

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 33, No. 4, pp. 2326--2345

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE\ast

IVONA BEZ\'AKOV\'A\dagger , RADU CURTICAPEAN\ddagger , HOLGER DELL\S , AND

FEDOR V. FOMIN\P

Abstract. We consider the following natural ``above-guarantee"" parameterization of the classical
Longest Path problem: For given vertices s and t of a graph G and integer k, the Longest Detour
problem asks for an (s, t)-path in G that is at least k longer than a shortest (s, t)-path. Using
insights into structural graph theory, we prove that Longest Detour is fixed-parameter tractable
on undirected graphs and actually even admits a single-exponential algorithm, that is, one of running
time 2O(k) \cdot nO(1). Up to the base of the exponential, this running time matches the best algorithms
for finding a path of length at least k. Furthermore, we study the related Exact Detour problem,
which asks whether a graph G contains an (s, t)-path that is exactly k longer than a shortest (s, t)-
path. For this problem, we obtain randomized algorithms with running times 2.746k \cdot nO(1) (for
undirected graphs) and 4k \cdot nO(1) (for directed graphs) and a deterministic algorithm with running
time 6.745k \cdot nO(1), showing that this problem is fixed-parameter tractable as well.

Key words. longest path, fixed-parameter tractable algorithm, above-guarantee parameteriza-
tion, graph minors

AMS subject classifications. 05C83, 05C85, 68Q25, 68R05, 68R10, 68W40

DOI. 10.1137/17M1148566

1. Introduction. The Longest Path problem asks, given an undirected n-
vertex graph G and an integer k, to determine whether G contains a path of length at
least k, that is, a self-avoiding walk with at least k edges. This problem is a natural
generalization of the classical NP-complete Hamiltonian Path problem, and the
parameterized complexity community has paid a great deal of attention to it. For in-
stance, Monien [31] and Bodlaender [4] showed that Longest Path is fixed-parameter
tractable with parameter k and admits algorithms with running time 2O(k log k)nO(1).
This led Papadimitriou and Yannakakis [32] to conjecture that Longest Path is
solvable in polynomial time for k = log n, and indeed, this conjecture was resolved in
a seminal paper of Alon, Yuster, and Zwick [2], who introduced the method of color
coding and derived from it the first algorithm with running time 2O(k)n. The Long-
est Path problem occupies a central place in parameterized algorithmics, and several
different approaches were developed in order to reduce the base of the exponent in the
running time [21, 24, 9, 8, 25, 36, 17, 17, 3]. We refer the reader to two review articles
in Communications of ACM [16, 26] as well as to the textbook [12, Chapter 10] for
an extensive overview of parameterized algorithms for Longest Path. Let us note
that the fastest known randomized algorithm for Longest Path is due to Bj\"orklund

\ast Received by the editors September 21, 2017; accepted for publication (in revised form) August
30, 2019; published electronically November 26, 2019.

https://doi.org/10.1137/17M1148566
Funding: The work of the first author was supported by NSF grant CCF-1319987. The work

of the second author was supported by ERC grants PARAMTIGHT (280152) and SYSTEMATIC-
GRAPH (725978), and VILLUM Foundation grant 16582 while working on this paper. The work of
the fourth author was supported by NFR grant MULTIVAL.

\dagger Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623
(ib@cs.rit.edu).

\ddagger Basic Algorithms Research Copenhagen and IT University of Copenhagen, Copenhagen, Den-
mark (radu.curticapean@gmail.com).

\S IT University of Copenhagen, Copenhagen, Denmark (hold@itu.dk).
\P Department of Informatics, University of Bergen, Bergen, 5020, Norway (fomin@ii.uib.no).

2326

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/17M1148566
mailto:ib@cs.rit.edu
mailto:radu.curticapean@gmail.com
mailto:hold@itu.dk
mailto:fomin@ii.uib.no

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2327

et al. [3] and runs in 1.657k \cdot nO(1) time, whereas the fastest known deterministic
algorithm is due to Zehavi [37] and runs in 2.597k \cdot nO(1) time.

In the present paper, we study the Longest Path problem from the perspec-
tive of an ``above-guarantee"" parameterization that can attain small parameter values
even for long paths: For a pair of vertices s, t \in V (G), we use dG(s, t) to denote their
distance, that is, the length of a shortest path from s to t. In the Longest Detour
problem, we then ask for an (s, t)-path of length at least dG(s, t) + k, and we param-
eterize by this offset k rather than the actual length of the path. In other words, the
first dG(s, t) steps on a path sought by Longest Detour are ``complimentary"" and
will not be counted towards the parameter value. This reflects the fact that shortest
paths can be found in linear time and could be much better solutions for Longest
Path than the paths of logarithmic length found by algorithms that parameterize by
the path length.

We study two variants of the detour problem, one asking for a detour of length
at least k, and another asking for a detour of length exactly k.

Longest Detour Parameter: k
Input: Graph G, vertices s, t \in V (G), and integer k.
Task: Decide whether there is an (s, t)-path in G of length at least dG(s, t) + k.

Exact Detour Parameter: k
Input: Graph G, vertices s, t \in V (G), and integer k.
Task: Decide whether there is an (s, t)-path in G of length exactly dG(s, t) + k.

Our parameterization above the length of a shortest path is a new example in
the general paradigm of ``above-guarantee"" parameterizations, which was introduced
by Mahajan and Raman [28, 29]. This paradigm was successfully applied to vari-
ous problems, such as finding independent sets in certain planar graphs (where an
independent set of size at least n

4 is guaranteed to exist by the Four Color Theorem)
[14, 30], the maximum cut problem [11, 15], constraint satisfaction problems [1, 19],
and the minimum vertex cover problem [18].

Our results. We establish in the following theorems that Longest Detour
and Exact Detour are fixed-parameter tractable.

Theorem 1.1. There is a deterministic algorithm that solves Longest Detour
on undirected n-vertex graphs in time 2O(k) \cdot nO(1).

To establish the correctness of this algorithm, we rely on nontrivial arguments in
the theory of graph minors. While a running time of 2o(k) \cdot nO(1) is impossible for
both Longest Detour and Exact Detour unless the exponential-time hypothesis
of Impagliazzo and Paturi [22] fails, the following theorem establishes algorithms for
Exact Detour with more precise running time guarantees.1

Theorem 1.2. There is a bounded-error randomized algorithm that solves Exact
Detour on undirected n-vertex graphs in time 2.746knO(1) and on directed graphs
in time 4knO(1). For both undirected and directed graphs, there is a deterministic
algorithm that runs in time 6.745knO(1).

1By a standard reduction, the exponential-time hypothesis rules out a 2o(n) \cdot nO(1) time algorithm
for the Hamiltonian Path problem; see [12, Theorem 14.6]. An algorithm with running time 2o(k) \cdot
nO(1) for Longest Detour and Exact Detour would clearly imply such an algorithm.

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2328 BEZ\'AKOV\'A, CURTICAPEAN, DELL, AND FOMIN

To prove Theorem 1.2, we construct a polynomial-time Turing reduction from
Exact Detour to the standard parameterization of Longest Path, in which we
ask on input s, t and k \in N whether there is an (s, t)-path of length k. The reduction
only makes queries to instances with parameter at most 2k + 1, and so pipelining it
with the fastest known algorithms for Longest Path mentioned earlier yields the
theorem.

We further observe that, pipelined with a self-reducibility argument, Theorems 1.1
and 1.2 can be used to explicitly construct the required detours. This incurs only a
polynomial overhead in the running time.

Techniques. The main idea behind the algorithm for Longest Detour is a
combinatorial theorem that shows the existence of specific large planar minors in
graphs of large treewidth. Although the Excluded Grid Theorem [34] already shows
that graphs of sufficiently large treewidth contain arbitrary fixed planar graphs, we
circumvent the full machinery of this theorem and resort to more basic techniques.
This allows us to show that linear treewidth suffices to guarantee our specific planar
minors. More specifically, we show that there exists a constant C \in N such that
every graph of treewidth at least Ck contains a subgraph obtained from the complete
graph K4 by replacing every edge with a path of length at least k. We call such
a subgraph a (\geq k)-subdivided tetrahedron. This result is shown using structural
theorems of Leaf and Seymour [27] and Raymond and Thilikos [33].

With this combinatorial theorem at hand, we implement the following win/win
approach: If the treewidth of the input graph is less than Ck, we use known algo-
rithms [5, 17] to solve the problem in single-exponential time. Otherwise the treewidth
of the input graph is at least Ck, and it thus contains a sufficiently subdivided tetrahe-
dron as a subgraph. We show that any path traversing the two-connected component
of this subgraph can be made at least k steps longer by rerouting it to and through
the subgraph. Indeed we prove that every pair of distinct vertices u, v in a (\geq k)-
subdivided tetrahedron has two (u, v)-paths that are fully contained in this subgraph
and whose lengths differ by at least k. See also Figure 1.

