
13

Subquadratic Kernels for Implicit 3-Hitting Set and

3-Set Packing Problems

FEDOR V. FOMIN, University of Bergen, Bergen, Norway

TIEN-NAM LE, École Normale Supérieure de Lyon, Lyon, France

DANIEL LOKSHTANOV, University of Bergen, Bergen, Norway

SAKET SAURABH, University of Bergen, Norway and The Institute of Mathematical Sciences,

HBNI, Chennai, India

STÉPHAN THOMASSÉ, École Normale Supérieure de Lyon, Lyon, France

MEIRAV ZEHAVI, Ben-Gurion University, Israel

We consider four well-studied NP-complete packing/covering problems on graphs: Feedback Vertex Set in
Tournaments (FVST), Cluster Vertex Deletion (CVD), Triangle Packing in Tournaments (TPT) and
Induced P3-Packing. For these four problems, kernels with O (k2) vertices have been known for a long time.
In fact, such kernels can be obtained by interpreting these problems as finding either a packing of k pairwise
disjoint sets of size 3 (3-Set Packing) or a hitting set of size at most k for a family of sets of size at most 3
(3-Hitting Set). In this article, we give the first kernels for FVST, CVD, TPT, and Induced P3-Packing with
a subquadratic number of vertices. Specifically, we obtain the following results.

• FVST admits a kernel with O (k
3
2) vertices.

• CVD admits a kernel with O (k
5
3) vertices.

• TPT admits a kernel with O (k
3
2) vertices.

• Induced P3-Packing admits a kernel with O (k
5
3) vertices.

Our results resolve an open problem from WorKer 2010 on the existence of kernels with O (k2−ϵ) vertices
for FVST and CVD. All of our results are based on novel uses of old and new “expansion lemmas” and a weak
form of crown decomposition where (i) almost all of the head is used by the solution (as opposed to all),
(ii) almost none of the crown is used by the solution (as opposed to none), and (iii) if H is removed from G,
then there is almost no interaction between the head and the rest (as opposed to no interaction at all).

CCS Concepts: • Theory of computation → Fixed parameter tractability;

Additional Key Words and Phrases: Kernelization, parameterized complexity, Implicit 3-Hitting Set, Implicit
3-Set Packing

Authors’ addresses: F. V. Fomin, University of Bergen, Department of Computer Science, Bergen, Norway; email: fomin@
ii.uib.no; T.-N. Le, École Normale Supérieure de Lyon, Department of Computer Science, Lyon, France; email: tien-
nam.le@ens-lyon.fr; D. Lokshtanov, University of Bergen, Department of Computer Science, Bergen, Norway; email:
daniello@ii.uib.no; S. Saurabh, University of Bergen, Department of Computer Science, Bergen, Norway, The Institute
of Mathematical Sciences, HBNI, Department of Computer Science, Chennai, India; email: saket@imsc.res.in; S. Thomassé,
École Normale Supérieure de Lyon, Department of Computer Science, Lyon, France; email: stephan.thomasse@ens-lyon.fr;
M. Zehavi, Ben-Gurion University, Department of Computer Science, Beersheba, Israel; email: meiravze@bgu.ac.il.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1549-6325/2019/01-ART13 $15.00
https://doi.org/10.1145/3293466

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3293466

13:2 F. V. Fomin et al.

ACM Reference format:

Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi.
2019. Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems. ACM Trans. Algorithms

15, 1, Article 13 (January 2019), 44 pages.
https://doi.org/10.1145/3293466

1 INTRODUCTION

Kernelization, a subfield of parameterized complexity, provides a mathematical framework to ana-
lyze the performance of polynomial-time preprocessing. It makes it possible to quantify the degree
to which polynomial-time algorithms succeed at reducing input instances of an NP-hard problem.
More formally, every instance of a parameterized problem Π is associated with an integer k , which
is called the parameter, and Π is said to admit a kernel if there is a polynomial-time algorithm, called
a kernelization algorithm, that reduces the input instance of Π down to an equivalent instance of Π
whose size is bounded by a function f (k) of k . (Here, two instances are equivalent if both of them
are either Yes-instances or No-instances.) Such an algorithm is called an f (k)-kernel for Π. If f (k)
is a polynomial function of k , we say that the kernel is a polynomial kernel. Over the last decade,
kernelization has become an active field of study, especially with the development of complexity-
theoretic lower-bound tools for kernelization. These tools can be used to show that a polynomial
kernel [5, 14, 21, 23] or a kernel of a specific size [10, 11, 24] for concrete problems would imply
an unlikely complexity-theoretic collapse. We refer to the surveys [19, 22, 27, 29] as well as the
books [9, 13, 17, 32] for a detailed treatment of the area of kernelization.

One of the most well-known examples of a polynomial kernel is a kernel with O (kd) sets and
elements for d-Hitting Set using the Erdös-Rado Sunflower lemma.1 In this problem, the input
consists of a universeU , a family F containing sets of size at most d overU , and in integer k . The
objective is to determine whether there exists a set S ⊆ U of size at most k that intersects every
set in F . Abu-Khzam [2] gave an improved kernel for d-Hitting Set, still with O (kd) sets, but
with O (kd−1) elements.

The importance of the d-Hitting Set problem stems from the number of other problems that
can be recast in terms of it. For example, in the Feedback Vertex Set in Tournaments (FVST)
problem, the input is a tournamentT together with an integer k . The task is to determine whether
there exists a subset S of vertices of size at most k such that the sub-tournament T − S obtained
from T by removing S is acyclic. It turns out that FVST is a 3-Hitting Set problem, where the
vertices of T are the universe and the family F is the family containing the vertex set of every
directed cycle on three vertices (triangle) of T . It can easily be shown that for every vertex set
S , T − S is acyclic if and only if S is a hitting set for F . Another example is the Cluster Vertex
Deletion (CVD) problem. Here, the input is a graphG and an integerk , and the task is to determine
whether there exists a subset S of at most k vertices such that every connected component of
G − S is a clique (such graphs are called cluster graphs). This problem can also be formulated as a
3-Hitting Set problem where the family F contains the vertex sets of all induced P3s of G. An
induced P3 is a path on three vertices where the first and last vertex are non-adjacent in G. The
kernel with O (k2) elements for 3-Hitting Set [2] can be adapted to obtain kernels with O (k2)
vertices for Feedback Vertex Set in Tournaments [12] and for Cluster Vertex Deletion [25].

1The origins of this result are unclear. The first kernel with O (kd) sets appeared in the work by Fellows et al. [15], but
they do not make use of the Sunflower Lemma. To the best of our knowledge, the first exposition of the kernel based on
the Sunflower Lemma appears in the book by Flum and Grohe [17].

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

https://doi.org/10.1145/3293466

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:3

The formulation of problems in terms of 3-Hitting Set is useful not only in the context of
kernelization but within several paradigms for dealing with NP-hardness. The 2.076knO (1) time
parameterized algorithm of Wahlström [34], the O (1.519n+o (n)) time exact exponential time algo-
rithm of Fomin et al. [18], and the folklore factor 3-approximation algorithm for 3-Hitting Set
all immediately translate to algorithms with the same performance for FVST and CVD.

Still, as one translates graph problems into 3-Hitting Set, some structure is lost. This struc-
ture can often be exploited to obtain algorithms with better performance than the corresponding
3-Hitting Set algorithm. In particular, for FVST, Cai et al. [8] gave a factor 2.5 approximation
algorithm. This has recently been improved to 7/3 by Mnich et al. [30]. For CVD, You et al. [35]
gave a factor 2.5 approximation algorithm, which later was improved to 7/3 by Fiorini et al. [16].
In the realm of parameterized algorithms, the graph problems also seem more tractable than the
general 3-Hitting Set. For FVST, Dom et al. [12] designed a 2knO (1) time algorithm, which was re-
cently improved by Kumar and Lokshtanov [28] to a 1.619knO (1) time algorithm. For CVD, Hüffner
et al. [25] gave a 2knO (1) time algorithm, which, in turn, was improved by Boral et al. [7] to a
1.911knO (1) time algorithm. Finally, by the result of Fomin et al. [18], which translates parameter-
ized algorithms for subset problems into exact exponential time algorithms in a black box fashion,
the improvements in parameterized algorithms percolate to the realm of exact exponential time
algorithms. In particular, FVST and CVD have algorithms with runtimes O (1.382n) and O (1.476n),
respectively, outperforming the O (1.519n) time algorithm [18] for 3-Hitting Set.

Remarkably, from the perspective of kernelization, FVST and CVD have so far seemed to be as
difficult as 3-Hitting Set in the sense that no kernel with O (k2−ϵ) vertices, for some fixed ϵ > 0,
has been found for either of these two problems. Whether FVST and CVD admit such kernels was
first posed as an open problem in WorKer 2010 [6, p. 4], and variants of this question have been
restated several times after that [4, 12, 35].

In this article, we give the first kernels for FVST and CVD with a subquadratic number of ver-
tices. Specifically, we obtain the following results.

• FVST admits a kernel with O (k
3
2) vertices.

• CVD admits a kernel with O (k
5
3) vertices.

The Sunflower Lemma–based kernel ford-Hitting Set and the improvement of Abu-Khzam [2]
(based on crown reduction) can also be applied to the d-Set Packing problem [1]. Here, the input
consists of a universeU and a family F of sets of sized overU , together with an integer k . The task
is to determine whether there exists a subfamily F ′ of k pairwise disjoint sets. The d-Set Packing
problem is dual to d-Hitting Set in several ways, among others in the sense that the dual of the
linear programming relaxation of the d-Hitting Set problem is exactly the linear programming
relaxation of d-Set Packing, and vice versa.

In the same way that d-Hitting Set is an archetypal “covering” problem that generalizes many
such problems, d-Set Packing generalizes many “packing” problems. For example, it generalizes
the Triangle Packing in Tournaments (TPT) and Induced P3-Packing problems. In Trian-
gle Packing in Tournaments, the input is a tournament T and an integer k , and the task is to
determine whether T contains k pairwise vertex-disjoint triangles. In Induced P3-Packing, the
input is a graph G and an integer k , and the task is to determine whether G contains k pairwise
vertex-disjoint-induced P3s. These problems are the duals of FVST and CVD, respectively.

Just like the insights that led to a kernel for d-Hitting Set also led to a kernel for d-Set Pack-
ing, our insights from the improved kernelization algorithms for FVST and CVD yield improved
kernelization algorithms for TPT and Induced P3-Packing . Specifically, we obtain the following
results.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:4 F. V. Fomin et al.

• TPT admits a kernel with O (k
3
2) vertices.

• Induced P3-Packing admits a kernel with O (k
5
3) vertices.

We remark that, while the underlying philosophy of the kernels for TPT and Induced P3-
Packing is borrowed from the kernels for FVST and CVD, obtaining the kernels for TPT and
Induced P3-Packing requires significant additional insights. However, for the sake of exposition,
we next focus (in the introduction) only on our methods in the context of FVST and CVD.

Overview and Our Methods. Our kernelization algorithms for both FVST and CVD begin by
employing trivial factor 3 polynomial time approximation algorithms.2 We use these algorithms
to obtain approximate solutions of size at most 3k or conclude that no solution of size at most k
exists. Let us now assume that we have a solution S of size at most 3k . In what follows, for both
FVST and CVD, we aim to understand which “subpart” of the problem is similar to the Vertex
Cover problem.

Let us first focus on our approach to specifically solve FVST. To this end, let (T ,k) be an instance
of FVST. Given the approximate solution S , our analysis starts by introducing the notion of a strong

arc. Formally, an arc xy ∈ E (T) is strong if (i) at least one vertex among x and y belongs to S and
(ii) there are at least k + 2 vertices z ∈ V (T) such that xyz is a triangle. Let F be the set of all the
strong arcs ofT . Observe that any solution of size at most k + 1 must be a vertex cover of F . Before
we analyze F , we need to examine S as described below.

Now, we try to “fit” every vertex s ∈ S into the unique topological ordering, ≺, of X = T − S .
Toward this, for s ∈ S and x ∈ V (X), define f −s (x) = |{y ∈ V (X) : y � x , sy ∈ E (T)}|, and f +s (x) =
|{y ∈ V (X) : y � x , ys ∈ E (T)}|. Intuitively, the functions f −s (x) and f +s (x) measure how many arcs
would have been in the “wrong direction” (with respect to the ordering ≺) if we inserted s into
the position immediately after x in X . Using a simple “sliding argument,” we show that for each
s ∈ S , there exists xs ∈ V (X) such that 0 ≤ f −s (xs) − f +s (xs) ≤ 1. Then, for each s ∈ S , the smallest
vertex (with respect to ≺) satisfying the property that 0 ≤ f −s (xs) − f +s (xs) ≤ 1 is denoted by φ (s).
Observe that if for some s ∈ S and x ∈ X we have that f −s (x), f +s (x) ≥ k + 2, then s participates in
k + 1 triangles whose pairwise intersection is exactly s . This implies that s must be part of every
solution of size at most k . Thus, f −s (φ (s)), f +s (φ (s)) ≤ k + 1.

Next, we separately investigate the structure of triangles that contain a strong arc and triangles
that do not contain any strong arc. Formally, we call a triangle local if it does not contain any
strong arc. In particular, we show that the vertices of any local triangle cannot lie “too far apart”
in the ordering ≺ (of course, for a vertex s ∈ S , we use φ (s) to measure the distance with respect
to ≺). Having this claim at hand, FVST can be thought of as the problem of simultaneously hitting
local triangles and strong arcs.

To take care of the two sets of objects to be hit simultaneously, we define a variant of the Ex-
pansion Lemma [9, 33], which we call the Double Expansion Lemma. To (roughly) describe it here,
let � > 0 and G be a bipartite graph with vertex sets A, S , and Ŝ ⊆ S and Â ⊆ A. We say that Ŝ has
an �-expansion into Â in G if |NG (Y) ∩ Â| ≥ � |Y | for every Y ⊆ Ŝ . In addition, we would like to
ensure that NG (Â) ⊆ Ŝ . In the Double Expansion Lemma, we consider a scheme where we have
one “global” bipartite graph, as well as d vertex-disjoint “local” bipartite graphs, and we would like
to find a vertex set that exhibits the expansion and neighborhood containment properties in all of
the graphs simultaneously (see Section 3 for details).

2We could have also used approximation algorithms with better approximation ratios, but this modification would not
result in better kernels.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:5

To design the subquadratic kernel for FVST, we apply the Double Expansion Lemma where one
“part” is S and the other “part” is derived by first defining a set of “carefully selected subintervals”
of X , say Y1, . . . ,Yp , trimming their ends to obtain yet another set of subintervals, Y ′1 , . . . ,Y

′
p , and

then further partitioning each trimmed subinterval Y ′i into a more refined set of subintervals—say,
Yi,1, . . . ,Yi,q . To be somewhat more precise, let us note that we have a global graph, G, with ver-
tex bipartition ({Yi, j : i ∈ {1, . . . ,p}, j ∈ {1, . . . ,q}}, S),3 as well as local bipartite graphs, Hi , with
vertex bipartition ({Yi, j : j ∈ {1, . . . ,q}}, Si), where Si are those vertices in S that were determined
to “fit” Yi . The graphs Hi take care of local triangles, and the global graph G takes care of vertex
cover constraints (i.e., the edges in F). We apply the Double Expansion Lemma appropriately and
show that if |V (X) | ≥ ζk3/2, for some constant ζ , then we can find an irrelevant vertex in X (i.e.,
a vertex whose removal preserves the answer). This, together with the fact that |S | ≤ 3k , implies
that we have a kernel of size O (k3/2).

Now, let us describe our approach to solving CVD. To this end, recall that we have an approx-
imate solution S of size at most 3k . Our kernelization algorithm begins with a simple application
of the classical Expansion Lemma to bound the number of cliques in G \ S . Having bounded the
number of cliques, we repeatedly apply a marking procedure called Mark, whose sequential set
of applications is of the flavor of an Expansion Lemma, and can be thought of as a weak form of
a crown decomposition, as we explain after its description. Roughly speaking, one run of Mark is
executed as follows. Initially, all of the vertices in S are “alive.” For k + 1 stages, Mark examines
every vertex s ∈ S that is still alive and attempts to associate an edge of a clique ofG \ S to it. Here,
the association can be done only if s is adjacent to exactly one vertex of the edge and no vertex
of that edge belongs to an already associated edge. If the attempt is successful, the vertex remains
alive also for the next stage. If there exists a vertex that is alive after stage k + 1, then this vertex is
part of k + 1 induced P3s that intersect only at it; hence, we can apply a reduction rule. Supposing
that this “lucky” situation does not occur, we say that the procedure was successful if roughly k2/3

vertices were still alive at stage (roughly) k2/3. If the run was indeed successful in this sense, we
mark all of the vertices alive at stage k2/3 and rerun the procedure on the graph G from which all
marked vertices, which belong to S , are removed (only for the sake of applying Mark again).

Let Û denote the set of all the vertices in S that were marked across all successful runs. Further-
more, denote L = S \ Û . Now, let us explain how the sets S , V (G) \ S and L can be thought of as a
weak form of a crown decomposition.4 Here, the Head is Û , and we indeed prove that any solution
should contain almost all of the vertices of Û (as opposed to all vertices, as in a standard crown
decomposition). Second, the Crown is V (G) \ S and, as a consequence of the fact that most of Û
is present in every solution and as V (G) \ S is significantly larger than k (otherwise, we already
have a kernel), we can (roughly) say that most of the vertices in V (G) \ S are not present in any
solution (as opposed to none). Third, the Rest (or Royal Body) is L, and we prove (in the sense ex-
plained below) that the “interaction” between the Head and the Rest is structured (as opposed to
non-existent, as in a standard crown decomposition). Let us now elaborate on the meaning of our
last claim. Here, we compute a “small” subset M ⊆ V (G) \ S (specifically, this is the set of vertices
associated to the vertices of L in the last unsuccessful run of Mark) such that every clique inG \ S
becomes a module with respect to L once we remove the vertices in M from it.

Having the decomposition described above, the situation is more complicated than it usually
is when we have a standard crown decomposition. To analyze this situation, we first classify the
cliques in G \ S using three definitions. First, we classify these cliques as small, big or huge, and

3More precisely, here we mean that each subinterval Yi, j is represented by a unique single vertex in G .
4A crown decomposition is among the most classical and well-known tools in parameterized complexity. Readers unfamil-
iar with this notion (which we use only in the introduction) are referred to books such as [9].

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:6 F. V. Fomin et al.

“throw away” the small cliques. Next, we also classify these cliques as either heavy or light, which
corresponds to whether the fraction of vertices of the cliques that belong to M is big or small,
respectively. In this step, we also throw away the heavy cliques, which can be done safely as M is
shown to be small. Then, we also classify the cliques as either visible or hidden, corresponding to
whether many or few vertices from L are adjacent to many vertices in these cliques, respectively.
We show that not too many cliques can be visible; otherwise, a reduction rule can be applied,
which allows us to throw away also big (but not huge) visible cliques. Next, we focus on good
cliques, which are either big or huge, light, and either hidden or huge.

Our analysis proceeds by defining, for every vertex s ∈ S , a small and big side with respect to
every clique. Roughly speaking, a side is the set of either all neighbors or all non-neighbors of s
in that clique. Then, in the context of these sides, we prove (using an exchange argument) that
good cliques exhibit a vertex cover-like behavior. That is, for any vertex s ∈ S and good clique,
every solution either picks s or the entire small side of that clique with respect to s . This claim
gives rise to the definition of a bipartite graph where one side is S and the other side is the set
of vertices of the good cliques. Here, there is an edge between s ∈ S and a vertex v in a good
clique C if v belongs to the small side of C with respect to s . Using the Expansion Lemma, if we
find a large enough expansion in this graph, we prove that it is safe to select the vertices in S
corresponding to that expansion. Let us remark that this proof is non-trivial, as the edges of the
bipartite graph are not necessarily edges in the input graphG. Finally, if no large expansion can be
found, it means that the bipartite graph contains many isolated vertices, which belong to the good
cliques. However, because these vertices are isolated, we can observe that they form sets that are
modules with respect to the entire graph G (rather than only with respect to L), which allows us
to employ a reduction rule that decreases their number.

Finally, we say a few words about our kernels for packing problems, that is, for TPT and In-
duced P3-Packing. In both of these kernels, we start by finding a greedy packing, S of either
triangles or induced paths on 3 vertices, depending on the problem that we are dealing with. If
the greedy collection is large, then we already have the answer. Otherwise, the vertices present
in any set in S—say, S—form a hitting set. That is, G − S is a cluster graph and T − S is a transi-
tive tournament. We exploit this structure in a manner similar to the way that we exploited it to
design subquadratic kernels for the hitting problems. Specifically, we make reduction rules that
are, in some sense, “dual” to those given for FVST and CVD and use the appropriate variants of
the Expansion Lemma to find an irrelevant vertex to delete. However, as we currently deal with
packing problems, there are also major deviations required to design the new kernels. For exam-
ple, for Induced P3-Packing, the last stage of the kernelization algorithm, which lies at the heart
of its correctness, is completely different from the last stage of the kernelization algorithm for
CVD. Here, the difference stems from the following crucial observation: in Induced P3-Packing,
we need to present structural claims that hold for at least one solution rather than for all solutions
as in CVD, but these structural claims have to be stronger than the ones presented for CVD, as the
solution itself has a more complicated structure (being a set of paths rather than a set of vertices).
This crucial observation also holds for TPT, posing difficulties of the same nature.

