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Abstract. In the Edge Editing to Connected f-Degree Graph problem we are given a
graph G, an integer k, and a function f assigning integers to vertices of G. The task is to decide
whether there is a connected graph F on the same vertex set as G, such that for every vertex v,
its degree in F is f(v), and the number of edges in E(G)\bigtriangleup E(F ), the symmetric difference of E(G)
and E(F ), is at most k. We show that Edge Editing to Connected f-Degree Graph is fixed-
parameter tractable (FPT) by providing an algorithm solving the problem on an n-vertex graph in
time 2\scrO (k)n\scrO (1). We complement this result by showing that the weighted version of the problem
with costs 1 and 0 is W[1]-hard when parameterized by k and the maximum value of f even when
the input graph is a tree. Our FPT algorithm is based on a nontrivial combination of color-coding
and fast computations of representative families over the direct sum matroid of \ell -elongation of the
co-graphic matroid associated with G and a uniform matroid over the set of nonedges of G. We
believe that this combination could be useful in designing parameterized algorithms for other edge
editing and connectivity problems.
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1. Introduction. A subgraph F of a graph G is a factor of G if F is a spanning
subgraph of G. When a factor F is described in terms of its degrees, it is called a
degree-factor. For example, one of the most fundamental notions in Graph Theory is
1-factor (or a perfect matching), the case when a factor F has all of its degrees equal
to 1. Another example is r-factor, a regular spanning subgraph of degree r. More
generally, for a function f : V (G) \rightarrow \BbbN , subgraph F is an f -factor of G if for every
v \in V (G), dF (v), the degree of v in F is exactly f(v). The study of degree factors is
one of the mainstays of combinatorics with a long history dating back to 1847 to the
works of Kirkman [13], and Petersen [21]. We refer to surveys [1, 22], as well as the
book of Lov\'asz and Plummer [16], for an extensive overview of degree factors.

Another broad set of degree-factor problems is obtained by requesting the factor to
be connected. The most famous examples are other classical Graph Theory notions,
the Hamiltonian cycle, which is a connected 2-factor, and the Eulerian subgraph,
which is a connected even-degree factor. We refer to the survey of Kouider and
Vestergaard [14] on connected factors, as well as to the book of Fleischner [7] for a
thorough study of Eulerian graphs and related topics.

A natural algorithmic problem concerning (connected) f -factors is for a given
graph G and a function f to decide whether G contains a (connected) f -factor. While
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deciding whether a given graph contains an f -factor can be done in polynomial time
for any function f [3], deciding the existence of even a connected 2-factor (Hamiltonian
cycle) is NP -complete. In this work we study the parameterized complexity of the
following algorithmic generalization of the problem of finding a connected f -factor.

Edge Editing to Connected f-Degree Graph (EECG)
Input: An undirected graph G, a function f : V (G) \rightarrow \{ 1, 2, . . . , d\} , and k \in \BbbN .
Parameter: k
Question: Does there exist a connected graph F such that for every vertex v,
dF (v) = f(v), and the size of the symmetric difference is | E(G)\bigtriangleup E(F )| \leq k?

Apart from studying a classical problem algorithmically, one of the main motiva-
tions for our interest in the generalization of the classical f -factor problem comes from
the recent developments in parameterized algorithms for graph modification problems.
These recent algorithmic advances were important not only due to the problems they
settled but also for the kind of techniques they brought to the area. For example,
the work on cut (or edge-deletion) problems of Kawarabayashi and Thorup [12] and
Chitnis et al. [4] brought recursive understanding and randomized contraction tech-
niques. The work on Feedback Arc Set in Tournaments [2] led to the chromatic
coding. Study of chordal graph completions from [9] triggered the usage of potential
maximal cliques in subexponential parameterized algorithms.

The main result of our paper is the following theorem.

Theorem 1.1. EECG is solvable in time 2\scrO (k)n\scrO (1) deterministically.

The proof of our theorem is based on (i) color-coding and (ii) fast computation of
representative family over a linear matroid. While using graphic matroids to resolve
different types of connectivity issues has become a popular theme in algorithms, our
proof requires the usage of some nonstandard matroids. In particular, we use fast
representative family computations over the direct sum matroid of \ell -elongation of
the co-graphic matroid associated with G and a uniform matroid over E(G), the set
of non-edges of G. We believe that this combination could be useful for designing
parameterized algorithms for other edge editing problems. To the best of our knowl-
edge, this is the first use of elongation of matroids in the designing of parameterized
algorithms.

One of the nice properties of using matroids is that often they allow us to lift
solutions from unweighted problems to problems with costs. It would be natural to
suggest that the nice properties of matroids would help us with the ``weighted"" version
of EECG as well.

Edge Editing to Connected f-Degree Graph with Costs

Input: A graph G, functions f : V (G) \rightarrow \{ 1, 2, . . . , d\} and c :
\bigl( 
V (G)

2

\bigr) 
\rightarrow \BbbN , and

k,C \in \BbbN .
Parameter: k + d
Question: Does there exist a connected graph F such that for every vertex v,
dF (v) = f(v), | E(G)\bigtriangleup E(F )| \leq k, and c(E(G)\bigtriangleup E(F )) \leq C?

However, in spite of our attempts, we could not extend the results of Theorem 1.1
to Edge Editing to Connected f-Degree Graph with Costs. The following
theorem explains why our initial attempts failed.

Theorem 1.2. Edge Editing to Connected f-Degree Graph with Costs
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(parameterized by k+d) is W[1]-hard even when the input graph G is a tree and costs
are restricted to be 0 or 1.

Previous work. It was shown by Mathieson and Szeider that the problem
of deleting k vertices to transform an input graph into an r-regular graph, where
r \geq 3 is W[1]-hard parameterized by k [18]. For edge-modification problems to a
graph with certain degrees, Mathieson and Szeider have shown that Editing to
f-Degree Graph, the case when the requirement that the resulting graph F is
connected is omitted, is solvable in polynomial time. As with the f -factor problem,
the situation changes drastically when one adds the requirement that the resulting
graph F is connected. A simple reduction from Hamiltonian cycle shows that in this
case deciding if a graph can be edited into a connected 2-degree graph, i.e., a cycle,
by changing at most k adjacencies, is NP-complete [10].

Golovach in [10] has shown that when parameterized by the maximum vertex
degree d in the resulting graph plus the number of editing operations k, the prob-
lem Edge Editing to Connected f-Degree Graph is fixed-parameter tractable
(FPT). In the same paper, it was shown that in the variant when the resulting graph
F is regular, the problem is FPT, parameterized by k. However, prior to our work the
complexity status of Edge Editing to Connected f-Degree Graph remained
open. Thus, Theorem 1.1 resolves the problem in affirmative. However, we still do
not know the kernelization status of this problem and leave it as an interesting open
problem. A related problem, Eulerian Edge Deletion on an n-vertex graph is
proved to be solvable in time 2\scrO (k)n\scrO (1) [11].

Our approach. Each solution to our problem is of the form D \cup A where
D \subseteq E(G) and A \subseteq E(G). The sets D and A are called a deletion set and an addition
set, respectively, corresponding to the solution D\cup A. We start by characterizing our
solution in terms of special deletion set D, called nice deletion set. Nice deletion sets
satisfy certain properties. These properties of nice deletion sets allow us to recover the
addition set A in polynomial time. This viewpoint allows us to concentrate on finding
a nice deletion set. To get a nice deletion set D, we view the solution D \cup A as a
system of ``alternating walks and alternating even closed walks."" Alternating (closed)
walks are essentially normal (closed) walks with edges from D \cup A such that they do
not have consecutive edges from either D or A, and no edge from D \cup A repeats in
the walk. We take this viewpoint to construct a dynamic programming algorithm as
this allows us to proceed between the states of the program by using one edge (either
of an addition set or of a deletion set). The number of states can be upper bounded
by 2\scrO (k). However, the number of sets D\prime \cup A\prime that could satisfy the prerequisite of
being in a particular table entry could be as large as n\scrO (k) and thus this would not
lead to an FPT algorithm. However, we follow this template for our algorithm and
use some more structural properties to prune the family of partial solutions stored
at a Dynamic Programming (DP) table entry. Moreover, our algorithm will output
D\ast \cup A\ast , where D\ast is a nice deletion set, if the input instance is a Yes instance.

Our pruning is based on the proof that D\cup A is an independent set in some linear
matroid. The first observation towards an FPT algorithm is that after we delete
the edges in D, the number of connected components can at most be | D|  - k + 1.
This allows us to show that, in fact, we can think of D being an independent set in
the matroid MG(\ell ). That is, \ell -elongation of the co-graphic matroid, MG, associated
with G, where \ell = | E(G)|  - | V (G)| + k  - | D| + 1 (we refer to preliminaries for
the definition). Next, we show that for the addition set A, all we need to store is
some form of disjointness and that can be captured using a uniform matroid over
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798 F. PANOLAN, F. FOMIN, P. GOLOVACH, AND S. SAURABH

the universe E(G). Let Um\prime ,k - k\prime be a uniform matroid with ground set E(G), where

m\prime = | E(G)| and k\prime = | D| . From the definition of Um\prime ,k - k\prime , any set A of size at most
k  - k\prime is an independent in Um\prime ,k - k\prime . We have already explained that we view the
deletion set D as an independent set inMG(\ell ) where \ell = | E(G)|  - | V (G)| +k - k\prime +1.
Thus, to see the solution set D \cup A as an independent set in a single matroid, we
consider the direct sum of MG(\ell ) and Um\prime ,k - k\prime ; that is, let M = MG(\ell ) \oplus Um\prime ,k - k\prime .
In M , a set I is an independent set if and only if I \cap E(G) is an independent set in
MG(\ell ) and I\cap E(G) is an independent set in Um\prime ,k - k\prime . This ensures that any solution
D \cup A is an independent set in M . By viewing any solution of the problem as an
independent set in a matroid M (which is linear), we can use fast computation of
q-representative families to prune the DP table entries. However, we still need to take
care of a technical requirement in the definition of a nice deletion set. Towards this,
we show that for every deletion set D there exists a set of edges WD, disjoint from D,
of size at most 6k such that if these edges are not selected then we can satisfy that
technical requirement. To achieve this we apply color coding technique and this can
be derandomized using universal sets.

In [11], Eulerian Edge Deletion is solved using representative family on the
co-graphic matroid associated with the input graph.

2. Preliminaries. Throughout the paper we use \omega to denote the exponent in the
running time of matrix multiplication, the current best-known bound is \omega < 2.373 [24].
We use \BbbN and \BbbN + to denote the set of natural numbers and the set of positive integers,
respectively. For any n \in \BbbN +, we use [n] to denote the set \{ 1, 2, . . . , n\} . We use \BbbQ to
denote the field of rational numbers. For any multiset A and an element x, by A(x)
we denote the number occurrences of x in A. Let U be a set and W \subseteq U \times \BbbN +. For
convenience we denote a pair (v, i) \in U \times \BbbN + (or in W ) by v(i). For any W \prime \subseteq W
and u \in U , we define

W \prime (u) =
\bigm| \bigm| \{ u(i) | i \in \BbbN +, u(i) \in W \prime \} 

\bigm| \bigm| .
2.1. Graphs. We use ``graph"" to denote simple graphs without self-loops, di-

rections, or labels. We use standard terminology from the book of Diestel [5] for
those graph-related terms which we do not explicitly define. In general, we use G to
denote a graph. We use V (G) and E(G), respectively, to denote the vertex and edge
sets of a graph G. For a graph G, we use E(G) to denote the simple non-edge set\bigl( 
V (G)

2

\bigr) 
\setminus E(G). For a vertex v \in V (G), we use EG(v) to denote the set of edges of

E(G) incident with v, EG(v) to denote the set of edges of E(G) incident with v, and
dG(v) to denote | EG(v)| , i.e., the degree of vertex v. For an edge set E\prime \subseteq E(G) and
A \subseteq E(G), we use (i) V (E\prime ) to denote the set of end vertices of the edges in E\prime , (ii)
G - E\prime to denote the subgraph G\prime = (V (G), E(G)\setminus E\prime ) of G, (iii) G+A to denote the
graph G\prime = (V (G), E(G) \cup A), and (iv) G[E\prime ] to denote the subgraph (V (G), E\prime ) of
G. We say an edge e \in E(G) is a bridge if G  - \{ e\} has more connected components
than G.

2.2. Matroids and representative families. In the next few subsections we
give definitions related to matroids. For a broader overview on matroids, we refer the
reader to [20].

Definition 2.1. A pair M = (E, \scrI ), where E is a ground set and \scrI is a family
of subsets (called independent sets) of E, is a matroid if it satisfies the following
conditions:

(I1) \emptyset \in \scrI .
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(I2) If A\prime \subseteq A and A \in \scrI , then A\prime \in \scrI .
(I3) If A,B \in \scrI and | A| < | B| , then there is e \in (B \setminus A) such that A \cup \{ e\} \in \scrI .

An inclusion-wise maximal set of \scrI is called a basis of the matroid. Using axiom (I3)
we can show that all the bases of a matroid have the same size. This size is called the
rank of the matroid M , and is denoted by rank(M). The rank function of a matroid
M = (E, \scrI ) is a function rM : 2E \rightarrow \BbbN which is defined as follows: rM (S) for any
S \subseteq E is the cardinality of the maximum sized independent set contained in S.

Linear matroids and representable matroids. Let A be a matrix over an arbitrary
field \BbbF and let E be the set of columns of A. For A, we define a matroidM = (E, \scrI ) as
follows. A set X \subseteq E is independent (that is, X \in \scrI ) if the corresponding columns are
linearly independent over \BbbF . The matroids that can be defined by such a construction
are called linear matroids, and if a matroid can be defined by a matrix A over a field
\BbbF , then we say that the matroid is representable over \BbbF ; that is, a matroidM = (E, \scrI )
of rank d is representable over a field \BbbF if there exist vectors in \BbbF d corresponding to
the elements such that linearly independent sets of vectors correspond to independent
sets of the matroid. A matroid M = (E, \scrI ) is called representable or linear if it is
representable over some field \BbbF .

Direct sum of matroids. Let M1 = (E1, \scrI 1), M2 = (E2, \scrI 2), . . . , Mt = (Et, \scrI t) be
t matroids with Ei \cap Ej = \emptyset for all 1 \leq i \not = j \leq t. The direct sum M1 \oplus \cdot \cdot \cdot \oplus Mt is

a matroid M = (E, \scrI ) with E :=
\bigcup t
i=1Ei and X \subseteq E is independent if and only if

X \cap Ei \in \scrI i for all i \leq t. Let \BbbF be a field. Let Ai be a representation matrix over \BbbF 
of Mi = (Ei, \scrI i). Then,

AM =

\left(     
A1 0 0 \cdot \cdot \cdot 0
0 A2 0 \cdot \cdot \cdot 0
...

...
...

...
...

0 0 0 \cdot \cdot \cdot At

\right)     
is a representation matrix of M1 \oplus \cdot \cdot \cdot \oplus Mt. The correctness of this construction is
proved in [17].

Proposition 2.2 (see [17, Proposition 3.4]). Given representations of matroids
M1, . . . ,Mt over the same field \BbbF , a representation of their direct sum can be found
in polynomial time.

Uniform matroids. A pairM = (E, \scrI ) over an n-element ground set E, is called a
uniform matroid if the family of independent sets is given by \scrI = \{ A \subseteq E | | A| \leq k\} ,
where k is some constant. This matroid is also denoted as Un,k. Every uniform
matroid is linear and can be represented over a finite field of size at least n by a k\times n
matrix AM where AM [i, j] = ji - 1 and 1, 2, . . . , n are distinct elements in the field.

AM =

\left(       
1 1 1 \cdot \cdot \cdot 1
1 2 3 \cdot \cdot \cdot n
1 22 32 \cdot \cdot \cdot n2

...
...

...
...

...
1 2k - 1 3k - 1 \cdot \cdot \cdot nk - 1

\right)       .

Co-graphic matroids. Given a graph G with r connected components, the co-
graphic matroid associated with G is defined as (U, I), where U = E(G) and

I = \{ S \subseteq E(G) : G - S has exactly r connected components\} .
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We use MG to denote the co-graphic matroid associated with the graph G.

Proposition 2.3 (see [20]). Co-graphic matroids are representable over any
field of size at least 2.

Elongation of a matroid. The \ell -elongation of a matroid M , where \ell > rank(M)
is defined as a matroid M \prime = (E, \scrI \prime ) such that S \subseteq E is a basis in M \prime if and only if
rM (S) = rM (E) and | S| = \ell . We use M(\ell ) to denote the \ell -elongation of a matroid
M .

Theorem 2.4 (see [15]). Given a representation of a matroid M and an inte-
ger \ell >rank(M), there is a deterministic polynomial time algorithm to compute a
representation of \ell -elongation of M , M(\ell ).

Definition 2.5 (q-representative family [17]). Given a matroid M = (E, \scrI ) and
a family \scrS of subsets of E, we say that a subfamily \widehat \scrS \subseteq \scrS is q-representative for \scrS 
if the following holds: for every set Y \subseteq E of size at most q, if there is a set X \in \scrS 
disjoint from Y with X \cup Y \in \scrI , then there is a set \widehat X \in \widehat \scrS disjoint from Y with\widehat X \cup Y \in \scrI . If \widehat \scrS \subseteq \scrS is q-representative for \scrS , we write \widehat \scrS \subseteq qrep \scrS .

Theorem 2.6 ([15]). Let M = (E, \scrI ) be a linear matroid of rank n and let \scrS =
\{ S1, . . . , St\} be a family of independent sets, each of size b. Let A be an n\times | E| matrix
representing M over a field \BbbF , where \BbbF = \BbbF p\ell or \BbbF is \BbbQ (here p is a prime number
and \ell \in \BbbN +). Then there is deterministic algorithm which computes a representative

family \widehat \scrS \subseteq qrep \scrS of size at most nb
\bigl( 
b+q
b

\bigr) 
, using \scrO 

\bigl( \bigl( 
b+q
b

\bigr) 
tb3n2 + t

\bigl( 
b+q
b

\bigr) \omega  - 1
(bn)\omega  - 1

\bigr) 
+

(n+ | E| )\scrO (1) operations over the field \BbbF .

3. An overview of our algorithm. Let (G, f, k) be an instance of EECG. Our
algorithm finds a solution of size exactly k (if one such solution exists) and outputs
No otherwise. Any solution to our problem is of the form D \cup A, where D \subseteq E(G)
and A \subseteq E(G). The sets D and A are called the deletion set and the addition set,
respectively, corresponding to the solution D \cup A.

3.1. Characterizing the solution. The starting point of our algorithm is a
characterization of its solution in terms of a deletion setD satisfying certain properties
(such deletion sets are called nice deletion sets). This allows us to focus on finding
nice deletion sets. To describe the main steps and ideas involved in our algorithm we
first give a semi-informal definition of a nice deletion set. Towards this we need the
following definitions. We define the set of deficient vertices as

def(G, f) = \{ v | v \in V (G), f(v) > dG(v)\} .

We also define a set of all pairs (v, i), where v is a deficient vertex and i is an integer
from \{ 1, . . . , f(v) - dG(v)\} ,

S(G, f) = \{ (v, i) | v \in def(G, f), i \in \{ 1, . . . , f(v) - dG(v)\} \} .

Thus for every deficient vertex v there are f(v)  - dG(v) pairs in S(G, f) containing
v. The set S(G, f) specifies how many edges in an addition set must be incident
with v. Let \psi : S(G, f) \rightarrow S(G, f) be an involution. Given \psi , we define a multiset
E\psi as follows. It consists of all possible pairs (u, v) such that u, v \in def(G, f) and
\psi (u, i) = (v, j) for some j \geq i. Essentially, map \psi will allow us to obtain the
corresponding addition set A. We say that \psi is a proper deficiency map if, for every
u \in V (G) (u, u) /\in E\psi , E\psi is a set (not a multiset), and E\psi \cap E(G) = \emptyset . Finally, a
set D \subseteq E(G) is called a nice deletion set if
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(i) For all v \in V (G), dG - D(v) \leq f(v).

(ii) | S(G - D, f)| = 2(k  - | D| ).
(iii) Graph G - D has at most k  - | D| + 1 connected components.

(iv) If G - D is not connected, then each connected component in G - D contains
a vertex v deficient in G - D, i.e. such that dG - D(v) < f(v).

(v) There exists a proper deficiency map \psi : S(G - D, f) \rightarrow S(G - D, f).
Let D \subseteq E(G). As we will see in Lemma 4.4, there exists A \subseteq E(G), | A| = k  - | D| 
such that A \cup D is a solution to EECG if and only if D is a nice deletion set.
Furthermore, given a nice deletion set we can find an addition set, if it exists, in
polynomial time. Thus, our problem reduces to finding a nice deletion set D \subseteq E(G)
and an accompanying proper deficiency map \psi on S(G - D, f), if it exists. We use a
dynamic programming (DP) algorithm to compute a nice deletion set D.