The algorithm for Exact Detour is based on the following idea. We run
breadth-first search (BFS) starting at vertex s. Then, for every (s, t)-path P of
length exactly dG(s, t) + k, at most k levels of the BFS-tree contain more than one
vertex of P . Using this property, we are able to devise a simple algorithm for Exact
Detour that makes queries to an oracle for Longest Path and reduces the instance
to a directed acyclic graph (DAG), where the problem can be solved in polynomial
time. The oracle queries have parameter k\prime bounded by 2k + 1, so an algorithm for
Longest Path with time ck

\prime
nO(1) translates into an algorithm for Exact Detour

with time c2knO(1).

The remaining part of the paper is organized as follows: Section 2 contains pre-
liminaries used in the technical part of the paper. In section 3, we give an algorithm
for Longest Detour, while section 4 is devoted to Exact Detour. We provide a
search-to-decision reduction for Longest Detour and Exact Detour in section 5.

2. Preliminaries. Graphs G may be undirected or directed. We denote by uv
an edge joining vertices u, v \in V (G). A path is a self-avoiding walk in G; the length
of the path is its number of edges. An (s, t)-path for s, t \in V (G) is a path that starts
at s and ends at t. We allow paths to have length 0, in which case s = t holds. For a
vertex set X \subseteq V (G), denote by G[X] the subgraph induced by X.

A tree decomposition \scrT of an undirected graph G is a pair (T, \{ Xt\} t\in V (T)),

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2329

s

t

s\prime

t\prime

Fig. 1. Overview of the high-treewidth situation in our algorithm for Longest Detour. Each
blob is a block in the block-cut decomposition of G; the dark gray blobs together form the relevant
part Gs,t of G (Definition 3.1). If a block of Gs,t has high treewidth, it contains a large subdivided
tetrahedron as a subgraph (Lemma 3.10), depicted in white. The shortest (s, t)-path (black curve)
can be rerouted (thick dark gray curve) to and through the tetrahedron to become longer (Lemma 3.9).

where T is a tree in which every node t is assigned a vertex subset Xt \subseteq V (G),
called a bag, such that the following three conditions hold:

(T1) Every vertex of G is in at least one bag, that is, V (G) =
\bigcup

t\in V (T) Xt.

(T2) For every uv \in E(G), there is a node t \in V (T) such that Xt contains u and v.
(T3) For every u \in V (G), the set Tu of all nodes of T whose corresponding bags

contain u, induces a connected subtree of T .
The width of the tree decomposition \scrT is the integer maxt\in V (T) | Xt| - 1, that is, the
size of its largest bag minus 1. The treewidth of a graph G, denoted by tw(G), is the
minimum width over all tree decompositions of G.

We will need two algorithmic results about treewidth: First, we require a single-
exponential time algorithm for computing a constant approximation to the treewidth
of a graph.

Proposition 2.1 ([6]). There is an algorithm that is given a graph G and an
integer w, runs in time 2O(w) \cdot n, and either outputs a tree decomposition of width at
most 5w + 4 or correctly returns that tw(G) > w holds.

Second, we need an algorithm for computing long paths in graphs of low treewidth.

Proposition 2.2 ([5, 17]). There is an algorithm that computes a longest path
between two given vertices of a given n-vertex graph in time 2O(w) \cdot n when a tree
decomposition of width w is given as additional input.

Our main theorem uses topological graph minors, for which we introduce some
notation here.

Definition 2.3. A topological minor model of H in G is a pair of functions
(f, p) with f : V (H) \rightarrow V (G) and p : E(H) \rightarrow 2E(G) such that

1. f is injective;
2. for every edge uv \in E(H), the graph G[p(uv)] is a path from f(u) to f(v)

in G; and
3. for all edges e, g \in E(H) with e \not = g, the paths G[p(e)] and G[p(g)] intersect

only in endpoints or not at all.
The topological minor model (f, p) induces a subgraph T of G, which consists of

the union of all paths G[p(uv)] over all uv \in E(H). The vertices in f(V (H)) are the
branch vertices of T , and G[p(e)] realizes the edge e in T .

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2330 BEZ\'AKOV\'A, CURTICAPEAN, DELL, AND FOMIN

3. Win/win algorithm for LONGEST DETOUR. Throughout this section,
let G be an undirected graph with n vertices and m edges, and let s, t \in V (G)
and k \in \BbbN . We wish to decide in time 2O(k) \cdot nO(1) whether G contains an (s, t)-
path of length at least dG(s, t) + k. We assume without loss of generality that G
is connected and that s and t are distinct (if s = t, then the only (s, t)-path is the
path of length 0). Moreover, we can safely remove vertices v that are not part of any
(s, t)-path, as such vertices are irrelevant for the existence of a detour.

Definition 3.1. Let G be a graph, and let s, t \in V (G). The (s, t)-relevant part
of G is the graph induced by all vertices that are contained in at least one (s, t)-path.
We denote it by Gs,t.

The graph Gs,t can be computed from G in linear time. To this end, we use the
block-cut tree of G, which is a tree where each vertex corresponds to a block, that is,
a maximal biconnected component B \subseteq V (G), or to a cut vertex, that is, a vertex
whose removal disconnects the graph. A block B and a cut vertex v are adjacent in
the block-cut tree if and only if v \in B. If v is not a cut vertex, then there is a unique
block Bv that contains it.

Lemma 3.2. Let s\prime = s if s is a cut vertex, and s\prime = Bs otherwise. Similarly let
t\prime = t if t is a cut vertex, and t\prime = Bt otherwise. Furthermore, let P be the unique
(s\prime , t\prime)-path in the block-cut tree of G. If s \not = t, then Gs,t is the graph induced in G by
the union of all blocks visited by P .

Proof. Let v \in Gs,t. Then there is an (s, t)-path that contains v; in particular,
there are an (s, v)-path p1 and a (v, t)-path p2 such that p1 and p2 are internally
vertex disjoint. If v was not in one of the blocks visited by P , it would be hidden
behind a cut vertex and p1 and p2 would have to intersect in the cut vertex; therefore,
v is contained in one of the blocks visited by P .

For the other direction, let v be a vertex contained in a block B visited by P .
Suppose that u is the cut vertex preceding B in P (or u = s in case B = Bs) and w
is the cut vertex following B in P (or w = t in case B = Bt). Then u \not = w holds,
and there are an (s, u)-path and a (w, t)-path that are vertex-disjoint. Since B is
biconnected, there are paths from u to v and from v to w that are internally vertex-
disjoint. Combined, these path segments yield an (s, t)-path that visits v.

We formulate an immediate implication of Lemma 3.2 that will be useful later.

Corollary 3.3. The block-cut tree of Gs,t is a (Bs, Bt)-path.

Hopcroft and Tarjan [20] proved that the block-cut tree of a graph can be com-
puted in linear time using depth-first search. Hence we obtain an algorithm for com-
puting Gs,t from G.

Corollary 3.4. There is a linear-time algorithm that computes Gs,t from G.

3.1. The algorithm. By definition, the graph Gs,t contains the same set of
(s, t)-paths as G. Our algorithm for Longest Detour establishes a ``win/win""
situation as follows: We prove that if the treewidth of Gs,t is ``sufficiently large,""
then (G, s, t, k) is a \ttY \ttE \ttS instance of Longest Detour (see Figure 1). Otherwise
the treewidth is small, and we use a known treewidth-based dynamic programming
algorithm for computing the longest (s, t)-path. Hence the algorithm builds upon the
following subroutines:

1. The algorithm from Corollary 3.4, computing the relevant part Gs,t of G in
time O(n+m).

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2331

2. Compute Treewidth(G,w) from Proposition 2.1, which is given G and
w \in \BbbN as input, and either constructs a tree decomposition T of G whose
width is bounded by 5w + 4 or outputs \ttL \ttA \ttR \ttG \ttE . If the algorithm outputs
\ttL \ttA \ttR \ttG \ttE , then tw(G) > w holds. The running time is 2O(w) \cdot n.

3. Longest Path(G,T, s, t) from Proposition 2.2, which is given G, s, t and
additionally a tree decomposition T of G, and outputs a longest (s, t)-path
in G. The running time is 2O(w) \cdot nO(1), where w denotes the width of T .

We now formalize what we mean by ``sufficiently large"" treewidth.

Definition 3.5. A function f : \BbbN \rightarrow \BbbN is detour-enforcing if, for all k \in \BbbN and
all graphs G with vertices s and t such that tw(Gs,t) > f(k), the graph Gs,t contains
an (s, t)-path of length at least dG(s, t) + k.

Theorem 3.6. The function k \mapsto \rightarrow 32k + 46 is detour-enforcing.

We defer the proof of this theorem to the following sections, and instead first state
Algorithm D, which uses a detour-enforcing function f to solve Longest Detour.
Algorithm D turns out to be a fixed-parameter tractable algorithm already when any
detour-enforcing function f is known (as long as it is polynomial-time computable),
and it becomes faster when detour-enforcing f of slower growth are used.