Additional Related Works. It is known that unless NP ⊆ co-NP
poly , for any d ≥ 2 and for any ϵ > 0,

d-Hitting Set and d-Set Packing do not admit a kernel with O (kd−ϵ) sets [10, 11]. In [10], Dell
and Marx studied several matching and packing problems; they provided non-trivial lower bounds
as well as non-trivial upper bounds for packing some specific graphs such as matchings, P4s (here,
the packing need not be induced), and K1,d s (stars with d leaves). Moser [31] studied the problem
of packing a fixed connected graph H on � vertices in an input graphG (i.e., determining whether
there exist k vertex-disjoint copies of H in G) and designed a kernel with O (k�−1) vertices. In

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:7

this context, it is also worth pointing out the dichotomy result of Jansen and Marx [26] regarding
packing a fixed graph H . Finally, very recently, Bessy et al. [3] studied FVST where the input
tournament is restricted to be a sparse tournament, that is, a tournament where the feedback arc
set is a matching. For this special case, they presented a linear-vertex kernel and remarked that
their methods do not extend to handling general tournaments.

Reading Guide. On the one hand, our kernels for FVST and CVD are independent of each other.
On the other hand, the kernels for TPT and Induced P3-Packing borrow some of their ideas from
the corresponding hitting set kernels; therefore, we recommend reading them after reading our
kernels for FVST and CVD. Section 3 gives the old and new Expansion Lemmas used in this article.
In Section 4, we give our O (k5/3)-vertex kernel for CVD, followed by a kernel of O (k3/2) vertices
for FVST in Section 6. In Sections 5 and 7, we give our kernels for Induced P3-Packing and TPT
with O (k5/3) and O (k3/2) vertices, respectively. We conclude the article with some remarks and
open problems in Section 8. To get a detailed idea of our techniques, a reader can first read the
statements of the Expansion Lemmas in Section 3 and then proceed to our kernels for CVD and
FVST. The proofs of the new Expansion Lemmas and the kernels for the packing problems can be
read afterwards.

2 PRELIMINARIES

Graph Theory. Given a graph G (or digraph D), we let V (G) (V (D)) and E (G) (E (D)) denote its
vertex-set and edge-set (arc-set), respectively. We use {u,v} to denote an edge in an undirected
graph and uv to denote an arc in a digraph. The open neighborhood, or simply the neighborhood,
of a vertex v ∈ V (G) is defined as NG (v) = {w | {v,w } ∈ E (G)}. The closed neighborhood of v is
defined as NG [v] = NG (v) ∪ {v}. The degree ofv is defined as dG (v) = |NG (v) |. We can extend the
definition of neighborhood of a vertex to a set of vertices as follows. Given a subset U ⊆ V (G),
NG (U) =

⋃
u ∈U NG (u) and NG [U] =

⋃
u ∈U NG [u]. The induced subgraph G[U] is the graph with

vertex-setU and edge-set {{u,u ′}|u,u ′ ∈ U , and {u,u ′} ∈ E (G)}. Moreover, we defineG \U as the
induced subgraph G[V (G) \U]. We omit subscripts when the graph G is clear from context. We
use P� to denote a path in a graph on � vertices. Recall that a path P = uvw in a graph G is called
an induced path if there is no edge between u and v in E (G). An induced P3-packing is a set of
vertex-disjoint-induced P3s. A subset X of V (G) is called a module if every vertex in X has the
same set of neighbors inV (G) \ X . For a collection of graphH , byV (H) we denote

⋃
H ∈H V (H).

A tournament is a directed graphT such that for every pair of vertices u,v ∈ V (T), exactly one
of uv,vu is a directed arc of T . For any three vertices x ,y, z ∈ V (T), we say that xyz is a triangle

if arcs xy, yz, and zx form a directed cycle. A tournament in which there is no directed cycle is
called a transitive tournament.

Reduction Rules. Kernelization algorithms often rely on the design of reduction rules. The rules
are numbered, and each rule consists of a condition and an action. We always apply the first rule
whose condition is true. Given a problem instance (I ,k), the rule computes (in polynomial time)
an instance (I ′,k ′) of the same problem where k ′ ≤ k . Typically, |I ′ | < |I |, where if this is not the
case, it should be argued why the rule can be applied only polynomially many times. We say that
the rule is safe if the instances (I ,k) and (I ′,k ′) are equivalent.

3 TOOL: EXPANSION LEMMAS

In this section, we give the classical Expansion Lemma as well as two new Expansion Lemmas
that we make use of in our kernels. We start with some preliminaries. Let � be a positive integer.
An �-star is a graph on � + 1 vertices where one vertex, called the center, has degree �, and all
other vertices are adjacent to the center and have degree one. A bipartite graph is a graph whose

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:8 F. V. Fomin et al.

vertex-set can be partitioned into two independent sets. Such a partition of the vertex-set is called
a bipartition of the graph. Let G be a bipartite graph with bipartition (A, S) and let X ⊆ S,Y ⊆ A.
A subset of edges M ⊆ E (G) is called �-expansion of X onto Y if

(1) every vertex of X is incident to exactly � edges of M , and
(2) exactly � |X | vertices in Y are incident to some edges in M .

Note that all vertices of X are incident to some edges an �-expansion, and for each u ∈ X the
set of edges in M incident on u form an �-star. The following lemma allows us to compute an
�-expansion in a bipartite graph. It captures a certain property of neighborhood sets that is very
useful for designing kernelization algorithms.

Lemma 3.1 ([9, 33], Expansion Lemma). Let G be a bipartite graph with bipartition (A, S) such

that there are no isolated vertices in A. Let � be a positive integer such that |A| ≥ � |S |. Then, there are

non-empty subsets X ⊆ S and Y ⊆ A such that

• there is an �-expansion from X into Y , and

• there is no vertex in Y that has a neighbor in S \ X , that is, NG (Y) = X .

Further, the sets X and Y can be computed in polynomial time.

An alternate but equivalent view on expansion properties is as follows. Let � > 0 and G be a
bipartite graph with vertex-sets A, S , and Ŝ ⊆ S and Â ⊆ A. We say that Ŝ has an �-expansion into
Â in G if |NG (Y) ∩ Â| ≥ � |Y | for every Y ⊆ Ŝ . In the next two lemmas, and in Sections 6 and 7, we
will use this definition of expansion. In the rest of the article, we will use the classical definition
of expansion.

Lemma 3.2 (New Expansion Lemma). Let � be a positive integer and G be a bipartite graph with

bipartition (A, S). Then, there exist Ŝ ⊆ S and Â ⊆ A such that Ŝ has an �-expansion into Â in G,

NG (Â) ⊆ Ŝ and |A \ Â| ≤ � |S \ Ŝ |. Moreover, the sets Ŝ and Â can be computed in polynomial time.

Lemma 3.2 is slightly different from Lemma 3.1, as it does not require |A| ≥ � |S | and that there
is no isolated vertex in A; thus, Â and Ŝ may be empty. However, we still have the bound on
the number of removed vertices. That is, |A \ Â| ≤ � |S \ Ŝ |; hence, if |A| > � |S |, then Â is non-
empty. The difference between Lemmas 3.1 and Lemma 3.2 indeed comes from their viewpoints:
in Lemmas 3.1, we obtainY by keeping only “desired” vertices inA, while in Lemmas 3.1 we obtain
Â by removing only “undesired” vertices from A. Thus, in Lemma 3.1, we always have |Y | = � |X |,
while in Lemma 3.2, it is possible that |Â| > � |Ŝ |.

Proof. We say that F ⊆ E (G) is a (≤ �)-matching if every vertex s ∈ S is incident with at most
� edges in F and every vertex x ∈ A is incident with at most one edge in F . Furthermore, F is
maximum if the cardinality of F is maximum among all (≤ �)-matching of G. One can think of
(≤ �)-matching as a generalization of the usual matching notion in bipartite graphs. It is not hard
to see that a maximum (≤ �)-matching of G can be found in polynomial time. Let us consider a
flow network N obtained from G by adding a source s adjacent to all vertices of S , where each
edge has capacity � and a target t adjacent to all vertices of A, where each edge has capacity 1. All
edges ofG are oriented from S to A and have capacity 1. Finding a maximum (≤ �)-matching ofG
is equivalent to finding a maximum integral flow of networkN , which can be done in polynomial
time [20].

Consider a maximum (≤ �)-matching F ofG, and let S1 ⊆ S be the set of all vertices incident with
fewer than � edges in F . Let S2 be the set of all vertices s ∈ S \ S1 such that there is an alternating

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:9

path e1e2 . . . e2k from s to some vertex s ′ ∈ S1 such that e2i−1 ∈ F and e2i � F for every i ≤ k . Set
Ŝ = S \ (S1 ∪ S2) and Â = A \ N (S1 ∪ S2). Clearly, Ŝ and Â can be found in polynomial time.

To prove that Ŝ and Â are the desired sets, we will use the augmenting path argument. We claim
that for every x ∈ N (S1 ∪ S2), there is s ∈ S1 ∪ S2 such that sx ∈ F . Suppose that the claim was
false, and note that there must be s ∈ S1 ∪ S2 such that sx ∈ E (G) since x ∈ N (S1 ∪ S2). Observe
that if xs ′ ∈ F with some s ′ ∈ S \ (S1 ∪ S2), then there is an alternating path from s ′ via x and s
to some vertex in S1; thus, s ′ ∈ S2, a contradiction. We conclude that x is not incident to any edge
of F . There are two cases. If s ∈ S1, then F ∪ {xs} is a (≤ �)-matching with more edges than F , a
contradiction. Otherwise, s ∈ S2, then there is an alternating path from s to some vertex in S1, which
together with xs forms an augmenting path, a contradiction again. We thus conclude that for every
x ∈ N (S1 ∪ S2), there is s ∈ S1 ∪ S2 such that xs ∈ F . Note that every vertex in S1 ∪ S2 is incident
with at most � edges in F . Hence, |N (S1 ∪ S2) | ≤ � |S1 ∪ S2 |; thus, |A \ Â| ≤ � |S \ Ŝ |. Furthermore,
since N (S \ Ŝ) ∩ Â = N (S1 ∪ S2) ∩ Â = ∅, there is no edge between Â and S \ Ŝ ; thus, N (Â) ⊆ Ŝ .

It remains to show the �-expansion property, that is, |NG (Y) ∩ Â| ≥ � |Y | for every Y ⊆ Ŝ . We
first observe that it is impossible that sx ∈ F with s ∈ Ŝ and x � Â; otherwise, there would be an
alternating path from s to some vertex in S1, a contradiction. In addition, every vertex in Ŝ is
incident with exactly � edges of F , and every vertex in Â is incident with at most one edge of F ,
and so |NF (Y) | = � |Y | for every Y ⊆ Ŝ . Hence, |NG (Y) ∩ Â| ≥ |NF (Y) ∩ Â| = |NF (Y) | = � |Y |. This
completes the proof. �

As we discussed before, the viewpoint in the New Expansion Lemma is to remove only undesired
vertices, which enables us to generalize the Expansion Lemma to the Double Expansion Lemma,
where we can simultaneously achieve expansions in many graphs. In the following lemma, we
consider a scheme where we have a “global” bipartite graph and d vertex-disjoint “local” bipartite
graphs and would like to achieve the expansion in each of them simultaneously.

Lemma 3.3 (Double Expansion Lemma). Let � be a positive integer and let G,H1, . . . ,Hd be bi-

partite graphs with bipartition (A, S), (A1,R1), . . . , (Ad ,Rd), respectively, such thatAi ∩Aj = ∅,Ri ∩
R j = ∅ for every i � j,

⋃d
i=1 Ai = A and

⋃d
i=1 Ri ⊆ S . We can in polynomial time find Â ⊆ A, Ŝ ⊆

S, Âi ⊆ Ai , R̂i ⊆ Ri for every i , satisfying the following:

• Â =
⋃d

i=1 Âi .

• |A \ Â| ≤ �(|S | + |⋃d
i=1 Ri |).

• Ŝ has an �-expansion into Â in G, and for every i , R̂i has an �-expansion into Âi in Hi .

• NG (Â) ⊆ Ŝ , and for all 1 ≤ i ≤ d , NHi
(Âi) ⊆ R̂i .

Roughly speaking, the lemma asserts that we can find a set Â such that Â is the “image” of
an expansion in the global graph and the set of vertices Âi in every local graph is the image of
another expansion in that local graph. Since Â =

⋃d
i=1 Âi , we achieve simultaneous expansion.

Since |A \ Â| < 2� |S |, we again have the property that if |A| ≥ 2� |S |, then Â is non-empty.
To prove Lemma 3.3, we repeatedly apply Lemma 3.2, alternately to the global graph and then

to local graphs, and refine Â and
⋃d

i=1 Âi until they are equal. Note that
⋃
Ri ⊆ S ; however, if a

vertex s belongs to some Ri , we treat s of S and s of Ri as two different vertices.

Proof. We first give the formal description of our algorithm in Algorithm 3.1 and an illustration
in Figure 1.

Observe that each call of Stage 1 runs in polynomial time. Toward this, note that the size of at
least one of Â, Ŝ, Âi , R̂i reduces after each call of Stage 1 (except the last call), and since each step

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:10 F. V. Fomin et al.

Fig. 1. Illustration of the Double Expansion Algorithm. Original vertices are red; a vertex turns blue if it is
removed by a call of Step 1, and turns green if it is removed by a call of Step 2.

ALGORITHM 3.1: Algorithm to Compute Â, Ŝ, Âi , R̂i for e Every i in Lemma 3.3

Input: G,Hi for every i .
Initialization: Â← A, Ŝ ← S, Âi ← Ai , R̂i ← Ri for every i .
Do loop: (Stage j for j ≥ 1): It consists of the following two steps.

Step 1: Apply Lemma 3.2 on G[Â ∪ Ŝ] and get S� ⊆ Ŝ and A� ⊆ Â, satisfying the Expansion Lemma.
Set Ŝ ← S�, Â← A� and Âi ← A� ∩ Âi for every i (we do not update R̂i).

Step 2: For every i , apply Lemma 3.2 on Hi [Âi ∪ R̂i] and get R�i ⊆ R̂i and A�
i ⊆ Âi , satisfying

Lemma 3.2. Set R̂i ← R�i , Âi ← A�
i for every i , and Â← ⋃i A

�
i (we do not update Ŝ).

If at least one of Â, Ŝ, Âi , R̂i changes, repeat Do loop, i.e., Stage j + 1. Otherwise, stop the algorithm.
Output: Â, Ŝ, Âi , R̂i for every i .

itself can be carried out in polynomial time, the algorithm itself runs in polynomial time. We will
show that the output satisfies all the properties stated in the lemma.

The first property, Â =
⋃d

i=1 Âi , is vacous, since it is always maintained as an invariant during
the algorithm. To prove the second property, observe that each time we call Step 1, we remove
some vertices from Ŝ and Â. The number of vertices removed from Â at Step 1 is at most � times
the number of vertices removed from Ŝ at the same step (guaranteed by Lemma 3.2). In addition,
initially, |Ŝ | = |S |; thus, there are at most |S | vertices removed from Ŝ in all calls to Step 1. This
implies that there are at most � |S | vertices removed from Â in all calls to Step 1. Similarly, each
time we call Step 2, we remove some vertices from

⋃
i R̂i and

⋃
i Âi . The number of vertices

removed from
⋃

i Âi at Step 2 is at most � times the number of vertices removed from
⋃

i R̂i at
the same step. In addition, initially, |⋃i R̂i | ≤ |S |; thus, there are at most |S | vertices removed from⋃

i R̂i in all calls to Step 2. This implies that there are at most � |S | vertices removed from
⋃

i Âi

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:11

in all calls to Step 2, which is also exactly the number of vertices removed from Â in all calls to
Step 2. In conclusion, there are at most 2� |S | vertices removed from Â during the algorithm; thus,
|A \ Â| < 2� |S |.

To keep arguments short, we will refer to �-expansion property from Ŝ to Â (resp., R̂i to Âi) as
(P1), and the property that NG (Â) ⊆ Ŝ (resp., NHi

(Âi) ⊆ R̂i) as (P2). To prove that Ŝ and Â satisfy

(P1) and (P2), we first observe that Ŝ and Â satisfy (P1) after every Step 1 of the algorithm; thus,
Ŝ and Â satisfy (P1) after Step 2 if no vertex of Â is removed in that step. This means that the
output Ŝ and Â satisfy (P1) since Ŝ and Â are unchanged in the last stage. It remains to show that
output Ŝ and Â satisfy (P2). To do so, we prove by induction that NG (Â) ⊆ Ŝ at the end of every
stage. Clearly, it is true at the beginning of the algorithm. Suppose that it is true after Stage j (i.e.,
the jth call of Stage 1); then, there is no edge between Â and S \ Ŝ in G. At Step 1 of Stage j + 1,
we apply Lemma 3.2 onG[Â ∪ Ŝ] and get S� andA� such that N

G[Â∪Ŝ] (A
�) ⊆ S�; then, there is no

edge between A� and Ŝ \ S� in G. Thus, there is no edge between A� and (S \ Ŝ) ∪ (Ŝ \ S�) in G,
that is, NG (A�) ⊆ S�. We then set Â← A�, Ŝ ← S�, and so NG (Â) ⊆ Ŝ holds at the end of Step 1

of Stage j + 1. At Step 2 of Stage j + 1, some vertices are removed from Â while Ŝ is unchanged;
hence, NG (Â) ⊆ Ŝ holds at the end of Stage j + 1. This means that output Ŝ and Â satisfy (P2).

Fix an integer i ≤ d . To prove that R̂i and Âi satisfy (P1) and (P2), we first observe that R̂i

and Âi satisfy (P1) after every execution of Step 2 of the algorithm; thus, the output R̂i and Âi

satisfy (P1). It remains to show that output R̂i and Âi satisfy (P2). To do so, we prove by induction
that NHi

(Âi) ⊆ R̂i at the end of every stage. Clearly, it is true at the beginning of the algorithm.

Suppose that it is true after Stage j; then, there is no edge between Âi andRi \ R̂i inHi . At Step 1 of
Stage j + 1, some vertices are removed from Âi while R̂i is unchanged; then, obviously, NHi

(Âi) ⊆
R̂i holds at the end of Step 1 of Stage j + 1. At Step 2 of Stage j + 1, we apply Lemma 3.2 on
H [Âi ∪ R̂i] and get R�

i and A�
i such that N

Hi [Âi∪R̂i] (A
�
i) ⊆ R�

i ; then, there is no edge between

A�
i and R̂i \ R�

i in Hi . Thus, there is no edge between A�
i and (Ri \ R̂i) ∪ (R̂i \ R�

i) in Hi , that is,

NHi
(A�

i) ⊆ R�
i . We then set Âi ← A�

i , R̂i ← R�
i ; thus, NHi

(Âi) ⊆ R̂i holds at the end of Stage j + 1.

This means that output Ŝ and Â satisfy (P2). This concludes the proof of the lemma. �

We would like to remark that the Double Expansion Lemma can be generalized to the Triple
Expansion Lemma (or η-Levels Expansion Lemma), where the system contains a global bipar-
tite graph Gi , local bipartite graphs Hi , and super-local bipartite graphs Hi, j . The proofs of these
generalized versions are similar to that of the Double Expansion Lemma. The idea of the Double
Expansion Lemma (or its generalizations) is that one tries to capture different properties using
different bipartite graphs at the same time.

4 KERNEL FOR CLUSTER VERTEX DELETION

In this section, we prove the following theorem.

Theorem 1. CVD admits a kernel with O (k
5
3) vertices.

Let (G,k) be an instance of CVD. Let us first recall that CVD admits a polynomial-time 3-
approximation algorithm. We start by greedily finding a maximal collection—say, S—of vertex-
disjoint-induced P3s inG and outputV (S). We call this algorithm withG as input; thus, we obtain
a 3-approximate solution S . If |S | > 3k , then we conclude that (G,k) is a No-instance. We next
assume that |S | ≤ 3k . Note that G \ S is a collection of cliques, which we denote by C.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:12 F. V. Fomin et al.

In what follows, we denote α =2, β =1, γ =10, δ =3, λ =1 and η =1, so that (1 − 1
δ

)γ ≥ 2η (used
in the proof of Lemma 4.11), (1

2 −
1
δ

)γ > (1
(α−1)β

+ λ) (used in the proof of Lemma 4.13), and γ ≥
δ

δ−1 (1
(α−1)β

+ λ) (used in the proof of Lemma 4.14).

4.1 Bounding the Number of Cliques

First, we have the following simple rule, whose safeness is obvious.

Reduction Rule 4.1. If there exists C ∈ C such that no vertex in C has a neighbor in S , then

remove C from G. The new instance is (G \C,k).

Now, we define the bipartite graph B by setting one side of the bipartition to be S and the
other side to be C,5 such that there exists an edge between s ∈ S and C ∈ C if and only if s is
adjacent to at least one vertex in C . Note that by Reduction Rule 4.1, no clique in C is an isolated
vertex in B. We proceed by presenting the following rule, where we rely on the Expansion Lemma
(Lemma 3.1). It should be clear that the conditions required to apply the algorithm provided by
this lemma are satisfied.