3.2. Towards the states of the dynamic programming algorithm. So,
how can one find a nice deletion set? Throughout this section we will work with
a hypothetical deletion set D. We partition the vertex set of G into sets of Green
and Red vertices: We color v \in V (G) green if dG(v) > f(v), and red otherwise. Let
Er = E(G[Red]) and Eg = E(G) \setminus Er. We need a quick sanity check; that is, if\sum 

\{ v:dG(v)\not =f(v)\} | dG(v)  - f(v)| > 2k, then we output No, because in this case any

solution to EECG requires more than k edge edits (addition/deletion operations).
Now we guess the size k\prime \leq k of D such that 2k\prime \geq 

\sum 
v\in Green dG(v) - f(v). Since D

is our hypothetical deletion set, we have that for any v \in Green, the number of edges
in D which are incident with v is at least dG(v)  - f(v). Now we guess the number
k1 of edges in D which are incident with only green vertices and the number k2 of
edges in D which are incident with at least one vertex in Red. Note that k1+k2 = k\prime .
Also note that the number of ways we can guess (k\prime , k1, k2) is at most k2. Now for
every v \in Green, we guess the number of edges in D which are incident with v. In
particular, we guess a function \Phi : Green \rightarrow \BbbN such that for all v \in Green we have
that \Phi (v) \geq dG(v)  - f(v). The number of possible functions \Phi (v) is upper bounded
by \scrO (4kk) (a proper analysis of this bound is explained in section 4). From now
on we will assume that we are given a function \Phi . In other words we have guessed
the function \Phi corresponding to the hypothetical solution D. We say that a solution
D \cup A to EECG satisfies the function \Phi if for every vertex v \in Green, the number of
edges incident with v in D is exactly \Phi (v).

We start with an intuitive explanation of the structure of the solution that is
helpful in designing partial solution for the DP algorithm. Given D\cup A, we first define
a notion of an alternating walk. An alternating walk is a sequence of vertices u1u2 \cdot \cdot \cdot u\ell 
such that consecutive pairs of vertices ((ui, ui+1), (ui+1, ui+2)) either belong to D\times A
or A\times D and \{ (ui, ui+1) | 1 \leq i < \ell \} is a set (not a multiset); that is, an edge from D
is followed by an edge from A or vice-versa. In an alternating even length closed walk,
u1 = u\ell and the first and the last edge in the walk are of different type (i.e., one from
D and one from A). One might wonder about the definition of alternating odd length
closed walk. For our purposes we will think of them as alternating walks that start
and end at the same vertex and the first and the last edge either both belong to D or
both belong to A. From now on whenever we say an alternating closed walk, we mean
an alternating even length closed walk; see Figure 3.1 for an illustration of alternating
(closed) walks. For every intermediate, i.e., not the endpoint, vertex in an alternating
walk or in an alternating closed walk, one of the edges incident with it belongs to D
while the second edge belongs to A. Thus the degree of any vertex is not disturbed
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\bullet \bullet \bullet \bullet \bullet 

\bullet 

v1 v2 v3 v4 v5

v6

\bullet \bullet \bullet \bullet \bullet 

\bullet 

\bullet 

u1 u2 u3 u4 u5

u6

u7

Fig. 3.1. Illustration of alternating (closed) walks. The blue and red edges belong to D and A,
respectively. The sequence v1v2v3v4v5v6v3v1 is an alternating walk starting and ending at v1. The
sequence u1u2u3u4u5u6u3u7u1 is an alternating closed walk. (Figure in color online.)

by an alternating walk where this vertex is intermediate. We define alternating walks
for the following reason. Let D \cup A be a solution of EECG that satisfies \Phi . We can
think of edges in D \cup A forming a family \scrP of edge disjoint alternating walks and
alternating closed walks with the following properties:

\bullet For every vertex v \in V (G) and a set Z \in \{ D,A\} , we define apdeg(\scrP , Z, v) as
the number of edges from Z that are incident with v and appear as (i) the
first edge in alternating walks from \scrP that start with v; and (ii) the last edge
in alternating walks from \scrP that end in v. Note that if there is an alternating
walk that both starts and ends in v and the start edge as well as the last edge
belong to Z, then this walk contributes two to apdeg(\scrP , Z, v) (this happens
when the alternating walk u1 . . . u\ell is of odd length and v = u1 = u\ell ). For
every vertex v \in Green, we require that apdeg(\scrP , D, v) = dG(v)  - f(v) and
apdeg(\scrP , A, v) = 0. Furthermore, for every vertex v \in Red, apdeg(\scrP , D, v) =
0 and apdeg(\scrP , A, v) = f(v) - dG(v). When the number of edges in D which
are incident on v \in Green is greater than dG(v)  - f(v), then the number
of times v appears as intermediate vertices in alternating (closed) walks is
exactly equal to the number of excess edges and these excess edges will not
contribute to apdeg(\scrP , D, v).

\bullet Every vertex v \in Green appears as an intermediate vertex in an alternating
walk or in an alternating closed walk of \scrP exactly \Phi (v) - dG(v)+ f(v) times.

This walk system view allows us to make a dynamic programming algorithm
where we can move from one state to another using one edge addition or deletion. In
particular, the algorithm works by constructing first all alternating walks P1, . . . , P\eta 
and then alternating closed walks P\eta +1, . . . , P\alpha . Given a partially constructed walk
system, we try to append an edge to the current walk we are constructing by adding
an edge from

\bigl( 
V (G)

2

\bigr) 
to it; or declaring that we are finished with the current walk

and move to obtain a new walk. During this process we also keep a partial proper
deficiency map \psi \prime such that E\psi \prime are addition-edges in the current partial solution.
Thus, a state in the dynamic programming algorithm is given by our current guesses
and a subset of domain of partial proper deficiency map. It can be shown that the
number of states is upper bounded by 2\scrO (k). However, the number of sets D\prime \cup A\prime 

that could satisfy the prerequisite of being in a particular table entry could be as
large as n\scrO (k), and thus this would not lead to an FPT algorithm. However, this is
indeed a template for our algorithm. Next, we show how to prune table entry size to
2\scrO (k)n\scrO (1), thus obtaining an FPT algorithm.

3.3. Pruning the DP table entry and an FPT algorithm. We need to
prune the DP table in a way that we do not change the answer to the given instance
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(G, f, k). Towards this we show that if some subset we have stored in a DP table entry
could lead to a nice deletion set, then we have at least one such set after the pruning
operation. Our guessing of k1, k2, and \Phi allows us to satisfy the properties (i) and (ii)
of nice deletion set. Property (iii) of nice deletion sets implies thatD is an independent
set in the matroid MG(\ell )---the \ell -elongation of the co-graphic matroid MG associated
with G, where \ell = | E(G)|  - | V (G)| + k  - | D| + 1 (we refer to preliminaries for the
definition). Thus by considering only those D which are independent sets in MG(\ell ),
we ensure that property (iii) of nice deletion set is satisfied. Now consider the property
(v) of nice deletion set, i.e., there exists a proper deficiency map \psi : S(G  - D, f) \rightarrow 
S(G - D, f). Our objective is to get a set D\cup A such that there is a proper deficiency
map \psi over S(G  - D, f) with E\psi = A, along with other properties as well. Let
D1 \cup A1, D2 \cup A2 be two partial solutions belonging to the same equivalence class,
where D1, D2 \subseteq E(G) and A1, A2 \subseteq E(G). Suppose that D\prime \subseteq E(G), A\prime \subseteq E(G),
(D1\cup D\prime )

\bigcup 
(A1\cup A\prime ) is a solution and A2\cap A\prime = \emptyset . Since D1\cup A1, D2\cup A2 belongs to

the same equivalence class and A2 and A
\prime are disjoint, there is a proper deficiency map

\psi \prime over S(G - (D2 \cup D\prime ), f) such that E\psi \prime = A2 \cup A\prime . To take care of the disjointness
property between the current addition set and the future addition set while doing
DP, we view the addition set A of the solution as an independent set in a uniform
matroid over the universe E(G). Let Um\prime ,k - k\prime be a uniform matroid with ground set

E(G), where m\prime = | E(G)| . From the definition of Um\prime ,k - k\prime , every set A of size at
most k - k\prime is independent in Um\prime ,k - k\prime . We have mentioned that D is an independent
set inMG(\ell ) where \ell = | E(G)|  - | V (G)| +k - k\prime +1. To view the solution set D\cup A as
an independent set in a matroid, we consider the direct sum M = MG(\ell )\oplus Um\prime ,k - k\prime 

of two matroids. In M , set I is independent if and only if I \cap E(G) is an independent
set in MG(\ell ) and I \cap E(G) is an independent set in Um\prime ,k - k\prime . This ensures that any
solution D\cup A is an independent set inM . By viewing any solution of the problem as
an independent set in the matroidM (which is linear), we can use the q-representative
families to prune the table. However, we still need to ensure that property (iv) of nice
deletion set is satisfied. In what follows we explain how we achieve this.

We show that for every deletion set D, there exists a set of edges WD \subseteq E(G)
disjoint from D, of size at most 6k such that if these edges are not selected, then we
can guarantee that each connected component in G - D contains a vertex v such that
dG - D < f(v). To achieve this we apply color coding. We randomly color each edge
orange with probability 1/7 and black with probability 6/7, then with probability at
least (1/7)k(6/7)6k, all the edges of the deletion set D will be colored with orange and
all the edges in WD will be colored with black. If we repeat our algorithm (77k/66k)
times, we can increase the success probability to a constant. Finally, this step is
derandomized using universal sets.

4. Algorithm. For a given graph G, a solution to EECG comprises a deletion
set D \subseteq E(G) and an addition set A \subseteq E(G). That is, F = G - D+A. In particular,
we denote the solution set as a pair (D,A), where D \subseteq E(G) and A \subseteq E(G). For an
instance (G, f, k) of EECG, our algorithm finds a solution of size exactly k (if one
such solution exists), otherwise outputs No.

4.1. Structural characterization. In this subsection we give a structural char-
acterization of a solution that is central to our parameterized algorithm. In particular,
we give necessary and sufficient conditions on D \subseteq E(G) for being a deletion set of
an optimum solution to EECG. Furthermore, we show that if we have D that sat-
isfies the desired conditions, then we can obtain the corresponding addition set A in
polynomial time. We start with a few definitions that will set up a useful language to
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speak about different aspects of the sets we will be considering throughout the paper.
Now we recall the definitions of def(G, f) and S(G, f) for convenience.

Definition 4.1. Let G be a graph and let f : V (G) \rightarrow \{ 1, 2, . . . , d\} be a function.
We call a vertex v \in V (G) deficient with respect to G and f if f(v) > dG(v). We
define the deficiency vertex set of G and f , denoted by def(G, f), as the set of deficient
vertices with respect to G and f . We define the deficiency set of G and f , denoted by
S(G, f), as a set containing f(v) - dG(v) many elements corresponding to each vertex
v \in def(G, f). Notice that the cardinality of S(G, f) is equal to

\sum 
\{ v:f(v)>dG(v)\} f(v) - 

dG(v). In particular, these sets are defined as

def(G, f) = \{ v | v \in V (G), f(v) > dG(v)\} ,
S(G, f) = \{ (v, i) | v \in V (G), f(v) > dG(v), i \in [f(v) - dG(v)]\} .

Let W \subseteq V (G)\times \BbbN +. Recall that we denote a pair (v, i) \in V (G)\times \BbbN + (or in W ) by
v(i). Let \psi : W \rightarrow W be an involution. Given \psi , we define a multiset E\psi as follows.
For each u(i) \in W we add (u, v) to E\psi if \psi (u(i)) = v(j) for some j \geq i.

Definition 4.2. Let G be a graph and let W \subseteq V (G) \times \BbbN +. An involution
\psi :W \rightarrow W is called a proper deficiency map if it satisfies the following properties:

1. Non-loop property: For each u \in V (G), (u, u) /\in E\psi .

2. Simple edge property: E\psi is a set, not a multiset; that is, there is no pair
u, v \in V (G) such that \psi (u(i1)) = v(j1) and \psi (u(i2)) = v(j2) for some i1 \not = i2
and j1 \not = j2.

3. Non-edge property: E\psi \cap E(G) = \emptyset .
In general, we will have proper deficiency map over the domain S(G, f) or some

set related to this. Finally, we define the notion of nice deletion set.

Definition 4.3. Let (G, f, k) be an instance of EECG and let D \subseteq E(G). We
say that D is a nice deletion set if the following properties are satisfied:

(i) For all v \in V (G), dG - D(v) \leq f(v).

(ii) | S(G - D, f)| = 2(k  - | D| ).
(iii) The graph G - D has at most k  - | D| + 1 connected components.

(iv) If G  - D is not connected, then each connected component in G  - D con-
tains a deficient vertex with respect to G - D and f (i.e., for each connected
component F in G - D, V (F ) \cap def(G - D, f) \not = \emptyset ).

(v) There exists a proper deficiency map \psi : S(G - D, f) \rightarrow S(G - D, f).

Lemma 4.4. Let (G, f, k) be an instance of EECG and let D \subseteq E(G). Then
there exists A \subseteq E(G), | A| = k  - | D| such that A \cup D is a solution to EECG if and
only if D is a nice deletion set. Moreover, given a nice deletion set D \subseteq E(G) we
can find A \subseteq E(G) such that | A| = k  - | D| and D \cup A is a solution to EECG in
polynomial time.

Proof. (\Rightarrow ) Let A \subseteq E(G), | A| = k  - | D| be such that A \cup D is a solution to
EECG. We need to show that D \subseteq E(G) is a nice deletion set. Since A \cup D is a
solution to EECG, we have that dG - D(v) \leq f(v) for all v \in V (G), satisfying condition
(i). Furthermore, A\cup D being a solution also implies that

\sum 
\{ v : f(v)>dG - D(v)\} f(v) - 

dG - D(v) = 2| A| = 2(k  - D). Hence | S(G  - D, f)| = 2(k  - | D| ), satisfying condition
(ii). Since G - D+A is a connected graph, G - D can have at most | A| +1 = k - | D| +1
connected components, satisfying condition (iii) in the definition. The graph G - D+A
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is connected and thus each connected component F inG - D (ifG - D is not connected)
contains a vertex v \in V (F ) such that (v, u) \in A for some u \in V (G). Since D \cup A
is a solution to EECG, dG - D+A(v) = f(v) and hence dG - D(v) < f(v) (because
(v, u) \in A), satisfying condition (iv). Finally, we show that D satisfies the last
property. Let A = \{ e1, e2, . . . , er\} \subseteq E(G), where r = k - | D| . SinceD\cup A is a solution
to EECG, we have that for any vertex v, there are exactly f(v) - dG - D(v) edges in
A which are incident to v. Now we define a bijection \psi : S(G - D, f) \rightarrow S(G - D, f)
as follows: \psi (u(i)) = v(j) if (u, v) = e\ell such that there are exactly i  - 1 edges from
\{ e1, . . . , e\ell  - 1\} incident on u and there are exactly j  - 1 edges from \{ e1, . . . , e\ell  - 1\} 
incident on v; that is, we traverse the edges e1, . . . , er from left to right and find the
ith edge incident with u, say e\ell = (u, v), and then we assign it v(j) if there are exactly
j  - 1 edges incident with v present among \{ e1, . . . , e\ell  - 1\} .

Claim 1. \psi : S(G - D, f) \rightarrow S(G - D, f) is a proper deficiency map.

Proof. By the definition of \psi , if \psi (u(i)) = v(j), then \psi (v(j)) = u(i), and so \psi is
an involution. Since G  - D + A is a simple graph, for any u \in V (G), (u, u) /\in E\psi .
Now we need to show that E\psi is not a multiset. Suppose not, then there exists
u, v \in V (G) such that \psi (u(i1)) = v(j1) and \psi (u(i2)) = v(j2) for some i1 \not = i2 and
j1 \not = j2. This implies that there exist ei, ej \in A, i \not = j such that ei = ej = (u, v).
This contradicts the fact that G - D + A is a simple graph. Since A is disjoint from
E(G), E\psi \cap E(G) = \emptyset . This completes the proof of the claim.

(\Leftarrow ) Let D \subseteq E(G) be a nice deletion set. We need to show that we can find
A \subseteq E(G) such that | A| = k - | D| and G - D+A is a solution to EECG. Properties (i)
and (ii) imply that dG - D(v) \leq f(v) for all v \in V (G) and | S(G - D, f)| = 2(k  - | D| ).
Due to the property (v) in the definition of nice deletion set, we know that there exists
a proper deficiency map \psi : S(G  - D, f) \rightarrow S(G  - D, f). Define A1 = E\psi . By the
definition of E\psi , | A1| = | E\psi | = | S(G - D, f)| /2 = k - | D| . Also note thatA1\cap E(G) = \emptyset 
because \psi is a proper deficiency map. Now consider the graph G1 = G - D+A1. Note
that G1 is simple graph because \psi is a proper deficiency map. Also by the definition
of E\psi , dG - D+A1

(v) = f(v) for all v \in V (G). So G1 satisfies the degree constraints. If
G1 is connected, then D\cup A1 is a solution to EECG. Thus, we assume that G1 is not
connected. In what follows we give an iterative procedure that finds the desired A.
Suppose we are in ith iteration and we have a set Ai such that G  - D + Ai satisfies
all degree constraints but G - D+Ai is not connected. Then in the next iteration we
find another addition set of size k  - | D| , say Ai+1, such that G  - D + Ai+1 satisfies
all degree constraints and G - D+Ai+1 has strictly less connected components than
in G  - D + Ai. The procedure is started with A1 = E\psi . Let i \geq 1 and we have Ai
such that G - D+Ai satisfies all degree constraints but G - D+Ai is not connected.
Since | Ai| = k  - | D| and G  - D has at most k  - | D| + 1 connected components,
Gi = G  - D + Ai has a component F such that there is an edge (u1, v1) \in Ai with
the property that u1, v1 \in V (F ) and (u1, v1) is not a bridge in F . Let F \prime be another
connected component in Gi. Since each connected component in G  - D contains a
vertex w \in V (G) such that dG - D(w) < f(w), there exists an edge (u2, v2) \in Ai such
that u2, v2 \in V (F \prime ). Now let Ai+1 = (Ai \setminus \{ (u1, v1), (u2, v2)\} ) \cup \{ (u1, u2), (v1, v2)\} .
Observe that Gi+1 = G - D +Ai+1 is a simple graph with a strictly smaller number
of connected components than in Gi and dGi+1(v) = f(v) for all v \in V (G). Observe
that when the procedure stops, we find the desired A.

Given a nice deletion set D, we can find the desired A using the iterative proce-
dure described in the reverse direction of the proof. Clearly, this procedure can be
implemented in polynomial time. This completes the proof of the lemma.
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4.2. An algorithm with running time \bfitn \bfscrO (\bfitk ). In this subsection we design
an algorithm for EECG running in time n\scrO (k)---an XP algorithm. Clearly, this is
not the algorithm we promised. In fact a simple brute force algorithm for EECG
will run in time n\scrO (k). But this algorithm will provide a skeleton for a parameterized
algorithm given in the next subsection. Both the algorithms, XP as well as FPT for
EECG, are based on DP. The algorithm given in this subsection allows us to introduce
various aspects of the dynamic programming in a gentler manner. Even though the
number of states in the dynamic programming algorithm given in this subsection is
bounded by 2\scrO (k) \cdot n\scrO (1), the number of partial solutions stored in a DP table entry
could potentially be n\scrO (k). The FPT algorithm given in the next subsection is based
on this algorithm and uses tools from representative family to reduce the cardinality
of partial solutions stored in any DP table entry to 2\scrO (k) \cdot n\scrO (1).

Given an instance (G, f, k) of EECG. The main idea of the algorithm is to find
a nice deletion set D \subseteq E(G) and an accompanying proper deficiency map \psi on
S(G - D, f), if it exists, using dynamic programming. Throughout this section we will
work with a hypothetical deletion set D. We start with coloring the vertices of G,
green and red in the following way. We color v \in V (G) green if dG(v) > f(v), otherwise
we color v red; that is, Green = \{ v | v \in V (G), dG(v) > f(v)\} and Red = V (G)\setminus Green.
Let Er = E(G[Red]) and Eg = E(G) \setminus Er. We need a quick sanity check; that is,
if
\sum 

\{ v:dG(v) \not =f(v)\} | dG(v)  - f(v)| > 2k, then we output No, because in this case any

solution to EECG requires more than k edge edits (addition/deletion operations).
Now we guess the size k\prime \leq k of D such that 2k\prime \geq 

\sum 
v:dG(v)>f(v) dG(v) - f(v). Since

D is our hypothetical deletion set, we have that for any v \in Green, the number of edges
in D which are incident with v is at least dG(v)  - f(v). Now we guess the number
k1 of edges in D which are incident with only green vertices and the number k2 of
edges in D which are incident with at least one vertex in Red. Note that k1+k2 = k\prime .
Also note that the number of ways we can guess (k\prime , k1, k2) is at most k2. Now for
every v \in Green, we guess the number of edges in D which are incident with v. In
particular, we guess a function \Phi : Green \rightarrow \BbbN such that for all v \in Green we have
that \Phi (v) \geq dG(v)  - f(v). We claim that the number of possible functions from
Green to \BbbN that represent the number of edges incident with a vertex v \in Green in the
hypothetical solution D is bounded by \scrO (4kk). Let k3 be the number of edges in D
which are incident with only red vertices. Observe that we are looking for functions
\Phi , such that for all v \in Green we have that 1 \leq dG(v) - f(v) \leq \Phi (v) \leq k1 + k2  - k3,
and

\sum 
v\in \sansG \sansr \sanse \sanse \sansn \Phi (v) \leq 2k1 + k2  - k3. The number of such functions is upper bounded

by

\scrO (2| \sansG \sansr \sanse \sanse \sansn | +2k1+k2 - k3 - 
\sum 

v\in \sansG \sansr \sanse \sanse \sansn dG(v) - f(v)).

The above quantity is upper bounded by \scrO (4k) because | Green| \leq 
\sum 
v\in \sansG \sansr \sanse \sanse \sansn dG(v)  - 

f(v) and 2k1 + k2  - k3 \leq 2k. Since there are at most k possible values for k3, the
number of possible functions \Phi (v) is upper bounded by \scrO (4kk). From now on we will
assume that we are given a function \Phi . In other words we have guessed the function
\Phi corresponding to the hypothetical solution D. We say that a solution D \cup A to
EECG satisfies the function \Phi if for every vertex v \in Green the number of edges
incident with v in D is exactly equal to \Phi (v).