Algorithm D (Longest Detour). Let f be a detour-enforcing function. Given
(G, s, t, k) as input, this algorithm decides whether the graph G contains an (s, t)-path
of length at least dG(s, t) + k.
D1 (Restrict to relevant part.) Compute Gs,t using Corollary 3.4.
D2 (Compute shortest path.) Compute the distance d between s and t in Gs,t.
D3 (Compute tree decomposition.) Call Compute Treewidth(Gs,t, f(k)).

D3a (Small treewidth.) If the subroutine found a tree decomposition T , call the
subroutine Longest Path(Gs,t, T, s, t). Output \ttY \ttE \ttS if there is an (s, t)-
path of length at least d+ k; otherwise output \ttN \ttO .

D3b (Large treewidth.) If the subroutine returned \ttL \ttA \ttR \ttG \ttE , output \ttY \ttE \ttS .

We analyze the running time and correctness of Algorithm D.

Lemma 3.7. For any polynomial-time computable detour-enforcing function f :
\BbbN \rightarrow \BbbN , Algorithm D solves Longest Detour in time 2O(f(k)) \cdot nO(1).

Proof. For the correctness, we first consider the case that Compute Treewidth
outputs a tree decomposition T of Gs,t whose width is bounded by 5 \cdot f(k) + 4. If so,
step D3a invokes the algorithm for Longest Path to compute a longest (s, t)-path
in Gs,t and outputs \ttY \ttE \ttS if and only if its length is at least d(s, t) + k. Since the
(s, t)-paths in G are precisely the (s, t)-paths in Gs,t, this output is correct. In the
other case, Compute Treewidth outputs \ttL \ttA \ttR \ttG \ttE , which by Proposition 2.1 implies
tw(Gs,t) > f(k). Since f is detour-enforcing, the graph Gs,t thus contains an (s, t)-
path of length at least dG(s, t) + k. Thus the output \ttY \ttE \ttS produced by the algorithm
in step D3b is correct. We conclude that Algorithm D is correct.

For the running time, note that steps D1 and D2 run in polynomial time. With-
out loss of generality, k \leq n holds, so computing f(k) from k takes time nO(1) by
assumption on f . By Propositions 2.1 and 2.2, step D3 runs in time 2O(f(k))nO(1).
We conclude that Algorithm D has the claimed running time.

Proof of Theorem 1.1. We combine Theorem 3.6 and Lemma 3.7 to obtain an
algorithm for Longest Detour that runs in single-exponential time as required.

3.2. Overview of the proof of Theorem 3.6. In this proof, large subdivisions
of the complete 4-vertex graph K4, also called the tetrahedron, play an important

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2332 BEZ\'AKOV\'A, CURTICAPEAN, DELL, AND FOMIN

role. To prove Theorem 3.6, we first show that if a sufficiently large subdivided
tetrahedron appears as a subgraph in Gs,t, then we can route some (s, t)-path through
this subgraph and then exhibit a long detour within the subgraph. Then we prove
that graphs of sufficiently large treewidth contain subdivided tetrahedra.

Definition 3.8. For k \in \BbbN , a graph F is a (\geq k)-subdivided tetrahedron if it
can be obtained by replacing all edges of K4 by internally vertex-disjoint paths of length
at least k.

Note that in the above definition, the path lengths do not need to agree for
different edges. We show in section 3.3 that detours exist if the relevant part of the
graph contains a subdivided tetrahedron as a subgraph.

Lemma 3.9. Let G be a graph, let s, t \in V (G), and let k \in \BbbN . If Gs,t contains a
(\geq k)-subdivided tetrahedron as a subgraph, then G contains an (s, t)-path of length
at least dG(s, t) + k.

Since the graph obtained by subdividing each edge of K4 exactly k times is a
planar graph on O(k) vertices, the Excluded Grid Theorem of Robertson and Sey-
mour [34] yields a function f : \BbbN \rightarrow \BbbN such that every graph of treewidth at least
f(k) contains some (\geq k)-subdivided tetrahedron as a minor. Furthermore, since
every subdivided tetrahedron has maximum degree 3, the tetrahedron occurs not
only as a minor but also as a subgraph of G. Thus, Lemma 3.9 implies that f is
detour-enforcing, and a proof of this lemma immediately implies a weak version of
Theorem 3.6.

By recent improvements on the Excluded Grid Theorem [7, 10], the function f
above is at most a polynomial. However, even equipped with this deep result we can-
not obtain a single-exponential algorithm for Longest Detour using the approach
of Lemma 3.7: It would require f to be linear. In fact, excluding grids is too strong
a requirement for us, since every function f obtained as a corollary of the full Ex-
cluded Grid Theorem must be superlinear [35]. For this reason, we circumvent the
Excluded Grid Theorem and prove the following lemma from more basic principles in
section 3.4.

Lemma 3.10. Let G be a graph, let s, t \in V (G), and let k \in \BbbN . If tw(G) \geq 32k+
46, then G contains a subgraph that is isomorphic to a (\geq k)-subdivided tetrahedron.

Together, Lemmas 3.10 and 3.9 imply Theorem 3.6.

Proof of Theorem 3.6. Let G be a graph, let s, t \in V (G), and let k \in \BbbN be such
that tw(Gs,t) \geq 32k + 46. By Lemma 3.10, the graph Gs,t contains a subdivided
tetrahedron, and by Lemma 3.9 this implies that G contains an (s, t)-path of length
dG(s, t) + k. This shows that f is indeed detour-enforcing.

3.3. Proof of Lemma 3.9: Rerouting in subdivided tetrahedra. Let
(G, s, t, k) be an instance for Longest Detour such that s \not = t holds and Gs,t

contains a subgraph M that is a (\geq k)-subdivided tetrahedron. We want to prove
that Gs,t contains an (s, t)-path of length at least dG(s, t) + k. In fact, we construct
the desired detour entirely in the subgraph M , for which reason we first need to route
some (s, t)-path through M via two ``entry points,"" u, v \in V (M); see Figure 1.

Lemma 3.11. There are two distinct vertices, u, v \in V (M), and two vertex-
disjoint paths, Ps and Pt, in G such that Ps is an (s, u)-path, Pt is a (v, t)-path,
and they only intersect with V (M) at u and v, respectively.

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2333

Proof. Since M is biconnected, it is fully contained in a single block B of Gs,t. By
Corollary 3.3, the block-cut tree of Gs,t is a path. Let s\prime be the cut vertex preceding B
in this block-cut tree (or s\prime = s if B is the first block), and let t\prime be the cut vertex
following B in the tree (or t\prime = t if B is the last block). Clearly s\prime , t\prime \in B and s\prime \not = t\prime

holds.
By the properties of the block-cut tree, there are an (s, s\prime)-path ps and a (t\prime , t)-

path pt, the two paths are vertex-disjoint, and they intersect B only in s\prime and t\prime ,
respectively. Since B is biconnected, there are two vertex-disjoint paths from \{ s\prime , t\prime \}
to V (M). Moreover, each path can be shortened if it intersects V (M) more than once.
Hence we have an (s\prime , u)-path p1 for some u \in V (M) and a (v, t\prime)-path p2 for some
v \in V (M) with the property that p1 and p2 are disjoint and their internal vertices
avoid V (M).

We concatenate the paths ps and p1 to obtain Ps and the paths p2 and pt to
obtain Pt.

Next we show that every subdivided tetrahedron contains a long detour between
the two entry points; in fact, it contains a long detour between any two distinct
vertices.

Lemma 3.12. For every (\geq k)-subdivided tetrahedron M and every pair of distinct
vertices u, v \in V (M), there is a (u, v)-path of length at least dM (u, v) + k in M .

Proof. Let us assume for contradiction that M contains two distinct vertices u, v
between which there is no path of length at least dM (u, v) + k. Write \ell (P) for the
length of a path. Then any pair (P1, P2) of (u, v)-paths in the subdivided tetrahedron
satisfies the inequality

(3.1)
\bigm| \bigm| \bigm| \ell (P1) - \ell (P2)

\bigm| \bigm| \bigm| < k .

Indeed, if (3.1) were violated on any pair of (u, v)-paths (P1, P2), then one of the paths,
say P1, would be at least k steps longer than P2. But since \ell (P2) \geq dM (u, v) trivially
holds, it would follow that P1 has length at least dM (u, v) + k, which contradicts our
assumption.

In the following, let b1, . . . , b4 be the four degree-3 vertices of M . We proceed by
case analysis according to the relative positions of u, v, and the vertices b1, . . . , b4.
Up to symmetries of K4, there are only three relevant cases to consider, which are
shown in Figure 2. In each of the three cases, we choose two inequalities of type (3.1)
in such a way that the inequalities together contradict the fact that the edges of the
tetrahedron have been replaced by paths of length at least k.

We call a path P between vertices x, y \in \{ b1, . . . , b4\} \cup \{ u, v\} in M canonical and
abbreviate it by xy if P visits no other vertices from \{ b1, . . . , b4\} \cup \{ u, v\} . Canonical
paths xy and yz can be concatenated to a path xyz, which in turn can be decomposed
unambiguously into xy and yz.