Reduction Rule 4.2. If |C| ≥ 2|S |, then call the algorithm provided by Lemma 3.1 to compute sets

X ⊆ S and Y ⊆ C such that X has a 2-expansion into Y in B and NB (Y) ⊆ X . The new instance is

(G \ X ,k − |X |).

We now argue that this rule is safe.

Lemma 4.1. Reduction Rule 4.2 is safe.

Proof. In one direction, it is clear that if S� is a solution to (G \ X ,k − |X |), then S� ∪ X is
a solution to (G,k). For the other direction, let S� be a solution to (G,k). We denote S ′ = (S� \
V (Y)) ∪ X . Note that for all s ∈ X , there exists an induced P3 in G of the form u − s −v , where
u is any vertex in one clique associated to s by the 2-expansion that is adjacent to s and v is any
vertex in the other clique associated to s by the 2-expansion that is adjacent to v . The existence of
such u and v is implied by the definition of the edges of B. Thus, as S� is a solution to (G,k), we
have that |X \ S� | ≤ |S� ∩V (Y) |; hence, |S ′ | ≤ |S� | ≤ k . Note thatG \ S ′ is a collection of isolated
cliques together with a subgraph of G \ S�. Thus, as G \ S� does not contain any induced P3, we
derive thatG \ S ′ also does not contain any induced P3. We conclude that S ′ is a solution to (G,k),
and as X ⊆ S ′, we have that S ′ \ X is a solution to (G \ X ,k − |X |). Thus, (G \ X ,k − |X |) is a Yes-
instance. �

Owing to Reduction Rule 4.2, from now on, |C| ≤ 6k .

4.2 The Specification of the Marking Procedure

We proceed by presenting a procedure called Mark. Clearly, every vertex in S that has both a
neighbor and non-neighbor in a clique in C is a vertex due to which that clique in C is not a
module. To deal with such vertices in S , the procedure Mark associates vertices s ∈ S with sets
mark(s) of edges that belong to cliques in C and which form with s induced P3s. In particular, we
would ensure that for all s ∈ S , there would not exist two distinct edges e, e ′ ∈ mark(s) that have a
common endpoint as well as that for all distinct s, s ′ ∈ S , there would not exist two distinct edges

5Here, we slightly abuse notation. Specifically, we mean that each clique in C is represented by a unique vertex in V (B),
and we refer to both the clique and the corresponding vertex identically.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:13

e ∈ mark(s), e ′ ∈ mark(s ′) that have a common endpoint. In short, any two distinct edge e, e ′ in⋃
s mark(s) do not have a common endpoint.

Specification. The procedure Mark first initializes M ⇐ ∅,T ⇐ S , and for all s ∈ S , mark(s) ⇐ ∅.
At each stage i , i = 1, 2, . . . ,k + 1, Mark executes the following process. For each s ∈ T , if there exist
C ∈ C and {u,v} ∈ E (C) such that {s,u} ∈ E (G) but {s,v} � E (G) and {u,v} ∩M = ∅, then insert
u,v into M and {u,v} into mark(s); otherwise, remove s from T . The order in which the process
examines the vertices in T is immaterial given that it examines each vertex in T exactly once.
Moreover, if i = �βk2/3�, then the process sets U to be equal to T . If T is updated in subsequent
stages, U is not updated.

We say that Mark succeeded if |U | ≥ �αk2/3�; otherwise, we say that Mark failed. Moreover, if
there exists s ∈ S such that |mark(s) | ≥ k + 1, then we say that Mark was lucky. Let us begin the
analysis of Mark with the following simple lemma.

Lemma 4.2. For any solution S� to (G,k) and vertex s ∈ S \ S�, it holds that S� ∩ {u,v} � ∅ for

all {u,v} ∈ mark(s).

Proof. Let S� be a solution to (G,k). Consider some vertex s ∈ S and edge {u,v} ∈ mark(s).
Note that {s,u,v} is the vertex set of an induced P3 in G. Therefore, S� ∩ {s,u,v} � ∅. We thus
have that if s � S�, then S� ∩ {u,v} � ∅. �

In light of Lemma 4.2, we employ the following rule.

Reduction Rule 4.3. If there exists s ∈ S such that |mark(s) | ≥ k + 1 (i.e., Mark was lucky), then

remove s from G and decrement k by 1. The new instance is (G \ s,k − 1).

Lemma 4.3. Reduction Rule 4.3 is safe.

Proof. In one direction, it is clear that if S� is a solution to (G \ s,k − 1), then S� ∪ {s} is a
solution to (G,k). For the other direction, let S� be a solution to (G,k). Observe that for all s ′ ∈
S and {u,v}, {u ′,v ′} ∈ mark(s ′), it holds that {u,v} ∩ {u ′,v ′} = ∅. Thus, by Lemma 4.2 and since
|mark(s) | ≥ k + 1, if s � S�, then |S� | ≥ k + 1, which is not possible, as |S� | ≤ k . We derive that
s ∈ S�; therefore, S� \ {s} is a solution to (G \ s,k − 1). �

The main purpose of Mark is to derive information on (G,k) even when it is not coincidentally
lucky. More precisely, we have the following simple but useful lemma.

Lemma 4.4. For any solution S� to (G,k), |U \ S� | ≤ 1
β
k1/3.

Proof. Let S� be a solution to (G,k). Again, observe that for all s ∈ S and {u,v}, {u ′,v ′} ∈
mark(s), it holds that {u,v} ∩ {u ′,v ′} = ∅. In addition, observe that for all s, s ′ ∈ S , {u,v} ∈ mark(s)
and {u ′,v ′} ∈ mark(s ′), it holds that {u,v} ∩ {u ′,v ′} = ∅. Thus, by Lemma 4.2,

|S� | ≥
∑

s ∈U \S�

|mark(s) | ≥ �βk2/3� |U \ S� |.

Since |S� | ≤ k , we conclude that |U \ S� | ≤ 1
β
k1/3. �

We also need to derive an upper bound on the number of marked vertices, namely, |M |.

Lemma 4.5. If Mark was neither lucky nor successful, then |M | ≤ 6(α + β)k
5
3 .

Proof. Since Mark was unlucky, |mark(s) | ≤ k for all s ∈ S . Thus, |M | ≤ 2|U |k + 2|S \
U |(�βk2/3� − 1). Since Mark failed, we further have that |M | ≤ 2(�αk2/3� − 1)k + 6k (�βk2/3� −
1) ≤ 6(α + β)k

5
3 . �

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:14 F. V. Fomin et al.

4.3 Multiple Calls to the Marking Procedure

Let us now explain how we employ Mark. We initialize Û = ∅ and Ĝ = G. Then, we call Mark with
(Ĝ,k) as input. If Mark was lucky, then we execute Reduction Rule 4.3 and restart the entire process
(including the initialization phase). Otherwise, if Mark succeeded, then for the setU computed by
the current call, we update Û ⇐ Û ∪U and Ĝ ⇐ Ĝ \U and then proceed to execute another call.
Otherwise, Mark was unlucky and also failed, and we let M denote the same set M ⊆ V (G) \ S as
computed by the current call to Mark, after which we terminate the process. Note that after each
call to Mark, either Reduction Rule 4.3 is executed or the size of Û increases; therefore, it is clear
that the process eventually terminates. We denote L = S \ Û .

By relying on Lemma 4.4, we have the following lemma.

Lemma 4.6. Let i be the number of calls to Mark that succeeded but were unlucky. For any solution

S� to (G,k), |Û \ S� | ≤ i · 1
β
k1/3 and |S� ∩ Û | ≥ i · (α �k2/3� − 1

β
k1/3).

Proof. First, note that |S� ∩ Û | ≥ i · α �k2/3� − |Û \ S� | as the sets U computed at distinct it-
erations are pairwise disjoint and the size of each one is at least α �k2/3�. Thus, it is sufficient to
prove that |Û \ S� | ≤ i · 1

β
k1/3. However, this inequality follows from Lemma 4.4. �

As a consequence of the two bounds in Lemma 4.6, we have the following corollary.

Corollary 4.1. For any solution S� to (G,k), |Û \ S� | ≤ 1
(α−1)β

k2/3.

Proof. First, note thatk ≥ |S� ∩ Û |. Thus, by the second bound in Lemma 4.6,k ≥ i · (α �k2/3� −
1
β
k1/3) ≥ i · (αk2/3 − 1

β
k1/3), which implies that i ≤ k

αk2/3− 1
β

k1/3 =
k2/3

αk1/3− 1
β

≤ 1
α−1k

1/3. By the first

bound in Lemma 4.6, we thus derive that, indeed, |Û \ S� | ≤ 1
(α−1)β

k2/3. �

The usefulness of Corollary 4.1 stems from the observation that it implies that we have found
a (possibly large) set Û ⊆ S such that not only any solution S� to (G,k) contains almost all of the
vertices in Û but also that the removal of Û from G significantly simplifies G as described by the
following lemma.

Lemma 4.7. For every clique C ∈ C, C[V (C) \M] is a module in G \ Û .

Proof. LetC be a clique in C. By the specification of Mark, for every vertex s ∈ L, it holds that
there do not exist u,v ∈ V (C) \M such that u ∈ NG (s) and v � NG (s) (since {u,v} � mark(s)).
Furthermore, every vertex inC is adjacent to both u and v , and every vertex in a clique in C \ {C}
is adjacent to neither u nor v . Thus, C[V (C) \M] is, indeed, a module in G \ Û . �

4.4 Sieving Bad Cliques

We sieve cliques based on three classifications. First, we say that a clique C ∈ C is big if |V (C) | >
γk2/3; otherwise, it is small. Furthermore, we say that a cliqueC ∈ C is huge if |V (C) | > 3k . Recall
that, by Reduction Rule 4.2, |C| ≤ 6k . Thus, we directly have the following observation.

Observation 4.1. The total number of vertices in small cliques in C is upper bounded by 6γk
5
3 .

Second, we say that a clique C ∈ C is heavy if |V (C) ∩M | ≥ 1
δ
|V (C) |; otherwise, it is light. It is

clear that the total number of vertices in heavy cliques in C is upper bounded by δ |M |. Thus, by
Lemma 4.5, we have the following observation.

Observation 4.2. The total number of vertices in heavy cliques in C is upper bounded by 6δ (α +

β)k
5
3 .

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:15

Third, for a clique C ∈ C and a vertex s ∈ S , we say that C is visible to s if |NG (s) ∩V (C) | ≥
2ηk2/3; otherwise, we say thatC is hidden from s . For a cliqueC ∈ C, we let vis(C) denote that set of
vertices in S to whichC is visible. Moreover, we say that a cliqueC ∈ C is visible if |vis(C) | ≥ λk2/3;
otherwise, we say that it is hidden. To bound the number of visible cliques, we need the following
rule.

Reduction Rule 4.4. If there exists a vertex s ∈ S with at least 1
2η
k1/3 + 2 cliques in C visible to

s , then remove s from G and decrement k by 1. The new instance is (G \ s,k − 1).

Lemma 4.8. Reduction Rule 4.4 is safe.

Proof. In one direction, it is clear that if S� is a solution to (G \ s,k − 1), then S� ∪ {s} is a
solution to (G,k). For the other direction, let S� be a solution to (G,k). Let A denote the set of
cliques in C that are visible to s . Since |S� | ≤ k , |A| ≥ 1

2η
k1/3 + 2 and, by the definition of visibility,

we have that there necessarily exist two distinct cliques A,A′ ∈ A such that each clique between
A,A′ has a vertex that is a neighbor of s and does not belong to S�. Since these two vertices together
with s form an induced P3 inG, we derive that, necessarily, s ∈ S�. Therefore, S� \ {s} is a solution
to (G \ s,k − 1). �

After we exhaustively apply Reduction Rule 4.4, for every vertex s ∈ S , there exist at most
1

2η
k1/3 + 1 ≤ 1

η
k1/3 cliques in C visible to s . Since |S | ≤ 3k , we derive that there are at most

|S | 1
η k1/3

λk2/3 =
3

λη
k2/3 visible cliques. Thus, we have the following observation.

Observation 4.3. The total number of vertices in non-huge visible cliques in C is upper bounded

by 9
λη
k

5
3 .

Altogether, we say that a clique C ∈ C is good if it is (i) big, (ii) light, and (iii) hidden or huge
(or both); otherwise, we say that it is bad. We denote the set of all good cliques in C by D. By
Observations 4.1, 4.2, and 4.3, we derive the following lemma.

Lemma 4.9. The total number of vertices in bad cliques in C is upper bounded by 9(γ + δ (α + β) +
1

λη
)k

5
3 .

4.5 Properties of Clique Sides

For all C ∈ C and s ∈ S , denote NC (s) = NG (s) ∩V (C) and NC (s) = V (C) \ NC (s). Note that for
all C ∈ C, s ∈ S , u ∈ NC (s), and v ∈ NC (s), it holds that s − u −v is an induced P3 in G. Thus, we
have the following observation.

Observation 4.4. Let S� be a solution to (G,k). Then, for all C ∈ C and s ∈ S , at least one of the

following three conditions holds: (i) s ∈ S�; (ii) NC (s) ⊆ S�; (iii) NC (s) ⊆ S�.

For all C ∈ C and s ∈ S , let MC (s) denote the set of minimum size between NC (s) and NC (s) (if
they have equal sizes, the choice is arbitrary). We first need to apply the following simple rule.

Reduction Rule 4.5. If there existC ∈ C and s ∈ S such that |MC (s) | > k , then remove s from G
and decrement k by 1. The new instance is (G \ s,k − 1).

Lemma 4.10. Reduction Rule 4.5 is safe.

Proof. In one direction, it is clear that if S� is a solution to (G \ s,k − 1), then S� ∪ {s} is a solu-
tion to (G,k). For the other direction, let S� be a solution to (G,k). Since |S� | ≤ k and |MC (s) | > k ,

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:16 F. V. Fomin et al.

we have that both NC (s) \ S� � ∅ and NC (s) \ S� � ∅. Thus, by Observation 4.4, we have that, nec-
essarily, s ∈ S�. Therefore, S� \ {s} is a solution to (G \ s,k − 1). �

Specifically, since for every s ∈ S and huge clique C ∈ C, |MC (s) | ≤ k , we have the following
corollary, which exhibits a “vertex cover–like” interaction between S and huge cliques.

Observation 4.5. Let S� be a solution to (G,k). Then, for every s ∈ S and huge clique C ∈ C, at

least one of the following two conditions holds: (i) s ∈ S�; (ii) MC (s) ⊆ S�.

Next, we prove that a similar result holds also for non-huge cliques given that they are good.
To this end, we first prove the following simple lemma.

Lemma 4.11. For all s ∈ L andC ∈ D such that NG (s) ∩ (V (C) \M) � ∅, it holds thatC is visible

to s .

Proof. Let s ∈ L and C ∈ D such that NG (s) ∩ (V (C) \M) � ∅. Then, by Lemma 4.7, we have
thatV (C) \M ⊆ NG (s). Thus, to prove thatC is visible to s , it is sufficient to show that |V (C) \M | ≥
2ηk2/3. Since C ∈ D, we have that C is light; therefore, |V (C) \M | > (1 − 1

δ
) |V (C) |. Moreover,

sinceC is big, |V (C) | > γk2/3; hence, |V (C) \M | > (1 − 1
δ

)γk2/3. Since (1 − 1
δ

)γ ≥ 2η, the proof is
completed. �

Lemma 4.12. Let S� be a solution to (G,k) of minimum size. Then, for every non-huge clique

C ∈ D, it holds that |V (C) ∩ S� | ≤ |V (C) ∩M | + (1
(α−1)β

+ λ)k2/3.

Proof. Let C ∈ D be a non-huge clique. Suppose, by way of contradiction, that |V (C) ∩
S� | > |V (C) ∩M | + (1

(α−1)β
+ λ)k2/3. Define S ′ = (S� \V (C)) ∪ Û ∪ (V (M) ∩V (C)) ∪ vis(C). By

Corollary 4.1 and since C is a non-huge clique in D, |Û \ S� | ≤ 1
(α−1)β

k2/3 and |vis(C) | ≤ λk2/3.

Thus, |S ′ | < |S� | ≤ k . Next, we show that (V (C)) \ S ′ is an isolated clique. Toward this, we will
show that it has no neighbor in the approximate solution S . The only possible neighbors of
(V (C)) \ S ′ in S are in L. However, if there exists a vertex s ∈ L such that NG (s) ∩ (V (C) \M) � ∅,
then by Lemma 4.11, it holds thatC is visible to s . This implies that a vertex s ∈ L is either in vis(C)
or N (s) ∩V (C) ⊆ M ∩V (C). Since S ′ contains M ∩V (C)) ∪ vis(C) we have that (V (C)) \ S ′ is an
isolated clique. Thus, by Lemma 4.11, the graph G \ S ′ consists of an isolated clique on the ver-
tex set (V (C)) \ S ′ and a subgraph of G \ S�. Therefore, as G \ S� does not contain any induced
P3, so does G \ S ′. This implies that S ′ is a solution to (G,k), but since |S ′ | < |S� |, we obtain a
contradiction to the choice of S�. �

Lemma 4.13. Let S� be a solution to (G,k) of minimum size. Then, for every s ∈ S and non-huge

clique C ∈ D, at least one of the following two conditions holds: (i) s ∈ S�; (ii) MC (s) ⊆ S�.

Proof. Let s be a vertex in S , and let C ∈ D be a non-huge clique. Suppose, by way of con-
tradiction, that neither s ∈ S� nor MC (s) ⊆ S�. By Observation 4.4, we necessarily have that
V (C) \MC (s) ⊆ S�. Thus, |V (C) ∩ S� | ≥ |V (C) \MC (s) | ≥ 1

2 |V (C) |. Therefore, to obtain a contra-
diction to Lemma 4.12, it is sufficient to show that 1

2 |V (C) | > |V (C) ∩M | + (1
(α−1)β

+ λ)k2/3. Since

C is light, we have that |V (C) ∩M | < 1
δ
|V (C) |; therefore, it remains to show that (1

2 −
1
δ

) |V (C) | >
(1

(α−1)β
+ λ)k2/3. Since C is big, |V (C) | > γk2/3. Thus, we only need to show that (1

2 −
1
δ

)γ >

(1
(α−1)β

+ λ), which follows from the definition of α , β,γ ,δ , and λ. �

4.6 Expansion with Respect to Clique Sides

We construct the bipartite graph B′ by setting one side of the bipartition to be S and the other side
Q ′ to be the set of vertices in good cliques (i.e., Q ′ =

⋃
C ∈D V (C)), such that there exists an edge

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:17

between s ∈ S and v ∈ Q ′ if and only if v ∈ MD (s), where D is the clique in D containing v . Let I
denote the set of isolated vertices in B′ that belong to Q ′, and denote Q = Q ′ \ I . Moreover, define
B = B′ \ I . Clearly, no clique in Q is an isolated vertex in B. We thus proceed by presenting the
following rule, where we rely on the Expansion Lemma (Lemma 3.1). It should be clear that the
conditions required to apply the algorithm provided by this lemma are satisfied.

Reduction Rule 4.6. If |Q | ≥ (1
(α−1)β

k2/3 + 1) |S |, then call the algorithm provided by Lemma 3.1

to compute sets X ⊆ S and Y ⊆ Q such that X has a (1
(α−1)β

k2/3 + 1)-expansion into Y in B and

NB (Y) ⊆ X . The new instance is (G \ X ,k − |X |).

We now argue that this rule is safe.

Lemma 4.14. Reduction Rule 4.6 is safe.

Proof. In one direction, it is clear that if S� is a solution to (G \ X ,k − |X |), then S� ∪ X is a
solution to (G,k). For the other direction, let S� be a solution to (G,k) of minimum size. Define
S ′ = (S� \ Y) ∪ X ∪ Û . First, due to Corollary 4.1, note that |Û \U� | ≤ 1

(α−1)β
k2/3. Moreover, by

Observation 4.5 and Lemma 4.13, for every vertex s ∈ S \ S�, it holds that NB (s) ⊆ S�. Thus, since
X has a (1

(α−1)β
k2/3 + 1)-expansion into Y in B, we have that |Y \ S� | ≤ (1

(α−1)β
k2/3 + 1) |X \ S� |.

This implies that |S ′ | ≤ |S� | ≤ k .
Note that ifG \ S ′ does not contain any induced P3, then since X ⊆ S� and we have shown that
|S ′ | ≤ k , this would imply that S ′ is a solution to (G \ X ,k − |X |). Suppose, by way of contradiction,
thatG \ S ′ contains some induced P3, which we denote byW . Note thatV (W) ∩ (X ∪ Û) = ∅. Since
G \ S� does not contain any induced P3 and since S is an approximate solution, we also derive that
V (W) ∩ Y � ∅ and V (W) ∩ S � ∅. Accordingly, the following case analysis is exhaustive.