Intuitive structure of the algorithm. We start with an intuitive explanation of
the structure of a solution that helps us in designing a partial solution for the DP
algorithm. Any solution to our problem is of the form D \cup A \in 

\bigl( 
V (G)

2

\bigr) 
where D \subseteq 

E(G) and A \subseteq E(G). Given D \cup A, we first define a notion of an alternating walk.
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An alternating walk is a sequence of vertices u1u2 . . . u\ell such that consecutive pairs
((ui, ui+1), (ui+1, ui+2)) either belong to D \times A or A \times D and no edges from D \cup A
repeats in the walk; that is, an edge from D is followed by an edge from A or vice-
versa. In an alternating even length closed walk, u1 = u\ell and the starting and ending
edges are of different type. One might wonder about the definition of alternating
odd length closed walk. For our purposes we will think of them as alternating walks
that start and end at the same vertex, and the first and the last edge either both
belong to D or both belong to A. From now on whenever we say an alternating closed
walk, we mean an alternating even length closed walk. For every intermediate vertex
in an alternating (closed) walk, one of the edges incident with it belongs to D and
the second edge belongs to A. Thus the degree of any vertex is not disturbed by an
alternating walk where this vertex is intermediate. We define alternating walks for
the following reason. Let D \cup A be a solution of EECG that satisfies \Phi . We can
think of edges in D\cup A forming a family \scrP of edge disjoint alternating (closed) walks
with the following properties:

\bullet For every vertex v \in V (G) and a set Z \in \{ D,A\} , we define apdeg(\scrP , Z, v) as
the number of edges from Z that are incident with v and appear as (i) the
first edge in alternating walks from \scrP that start with v and (ii) the last edge
in alternating walks from \scrP that end in v. Note that if there is an alternating
walk that both starts and ends in v and the start edge as well as the last
edge belong to Z, then this path contributes two to apdeg(\scrP , Z, v). For every
vertex v \in Green, apdeg(\scrP , D, v) = dG(v) - f(v) and apdeg(\scrP , A, v) = 0. Fur-
thermore, for every vertex v \in Red, apdeg(\scrP , D, v) = 0 and apdeg(\scrP , A, v) =
f(v) - dG(v).

\bullet Every vertex v \in Green, appears as an intermediate vertex in an alternating
(closed) walk of \scrP is exactly equal to \Phi (v) - dG(v) + f(v).

For any solution \scrP = \{ P1, P2, . . . , P\alpha \} , without loss of generality we assume that
there is \eta such that P1, . . . , P\eta are alternating walks and P\eta +1, . . . , P\alpha are alternating
closed walks. In our solution we will first construct all alternating walks and then
construct all alternating closed walks. Also for any alternating closed walk, we always
start with a deletion edge.

Towards an implementation of the intuitive description. Our objective is to design
a DP algorithm. Thus, we first need to define a notion of a partial solution which will
constitute a basic building block of our algorithm. We first explain partial solutions
and its structure which will be utilized to design the algorithm. Any solution to our
problem is of the form D \cup A \in 

\bigl( 
V (G)

2

\bigr) 
where D \subseteq E(G) and A \subseteq E(G), thus the

partial solution for the problem is also a subset B\cup A\prime \in 
\bigl( 
V (G)

2

\bigr) 
where B \subseteq E(G) and

A\prime \subseteq E(G). Let D \cup A be a solution of EECG that satisfies \Phi . As described before
we think of edges in D \cup A forming a family, \scrP = \{ P1, . . . , Ps\} , of alternating walks
and alternating closed walks. A partial solution can be thought of as \{ P1, . . . , P

\ast 
j \} ,

where we have already created P1, . . . , Pj - 1 and P \ast 
j is some subwalk of Pj that we are

creating now. This view could be useful in understanding the algorithm we are going
to describe later. At this point we add a caveat that our algorithm slightly differs from
this perspective to make the proof more accessible.

Let \scrP \prime = \{ P1, . . . , P
\ast 
j \} be a partial solution. We first assume that the P \ast 

j that
we are constructing is going to be an alternating walk. For every vertex v \in V (G)
and a set Z \in \{ B,A\prime \} , we define apdeg\ast (\scrP \prime , Z, v) as the number of edges from Z that
are incident with v and appear as (i) the first edge in alternating walks from \scrP \prime that
start with v; and (ii) the last edge in alternating walks from \{ P1, . . . , Pj - 1\} that end
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808 F. PANOLAN, F. FOMIN, P. GOLOVACH, AND S. SAURABH

in v. As before, if there is an alternating walk that both starts and ends in v and
the start edge as well as the last edge belong to Z, then this path contributes two
to apdeg\ast (\scrP \prime , Z, v). If theP \ast 

j that we are constructing is going to be an alternating
closed walk, then apdeg\ast (\scrP \prime , Z, v) = apdeg(\{ P1, . . . , Pj - 1\} , Z, v). Before we go further
we would like to add that while making an algorithm we will know whether we are
currently constructing an alternating walk or an alternating closed walk.

In our algorithm we form partial solutions of size i from partial solutions of size
i  - 1. It is important for designing the FPT algorithm given in the next subsection
to partition the set of partial solutions based on some of its structures. Note that
we have already guessed some structure of the solution: like the number of deletion
edges, the number of deletion edges with both endpoints in Green, the number of
addition edges, and the number of deletion edges from E(v) for each vertex v \in Green
(via guessing the function \Phi ). We use these structures to characterize the equivalence
classes of partial solutions. Since we are going to compute a solution which respects
\Phi , in the description of an equivalence class over partial solution we would like to
include for every vertex v \in Green the number of edges that are incident with v
and contribute to apdeg\ast (\scrP , D, v). This is achieved by creating a multiset set Tm
containing dG(v) - f(v) many copies of v for all v \in Green and keeping a subset of T \prime 

m

for each equivalence class; that is, T \prime 
m tells us how many edges incident with a vertex

v \in Green must be present in the partial solutions that respect apdeg\ast (\scrP \prime , B, v). In
other words, apdeg\ast (\scrP \prime , B, v) = T \prime 

m(v).
Now we define another set Tg for Green vertices that stores the information about

how many times a vertex v appears as an intermediate vertex in the current partial
solution \scrP \prime = \{ P1, . . . , P

\ast 
j \} . In particular, we define

Tg =\{ v(i) | v \in Green,\Phi (v) > dG(v) - f(v), i \in [\Phi (v) - (dG(v) - f(v))]\} .

We use T \prime 
g \subseteq Tg to represent an equivalence class with the property that a partial

solution \scrP \prime = \{ P1, . . . , P
\ast 
j \} satisfies that for every vertex v \in Green the number of

times v appears as an intermediate vertex in \scrP \prime is the same as the number of ele-
ments corresponding to it in T \prime 

g. Observe that we are differentiating between elements
corresponding to a vertex and a copy of a vertex. For example, consider a vertex v.
When we say that Tm contains three copies of a vertex v, we mean \{ v, v, v\} \subseteq Tm
and when we say Tg contains three elements corresponding to v, then we mean that
\{ v(1), v(2), v(3)\} \subseteq Tg.

We have taken care of all alternating walks that start or end with deletion edges
as well as alternating closed walk. We also have some alternating walks that start or
end with an addition edge. Now we define some sets that will help us to have some
control over these alternating walks. Towards this we define a set Tr as follows: Tr
is a set such that for every v \in Red there are exactly f(v)  - dG(v) elements in Tr
corresponding to v:

Tr =\{ v(i) | v \in Red, f(v) > dG(v), i \in [f(v) - dG(v)]\} .

Ideally, we would like to keep a set T \prime 
r \subseteq Tr to represent an equivalence class with

the property that a partial solution \scrP \prime = \{ P1, . . . , P
\ast 
j \} satisfies that for every vertex

v \in Red, apdeg\ast (\scrP \prime , A\prime , v) = T \prime 
r(v). However, for technical reasons we represent it as

follows. For every vertex v \in Red, apdeg\ast (\scrP \prime , A\prime , v) = (Tr \setminus T \prime 
r)(v).

Let v be the last vertex of P \ast 
j . When we are constructing P \ast 

j it can happen that
the edge incident with v could either be a deletion edge or an addition edge. In either
case we do not know whether v is the last vertex of P \ast 

j and thus we cannot store the
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information on v either using T \prime 
g or T

\prime 
r. To overcome this difficulty, we keep a multiset

X of size at most two or a set Y of size at most one. If the last edge is an addition
edge, then we store v in Y , and if the last edge is a deletion edge, then we store v
in X. Now we explain why X is a multiset and | X| \leq 2. If P \ast 

j is going to be an
alternating closed walk, then, in fact, we need to store information about both of its
end vertices. In other words, if P \ast 

j is going to be an alternating closed walk, then P \ast 
j

starts with a deletion edge and the information about its starting vertex is stored in
X. If P \ast 

j ends with deletion edge, then the information about it is stored in X and
the end vertex very well could be same as the starting vertex of P \ast 

j . Thus, X could
be a multiset of size 2.

Informal description of the algorithm. Our algorithm works as follows. First,
we construct all alternating walks P1, . . . , P\eta and then construct alternating closed
walks P\eta +1, . . . , P\alpha . Now we explain how each alternating (closed) walk can be con-
structed. Suppose we have completed constructing Pj - 1. We start constructing Pj in
the following preference order.

1. If Tm \not = T \prime 
m, then we start with a deletion edge incident with v \in Tm \setminus T \prime 

m and
add a copy of v to T \prime 

m. Let P \ast 
j denotes the current partial alternating walk

that we have constructed so far. If P \ast 
j ends in a vertex u \in Tm \setminus T \prime 

m with a
deletion edge, then we say Pj = P \ast 

j and add a copy of u to T \prime 
m. If P \ast 

j ends in
a vertex u with an addition edge and there is an element corresponding to u
in T \prime 

r, then we say Pj = P \ast 
j and we delete an element corresponding to u from

T \prime 
r. Else, we continue constructing this alternating walk by either adding or

deleting an appropriate edge incident with u. Notice that if u is a vertex in
Green, then the last edge of P \ast 

j will be accounted in the next step using T \prime 
g.

However, if u \in Red, then we do not account for these edges using any set.

2. If T \prime 
r \not = \emptyset , then we start with an addition edge incident with a vertex v,

where T \prime 
r(v) \not = 0 and we delete an element corresponding to v from T \prime 

r. Let
P \ast 
j denotes the current partial alternating walk that we have constructed so

far. Now if P \ast 
j ends in a vertex u \in Tm \setminus T \prime 

m with a deletion edge, then we
say Pj = P \ast 

j and add a copy of u to T \prime 
m. If P \ast 

j ends in a vertex u with an
addition edge and there is an element corresponding to u in T \prime 

r, then we say
Pj = P \ast 

j and we delete an element corresponding to u from T \prime 
r. Else, we

continue constructing this alternating walk by either adding or deleting an
appropriate edge incident with u.

3. If both the above cases are not applicable, then, in fact, j  - 1 \geq \eta ; that is,
we have constructed all the alternating walks in the solution. Let B \subseteq E(G)
and A\prime \subseteq E(G) be the set of deletion edges and addition edges present in
P1, . . . , Pj - 1. In fact, at this point dG - B+A\prime (v) = f(v) for all v \in V (G),
Tm = T \prime 

m, T \prime 
r = \emptyset , X = \emptyset , and Y = \emptyset . So all the degree constraints are

satisfied. But to make the resulting graph connected we might need to do
more editing. Note that any alternating closed walk will not disturb the
degree of any vertex. It is only used for connectivity purpose. We start
construction of P \ast 

j by guessing a deletion edge (u, v) in the closed walk Pj
and adding both its end-vertices---u and v to X. After this we continue
following this alternating walk until we hit u again with a deletion edge.
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In essence, we are constructing our alternating walks greedily (that is, we stop
whenever we have a chance to do so).

A formal definition of partial solution. For our partial solution we would like to
use Lemma 4.4. That is, we would like to obtain a nice deletion set. However, to
completely characterize a nice deletion set, we also need a proper deficiency map.
Note that for any Z \subseteq E(G), Tr \subseteq S(G - Z, f). For each partial solution B \cup A\prime , the
subset T \prime 

r \subseteq Tr represents the following: the current partial proper deficiency map
does not have T \prime 

r as its domain. This is the main reason we defined T \prime 
r differently

than T \prime 
m and T \prime 

g. In other words T \prime 
r denotes that we still ``need to add certain number

of edges"" on vertices belonging to Red. However, note that we have a vertex v \in X
and the only reason this vertex is in X is that f(v) > dG - B(v). Thus, when we
consider S(G - B, f) \setminus T \prime 

r, then there is an element corresponding to v present in it.
And we cannot take care of this deficiency using the current partial map for which
the corresponding edge set is A\prime . To circumvent this we remove the newly added
deficiencies from our domain. Towards this we define XB,f as follows. Let X be a
multiset of size 2 such that for all u \in X, f(u) > dG - B(u) +X(u) - 1. Then,

XB,f = \{ u(i) | u \in X, f(u) - dG - B(u) - X(u) + 1 \leq i \leq f(u) - dG - B(u), i \in \BbbN +\} .

Note that XB,f \subseteq S(G - B, f). Similarly, when Y \not = \emptyset we know that the last operation
was an edge addition incident with a vertex w \in Y . Thus to have a proper deficiency
map \psi \prime such that E\psi \prime = A\prime , we need to add Y to the domain of \psi \prime . For some partial
solution B \cup A\prime , it can happen that there exists v \in Green such that dG - B(v) \geq f(v)
and EG(v) \cap A\prime \not = \emptyset . Thus to have a proper deficiency map \psi \prime such that E\psi \prime = A\prime ,
we add the set T \prime 

g corresponding to the partial solution B \cup A\prime to the domain of \psi \prime .
Thus for any partial solution B \cup A\prime which are in an equivalence class characterized
by T \prime 

g \subseteq Tg, T
\prime 
r \subseteq Tr, X, and Y , we will have a proper deficiency map \psi \prime over

(S(G - B, f) \cup T \prime 
g \cup Y ) \setminus (T \prime 

r \cup XB,f ) such that E\psi \prime = A\prime .
Now we formally define the notion of partial solutions. Given an instance (G, f, k)

we define Tm, Tg, and Tr as described earlier. Also, recall that we have k1, k2, and \Phi .
For any T \prime 

m \subseteq Tm, T
\prime 
g \subseteq Tg, T

\prime 
r \subseteq Tr, k

\prime 
1 \leq k1, k

\prime 
2 \leq k2, i \leq k, a multiset X containing

elements from V (G) and Y \subseteq V (G) such that | X| \leq 2, | Y | \leq 1, | X \cup Y | \leq 2, and

X \cap Y = \emptyset , we define a family \scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ) of subsets of

\bigl( 
V (G)

2

\bigr) 
as

follows. For any B \subseteq E(G) and A \subseteq E(G), B \cup A \in \scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ) if

the following conditions are met:
(a) | E(G[Green]) \cap B| = k\prime 1, | B \setminus E(G[Green])| = k\prime 2, and | B \cup A| = i.

(b) For every v \in Green, the number of edges in B which are incident with v is
exactly equal to T \prime 

m(v)+T \prime 
g(v)+X(v); that is, for all v \in Green, | B\cap EG(v)| =

T \prime 
m(v) + T \prime 

g(v) +X(v).

(c) | XB,f | = | X| and XB,f \subseteq S(G - B, f) \setminus Tr.
(d) The graph G - B has at most k  - k\prime + 1 connected components.

(e) There is a proper deficiency map \psi \prime : (S(G - B, f)\cup T \prime 
g \cup Y ) \setminus (T \prime 

r \cup XB,f ) \rightarrow 
(S(G  - B, f) \cup T \prime 

g \cup Y ) \setminus (T \prime 
r \cup XB,f ) such that A = E\psi . Furthermore, for

w \in Y , if \psi \prime (w) = u(j) for some j, then Tm(u) = T \prime 
m(u).

In condition (e) we demanded the following: for w \in Y , if \psi \prime (w) = u(j) for some
j, then Tm(u) = T \prime 

m(u). We explain the reason for doing this. In our algorithm if
Y \not = \emptyset , then the last operation is an addition operation with an edge incident with w.
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If (u,w) is the edge added in the last operation, then in the proper deficiency map \psi ,
w maps to u(j) for some j. The only reason we did not stop at u is because either
u \in Red or u \in Green and T \prime 

m(u) = Tm(u). Thus, in some sense this condition helps
us in knowing when the current alternating walk we are constructing will stop.

For T \prime 
m \subseteq Tm, T

\prime 
g \subseteq Tg, T

\prime 
r \subseteq Tr, k

\prime 
1 \leq k1, k

\prime 
2 \leq k2, i \leq k, a multiset X containing

elements from V (G) and Y \subseteq V (G), we say that the tuple (T \prime 
mT

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y )

is a valid tuple if the following happens:
(1) | X| \leq 2, | Y | \leq 1, | X \cup Y | \leq 2, and X \cap Y = \emptyset .
(2) For w \in Y , w(j) /\in T \prime 

r for all j.

(3) If u(j) \in T \prime 
g, then u(j

\prime ) \in T \prime 
g for all 0 < j\prime < j.

(4) For every v \in X, Tm(v) = T \prime 
m(v).

For the correctness of the algorithm, it is enough to focus on partial solutions defined
over valid tuples. We have already explained that why the cardinality of | X| \leq 2
and | Y | \leq 1. Also note that if we have a partially constructed alternating (closed)
walk, then its current end vertex will be either in X or Y . If we are constructing
an alternating closed walk, then its starting vertex will also be in X. Because of
this | X \cup Y | \leq 2. When both X and Y are nonempty, then we are constructing an
alternating closed walk stating at a vertex x \in X and at present it ends at a vertex
w \in Y . If x = w, then we could have greedily completed this closed walk. Hence,
X \cap Y \not = \emptyset . For any partial solution B \cup A \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ), we have a

proper deficiency map \psi over (S(G - B, f)\cup T \prime 
g\cup Y )\setminus (T \prime 

r\cup XB,f ). If u(j) \in S(G - B, f),
then u(j\prime ) \in S(G - B, f) for all j\prime \leq j. Since T \prime 

g also accounts for the number of edges
deleted from each vertex in Green (along with T \prime 

m and X), the condition (3) of the
valid tuple is a sanity check. Conditions (2) and (4) are another set of sanity checks
which we have already explained.

Now we prove that, in fact, \scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ) is ``a correct notion of

partial solutions.""

Lemma 4.5. Let (G, f, k) be a Yes instance of EECG with a solution D\cup A such
that D \subseteq E(G), A \subseteq E(G), | D\cap E(G[Green])| = k1, | D \setminus E(G[Green])| = k2, k1+k2 =
k\prime , and | D \cap EG(v)| = \Phi (v) for all v \in Green. Let \psi be a proper deficiency map over
S(G - D, f) such that E\psi = A. Then, for each i \leq k, there exists D\prime \cup A\prime \subseteq D\cup A and a
valid tuple (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ) such that D\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y )

and there is a proper deficiency map \psi \prime over R = (S(G - D\prime , f)\cup T \prime 
g\cup Y )\setminus (T \prime 

r\cup XD\prime ,f )
with the property that E\psi \prime = A\prime 

Proof. We prove the lemma by induction on i. For i = 0 we set D\prime , A\prime = \emptyset and so
D\prime \cup A\prime \in \scrQ (\emptyset , \emptyset , Tr, 0, 0, 0, \emptyset , \emptyset ). It is obvious to see thatD\prime \cup A\prime satisfies the conditions
(a), (b), (c), and (e) of being in the family \scrQ (\emptyset , \emptyset , Tr, 0, 0, 0, \emptyset , \emptyset ). Since D \cup A is a
solution of EECG, G has at most k - k\prime +1 connected components, and hence D\prime \cup A\prime 

satisfies the condition (d) of being in the family \scrQ (\emptyset , \emptyset , Tr, 0, 0, 0, \emptyset , \emptyset ). Assume that
the statement is true for i - 1; that is, there exists D\prime \cup A\prime \subseteq D \cup A and a valid tuple
(T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ) such that D\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ) and

there is a proper deficiency map \psi \prime over R = (S(G - D\prime , f) \cup T \prime 
g \cup Y ) \setminus (T \prime 

r \cup XD\prime ,f )
with the property that E\psi \prime = A\prime . We need to show that the statement holds for i.

Case 1: \bfitX ,\bfitY = \emptyset . Since i - 1 < k, we have that D\prime \not = D or A\prime \not = A.
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812 F. PANOLAN, F. FOMIN, P. GOLOVACH, AND S. SAURABH

Subcase (i): D\prime \not = D. Let e = (x, y) \in D \setminus D\prime . Let D\prime \prime = D\prime \cup \{ e\} and let Y \prime = \emptyset .
Now we explain how to construct X \prime . The set X \prime is a subset of \{ x, y\} . If x \in Green
and x /\in Tm \setminus T \prime 

m, then we add x to X \prime . If x \in Red, then we add x to X \prime . A similar
case holds for y as well. We set X \prime = \{ z \in \{ x, y\} | z /\in Tm \setminus T \prime 

m\} . Note that if
z \in \{ x, y\} is a Red vertex, then z /\in Tm \setminus T \prime 

m. The following claim follows from the
definition of X \prime .

Claim 2. Let z \in \{ x, y\} \cap Green. Then z /\in X \prime if and only if z \in Tm \setminus T \prime 
m.