Case (a): Same edge. If u and v lie on the same subdivided edge of the tetrahe-
dron, we assume without loss of generality that they lie on the path from b1 to b2.
We invoke (3.1) on the path pairs (ub1b3b4b2v, ub1b4b2v) and (ub1b4b3b2v, ub1b3b2v)
to obtain the inequalities\bigm| \bigm| \bigm| \ell (ub1b3b4b2v) - \ell (ub1b4b2v)

\bigm| \bigm| \bigm| < k and
\bigm| \bigm| \bigm| \ell (ub1b4b3b2v) - \ell (ub1b3b2v)

\bigm| \bigm| \bigm| < k .

Summing these two inequalities, we obtain\bigm| \bigm| \bigm| \ell (ub1b3b4b2v) - \ell (ub1b4b2v)
\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \ell (ub1b4b3b2v) - \ell (ub1b3b2v)

\bigm| \bigm| \bigm| < 2k .

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2334 BEZ\'AKOV\'A, CURTICAPEAN, DELL, AND FOMIN

u vb1 b2

b3

b4

(a) Same edge.

u

v

b1 b2

b3

b4

(b) Adjacent edges.

u

v

b1 b2

b3

b4

(c) Nonadjacent edges.

Fig. 2. Depicted are all three possible cases for the relative positions of vertices u and v
(black squares) in a (\geq k)-subdivided tetrahedron with degree-3 vertices b1, . . . , b4 (large discs) and
at least k = 5 subdivision vertices (small discs). The vertices u and v lie on the same subdivided
edge, on two adjacent subdivided edges, or on two nonadjacent subdivided edges of the subdivided
tetrahedron.

Applying the triangle inequality for sums of absolute values, this implies

(3.2)
\bigm| \bigm| \bigm| \ell (ub1b3b4b2v) - \ell (ub1b4b2v) + \ell (ub1b4b3b2v) - \ell (ub1b3b2v)

\bigm| \bigm| \bigm| < 2k .

We expand all four paths in the sum into their canonical constituents; for example,

\ell (ub1b3b4b2v) = \ell (ub1) + \ell (b1b3) + \ell (b3b4) + \ell (b4b2) + \ell (b2v) .

After collecting canceling terms, inequality (3.2) drastically simplifies to

\bigm| \bigm| 2 \cdot \ell (b3b4)
\bigm| \bigm| < 2k .

This, however, contradicts the fact that M is a (\geq k)-subdivided tetrahedron, in
which the canonical path b3b4 has length \ell (b3b4) \geq k.

Case (b): Adjacent edges. If u and v lie on adjacent subdivided edges, say u lies
on b1b2 and v on b1b3, then we invoke (3.1) on the path pairs (ub2b3b4b1v, ub2b4b1v)
and (ub1b4b2b3v, ub1b4b3v) to obtain the inequalities

\bigm| \bigm| \bigm| \ell (ub2b3b4b1v) - \ell (ub2b4b1v)
\bigm| \bigm| \bigm| < k and

\bigm| \bigm| \bigm| \ell (ub1b4b2b3v) - \ell (ub1b4b3v)
\bigm| \bigm| \bigm| < k .

By an argument analogous to that of the first case, we arrive at

\bigm| \bigm| \bigm| 2 \cdot \ell (b2b3)
\bigm| \bigm| \bigm| < 2k ,

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2335

which is in contradiction with the construction of M .
Case (c): Nonadjacent edges. If u and v lie on nonadjacent subdivided edges, say

u lies on b1b2 and v on b3b4, then we invoke (3.1) on the path pairs (ub2b3v, ub1b3v)
and (ub1b4v, ub2b3b1b4v) to obtain the inequalities

\bigm| \bigm| \bigm| \ell (ub2b3v) - \ell (ub1b3v)
\bigm| \bigm| \bigm| < k and

\bigm| \bigm| \bigm| \ell (ub1b4v) - \ell (ub2b3b1b4v)
\bigm| \bigm| \bigm| < k .

By an argument analogous to that of the previous cases, we arrive at

\bigm| \bigm| \bigm| 2 \cdot \ell (b1b3)
\bigm| \bigm| \bigm| < 2k ,

which is in contradiction with the construction of M .

Proof of Lemma 3.9. Let d = dG(s, t) be the length of a shortest (s, t)-path in G.
Let M be a (\geq k)-subdivided tetrahedron in Gs,t, and let Ps, Pt, u, and v be the
objects guaranteed by Lemma 3.11. Let Puv be a shortest (u, v)-path that only uses
edges of M ; its length is dM (u, v). Since the combined path Ps, Puv, Pt is an (s, t)-
path, its length is at least d.

Finally, Lemma 3.12 guarantees that there is a (u, v)-path Quv in M whose length
is at least dM (u, v) + k. Therefore, the length of the (s, t)-path Ps, Quv, Pt satisfies

\ell (Ps) + \ell (Quv) + \ell (Pt) \geq \ell (Ps) + (dM (u, v) + k) + \ell (Pt)

= \ell (Ps) + \ell (Puv) + \ell (Pt) + k \geq d+ k .

We constructed a path of length at least d+ k as required.

3.4. Proof of Lemma 3.10: Subdivided tetrahedra from high treewidth.
We prove Lemma 3.10 using a result of Leaf and Seymour [27], which shows that
undirected graphs G of treewidth \Omega (k) contain every k-vertex forest F as a minor.
Their result additionally guarantees that the minor model of F intersects a ``highly
connected region"" of G in a specific way. We adapt this result to the setting of
topological minors by a standard argument. To prove Lemma 3.10, we choose a
suitable forest F and exploit the highly connected region of G to extend the minor
model of the forest F to a large subdivided tetrahedron. A similar strategy was used
by Raymond and Thilikos [33] to prove the existence of k-wheel minors in graphs of
treewidth \Omega (k).

To state the result by Leaf and Seymour, we require some additional notions
from graph minor theory that will be used only in this section. First, their result
is formulated in terms of minor models; we have only introduced topological minor
models so far.

Definition 3.13. Let H and G be undirected graphs. A minor model of H in G
is a function f : V (H) \rightarrow 2V (G) such that

1. G[f(v)] is connected for all v \in V (H);
2. f(u) \cap f(v) = \emptyset for all u, v \in V (H) with u \not = v; and
3. for all uv \in E(H), the graph G has at least one edge between the vertex

sets f(u) and f(v).

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2336 BEZ\'AKOV\'A, CURTICAPEAN, DELL, AND FOMIN

BA

F

Fig. 3. Illustration of the separation guaranteed by Lemma 3.16. The left side G[A] contains a
topological minor model of F whose leaves are contained in A\cap B. The right side is highly connected
in that A \cap B is linked in G[B]. (In the separation (A,B) actually constructed in the proof of
Lemma 3.16, three further vertices of the minor model of F would also be contained in A\cap B, which
is not depicted here.)

We also require the standard notions of a linked set and a separation, and the less
standard notion of left-containment, which connects minor models and separations.

Definition 3.14. Let G be a graph. We say that a set S \subseteq V (G) is linked in G
if, for every X,Y \subseteq S with | X| = | Y | , there are | X| vertex-disjoint paths between X
and Y that intersect S exactly at its endpoints.

The pair (A,B) with A,B \subseteq V (G) is a separation in G if the sets A\setminus B and B \setminus A
are nonempty and no edge runs between them. The order of (A,B) is the cardinality
of A \cap B.

The separation (A,B) left-contains H if G[A] contains a minor model f of H
that satisfies | f(v) \cap A \cap B| = 1 for every v \in V (H).

Leaf and Seymour [27, Proposition 4.3] proved that, for any forest F , every large-
treewidth graph has a separation that left-contains F and whose right side is linked.

Lemma 3.15 ([27]). Let F be a nonempty forest, and let G be a graph. If tw(G) \geq
3
2 | V (F)| - 1, then there exists a separation (A,B) of order | V (F)| in G such that (A,B)
left-contains F and A \cap B is linked in G[B].

Since we only consider forests F of maximum degree 3, we reformulate Lemma 3.15
in terms of topological minors, and we transform left-containment of F to a weaker
property that is guaranteed only at leaves of F . See Figure 3 for an illustration. The
proof of our reformulation proceeds along the lines of the proof that F -minors are
topological F -minors if F has maximum degree 3 [13, Proposition 1.7.3].

Lemma 3.16. Let F be a nonempty forest with maximum degree 3, and let G be a
graph. If tw(G) \geq 3

2 | V (F)| - 1, then G has a separation (A,B) of order | V (F)| such
that

(i) there is a topological minor model (f, p) of F in G[A];
(ii) for every leaf v \in V (F), we have f(v) \in A \cap B;
(iii) A \cap B is linked in G[B].

Proof. By Lemma 3.15, there is a separation (A,B) of order | V (F)| in G such
that (A,B) left-contains F and A \cap B is linked in G[B]. Thus (iii) holds directly,
and it remains to construct a topological minor model (f, p) satisfying the other two
conditions.