• Case 1:W = s − u −v , where s ∈ S \ (X ∪ Û),u,v ∈ V (C) for someC ∈ D and {u,v} ∩ Y �
∅. In this case, let y ∈ {u,v} denote some vertex in {u,v} ∩ Y and let x denote the other
vertex in {u,v} (which might also be in Y). Since NB (Y) ⊆ X and s � X , we have that y �
NB (s). Since u ∈ NC (s) and v ∈ NC (s), we have that |MC (s) ∩ {u,v}| = 1. Since y � NB (s),
we have thaty � MC (s) and x ∈ MC (s). In particular, as NB (Y) ⊆ X and s � X , we have that
x ∈ NB (s) \ Y (in fact, NB (s) ∩ Y = ∅). By Observation 4.5 and Lemma 4.13, we derive that
S� ∩ {s,x } � ∅. However, as x � Y , this implies that S ′ ∩ {s,x } � ∅, which is a contradiction.

• Case 2:W = s −v − s ′, where s, s ′ ∈ S \ (X ∪ Û), and v ∈ V (C) ∩ Y for someC ∈ D. Since
NB (Y) ⊆ X and s, s ′ � X , we have that v � MC (s) ∪MC (s ′), which means that NC (s) =
V (C) \MC (s) and NC (s ′) = V (C) \MC (s ′). Therefore, |NC (s) ∩V (C) |, |NC (s ′) ∩V (C) | ≥
1
2 |V (C) |. Thus, since |M ∩V (C) | < 1

δ
|V (C) | < 1

2 |V (C) | (becauseC ∈ D), we have that there

exist w ∈ NC (s) \M and w ′ ∈ NC (s ′) \M . By Lemma 4.7 and since s, s ′ � Û , we derive that
C is huge or both V (C) \M ⊆ NC (s) and V (C) \M ⊆ NC (s ′).

Let us first consider the subcase, where C is huge. Owing to Reduction Rule 4.5, we have
that |NC (s) |, |NC (s ′) | ≤ k . Since |V (C) | > 3k , we derive that |NC (s) ∩ NC (s ′) | ≥ k + 1. Note
that any vertex w ∈ NC (s) ∩ NC (s ′), along with s and s ′, form the induced P3 in G that is
s −w − s ′. Note that s, s ′ � S�, as otherwise {s, s ′} ∩ S ′ � ∅, which contradicts the choice
of W . Thus, as S� is a solution to (G,k), it must hold that NC (s) ∩ NC (s ′) ⊆ S�, but as
|NC (s) ∩ NC (s ′) | ≥ k + 1, this is a contradiction.

Let us now consider the subcase whereC is not huge and, in particular,V (C) \M ⊆ NC (s)
and V (C) \M ⊆ NC (s ′). Then, any vertex w ∈ V (C) \M , along with s and s ′, form the in-
duced P3 in G that is s −w − s ′. Again, note that s, s ′ � S�. Thus, since S� is a solution to
(G,k), we have thatV (C) \M ⊆ S�. Now, recall that by Lemma 4.12 and sinceC ∈ D is not

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:18 F. V. Fomin et al.

huge, |V (C) ∩ S� | ≤ |V (C) ∩M | + (1
(α−1)β

+ λ)k2/3. Hence, |V (C) \M | ≤ (1
(α−1)β

+ λ)k2/3.

As |V (C) ∩M | < 1
δ
|V (C) | (becauseC ∈ D), we have that (1 − 1

δ
) |V (C) | < (1

(α−1)β
+ λ)k2/3;

hence, |V (C) | < δ
δ−1 (1

(α−1)β
+ λ)k2/3, which is a contradiction sinceC ∈ D implies thatC is

in particular big and γ ≥ δ
δ−1 (1

(α−1)β
+ λ).

• Case 3: W = v − s − s ′, where s, s ′ ∈ S \ (X ∪ Û) and v ∈ V (C) ∩ Y for some C ∈ D. The
analysis of this case is similar to the one of the previous case and is given only for complete-
ness. Since NB (Y) ⊆ X and s, s ′ � X , we have that v � MC (s) ∪MC (s ′), which means that
NC (s) = V (C) \MC (s) and NC (s ′) = V (C) \MC (s ′). Therefore, |NC (s) ∩V (C) |, |NC (s ′) ∩
V (C) | ≥ 1

2 |V (C) |. Thus, since |M ∩V (C) | < 1
δ
|V (C) | < 1

2 |V (C) | (because C ∈ D), we have

that there exist w ∈ NC (s) \M and w ′ ∈ NC (s ′) \M . By Lemma 4.7 and since s, s ′ � Û , we
derive that C is huge or both V (C) \M ⊆ NC (s) and V (C) \M ⊆ NC (s ′).

Let us first consider the subcase where C is huge. Due to Reduction Rule 4.5, we have
that |NC (s) |, |NC (s ′) | ≤ k . Since |V (C) | > 3k , we derive that |NC (s) ∩ NC (s ′) | ≥ k + 1. Note
that any vertex w ∈ NC (s) ∩ NC (s ′), along with s and s ′, form the induced P3 in G that is
w − s − s ′. Note that s, s ′ � S�, as otherwise {s, s ′} ∩ S ′ � ∅, which contradicts the choice
of W . Thus, as S� is a solution to (G,k), it must hold that NC (s) ∩ NC (s ′) ⊆ S�, but as
|NC (s) ∩ NC (s ′) | ≥ k + 1, this is a contradiction.

Let us now consider the subcase whereC is not huge and, in particular,V (C) \M ⊆ NC (s)

and V (C) \M ⊆ NC (s ′). Then, any vertex w ∈ V (C) \M , along with s and s ′, form the in-
duced P3 in G that is w − s − s ′. Again, note that s, s ′ � S�. Thus, since S� is a solution to
(G,k), we have thatV (C) \M ⊆ S�. Now, recall that by Lemma 4.12 and sinceC ∈ D is not
huge, |V (C) ∩ S� | ≤ |V (C) ∩M | + (1

(α−1)β
+ λ)k2/3. Hence, |V (C) \M | ≤ (1

(α−1)β
+ λ)k2/3.

As |V (C) ∩M | < 1
δ
|V (C) | (becauseC ∈ D), we have that (1 − 1

δ
) |V (C) | < (1

(α−1)β
+ λ)k2/3;

hence, |V (C) | < δ
δ−1 (1

(α−1)β
+ λ)k2/3, which is a contradiction, since C ∈ D implies that C

is in particular big and γ ≥ δ
δ−1 (1

(α−1)β
+ λ).

• Case 4: W = u − s −v , where s ∈ S \ (X ∪ Û), u ∈ V (C) ∩ Y for some C ∈ D, and v ∈
V (C ′) for some C ′ ∈ C \ {C}. Since NB (Y) ⊆ X and s � X , we have that u � MC (s), which
means that NC (s) = V (C) \MC (s). Therefore, |NC (s) ∩V (C) | ≥ 1

2 |V (C) |. Thus, since |M ∩
V (C) | < 1

δ
|V (C) | < 1

2 |V (C) | (because C ∈ D), we have that there exists w ∈ NC (s) \M . By

Lemma 4.7 and since s � Û , we derive that C is huge or V (C) \M ⊆ NC (s). Symmetrically,
we derive that if v ∈ Y , then C ′ is huge or V (C ′) \M ⊆ NC ′ (s).

Note that for all w ∈ NC (s) and w ′ ∈ NC ′ (s), it holds that w − s −w ′ is an induced P3 in
G. As s � S� (as otherwise s ∈ S ′), we have that NC (s) ⊆ S� or NC ′ (s) ⊆ S�. Observe that if
v � Y , then since v � S ′, we have that v � S�; therefore, it clearly holds that NC ′ (s) � S�.
If v ∈ Y (which means that C ′ ∈ D), then the proof that NC ′ (s) � S� is symmetric to the
proof that NC (s) � S�. Therefore, in what follows, we show only that NC (s) � S�.

Let us first consider the subcase where C is huge. Due to Reduction Rule 4.5, we have
that |NC (s) | ≤ k . Since |V (C) | > 3k , we derive that |NC (s) | ≥ 2k + 1. Since |S� | ≤ k , it
is then clear that NC (s) � S�. Now, let us consider the subcase where C is not huge,
and in particular V (C) \M ⊆ NC (s). Recall that by Lemma 4.12 and since C ∈ D is not
huge, |V (C) ∩ S� | ≤ |V (C) ∩M | + (1

(α−1)β
+ λ)k2/3. Suppose, by way of contradiction, that

NC (s) ⊆ S�. Then, |V (C) \M | ≤ (1
(α−1)β

+ λ)k2/3, which leads to a contradiction, as in the
previous two cases.

Since each case led to a contradiction, the proof is complete. �

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:19

4.7 Reduction of Almost Modules

At this point, it remains to bound the size of I . We first show that the sets of vertices in I , defined
according to the cliques in C, are modules also with respect to Û . More precisely, we prove the
following lemma.

Lemma 4.15. For every clique C ∈ D, C[I ∩V (C)] is a module in G.

Proof. Let C be a clique in D. Consider two vertices u,v ∈ I ∩V (C). Clearly, every vertex
in C is adjacent to both u and v , and every vertex in a clique in C \ {C} is adjacent to neither
u nor v . Thus, C[I ∩V (C)] is indeed a module in G \ S . Now, consider some vertex s ∈ S . Then,
as u,v ∈ I ∩V (C), we have that u,v ∈ V (C) \MC (s) because, otherwise, u or v would have been
adjacent to s in the bipartite graph B of Section 4.6. Thus, we have that either both u,v ∈ NC (s)

or both u,v ∈ NC (s). As the choices of u,v and s were arbitrary, we conclude that C[I ∩V (C)] is,
indeed, a module in G. �

We now present a rule that concerns the set I .

Reduction Rule 4.7. If there exists a visible cliqueC ∈ D such that |I ∩V (C) | > k + 1 or a hidden

clique C ∈ D such that |I ∩V (C) | > |M ∩V (C) | + 1
(α−1)β

k2/3 + λk2/3, then remove an arbitrarily

chosen vertex v ∈ V (C) ∩ I from G. The new instance is (G \v,k).

Lemma 4.16. Reduction Rule 4.7 is safe.

Proof. In one direction, it is clear that if (G,k) has a solution, so does (G \v,k). Now, let S�

be a solution to (G \v,k). If S� is also a solution to (G,k), then the proof is complete. Therefore,
we next assume that S� is not a solution to (G,k). Then, there exists an induced P3, denoted by
W , in G \ S�. Since S� is a solution to (G \v,k), v ∈ V (W). Furthermore, since v ∈ V (C) ∩ I and
I ∩V (C) is a clique that is a module (by Lemma 4.15), for any vertex u ∈ I ∩V (C), the vertex
set (V (W) \ {v}) ∪ {u} induces a P3 in G \v . As (V (W) \ {v}) ∩ S� = ∅ and S� is a solution to
(G \v,k), we deduce that (I ∩V (C)) \ {v} ⊆ S�.

In case |I ∩V (C) | > k + 1, the conclusion that (I ∩V (C)) \ {v} ⊆ S� implies that |S� | > k ,
which is a contradiction. Now, suppose that C is a hidden clique in D such that |I ∩V (C) | >
|M ∩V (C) | + 1

(α−1)β
k2/3 + λk2/3. Let us denote S ′ = (S� \ (I ∩V (C))) ∪ (M ∩V (C)) ∪ Û ∪ vis(C).

By Corollary 4.1 and sinceC is a hidden clique in D, we have that |S ′ | ≤ |S� | − |I ∩V (C) | + |M ∩
V (C) | + 1

(α−1)β
k2/3 + λk2/3 ≤ |S� | ≤ k . Moreover, by Lemma 4.11, the graph G \ S ′ consists of an

isolated clique on the vertex set V (C) \ S ′ (for a detailed argument, see the proof of Lemma 4.12)
and a subgraph of (G \v) \ S�. Therefore, as (G \v) \ S� does not contain any induced P3, nor
does G \ S ′. This implies that S ′ is a solution to (G,k); therefore, (G,k) is a Yes-instance. �

Finally, after the exhaustive application of Reduction Rule 4.7, we can bound the size of I .

Lemma 4.17. After the exhaustive application of Reduction Rule 4.7, |I | ≤ 6(1
λη
+ α + β + 1

(α−1)β
+

λ)k
5
3 .

Proof. First, note that after the exhaustive application of Reduction Rule 4.7, every visible
clique C ∈ D satisfies |V (C) ∩ I | ≤ k + 1 and every hidden clique C ∈ D satisfies |V (C) ∩ I | ≤
|M ∩V (C) | + 1

(α−1)β
k2/3 + λk2/3. Recalling that the number of visible cliques is upper bounded

by 3
λη
k2/3, we have that the total number of vertices in I that belong to visible cliques in D is

upper bounded by 3
λη
k2/3 · (k + 1). Now, recalling that |C| ≤ 6k , we also have that the total num-

ber of vertices in I that belong to hidden cliques inD is upper bounded by |M | + 6(1
(α−1)β

+ λ)k
5
3 .

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:20 F. V. Fomin et al.

By Lemma 4.5, |M | ≤ 6(α + β)k
5
3 . Thus, 3

λη
k2/3 (k + 1) + |M | + 6(1

(α−1)β
+ λ)k

5
3 ≤ 6(1

λη
+ α + β +

1
(α−1)β

+ λ)k
5
3 , which completes the proof. �

4.8 Proof of Theorem 1

We are finally ready to present the proof of Theorem 1.

Proof of Theorem 1. Let (G,k) be an instance of CVD. Our kernelization algorithm simply
applies (exhaustively) Reduction Rules 4.1 to 4.7. The output is the instance obtained once none of
these rules is applicable. Let us observe that each rule among Reduction Rules 4.1 to 4.16 can be
applied in polynomial time, it strictly decreases the size ofG, and it does not increase k . Thus, our
kernelization algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the outputted instance by (G,k).
Let us observe that V (G) consists of the following vertices.

• Vertices in S , whose number is at most 3k .
• Vertices in bad cliques, whose number is at most 9(γ + δ (α + β) + 1

λη
)k

5
3 = O (k

5
3) (by

Lemma 4.9).
• Vertices in good cliques that are not isolated in B′, whose number is at most (1

(α−1)β
k2/3 +

1) |S | = O (k
5
3) (owing to Reduction Rule 4.6).

• Vertices in the set I , whose number is at most 6(1
λη
+ α + β + 1

(α−1)β
+ λ)k

5
3 = O (k

5
3) (by

Lemma 4.17).

Thus, the total number of vertices is, indeed, O (k
5
3). This completes the proof. �

5 KERNEL FOR INDUCED P3-PACKING

In this section, we prove the following theorem.

Theorem 2. Induced P3-Packing admits a kernel with O (k
5
3) vertices.

Our kernel for Induced P3-Packing is based on the kernel for CVD. In fact, several of the steps
of both the kernelization algorithms are almost the same, but the subtle differences between them
are crucial. Specifically, while in CVD, we analyze properties that must be satisfied by all solutions.
In Induced P3-Packing, we analyze properties such that there exists a solution that satisfies them
(if there exists a solution at all). As we progress with the description of our kernelization algorithm
for Induced P3-Packing, the deviations from the kernelization algorithm for CVD become more
palpable; in particular, the later proofs of correctness of both algorithms are completely different
(e.g., here, we we do not even construct the bipartite graph B′ as we did in Section 4.6).

Let (G,k) be an instance of Induced P3-Packing. We start by greedily finding a maximal
collection—say, S—of vertex-disjoint-induced P3s in G. Clearly, this greedy procedure can be run
in polynomial time. If |S| ≥ k , then we conclude that (G,k) is a Yes-instance. Thus, we next sup-
pose that |S| < k . Let S be the set of vertices that belong to the induced P3s in S. Since |S| < k ,
we have that |S | ≤ 3k . Note that G \ S is a collection of cliques, which we denote by C.

In what follows, we denote α = 2, β = 1, γ = 43, μ = 26, δ = 3, λ = 1, and η = 1, so that (1 −
1
δ

)γ ≥ 6η (used in the proof of 5.11), δ−1
δ

μ − 14
(α−1)β

> 3 (used in the proof of Lemma 5.13), δ−1
δ
γ ≥

20
(α−1)β

+ λ (used in the proof of Lemma 5.13), μ

2 ≥ 3 (used in the proof of Lemma 5.14), and 6
(α−1)β

+

λ + 1
δ
γ ≤ γ

2 (used in the proof of Lemma 5.14).

5.1 Bounding the Number of Cliques

First, as in the case of CVD, we have the following simple rule, whose safeness is obvious.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:21

Reduction Rule 5.1. If there exists C ∈ C such that no vertex in C has a neighbor in S , then

remove C from G. The new instance is (G \C,k).

Now, as in the case of CVD, we define the bipartite graph B by setting one side of the bipartition
to be S and the other side to be C, such that there exists an edge between s ∈ S and C ∈ C if and
only if s is adjacent to at least one vertex inC . Note that by Reduction Rule 5.1, no clique in C is an
isolated vertex in B. We thus proceed by presenting the following rule (which is slightly different
than Reduction Rule 4.2), where we rely on the Expansion Lemma (Lemma 3.1). It should be clear
that the conditions required to apply the algorithm provided by this lemma are satisfied.

Reduction Rule 5.2. If |C| ≥ 2|S |, then call the algorithm provided by Lemma 3.1 to compute sets

X ⊆ S and Y ⊆ C such that X has a 2-expansion into Y in B and NB (Y) ⊆ X . The new instance is

(G \ (X ∪V (Y)),k − |X |). Here, V (Y) =
⋃

C ∈Y V (C).

We now argue that this rule is safe.

Lemma 5.1. Reduction Rule 5.2 is safe.

Proof. For every vertex s ∈ X , letCs andC ′s be the two cliques assigned to s by the 2-expansion.
Note that for all s ∈ X , there exists an induced P3 in G of the form us − s −vs , where us is any
neighbor of s in Cs (as s and Cs are neighbors in B, at least one such vertex exists), and vs is any
neighbor of s in C ′s (again, at least one such vertex exists). Let this special collection of induced
P3s be denoted by X�, that is, X� = {us − s −vs : s ∈ X }. In one direction, it is clear that if S� is a
solution to (G \ (X ∪V (Y),k − |X |), then S� ∪ X� is a solution to (G,k). For the other direction,
let S� be a solution to (G,k). Let W denote the set of every induced P3 in S� that contains at
least one vertex from X . We denote S′ = (S� \W) ∪ X�. Observe that since NB (Y) ⊆ X , we
have that no induced P3 in S� \W contains any vertex from V (Y) ∪ X . Thus, it holds that S′ is
a collection of induced P3s inG. Since |W| ≤ |X |, we have that |S′| ≥ k . We conclude that S′ is a
solution to (G,k) and, as X� ⊆ S′, we have that S′ \ X� is a solution to (G \ (X ∪V (Y),k − |X |).
Thus, (G \ (X ∪V (Y),k − |X |) is a Yes-instance. �

Owing to Reduction Rule 5.2, from now on, |C| ≤ 6k .

5.2 The Specification of the Marking Procedure

We proceed by presenting a procedure called Mark. The specification of this procedure is similar
to the one presented in Section 4.2. In particular, let us emphasize one subtle difference: now we
mark an additional set N , which will be a crucial component of latter rules and arguments.

Specification. The procedure Mark first initializes M ⇐ ∅,T ⇐ S , and for all s ∈ S , mark(s) ⇐ ∅.
At each stage i , i = 1, 2, . . . , 3k + 1, Mark executes the following process. For each s ∈ T , if there
exist C ∈ C and {u,v} ∈ E (C) such that {s,u} ∈ E (G) but {s,v} � E (G) and {u,v} ∩M = ∅, then
insert u,v into M and {u,v} into mark(s); otherwise, remove s from T . The order in which the
process examines the vertices in T is immaterial given that it examines each vertex in T exactly
once. Moreover, if i = �βk2/3�, then the process sets U to T if |T | ≤ �αk2/3� and to an arbitrarily
chosen subset ofT of size �αk2/3� otherwise; it also sets N to be equal to

⋃
s ∈U mark(s). IfT or M

are updated in subsequent stages, U and N are not updated as well.
We say that Mark succeeded if |U | = �αk2/3�; otherwise, we say that Mark failed. Moreover, if

there exists s ∈ S such that |mark(s) | ≥ 3k + 1, then we say that Mark was lucky. Let us begin the
analysis of Mark with the following simple rule.

Reduction Rule 5.3. If there exists s ∈ S such that |mark(s) | ≥ 3k + 1 (i.e., Mark was lucky), then

remove s from G and decrement k by 1. The new instance is (G \ s,k − 1).

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:22 F. V. Fomin et al.

Lemma 5.2. Reduction Rule 5.3 is safe.

Proof. If there exists s ∈ S such that |mark(s) | ≥ 3k + 1, then there exist 3k + 1 induced P3s
in the graph of the form s − ui −wi , i ∈ {1, . . . , 3k + 1} that intersect only at s . That is, we have
a “flower” whose core is s and whose petals are {ui ,wi }. In one direction, let S� be a solution
to (G \ s,k − 1). Note that |V (S�) | ≤ 3(k − 1). Thus, the number of induced paths of the form
s − ui −wi that intersect V (S�) is also upper bounded by 3(k − 1). This implies that there exists
an induced path s − uj −w j that does not contain any vertex fromV (S�). Then,S� ∪ {s − uj −w j }
is a solution to (G,k). For the other direction, let S� be a solution to (G,k). Observe that there is at
most one induced P3 in S� that contains the vertex s . Let S′ be the set of induced P3s obtained by
deleting the induced P3 inS� that contains s (if it exists). Then,S′ is a solution to (G \ s,k − 1). �

As in the case of CVD, the main purpose of Mark is to derive information on (G,k) when it is not
coincidentally lucky. However, the information we require here is different than the information
we require in the case of CVD. Not only do we analyze one solution rather than all solutions, we
also need to state explicit relations betweenU and the set of vertices marked byU (i.e., the set N).