Let T \prime \prime 
m = T \prime 

m \cup (\{ x, y\} \cap (Tm \setminus T \prime 
m)); that is, we add those elements from

\{ x, y\} to T \prime 
m that appear in Tm \setminus T \prime 

m. Now we define k\prime \prime 1 = k\prime 1 + 1 and k\prime \prime 2 = k\prime 2
if e \in E(G[Green]), otherwise k\prime \prime 1 = k\prime 1 and k\prime \prime 2 = k\prime 2 + 1. Now we claim that
D\prime \prime \cup A\prime \in \scrQ (T \prime \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime \prime 
1 , k

\prime \prime 
2 , i,X

\prime , Y \prime ) and (T \prime \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime \prime 
1 , k

\prime \prime 
2 , i,X

\prime , Y \prime ) is a valid
tuple. Since | X \prime | \leq 2, Y \prime = \emptyset , and (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, Y ) is a valid tuple,

(T \prime \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime \prime 
1 , k

\prime \prime 
2 , i,X

\prime , Y \prime ) satisfies properties (1), (2), and (3) of a valid tuple. Due
to Claim 2, (T \prime \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime \prime 
1 , k

\prime \prime 
2 , i,X

\prime , Y \prime ) satisfies property (4) of a valid tuple. Since
D\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, \emptyset , \emptyset ) and D\prime \prime = D\prime \cup \{ (x, y)\} , the subset D\prime \prime \cup A\prime ,

satisfies the following conditions:
(a) | D\prime \prime \cap E(G[Green])| = k\prime \prime 1 , | D\prime \prime \setminus E(G[Green])| = k\prime \prime 2 , and | D\prime \prime \cup A\prime | = i.

(b) Due to Claim 2 and the definition of T \prime \prime 
m, we have that for any v \in Green,

| D\prime \prime \cap EG(v)| = T \prime \prime 
m(v) +X \prime (v) + T \prime 

g(v).

(c) Since for any v \in X \prime , dG - D\prime \prime (v) < f(v), we have that | X \prime | = | X \prime 
D\prime \prime ,f | and

X \prime 
D\prime \prime ,f \subseteq S(G - D\prime \prime , f) \setminus Tr.

(d) Since D \cup A is a solution of EECG, by Lemma 4.4, we have that G - D has
at most k  - k\prime + 1 connected components. This implies that G  - D\prime \prime has at
most k  - k\prime + 1 connected components.

(e) Since S(G  - D\prime \prime , f) \cup T \prime 
g = S(G  - D\prime , f) \cup T \prime 

g \cup X \prime 
D\prime \prime ,f and (S(G  - D\prime , f) \cup 

T \prime 
g) \cap X \prime 

D\prime \prime ,f = \emptyset , we have that (S(G  - D\prime , f) \cup T \prime 
g) \setminus T \prime 

r = (S(G  - D\prime \prime , f) \cup 
T \prime 
g) \setminus (T \prime 

r \cup X \prime 
D\prime \prime ,f ). This implies that \psi \prime is a proper deficiency map over

(S(G - D\prime \prime , f) \cup T \prime 
g) \setminus (T \prime 

r \cup X \prime 
D\prime \prime ,f ).

Thus we conclude that D\prime \prime \cup A\prime \in \scrQ (T \prime \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime \prime 
1 , k

\prime \prime 
2 , i,X

\prime , Y \prime ).
Subcase (ii): D\prime = D. In this subcase we have that A\prime \not = A. Let (x, y) \in A \setminus A\prime .

Let A\prime \prime = A\prime \cup \{ (x, y)\} . Note that E\psi = A and E\psi \prime = A\prime . Since D\prime = D, for all
v \in Green the number of edges in D\prime which are incident with v is equal to \Phi (v).
Also, note that Tm(v) + Tg(v) = \Phi (v). This implies that T \prime 

m = Tm and T \prime 
g = Tg.

Since \psi is a proper deficiency map over S(G  - D, f) = S(G  - D, f) \cup Tg, \psi 
\prime is a

proper deficiency map over (S(G - D\prime , f) \cup T \prime 
g) \setminus T \prime 

r and (x, y) \in E\psi \setminus E\psi \prime , there ex-
ists j, j\prime such that x(j), y(j\prime ) \in T \prime 

r. Now we claim that D\prime \cup A\prime \prime \in \scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r \setminus 

\{ x(j), y(j\prime )\} , k\prime 1, k\prime 2, i, \emptyset , \emptyset ). Since D\prime \cup A\prime \in \scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, \emptyset , \emptyset ), D\prime \cup 

A\prime \prime satisfies conditions (a), (b), (c), and (d) of being in the family \scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r \setminus 

\{ x(j), y(j\prime )\} , k\prime 1, k\prime 2, i, \emptyset , \emptyset ). Now we need to show that D\prime \cup A\prime \prime satisfies condition (e).
Consider the bijection \psi \prime \prime defined over (S(G  - D\prime , f) \cup T \prime 

g) \setminus (T \prime 
r \setminus \{ x(j), y(j\prime )\} ) as

follows:

\psi \prime \prime (q) =

\left\{   y(j\prime ) if q = x(j),
x(j) if q = y(j\prime ),
\psi \prime (q) otherwise.D
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Note that E\psi \prime \prime = A\prime \prime \subseteq A. Since \psi \prime is a proper deficiency map, \psi \prime \prime (x(j)) = y(j\prime ),
\psi \prime \prime (y(j\prime )) = x(j), E\psi \prime \prime is not a multiset and E\psi \prime \prime \cap E(G) = \emptyset , we have that \psi \prime \prime is a
proper deficiency map. It is easy to see that (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, \emptyset , \emptyset ) is a valid

tuple.

Case 2: \bfitX \not = \emptyset , \bfitY = \emptyset . Let v \in X and let j be the smallest integer such that
v(j) \in XD\prime ,f . Since XD\prime ,f \subseteq S(G  - D\prime , f) \setminus Tr, we have that v(j) \in S(G  - D\prime , f) \subseteq 
S(G - D, f). Also, since \psi \prime is a proper deficiency map over (S(G - D\prime , f)\cup T \prime 

g)\setminus (T \prime 
r \cup 

XD\prime ,f ) and E\psi \prime \subseteq E\psi , there exists b \in V (G) such that (v, b) /\in E\psi \prime and (v, b) \in E\psi .
Let A\prime \prime = A\prime \cup \{ (v, b)\} .

Subcase (i): b \in X. In this subcase the set X \prime = \emptyset . Let j\prime = f(b)  - dG - D\prime (b).
Note that \{ v(j), b(j\prime )\} = XD\prime ,f \subseteq S(G - D\prime , f)\setminus Tr. Let T \prime \prime 

g = T \prime 
g\cup (\{ v(j), b(j\prime )\} \cap Tg).

If v \in Green, then we know that | EG(v)\cap D\prime | = T \prime 
m(v) + T \prime 

g(v) +X(v) and X(v) = 1.
Since the new set X \prime = \emptyset , to keep track of the cardinality | EG(v) \cap D\prime | we include
v(j) to T \prime \prime 

g . Claim 3 ensures that v(j) does not belong to T \prime 
g. The similar arguments

hold for b as well.

Claim 3. If v \in Green, then v(j) /\in T \prime 
g and v(j  - 1) \in T \prime 

g.

Proof. Since \{ v, b\} = X, j = f(v) - dG - D\prime (v). This implies that

| EG(v) \cap D\prime | = j + dG(v) - f(v)

= j + Tm(v).(1)

We also know that, by the property (b) of partial solutions,

| EG(v) \cap D\prime | = T \prime 
m(v) + T \prime 

g(v) +X(v)

= Tm(v) + T \prime 
g(v) +X(v) (because v \in X).(2)

Equations (1) and (2) imply that j = T \prime 
g(v) + X(v). This implies T \prime 

g(v) = j  - 1
because | X(v)| = 1. Thus we can conclude that v(j) /\in T \prime 

g and v(j  - 1) \in T \prime 
g.

Similarly, we can prove the following claim.

Claim 4. If b \in Green, then b(j\prime ) /\in T \prime 
g and b(j\prime  - 1) \in T \prime 

g.

Now we claim that D\prime \cup A\prime \prime \in \scrQ (T \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i, \emptyset , \emptyset ). Since D\prime \cup A\prime \in 

\scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, \emptyset ) and by Claims 3 and 4, we can conclude that D\prime \cup A\prime \prime 

satisfies conditions (a), (b), (c), and (d) of being in the family\scrQ (T \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i, \emptyset ,

\emptyset ). Now we need to show that D\prime \cup A\prime \prime satisfies condition (e). Consider the bijection
\psi \prime \prime over (S(G - D\prime ), f) \cup T \prime \prime 

g ) \setminus T \prime 
r as follows:

\psi \prime \prime (q) =

\left\{   b(j\prime ) if q = v(j),
v(j) if q = b(j\prime ),
\psi \prime (q) otherwise,

Note that E\psi \prime \prime = A\prime \prime . Since \psi \prime is a proper deficiency map, \psi \prime \prime (u(j)) = v(j\prime ),
\psi \prime \prime (v(j\prime )) = u(j), E\psi \prime \prime is not a multiset and E\psi \prime \prime \cap E(G) = \emptyset , we have that \psi \prime \prime is a
proper deficiency map. It is easy to see that (T \prime 

m, T
\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i, \emptyset , \emptyset ) satisfies proper-
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ties (1), (2) and (4) of a valid tuple. Claims 3 and 4 imply that (T \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i, \emptyset , \emptyset )

satisfies property (3) of a valid tuple.
Subcase (ii): b /\in X and b(j\prime ) \in T \prime 

r for some j\prime . Let T \prime \prime 
g = T \prime 

g \cup (\{ v(j)\} \cap Tg).

Claim 5. If v \in Green, then v(j) /\in T \prime 
g and v(j  - 1) \in T \prime 

g.

Proof. If X(v) = 1, then the proof is the same as that of Claim 3. Suppose
X(v) = 2. Since \{ v, v\} = X, j = f(v) - dG - D\prime (v) - 1. This implies that

| EG(v) \cap D\prime | = j + 1 + dG(v) - f(v)

= j + 1 + Tm(v).(3)

We also know that, by the property (b) of partial solutions,

| EG(v) \cap D\prime | = T \prime 
m(v) + T \prime 

g(v) +X(v)

= Tm(v) + T \prime 
g(v) + 2 (because v \in X).(4)

Equations (3) and (4) imply that j - 1 = T \prime 
g(v). Thus we can conclude that v(j) /\in T \prime 

g

and v(j  - 1) \in T \prime 
g.

Now we claim that D\prime \cup A\prime \prime \in \scrQ (T \prime 
m, T

\prime \prime 
g , T

\prime 
r \setminus \{ b(j\prime )\} , k\prime 1, k\prime 2, i,X \prime , \emptyset ) where X \prime =

X \setminus \{ v\} . Since D\prime \cup A\prime \in \scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, \emptyset ) and by Claim 5, we can

conclude that D\prime \cup A\prime \prime satisfies conditions (a), (b), (c), and (d) of being in the family
\scrQ (T \prime 

m, T
\prime \prime 
g , T

\prime 
r \setminus \{ b(j\prime )\} , k\prime 1, k\prime 2, i,X \prime , \emptyset ). Now we need to show that D\prime \cup A\prime \prime satisfies

condition (e). Consider the bijection \psi \prime \prime over (S(G - D\prime , f)\cup T \prime \prime 
g )\setminus ((T \prime 

r\setminus \{ b(j\prime )\} )\cup X \prime 
D\prime ,f )

as follows.

\psi \prime \prime (q) =

\left\{   b(j\prime ) if q = v(j),
v(j) if q = b(j\prime ),
\psi \prime (q) otherwise,

Note that E\psi \prime \prime = A\prime \prime \subseteq A. Since \psi \prime is a proper deficiency map, \psi \prime \prime (v(j)) = b(j\prime ),
\psi \prime \prime (b(j\prime )) = v(j), E\psi \prime \prime is not a multiset and E\psi \prime \prime \cap E(G) = \emptyset , we have that \psi \prime \prime is
a proper deficiency map. Since X \prime \subseteq X and (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, \emptyset ) is a valid

tuple, we have that (T \prime 
m, T

\prime \prime 
g , T

\prime 
r \setminus \{ b(j\prime )\} , k\prime 1, k\prime 2, i,X \prime , \emptyset ) satisfies properties (1), (2) and

(4) of a valid tuple. Claim 5 implies that (T \prime 
m, T

\prime \prime 
g , T

\prime 
r \setminus \{ b(j\prime )\} , k\prime 1, k\prime 2, i,X \prime , \emptyset ) satisfies

property (3).
Subcase (iii): b /\in X and b(j\prime ) /\in T \prime 

r for all j\prime . Let T \prime \prime 
g = T \prime 

g \cup (\{ v(j)\} \cap Tg).

Claim 6. If v \in Green, then v(j) /\in T \prime 
g and v(j  - 1) \in T \prime 

g.

The proof of Claim 6 is the same as that of Claim 5. Now we claim that
D\prime \cup A\prime \prime \in \scrQ (T \prime 

m, T
\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X

\prime , Y \prime ), where X \prime = X \setminus \{ v\} and Y \prime = \{ b\} . Since
D\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, \emptyset ) and X \prime \subseteq X, and by Claim 6, we can con-

clude that D\prime \cup A\prime \prime satisfies conditions (a), (b), (c), and (d) of being in the family
\scrQ (T \prime 

m, T
\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X

\prime , Y \prime ). Now we need to show that D\prime \cup A\prime \prime satisfies condition
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(e). Consider the bijection \psi \prime \prime over (S(G  - D\prime , f) \cup T \prime \prime 
g \cup \{ b\} ) \setminus (T \prime 

r \cup X \prime 
D\prime ,f ) defined

as follows:

\psi \prime \prime (q) =

\left\{   b if q = v(j),
v(j) if q = b,
\psi \prime (q) otherwise.

Note that E\psi \prime \prime = E\psi \prime \cup \{ e\} = A\prime \prime . Since \psi \prime is a proper deficiency map, \psi \prime \prime (v(j)) = b,
\psi \prime \prime (b) = v(j), E\psi \prime \prime is not a multiset, and E\psi \prime \prime \cap E(G) = \emptyset , we have that \psi \prime \prime is a
proper deficiency map. Also note that \psi \prime \prime (b) = v(j) and Tm(v) = T \prime 

m(v), because
v \in X and (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, \emptyset ) is a valid tuple. Since X \prime \subset X, Y \prime =

\{ b\} , b(j\prime ) /\in T \prime 
r for all j\prime , and (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, \emptyset ) is a valid tuple, we have

that (T \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X

\prime , Y \prime ) satisfies properties (1), (2), and (4) of a valid tuple.
Claim 5 implies that (T \prime 

m, T
\prime \prime 
g , T

\prime 
r \setminus \{ b(j\prime )\} , k\prime 1, k\prime 2, i,X \prime , \emptyset ) satisfies property (3).

Case 3: \bfitY \not = \emptyset . Let Y = \{ w\} . Since (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, Y ) is a valid

tuple and | Y | = 1, we have that | X| \leq 1. We claim that there exists x \in V (G)
such that (w, x) \in D \setminus D\prime . Suppose not, then dG - D\prime (w) = dG - D(w). This implies
that dG - D\prime +A\prime (w) = dG - D+A\prime (w). We know that \psi \prime is a proper deficiency map over
(S(G - D\prime , f)\cup T \prime 

g\cup \{ w\} )\setminus (T \prime 
r\cup XD\prime ,f ), E\psi \prime = A\prime , and w(i\prime ) /\in T \prime 

r\cup XD\prime ,f for all i\prime . This
implies that dG - D\prime +A\prime (w) \geq f(w) + 1 and hence dG - D+A(w) > f(w), contradicting
the fact that D \cup A is a solution to EECG. Thus we know that there exists x such
that (w, x) \in D\setminus D\prime . Let D\prime \prime = D\prime \cup \{ (w, x)\} and let X \prime = X\cup \{ z| z = x, x /\in Tm\setminus T \prime 

m\} .
Note that | X \prime | \leq 2, because | X| \leq 1. Let T \prime \prime 

m = T \prime 
m\cup (\{ x\} \cap (Tm \setminus T \prime 

m)). The following
claim follows from the definition of X \prime .

Claim 7. Let x \in Green. Then x /\in X \prime \setminus X if and only if x \in Tm \setminus T \prime 
m.

Subcase (i): w \in Green. Let k\prime \prime 1 = k\prime 1 + 1, k\prime \prime 2 = k\prime 2 if (w, x) \in E(G[Green]),
otherwise k\prime \prime 1 = k\prime 1, k

\prime \prime 
2 = k\prime 2 + 1. We claim that there exists j \in \BbbN + such that

w(j) \in Tg\setminus T \prime 
g. Suppose not. Since \psi 

\prime is a proper deficiency map over (S(G - D\prime ))\cup T \prime 
g\cup 

\{ w\} \setminus (T \prime 
r\cup XD\prime ,f ) such that E\prime 

\psi = A\prime \subseteq A and w(j) /\in Tg \setminus T \prime 
g for all j, we can conclude

that the number of edges in A\prime which are incident with w is at least 1+ | \{ w(j\prime ) | j\prime \in 
\BbbN +, w(j\prime ) \in Tg\} | = 1 + \Phi (w)  - (dG(w)  - f(w)). This implies that dG - D+A(w) \geq 
dG - D+A\prime (w) \geq dG(w) - | EG(v)\cap D| +1+\Phi (w) - (dG(w) - f(w)) = dG(w) - \Phi (w)+
1 + \Phi (w)  - (dG(w)  - f(w)) > f(w), which is a contradiction to the fact that D \cup A
is a solution of EECG. Without loss of generality let j be the smallest integer such
that w(j) \in Tg \setminus T \prime 

g. Now we show that D\prime \prime \cup A\prime \in \scrQ (T \prime \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime \prime 
1 , k

\prime \prime 
2 , i,X

\prime , \emptyset ),
where T \prime \prime 

g = T \prime 
g \cup \{ w(j)\} . Since D\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ) and D\prime \prime =

D\prime \cup \{ (w, x)\} , the subset D\prime \prime \cup A\prime satisfies the following conditions:
(a) | D\prime \prime \cap E(G[Green])| = k\prime \prime 1 , | D\prime \prime \setminus E(G[Green])| = k\prime \prime 2 , and | D\prime \prime \cup A\prime | = i.

(b) For any v \in Green,

| D\prime \prime \cap EG(v)| =
\biggl\{ 
T \prime 
m(v) + T \prime 

g(v) +X(v) + 1 if v \in \{ w, x\} ,
T \prime 
m(v) + T \prime 

g(v) +X(v) if v /\in \{ w, x\} 

=

\left\{   
T \prime 
m(v) + T \prime \prime 

g (v) +X(v) if v = w (by definition of T \prime \prime 
g ),

T \prime \prime 
m(v) + T \prime 

g(v) +X \prime (v) if v = x (due to Claim 7),
T \prime 
m(v) + T \prime 

g(v) +X(v) if v /\in \{ w, x\} 
= T \prime \prime 

m(v) + T \prime \prime 
g (v) +X \prime (v).D
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(c) | X \prime | = 1+ | \{ z| z = x, x /\in Tm\setminus T \prime 
m\} | = | X \prime 

D\prime \prime ,f | and X \prime 
D\prime \prime ,f \subseteq S(G - D\prime \prime , f)\setminus Tr.

(d) Since D \cup A is a solution of EECG, by Lemma 4.4 we have that G - D has
at most k  - k\prime + 1 connected components. This implies that G  - D\prime \prime has at
most k  - k\prime + 1 connected components.

Now we need to show that D\prime \prime \cup A\prime satisfies the condition (e). Consider the bijection
\psi \prime \prime over (S(G - D\prime \prime ) \cup T \prime \prime 

g ) \setminus (T \prime 
r \cup X \prime 

D\prime \prime ,f ) as follows:

\psi \prime \prime (q) =

\left\{   \psi \prime (w) if q = w(j),
w(j) if q = \psi \prime (w),
\psi \prime (q) otherwise,

The function \psi \prime \prime is a proper deficiency map such that E\psi \prime \prime = A\prime . Since the tuple
(T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ) is a valid tuple, | X \prime | \leq 2, and j is the smallest integer

such that w(j) \in Tg \setminus T \prime 
g, we have that (T \prime \prime 

m, T
\prime \prime 
g , T

\prime 
r, k

\prime \prime 
1 , k

\prime \prime 
2 , i,X

\prime , \emptyset ) satisfies properties
(1), (2), and (3) of a valid tuple. Due to Claim 7, (T \prime \prime 

m, T
\prime \prime 
g , T

\prime 
r, k

\prime \prime 
1 , k

\prime \prime 
2 , i,X

\prime , \emptyset ) satisfies
property (4) of a valid tuple.

Subcase (ii): w \in Red. Here, we claim that D\prime \prime \cup A\prime \in \scrQ (T \prime \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2 +

1, i,X \prime , \emptyset ). Let j = f(w) - dG - D\prime \prime (w). Since D\prime \cup A\prime \in \scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y )

and D\prime \prime = D\prime \cup \{ (w, x)\} , the subset D\prime \prime \cup A\prime satisfies the following conditions:
(a) | D\prime \prime \cap E(G[Green])| = k\prime 1, | D\prime \prime \setminus E(G[Green])| = k\prime 2 + 1, and | D\prime \prime \cup A\prime | = i.

(b) For any v \in Green,

| D\prime \prime \cap EG(v)| =
\biggl\{ 
T \prime 
m(v) + T \prime 

g(v) +X(v) + 1 if v = x,
T \prime 
m(v) + T \prime 

g(v) +X(v) if v \not = x

= T \prime \prime 
m(v) + T \prime 

g(v) +X \prime (v) (due to Claim 7).