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2337

Since (A,B) left-contains F , the graph G[A] contains a minor model f \prime of F
satisfying | f \prime (v) \cap A \cap B| = 1 for all v \in V (F). From the minor model f \prime , we
now construct a subgraph X of G that is the image of our topological minor model.
Starting from the empty graph, we proceed as follows:

1. For each edge e \in E(F), let f \prime
e \in E(G) be an arbitrary edge between the

vertex sets f \prime (u) and f \prime (v); such an edge exists by definition since f is a
minor model of F in G. We add the edge f \prime

e and its two endpoints to X.
2. For each vertex v \in V (F), we define a set Xv \subseteq f \prime (v) \subseteq V (G) as follows:

(a) If v is a leaf in F , we add the unique vertex in f \prime (v) \cap A \cap B to Xv.
Moreover, for the unique edge e \in E(F) incident with v, we add the
unique endpoint of f \prime

e that is contained in f \prime (v). (Now Xv contains one
or two vertices of f \prime (v).)

(b) If v is not a leaf in F , we iterate over each edge e \in E(F) incident with v
and add the unique endpoint of f \prime

e to Xv that is contained in f \prime (v).
(Now Xv contains between one and deg(v) many vertices of f \prime (v).)

Now we add a connected subgraph Tv of G[f \prime (v)] to X that contains Xv and
has the minimum number of edges.2

This concludes the definition of the subgraph X in G. We now read off a topological
minor model (f, p) of F from X. To this end, we define f : V (F) \rightarrow V (G):

\bullet For v \in V (F) of degree 3, let f(v) be the unique vertex in f \prime (v) that has
degree 3 in X. To see that this vertex exists and is unique, recall that
X[f \prime (v)] induces the tree Tv that minimally connects the vertices in Xv. If
| Xv| = 3, then Tv has three leaves and a unique internal node of degree 3. If
| Xv| \in \{ 1, 2\} , then one of the terminal nodes in Xv has degree 3 in X.

\bullet For v \in V (F) of degree 2, let f(v) be any vertex in X[f \prime (v)].
\bullet For v \in V (F) of degree 1, let f(v) be the unique vertex in f \prime (v) \cap A \cap B.
Note that this guarantees claim (ii) of the lemma.

It is clear that f is injective, and it can be checked easily that every edge
uv \in E(F) is realized by a path in X; these paths together give the function p required
for a topological minor model. Furthermore, the minimal choice of Tv above ensures
that such paths intersect only at endpoints. Thus claim (i) holds too.

We now use Lemma 3.16 to prove the existence of large subdivided tetrahedra in
graphs of high treewidth, thus proving Lemma 3.10.

Proof of Lemma 3.10. Let k \in \BbbN , and let G be a graph with tw(G) \geq 32k+46 \geq
3
2 (21k+31) - 1. We invoke Lemma 3.16 with a particular forest F = T \.\cup P on 21k+31
vertices, where T and P are trees defined as follows (see also Figure 4):

\bullet T is obtained from the rooted full binary tree with 8 leaves by subdividing
each edge exactly k times. Let LT = \{ x1, . . . , x8\} be the set of leaves of T .
The tree T has 14k + 15 vertices.

\bullet P is obtained from the path with 8 vertices by first subdividing each edge k
times, and then attaching degree-1 vertices y1, . . . , y8 to the nonsubdivision
vertices z1, . . . , z8. We consider these vertices to be ordered along the natural
order of the main path in P . Let LP = \{ y1, . . . , y8\} be the set of leaves of P .
The tree P has 7k + 16 vertices.

Overall, F = T \cup P has 21k+31 vertices and maximum degree 3, so Lemma 3.16
yields a separation (A,B) in G of order | V (F)| such that A \cap B is linked in G[B],
and there is a topological minor model (f, p) of F in G[A] with f(LT \cup LP) \subseteq A\cap B.

2That is, Tv is a minimum Steiner tree in the graph G[f \prime (v)] for the terminal set Xv .

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2338 BEZ\'AKOV\'A, CURTICAPEAN, DELL, AND FOMIN

PT

z8

z1
y1

y8

xi

xj

Fig. 4. The forest F = T \cup P that is found as a topological minor in G[A], which will be
extended to a model of the (\geq k)-subdivided tetrahedron by matching up its leaves using a linkage
in G[B]. Each line between vertices in T and between z1, . . . , z8 represents a path of length k + 1.
The leaves of T are labeled x1, . . . , x8, and the ordering will be chosen in the proof of Lemma 3.10.

We now show that the vertex-disjoint paths linking A \cap B on the right can be used
to complete the topological minor model of F in G[A] to one of a (\geq k)-subdivided
tetrahedron in G.

For vertices v \in V (F) and vertex sets X \subseteq V (G), we abbreviate vG = f(v) and
XG = f(X). For subgraphs S of F , we write SG = f(S) for the image of S, which
consists of f(V (S)) and the paths p(uv) for uv \in E(S).

Since A \cap B is linked in G[B], there are vertex-disjoint paths Q1, . . . , Q8 be-
tween LG

T and LG
P in G[B] that intersect A \cap B only at their endpoints. Recall that

the leaves LP = \{ y1, . . . , y8\} of P and their neighbors \{ z1, . . . , z8\} are ordered in the
natural way along the path in P . This ordering is preserved by the topological minor
model; that is, yG1 , . . . , y

G
8 follow along the main path in PG in this order. Without

loss of generality, we label the paths Q1, . . . , Q8 and the leaves x1, . . . , x8 of T in such
a way that Qi for i \in \{ 1, . . . , 8\} is the path from yGi to xG

i .
Let r denote the root of T and write root(TG) = rG. Write TG

1 , TG
2 for the

two subtrees of TG rooted at the two topmost branch vertices below rG in TG. Let
lca(xG

1 , x
G
8) denote the lowest common ancestor of xG

1 and xG
8 in TG. In the following,

we distinguish two cases according to the relative placement of xG
1 and xG

8 with respect
to TG

1 and TG
2 ; see also Figure 5.

Case 1: lca(xG
1 , x

G
8) \not = root(TG) holds; that is, xG

1 and xG
8 are both contained

in the same subtree. Assume without loss of generality that both are contained
in the subtree TG

1 ; the argument is otherwise analogous by exchanging the roles
of TG

1 and TG
2 . Let i, j \in \{ 2, . . . , 7\} , with i < j, be arbitrary such that xG

i and xG
j

are contained in TG
2 . Recall that a (\geq k)-subdivided tetrahedron has four branch

vertices b1, . . . , b4 of degree 3. To exhibit this tetrahedron as a topological minor
in G, we map them to the following four vertices, respectively:

bG1 := lca(xG
1 , x

G
8), bG2 := lca(xG

i , x
G
j), bG3 := zGi , bG4 := zGj .D

ow
nl

oa
de

d
02

/1
4/

20
 to

 1
29

.1
77

.9
4.

75
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2339

zGi = bG3

zGj = bG4

bG1

xG
i

xG
j

bG2

xG
8

xG
1

zG8

zG1

yGi

yGj

TG PG

Case Case 2

TG PG

xG
8

zGi = bG3

xG
j

xG
i

xG
1bG1

zG8

zG1

zGj = bG4

bG2

1

Fig. 5. The two cases in the proof of Lemma 3.10, along with the configurations of TG = f(T)
and PG = f(P), and the corresponding (\geq k)-subdivided tetrahedra. Bullets correspond to the
images of nonsubdivision vertices of F in G. Lines represent paths in G whose length is guaranteed
to be at least k + 1 by subdivisions in F , with the exception of paths between yGr and zGr , which
have no length guarantee. Dashed curves correspond to the paths Q1, . . . , Q8 between the leaves in
f(F). Big squares represent the degree-3 branch vertices bG1 , bG2 , bG3 , bG4 of the subdivided tetrahedron.
Colored paths depict the six paths of the subdivided tetrahedron. Some vertices of F are hidden to
avoid cluttering.

These vertices are distinct, because bG1 is contained in TG
1 and bG2 in TG

2 , and bG3 and bG4
are distinct vertices of PG. We realize the paths of the subdivided tetrahedron in G
as follows (cf. Figure 5):

\bullet b1b2 (red) is realized as the unique (bG1 , b
G
2)-path in TG.

\bullet b3b4 (orange) is realized as the unique (bG3 , b
G
4)-path in PG.

\bullet b1b3 (blue) is realized as the unique (bG1 , b
G
3)-path in TG \cup PG \cup Q1.

\bullet b1b4 (green) is realized as the unique (bG1 , b
G
4)-path in TG \cup PG \cup Q8.

\bullet b2b3 (yellow) is realized as the unique (bG2 , b
G
3)-path in TG \cup PG \cup Qi.

\bullet b2b4 (purple) is realized as the unique (bG2 , b
G
4)-path in TG \cup PG \cup Qj .

For each of the six edges bibj with i < j, we have thus constructed a path in G.
The paths are internally vertex-disjoint and have length at least k. Thus they form a
topological minor model of a (\geq k)-subdivided tetrahedron in G as required.