Lemma 5.3. For any induced P3-packing S′ of size at most k , there exists an induced P3-packing

S� of size at least |S′| such that the following conditions hold.

• Let P′ be the set of induced P3s in S′ that do not contain any vertex from U . Then, P′ ⊆ S�.

• There exists a set A ⊆ U of size at most 3
β
k1/3 such that for all s ∈ U \A, there exist P ∈ S�

and u,v ∈ N such that P = s − u −v .

Proof. Let S′ be an induced P3-packing of G of size at most k . Observe that for all s ∈ S and
{u,v}, {u ′,v ′} ∈ mark(s), it holds that {u,v} ∩ {u ′,v ′} = ∅. In addition, observe that for all s, s ′ ∈ S ,
{u,v} ∈ mark(s) and {u ′,v ′} ∈ mark(s ′), it holds that {u,v} ∩ {u ′,v ′} = ∅. As |V (S′) | ≤ 3k and
for all s ∈ U , |mark(s) | ≥ �βk2/3�, we derive that there exist at most 3k/�βk2/3� ≤ 3

β
k1/3 vertices

s ∈ U such that for all {u,v} ∈ mark(s), V (S′) ∩ {u,v} � ∅. Let A denote the set of these vertices
in U . Moreover, let P� be the set of induced P3s in S′ that do not contain any vertex from U \A.

Note that P′ ⊆ P�. Moreover, note that |S′ \ P� | ≤ |U \A|. Now, define P̂ as the P3-packing
obtained by selecting, for every vertex s ∈ U \A, an induced P3 that consists of s and an arbitrarily
chosen edge {u,v} ∈ mark(s) such that V (S′) ∩ {u,v} � ∅ (there exists at least one such edge).

Then, S� = P� ∪ P̂ is an induced P3-packing. As |S′ \ P� | ≤ |U \A|, we derive that |S� | ≥ |S′|.
Moreover, it is clear from its construction that S� satisfies the two properties in the statement of
the lemma. This completes the proof. �

We also need to derive an upper bound on the number of marked vertices, namely, |M |.

Lemma 5.4. If Mark was neither lucky nor successful, then |M | ≤ 6(α + β)k
5
3 .

Proof. Since Mark was unlucky, |mark(s) | ≤ 3k for all s ∈ S . Thus, |M | ≤ 2|U |3k + 2|S \
U |(�βk2/3� − 1). Since Mark failed, we further have that |M | ≤ 6(�αk2/3� − 1)k + 6k (�βk2/3� −
1) ≤ 6(α + β)k

5
3 . �

5.3 Multiple Calls to the Marking Procedure

We employ Mark exactly as in the case of CVD, with the exception that now we also compute
a set M̂ . For the sake of readability, let us repeat this short description (with the computation of
M̂). We initialize Û = ∅, M̂ = ∅, and Ĝ = G. Then, we call Mark with (Ĝ,k) as input. If Mark was
lucky, then we execute Reduction Rule 5.3 and restart the entire process (including the initialization
phase). Otherwise, if Mark succeeded, then for the setsU and N computed by the current call, we

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:23

update Û ⇐ Û ∪U , M̂ ⇐ M̂ ∪ N , and Ĝ ⇐ Ĝ \U , and then we proceed to execute another call.
Otherwise, Mark was unlucky and also failed, and we let M denote the same set M ⊆ V (G) \ S
as computed by the current call to Mark, after which we terminate the process. (It may hold that
M ∩ M̂ � ∅.) Note that after each call to Mark, either Reduction Rule 5.3 is executed or the size of
Û increases and, therefore, it is clear that the process eventually terminates. We denote L = S \ Û .

By relying on Lemma 5.3, we have the following lemma.

Lemma 5.5. Let i be the number of calls to Mark that succeeded but were unlucky. If (G,k) is a

Yes-instance, then there exists a solution S� to (G,k) and a set A ⊆ Û of size at most i · 3
β
k1/3 such

that for all s ∈ Û \A, there exists P ∈ S� and u,v ∈ M̂ such that P = s − u −v .

Proof. Suppose that (G,k) is a Yes-instance, and letS′ be a solution to (G,k) that minimizes the
number of vertices s ∈ Û for which there do not exist P ∈ S′ and u,v ∈ M̂ such that P = s − u −v .
Let A denote the set of these vertices in Û . Suppose, by way of contradiction, that |A| > i · 3

β
k1/3.

Then, by the pigeonhole principle, there exists an iteration j ∈ {1, 2 . . . , i} such that |A ∩Uj | >
3
β
k1/3, where Uj denotes the set U computed in iteration j. By Lemma 5.3, there exists a solution

S� to (G,k) such that the following conditions hold.

• LetP′ be the set of induced P3s inS′ that do not contain any vertex fromUj . Then,P′ ⊆ S�.
• There exists a set A� ⊆ Uj of size at most 3

β
k1/3 such that for all s ∈ Uj \A�, there exist

P ∈ S� and u,v ∈ M̂ such that P = s − u −v . In fact, u,v ∈ N , the set computed in round j.

By the first condition, we deduce that for every P ∈ S′ such that P = s − u −v for some s ∈
Û \Uj and u,v ∈ M̂ , it also holds that P ∈ S�. Furthermore, from the second condition, we derive

that S� has fewer vertices s ∈ Uj than S′ for which there do not exist P ∈ S′ and u,v ∈ M̂ such

that P = s − u −v . We thus conclude that S� has fewer vertices s ∈ Û than S′ for which there do
not exist P ∈ S′ and u,v ∈ M̂ such that P = s − u −v . Since this contradicts the choice of S′, we
have that |A| < i · 3

β
k1/3. This completes the proof. �

Before we proceed to present a consequence of Lemma 5.5, we need to present a new rule that
is also necessary to upper bound |M̂ |.

Reduction Rule 5.4. Let i be the number of calls to Mark that succeeded but were unlucky. If

i ≥ 1
α−1k

1/3, then return a trivial Yes-instance.

Lemma 5.6. Reduction Rule 5.4 is safe.

Proof. Let us consider the following simple procedure. InitializeS0 = ∅. Now, for j = 1, 2, . . . , i ,
perform the following computation: Let Sj be the induced P3-packing whose existence is guaran-
teed by Lemma 5.3 when applied with S′ = Sj−1. (We implicitly assume that induced P3s that are

not of the form s − u −v , for s ∈ Û and u,v ∈ M̂ , are discarded.) By the two properties of S� as
specified by Lemma 5.3, we have that for all j ∈ {1, 2, . . . , i}, |Sj | ≥ |Sj−1 | + |Uj | − 3

β
k1/3, whereUj

is the set U computed in iteration j. Since for all j ∈ {1, 2, . . . , i}, |Uj | = �αk2/3�, we overall have

that |Si | ≥ i · (αk2/3 − 3
β
k1/3). Observe that k

αk2/3− 3
β

k1/3 =
k2/3

αk1/3− 3
β

≤ 1
α−1k

1/3. Thus, if i ≥ 1
α−1k

1/3,

then |Si | ≥ k , in which case Si is a solution to (G,k). This implies that Reduction Rule 5.4 is, in-
deed, safe. �

For the sake of clarity, let us formally define the solutions that we would like to analyze.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:24 F. V. Fomin et al.

Definition 5.1. We say that a pair (S�,A) is a nice solution to (G,k) if S� is a solution to (G,k)

and A ⊆ Û is a set of size at most 3
(α−1)β

k2/3 such that for all s ∈ Û \A, there exist P ∈ S� and

u,v ∈ M̂ such that P = s − u −v .

Now, as a consequence of Lemma 5.5 and Reduction Rule 5.4, we have the following corollary.

Corollary 5.1. If (G,k) is a Yes-instance, then there exists a nice solution to (G,k).

Proof. Suppose that (G,k) is a Yes-instance. Let i be the number of calls to Mark that succeeded
but were unlucky. By Lemma 5.5, there exists a solution S� to (G,k) and a set A ⊆ Û of size at
most i · 3

β
k1/3 such that for all s ∈ Û \A, there exist P ∈ S� and u,v ∈ M̂ such that P = s − u −v .

By Reduction Rule 5.4, we have that i < 1
α−1k

1/3. Therefore, we have that |A| ≤ 1
α−1k

1/3 · 3
β
k1/3 =

3
(α−1)β

k2/3. We have thus obtained a nice solution (S�,A) to (G,k). �

The usefulness of Corollary 5.1 stems from the observation that it implies that we have found
a (possibly large) set Û ⊆ S such that not only there exists a solution that packs almost all of the
vertices in Û in induced P3s with vertices in M̂ but also that the removal of Û fromG significantly
simplifies G as described by the following lemma. As the proof (and statement) of this lemma is
identical to the proof of Lemma 4.7, it is omitted.

Lemma 5.7. For every clique C ∈ C, C[V (C) \M] is a module in G \ Û .

Before we proceed to sieve bad cliques, let us upper bound |M̂ |.

Lemma 5.8. |M̂ | ≤ 2α β

1−α
k

5
3 .

Proof. Due to each call to Mark, at most 2�αk2/3� · �βk2/3� new vertices are inserted into M̂ .
By Reduction Rule 5.4, Mark was called less than 1

α−1k
1/3 times. Thus, the total number of vertices

inserted into M̂ is upper bounded by 2(1
α−1k

1/3 − 1) · �αk2/3� · �βk2/3� ≤ 2α β

1−α
k

5
3 . �

5.4 Sieving Bad Cliques

We sieve cliques based on three classifications, similarly to the case of CVD. First, we say that a
cliqueC ∈ C is big if |V (C) | > γk2/3; otherwise, it is small. Furthermore, we say that a cliqueC ∈ C
is huge if |V (C) | > μk . Recall that by Reduction Rule 5.2, |C| ≤ 6k . Thus, as in the case of CVD, we
directly have the following observation.

Observation 5.1. The total number of vertices in small cliques in C is upper bounded by 6γk
5
3 .

Second, we say that a cliqueC ∈ C is heavy if |V (C) ∩ (M ∪ M̂) | ≥ 1
δ
|V (C) |; otherwise, it is light.

In particular, heaviness is now measured with respect to M ∪ M̂ , while in the case of CVD it was
measured only with respect to M . It is clear that the total number of vertices in heavy cliques in C
is upper bounded by δ |M ∪ M̂ |. Thus, by Lemmas 5.4 and 5.8, we have the following observation.

Observation 5.2. The total number of vertices in heavy cliques in C is upper bounded by 6δ (α +

β +
α β

1−α
)k

5
3 .

Third, as in the case of CVD (except that the constant 2 is replaced by 6), for a cliqueC ∈ C and
a vertex s ∈ S , we say that C is visible to s if |NG (s) ∩V (C) | ≥ 6ηk2/3; otherwise, we say that C
is hidden from s . For a clique C ∈ C, we let vis(C) denote that set of vertices in S to which C is
visible. Moreover, we say that a cliqueC ∈ C is visible if |vis(C) | ≥ λk2/3; otherwise, we say that it
is hidden. To bound the number of visible cliques, we need the following rule.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:25

Reduction Rule 5.5. If there exists a vertex s ∈ S with at least 1
2η
k1/3 + 2 cliques in C visible to

s , then remove s from G and decrement k by 1. The new instance is (G \ s,k − 1).

Lemma 5.9. Reduction Rule 5.5 is safe.

Proof. In one direction, letS� be a solution to (G \ s,k − 1). LetA denote the set of cliques in C
that are visible to s . Since |V (S�) | ≤ 3(k − 1), |A| ≥ 1

2η
k1/3 + 2 and, by the definition of visibility,

we have that there necessarily exist two distinct cliques A,A′ ∈ A such that each clique between
A,A′ has a vertex that is a neighbor of s and does not belong to V (S�). Since these two vertices
together with s form an induced P3 in G, called P , we derive that S� ∪ {P } is a solution to (G,k).
For the other direction, let S� be a solution to (G,k). Observe that there is at most one induced P3

in S� that contains the vertex s . Let S′ be the set of induced P3s obtained by deleting the induced
P3 in S� that contains s (if it exists). Then, S′ is a solution to (G \ s,k − 1). �

After we exhaustively apply Reduction Rule 5.5, as in the case of CVD, for every vertex s ∈ S
there exist at most 1

2η
k1/3 + 1 ≤ 1

η
k1/3 cliques in C visible to s . Since |S | ≤ 3k , we derive that there

are at most
|S | 1

η k1/3

λk2/3 =
3

λη
k2/3 visible cliques. Thus, we have the following observation.

Observation 5.3. The total number of vertices in non-huge visible cliques in C is upper bounded

by
3μ

λη
k

5
3.

Altogether, we say that a clique C ∈ C is good if it is (i) big, (ii) light, and (iii) hidden or huge
(or both); otherwise, we say that it is bad. We denote the set of all good cliques in C by D. By
Observations 5.1, 5.2, and 5.3, and that μ = 26, we derive the following lemma.

Lemma 5.10. The total number of vertices in bad cliques in C is upper bounded by 3μ (γ + δ (α +

β +
α β

1−α
) + 1

λη
)k

5
3.

5.5 Properties of Clique Sides

For allC ∈ C and s ∈ S , denote NC (s) = NG (s) ∩V (C) and NC (s) = V (C) \ NC (s). Note that for all
C ∈ C, s ∈ S , u ∈ NC (s), and v ∈ NC (s), it holds that s − u −v is an induced P3 inG. Furthermore,
for all C ∈ C and s ∈ S , let MC (s) denote the set of minimum size between NC (s) and NC (s) (if
they have equal sizes, the choice is arbitrary). Let us first verify that Lemma 4.11 also holds in the
context of Induced P3-Packing.

Lemma 5.11. For all s ∈ L and C ∈ D such that NG (s) ∩ (V (C) \M) � ∅, it holds thatC is visible

to s .

Proof. Let s ∈ L and C ∈ D such that NG (s) ∩ (V (C) \M) � ∅. Then, by Lemma 5.7, we have
thatV (C) \M ⊆ NG (s). Thus, to prove thatC is visible to s , it is sufficient to show that |V (C) \M | ≥
6ηk2/3. Since C ∈ D, we have that C is light; therefore, |V (C) \M | > (1 − 1

δ
) |V (C) |. Moreover,

sinceC is big, |V (C) | > γk2/3; hence, |V (C) \M | > (1 − 1
δ

)γk2/3. Since (1 − 1
δ

)γ ≥ 6η, the proof is
completed. �

Now, let us also explicitly state the following simple corollary to Lemma 5.11.

Corollary 5.2. For all non-huge C ∈ D, the number of vertices s ∈ L such that NG (s) ∩ (V (C) \
M) � ∅ is upper bounded by λk2/3.

Proof. LetC ∈ D be a non-huge clique. By Lemma 5.11,C is visible to every vertex s ∈ L such
that NG (s) ∩ (V (C) \M) � ∅. Thus, since C is hidden, the statement is true. �

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:26 F. V. Fomin et al.

Let us now argue that for any nice solution to (G,k), it holds that for every cliqueC ∈ D, most
of the clique C is “unused.”

Lemma 5.12. Let (S�,A) be a nice solution to (G,k). For all non-hugeC ∈ D, it holds that |(V (C) ∩
V (S�)) \ (M ∪ M̂) | ≤ (6

(α−1)β
+ λ)k2/3.

Proof. Let C ∈ D be a non-huge clique. Since C is a clique where NG (C) ⊆ S , every induced
P3 in S� that contains at least one vertex from V (C) must also contain at least one vertex from
S . Because (S�,A) is a nice solution, every induced P3 in S� that contains at least one vertex
from Û \A cannot contain any vertex from V (C) \ M̂ . Furthermore, since |A| ≤ 3

(α−1)β
k2/3, there

exist at most 2|A| ≤ 6
(α−1)β

k2/3 verticesv ∈ V (S�) for which there exists an induced P3 in S� that

contains bothv and at least one vertex fromA. Now, let us denote the set of induced P3s in S� that
contain at least one vertex from V (C) \M and no vertex from Û by P. Then, we note that every
induced path P ∈ P must contain an edge {s,v} ∈ E (G) for some s ∈ L and v ∈ V (C), and that
|V (P) ∩ (V (C) \M) | = 1 (by Lemma 5.7). By Corollary 5.2, we derive that |(V (C) ∩V (P)) \M | ≤
λk2/3. This completes the proof. �

In order to proceed with our analysis, we need to refine Definition 5.1 with respect to a set of
vertices.

Definition 5.2. Let T ⊆ V (D)\ (M ∪ M̂). We say that a pair (S�,A) is a T -nice solution to (G,k)

if (S�,A) is a nice solution, and for all P ∈ S� such thatV (P) ∩ Û = ∅, it holds thatV (P) ∩T = ∅.
We now claim that for any small enough set T , it is possible to focus on seeking nice solutions

with respect to T . Formally, we prove the following lemma.

Lemma 5.13. LetT ⊆ V (D)\ (M ∪ M̂) be a set of size at most 14
(α−1)β

k2/3. If (G,k) is a Yes-instance,

then there exists a T -nice solution to (G,k).

Proof. Suppose that (G,k) is a Yes-instance. Then, by Corollary 5.1, there exists a nice solution
to (G,k). Let (S�,A) be a nice solution to (G,k) that minimizes the number of vertices v ∈ T for
which there exists P ∈ S� such that V (P) ∩ Û = ∅ and v ∈ V (P). We claim that there do not exist
v ∈ T and P ∈ S� such that V (P) ∩ Û = ∅ and v ∈ V (P). Suppose, by way of contradiction, that
there exist v ∈ T and P ∈ S� such that V (P) ∩ Û = ∅ and v ∈ V (P). Let C denote the clique in D
such thatv ∈ V (C). We first observe that owing to Lemma 5.7 and becausev � M andV (P) ∩ Û =
∅, if we replace v in P by any other vertex in V (C) \M , we obtain yet another induced P3.
Thus, by the choice of (S�,A), we derive thatV (C)\ (T ∪M ∪V (S�)) = ∅. In other words,V (C)\
(T ∪M) ⊆ V (S�). Hence, |(V (C) ∩V (S�))\ (M ∪ M̂) | ≥ |V (C)\ (T ∪M ∪ M̂) |. Then, becauseC ∈
D and |T | ≤ 14

(α−1)β
k2/3, we have that |V (C)\ (T ∪M ∪ M̂) | ≥ |V (C)\ (M ∪ M̂) | − 14

(α−1)β
k2/3 >

δ−1
δ
|V (C) | − 14

(α−1)β
k2/3. Thus, δ−1

δ
|V (C) | − 14

(α−1)β
k2/3 < |(V (C) ∩V (S�))\ (M ∪ M̂) |. Now, let us

consider two cases, corresponding to whether or not C is huge.

• Suppose that C is huge. Then, δ−1
δ
|V (C) | − 14

(α−1)β
k2/3 ≥ δ−1

δ
μk − 14

(α−1)β
k2/3 > 3k (because

δ−1
δ

μ − 14
(α−1)β

> 3). However, |(V (C) ∩V (S�)) \ (M ∪ M̂) | ≤ |V (S�) | ≤ 3k . Thus, we have
reached a contradiction.

• Suppose that C is not huge. Then, by Lemma 5.12, this means that |(V (C) ∩V (S�)) \
(M ∪ M̂) | ≤ (6

(α−1)β
+ λ)k2/3. Since δ−1

δ
|V (C) | − 14

(α−1)β
k2/3 < |(V (C) ∩V (S�)) \ (M ∪ M̂) |

and |V (C) | ≥ γk2/3, we have that δ−1
δ
k2/3 − 14

(α−1)β
k2/3 < (6

(α−1)β
+ λ)k2/3. However, since

20
(α−1)β

+ λ ≤ δ−1
δ
γ , we have reached a contradiction.

As both cases led to a contradiction, the proof is complete. �

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:27

5.6 Assigning Sets of Vertices to Vertices in ̂U

For every vertex s ∈ Û , denote Q ′(s) =
⋃

C ∈D (MC (s) \ (M ∪ M̂)). Moreover, for every vertex s ∈
Û , if |Q ′(s) | ≤ � 6

(α−1)β
k2/3�, then denote Q (s) = Q ′(s); otherwise, let Q (s) be an arbitrarily chosen

subset ofQ (s) of size exactly � 7
(α−1)β

k2/3�. Furthermore, we denote Q̂ =
⋃

s ∈Û Q (s). Since |S | ≤ 3k ,
the following observation is immediate.

Observation 5.4. |Q̂ | ≤ 21
(α−1)β

k
5
3 .

Now, we proceed to apply the following rule, whose safeness is based on Lemma 5.13.

Reduction Rule 5.6. If there exists a vertex v ∈ V (D) \ (M ∪ M̂ ∪ Q̂), then remove v from G.

The new instance is (G \v,k).

Lemma 5.14. Reduction Rule 5.5 is safe.