(c) | X \prime | = 1+ | \{ z| z = x, x /\in Tm\setminus T \prime 
m\} | = | X \prime 

D\prime \prime ,f | and X \prime 
D\prime \prime ,f \subseteq S(G - D\prime \prime , f)\setminus Tr.

(d) G - D\prime \prime has at most k  - k\prime + 1 connected components.
Now we need to show that D\prime \prime \cup A\prime satisfies the condition (e). Consider the bijection
\psi \prime \prime over (S(G - D\prime \prime ) \cup T \prime 

g) \setminus (T \prime 
r \cup X \prime 

D\prime \prime ,f ) as follows:

\psi \prime \prime (q) =

\left\{   \psi \prime (w) if q = w(j),
w(j) if q = \psi \prime (w),
\psi \prime (q) otherwise.

The function \psi \prime \prime is a proper deficiency map such that E\psi \prime \prime = A\prime . Since the tuple
(T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ) is a valid tuple, | X \prime | \leq 2, we have that (T \prime \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2+

1, i,X \prime , \emptyset ) satisfies properties (1), (2) and (3) of a valid tuple. Due to Claim 7,
(T \prime \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2 + 1, i,X \prime , \emptyset ) satisfies property (4) of a valid tuple.

Our algorithm is based on DP. It keeps a table entry \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ]

for each valid tuple (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ). The idea is to store a subset of

\scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ) in the DP table entry \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] which

is sufficient to maintain the correctness of the algorithm. Next, we write the recur-
rence relation for \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] and prove its correctness. Towards that

consider the following \bullet and \circ operations defined as follows. For any family \scrS of
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subsets of
\bigl( 
V (G)

2

\bigr) 
, e \in E(G), and e\prime \in E(G),

\scrS \bullet e= \{ B \cup A \cup \{ e\} | A \cup B \in \scrS , B \subseteq E(G) \setminus \{ e\} , A \subseteq E(G),

G - (B \cup \{ e\} ) has at most k  - k\prime + 1 connected components\} ,
\scrS \circ e\prime = \{ B \cup A \cup \{ e\prime \} | A \cup B \in \scrS , B \subseteq E(G), A \subseteq E(G) \setminus \{ e\prime \} \} .

Now we write the recurrence relation. For i = 0, we have the following base cases:

(5) \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, 0, 0, 0, X, Y ] :=

\biggl\{ 
\{ \emptyset \} if T \prime 

m, T
\prime 
g, X, Y = \emptyset , and T \prime 

r = Tr,
\emptyset otherwise.

For any tuple (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ) which is not a valid tuple, we set the

entry D[T \prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] = \emptyset . Now we describe how to compute DP table entry

forD[T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i+1, X, Y ] for a valid tuple (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i+1, X, Y ) using

the previously calculated table entries. We write the following recurrence by following
Lemma 4.5; that is, we see which all cases in Lemma 4.5 will lead to the current table
entry and for the current table entry we just take the union of previously calculated
table entries corresponding to these cases.

Case 1: X = \emptyset and Y = \emptyset .

\scrD [T \prime 
m , T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i+ 1, X, Y ]

:=

\Biggl( \bigcup 
(x,y)\in E(G)
x,y\in T \prime 

m

\scrD [T \prime 
m \setminus \{ x, y\} , T \prime 

g, T
\prime 
r, k

\prime 
1  - 1, k\prime 2, i, \emptyset , \emptyset ] \bullet \{ (x, y)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(x,y)\in E(G)

\exists j,j\prime x(j),y(j\prime )\in Tr\setminus T \prime 
r

\scrD [T \prime 
m, T

\prime 
g, T

\prime 
r \cup \{ x(j), y(j\prime )\} , k\prime 1, k\prime 2, i, \emptyset , \emptyset ] \circ \{ (x, y)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(x,y)\in E(G)

j=T \prime 
g(x),j

\prime =T \prime 
g(y)

\scrD [T \prime 
m, T

\prime 
g \setminus \{ x(j), y(j\prime )\} , T \prime 

r, k
\prime 
1, k

\prime 
2, i, \{ x, y\} , \emptyset ] \circ \{ (x, y)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(y,x)\in E(G)

j=T \prime 
g(y),x\in T

\prime 
m

\scrD [T \prime 
m \setminus \{ x\} , T \prime 

g \setminus \{ y(j)\} , T \prime 
r, k

\prime 
1  - 1, k\prime 2, i, \emptyset , \{ y\} ] \bullet \{ (y, x)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(y,x)\in E(G)
x\in T \prime 

m,y\in \sansR \sanse \sansd 

\scrD [T \prime 
m \setminus \{ x\} , T \prime 

g, T
\prime 
r, k

\prime 
1, k

\prime 
2  - 1, i, \emptyset , \{ y\} ] \bullet \{ (y, x)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(x,y)\in E(G)

\exists j,y(j)\in Tr\setminus T \prime 
r

\scrD [T \prime 
m, T

\prime 
g, T

\prime 
r \cup \{ y(j)\} , k\prime 1, k\prime 2, i, \{ x\} , \emptyset ] \circ \{ (x, y)\} 

\Biggr) 
.(6)D
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Case 2: x \in X \not = \emptyset and Y = \emptyset .

(7)

\scrD [T \prime 
m, T

\prime 
g,T

\prime 
r, k

\prime 
1, k

\prime 
2, i+ 1, X, Y ]

:=

\Biggl( \bigcup 
(x,y)\in E(G[\sansG \sansr \sanse \sanse \sansn ])
y\in X,T \prime 

m(x)=Tm(x)

T \prime 
m(y)=Tm(y)

\scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1  - 1, k\prime 2, i, \emptyset , \emptyset ] \bullet \{ (x, y)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(x,y)\in E(G)

y\in X,x\in \sansG \sansr \sanse \sanse \sansn ,y\in \sansR \sanse \sansd 
T \prime 
m(x)=Tm(x)

\scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2  - 1, i, \emptyset , \emptyset ] \bullet \{ (x, y)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(x,y)\in E(G[\sansG \sansr \sanse \sanse \sansn ])

y/\in X,y\in T \prime 
m

T \prime 
m(x)=Tm(x)

\scrD [T \prime 
m \setminus \{ y\} , T \prime 

g, T
\prime 
r, k

\prime 
1  - 1, k\prime 2, i,X \setminus \{ x\} , \emptyset ] \bullet \{ (x, y)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(x,y)\in E(G)

x\in \sansR \sanse \sansd ,y /\in X,y\in T \prime 
m

\scrD [T \prime 
m \setminus \{ y\} , T \prime 

g, T
\prime 
r, k

\prime 
1, k

\prime 
2  - 1, i,X \setminus \{ x\} , \emptyset ] \bullet \{ (x, y)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(y,z)\in E(G),j=T \prime 

g(z)

\exists j\prime :y(j\prime )\in Tr\setminus T \prime 
r

\scrD [T \prime 
m, T

\prime 
g \setminus \{ z(j)\} , T \prime 

r \cup \{ y(j\prime )\} , k\prime 1, k\prime 2, i,X \setminus \{ x\} , \emptyset ] \circ \{ (y, z)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(y,z)\in E(G)

j=T \prime 
g(y),z\in T

\prime 
m

\scrD [T \prime 
m \setminus \{ z\} , T \prime 

g \setminus \{ y(j)\} , T \prime 
r, k

\prime 
1  - 1, k\prime 2, i,X, \{ y\} ] \bullet \{ (y, x)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(y,x)\in E(G[\sansG \sansr \sanse \sanse \sansn ])
x/\in T \prime 

m,j=T
\prime 
g(y)

\scrD [T \prime 
m, T

\prime 
g \setminus \{ y(j)\} , T \prime 

r, k
\prime 
1  - 1, k\prime 2, i,X \setminus \{ x\} , \{ y\} ] \bullet \{ (y, x)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(y,x)\in E(G)

x\in \sansR \sanse \sansd ,j=T \prime 
g(y)

\scrD [T \prime 
m, T

\prime 
g \setminus \{ y(j)\} , T \prime 

r, k
\prime 
1  - 1, k\prime 2, i,X \setminus \{ x\} , \{ y\} ] \bullet \{ (y, x)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(y,z)\in E(G),z /\in X
y\in \sansR \sanse \sansd ,z\in T \prime 

m

\scrD [T \prime 
m \setminus \{ z\} , T \prime 

g, T
\prime 
r, k

\prime 
1, k

\prime 
2  - 1, i,X, \{ y\} ] \bullet \{ (y, x)\} 

\Biggr) 

\bigcup \Biggl( \bigcup 
(y,x)\in E(G)
y\in \sansR \sanse \sansd ,x/\in T \prime 

m

\scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2  - 1, i,X \setminus \{ x\} , \{ y\} ] \bullet \{ (y, x)\} 

\Biggr) 
.
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Case 3: y \in Y \not = \emptyset .

\scrD [T \prime 
m,T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i+ 1, X, Y ]

:=

\Biggl( \bigcup 
(x,y)\in E(G),j=T \prime 

g(x)

X\prime =X\cup \{ x\} ,T \prime 
r(y)=0

\scrD [T \prime 
m, T

\prime 
g \setminus \{ x(j)\} , T \prime 

r, k
\prime 
1, k

\prime 
2, i,X

\prime , \emptyset ] \circ \{ (x, y)\} 

\Biggr) 
.(8)

The algorithm computes DP table entries \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] for all valid

tuples (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ), and if there exists D\cup A \in \scrD [Tm, Tg, \emptyset , k1, k2, k, \emptyset , \emptyset ]

such that D \cup A is a solution to EECG, then outputs Yes, otherwise outputs No.
Since the size of \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] can potentially be n\scrO (i), this algorithm

takes time n\scrO (k). Now we prove the correctness of the algorithm.
Correctness. If the algorithm outputs Yes, then there exists D \cup A which is a

solution to EECG. Now we need to show that if the input instance is a Yes instance,
then the algorithm will always output Yes. Lemma 4.7 achieves this. The following
lemma is useful for Lemma 4.7.

Lemma 4.6. \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] \subseteq \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ), for any

valid tuple (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ).

Proof. This lemma can easily be proved using induction on i.

The next lemma is very similar to Lemma 4.5 and we use some of the arguments
used there (for example, in showing a particular tuple to be valid) directly in our
proof.

Lemma 4.7. Let (G, f, k) be a Yes instance of EECG with a solution D\cup A such
that D \subseteq E(G), A \subseteq E(G), | D\cap E(G[Green])| = k1, | D \setminus E(G[Green])| = k2, k1+k2 =
k\prime and | D \cap EG(v)| = \Phi (v) for all v \in Green. Let \psi be a proper deficiency map over
S(G - D, f) such that E\psi = A. Then for each i \leq k, there exists D\prime \cup A\prime \subseteq D\cup A and a
valid tuple (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ) such that D\prime \cup A\prime \in \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ]

and there is a proper deficiency map \psi \prime over R = (S(G - D\prime , f)\cup T \prime 
g\cup Y )\setminus (T \prime 

r\cup XD\prime ,f )
with the property that E\psi \prime = A\prime . Moreover, D \cup A \in \scrD [Tm, Tg, \emptyset , k1, k2, k, \emptyset , \emptyset ].

Proof. We prove the lemma by induction on i and its proof is very much similar
to the proof of Lemma 4.5. For i = 0 we set D\prime , A\prime = \emptyset and by definition, \emptyset \in 
\scrD [\emptyset , \emptyset , Tr, 0, 0, 0, \emptyset , \emptyset ]. We assume that the statement is true for i  - 1; that is, there
exists D\prime \cup A\prime \subseteq D \cup A and a valid tuple (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, Y ) such that

D\prime \cup A\prime \in \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ] and there is a proper deficiency map \psi \prime over

R = (S(G  - D\prime , f) \cup T \prime 
g \cup Y ) \setminus (T \prime 

r \cup XD\prime ,f ) with the property that E\psi \prime = A\prime . Due
to Lemma 4.6, D\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ). We need to show that the

statement holds for i.

Case 1: \bfitX ,\bfitY = \emptyset . Since i - 1 < k, we have that D\prime \not = D or A\prime \not = A.
Subcase (i): D\prime \not = D. Let e = (x, y) \in D \setminus D\prime . Let D\prime \prime = D\prime \cup \{ e\} , X \prime = \{ z \in 

\{ x, y\} | z /\in Tm \setminus T \prime 
m\} , and Y \prime = \emptyset . Let T \prime \prime 

m = T \prime 
m \cup (\{ x, y\} \cap (Tm \setminus T \prime 

m)). We have
several cases based on vertices belong to X \prime .

Suppose X \prime = \{ x, y\} and x, y \in Green. By the definition of X \prime , since x, y \in X \prime ,
we have that x, y /\in Tm \setminus T \prime 

m. This implies that T \prime \prime 
m = T \prime 

m, Tm(x) = T \prime 
m(x) and

Tm(y) = T \prime 
m(y). Thus, by (7), D\prime \prime \cup A\prime \in \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, \emptyset , \emptyset ] \bullet \{ (x, y)\} \subseteq 

\scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1 + 1, k\prime 2, i,X

\prime , \emptyset ].
Suppose X \prime = \{ x, y\} , x \in Green and y \in Red. By the definition of X \prime , since

x \in X \prime , we have that x /\in Tm \setminus T \prime 
m. This implies that T \prime \prime 

m = T \prime 
m and Tm(x) = T \prime 

m(x).
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Thus by (7), D\prime \prime \cup A\prime \in \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, \emptyset , \emptyset ]\bullet \{ (x, y)\} \subseteq \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2+

1, i,X \prime , \emptyset ].
Suppose X \prime = \{ x\} and x \in Green. Then by the definition of X \prime , since x \in X \prime and

y /\in X \prime , we have that x /\in Tm \setminus T \prime 
m and y \in Tm \setminus T \prime 

m. This implies that T \prime \prime 
m = T \prime 

m \cup \{ y\} 
and Tm(x) = T \prime 

m(x). Thus by (7), D\prime \prime \cup A\prime \in \scrD [T \prime \prime 
m \setminus \{ y\} , T \prime 

g, T
\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, \{ x\} \setminus 

\{ x\} , \emptyset ] \bullet \{ (x, y)\} \subseteq \scrD [T \prime \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1 + 1, k\prime 2, i,X

\prime , \emptyset ].
Suppose X \prime = \{ x\} and x \in Red. By the definition of X \prime , since y /\in X \prime , we

have that y \in Tm \setminus T \prime 
m. This implies that T \prime \prime 

m = T \prime 
m \cup \{ y\} . Thus by (7), D\prime \prime \cup A\prime \in 

\scrD [T \prime \prime 
m\setminus \{ y\} , T \prime 

g, T
\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, \{ x\} \setminus \{ x\} , \emptyset ]\bullet \{ (x, y)\} \subseteq \scrD [T \prime \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2+1, i,X \prime , \emptyset ].

Suppose X \prime = \emptyset . Then by the definition of X \prime , since x, y /\in X \prime , we have that x, y \in 
Tm \setminus T \prime 

m and T \prime \prime 
m = T \prime 

m\cup \{ x, y\} . Thus by (6), D\prime \prime \cup A\prime \in \scrD [T \prime \prime 
m \setminus \{ x, y\} , T \prime 

g, T
\prime 
r, k

\prime 
1, k

\prime 
2, i - 

1, \emptyset , \emptyset ] \bullet \{ (x, y)\} \subseteq \scrD [T \prime \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1 + 1, k\prime 2, i, \emptyset , \emptyset ].

In all the above cases, we can show that \psi \prime is a proper deficiency map over
(S(G  - D\prime \prime , f) \cup T \prime 

g) \setminus (T \prime 
r \cup X \prime 

D\prime \prime ,f ) and its proof is the same as the corresponding
proof in Lemma 4.5. By an argument similar to the one in the proof of Lemma 4.5,
we can show that (T \prime \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1 + 1, k\prime 2, i, \emptyset , \emptyset ) is a valid tuple.

Subcase (ii): D\prime = D. In this subcase we have that A\prime \not = A. Let (x, y) \in A \setminus A\prime .
Let A\prime \prime = A\prime \cup \{ (x, y)\} . Note that E\psi = A and E\psi \prime = A\prime . Since D\prime = D, for all
v \in Green the number of edges in D\prime which are incident with v is equal to \Phi (v). Also,
note that Tm(v) + Tg(v) = \Phi (v). This implies that T \prime 

m = Tm and T \prime 
g = Tg. Since \psi is

a proper deficiency map over S(G - D, f) = S(G - D, f)\cup Tg, \psi \prime is a proper deficiency
map over (S(G - D\prime , f) \cup T \prime 

g) \setminus T \prime 
r, and (x, y) \in E\psi \setminus E\psi \prime , there exists j, j\prime such that

x(j), y(j\prime ) \in T \prime 
r. Thus, by (6), D\prime \cup A\prime \prime \in \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, \emptyset , \emptyset ] \circ \{ (x, y)\} \subseteq 

\scrD (T \prime 
m, T

\prime 
g, T

\prime 
r \setminus \{ x(j), y(j\prime )\} , k\prime 1, k\prime 2, i, \emptyset , \emptyset ].

We can show that there is a proper deficiency map \psi \prime \prime over (S(G  - D\prime , f) \cup 
T \prime 
g) \setminus (T \prime 

r \setminus \{ x(j), y(j\prime )\} ) such that A\prime \prime = E\psi \prime \prime and its proof is the same as the cor-
responding proof in Lemma 4.5. Since D\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, Y ),

by an argument similar to the one in the proof of Lemma 4.5, we can show that
(T \prime 
m, T

\prime 
g, T

\prime 
r \setminus \{ x(j), y(j\prime )\} , k\prime 1, k\prime 2, i, \emptyset , \emptyset ) is a valid tuple.

Case 2: \bfitX \not = \emptyset , \bfitY = \emptyset . Let x \in X and let j be the smallest integer such that
x(j) \in XD\prime ,f . Since XD\prime ,f \subseteq S(G - D\prime , f) \setminus Tr, we have that x(j) \in S(G - D\prime , f) \subseteq 
S(G - D, f). Also since \psi \prime is a proper deficiency map over (S(G - D\prime , f)\cup T \prime 

g) \setminus (T \prime 
r \cup 

XD\prime ,f ) and E\psi \prime \subseteq E\psi , there exists y \in V (G) such that (x, y) /\in E\psi \prime and (x, y) \in E\psi .
Let A\prime \prime = A\prime \cup \{ (x, y)\} .

Subcase (i): y \in X. Let j\prime = f(y) - dG - D\prime (y). Note that \{ x(j), y(j\prime )\} = XD\prime ,f \subseteq 
S(G - D\prime , f) \setminus Tr. Let T \prime \prime 

g = T \prime 
g \cup (\{ x(j), y(j\prime )\} \cap Tg).

Claim 8. If x \in Green, then x(j) /\in T \prime 
g and x(j  - 1) \in T \prime 

g. If y \in Green, then
y(j\prime ) /\in T \prime 

g and y(j  - 1) \in T \prime 
g.

Claim 8 is identical to Claim 3. Thus, by (6), D\prime \cup A\prime \prime \in \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 

1, X, \emptyset ] \circ \{ (x, y)\} \subseteq \scrD [T \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i, \emptyset , \emptyset ]. We can show that there is a proper

deficiency map \psi \prime \prime over (S(G - D\prime , f)\cup T \prime \prime 
g )\setminus T \prime 

r such that A\prime \prime = E\psi \prime \prime and its proof is the
same as the corresponding proof in Lemma 4.5. SinceD\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 

1, X, Y ), by argument similar to the one in the proof of Lemma 4.5, we can show that
(T \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i, \emptyset , \emptyset ) is a valid tuple.

Subcase (ii): y(j\prime ) \in T \prime 
r for some j\prime . Let T \prime \prime 

g = T \prime 
g \cup (\{ x(j)\} \cap Tg).

Claim 9. If x \in Green, then x(j) /\in T \prime 
g and x(j  - 1) \in T \prime 

g.
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Claim 9 is identical to Claim 5. Thus, by (6) (ifX = \{ x\} ) and by (7) (ifX \not = \{ x\} ),

D\prime \cup A\prime \prime \in \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, \emptyset ]\circ (x, y) \subseteq \scrD [T \prime 

m, T
\prime \prime 
g , T

\prime 
r\setminus y(j\prime ), k\prime 1, k\prime 2, i,X\setminus \{ x\} , \emptyset ].

We can show that there is a proper deficiency map \psi \prime \prime over (S(G - D\prime , f)\cup T \prime \prime 
g )\setminus ((T \prime 

r \setminus 
\{ y(j)\} )\cup X \prime 

D\prime ,f ), where X
\prime = X \setminus \{ x\} , such that A\prime \prime = E\psi \prime \prime and its proof is the same

as the corresponding proof in Lemma 4.5. Since D\prime \cup A\prime \in \scrQ (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 

1, X, Y ), by an argument similar to the one in the proof of Lemma 4.5, we can show
that (T \prime 

m, T
\prime \prime 
g , T

\prime 
r \setminus y(j\prime ), k\prime 1, k\prime 2, i,X \setminus \{ x\} , \emptyset ) is a valid tuple.

Subcase (iii): y /\in X and y(j\prime ) /\in T \prime 
r for all j\prime . Let T \prime \prime 

g = T \prime 
g \cup (\{ x(j)\} \cap Tg).

Claim 10. If x \in Green, then x(j) /\in T \prime 
g and x(j  - 1) \in T \prime 

g.

Proof of the above claim is the same as that of Claim 5 as both are identical.
Thus, by (8),

D\prime \cup A\prime \prime \in \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, \emptyset ]\circ (x, y) \subseteq \scrD [T \prime 

m, T
\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X \setminus \{ x\} , \{ y\} ].