Case 2: lca(xG
1 , x

G
8) = root(TG) holds; that is, xG

1 and xG
8 are in different sub-

trees TG
1 and TG

2 . Without loss of generality, let xG
1 be contained in TG

1 . The tree T1

has three other leaves apart from x1; we ignore the direct sibling of x1 and let xi and xj

with i < j be the remaining two leaves in T1. To exhibit a subdivided tetrahedron as
a topological minor in G, we define bG1 := lca(xG

1 , x
G
i) and use the same definitions for

bG2 , . . . , b
G
4 as in the previous case. We can now define the path connections between

bG1 , . . . , b
G
4 exactly as before. Thus, a topological minor model of a (\geq k)-subdivided

tetrahedron exists in G in this case as well.

4. An algorithm for the EXACT DETOUR problem. Recall that in the
Exact Detour problem, we wish to find an exact k-detour, that is, an (s, t)-path of
length exactly d(s, t) + k. We devise an algorithm for Exact Detour by reducing
the problem to Exact Path. In Exact Path, we are given (G, s, t, k) and wish to
determine whether there is an (s, t)-path of length exactly k.

Before we state the algorithm, let us introduce some notation. For any x \in V (G),
we denote with d(x) the distance dG(s, x) from s to x in G, and we let the ith level

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2340 BEZ\'AKOV\'A, CURTICAPEAN, DELL, AND FOMIN

s

t

.

Fig. 6. The fine vertical lines in this drawing of an example graph represent BFS levels, that
is, vertices whose distance d(v) from s is equal.

of G be the set of all vertices x with d(x) = i, as shown in Figure 6. We also abbreviate
d = dG(s, t). For any i, j with 0 \leq i < j \leq d, we denote by G[i,j] the graph induced
by the vertices x with i \leq d(x) \leq j. These graphs can be computed in linear time
using BFS starting at s. We abbreviate Gi = G[i,i]. Furthermore, we write G(a,b] for
the graph obtained from G[a,b] by deleting all edges in Ga, and we define G[a,b) and
G(a,b) likewise.

The main observation leading to our algorithm is that every exact k-detour P
must traverse at least d edges uv with d(v) = d(u) + 1. As a consequence, P cannot
make detours in many levels, as formalized below.

Definition 4.1. Let P be a path in G, and let i \in N. We say that i is a detour-
level of P if P touches two or more vertices of Gi, or if i > d holds and P touches Gi.

Proposition 4.2. If P is an (s, t)-path in G of length exactly d+ k, then it has
at most k detour-levels. Moreover, at most 2k - 1 edges of P have both endpoints in
detour-levels.

Proof. Let P be an (s, t)-path of length d + k. Clearly P touches every level Gi

with i \in \{ 0, . . . , d\} at least once. Let D1 be the number of indices i \in \{ 0, . . . , d\} such
that P touches Gi more than once. Furthermore, let D2 be the number of indices i
with i > d such that P touches Gi. Now P has at least d + D1 + D2 + 1 vertices,
because it must have d+1 vertices to get from s to t, and uses at least D1 additional
vertices in levels Gi with i \leq d, and at least D2 in levels with i > d. Since P has
exactly d + k + 1 vertices, we thus obtain D1 + D2 \leq k. The first claim follows,
since D1 +D2 is the number of detour-levels of P .

For the second claim, note that for every i \in \{ 0, . . . , d - 1\} , the path P has
an edge uv with d(u) = i and d(v) = i + 1. Since there are at most k detour-
levels, at most k - 1 of these d edges have both endpoints in detour-levels. Thus, at
least d - (k - 1) of these edges uv are incident to a non-detour-level. Since P has
exactly d+ k edges, at most 2k - 1 of them have both endpoints in detour-levels.

By Proposition 4.2, at most 2k - 1 edges of P touch detour-levels of P , and in
particular, every exact k-detour P can make only ``short-range"" detours of length at
most 2k. These short-range detours can occur far apart, but we can succinctly encode
them in the following DAG with edge weights and multiple edges.

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2341

Definition 4.3. For a graph G with vertices s, t \in V (G), and k \in \BbbN , the range-k
detour graph G(k) is a directed multigraph on the same vertex set as G. Starting with
the empty set, we construct the edges of G(k) as follows:

\bullet For each u, v \in V (G) with d(u) < d(v) < d and each w \in \{ 1, . . . , 2k + 1\} , we
add an edge uv of weight w if there is a (u, v)-path of length exactly w in the
graph G(d(u),d(v)).

\bullet For each u \in V (G) with d - k \leq d(u) < d and each w \in \{ 1, . . . , 2k + 1\} ,
we add the edge ut of weight w if there is a (u, t)-path of length exactly w in
G(d(u),d+k].

The construction of G(k) can be carried out in polynomial time if given access
to an oracle for deciding the existence of (s, t)-paths with length at most 2k + 1.
Furthermore, the graph G(k) is acyclic by construction. Its relevance is given in the
following lemma.

Lemma 4.4. The graph G contains an (s, t)-path of length d+k if and only if G(k)

contains an (s, t)-path of total weight exactly d+ k.

Proof. Let Q be an (s, t)-path in G(k) of total weight d+ k, with edges e1, . . . , e\ell
for some \ell \in N. Each edge ei has an associated positive integer weight wi, and
w1 + \cdot \cdot \cdot + w\ell = d + k holds. By construction of G(k), each edge ei corresponds to a
path Qi in G of length exactly wi, and the internal points of Qi are in levels of G that
are strictly between the levels of Qi's endpoints. Since Q is a path, the endpoint of
Qi is the starting point of Qi+1 for all i \in \{ 1, . . . , \ell - 1\} . These facts imply the paths
Q1, . . . , Q\ell are pairwise internally vertex-disjoint, and their concatenation forms an
(s, t)-path in G of length exactly d+ k.

Conversely, if P is an (s, t)-path in G of total length d + k, then we claim
that G(k) contains an (s, t)-path Q of total weight d + k. Indeed, let P be the
path v0e1v1 . . . vd+k - 1ed+kvd+k with v0 = s and vd+k = t. We now partition the edges
of P into subpaths and show that each subpath causes a corresponding edge in G(k)

to exist; together, these edges form a path of total weight d + k. So let a1, . . . , a\ell \in
\{ 0, . . . , d+ k - 1\} be the unique increasing sequence of all indices less than d+ k such
that vaj is not in a detour-level of P . Since v0 = s is the only vertex in its level, we
have a1 = 0.

By Proposition 4.2, P has at most 2k - 1 edges with both endpoints in detour-
levels. Thus the number of edges wj in the subpath Pj of P that starts at vaj

and
ends at vaj+1

is at most 2k+1. Let dj be the distance d(s, vaj
) between s and vaj

, and
analogously let dj+1 be the distance d(s, vaj+1

) between s and vaj+1
. By choice of aj

and aj+1, the path P intersects levels Gdj and Gdj+1 exactly once. Thus, Pj is a path

in graph G(dj ,dj+1). By construction, this implies that G(k) contains an edge vaj
vaj+1

of weight exactly wj .
Let u = va\ell

. Concatenating the sequence P1, . . . , P\ell gives an (s, u)-path in G.
Moreover, the edges in G(k) corresponding to these subpaths form an (s, u)-path
in G(k) whose total weight is equal to the length of P1, . . . , P\ell . For the final segment
from u to t, we again invoke Proposition 4.2, which implies that d(u) \geq d - k holds
and that the subpath from u to t has length w\prime at most 2k + 1. By construction,
this will add an edge ut of weight w\prime to G(k). Overall, we can conclude that G(k) has
an (s, t)-path of total weight exactly d+ k.

Lemma 4.4 allows us to solve the exact k-detour problem in G by determining
whether G(k) contains an (s, t)-path of weight d+ k. Since G(k) is a weighted DAG,
and each weight is a small integer, this latter problem is polynomial-time solvable.

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2342 BEZ\'AKOV\'A, CURTICAPEAN, DELL, AND FOMIN

Lemma 4.5. There is a polynomial-time Turing reduction from Exact Detour
to Exact Path. On instances with parameter k, all queries have parameter at
most 2k + 1.

Proof. Given an instance (G, s, t, k) for Exact Detour, the reduction first an-
notates each vertex v \in V (G) with its level d(v), and computes all level sets V (Gi).
This process takes linear time O(n+m) using BFS from s. Next, the algorithm com-
putes the graph G(k), which can be done by querying the oracle for Exact Path for
each (Gd(u),d(v), u, v, w) with d(u) < d(v) and w \in \{ 1, . . . , 2k + 1\} ; this takes poly-

nomial time. Finally, we turn the weighted graph G(k) into an unweighted graph G\prime

by replacing each edge uv of weight w with a fresh (u, v)-path of length w. Clearly,
the (s, t)-paths in G(k) of total weight W correspond to (s, t)-paths in G\prime of length W .
Since G\prime is an unweighted DAG, we can determine the existence of an (s, t)-path of
length W in polynomial time using BFS.