Proof. In one direction, it is clear that if (G \v,k) is a Yes-instance, then (G,k) is a Yes-instance.
For the other direction, let us suppose that (G,k) is a Yes-instance. By Lemma 5.13 and since v �
M ∪ M̂ , there exists a {v}-nice solution (S�,A). If (S�,A) is a solution to (G \v,k), then the proof
is complete. Thus, we next suppose that (S�,A) is not a solution to (G \v,k). Because (S�,A) is
a {v}-nice solution, this means that there exists P� ∈ S� such that v ∈ V (P�) andV (P�) ∩ Û � ∅.
Let s� denote some vertex inV (P�) ∩ Û � ∅ (if there exist two vertices inV (P�) ∩ Û , we arbitrarily
choose one of them). Now, observe that S� \ {P } is a solution to (G \ {v, s�},k − 1); therefore,
(G \ {v, s�},k − 1) is a Yes-instance. Moreover, note that |Q (s�) | ≤ 7

(α−1)β
k2/3 = 7

(α−1)β
(k − 1)2/3 ·

k2/3

(k−1)2/3 =
7

(α−1)β
(k − 1)2/3 · 1

(1− 1
k

)2/3 ≤ 14
(α−1)β

(k − 1)2/3. Then, by Lemma 5.13, there exists aQ (s�)-

nice solution (S′,A′) to (G \ {v, s�},k − 1).
Since (S′,A′) is aQ (s�)-nice solution, we have that for allu ∈ V (S′) ∩Q (s�), there exists P ∈ S′

such that V (P) ∩ Û � ∅. However, since (S′,A′) is a nice solution and Q (s�) ∩ (M ∪ M̂) = ∅, we
further derive that for all u ∈ V (S′) ∩Q (s�), there exists P ∈ S′ such that V (P) ∩A′ � ∅. Be-
cause |A′ | ≤ 3

(α−1)β
(k − 1)2/3, we deduce that |V (S′) ∩Q (s�) | ≤ 2|A′ | ≤ 6

(α−1)β
(k − 1)2/3. How-

ever, since Q (s�) = � 7
(α−1)β

k2/3� (because v ∈ Q ′(s�) \Q (s�)), we have that Q (s�) \V (S′) � ∅.
Let v� denote some vertex in Q (s�) \V (S′) (by our previous argument, such a vertex exists), and
let C� denote the clique in D that contains v�. Then, by the definition of Q (s�), we have that
v� ∈ MC� (s�). Observe that any vertex inV (C�) \MC� (s�) together with s� and v� forms an in-
duced P3. Hence, if V (C�) \ (MC� (s�) ∪V (S′)) � ∅, then S′ along with an induced P3 consisting
of some vertex inV (C�) \ (MC� (s�) ∪V (S′)), s� andv�, forms a solution to (G,k), in which case
the proof is complete. However, we claim that necessarily V (C�) \ (MC� (s�) ∪V (S′)) � ∅. For
this purpose, it is sufficient to prove that |V (S′) | < |V (C�) \MC� (s�) |. Let us first observe that
|V (C�) \MC� (s�) | ≥ 1

2 |V (C�) |. Hence, it is sufficient to prove that |V (C�) ∩V (S′) | < 1
2 |V (C�) |.

To this end, we consider two cases, corresponding to whether or not C� is huge.

• Suppose that C� is huge. In this case, 1
2 |V (C�) | ≥ μ

2k . Since |V (C�) ∩V (S′) | ≤ |V (S′) | =
3(k − 1) and μ

2 ≥ 3, indeed, |V (S′) | < 1
2 |V (C�) |.

• Suppose that C� is not huge. In this case, by Lemma 5.12, |(V (C�) ∩V (S′)) \ (M ∪ M̂) | ≤
(6

(α−1)β
+ λ) (k − 1)2/3. Observe that since C� ∈ D, we have that |(V (C�) ∩V (S′)) \ (M ∪

M̂) | = |V (C�) ∩V (S′) | − |V (C�) ∩V (S′) ∩ (M ∪ M̂) | ≥ |V (C�) ∩V (S′) | − |V (C�) ∩
(M ∪ M̂) | > |V (C�) ∩V (S′) | − 1

δ
|V (C�) | > |V (C�) ∩V (S′) | − 1

δ
γk2/3. Thus, we derive

that |V (C�) ∩V (S′) | − 1
δ
γk2/3 ≤ (6

(α−1)β
+ λ) (k − 1)2/3; therefore, |V (C�) ∩V (S′) | <

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:28 F. V. Fomin et al.

(6
(α−1)β

+ λ + 1
δ
γ)k2/3. However, 1

2 |V (C�) | > γ

2k
2/3. Since 6

(α−1)β
+ λ + 1

δ
γ ≤ γ

2 , indeed,

|V (S′) | < 1
2 |V (C�) |.

As both cases led to the desired claim, the proof is complete. �

5.7 Proof of Theorem 2

We are finally ready to present the proof of Theorem 2.

Proof of Theorem 2. Let (G,k) be an instance of Induced P3-Packing. Our kernelization algo-
rithm simply applies (exhaustively) Reduction Rules 5.1 to 5.6. The output is the instance obtained
once none of these rules is applicable. Let us observe that each rule among Reduction Rules 5.1 to
5.6 can be applied in polynomial time, it strictly decreases the size of G, and it does not increase
k . Thus, our kernelization algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the outputted instance by (G,k).
Let us observe that V (G) consists of the following vertices.

• Vertices in S , whose number is at most 3k .
• Vertices in bad cliques, whose number is at most 3μ (γ + δ (α + β +

α β

1−α
) + 1

λη
)k

5
3 (by

Lemma 5.10).

• Vertices in M ∪ M̂ , whose number is at most (6(α + β) +
2α β

1−α
)k

5
3 (by Lemmas 5.4 and 5.8)

• Vertices in Q̂ , whose number is at most 21
(α−1)β

k
5
3 (by Observation 5.4).

Thus, the total number of vertices is, indeed, O (k
5
3). This completes the proof. �

6 FEEDBACK VERTEX SET IN TOURNAMENTS

In this section, we prove the following theorem.

Theorem 3. FVST admits a kernel with O (k3/2) vertices.

To prove Theorem 3, we will also use the following folklore result.

Proposition 6.1. Let T be a tournament. Then, the following conditions hold.

(1) T has a directed cycle if and only if T has a directed triangle.

(2) IfT is acyclic, then it has a unique topological ordering. That is, there exists a unique ordering

≺ of the vertices of T such that for every directed arc uv , we have u ≺ v (that is, u appears

before v in the ordering ≺).

Let (T ,k) be an instance of FVST. By Proposition 6.1, to find a set S such thatT \ S is a directed
acyclic graph, it is sufficient to find a set that intersects all of the triangles of T . This immediately
yields a simple polynomial-time 3-approximation algorithm for FVST. Start by greedily finding a
maximal collection—say, S—of vertex-disjoint triangles in T and output V (S). We call this algo-
rithm with T as input and obtain a 3-approximate solution S . If |S | > 3k , then we conclude that
(T ,k) is a No-instance. Hence, we assume that |S | ≤ 3k . We call the vertex set S such that G \ S
does not have any directed cycle a feedback vertex set. LetX = T \ S . Note that since S is a feedback
vertex set, X is a transitive tournament. Let (T ,k) be an instance of FVST. We say that a feedback
vertex set of size at most k of T is a solution to the instance (T ,k). For the sake of clarity of the
analysis, we omit floor/ceiling signs and remainders whenever they are not crucial.

We have the following simple rule, whose safeness can be easily observed.

Reduction Rule 6.1. If there exists s ∈ S such that there are k + 1 triangles intersecting pairwise

only at s , then remove s from T . The new instance is (T \ {s},k − 1).

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:29

We apply Reduction Rule 6.1 exhaustively. Note that each application can be performed in poly-
nomial time, as for any vertex s ∈ S , we can check whether k + 1 triangles exist intersecting pair-
wise (only) at s as follows: we construct a bipartite graph where one side of the bipartition is the
set A of in-neighbors of s , the other side of the bipartition is the set B of out-neighbors of s , and
there exists an edge between a ∈ A and b ∈ B if and only if a is an out-neighbor of b. Then, there
exist k + 1 triangles intersecting pairwise only at s if and only if the size of a maximum matching
in this bipartite graph is at least k + 1 (which can be checked in polynomial time). Thus, from now
on, we assume that Reduction Rule 6.1 is no longer applicable. Throughout this section, we work
with the unique ordering ≺ of the vertices of X . For example, whenever we will use a phrase such
as the vertices are consecutive in X , we mean that the vertices occur consecutively with respect to
the ordering ≺. Similarly, we define the notion of the smallest and the largest vertex inX according
to the ordering ≺.

6.1 Exploring the Vertex Cover Structure

Let us now define a notion of vertex cover for a set of arcs of T . Formally, for a subset of arcs
A ⊆ E (T), a subset O ⊆ V (T) is called a vertex cover for A if for every arc uv ∈ A, either u ∈ O or
v ∈ O (or both). Recall from the Introduction that an arc xy of T is called strong if (i) at least one
vertex among x and y belongs to S and (ii) there are at least k + 2 vertices z ∈ V (T) such that xyz
is a triangle. Let F be the set of all of the strong arcs ofT , which can be easily found in polynomial
time. We start our analysis with the following simple observation regarding the set F .

Observation 6.1. If O is a solution to (T ,k + 1), then O is a vertex cover of F .

The proof is simple: if O does not hit xy ∈ F , then O contains all z ∈ V (T) such that
xyz is a triangle, that is, |O | ≥ k + 2, which is a contradiction.

Recall that throughout our kernelization algorithm, we work with the unique topological order-
ing ≺ of X . Accordingly, we have that if xx ′ is an arc in E (X), then x ≺ x ′. Furthermore, we need
the following notion of distance.

Definition 6.1. Let x ,x ′ ∈ X be two vertices such that x ≺ x ′, and let d − 1 be the number of
vertices y such that x ≺ y ≺ x ′. Then, the distance between x and x ′ is d , and we write x ′ − x = d
if x ≺ x ′ and x − x ′ = −d otherwise.

In addition, we need the following definition, which concerns the relations between the vertices
in S and the vertices in X .

Definition 6.2. For s ∈ S and x ∈ V (X), define f −s (x) = |{y ∈ V (X) : y � x , sy ∈ E (T)}|, and
f +s (x) = |{y ∈ V (X) : y � x , ys ∈ E (T)}|.

Intuitively, the functions f −s (x) and f +s (x) measure how many arcs would have been in the
“wrong direction” (with respect to the ordering ≺) if we inserted s into the position immediately
after x in X . First, for every s ∈ S , we would like to find xs ∈ X such that f −s (xs) and f +s (xs) are
almost equal.

Lemma 6.1. For each s ∈ S , there exists xs ∈ V (X) such that 0 ≤ f −s (xs) − f +s (xs) ≤ 1.

Proof. Let xm be the smallest vertex inV (X) and let xM be the largest vertex inV (X). Fix some
s ∈ S . In what follows, we omit the subscript s . We have the following two inequalities:

• f − (xM) − f + (xM) ≥ 0 (since f + (xM) = 0), and
• f − (xm) − f + (xm) ≤ 1 (since f − (xm) ≤ 1).

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:30 F. V. Fomin et al.

Let x ,x ′ ∈ V (X), where x ′ = x + 1. Then, f − (x ′) − f + (x ′) = f − (x) − f + (x) + 1. That is, the
function f − (x) − f + (x) increases by 1 whenever x increases by 1. Observe that if sx ′ ∈ E (T),
then f − (x ′) = f − (x) + 1 and f + (x ′) = f + (x). Otherwise, x ′s ∈ E (T); thus, f − (x ′) = f − (x) and
f + (x ′) = f + (x) − 1. Therefore, the two inequalities above and the fact that the function f − (x) −
f + (x) increases by 1 whenever x increases by 1 together imply that there exists xs ∈ V (X) such
that 0 ≤ f − (xs) − f + (xs) ≤ 1. �

For the sake of clarity, we extract the implication of Lemma 6.1 to the following notation.

Definition 6.3. For any s ∈ S , define φ (s) as the smallest vertex xs ∈ V (X) satisfying the inequal-
ities in Lemma 6.1.

We now show that, given Reduction Rule 6.1, neither f −s (φ (s)) nor f +s (φ (s)) can be too “large.” If
there existed s ∈ S such that f −s (φ (s)) ≥ k + 2, then f +s (φ (s)) ≥ k + 1, and we could have formed
k + 1 triangles, each consisting of s , a vertex from {x ∈ V (X) : x � φ (s), sx ∈ E (T)}, and a ver-
tex from {y ∈ V (X) : y � φ (s), ys ∈ E (T)}. In this case, Reduction Rule 6.1 is applicable. How-
ever, as we assumed that Reduction Rule 6.1 is no longer applicable, we have that for all s ∈ S ,
f −s (φ (s)), f +s (φ (s)) ≤ k + 1. By using this assumption, we have useful certificates for strong arcs,
as follows.

Lemma 6.2. Let x ∈ X , and s, s ′ ∈ S . The following statements are true.

(1) If sx ∈ E (T) and φ (s) − x ≥ 2k + 3, then sx is strong.

(2) If xs ∈ E (T) and x − φ (s) ≥ 2k + 3, then xs is strong.

(3) If s ′s ∈ E (T) and φ (s ′) − φ (s) ≥ 3k + 5, then s ′s is strong.

Proof. We first prove 1 . As φ (s) − x ≥ 2k + 3, there are at least 2k + 2 vertices between x and
φ (s). Since f −s (φ (s)) ≤ k + 1, we have that |{y : x ≺ y � φ (s), sy ∈ E (T)}| ≤ k + 1. Hence, the set
R = {y : x ≺ y ≺ φ (s),ys ∈ E (T)} has at least k + 2 vertices. Note that sxy is a triangle for each
y ∈ R since sx ∈ E (T). This shows that sx is strong. The proof of 2 is similar.

To prove 3 , we note that f +s (φ (s)) ≤ k + 1 and f −s ′ (φ (s ′)) ≤ k + 1. That is, |{x : φ (s) ≺ x ≺
φ (s ′), s ′x ∈ E (T)}| ≤ k + 1, and |{x : φ (s) ≺ x ≺ φ (s ′), xs ∈ E (T)}| ≤ k + 1. Since there are at least
3k + 4 vertices between φ (s) and φ (s ′), this implies that |{x : φ (s) ≺ x ≺ φ (s ′), sx ,xs ′ ∈ E (T)}| ≥
k + 2, that is, s ′s is strong. �

Let φ (U) =
⋃

s ∈U φ (s) for anyU ⊆ S . To proceed, we also need to introduce two terms concern-
ing triangles.

Definition 6.4. Let x1x2x3 be a triangle ofT , and A = {x1,x2,x3}. The span of x1x2x3 is the maxi-
mum distance between any two vertices in (A \ S) ∪ φ (A ∩ S). Moreover, the triangle is called local

if none of its arcs belongs to F .

In the following lemma, we will show that a local triangle is indeed local in the sense that it
must have a “short” span.

Lemma 6.3. Let x1x2x3 be a local triangle with at least one vertex from X . Then, its span is at most

6k + 8.

Proof. For 1 ≤ i ≤ 3, define

φ ′(xi) =

{
xi , if xi ∈ V (X), and
φ (xi) otherwise.

If the claim is false, then

max{|φ ′(x1) − φ ′(x2) |, |φ ′(x2) − φ ′(x3) |, |φ ′(x3) − φ ′(x1) |} ≥ 6k + 9.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:31

By symmetry, we may assume that |φ ′(x1) − φ ′(x2) | ≥ 6k + 9. We first claim that (�) there is an

index i ∈ [3] such that φ ′(xi) − φ ′(xi+1) ≥ 3k + 5 (where the calculation i + 1 is modulo 3). Indeed,
if φ ′(x1) − φ ′(x2) ≥ 6k + 9, then (�) is true. Therefore, next, suppose thatφ ′(x2) − φ ′(x1) ≥ 6k + 9.
If φ ′(x3) � φ ′(x2), then φ ′(x3) − φ ′(x1) > 6k + 9, and then (�) is true. Moreover, if φ ′(x3) ≺ φ ′(x1),
then φ ′(x2) − φ ′(x3) > 6k + 9, and then (�) is true. Hence, we next suppose that φ ′(x1) ≺ φ ′(x3) ≺
φ ′(x2). Then, as φ ′(x3) − φ ′(x1) > 6k + 9, we have that either φ ′(x3) − φ ′(x1) ≥ 3k + 5 or φ ′(x2) −
φ ′(x3) ≥ 3k + 5; thus, (�) is true. This proves (�).

Let i ∈ [3] be an index satisfying (�), that is, φ ′(xi) − φ ′(xi+1) ≥ 3k + 5. If xi ,xi+1 ∈ V (X), then
since xixi+1 ∈ E (T), we have that xi ≺ xi+1, which contradicts that φ ′(xi) − φ ′(xi+1) ≥ 3k + 5 is
positive. Thus, at least one vertex among xi and xi+1 is in S . However, then Lemma 6.2 implies that
xixi+1 is a strong arc, which contradicts the fact that x1x2x3 is a local triangle. �

6.2 Applying the Double Expansion Lemma

In what follows, we denote α = 3, β = 20, γ = 7, μ = 3, δ = 2, and � = 3 so that β − 13 ≥ μδ (used
in Observation 6.3), γ μ > 6� (used in Observation 6.5), 1

� +
1
δ
< 1 and � − 1 ≥ δ (used in the proof

of Lemma 6.4).
In order to proceed with our analysis, we need to classify “intervals” of vertices fromX as either

good or bad, depending on how many vertices from S are mapped into these intervals. Formally,
we have the following definition.

Definition 6.5. A set Y ⊆ V (X) is an interval if it contains all the vertices in X that lie between
the largest and smallest elements in Y (with respect to the ordering ≺ induced by X).6 We refer
to |Y | as the length of Y . Moreover, Y is good if the size of SY = {s ∈ S | φ (s) ∈ Y } is at most α

√
k ;

otherwise, it is bad.

Note that for two intervals Y ,Y ′ ⊆ V (X), if Y ∩ Y ′ = ∅, then SY ∩ SY ′ = ∅ as well.
We partition V (X) into disjoint intervals, each of length βk . That is, we follow the vertices of

V (X) from left to right in the ordering ≺ and partition them into disjoint intervalsY�
1 , . . . ,Y

�
p such

that each Y�
j , 1 ≤ j ≤ p, is of length βk . Note that among Y�

1 , . . . ,Y
�
p , at most 3k

α
√

k
= 3
√

k
α

intervals

are bad; otherwise, |S | > (3
√

k
α
+ 1) · α

√
k > 3k , which contradicts our assumption that |S | ≤ 3k .

Thus, we have the following upper bound on the number of bad intervals among Y�
1 , . . . ,Y

�
p .

Observation 6.2. There are at most 3
√

k
α

bad intervals among Y�
1 , . . . ,Y

�
p .

Thus, if p ≥ (3
α
+ β)
√
k , there are at least p − 3

√
k

α
≥ β
√
k good intervals. Consider the first γ

√
k

good intervals among Y�
1 , . . . ,Y

�
p , and rename them as Y1, . . . ,Yγ

√
k

according to the order of the

appearance (by ≺ of their vertices). The fact that the relative order of the intervals is preserved
will be used later. For all i ∈ [γ

√
k], denote Si = SYi

(recall that SYi
= {s ∈ S | φ (s) ∈ Yi }), and let Y ′i

be the sub-interval of Yi excluding the 6k + 9 largest and the 6k + 9 smallest vertices of Yi . The
purpose of this exclusion is to ensure that the vertex set of any local triangle hit by Y ′i (i.e., the
triangle contains at least one vertex of Y ′i) is completely contained in Yi ∪ Si (see Lemma 6.6).

Observation 6.3. For all i ∈ [γ
√
k], the length ofY ′i is at least βk − 2(6k + 9) > (β − 13)k ≥ μδk .

We are now ready to apply the Double Expansion Lemma. We first chop down every Y ′i into
sub-intervals Yi, j s, and we merge each Yi, j into a single “representative” vertex ai, j , and we put an

6That is, the elements of Y are consecutive with respect to ≺.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:32 F. V. Fomin et al.

Fig. 2. Construction ofG from F (top figure) and construction of Hi fromT [Si ∪ Y ′i] (bottom figure). Not all
arcs ofT [Si ∪ Y ′i] are shown; for arcs not shown inT [Si ∪ Y ′i], their corresponding (possibly) edges in Hi are
dotted.

edge between ai, j and s in Hi if the arcs between s and Yi, j have different orientations. Precisely,
the construction of G and Hi is as follows.

We first partition each Y ′i into μ
√
k sub-intervals, Yi,1, . . . ,Yi,μ

√
k

, each of length δ
√
k such

that x ≺ x ′ for every x ∈ Yi, j ,x
′ ∈ Yi, j′ , with j < j ′. We now construct the bipartite graphs

G,H1, . . . ,Hγ
√

k
. To this end, for all i, 1 ≤ i ≤ γ

√
k , define Ai = {ai,1, . . . ,ai,μ

√
k
}, and A =⋃γ

√
k

i=1 Ai . Then, |A| = γ
√
k · μ
√
k = γ μk . It is useful to think of ai, j as the representative of the sub-

interval Yi, j for every i, j. Let us now define the bipartite graphs (see Figure 2 for an illustration).