We can show that there is a proper deficiency map \psi \prime \prime over (S(G  - D\prime , f) \cup T \prime \prime 
g \cup 

Y \prime ) \setminus (T \prime 
r \cup X \prime 

D\prime ,f ), where X
\prime = X \setminus \{ x\} and Y \prime = \{ y\} , such that A\prime \prime = E\psi \prime \prime and

its proof is the same as the corresponding proof in Lemma 4.5. Since D\prime \cup A\prime \in 
\scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, Y ), by an argument similar to the one in the proof of

Lemma 4.5, we can show that (T \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X \setminus \{ x\} , \{ y\} ) is a valid tuple.

Case 3: \bfitY \not = \emptyset . Let Y = \{ y\} . Since (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i  - 1, X, Y ) is a valid

tuple and | Y | = 1, we have that | X| \leq 1. There exists x such that (y, x) \in D \setminus D\prime 

and the proof of this statement can be found in the proof of Lemma 4.5. Let D\prime \prime =
D\prime \cup \{ (y, x)\} and X \prime = X \cup \{ z| z = x, z /\in Tm \setminus T \prime 

m\} . Note that | X \prime | \leq 2, because
| X| \leq 1. Let T \prime \prime 

m = T \prime 
m \cup (\{ x\} \cap (Tm \setminus T \prime 

m)).
Subcase (i): y \in Green. Then there exists j \in \BbbN + such that y(j) \in Tg \setminus T \prime 

g and
its proof can be found in Lemma 4.5. Without loss of generality, let j be the smallest
integer such that y(j) \in Tg \setminus T \prime 

g. Let T
\prime \prime 
g = T \prime 

g \cup \{ y(j)\} .
Subsubcase (ia): (y, x) \in E(G[Green]). If X = X \prime = \emptyset , then by the definition of

X \prime , T \prime \prime 
m = T \prime 

m \cup \{ x\} . Then, by (6),

D\prime \prime \cup A\prime \in \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, \emptyset , Y ] \bullet (y, x) \subseteq \scrD [T \prime \prime 

m, T
\prime \prime 
g , T

\prime 
r, k

\prime 
1 + 1, k\prime 2, i,X

\prime , \emptyset ].

If X = X \prime \not = \emptyset , then by the definition of X \prime , T \prime \prime 
m = T \prime 

m \cup \{ x\} . Then, by (7),
D\prime \prime \cup A\prime \in \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ] \bullet (y, x) \subseteq \scrD [T \prime \prime 

m, T
\prime \prime 
g , T

\prime 
r, k

\prime 
1 + 1, k\prime 2, i,X

\prime , \emptyset ].
If X \not = X \prime , then by by the definition of X \prime , T \prime \prime 

m = T \prime 
m. Then, by (7), D\prime \prime \cup A\prime \in 

\scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ] \bullet (y, x) \subseteq \scrD [T \prime 

m, T
\prime \prime 
g , T

\prime 
r, k

\prime 
1 + 1, k\prime 2, i,X

\prime , \emptyset ].
We can show that there is a proper deficiency map \psi \prime \prime over (S(G - D\prime , f)\cup T \prime \prime 

g ) \setminus 
(T \prime 
r\cup X \prime 

D\prime ,f ), such that A\prime \prime = E\psi \prime \prime and its proof is the same as the corresponding proof
in Lemma 4.5. SinceD\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ), by an argument similar

to the one in the proof of Lemma 4.5, we can show that (T \prime \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime 
1+1, k\prime 2, i,X

\prime , \emptyset )
is a valid tuple.

Subsubcase (ib): (y, x) /\in E(G[Green]). In this subcaseX \prime = X\cup \{ x\} . Then by (7),
D\prime \prime \cup A\prime \in \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ] \bullet (y, x) \subseteq \scrD [T \prime 

m, T
\prime \prime 
g , T

\prime 
r, k11, k

\prime 
2 +1, i,X \prime , \emptyset ].

We can show that there is a proper deficiency map \psi \prime \prime over (S(G - D\prime , f)\cup T \prime \prime 
g ) \setminus 

(T \prime 
r\cup X \prime 

D\prime ,f ), such that A\prime \prime = E\psi \prime \prime and its proof is the same as the corresponding proof
in Lemma 4.5. SinceD\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ), by an argument similar

to the one in the proof of Lemma 4.5, we can show that (T \prime \prime 
m, T

\prime \prime 
g , T

\prime 
r, k

\prime 
1, k

\prime 
2+1, i,X \prime , \emptyset )

is a valid tuple.
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Subcase (ii): y \in Red. IfX = X \prime = \emptyset , then by the definition ofX \prime , T \prime \prime 
m = T \prime 

m\cup \{ x\} .
Then, by (6), D\prime \prime \cup A\prime \in \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, \emptyset , Y ]\bullet (y, x) \subseteq \scrD [T \prime \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2+

1, i, \emptyset , \emptyset ]. If X = X \prime \not = \emptyset , then by the definition of X \prime , T \prime \prime 
m = T \prime 

m \cup \{ x\} . Then, by (7),
D\prime \prime \cup A\prime \in \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ] \bullet (y, x) \subseteq \scrD [T \prime \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2 + 1, i,X \prime , \emptyset ].

If X \not = X \prime , then by the definition of X \prime , T \prime \prime 
m = T \prime 

m. Then, by (7), D\prime \prime \cup A\prime \in 
\scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ] \bullet (y, x) \subseteq \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2 + 1, i,X \prime , \emptyset ].

We can show that there is a proper deficiency map \psi \prime \prime over (S(G - D\prime , f)\cup T \prime 
g) \setminus 

(T \prime 
r\cup X \prime 

D\prime ,f ), such that A\prime \prime = E\psi \prime \prime and its proof is the same as the corresponding proof
in Lemma 4.5. SinceD\prime \cup A\prime \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i - 1, X, Y ), by an argument similar

to the one in the proof of Lemma 4.5, we can show that (T \prime \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2+1, i,X \prime , \emptyset )

is a valid tuple.
Now we need to show that D \cup A \in \scrD [Tm, Tg, \emptyset , k1, k2, k, \emptyset , \emptyset ]. We have al-

ready shown that there is a valid tuple (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, k,X, Y ) such that D \cup A \in 

\scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, k,X, Y ]. Due to Lemma 4.6,D\cup A \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, k,X, Y ).

This implies that there is a proper deficiency map \psi \prime over (S(G  - D, f) \cup T \prime 
g \cup Y ) \setminus 

(T \prime 
r \cup XD,f ) such that E\psi \prime = A. Since D\cup A is a solution to EECG, there is a proper

deficiency map \psi over S(G - D, f) such that E\psi = A. This implies that

S(G - D, f) = (S(G - D, f) \cup T \prime 
g \cup Y ) \setminus (T \prime 

r \cup XD,f ).(9)

Equation (9) implies that Y = \emptyset . Since T \prime 
r \subseteq S(G - D, f) and XD,f \subseteq S(G - D, f)\setminus Tr,

by (9), we get that T \prime 
r = \emptyset and X = \emptyset . Since D\cup A \in \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, k,X, Y ), we

have that for any v \in Green, | EG(v) \cap D| = T \prime 
m(v) + T \prime 

g(v). By assumption we know
that | EG(v) \cap D| = \Phi (v) = Tm(v) + Tg(v). This implies that T \prime 

m = Tm and T \prime 
g = Tg.

We also know, by assumption, that D \cap E(G[Green]) = k1 and D \setminus E(G[Green]) = k2.
This implies that k\prime 1 = k1 and k\prime 2 = k2. Hence D \cup A \in \scrD [Tm, Tg, \emptyset , k1, k2, k, \emptyset , \emptyset ].
This completes the proof.

4.3. Pruning the table---FPT algorithm. Now we explain how to prune the
family of partial solutions stored at each DP table entry such that its size is at most
2\scrO (k)n\scrO (1) and thereby get an FPT algorithm. The objective is to find a nice deletion
set D \subseteq E(G). In fact, if the input instance is a Yes instance, we will find a set
D \subseteq E(G), A \subseteq E(G) such that D is a nice deletion set with the property that
A = E\psi , where \psi is a proper deficiency map over S(G - D, f).

Recall that for the algorithm we have guessed k\prime ---the size of proposed deletion
set D, k1---the number edges in D \cap E(G[Green]), k2---the number of edges in D \setminus 
E(G[Green]) and for all v \in Green, \Phi (v) (\geq dG(v)  - f(v))---the number of edges
in D which are incident with v. Consider the property (i) of nice deletion set, i.e.,
dG - D(v) \leq f(v) for all v. By guessing \Phi (v) \geq dG(v) - f(v) for all v \in Green, we know
that any solution we compute will satisfy property (i).

Consider property (ii) of a nice deletion set, i.e., | S(G - D, f)| = 2(k - k\prime ). Since
the total number of edges in D which has one endpoint in Green and other in Red is
(
\sum 
v\in \sansG \sansr \sanse \sanse \sansn \Phi (v)) - 2k1, we have that

\sum 
v\in \sansR \sanse \sansd | D \cap EG(v)| = 2k2  - ((

\sum 
v\in \sansG \sansr \sanse \sanse \sansn \Phi (v)) - 

2k1),

| S(G - D, f)| =

\Biggl( \sum 
v\in \sansG \sansr \sanse \sanse \sansn 

\Phi (v) - (dG(v) - f(v))

\Biggr) 
+
\sum 
v\in \sansR \sanse \sansd 

(f(v) - dG - D(v))
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EDITING TO CONNECTED f -DEGREE GRAPH 823

=

\Biggl( \sum 
v\in \sansG \sansr \sanse \sanse \sansn 

\Phi (v) - (dG(v) - f(v))

\Biggr) 
+
\sum 
v\in \sansR \sanse \sansd 

(f(v) - dG(v)) +
\sum 
v\in \sansR \sanse \sansd 

| D \cap EG(v)| 

=

\Biggl( \sum 
v\in \sansG \sansr \sanse \sanse \sansn 

\Phi (v) - (dG(v) - f(v))

\Biggr) 
+
\sum 
v\in \sansR \sanse \sansd 

(f(v) - dG(v))

+

\Biggl( 
2k2 + 2k1  - 

\sum 
v\in \sansG \sansr \sanse \sanse \sansn 

\Phi (v)

\Biggr) 
= 2k1 + 2k2 +

\sum 
v\in V (G)

(f(v) - dG(v)).

So after guessing k\prime , k1, k2 and \Phi (v) for all v \in Green, we check whether 2k1 + 2k2 +\sum 
v\in V (G)(f(v)  - dG(v)) = 2(k  - k\prime ), and if they are not equal, we consider it as an

invalid guess. Thus our guesses take care of property (ii).
The property (iii) of a nice deletion set and Lemma 4.8 below imply that D is

an independent set in the matroid MG(\ell ), the \ell -elongation of the co-graphic matroid
MG associated with G, where \ell = | E(G)|  - | V (G)| + k  - | D| + 1.

Lemma 4.8. Let G be a graph and D \subseteq E(G). Then D is an independent set in
MG(\ell ) where \ell = | E(G)|  - | V (G)| + k  - | D| + 1 if and only if G  - D has at most
k  - | D| + 1 connected components.

Proof. Let r be the number of connected components in G. Suppose D is an
independent set in MG(\ell ). Then there exists S \subseteq E(G) \setminus D such that S \cup D is a basis
ofMG(\ell ). This implies that there exists S\prime \subseteq S\cup D such that S\prime is a basis ofMG, and
hence G  - S\prime is a forest with r connected components and | S\prime | = E(G)  - V (G) + r.
Since | S \cup D|  - | S\prime | = (k - | D| +1) - r and G - S\prime is a forest with exactly r connected
components, we have that G - (S\cup D) has exactly k - | D| +1 connected components.
This implies that G - D has at most k  - | D| + 1 connected components.

Suppose G  - D has at most k  - | D| + 1 connected components. Let S \subseteq E(G)
be a maximal subset such that G  - (S \cup D) is a forest with exactly k  - | D| + 1
connected components. This implies that | S \cup D| = E(G) - V (G)+k - | D| +1. Since
G has r connected components, there exists S\prime \subseteq (S \cup D) of size (k  - | D| + 1)  - r
such that G - ((S \cup D) \setminus S\prime ) is a forest with exactly r connected components. Since
| (S \cup D) \setminus S\prime | = E(G)  - V (G) + r and G  - ((S \cup D) \setminus S\prime ) is a forest with exactly r
connected components, (S \cup D) \setminus S\prime is a basis in MG. This implies that S \cup D is a
basis in MG(\ell ) and hence D is an independent set in MG(\ell ).

Thus by only considering those D which are independent sets inMG(\ell ) we ensure
that property (iii) of the nice deletion set is satisfied.

Now consider the property (v) of a nice deletion set, i.e., there exists a proper
deficiency map \psi : S(G - D, f) \rightarrow S(G - D, f). Our objective is to get a set D\cup A such
that there is a proper deficiency map \psi over S(G - D, f) such that E\psi = A, along with
other properties as well. We have already defined equivalence classes for the partial
solutions in the previous section. Let D1 \cup A1, D2 \cup A2 \in Q(T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y )

be two partial solutions where D1, D2 \subseteq E(G) and A1, A2 \subseteq E(G). Suppose D\prime \subseteq 
E(G), A\prime \subseteq E(G), (D1 \cup D\prime )

\bigcup 
(A1 \cup A\prime ) is a solution, and A2 \cap A\prime = \emptyset . Since

D1 \cup A1 and D2 \cup A2 belong to the same equivalence class and A2 \cap A\prime is disjoint,
there is a proper deficiency map \psi \prime over S(G - (D2\cup D\prime ), f) such that E\psi \prime = A2\cup A\prime .
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To take care of the disjointness property between the current addition set and the
future addition set while doing the DP, we view the addition set A of a solution as
an independent set in a uniform matroid over the universe E(G). Let Um\prime ,k - k\prime be

the uniform matroid with ground set E(G), where m\prime = | E(G)| . From the definition
of Um\prime ,k - k\prime , any set A of size at most k  - k\prime is independent in Um\prime ,k - k\prime . We have
already explained that we view the deletion set D as an independent set in MG(\ell )
where \ell = | E(G)|  - | V (G)| + k  - k\prime + 1. Thus, to see the solution set D \cup A as
an independent set in a single matroid, we consider the direct sum of MG(\ell ) and
Um\prime ,k - k\prime ; that is, let M = MG(\ell ) \oplus Um\prime ,k - k\prime . In M , a set I is an independent set if

and only if I \cap E(G) is an independent set in MG(\ell ) and I \cap E(G) is an independent
set in Um\prime ,k - k\prime . This ensures that any solution D\cup A is an independent set in M . By
viewing any solution of the problem as an independent set in the matroid M (which
is linear), we can use the representative families to prune DP table entries. However,
we still need to ensure that property (iv) of a nice deletion set is satisfied. In what
follows we explain how we achieve this.

Consider the property (iv) mentioned in the definition of a nice deletion set; that
is, for any connected component F in G - D, V (F )\cap def(G - D, f) \not = \emptyset . The following
lemma helps us to satisfy property (iv) partially.

Lemma 4.9. Let F be a connected component in the graph G[Red] and let D\prime \subseteq 
E(G). If at least one edge in D\prime is incident with a vertex in V (F ), then for any
connected component C in G  - D\prime such that V (C) \cap V (F ) \not = \emptyset , there is a vertex
v \in V (C) \cap def(G - D\prime , f).

Proof. Let u \in V (F ) be a vertex such that an edge in D\prime is incident with u.
Consider a connected component C in G  - D\prime such that V (C) \cap V (F ) \not = \emptyset . We
need to show that V (C) \cap def(G  - D\prime , f) \not = \emptyset . Suppose u \in V (C). Since u \in Red,
dG(u) \leq f(v). However, u is incident with an edge in D\prime , and thus we have that
dG - D\prime (u) < f(u). This implies that u \in V (C)\cap def(G - D\prime , f). Now we are in a case
where u /\in V (C). Pick an arbitrary vertex w \in V (C) \cap V (F ). Since w, u \in V (F ),
there exists a path P from w to u using only vertices from Red. Since w and u are in
different connected components in G - D\prime , D\prime \cap E(P ) \not = \emptyset . Pick the first edge (v, v\prime ) in
the path P which are also in D\prime . Note that there exists a path from w to v in G - D\prime 

and v \in V (C). Since v \in Red and (v, v\prime ) \in D\prime , we have that v \in V (C)\cap def(G - D\prime , f).
This completes the proof.

Now we explain how Lemma 4.9 is useful in satisfying property (iv) partially.
Let \scrC be the set of connected components in G such that for each vertex v in the
component, dG(v) = f(v),

\scrC = \{ C | C is a connected component in G \wedge \forall v \in V (C), dG(v) = f(v)\} .

Let D1 and D2 be deletion sets corresponding to two partial solutions such that for all
C \in \scrC , D1\cap E(C) \not = \emptyset if and only if D2\cap E(C) \not = \emptyset . Suppose there is a set D\prime \subseteq E(G)
such that D1\cup D\prime is a nice deletion set. Now we claim that any connected component
F in G  - (D2 \cup D\prime ) containing only red vertices will have a deficient vertex. Let
v \in V (F ) and v /\in V (\scrC ). We also know that v \in Red. Since v /\in V (\scrC )(=

\bigcup 
C\in \scrC V (C))

one of the following conditions hold:
1. There is a path from v to a vertex in Green in the graph G.

Since v \in V (F ) and F is a fully red connected component in G - (D2 \cup D\prime ),
there is a vertex w in V (F ) such that D2 \cup D\prime contains an edge incident with
w. Since w \in Red as well, w \in def(G - (D2 \cup D\prime ), f).
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2. Else, v is in a connected component C1 of G such that V (C1) \subseteq Red and
there is a vertex u \in V (C1) such that f(u) > dG(v).
If F = C1, then u is the required deficient vertex. If F \not = C1, then by
Lemma 4.9, V (F ) \cap def(G - (D2 \cup D\prime ), f) \not = \emptyset .

Let v \in V (F ) and v \in V (C) where C \in \scrC . Since D1 \cup D\prime is a solution, either
D1 \cap E(C) \not = \emptyset or D\prime \cap E(C) \not = \emptyset . If D1 \cap E(C) \not = \emptyset , then by our assumption,
D2 \cap E(C) \not = \emptyset . Thus by Lemma 4.9, V (F ) \cap def(G - (D2 \cup D\prime ), f) \not = \emptyset .

Essentially due to Lemma 4.9, if we partition our partial solutions based on how
these partial solutions hit the edges from \scrC and keep at least one from each equivalence
class, the property (iv) of a nice deletion set will be satisfied partially. But this only
allows us to take care of connected components containing only red vertices. Now
we explain how we can ensure property (iv) for the connected components containing
vertices from Green as well.

To achieve this we will prove that corresponding to every deletion set D of a
solution, there is a ``witness"" of \scrO (k) sized subset of edges whose disjointness from D
will ensure property (iv) of nice deletion sets; that is, these witnesses are dependent
on solutions; the witness for solution D will be different from the witness for solution
D\ast . Even then, these witnesses allow us to satisfy property (iv). In order to avoid
this witness being picked in a deletion set D, that is to keep this witness nondeletable,
we use color coding in our algorithm on top of representative family based pruning of
table entries. Towards that we define a weight function w on E(G) as follows:

w((u, v)) =

\biggl\{ 
0 if u, v \in Red,
1 otherwise.

For any subset S \subseteq E(G), w(S) =
\sum 
e\in S w(e). The next lemma is crucial for our

approach as this not only defines the witness but also gives an upper bound on its
size.

Lemma 4.10. Let Green = \{ v1, v2, . . . , v\eta \} , \eta \leq 2k. Let D \subseteq E(G) such that for
any connected component F in G  - D, V (F ) \cap def(G  - D, f) \not = \emptyset . Then there exist
paths P1, . . . , P\eta such that for all i, Pi is a path in G  - D from vi to a vertex in
def(G - D, f), and w(

\bigcup 
iE(Pi)) \leq 6k where

\bigcup 
iE(Pi) is the set of edges in the paths

P1, . . . P\eta .

Proof. We construct P1, . . . , P\eta with the required property. Pick an arbitrary
vertex u1 \in def(G - D, f) such that v1 and u1 are in the same connected component
in G - D. Let P1 be a smallest weight path according to weight function w, from v1
to u1 in G  - D. Now we explain how to construct Pi, given that we have already
constructed paths P1, . . . , Pi - 1. Pick an arbitrary vertex ui \in def(G - D, f) such that
vi and ui are in the same connected component in G - D. Let P be a smallest weight
path from vi to ui in G  - D. If P is vertex disjoint from P1, . . . , Pi - 1, then we set
Pi = P . Otherwise, let x be the first vertex in P such that x \in V (P1)\cup . . .\cup V (Pi - 1).
Let x \in Pj where j < i. Let P = P \prime P \prime \prime such that P \prime ends in x and P \prime \prime starts at x.
Let Pj = P \prime 

jP
\prime \prime 
j such that P \prime 

j ends in x and P \prime \prime 
j starts at x. Now we set Pi = P \prime P \prime \prime 

j .
Note that Pi is a path in G - D from vi to a vertex in def(G - D, f).

Now we claim that w(
\bigcup \eta 
i=1E(Pi)) \leq 6k. Towards the proof, we need to count that

| (
\bigcup \eta 
i=1E(Pi))\cap w - 1(1)| \leq 6k. We assign each vertex v in

\bigcup \eta 
i=1 V (Pi) to the smallest

indexed path Pj such that v \in V (Pj); that is, v is assigned to Pj if v \in V (Pj) and

v /\in (
\bigcup j - 1
i=1 V (Pi). Note that each vertex in

\bigcup \eta 
i=1 V (Pi) is assigned to a unique path.

