set of G; then the number of cut vertices in G
is upper bounded by |S |. That is, |CutVert| ≤ |S |.

Proof. Let A = CutVert denote the set of cut vertices of G and B the set of its blocks. Consider
the block graph B on A ∪ B. By Proposition 6.6, we know that B is a tree. Now we root this tree at
some vertex in B. Observe that there is unique association of cut vertices to its parent—which is a
block. We also know that for every cut vertex v that either v is in S or a vertex in its parent block.
However, the blocks are pairwise disjoint except for the vertices in A. Thus, this implies that there
is an injective map from A to S and hence |CutVert| ≤ |S |. �

Now we are ready to prove the treewidth bounding lemma of this section. Just as for DS, it
is possible to prove that after removing all irrelevant vertices, the treewidth of each torso in the
reduced graph is O (

√
|S |). The most important difference is that instead of 2-dominating set, we

construct a 8h-dominating set in the proof. We start with the following auxiliary lemma that will
be useful for the proof.

Lemma 6.8. There is a polynomial time algorithm that for a given graph G and a dominating set
S of G, outputs graph G ′ such that G ′ ≡CDS G, and for every torso τ (t ) of the tree-decomposition
(M,Ψ) of G, we have that τ (t ) \ Zt has a 8h-dominating set of size O ( |S |). Furthermore, if G is a

H -minor-free graph, then tw(G ) = O (
√
|S |).

Proof. Let τ (t )∗ = τ (t ) \A, where A are the apices of τ (t ). Also, let CutVert denote the set of
cut vertices of G. We will obtain a (4h + 1)-dominating set of size O ( |S |) in τ (t )∗. Towards this
end, consider the following set:

Q =
⋃

A′ ⊆A,A′is feasible

D (A′) ∪ R ∪ (S \A) ∪ CutVert.

The size of the set of representative vertices, R, is at most 4h · 2 |A | ≤ 4h · 2h . The number of
feasible subsets A′ is at most 2h , where h is a constant depending only on H . The size of
D (A′) is at most η(H ) (3|S | + 3) for every A′. By Lemma 6.7, we have that |CutVert| ≤ |S |. Thus
|Q | ≤ 2h (η(H ) (3|S | + 3)) + 4h · 2h + 2|S | = O ( |S |). We prove thatQ is a (4h + 1)-dominating set of
V (G ) \A. Let w ∈ V (G ) \A. If w ∈ R or w ∈ S or w ∈ CutVert, then Q dominates S . So suppose
w � R ∪ S ∪ CutVert. Then, since w is not irrelevant, there is a feasible subset A′ of A such that w
is relevant with respect to A′. Hence there exists a vertex w ′ in N 4h

G\A[w] that is not in W (A′). If

w ′ ∈ S4h , S4h denotes the set of vertices in N 4h
G\A[S] = N 4h

G\A[S \A], then w is 8h-dominated by a

vertex w∗ ∈ (S \A) ⊆ Q in G \A. Otherwise, w ′ is dominated by some w ′′ in D (A′), and hence w
is 4h + 1-dominated by w ′′ ∈ Q in G \A. Hence G \A has a 8h-dominating set of size O ( |S |).

The graph τ (t )∗ can be obtained from G \A by contracting all edges in E (G \A) \ E (τ (t )∗) and
adding all edges in E (τ (t )∗) \ E (G \A). Since contracting and adding edges cannot increase the
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size of a minimum 8h-dominating set of a graph, τ (t )∗ has a 8h-dominating set of size O ( |S |). This
completes the proof for the first part.

Now assume that G is a H -minor-free graph. It is well known that the treewidth of an H -
minor-free graph is at most the maximum treewidth of its torsos, see for example, Reference [21].
Thus, to show that tw(G ) = O (

√
|S |), it is sufficient to show that its torsos have small treewidth.

To conclude, τ (t )∗ excludes an apex graph as a minor (see discussions after Theorem 2.4), and it
has a 8h-dominating set of size O ( |S |). By the bidimensionality of 8h-dominating set, we have
that tw(τ (t )∗) = O (

√
|S |) [21, 37]. Now we add all the apices of A to all the bags of the tree-

decomposition of τ (t )∗ to obtain a tree-decomposition for τ (t )′. Thus tw(τ (t )′) ≤ O (
√
|S |) + h =

O (
√
|S |).

Let us also remark that the Irrelevant Vertex Rule is based on the performance of a polynomial
time approximation algorithm, and thus the whole procedure can be implemented in polynomial
time. This concludes the proof. �

Having Lemma 6.8 proving Lemma 6.1 becomes simple.

Proof of Lemma 6.1. We apply Lemma 6.8 to G with a decomposition that has a single bag
containing the entire graph and the apices A of the bag being the vertices of degree at least h′. By
Lemma 6.8, G \A has a 8h-dominating set of size δ3 |S |. Since all vertices of G \A have degree at

most h′, it follows that |V (G ) | ≤ h′ + h′O (h′)δ3 |S | ≤ δ |S |. �

Proof for Lemma 6.2 is identical to the proof of Lemma 5.2, except that we need to use Lemma 6.8
in place of Lemma 5.6. Thus we omit it.

Recently, Bodlaender et al. [10] obtained an algorithm solving CDS on graphs of treewidth t
in time ctnO (1) . Theorem 6.3 combined with this implies that CDS on H -minor-free graphs is

solvable in time 2O (
√

k ) + nO (1) . To our knowledge, this is the first subexponential parameterized
algorithm for CDS on H -minor-free graphs.

Theorem 6.9. Given an n-vertex graph G excluding a fixed graph H as a minor, one can check

whether G has a connected dominating set of size at most k in time 2O (
√

k ) + nO (1) .

7 CONCLUSIONS

In this article, we give linear kernels for two widely studied parameterized problems, namely DS
and CDS, for every graph class that excludes some graph as a topological minor. The emerging
questions are the following:

(1) Can our kernelization results for DS and CDS be extended to more general sparse graph
classes?

(2) Can our techniques be applied to more general families of parameterized problems?

Very recently, the first question was answered both positively and negatively by Drange et al.
[29]. In particular, DS admits a vertex-linear kernel on graphs of bounded expansion and an almost
vertex-linear kernel on nowhere-dense graphs. On the other hand, CDS admits no polynomial
kernel on graphs of bounded expansion unless coNP⊆ NP/poly. It is important to point out that
methods used by Drange et al. [29] is entirely different than ours. Their algorithm is completely
combinatorial and do not rely on topological arguments. Our kernelization algorithm for CDS
is still the best known. It would be interesting to see if the combinatorial methods developed in
Drange et al. [29] could be used to design an explicit kernelization algorithm for CDS on graph
classes excluding a fixed graph H as a topological minor.
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