(1) G: The (undirected) bipartite graph with vertex set (A, S) and edge set E (G) = {ai, js : ∃x ∈
Y ′i, j such that {xs, sx } ∩ F � ∅}.

(2) Hi : The (undirected) bipartite graph with vertex set (Ai , Si) and edge set E (Hi) = {ai, js :
∃x ,x ′ such that sx ,x ′s ∈ E (T)}. In other words, ai, js � E (Hi) if and only if either sx ∈
E (T) for every x ∈ Yi, j or xs ∈ E (T) for every x ∈ Yi, j .

Before applying the Double Expansion Lemma, we mention here an observation for later use,
which is the main purpose of our “merging” vertices into representatives.

Observation 6.4. If sai, j , sai, j′ ∈ E (Hi) for some j < j ′, then there is a triangle sxx ′ with x ∈
Yi, j ,x

′ ∈ Yi, j′ .

The proof is trivial: by definition of E (Hi), there is x ∈ Yi, j such that sx ∈ E (T), and there is
x ′ ∈ Yi, j′ such that x ′s ∈ E (T). Since i < j ′, x ≺ x ′; thus, xx ′ ∈ E (T). Therefore, sxx ′ is a triangle.

By applying the Double Expansion Lemma 3.3, in polynomial time, we find that Â ⊆ A, Ŝ ⊆ S,

as well as Âi ⊆ Ai and Ŝi ⊆ Si for all 1 ≤ i ≤ γ
√
k , such that

• Â =
⋃γ
√

k
i=1 Âi ;

• |A \ Â| ≤ 2� |S |;
• Ŝ has an �-expansion into Â in G, and NG (Â) ⊆ NG (Ŝ); and
• Ŝi has an �-expansion into Âi in Hi , and NHi

(Âi) ⊆ NHi
(Ŝi).

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:33

Let Ŷ =
⋃

ai, j ∈Â Yi, j and Ŷi =
⋃

ai, j ∈Âi
Yi, j . Since Â =

⋃γ
√

k
i=1 Âi , we have that Ŷ =

⋃γ
√

k
i=1 Ŷi .

Observation 6.5. Ŷ is nonempty.

Proof. Recall that |S | ≤ 3k and |A| = γ μk . Since |A \ Â| ≤ 2� |S |, we have that |Â| ≥ |A| −
2� |S | ≥ γ μk − 2� · 3k > 0. Since Â � ∅, there exists ai, j ∈ Â; thus, Ŷ ⊇ Yi j � ∅. �

6.3 Using Expansion to Detect an Irrelevant Vertex

Let O be a solution to (T ,k + 1), and define

O ′ =
(
O \ Ŷ

)
∪
���
�
Ŝ ∪

γ
√

k⋃
i=1

S ′i
���
�
, where

S ′i =

{
Ŝi if |O ∩ Ŷi | < δ

√
k, and

Si otherwise.

In the rest of this section, we show that if O ∩ Ŷ � ∅, then |O ′ | < |O | and O ′ is a solution to
(T ,k + 1).

Lemma 6.4. If O ∩ Ŷ � ∅, then |O ′ | < |O |.

Proof. Observe that to obtain O ′ from O , we remove O ∩ Ŷ and add Ŝ \O and
⋃γ
√

k
i=1 (S ′i \O).

We will prove that

|O ∩ Ŷ |
�

≥ |Ŝ \O |, and (1)

|O ∩ Ŷ |
δ

≥
							

γ
√

k⋃
i=1

(
S ′i \O

) 							
. (2)

Combining Equations (1) and (2) with 1
� +

1
δ
< 1 and the hypothesis of the lemma that |O ∩ Ŷ | > 0,

we have

|O ∩ Ŷ | > |Ŝ \O | +
							

γ
√

k⋃
i=1

(
Ŝi \O

) 							
,

which implies that |O ′ | < |O |, proving the lemma.
To prove Equation (1), recall that Ŝ has an �-expansion into Â in G; thus, |NG (Ŝ \O) ∩ Â| ≥

� |Ŝ \O |. Therefore, it suffices to show that |O ∩ Ŷ | ≥ |NG (Ŝ \O) ∩ Â|. Suppose, for a contradiction,
that |O ∩ Ŷ | < |NG (Ŝ \O) ∩ Â|. Then,∑

ai, j ∈NG (Ŝ\O)∩Â

|O ∩ Yi, j | ≤
∑

ai, j ∈Â

|O ∩ Yi, j | = |O ∩ Ŷ | < |NG (Ŝ \O) ∩ Â|. (3)

If |O ∩ Yi, j | ≥ 1 for every ai, j ∈ NG (Ŝ \O) ∩ Â, then
∑

ai, j ∈NG (Ŝ\O)∩Â
|O ∩ Yi, j | ≥ |NG (Ŝ \O) ∩ Â|,

contradicting Equation (3). Thus, we conclude that there exists ai, j ∈ NG (Ŝ \O) ∩ Â such thatO ∩
Yi, j = ∅. Let s ∈ Ŝ \O such that sai, j ∈ E (G) (such a vertex s exists, since ai, j ∈ NG (Ŝ \O)). By the
definition of E (G), there exists x ∈ Yi, j such that sx or xs in F . Note that x � O , since O ∩ Yi, j = ∅,
and s � O , since s ∈ Ŝ \O . As O is a solution to (T ,k + 1) and because of Observation 6.1, O must
be a vertex cover of F . But x , s � O , which is a contradiction. From this, we conclude that (1) holds.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:34 F. V. Fomin et al.

To prove Equation (2), note that

|O ∩ Ŷ | =
γ
√

k∑
i=1

|O ∩ Ŷi | and
γ
√

k∑
i=1

|S ′i \O | =
							

γ
√

k⋃
i=1

(
S ′i \O

) 							
.

Thus, it suffices to show that |O ∩ Ŷi | ≥ δ |S ′i \O | for every i . If S ′i = Si , then |O ∩ Ŷi | ≥ δ
√
k by

the definition of S ′. Since Yi is a good interval, |Si | ≤
√
k . Hence, |O ∩ Ŷi | ≥ δ

√
k ≥ δ |Si | ≥ δ |S ′i \

O |. Now, suppose that S ′i = Ŝi . Since Ŝi has an �-expansion into Âi in Hi , we have that |NHi
(Ŝi \

O) ∩ Âi | ≥ � |Ŝi \O |. Call ai, j ∈ NHi
(Ŝi \O) ∩ Âi pure, if Yi, j ∩O = ∅. Observe that if s ∈ Ŝi \O is

adjacent to two pure vertices in Hi —say, ai, j and ai, j′ with j < j ′—then by the definition of E (Hi)
and by Observation 6.4 there is a triangle sxx ′ with x ∈ Yi, j and x ′ ∈ Yi, j′ . Thus, sxx ′ is not hit by
O by definition of purity, which contradicts the assumption that O is a feedback vertex set for T .
Therefore, each s ∈ Ŝi \O is adjacent to at most one pure vertex, that is, there are at most |Ŝi \O |
pure vertices. Thus, the number of non-pure vertices is at least (recall that � − 1 ≥ δ)

|NHi
(Ŝi \O) ∩ Â| − |Ŝi \O | ≥ (� − 1) |Ŝi \O | ≥ δ |Ŝi \O |.

For each non-pure ai, j ∈ NHi
(Ŝi \O) ∩ Âi , we have that |Yi, j ∩O | ≥ 1 by the definition of pu-

rity. Recall that |O ∩ Ŷi | =
∑

ai, j ∈Âi
|O ∩ Yi, j |. Thus, |O ∩ Ŷi | is at least the number of non-pure

vertices, that is, |O ∩ Ŷi | ≥ δ |Ŝi \O |. As S ′i = Ŝi , we have that |O ∩ Ŷi | ≥ δ |S ′i \O |, which proves
Equation (2). �

It remains to show that O ′ is a solution to (T ,k + 1). To do so, we will prove that O ′ is a vertex
cover of F and O ′ hits all local triangles.

Lemma 6.5. O ′ is a vertex cover of F .

Proof. By Observation 6.1, O is a vertex cover of F ; thus, every ss ′ ∈ F with s, s ′ ∈ S is hit by
O and hence ss ′ is hit by O ′, since O ∩ S ⊆ O ′ ∩ S . Thus, we only need to show that every xs ∈ F
with x ∈ V (X) and s ∈ S is hit byO ′. Suppose, for contradiction, that xs ∈ F is not hit byO ′. Then,
either x ∈ O \O ′ or s ∈ O \O ′. Note that sinceO ∩ S ⊆ O ′ ∩ S , s � O \O ′. Thus, x ∈ O \O ′, which
implies that x ∈ O ∩ Ŷ . Let x ∈ Yi, j . Then, ai, j ∈ Â, and since xs ∈ F , ai, js ∈ E (G). Recall (from

the list properties obtained after applying the Double Expansion Lemma) that NG (Â) ⊆ Ŝ , which
implies that s ∈ Ŝ . However, Ŝ ⊆ O ′ by the definition ofO ′. This implies that s ∈ O ′, a contradiction
to the assumption that xs is not hit by O ′. This concludes the proof of the claim. �

Recall that a triangle is local if it has no strong arcs.

Lemma 6.6. If xyz is a local triangle with x ∈ O ∩ Ŷi , then O ′ hits xyz.

Proof. Suppose, for a contradiction, that O ′ does not hit xyz. By Lemma 6.3, xyz has a span
at most 6k + 8. Note that x ∈ Ŷi ⊆ Y ′i , while Y ′i is obtained from Yi by excluding 6k + 9k smallest
and 6k + 9k largest vertices; thus, ({x ,y, z} ∩ X) ∪ φ ({x ,y, z} ∩ S) is a subset of Yi . In other words,
x ,y, z ∈ Si ∪ Yi . At least one of y, z belongs to S (otherwise, xyz is transitive); thus, at least one of
y, z belongs to Si . We consider two cases.

Case 1: y ∈ Si . If |O ∩ Ŷi | ≥ δ
√
k , then Si = S ′i ⊆ O ′; thus, y ∈ O ′, a contradiction. We conclude

that |O ∩ Ŷi | < δ
√
k . If y ∈ Ŝi , then y ∈ O ′, a contradiction again. Hence, y ∈ Si \ Ŝi . Let x ∈ Yi, j ,

then ai, j ∈ Âi . Recall that NHi
(Âi) ⊆ Ŝi ; thus, yai, j � E (Hi). Therefore, by definition of E (Hi), we

have that x ′y ∈ E (T) for every x ′ ∈ Yi, j , since xy ∈ E (T).

If z � O, then there is x ′ ∈ Yi, j such that x ′z ∈ E (T). (4)

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:35

To prove Equation (4), assume that z � O and zx ′ ∈ E (T) for every x ′ ∈ Yi, j . This implies that
x ′yz is a triangle for every x ′ ∈ Yi, j . Since O ′ does not hit xyz, we have that y � O ′; thus, y � O
(sinceO ∩ S ⊆ O ′ ∩ S). However,O is a solution to (T ,k + 1), whiley, z � O ; thus, x ′ ∈ O for every
x ′ ∈ Yi, j , that is, Yi, j ⊆ O . Since Yi, j ⊆ Ŷi , we have that |O ∩ Ŷi | ≥ |Yi, j | = δ

√
k , a contradiction to

the observation that |O ∩ Ŷi | < δ
√
k (made at the beginning of Case 1), which proves Equation (4).

Note that z ∈ Si ∪ Yi . We now consider all possibilities of z.

• If z ∈ Ŝi , then clearly z ∈ O ′ since Ŝi ⊆ O ′, a contradiction.
• If z ∈ Si \ Ŝi , then recall thatNHi

(Âi) ⊆ Ŝi ; thus,ai, jz � E (Hi). Hence, by definition of E (Hi),
we have that zx ′ ∈ E (T) for every x ′ ∈ Yi, j (since zx ∈ E (T)). If z ∈ O , then z ∈ O ′ (since
O ∩ S ⊆ O ′ ∩ S), a contradiction. Then z � O , which contradicts Equation (4). We conclude
that z � Si , ithat is, z ∈ Yi .

• If z ∈ Yi and z � O , since yz ∈ E (T) while x ′y ∈ E (T) for every x ′ ∈ Yi, j , we have that z �
Yi, j . Since zx ∈ E (T), we have that z ≺ x ; thus, z ≺ x ′ for every x ′ ∈ Yi, j . In other words,
zx ′ ∈ E (T) for every x ′ ∈ Yi, j , a contradiction to Equation (4).

• Otherwise, z ∈ Yi and z ∈ O . Then z ∈ Ŷ since z � O ′. Let z ∈ Yi, j′ , then ai, j′ ∈ Â. Observe

that j � j ′ since x ′y ∈ E (T) for every x ′ ∈ Yi, j while zy � E (T). Since y ∈ S \ Ŝ , and recall

that NHi
(Âi) ⊆ Ŝi , we have that yai j′ � E (Hi); thus, yz ′ ∈ E (T) for every z ′ ∈ Yi, j′ (since

yz ∈ E (T)). If there are x ′ ∈ Yi, j , z
′ ∈ Yi, j′ such that x ′, z ′ � O , then x ′yz ′ is not hit by O , a

contradiction. Then either Yi, j ⊆ O or Yi, j′ ⊆ O ; thus,

|O ∩ Ŷi | ≥ |O ∩ (Yi, j ∪ Yi, j′) | ≥ min(|Yi, j |, |Yi, j′ |) = δ
√
k,

a contradiction to the observation |O ∩ Ŷi | < δ
√
k at the beginning of Case 1.

We conclude that, in all cases, O ′ always hits xyz.

Case 2: z ∈ Si . The argument is similar as for Case 1. �

Using Lemmas 6.3 to 6.6, we derive the following result.

Lemma 6.7. O ′ is a solution to (T ,k + 1).

Proof. Suppose that O ′ is not a solution to (T ,k + 1). Then there is a triangle xyz that is not
hit by O ′. Note that O is a solution to (T ,k + 1), and O \O ′ ⊆ O ∩ Ŷ ; thus, at least one vertex of
xyz belongs to O ∩ Ŷ : say, x . Let x ∈ Ŷi , that is, x ∈ O ∩ Ŷi . If one of the arcs of xyz belongs to F ,
then O ′ hits xyz, by Lemma 6.5, which is a contradiction. Thus, xyz is local, and O ′ hits xyz, by
Lemma 6.6, which again contradicts our assumption. �

From Lemmas 6.4 to 6.7, we now conclude that if O is a solution to (T ,k + 1) and O ∩ Ŷ � ∅,
then there is another solutionO ′ to (T ,k + 1) with |O ′ | ≤ |O | − 1. Therefore, we have the following
reduction rule to remove an irrelevant vertex.

Reduction Rule 6.2. Let x be an arbitrary vertex in Ŷ . Remove x from T . The new instance is

(T − {x },k).

Lemma 6.8. Reduction Rule 6.2 is safe.

Proof. In one direction, it is clear that if S� is a solution to (T ,k), then S� is a solution to
(T \ {x },k). For the other direction, let S� be a solution to (T \ {x },k). Then O = S� ∪ {x } is a
solution to (T ,k + 1). Since x ∈ O ∩ Ŷ , we have that O ∩ Ŷ � ∅; thus, there is a solution O ′ to
(T ,k + 1) with |O ′ | ≤ |O | − 1 = (|S� | + 1) − 1 ≤ k . Therefore, O ′ is a solution to (T ,k). �

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:36 F. V. Fomin et al.

6.4 Proof of Theorem 3

We are finally ready to present the proof of Theorem 3.

Proof of Theorem 3. Let (T ,k) be an instance of FVST. Our kernelization algorithm simply
applies (exhaustively) Reduction Rules 6.1 and 6.2. The output is the instance obtained once none
of these rules is applicable. Let us observe that each of Reduction Rules 6.1 and 6.2 can be applied in
polynomial time; it strictly decreases the size ofG and does not increase k . Thus, our kernelization
algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the outputted instance by (T ,k).
Let us observe that V (T) consists of the following vertices.

• Vertices in S , whose number is at most 3k .
• Vertices of X , whose number is at most pβ

√
k = O (k3/2) since p ≤ (3

α
+ β)
√
k .

Thus, the total number of vertices is, indeed, O (k3/2). This completes the proof. �

7 TRIANGLE PACKING IN TOURNAMENTS

In this section, we prove the following theorem.

Theorem 4. TPT admits a kernel with O (k3/2) vertices.

Let (T ,k) be an instance of TPT. There is a simple polynomial-time 1
3 -approximation algorithm

for TPT: greedily find a maximal collection—say, S—of vertex-disjoint triangles in T and output
S. If there is a collection S� of vertex-disjoint triangles in T with |S� | > 3|S|, then there is a
triangle in S� not hit by V (S), contradicting the assumption that S is maximal. If |S| < k

3 , then
we conclude that (T ,k) is a No-instance. If |S| ≥ k , then we conclude that (T ,k) is a Yes-instance.
Hence, we assume that k

3 ≤ |S| ≤ k − 1. Let S = V (S), then |S | ≤ 3k − 3. By maximality ofS,T − S
does not have any directed triangle; thus, by Proposition 6.1,T − S does not have any directed cycle.
Hence, S is a feedback vertex set of T . Let X = T − S . Note that since S is a feedback vertex set, X
is a transitive tournament.

Let (T ,h) be an instance of TPT. We refer to a collection of at least h vertex-disjoint triangles of
T as a solution to the instance (T ,h). First, we have the following reduction rule.

Reduction Rule 7.1. If there exists s ∈ S such that there are 3k − 2 triangles pairwise intersecting

only at s , then remove s from T . The new instance is (T \ {s},k − 1).

Proof of safeness of rule 7.1 In one direction, if S� is a solution to (T ,k), by removing
the triangle (if any) containing s , we obtain a solution to (T \ {s},k − 1). In the other direction,
suppose that S� is a solution to (T \ {s},k − 1). If |S� | ≥ k , then S� is a solution to (T ,k). Hence,
|S� | = k − 1. If there is a triangle—say, sxy—that is not hit byV (S�), then S� ∪ {sxy} is a solution
to (T ,k). Otherwise,V (S�) hits all 3k − 2 triangles pairwise intersecting only at s; thus, |V (S�) | ≥
3k − 2, which contradicts |S� | = k − 1. �

We apply Reduction Rule 7.1 exhaustively. By the same argument as for Reduction Rule 6.1,
for any vertex s ∈ S , we can check whether there exist 3k triangles intersecting pairwise only at
s in polynomial time. Thus, from now onwards, we assume that Reduction Rule 7.1 is no longer
applicable.

In this section, we reuse the notation used in Section 6. Throughout this section, we work with
the unique ordering ≺ of vertices of X and use terms such as consecutive vertices in X , smallest
or largest vertex in X .

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:37

7.1 Exploring the Vertex Cover Structure

Recall the notion of vertex cover for a set of arcs of T . Formally, for a subset of arcs A ⊆ E (T), a
subset O ⊆ V (T) is called a vertex cover for A if for every arc uv ∈ A, either u ∈ O or v ∈ O (or
both). However, the definition of strong arc is slightly different from that in Section 6. An arc xy
of T is called strong if (i) at least one vertex among x and y belongs to S and (ii) there are at least
3k vertices z ∈ V (T) such that xyz is a triangle. Let F be the set of all the strong arcs of T , which
can be easily found in polynomial time.

Recall that throughout our kernelization algorithm, we work with the unique topological order-
ing ≺ of X . Accordingly, we have that if xx ′ is an arc in E (X), then x ≺ x ′. Furthermore, we need
the following notion of distance.

Definition 7.1. Let x ,x ′ ∈ X be two vertices such that x ≺ x ′, and let d − 1 be the number of
vertices y such that x ≺ y ≺ x ′. Then, the distance between x and x ′ is d . Accordingly, x ′ − x := d
and x − x ′ := −d .

In addition, we need the following definition, which concerns the relations between the vertices
in S and the vertices in X .

Definition 7.2. For s ∈ S and x ∈ V (X), define f −s (x) = |{y ∈ V (X) : y � x , sy ∈ E (T)}|, and
f +s (x) = |{y ∈ V (X) : y � x , ys ∈ E (T)}|.

Similarly to Lemma 6.1, we can prove the following.

Lemma 7.1. For every s ∈ S , there is x ∈ X such that 0 ≤ f −s (x) − f +s (x) ≤ 1.

As in Section 6, we have the following notation.

Definition 7.3. For any s ∈ S , define φ (s) as the smallest vertex xs ∈ V (X) satisfying the inequal-
ities in Lemma 7.1.

We now show that given Reduction Rule 7.1, neither f −s (φ (s)) nor f +s (φ (s)) can be too “large.”
Indeed, if there existed s ∈ S such that f −s (φ (s)) ≥ 3k − 1, then f +s (φ (s)) ≥ 3k − 2, and we could
have formed 3k − 2 triangles, each consisting of s , a vertex from {x ∈ V (X) : x � φ (s), sx ∈ E (T)},
and a vertex from {y ∈ V (X) : y � φ (s), ys ∈ E (T)}. In this case, Reduction Rule 7.1 would be ap-
plicable. However, as we assumed that Reduction Rule 7.1 is no longer applicable, we have that
for all s ∈ S , f −s (φ (s)), f +s (φ (s)) ≤ 3k − 2. By using this assumption, we have useful certificates for
strong arcs similar to the ones in Lemma 6.2.