Consider the edge set A\ast \subseteq (
\bigcup \eta 
i=1E(Pi)) \cap w - 1(1) as follows. An edge e = (u, v)

belongs to A\ast if w(e) = 1, e \in E(Pj), and vertices u and v are assigned to path Pj
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for some j. Observe that each edge e \in A\ast has at least one endpoint in Green. Since
each vertex is assigned to exactly one path, each vertex in a path has degree at most
2 and | Green| \leq 2k, we have that | A\ast | \leq 4k.

Now we show that there exist sets \emptyset = B1 \subseteq B2 \subseteq . . . B\eta such that (
\bigcup j
i=1E(Pi))\cap 

w - 1(1) \subseteq A\ast \cup Bj and | Bj | \leq j. We prove the statement using induction on j. For

j = 1, we know that (
\bigcup j
i=1E(Pi)) \cap w - 1(1) \subseteq A\ast . Thus, the statement is true. Now

suppose the statement is true for j - 1. Consider any path Pj . If the vertices in Pj are

disjoint from
\bigcup j - 1
i=1 V (Pi), then all the weight one edges in E(Pj) are counted in A\ast .

So we can set Bj = Bj - 1 and the statement is true. Otherwise, by the construction of
Pj , we have that Pj = P \prime 

jP
\prime \prime 
j and there exists r < j such that Pr = P \prime 

rP
\prime \prime 
j . Let (u1, u2)

be the last edge in P \prime 
j . Note that all the weight one edges in E(P \prime \prime 

j ) are counted in
A\ast \cup Bj - 1 and all the weight one edges in E(P \prime 

j) \setminus \{ (u1, u2)\} are counted in A\ast . In
this case we set Bj = Bj - 1 if w((u1, u2) = 0) and Bj = Bj - 1 \cup \{ (u1, u2)\} otherwise.
This implies that | (

\bigcup \eta 
i=1E(Pi)) \cap w - 1(1)| \leq 6k. This concludes the proof.

Recall that Er = E(G[Red]) and Eg = E(G) \setminus Er. Note that in Lemma 4.10, the
weight of each edge in Eg is 1 and the weight of each edge in Er is 0. By Lemma 4.10,
we have that if D is a nice deletion set, then there exists E\prime \subseteq Eg of cardinality at
most 6k such that E\prime witnesses that each connected component of G - D containing
at least one vertex from Green, will also contain a vertex from def(G - D, f). We call
such an edge set E\prime as certificate of D. Now we explain how Lemma 4.10 helps us to
satisfy property (iv) of nice deletion sets for components containing at least one vertex
from Green. Let Green = \{ v1, . . . , v\eta \} and D1 \cup D\prime be a deletion set corresponding
to a solution. By Lemma 4.10 we know that there are paths P1, . . . , P\eta such that
the total number of edges from Eg among these paths is bounded by 6k, and each
path Pi is from vi to a vertex in def(G  - (D1 \cup D\prime ), f). Suppose we color the edges
in Eg with black and orange such that the coloring guarantees that all the edges in
Eg \cap (

\bigcup \eta 
i=1E(Pi)) are colored black and all the edges in Eg \cap (D1 \cup D\prime ) are colored

orange. Assume that we are going to find a nice deletion set which does not contain
black color edges. Let D2 be a deletion set corresponding to a partial solution. Also,
for a vertex vi \in Green, there is a path from vi to a vertex in def(G  - D1, f) in the
graph G - D1 which does not contain any orange colored edge if and only if there is
path from vi to a vertex in def(G - D2, f) in the graph G - D2 which does not contain
any orange colored edge. Like in the case of red components, we can show that any
connected component in G - (D2 \cup D\prime ) containing a vertex from Green will contain a
vertex from def(G  - (D2 \cup D\prime ), f). The formal proof of this statement will be given
in Lemma 4.12. Essentially, by Lemma 4.10 we get the following. Suppose we take
all partial solutions corresponding to a DP table entry (or a subset of it) and now
we partition these partial solutions based on which all green vertices have found their
deficient vertex currently (there are 2| \sansG \sansr \sanse \sanse \sansn | such partitions), then it is enough to keep
a partial solution from each class. Furthermore, suppose \scrA corresponds to partial
solutions with respect to one particular subset of Green and we have kept a set D1 in
\scrA and deleted the rest of the partial solutions from \scrA (say one of the partial solutions
we threw out was D2). Then, if there is D\prime such that D2 \cup D\prime is a solution, then all
the connected components in G - (D1 \cup D\prime ) containing at least one green vertex will
have a deficient vertex. Just a word of caution that in our actual algorithm, in fact,
we keep a subset of \scrA of size 2\scrO (k)n\scrO (1) so that we can also take care of all other
properties of a nice deletion set. Even though we explained that the property (iv)
can be achieved by imposing more structure to the equivalence class we defined in the
last section, we will not include these structures in the index of the DP table entries.
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Rather, for each table entry indexed by an equivalence class, we keep at least one
partial solutions for each refinement of this equivalence class based on which green
vertices have found their partner deficient vertex. This will ensure that property (iv)
is satisfied.

We have explained how we will ensure each of the individual properties of a nice
deletion set. Now we design a randomized FPT algorithm for the problem. Later,
we derandomize the algorithm. The algorithm is a DP algorithm in which we have
DP table entries indexed exactly in the same way as in the case of the XP algorithm.
But instead of keeping \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ], we store a small representative

family of \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] which is enough to maintain the correctness

of the algorithm. The algorithm uses both color coding and representative family
techniques. We have explained that we use color coding to separate the proposed
deletion set from its certificate mentioned in Lemma 4.10. We color each edge e \in Eg
black with probability 6/7 and orange with probability 1/7. Let Eb be the set of
edges colored black and let Eo be the set of edges colored orange. Let D be a deletion
set of size k\prime for the problem and let paths P1, . . . , P\eta be its witnesses mentioned in
Lemma 4.10. Then the number of edges in paths P1, . . . , P\eta , which are from Eg, is
bounded by 6k. We say that a random coloring is good if each edge in D\cap Eg is colored
orange and each edge in Eg\cap (

\bigcup \eta 
i=1 Pi) is colored black. The random coloring of edges

in Eg is good, with probability
\bigl( 
66

77

\bigr) k
. Now our algorithm works with the edge colored

graph and output a nice deletion set D, with the property that D \cap Eg \subseteq Eo, if there
exists such a deletion set. We know that if the input instance is a Yes instance, then

with probability at least
\bigl( 
66

77

\bigr) k
our algorithm will output a solution. Thus, we can

increase the success probability to at least (1 - 1/e) by running the entire algorithm\bigl( 
77

66

\bigr) k
times. From now on we assume that the edges in Eg of the input graph are

colored with black or orange, and our objective is to find out a nice deletion set D
such that all edges in D \cap Eg are colored orange. Note that the edges in Er are
uncolored.

Recall that \scrC is the set of connected components in G such that for each vertex
v in the component, dG(v) = f(v). Now we define a family \scrJ of functions as

\scrJ = \{ g : Green \cup \scrC \rightarrow \{ 0, 1\} \} .

Now we explain how to reduce the size of \scrD [T \prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] which is com-

puted using the recurrence relations (see (6), (7), and (8)). We say a partial solution
B \in \scrD [T \prime 

g, T
\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] is properly colored if B \cap Eb = \emptyset . Since our objective is

to find out a nice deletion set disjoint from Eb, we delete all partial solutions which
contain an edge from Eb; that is, if B \in \scrD [T \prime 

g, T
\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] and B \cap Eb \not = \emptyset ,

then we delete B from \scrD [T \prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ]. From now on we assume that for each

B \in \scrD [T \prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ], B \cap Eb = \emptyset . Further pruning of the DP table entry

\scrD [T \prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] is discussed below.

Definition 4.11. A subset \scrR [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] \subseteq \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,

X, Y ] is called a representative set of partial solutions for \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ],

denoted by

\scrR [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] \sqsubseteq k - irep \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ]

if the following holds. If there exist two sets B,Z \subseteq 
\bigl( 
V (G)

2

\bigr) 
such that B belongs to

\scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ], B \cap Z = \emptyset , B \cap Eb = \emptyset , and (B \cup Z)\cap E(G) satisfies five

properties of a nice deletion set with the property that there exists a proper deficiency

D
ow

nl
oa

de
d 

11
/1

2/
19

 to
 1

29
.1

77
.9

6.
36

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

828 F. PANOLAN, F. FOMIN, P. GOLOVACH, AND S. SAURABH

map \psi with E\psi = (B \cup Z)\cap E(G), then there exists \widehat B \subseteq 
\bigl( 
V (G)

2

\bigr) 
such that \widehat B \cap Z = \emptyset ,\widehat B \cap Eb = \emptyset , \widehat B \in \scrR [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ], and ( \widehat B \cup Z) \cap E(G) satisfies five

properties of a nice deletion set with the property that there exists a proper deficiency
map \psi \prime with E\psi \prime = ( \widehat B \cup Z) \cap E(G).

For each valid tuple (T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ) we compute a representative set

of partial solutions for \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] in the increasing order of i and

store it instead of \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ]. Now we explain how to compute it

and prove its correctness. First, we compute a subfamily \scrS [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ]

of \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] using the recurrence relation---see (6), (7), and (8)---on

the DP table entries computed for value i - 1 and deleting all partial solutions which
contain edges from Eb. Now we partition \scrS [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] according to the

refinement of each function in \scrJ ; that is , \scrS [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] =

\bigcup 
g\in \scrJ \scrA g,

where \scrA g is defined as follows. For each g \in \scrJ and S\cup R \in \scrS [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ]

where S \in E(G) and R \in E(G), S \cup R \in \scrA g if the following happens:
(i) For any v \in Green, g(v) = 1 if and only if there exists a path from v to a

vertex in def(G - S, f) in G[Eb\cup (Er \setminus S)] (checking whether there is a witness
path that does not use edges in Eo).

(ii) For any C \in \scrC , g(C) = 1 if and only if S \cap E(C) \not = \emptyset .
Recall that any set S \cup R \in \scrS [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] is an independent set of size

i in M . Now we compute \widehat \scrA g \subseteq k - irep \scrA g using Theorem 2.6. Then we set

\widehat \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] =

\bigcup 
g\in \scrJ 

\widehat \scrA g

and store it instead of \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ]. The next lemma proves the cor-

rectness of this step.

Lemma 4.12. \widehat \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] \sqsubseteq k - irep \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ].

Proof. We prove the lemma by induction on i. Suppose there exists B,Z \subseteq 
\bigl( 
V (G)

2

\bigr) 
such that B \in \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ], B \cap Z = \emptyset , B \cap Eb = \emptyset , (B \cup Z) \cap E(G)

satisfies the five properties of a nice deletion set and there exists a proper deficiency
map \psi over S(G - ((B \cup Z)\cap E(G)), f) with the property that E\psi = (B \cup Z)\cap E(G).
By the recurrence relations given by Equations 6,7 and 8, there exists e \in B and a
valid tuple (T \prime \prime 

m, T
\prime \prime 
g , T

\prime \prime 
r , k

\prime \prime 
1 , k

\prime \prime 
2 , i - 1, X \prime , Y \prime ) such that

B \setminus \{ e\} \in \widehat \scrD [T \prime \prime 
m, T

\prime \prime 
g , T

\prime \prime 
r , k

\prime \prime 
1 , k

\prime \prime 
2 , i - 1, X \prime , Y \prime ].

Let B\prime = B \setminus \{ e\} and Z \prime = Z \cup \{ e\} . We know that (B\prime \cup Z \prime )\cap E(G) = (B\cup Z)\cap E(G)
satisfies five properties of a nice deletion set and \psi is a proper deficiency map over
S(G  - ((B\prime \cup Z \prime ) \cap E(G)), f) with the property that E\psi = (B\prime \cup Z \prime ) \cap E(G). Thus,

by induction hypothesis we have that there exists \widehat B\prime \subseteq 
\bigl( 
V (G)

2

\bigr) 
such that

\bullet \widehat B\prime \in \widehat \scrD [T \prime \prime 
m, T

\prime \prime 
g , T

\prime \prime 
r , k

\prime \prime 
1 , k

\prime \prime 
2 , i - 1, X \prime , Y \prime ],

\bullet \widehat B\prime \cap Z \prime = \emptyset , \widehat B\prime \cap Eb = \emptyset ,
\bullet (\widehat B\prime \cup Z \prime ) \cap E(G) satisfies five properties of a nice deletion set, and

\bullet there exists a proper deficiency map \psi \prime over S(G - ((\widehat B\prime \cup Z \prime )\cap E(G)), f) with

the property that E\psi \prime = (\widehat B\prime \cup Z \prime ) \cap E(G).
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EDITING TO CONNECTED f -DEGREE GRAPH 829

Since (\widehat B\prime \cup Z \prime ) \cap E(G) is a nice deletion set, G  - ((\widehat B\prime \cup \{ e\} ) \cap E(G)) has at most
k  - k\prime + 1 connected components. The definitions of \bullet , \circ and recurrence relation of
\scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] imply that

\bullet if e \in E(G), then \widehat B\prime \cup \{ e\} \in \widehat \scrD [T \prime \prime 
m, T

\prime \prime 
g , T

\prime \prime 
r , k

\prime \prime 
1 , k

\prime \prime 
2 , i - 1, X \prime , Y \prime ] \bullet e and

\bullet if e \in E(G), then \widehat B\prime \cup \{ e\} \in \widehat \scrD [T \prime \prime 
m, T

\prime \prime 
g , T

\prime \prime 
r , k

\prime \prime 
1 , k

\prime \prime 
2 , i - 1, X \prime , Y \prime ] \circ e.

Also by our assumption, if e \in E(G), then e \in E(G)\setminus Eb. For ease of presentation, let
us call B = \widehat B\prime \cup \{ e\} . Furthermore, let D = (B \cup Z)\cap E(G) and A = (B \cup Z)\cap E(G).
Now we have that

\bullet B \in \scrS [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] and

\bullet \psi \prime is a proper deficiency map over S(G  - ((B \cup Z) \cap E(G)), f) such that
E\psi \prime = (B \cup Z) \cap E(G).

Let g : Green \cup \scrC \rightarrow \{ 0, 1\} be defined as follows:
1. For any v \in Green, g(v) = 1 if and only if there exists a path from v to a

vertex in def(G - (B \cap E(G)), f) in G[Eb \cup (Er \setminus B)].

2. For any C \in \scrC , g(C) = 1 if and only if B \cap E(C) \not = \emptyset .
From the definition of \scrA g, we have that B \in \scrA g. Since B \cup Z is an independent

set in the matroid M , by the definition of representative families, there exists \widehat B \in \widehat \scrA g such that \widehat B \cap Z = \emptyset and \widehat B \cup Z is an independent set in M . Note that \widehat B \in 
\widehat \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] and \widehat B \cap Eb = \emptyset . To conclude the proof of the lemma,

the only thing that remains to show is that ( \widehat B \cup Z) \cap E(G) satisfies all of the five
properties of a nice deletion set. The next claim does this job.

Claim 11. ( \widehat B \cup Z) \cap E(G) satisfies five properties of a nice deletion set, and

there exists a proper deficiency map \widehat \psi over S(G  - (( \widehat B \cup Z) \cap E(G)), f) such that

E \widehat \psi = ( \widehat B \cup Z) \cap E(G).

Proof. Let \widehat D = ( \widehat B \cup Z) \cap E(G) and \widehat A = ( \widehat B \cup Z) \cap E(G). We know that D
satisfies five properties of a nice deletion set, and there exists a proper deficiency map
\psi \prime over S(G - D, f) with the property that E\psi \prime = A. We need to show that \widehat D satisfies

five properties of a nice deletion set and there exists a proper deficiency map \widehat \psi over
S(G - \widehat D, f) with the property that E \widehat \psi = \widehat A.

Property (i). We know that B, \widehat B \in \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] because\widehat \scrA g \subseteq \scrA g \subseteq \scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ].

Hence, for all v \in Green, dG - ( \widehat B\cap E(G))(v) = dG - (B\cap E(G))(v). This implies that for all

v \in Green, dG - \widehat D(v) = dG - D(v). Since for all v \in Green, dG - D(v) \leq f(v), we have

that for all v \in Green, dG - \widehat D(v) \leq f(v). For any v \in Red, dG - \widehat D \leq f(v). Hence \widehat D
satisfies property (i) of a nice deletion set.

Property (ii). Since B, \widehat B \in \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ], we have that | S(G  - 

D, f)| = | S(G  - \widehat D, f)| and | D| = | \widehat D| = k\prime . Thus \widehat D satisfies property (ii) of a nice
deletion set.

Property (iii). We know that \widehat B \cup Z is an independent set in the matroid M ,

and hence \widehat D is an independent set in MG(\ell ), where \ell = E(G)  - V (G) + k  - k\prime + 1.

Thus, by Lemma 4.8, G - \widehat D has at most k - k\prime +1 = k - | \widehat D| +1 connected components,

and so \widehat D satisfies property (iii) of a nice deletion set.
Property (iv). Now we consider property (iv) of a nice deletion set. We need

to show that for any connected component C in G - \widehat D, V (C) \cap def(G - \widehat D, f) \not = \emptyset .
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Case 1. Suppose V (C) \cap Green \not = \emptyset . Let v \in V (C) \cap Green. Suppose g(v) = 1.

Since \widehat B \in \scrA g, there exists a path P in G[(Eb \cup (Er \setminus \widehat B)] from v to a vertex u in

def(G - ( \widehat B \cap E(G)), f). This implies that u \in def(G - \widehat D, f). If E(P ) \subseteq E(G - \widehat D),

then u \in V (C). This implies that V (C)\cap def(G - \widehat D) \not = \emptyset . Suppose E(P ) \nsubseteq E(G - \widehat D).

This implies that some of the edges in E(P ) are present in \widehat D. Since for all e \in \widehat D,

e \in Eo and for all e\prime \in Eg \cap E(P ), e\prime \in Eb, we have that any edge e \in E(P ) \cap \widehat D
also belongs to Er. Let e1 = (u1, v1) be the first edge in the path P , such that

e1 \in \widehat D. Note that u1 \in V (C) and dG - \widehat D(u1) < f(u1), because u1 \in Red. Hence

V (C) \cap def(G - \widehat D) \not = \emptyset .
Now we consider the case g(v) = 0. We know that there is a path P in G  - D

from the vertex v to a vertex u such that u \in def(G  - D, f) and E(P ) \cap Eg \subseteq Eb.
This implies that P is a path in G[Eb \cup (Er \setminus D)]. Since g(v) = 0 and P is a
path in G[Eb \cup (Er \setminus D)], we have that dG - (B\cap E(G))(u) \geq f(u). If u \in Green, then
dG - \widehat D(u) = dG - D(u) < f(u). If u \in Red, then there is e = (u,w) \in Z \cap E(G).

This implies that dG - \widehat D(u) < f(u) because dG(u) \leq f(u) and (u,w) \in \widehat D. In either

case u \in def(G  - \widehat D, f). If E(P ) \subseteq E(G  - \widehat D), then u \in V (C). This implies that

V (C) \cap def(G - \widehat D) \not = \emptyset . Suppose E(P ) \nsubseteq E(G - \widehat D). This implies that some of the

edges in E(P ) are present in \widehat D. Since for all e \in \widehat D, e \in Eo and for all e\prime \in Eg\cap E(Pi),

e\prime \in Eb, any edge e \in E(P ) \cap \widehat D also belongs to Er. Let e1 = (x, y) be the first edge

in the path P , such that e1 \in \widehat D. Note that x \in V (C) and dG - \widehat D(x) < f(x), because

x \in Red. Hence V (C) \cap def(G - \widehat D) \not = \emptyset .
Case 2. Suppose V (C) \subseteq Red and there exists a connected component F in \scrC 

such that V (F ) \cap V (C) \not = \emptyset . If g(F ) = 1, then we know that \widehat B \cap E(G) contains an

edge which is also present in E(F ), because \widehat B \in \scrA g. Then, by Lemma 4.9 we have

that V (C) \cap def(G  - \widehat D) \not = \emptyset . If g(F ) = 0, then there exists an edge e in Z \cap E(G)
such that e \in E(F ), because D satisfies properties of Lemma 4.4 and B \in \scrA g. This

implies that, by Lemma 4.9, we have that V (C) \cap def(G - \widehat D) \not = \emptyset .
Case 3. Suppose V (C) \subseteq Red and for all connected component F in \scrC , V (F ) \cap 

V (C) = \emptyset . Then there exists a path P from a vertex v in V (C) to a vertex u in Green

in graph G. Let e = (x, y) be the first edge in the path P such that e \in \widehat D. Note
that such an edge e exists because V (C) \subseteq Red and x \in Red. Since x \in Red and

(x, y) \in \widehat D, we have that dG - \widehat D(x) < f(x). This implies that V (C)\cap def(G - \widehat D) \not = \emptyset .
Property (v). Now consider property (v) of a nice deletion set. We need to

show that there exists a proper deficiency map \widehat \psi over S(G - \widehat D). We know that \psi \prime is
a proper deficiency map over S(G - D). Let

P = B \cap E(G), \widehat P = \widehat B \cap E(G), Q = B \cap E(G) and \widehat Q = \widehat B \cap E(G).

We claim that for all v \in V (G), dG - \widehat P+ \widehat Q(v) = dG - P+Q(v). Since \widehat P \cup \widehat Q,P \cup Q \in 
\scrD [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] \subseteq \scrQ (T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ), there exist proper defi-

ciency maps \psi 1 over (S(G - \widehat P , f)\cup T \prime 
g \cup Y ) \setminus (T \prime 

r \cup X \widehat P,f ) and \psi 2 over (S(G - P, f)\cup 
T \prime 
g \cup Y ) \setminus (T \prime 

r \cup XP,f ) such that E\psi 1 = \widehat Q and E\psi 2 = Q. This implies that for any
v \in Red,

dG - \widehat P+ \widehat Q(v) = f(v) + Y (v) - T \prime 
r(v) - X(v) = dG - P+Q(v).