Pipelining Lemma 4.5 with the fastest known k-path algorithms [3, 37, 26] gives
single-exponential algorithms for Exact Detour. Let us note, however, that slight
generalizations of these algorithms are required, as they do not explicitly allow for
specifying terminals s and t. We describe these modifications below.

The randomized algorithm of Bj\"orklund et al. [3] is for a variant of Exact Path
where the terminal vertices s and t are not given; that is, any path of length exactly k
yields a \ttY \ttE \ttS instance. Their algorithm applies to our problem as well, with the same
running time. For readers familiar with the algorithm in Bj\"orklund et al. [3], we sketch
an argument for this observation here. Recall that the idea is to reduce the problem
to checking whether a certain polynomial is identically zero; this polynomial is defined
by summing over all possible labeled walks of length k (see [12, section 10.4.3]). We
modify the polynomial by adding two leaf-edges, one incident to s and one to t, and
restricting our attention to (k + 2)-walks that contain these two edges. The required
information for such walks can still be computed efficiently as before. The crux of the
proof is that walks that are not paths cancel out over a field of characteristic two; this
argument works by a local reorientation of segments of the walk---an operation that
does not change the vertices of the walk and must therefore keep s and t fixed. The
graph G contains a k-path if and only if the polynomial is not identically zero; this
property remains true in our case. The rest of the argument goes through as before,
so the algorithm of Bj\"orklund et al. applies to Exact Path with no significant loss in
the running time. The randomized algorithm by Koutis and Williams [26] for directed
graphs can be adapted to Exact Path in an analogous way.

The deterministic algorithm of Zehavi [37] also does not take terminal vertices
as part of the input, but this algorithm actually applies even to the weighted version
of the problem, to which the variant with specified terminals can easily be reduced.
In the weighted k-path problem, we are given a graph G, weights we on each edge,
a number k, and a number W , and the question is whether there is a path of length
exactly k such that the sum of all edge weights along the path is at most W . We
observe the following simple reduction from Exact Path (with terminal vertices s
and t) to the weighted k-path problem (without terminal vertices): Every edge gets
assigned the same edge weight 2, except for the new leaf-edges at s and t, which get
edge weight 1. Now every path with exactly k+2 edges has weight at most W = 2k+2
if and only if the first and the last edges of the path are the leaf-edges we added. Due
to this reduction, Zehavi's algorithm applies to Exact Path with no significant loss
in the running time. We are ready to prove Theorem 1.2.

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2343

Proof of Theorem 1.2. Let (G, s, t, k) be an instance of Exact Detour. We use
Lemma 4.5 to solve this instance using an oracle for Exact Path which only needs to
answer queries with parameter k\prime at most 2k+1. To answer these queries, we use the
best known algorithm as a subroutine. Using the randomized algorithm by Bj\"orklund
et al. [3], we obtain a running time of 1.657k

\prime
nO(1) \leq 2.746knO(1). The reduction in

Lemma 4.5 applies verbatim to directed graphs as well. In this case, the fastest known
randomized algorithm is by Koutis and Williams [25, 36, 26] and runs in time 2k

\prime
nO(1),

which yields a 4knO(k) time algorithm for Exact Detour. Using the deterministic
algorithm by Zehavi [37], we obtain a running time of 2.597k

\prime
nO(1) \leq 6.745knO(1) for

Exact Detour both in directed and undirected graphs.

5. Search-to-decision reduction. Our graph-minor-based algorithm for the
Longest Detour problem does not necessarily construct a detour, since the algo-
rithm merely outputs ``yes"" on large-treewidth graphs. Similarly, our dynamic pro-
gramming algorithm uses an algorithm for Exact Path as a subroutine, and these
algorithms typically also do not output a path.

In this section, we present a search-to-decision reduction for Longest Detour
and Exact Detour that uses a simple downward self-reducibility argument. In the
interest of brevity, we focus on Longest Detour: Given a decision oracle for this
problem, we show how to construct a detour with only polynomial overhead in the
running time.

Algorithm B (search-to-decision reduction). Given (G, s, t, k) and access to an
oracle for Longest Detour, this algorithm computes an (s, t)-path of length at least
dG(s, t) + k.
B0 (Trivial case.) If (G, s, t, k) is a \ttN \ttO instance of Longest Detour, halt and

reject.
B1 (Add a new shortest path.) Let d := dG(s, t). Add d new edges p1, . . . , pd and

d - 1 new vertices, forming a new shortest (s, t)-path of length d.
B2 (Delete superfluous edges.) For each e \in E(G) \setminus \{ p1, . . . , pd\} sequentially: If

(G - e, s, t, k) is a \ttY \ttE \ttS instance of Longest Detour, then set G := G - e.
B3 (Delete the added path.) Let G := G - \{ p1, . . . , pd\} .
B4 (Output detour.) Now G is an (s, t)-path of length at least dG(s, t) + k.

Lemma 5.1. Given oracle access to Longest Detour, Algorithm B outputs a
path of length at least dG(s, t) + k in polynomial time.

Proof. It is clear that Algorithm B runs in polynomial time; we only need to
show correctness. Let G0 be the graph at the beginning of the algorithm, and let G1

be the remaining graph after B2. If (G0, s, t, k) is a \ttY \ttE \ttS instance, then (G1, s, t, k)
is also a \ttY \ttE \ttS instance. Moreover, deleting any edge from E(G) \setminus \{ p1, . . . , pd\} would
turn it into a \ttN \ttO instance. Since (G1, s, t, k) is a \ttY \ttE \ttS instance, it contains an (s, t)-
path on edges q1, . . . , q\ell for \ell \geq dG(s, t) + k. Since the \ttY \ttE \ttS instance is minimal
(no edge could be deleted without turning it into a \ttN \ttO instance), we have E(G1) =
\{ p1, . . . , pd\} \cup \{ q1, . . . , q\ell \} .

Finally, since the path p1, . . . , pd was added to G in an edge-disjoint way, it is
edge-disjoint from every other (s, t)-path in G. Therefore, by removing \{ p1, . . . , pd\}
from G1, we get the path q1, . . . , q\ell , of length at least dG(s, t) + k.

6. Conclusion. We have shown that finding detours of length at least k is fixed-
parameter tractable in undirected graphs, and likewise for finding detours of length
exactly k in undirected and directed graphs. For undirected planar graphs, our al-

gorithm for Exact Detour can be sped up to run in time 2O(
\surd
k)nO(1) by using

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2344 BEZ\'AKOV\'A, CURTICAPEAN, DELL, AND FOMIN

an improved algorithm for Exact Path. Likewise, there is an 2O(
\surd
k)nO(1) time al-

gorithm for Longest Detour: Planar graphs admit detour-enforcing functions of
order O(

\surd
k), since the k-subdivided tetrahedron is a minor of a square grid with side-

lengths \Omega (
\surd
k), which in turn is a minor of every planar graph of treewidth \Omega (

\surd
k) [35].

The main problem left open by our work is to settle the complexity of Longest
Detour in directed graphs. So far, our attempts to mimic the algorithm for un-
directed graphs did not succeed. Kawarabayashi and Kreutzer [23] proved that every
directed graph of sufficiently large directed treewidth contains a large directed grid
as a ``butterfly minor,"" a particular minor notion in directed graphs. It is tempting
to use their result in order to obtain a win/win algorithm for Longest Detour
on directed graphs, but there are several obstacles on this path. In fact, we do not
know if the problem is in the class XP, that is, if there is an algorithm that solves
directed Longest Detour in time nf(k) for some function f . Can one even find an
(s, t)-path of length at least dG(s, t) + 1 in polynomial time, that is, any path that is
not a shortest path?

Acknowledgments. We thank Daniel Lokshtanov, Meirav Zehavi, Petr Golo-
vach, Saket Saurabh, Stephan Kreutzer, and Tobias M\"omke for fruitful discussions.

REFERENCES

[1] N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo, Solving MAX-r-SAT above a tight
lower bound, Algorithmica, 61 (2011), pp. 638--655, https://doi.org/10.1007/s00453-010-
9428-7.

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844--856, https:
//doi.org/10.1145/210332.210337.

[3] A. Bj\"orklund, T. Husfeldt, P. Kaski, and M. Koivisto, Narrow sieves for parameterized
paths and packings, J. Comput. System Sci., 87 (2017), pp. 119--139, https://doi.org/10.
1016/j.jcss.2017.03.003.

[4] H. L. Bodlaender, On linear time minor tests with depth-first search, J. Algorithms, 14
(1993), pp. 1--23, https://doi.org/10.1006/jagm.1993.1001.

[5] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof, Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth, Inform. and
Comput., 243 (2015), pp. 86--111, https://doi.org/10.1016/j.ic.2014.12.008.

[6] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and
M. Pilipczuk, A ckn 5-approximation algorithm for treewidth, SIAM J. Comput., 45
(2016), pp. 317--378, https://doi.org/10.1137/130947374.

[7] C. Chekuri and J. Chuzhoy, Polynomial bounds for the grid-minor theorem, J. ACM, 63
(2016), 40, https://doi.org/10.1145/2820609.