For any v \in Green, since dG - P (v) = dG - \widehat P (v) and \psi 1, \psi 2 are proper deficiency

maps over (S(G  - \widehat P , f) \cup T \prime 
g \cup Y ) \setminus (T \prime 

r \cup X \widehat P,f ), (S(G  - P, f) \cup T \prime 
g \cup Y ) \setminus (T \prime 

r \cup 
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EDITING TO CONNECTED f -DEGREE GRAPH 831

XP,f ), respectively, we have that dG - P+Q(v) = dG - \widehat P+ \widehat Q(v). Hence, for all v \in 
V (G), dG - \widehat P+ \widehat Q(v) = dG - P+Q(v).

Now we claim that for all v \in V (G), dG - \widehat D+ \widehat A(v) = dG - D+A(v),

dG - \widehat D+ \widehat A(v) = dG - \widehat P+ \widehat Q(v) - | EG(v) \cap Z| + | EG(v) \cap Z| 

= dG - P+Q(v) - | EG(v) \cap Z| + | EG(v) \cap Z| 
= dG - D+A(v).

We have that \psi \prime is a proper deficiency map over S(G - D), f) such that E\psi \prime = A. This
implies that dG - D+A(v) = f(v) for all v \in V (G). Since dG - \widehat D+ \widehat A(v) = dG - D+A(v),

we have that dG - \widehat D+ \widehat A(v) = f(v) for all v \in V (G). Let \widehat A = \{ e1, e2, . . . , er\} , where
r = k  - | D| . Since for all v \in V (G), dG - \widehat D+ \widehat A(v) = f(v), we have that there are

exactly f(v) - dG - D(v) edges in \widehat A which are adjacent to v. Now we define a function\widehat \psi : S(G  - \widehat D, f) \rightarrow S(G  - \widehat D, f) as follows. \widehat \psi (u(i)) = v(j) if (u, v) = e\ell such that
there are exactly i  - 1 edges from \{ e1, . . . , e\ell  - 1\} are incident with u and there are
exactly j - 1 edges from \{ e1, . . . , e\ell  - 1\} are incident with v. By Claim 1 of Lemma 4.4

we have that \widehat \psi is a proper deficiency map. Since we constructed \widehat \psi from \widehat A, E \widehat \psi =\widehat A.
The proof of the above claim completes the proof of the lemma.

So our algorithm computes \scrS [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] using (6), (7), and (8) from

DP table entries computed for i - 1 and then computes \widehat \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] as

explained above. If there exists B \in \widehat \scrD [Tm, Tg, \emptyset , k1, k2, k, \emptyset , \emptyset ] such that B\cap E(G) is a
nice deletion set, then the algorithm outputs Yes. Otherwise, the algorithm outputs
No. The correctness of the algorithm follows from Lemmas 4.4 and 4.12.

Running time. Let | V (G)| = n and let E(G) = m. Then the rank of the matroid

M is bounded by m + k. Consider the construction of \widehat \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ].

First, we constructed \scrS [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] using (6), (7), or (8) from DP table

entries \widehat \scrD [T \prime \prime 
m, T

\prime \prime 
g , T

\prime \prime 
r , k

\prime \prime 
1 , k

\prime \prime 
2 , i - 1, X \prime , Y \prime ]. Thus the size of \scrS [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ]

is

\scrO 

\Biggl( 
max

T \prime \prime 
m,T

\prime \prime 
g ,T

\prime \prime 
r ,k

\prime \prime 
1 ,k

\prime \prime 
2 ,X

\prime ,Y \prime 
| \widehat \scrD [T \prime \prime 

m, T
\prime \prime 
g , T

\prime \prime 
r , k

\prime \prime 
1 , k

\prime \prime 
2 , i - 1, X \prime , Y \prime ]| \cdot 

\biggl( 
n

2

\biggr) \Biggr) 
.

We know that \widehat \scrD [T \prime 
m, T

\prime \prime 
g , T

\prime \prime 
r , k

\prime \prime 
1 , k

\prime \prime 
2 , i - 1, X \prime , Y \prime ] =

\bigcup 
g\in \scrJ 

\widehat \scrA g, where \widehat \scrA g is a (k  - 
(i  - 1))-representative family computed using Theorem 2.6. Thus, by Theorem 2.6,

| \widehat \scrA g| is bounded by (m + k)k
\bigl( 
k
i - 1

\bigr) 
. The cardinality of Green \cup \scrC is bounded by 2k,

because any solution should contain at least one edge incident with each green ver-
tex and one edge from each component in \scrC . Hence | \scrJ | = 4k. Thus, the size of
\scrS [T \prime 

m, T
\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] is upper bounded by 4k

\bigl( 
k
i - 1

\bigr) 
(m+k)k log n = 4k

\bigl( 
k
i - 1

\bigr) 
n\scrO (1).

Then, we have partitioned \scrS [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] based on g \in \scrJ ; that is,

\scrS [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] =

\bigcup 
g\in \scrJ \scrA and then computed a k - i-representative family\widehat \scrA g of \scrA g for each g \in \scrJ . By Theorem 2.6, the running time of this computation is

upper bounded by

4k
\biggl( 

k

i - 1

\biggr) \biggl( 
k

i

\biggr) \omega  - 1

n\scrO (1).
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Thus, the running time to compute \widehat \scrD [T \prime 
m, T

\prime 
g, T

\prime 
r, k

\prime 
1, k

\prime 
2, i,X, Y ] is bounded by

4k
\biggl( 

k

i - 1

\biggr) \biggl( 
k

i

\biggr) \omega  - 1

n\scrO (1).

The cardinality of Tm \cup Tg \cup Tr is at most 2k; otherwise, we need more than k edges
in the solution. Thus, the running time of the algorithm, once we guessed k\prime , k1, k2
and \Phi (v) for all v, is upper bounded by

k\sum 
i=1

22k4k
\biggl( 

k

i - 1

\biggr) \biggl( 
k

i

\biggr) \omega  - 1

n\scrO (1) = 2(4+\omega )k+o(k)n\scrO (1).

Since the number of possible guesses for k\prime , k1, k2, and \Phi is at most 4kk\scrO (1), the
total running time of the algorithm is 2(6+\omega )kn\scrO (1). Also note that we run the entire

algorithm
\bigl( 
77

66

\bigr) k
time to improve the success probability to at least (1 - 1/e).

Theorem 4.13. There is a randomized algorithm for EECG running in time\bigl( 
77

66

\bigr) k
2(6+\omega )kn\scrO (1) with success probability to at least (1 - 1/e).

4.4. Derandomization. In this subsection we explain how to derandomize the
above algorithm. Our algorithm can be derandomized using n-p-q-lopsided-universal
family introduced in [8]. A family \scrF of sets over a universe U of size n is an n-p-q-

lopsided-universal family if for every A \in 
\bigl( 
U
p

\bigr) 
and B \in 

\bigl( 
U\setminus A
q

\bigr) 
there is an F \in \scrF such

that A \subseteq F and B \cap F = \emptyset . It turns out that by slightly changing the construction of
Naor, Schulman, and Srinivasan [19], one can prove the following lemma and it can
also be derived as a corollary of a result from [8].

Lemma 4.14 (see [19, 8]). There is an algorithm that, given n, p, and q, con-
structs an n-p-q-lopsided-universal family \scrF of size

\bigl( 
p+q
p

\bigr) 
\cdot 2o(p+q) \cdot log n in time

\scrO (
\bigl( 
p+q
p

\bigr) 
\cdot 2o(p+q) \cdot n log n).

To derandomize our algorithm, instead of randomly coloring the edges in Eg, we
use (| Eg| , 7k, k)-lopsided-universal family \scrF . We run our algorithm | \scrF | many times
as follows. For each F \in \scrF , we color F with orange and Eg \setminus F with black and
run our algorithm. The correctness of derandomization follows from the definition of
n-7k-k-lopsided-universal family.

Fact 1. By Stirling's approximation,
\bigl( 
k
\alpha k

\bigr) 
\leq 
\bigl( 
\alpha  - \alpha (1 - \alpha )(\alpha  - 1)

\bigr) k
[23].

Thus, by using Lemma 4.14, we can derandomize our algorithm and we get the
following theorem where its running time follows from Fact 1.

Theorem 4.15. There is a deterministic algorithm for EECG running in time\bigl( 
77

66

\bigr) k
2(6+\omega )kn\scrO (1).

5. Hardness. In this section we prove hardness of Edge Editing to Con-
nected f-Degree Graph with Costs.

Theorem 5.1. Edge Editing to Connected f-Degree Graph with Costs
is W[1]-hard for trees when parameterized by k+ d even if costs are restricted to 0 or
1.

Proof. We reduce the Clique problem that is well known to be W[1]-complete [6].
In this problem we are given an undirected graph G and a positive integer k as an
input and the objective is to check whether G has a clique of size at least k. It is
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EDITING TO CONNECTED f -DEGREE GRAPH 833

straightforward to observe that Clique is W[1]-complete for the instances where k
is restricted to be odd. To see this, it is sufficient to notice that if G\prime is the graph
obtained from a graph G by adding a vertex that is adjacent to every other vertex of
G, then G has a clique of size k if and only if G\prime has a clique of size k + 1.

t

v1
G vi vn

a1 ai an

xi
1 xi

k - 1

w1
0

wi
0

wi
1

wi
k - 1 wi

k

w1
k

wn
kwn

0

ui
k - 1

yi1

ui
1

yik - 2

zi1 zik - 2

r
s

Fig. 5.1. Construction of T . The edges of cost 0 are shown by thin lines, the edges of cost 1
are shown by thick lines, and the non-edges of cost 0 are shown by dashed lines. Notice that the
graph G is encoded by assigning the cost 0 to every non-edge of T corresponding to an edge of G.

Let (G, k) be an instance of Clique and k \geq 3 is odd. Let V (G) = \{ v1, . . . , vn\} .
We construct a tree T and define the function c as follows (see Figure 5.1):

(i) Construct vertices v1, . . . , vn and set c((vi, vj)) = 0 if (vi, vj) \in E(G) for
i, j \in [n].

(ii) For each i \in [n], construct vertices ai, x
i
1, . . . , x

i
k - 1, y

i
1, y

i
3, y

i
5, . . . , y

i
k - 2, and

zi1, z
i
3, z

i
5 . . . , z

i
k - 2 and edges (ai, vi), (vi, x

i
1), . . . , (vi, x

i
k - 1), (x

i
1, y

i
1), (x

i
3, y

i
3),

(xi5, y
i
5), . . . , (x

i
k - 2, y

i
k - 2) and (yi1, z

i
1), (y

i
3, z

i
3), (y

i
5, z

i
5), . . . , (y

i
k - 2, z

i
k - 2). We

set

c((ai, vi)) = 1,

c((vi, x
i
1)) = \cdot \cdot \cdot = c((vi, x

i
k - 1)) = 0,

c((xi1, y
i
1)) = c((xi3, y

i
3)) = \cdot \cdot \cdot = c((xik - 2, y

i
k - 2)) = 1, and

c((yi1, z
i
1)) = c((yi3, z

i
3)) = \cdot \cdot \cdot = c((yik - 2, z

i
k - 2)) = 0.

(iii) For each i \in [n], construct vertices ui1, . . . , u
i
k - 1 and wi0, . . . , w

i
k and edges

(ui1, w
i
1), . . . , (u

i
k - 1, w

i
k - 1), (w

i
0, w

i
1), (w

i
2, w

i
3), . . . , (w

i
k - 1, w

i
k), and (ui1, u

i
2),
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(ui3, u
i
4), . . . , (u

i
k - 2, u

i
k - 1). We set

c((ui1, w
i
1)) = \cdot \cdot \cdot = c((uik - 1, w

i
k - 1)) = 1,

c((wi0, w
i
1)) = c((wi2, w

i
3)) = \cdot \cdot \cdot = c((wik - 1, w

i
k)) = 0,

c((ui1, u
i
2)) = c((ui3, u

i
4)) = \cdot \cdot \cdot = c((uik - 2, u

i
k - 1)) = 0, and

c((wi1, w
i
2)) = c((wi3, w

i
4)) = \cdot \cdot \cdot = c((wik - 2, w

i
k - 1)) = 0.

(iv) For each i \in [n], set c((ui1, x
i
1)) = \cdot \cdot \cdot = c((uik - 1, x

i
k - 1)) = 0.

(v) Construct vertices s, t, r and edges (r, s), (s, t), (t, w1
0), (w

1
0, w

2
0), (w

2
0, w

3
0), . . . ,

(wn - 1
0 , wn0 ), (w

n
0 , a1) and (a1, a2), (a2, a3), . . . , (an - 1, an). We set

c((r, s)) = c((s, t)) = c((t, w1
0)) = 1,

c((w1
0, w

2
0)) = c((w2

0, w
3
0)) = . . . = c((wn - 1

0 , wn0 )) = 1,

c((wn0 , a1)) = 1, and

c((a1, a2)) = c((a2, a3)) = . . . = c((an - 1, an)) = 1.

(vi) Set c((s, w1
0)) = \cdot \cdot \cdot = c((s, wn0 )) = 0, c((t, w1

k)) = \cdot \cdot \cdot = c((t, wnk )) = 0.

(vii) For each i \in [n], set c((r, yi1)) = c((r, yi3)) = \cdot \cdot \cdot = c((r, yik - 2)) = 0 and
c((r, zi1)) = c((r, zi3)) \cdot \cdot \cdot = c((r, zik - 2)) = 0.

(viii) For any (p, q) \in 
\bigl( 
V (T )

2

\bigr) 
\setminus E(T ), set c((p, q)) = 1 if c((p, q)) was not set to be

0 in (i)--(vii).
We define f(s) = k+2, f(t) = k+2, f(r) = 1+k(k - 1), and set f(p) = dT (p) for p \in 
V (G)\setminus \{ s, t, r\} . Finally, we set C = 0, d = 2+k(k - 1), and k\prime = 5k2 - 2k+k(k - 1)/2,
and obtain an instance (T, d, k\prime , C, f, c) of Edge Editing to Connected f-Degree
Graph with Costs. Clearly, T is a tree. We show that (T, d, k\prime , C, f, c) is a Yes-
instance of Edge Editing to Connected f-Degree Graph with Costs if and
only if G has a clique of size k.

For i \in \{ 1, . . . , n\} , let

Di = \{ (wi0, wi1), (wi2, wi3), . . . , (wik - 1, w
i
k)\} \cup \{ (ui1, ui2), (ui3, ui4), . . . , (uik - 2, u

i
k - 1)\} 

\cup \{ (vi, xi1), . . . , (vi, xik - 1)\} \cup \{ (yi1, zi1), (yi3, zi3), . . . , (yik - 2, z
i
k - 2)\} 

and

Ai = \{ (s, wi0), (t, wik)\} \cup \{ (wi1, wi2), (wi3, wi4), . . . , (wik - 2, w
i
k - 1)\} 

\cup \{ (xi1, ui1), . . . , (xik - 1, u
i
k - 1)\} 

\cup \{ (r, yi1), (r, yi3), . . . , (r, yik - 2)\} \cup \{ (r, zi1), (r, zi3), . . . , (r, zik - 2)\} .

Note that Di \subseteq E(T ), c(Di) = 0, | Di| = 2k  - 1 + (k  - 1)/2, and Ai \subseteq 
\bigl( 
V (T )

2

\bigr) 
\setminus E(T ),

c(Ai) = 0, | Ai| = 2k + (k  - 1)/2 for i \in \{ 1, . . . , n\} .
Suppose that G has a clique K = \{ vi1 , . . . , vik\} . Let A\prime = \{ (vij , vih)| 1 \leq j <

h \leq k\} . Because K is a clique in G, c(A\prime ) = 0. Clearly, A\prime \subseteq 
\bigl( 
V (T )

2

\bigr) 
\setminus E(T ) and

| A\prime | = k(k - 1)/2. We let D =
\bigcup k
j=1Dij and A = A\prime \cup (

\bigcup k
j=1Aij ). It is straightforward

to verify that c(D \cup A) = 0, | D| + | A| = k\prime , G\prime = T  - D + A is a connected graph,
and for every p \in V (G\prime ), dG\prime (p) = f(p).

Assume now that (T, d, k\prime , C, f, c) is a Yes-instance of Edge Editing to Con-
nected f-Degree Graph with Costs. Then there are sets D \subseteq E(T ) and
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A \subseteq 
\bigl( 
V (T )

2

\bigr) 
such that | D| + | A| \leq k\prime , c(D \cup A) = 0, G\prime = T  - D + A is a con-

nected graph, and for every p \in V (G\prime ), dG\prime (p) = f(p). Because f(s) = k + 2 and
dT (s) = 2, A contains at least k edges incident to s. Since c(A) = 0, we have that
there are swi10 , . . . , sw

ik
0 \in A for some distinct i1, . . . , ik \in \{ 1, . . . , n\} .

Consider (s, w
ij
0 ) for some j \in \{ 1, . . . , k\} . Because f(w

ij
0 ) = dT (w

ij
0 ), D has an

edge of cost 0 incident to w
ij
0 . Hence, (w

ij
0 , w

ij
1 ) \in D. Now we consider w

ij
1 and

observe that there is an edge of cost 0 in A that is incident to w
ij
1 and, therefore,

(w
ij
1 , w

ij
2 ) \in A. Repeating these arguments, we conclude that

R = \{ (wij0 , w
ij
1 ), (w

ij
2 , w

ij
3 ), . . . , (w

ij
k - 1, w

ij
k )\} \subseteq D

and
S = \{ (s, wij0 ), (w

ij
1 , w

ij
2 ), . . . , (w

ij
k - 2, w

ij
k - 1), (w

ij
k , t)\} \subseteq A.

Consider F = T  - R+S. Observe that for h \in [k - 1
2 ], F [\{ wij2h - 1, w

ij
2h, u

ij
2h - 1, u

ij
2h\} ]

is a component of F . Since G\prime is connected, A has an edge incident to a vertex of each
component of this type. We have that for h \in [k - 1

2 ], (x
ij
2h - 1, u

ij
2h - 1) \in A or (x

ij
2h, u

ij
2h) \in 

A. As f(u
ij
2h - 1) = dT (u

ij
2h - 1) and f(u

ij
2h) = dT (u

ij
2h), D has an edge incident to one

of these vertices and, therefore, (u
ij
2h - 1, u

ij
2h) \in D and (x

ij
2h - 1, u

ij
2h - 1), (x

ij
2h, u

ij
2h) \in A.

Because f(x
ij
2h - 1) = dT (x

ij
2h - 1), (x

ij
2h - 1, vij ), (x

ij
2h, vij ) \in D. We obtain that

R\prime = R \cup \{ (uij1 , u
ij
2 ), (u

ij
3 , u

ij
4 ), . . . , (u

ij
k - 2, u

ij
k - 1)\} \cup \{ (vij , x

ij
1 ), . . . , (vij , x

ij
k - 1)\} \subseteq D

and
S\prime = S \cup \{ (xij1 , u

ij
1 ), . . . , (x

ij
k - 1, u

ij
k - 1)\} \subseteq A.

Let F \prime = T  - R\prime + S\prime . Now we have that for h \in [k - 1
2 ], the induced subgraph

F \prime [\{ wij2h - 1, w
ij
2h, u

ij
2h - 1, u

ij
2h, x

ij
2h - 1, x

ij
2h, y

ij
2h - 1, z

ij
2h - 1\} ] is a component of F \prime . Because

G\prime is connected, (r, y
ij
2h - 1) \in A or (r, z

ij
2h - 1) \in A. As f(y

ij
2h - 1) = dT (y

ij
2h - 1) and

f(z
ij
2h - 1) = dT (z

ij
2h - 1), (y

ij
2h - 1, z

ij
2h - 1) \in D and (r, y

ij
2h - 1), (r, z

ij
2h - 1) \in A. We conclude

that Dij \subseteq D and Aij \subseteq A. Let

R\prime \prime =

k\bigcup 
j=1

Dij , S\prime \prime =

k\bigcup 
j=1

Aij .

We have that R\prime \prime \subseteq D and S\prime \prime \subseteq A. Note that | R\prime \prime | +| S\prime \prime | = 5k2 - 2k = k\prime  - k(k - 1)/2.
Consider F \prime \prime = T - R\prime \prime +S\prime \prime . For j \in \{ 1, . . . , k\} , dF \prime \prime (vij ) = dT (vij ) - (k - 1). It implies
that A\prime = \{ (vij , vih)| 1 \leq j < h \leq k\} \subseteq A and c(A\prime ) = 0. Hence, K = \{ vi1 , . . . , vik\} is
a clique in G.

6. Conclusion. In this paper we showed that editing to a connected graph sat-
isfying degree constraints given by a function f is FPT. In particular, we showed
that Edge Editing to Connected f-Degree Graph admits an algorithm with
running time 2\scrO (k)n\scrO (1). We complemented this result by showing that the weighted
version of the problem with costs 1 and 0 is W[1]-hard being parameterized by k and
the maximum value taken by f even when the input graph is a tree. Our algorithm
combined the ideas of color-coding and the representative family based approach to
obtain our FPT algorithm. We believe that this approach could act as a template
for solving other edge editing problems. Finally, we would like to point out that we
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used a nonstandard matroid, namely, \ell -elongation of co-graphic matroid to get our
desired algorithm. These matroid based methodology for designing parameterized
algorithm hold a lot of promise and it seems the area is still pretty much unexplored.
Finally, we conclude with the following interesting question: Does Edge Editing to
Connected f-Degree Graph admit a polynomial kernel?
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