[8] J. Chen, J. Kneis, S. Lu, D. M\"olle, S. Richter, P. Rossmanith, S.-H. Sze, and F. Zhang,
Randomized divide-and-conquer: Improved path, matching, and packing algorithms, SIAM
J. Comput., 38 (2009), pp. 2526--2547, https://doi.org/10.1137/080716475.

[9] J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved algorithms for path, matching, and
packing problems, in Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), SIAM, 2007, pp. 298--307.

[10] J. Chuzhoy and Z. Tan, Towards tight(er) bounds for the excluded grid theorem, in Proceed-
ings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM,
2019, pp. 1445--1464, https://doi.org/10.1137/1.9781611975482.88.

[11] R. Crowston, M. Jones, G. Muciaccia, G. Philip, A. Rai, and S. Saurabh, Polynomial
kernels for lambda-extendible properties parameterized above the Poljak-Turzik bound, in
IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), LIPIcs 24, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2013, pp. 43--54, https://doi.org/10.4230/LIPIcs.FSTTCS.2013.43.

[12] M. Cygan, F. V. Fomin, \L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015, https://doi.
org/10.1007/978-3-319-21275-3.

[13] R. Diestel, Graph Theory, 5th ed., Grad. Texts in Math. 173, Springer-Verlag, 2017.
[14] Z. Dvo\v r\'ak and M. Mnich, Large independent sets in triangle-free planar graphs, SIAM J.

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1007/s00453-010-9428-7
https://doi.org/10.1007/s00453-010-9428-7
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1006/jagm.1993.1001
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1137/130947374
https://doi.org/10.1145/2820609
https://doi.org/10.1137/080716475
https://doi.org/10.1137/1.9781611975482.88
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.43
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FINDING DETOURS IS FIXED-PARAMETER TRACTABLE 2345

Discrete Math., 31 (2017), pp. 1355--1373, https://doi.org/10.1137/16M1061862.
[15] M. Etscheid and M. Mnich, Linear kernels and linear-time algorithms for finding large cuts,

Algorithmica, 80 (2018), pp. 2574--2615, https://doi.org/10.1007/s00453-017-0388-z.
[16] F. V. Fomin and P. Kaski, Exact exponential algorithms, Comm. ACM, 56 (2013), pp. 80--88,

https://doi.org/10.1145/2428556.2428575.
[17] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh, Efficient computation of rep-

resentative families with applications in parameterized and exact algorithms, J. ACM, 63
(2016), 29, https://doi.org/10.1145/2886094.

[18] G. Gutin, E. J. Kim, M. Lampis, and V. Mitsou, Vertex cover problem parameterized above
and below tight bounds, Theory Comput. Syst., 48 (2011), pp. 402--410, https://doi.org/
10.1007/s00224-010-9262-y.

[19] G. Gutin, L. van Iersel, M. Mnich, and A. Yeo, Every ternary permutation constraint
satisfaction problem parameterized above average has a kernel with a quadratic number of
variables, J. Comput. System Sci., 78 (2012), pp. 151--163, https://doi.org/10.1016/j.jcss.
2011.01.004.

[20] J. Hopcroft and R. Tarjan, Algorithm 447: Efficient algorithms for graph manipulation,
Comm. ACM, 16 (1973), pp. 372--378, https://doi.org/10.1145/362248.362272.

[21] F. H\"uffner, S. Wernicke, and T. Zichner, Algorithm engineering for color-coding with
applications to signaling pathway detection, Algorithmica, 52 (2008), pp. 114--132, https:
//doi.org/10.1007/s00453-007-9008-7.

[22] R. Impagliazzo and R. Paturi, On the complexity of k-SAT, J. Comput. System Sci., 62
(2001), pp. 367--375, https://doi.org/10.1006/jcss.2000.1727.

[23] K. Kawarabayashi and S. Kreutzer, The directed grid theorem, in Proceedings of the 47th
Annual ACM Symposium on Theory of Computing (STOC), ACM, 2015, pp. 655--664,
https://doi.org/10.1145/2746539.2746586.

[24] J. Kneis, D. M\"olle, S. Richter, and P. Rossmanith, Divide-and-color, in Proceedings of the
32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
Lecture Notes in Comput. Sci. 4271, Springer, 2006, pp. 58--67, https://doi.org/10.1007/
11917496 6.

[25] I. Koutis, Faster algebraic algorithms for path and packing problems, in Proceedings of the 35th
International Colloquium on Automata, Languages and Programming (ICALP), Lecture
Notes in Comput. Sci. 5125, Springer, 2008, pp. 575--586, https://doi.org/10.1007/978-3-
540-70575-8 47.

[26] I. Koutis and R. Williams, Algebraic fingerprints for faster algorithms, Comm. ACM, 59
(2016), pp. 98--105, https://doi.org/10.1145/2742544.

[27] A. Leaf and P. D. Seymour, Tree-width and planar minors, J. Combin. Theory Ser. B, 111
(2015), pp. 38--53, https://doi.org/10.1016/j.jctb.2014.09.003.

[28] M. Mahajan and V. Raman, Parameterizing above guaranteed values: MaxSat and MaxCut,
J. Algorithms, 31 (1999), pp. 335--354, https://doi.org/10.1006/jagm.1998.0996.

[29] M. Mahajan, V. Raman, and S. Sikdar, Parameterizing above or below guaranteed values, J.
Comput. System Sci., 75 (2009), pp. 137--153, https://doi.org/10.1016/j.jcss.2008.08.004.

[30] M. Mnich, Large independent sets in subquartic planar graphs, in Proceedings of the 10th
International Workshop on Algorithms and Computation (WALCOM), Lecture Notes in
Comput. Sci. 9627, Springer, 2016, pp. 209--221, https://doi.org/10.1007/978-3-319-30139-
6 17.

[31] B. Monien, How to find long paths efficiently, in Analysis and Design of Algorithms for Com-
binatorial Problems, North-Holland Math. Stud. 109, North-Holland, 1985, pp. 239--254,
https://doi.org/10.1016/S0304-0208(08)73110-4.

[32] C. H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity of
the V-C dimension, J. Comput. System Sci., 53 (1996), pp. 161--170, https://doi.org/10.
1006/jcss.1996.0058.

[33] J. Raymond and D. M. Thilikos, Low polynomial exclusion of planar graph patterns, J. Graph
Theory, 84 (2017), pp. 26--44, https://doi.org/10.1002/jgt.22009.

[34] N. Robertson and P. D. Seymour, Graph minors. V. Excluding a planar graph, J. Combin.
Theory Ser. B, 41 (1986), pp. 92--114, https://doi.org/10.1016/0095-8956(86)90030-4.

[35] N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a planar graph, J. Combin.
Theory Ser. B, 62 (1994), pp. 323--348, https://doi.org/10.1006/jctb.1994.1073.

[36] R. Williams, Finding paths of length k in O\ast (2k) time, Inform. Process. Lett., 109 (2009),
pp. 315--318, https://doi.org/10.1016/j.ipl.2008.11.004.

[37] M. Zehavi, Mixing color coding-related techniques, in Proceedings of the 23rd Annual European
Symposium on Algorithms (ESA), Lecture Notes in Comput. Sci. 9294, Springer, 2015,
pp. 1037--1049, https://doi.org/10.1007/978-3-662-48350-3 86.

D
ow

nl
oa

de
d

02
/1

4/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/16M1061862
https://doi.org/10.1007/s00453-017-0388-z
https://doi.org/10.1145/2428556.2428575
https://doi.org/10.1145/2886094
https://doi.org/10.1007/s00224-010-9262-y
https://doi.org/10.1007/s00224-010-9262-y
https://doi.org/10.1016/j.jcss.2011.01.004
https://doi.org/10.1016/j.jcss.2011.01.004
https://doi.org/10.1145/362248.362272
https://doi.org/10.1007/s00453-007-9008-7
https://doi.org/10.1007/s00453-007-9008-7
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1145/2746539.2746586
https://doi.org/10.1007/11917496_6
https://doi.org/10.1007/11917496_6
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1145/2742544
https://doi.org/10.1016/j.jctb.2014.09.003
https://doi.org/10.1006/jagm.1998.0996
https://doi.org/10.1016/j.jcss.2008.08.004
https://doi.org/10.1007/978-3-319-30139-6_17
https://doi.org/10.1007/978-3-319-30139-6_17
https://doi.org/10.1016/S0304-0208(08)73110-4
https://doi.org/10.1006/jcss.1996.0058
https://doi.org/10.1006/jcss.1996.0058
https://doi.org/10.1002/jgt.22009
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1007/978-3-662-48350-3_86

	Introduction
	Preliminaries
	Win/win algorithm for LONGEST DETOUR
	The algorithm
	Overview of the proof of Theorem 3.6
	Proof of Lemma 3.9: Rerouting in subdivided tetrahedra
	Proof of Lemma 3.10: Subdivided tetrahedra from high treewidth

	An algorithm for the EXACT DETOUR problem
	Search-to-decision reduction
	Conclusion
	References