Lemma 7.2. Let x ∈ X , and s, s ′ ∈ S . The following statements are true.

(1) If sx ∈ E (T) and φ (s) − x ≥ 6k − 2, then sx is strong.

(2) If xs ∈ E (T) and x − φ (s) ≥ 6k − 2, then xs is strong.

(3) If s ′s ∈ E (T) and φ (s ′) − φ (s) ≥ 9k − 4, then ss ′ is strong.

To proceed, as before, we also need to introduce two terms concerning triangles.

Definition 7.4. Let x1x2x3 be a triangle ofT , and A = {x1,x2,x3}. The span of x1x2x3 is the maxi-
mum distance between any two vertices in (A \ S) ∪ φ (A ∩ S). Moreover, the triangle is called local

if none of its arcs belongs to F .

In the following lemma, we will show that a local triangle is indeed local in the sense that it
must have a “short” span. The proof of the following is identical to the one for Lemma 6.3.

Lemma 7.3. Let x1x2x3 be a local triangle with at least one vertex from X . Then, its span is at most

18k − 8.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:38 F. V. Fomin et al.

7.2 Applying the New Expansion Lemma

In what follows, we denote α = 3, β = 845, γ = 32, μ = 9, λ = 25, δ = 11, and � = 3 so that β − 36 −
3� ≥ λγ (used in Observation 7.8), (μ − 2)� > 4 (used in the proof of Observation 7.10), (δ − 9)� > 4
(used in the proof of Lemma 7.6), �2 > 4 (used in Lemma 7.7), and (λ − 2α μ

3 − α) (γ − 2δ) − 2αμ −
�α > 0 (used in the proof of Lemma 7.5).

Next, we give the definition of intervals.

Definition 7.5. A set Y ⊆ V (X) is an interval if it contains all the vertices in X that lie between
the largest and smallest elements in Y (with respect to the ordering ≺ induced by X).7 We refer to
|Y | as the length of Y .

We partition V (X) into disjoint intervals, each of length βk . That is, we follow the vertices of
V (X) from left to right in the ordering ≺, and partition them into disjoint intervalsX1, . . . ,Xp such
that each Xi , 1 ≤ i < p, is of length βk . Let Si := {s ∈ S : φ (s) ∈ Xi }.

Definition 7.6. Let Xi be an interval such that |Si | ≥ α
√
k ; then we call Xi bad of Type 1.

Clearly, there are less than 3
α

√
k bad intervals of Type 1, since |S | < 3k .

Observation 7.1. There are at most 3
√

k
α

bad intervals of Type 1 among X1, . . . ,Xp .

For each i , we call a 3-approximation algorithm to TPT on the tournament T [Xi ∪ Si]. If the 3-
approximation algorithm returns a solution of size at least

√
k , we callXi bad of Type 2. There are at

most
√
k bad intervals of Type 2; otherwise, the (obviously vertex-disjoint) union of 3-approximate

solutions of all of these bad intervals has size at least k , and we conclude immediately that (T ,k)
is a Yes-instance.

Observation 7.2. There are at most
√
k bad intervals of Type 2 among X1, . . . ,Xp .

Observations 7.1 and 7.2 imply that there are at least (p − 1) − 3
α

√
k −
√
k non-bad intervals –

we do not call them good yet, since we will introduce another type of bad interval. For every non-
bad interval Xi , let Y�

i be the sub-interval of Xi excluding the 18k smallest vertices and the 18k
largest vertices. Then every Y�

i has length (β − 36)k . Recall that a triangle is local if it has no arcs
in common with F . We give here two observations for later use.

Observation 7.3. If xyz is a local triangle with x ∈ Y�
i for some i , then x ,y, z ∈ Xi ∪ Si .

Proof. By Lemma 7.3, xyz has a span at most 18k − 8. Note that x ∈ Y�
i , while Y�

i is ob-
tained from Xi by excluding the 18k smallest and the 18k largest vertices; thus, ({x ,y, z} ∩ X) ∪
φ ({x ,y, z} ∩ S) is a subset of Xi . In other words, x ,y, z ∈ Si ∪ Xi . �

Observation 7.4. IfXi is a non-bad interval, then every collection of vertex-disjoint local triangles

contains less than 6
√
k vertices in Y�

i .

Proof. Suppose for a contradiction that there is a collection O of local triangles with at least
6
√
k vertices of Y�

i . Since each local triangle contains at most two vertices of Y�
i (Y�

i is transitive),

the collection has at least 3
√
k local triangles. Let us consider a local triangle xyz with x ∈ Y�

i . By

Observation 7.3, x ,y, z ∈ Si ∪ Xi . Hence, O contains at least 3
√
k triangles in Xi ∪ Si . This implies

that a 3-approximation algorithm for TPT when run on T [Xi ∪ Si] returns a solution of size at
least

√
k . Therefore, Xi is bad of Type 2, a contradiction. �

7That is, the elements of Y are consecutive with respect to ≺.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:39

We remark that Observation 7.4 is very strong since it allows us to upper bound the number of
vertex-disjoint triangles intersecting a specific interval.

We now apply the New Expansion Lemma for the first time to introduce the bad intervals of
Type 3; later, we will apply the New Expansion Lemma for the second time to detect a relevant
vertex. LetY� be the union of allY�

i such that the correspondingXi is non-bad. Let us consider the
(undirected) bipartite graphG with vertex bipartition (S,Y�), where E (G) consists of edges corre-
sponding to those arcs in F that have one endpoint in S and another endpoint in Y�. By applying
the New Expansion Lemma (Lemma 3.2) on G, we obtain Ŷ� and Ŝ , satisfying the following.

Observation 7.5. Ŝ has an �
√
k-expansion to Ŷ� in G, NG (Ŷ�

i) ⊆ Ŝ and |Y� \ Ŷ� | ≤ �
√
k |S |.

We can now define the third type of bad intervals.

Definition 7.7. For every i , if |Y�
i \ Ŷ� | ≥ 3�k , then Xi is called bad of Type 3.

Then there are at most
√
k bad intervals of Type 3 since |Y� \ Ŷ� | ≤ �

√
k |S | < 3�k3/2.

Observation 7.6. There are at most
√
k bad intervals of Type 3 among X1, . . . ,Xp .

Finally, we are ready to define the notion of good interval.

Definition 7.8. Let Xi be an interval such that it is not bad of Types 1, 2 or 3; then it is called
good.

Observations 7.1, 7.2, and 7.6 imply that there are at least p − − 3
α

√
k −
√
k −
√
k good intervals.

We then have the following observation.

Observation 7.7. If p ≥ (3
α
+ 3)
√
k then there are at least

√
k good intervals.

For every good Xi , let Yi = Y
�
i ∩ Ŷ�. Then |Yi | ≥ |Y�

i | − |Y�
i \ Ŷ� | ≥ (β − 36 − 3�)k . Since β −

36 − 3� ≥ λγ , we have the following observation.

Observation 7.8. |Yi | ≥ λγk for every good Xi .

Given x ,x ′ ∈ Yi with x ≺ x ′, we say that x and x ′ are consecutive in Yi if there is no y ∈ Yi such
that x ≺ y ≺ x ′. Note that Yi is not a sub-interval of Xi ; thus, two consecutive vertices in Yi are
not necessarily consecutive in Xi . To avoid confusion, we do not introduce the distance notion
between two vertices in Yi ; however, the order ≺ in Yi is the restriction of ≺ on X . The following
observation is immediate from Observation 7.4.

Observation 7.9. If Xi is good, then every collection of vertex-disjoint local triangles contains less

than 6
√
k vertices in Yi .

For a vertex s ∈ Si , φ (s) can be thought as a “balanced projection” of s on X . However, φ (s) may
not be a balanced projection of s on Yi . Thus, we wish to find a balanced projection of s on Yi . To
do so, we repeat what we did before to find φ (s) as follows. For every s ∈ Si , let R−s (x) = {y ∈ Yi :
y � x , sy ∈ E (T)} and R+s (x) = {y ∈ Yi : y � x ,ys ∈ E (T)}. Note that R−s (x) and R+s (x) count arcs
only between s and Yi .

Lemma 7.4. For every s ∈ Si , there is x ∈ Yi such that 0 ≤ |R−s (x) | − |R+s (x) | ≤ 1.

The proof of Lemma 7.4 is similar to that of Lemma 6.1, noting that |R−s (x ′) | − |R+s (x ′) | =
|R−s (x) | − |R+s (x) | + 1 for every x ≺ x ′ consecutive in Yi .

Definition 7.9. For any s ∈ Si , define θ (s) to be the smallest vertex inYi satisfying the inequalities
in Lemma 7.4.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:40 F. V. Fomin et al.

We denote R+s = R+s (θ (s)),R−s = R−s (θ (s)) for short. We could not upper bound |R−s | and |R+s | as
we did for φ (s); thus, we overcome this by introducing the notions of heavy and light.

Definition 7.10. Given s ∈ Si , if |R−s | ≥ μ
√
k + 1, then we call s heavy; otherwise, we call s light.

Thus, if s is light, |R−s |, |R+s | ≤ μ
√
k . Let

Ri =
⋃

{s ∈Si |s is light}

(
R−s ∪ R+s

)
.

Then |Ri | ≤ 2μ
√
k |Si | ≤ 2αμk since |Si | ≤ α

√
k .

Recall from Observation 7.8 that |Yi | ≥ λγ . We partition Yi into subsets Yi,1, . . . ,Yi,λ
√

k
, where

|Yi, j | ≥ γ
√
k for every j ≤ λ

√
k , and x ≺ x ′ for every x ∈ Yi, j ,x

′ ∈ Yi, j′ with j < j ′ (it is useful to
think that Yi, j is a “sub-interval” of Yi ; however, we would like to avoid that term since Yi itself is
not an interval).

Definition 7.11. A set Yi, j is called fit if |Yi, j ∩ Ri | < 3
√
k and θ (Si) ∩ Yi, j = ∅.

Since |Ri | ≤ 2αμk , there are at most 2α μ

3

√
k sets Yi, j such that |Yi, j ∩ Ri | ≥ 3

√
k . Since |Si | ≤

α
√
k , there are at most α

√
k intervals Yi, j such that Yi, j contains θ (s) for some s ∈ Si . Thus, there

are at least (λ − 2α μ

3 − α)
√
k fit subset Yi, j of every Yi . For each fit Yi, j , let Y−i, j ,Y

+
i, j be the δ

√
k

smallest vertices and δ
√
k largest vertices in Yi, j , respectively, and Y ′i, j ≥ Yi, j \ (Y−i, j ∪ Y+i, j). Then

Y ′i, j = (γ − 2δ)
√
k . Let

Ai =
��
�

⋃
{j |Yi, j is fit}

Y ′i, j
��
�
\ Ri and A =

⋃
{i |Xi is good}

Ai .

Then

|Ai | ≥
(
λ − 2αμ

3
− α
) √

k (γ − 2δ)10
√
k − |Ri | ≥

((
λ − 2αμ

3
− α
)

(γ − 2δ) − 2αμ
)
k,

and, by Observation 7.7, we have that |A| ≥
√
k ((λ − 2α μ

3 − α) (γ − 2δ) − 2αμ)k .

Now, we apply the New Expansion Lemma (Lemma 3.2) the second time, this time onG[A ∪ Ŝ],
to get Â and S̈ such that S̈ has an �

√
k-expansion into Â inG[A ∪ Ŝ], N

G[A∪Ŝ] (Â) ⊆ S̈ , and |A \ Â| ≤
�
√
k |Ŝ |.

Lemma 7.5. S̈ has an �
√
k-expansion into Â in G, NG (Â) ⊆ S̈ and Â is nonempty.

Proof. SinceG[A ∪ Ŝ] is an induced subgraph ofG, then clearly S̈ has an �
√
k-expansion into Â

inG. By Observation 7.5, NG (Ŷ�) ⊆ Ŝ ; thus, there is no edge between Ŷ� and S \ Ŝ inG. Therefore,
there is no edge between Â and S \ Ŝ in G since Â ⊆ Ŷ�. Since N

G[A∪Ŝ] (Â) ⊆ S̈ , there is no edge

between Â and Ŝ \ S̈ in G[A ∪ Ŝ]. Thus, there is no edge between Â and Ŝ \ S̈ in G. In other words,
NG (Â) ⊆ S̈ .

Observe that |A \ Â| ≤ �
√
k |Ŝ | ≤ �

√
k |S | ≤ �αk3/2. Hence, Â ≥ |A| − |A \ Â| ≥ ((λ − 2α μ

3 −
α) (γ − 2δ) − 2αμ)k3/2 − �αk3/2 > 0. This proves the lemma. �

7.3 Using Expansion to Detect an Irrelevant Vertex

Recall that a triangle is local if it contains no strong arc, that is, it has no arcs in common with F .
In the next lemma, we will show that given a mixed collection of local triangles and strong arcs,
it is possible to exclude a particular vertex of Â from the collection.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:41

Lemma 7.6. Let x ∈ Â and assume that there is a vertex-disjoint collection O of local triangles and

strong arcs such that |O| = k and x belongs to a local triangle of O. Then there is a vertex-disjoint

collection O′ of local triangles and strong arcs such that |O′| = k and x does not belong to any local

triangle or strong arc of O.

Proof. LetO be the vertex set of O; then |O | ≤ 3k . Assume that the statement of the lemma was
false and let xyz ∈ O and x ∈ Yi, j . By Observation 7.3, we have that y, z ∈ Xi ∪ Si since Yi j ⊆ Y�

i .
Thus, either y ∈ Si or z ∈ Si ; otherwise, xyz is transitive. We first prove the following observation.

Observation 7.10. Neither y nor z is heavy.

Proof. Suppose that y is heavy. If there are v ∈ R−y ,v ′ ∈ R+y such that v,v ′ � O , then O′ :=
(O \ {xyz}) ∪ {yvv ′} is a desired collection, a contradiction. Thus, we conclude that either R−y ⊆ O
or R+y ⊆ O .

IfR+y ⊆ O , we will show that we can exchange some strong arc ofO with some strong arc outside

to “free” one vertex of R+y from O. Since R+y ⊆ Yi , by Observation 7.9, at most 6
√
k vertices in R+y

belong to a local triangle in O. Recall that |R+y | ≥ μ
√
k by the definition of heaviness. Thus, at least

(μ − 6)
√
k vertices belong to some strong arcs of O; we call that set Z . Then O contains a matching

of strong arcs from Z into S (since a strong arc must contain at least one vertex in S). Let W be
the set of vertices of S in that matching; then |W | = |Z | ≥ (μ − 2)

√
k . Note that Z ⊆ Ŷ� since Ri ⊆

Yi ⊆ Ŷ�. By Observation 7.5, we have that NG (Ŷ�) ⊆ Ŝ ; thus, W ⊆ NG (Z) ⊆ Ŝ . By Observation
7.5 again, we have that |NG (W) | ≥ �

√
k |W | ≥ (μ − 2)�k > 4k = |O | + k . We choose an arbitrary

u ∈ NG (W) (among at least k candidates) such that u � O ; letw ∈W be a neighbor of u inG (such
w always exists since u ∈ NG (W)). Suppose thatwv ∈ O; thenv ∈ Z ⊆ R+y . Then removewv from
O and add wu to O. We still call the new collection O. In doing so, we free v ∈ R+y from O.

If R−y ⊆ O , by repeating the above argument, we can free some v ′ ∈ R−y from O. Note that since
we have k candidates to choose to exchange strong arcs, we can avoid “recapturing” v into O.
Then O′ := (O \ {xyz}) ∪ {yvv ′} is a desired collection, a contradiction. Similarly, we can show
that z is not heavy. �

We have 3 cases:

Case 1: y ∈ Si and z ∈ Xi . Then y is light by Observation 7.10, and since x ∈ Â ⊆ A while A ∩
Ri = ∅, we have that x � Ri ; thus, x � R+y ∪ R−y . Combining with xy ∈ E (T), we have thatθ (y) > x .

Recall that Y+i, j is the set of δ
√
k largest vertices of Yi, j ; hence, u ≺ v for every u ∈ Y ′i, j ,v ∈ Y+i, j .

Since x ∈ Y ′i, j , we have x ≺ v for every v ∈ Y+i, j . Note that θ (y) � x , and θ (y) � Yi, j since Yi, j is fit.
Thus, θ (y) � v for every v ∈ Y+i, j . Since R+y ∪ R−y ⊆ Ri , we have vy ∈ E (T) for every v ∈ Y+i, j \ Ri .

In addition, |Y+i, j ∩ Ri | < 3
√
k since Yi, j is fit; thus, |Y+i, j \ Ri | ≥ |Y+i, j | − |Y+i, j ∩ Ri | ≥ (δ − 3)

√
k .

Note that z ∈ Xi and zx ∈ E (T); thus, z ≺ x ≺ v for every v ∈ Y+i, j . If there is v ∈ Y+i, j \ Ri such
that v � O , then O′ := (O \ {xyz}) ∪ {vyz} is a desired collection, a contradiction. Thus, we con-
clude that there is no such v . In other words, Y+i, j \ Ri ⊆ O . Since Y+i, j ⊆ Yi , by Observation 7.9,

at most 6
√
k vertices in Y+i, j \ Ri belong to local triangles in O, while we showed above that

|Y+i, j \ Ri | ≥ (δ − 3)
√
k . Thus, at least (δ − 3 − 6)

√
k = (δ − 9)

√
k vertices ofY+i, j \ Ri belong to some

strong arcs of O. Then, by the same arguments as in the proof of Observation 7.10, combined with
the assumption that (δ − 9)� > 4, we can exchange strong arcs of O to free somev ∈ Y+i, j \ Ri from
O. Then O′ := (O \ {xyz}) ∪ {vyz} is a desired collection, a contradiction.

Case 2: y ∈ Xi and z ∈ Si . This case is similar to Case 1, but we will consider Y−i, j (instead of Y+i, j)
to employ the fact that v ≺ x for every v ∈ Y−i, j .

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

13:42 F. V. Fomin et al.

Case 3: y, z ∈ Si . Then by a similar argument as in Case 1, both y, z are light and θ (z) ≺ x ≺ θ (y).
Then we have θ (z) ≺ v ≺ θ (y) for every v ∈ Y+i, j since θ (y),θ (z) � Yi, j . Note that zv,vy ∈ E (T)

for every v ∈ Y+i, j \ Ri ; we then repeat the argument in Case 1 to reach the contradiction. This
concludes the proof.

We can now strengthen Lemma 7.6 by omitting the assumption that x belongs to a local triangle
of O.

Lemma 7.7. Let x ∈ Â and suppose that there is a vertex-disjoint collection O of local triangles and

strong arcs with |O| = k . Then there is a vertex-disjoint collection O′ of local triangles and strong arcs

such that |O′| = k and x does not belong to any triangle or strong arc of O.

Proof. LetO be the vertex set of O, then |O | ≤ 3k and x ∈ O (otherwise, the lemma is obvious).
If x belongs to a local triangle of O, then we apply Lemma 7.6. Otherwise, x belongs to a strong
arc of O, say, xy (note that in this proof, we do not consider the orientation of a strong arc, i.e.,
when we say uv is a strong arc, we mean either uv or vu is a strong arc).

By Lemma 7.5, NG (Â) ⊆ S̈ ; thus, y ∈ NG (x) ⊆ S̈ , and |NG (y) ∩ Â| ≥ �
√
k |{y}| = �

√
k . Let Z =

NG (y) ∩ Â. If there is v ∈ Z such that v � O , then O′ := (O \ {xy}) ∪ {vy} is a desired collection.
Thus, we conclude that Z ⊆ O .

Suppose that there is v ∈ Z such that v belongs to a local triangle of O. Since v ∈ Â, we apply
Lemma 7.6 tov and obtain a collection O′′ such that |O′′| = k andv does not belong to any triangle
or strong arc of O′′. Note also that according to the proof of Lemma 7.6, O′′ is obtained from O
by exchanging some strong arcs and a local triangle. If x is freed by these exchanges, then O′′ is a
desired collection. Note that it is impossible that x is freed and then recaptured to O′ in a strong
arc since we can always have k candidates of strong arcs; thus, we can avoid recapturing x . x is
freed and then recaptured to O′ in a local triangle; then we just apply Lemma 7.6 again to x to
find a desired collection. Thus, we concluded that x is “untouched” during the swapping procedure
above, that is, xy ∈ O′′. Then O′ := (O′′ \ {xy}) ∪ {vy} is a desired collection.

We conclude that every element of Z belongs to some strong arc of O. Then O contains
a matching of strong arcs from Z to S . Let W be the set of vertices of S in that matching;
then |W | = |Z | ≥ �

√
k . Note that Z ⊆ Â. By Lemma 7.5, we have that NG (Â) ⊆ S̈ ; thus, W ⊆ S̈ .

By Lemma 7.5 again, we have that |NG (W) | ≥ �
√
k |W | ≥ �

√
k × �

√
k = �2k > 4k = |O | + 4. Thus,

there isu ∈ NG (W) such thatu � O . Letw ∈W be a neighbor ofu inG (suchw always exists since
u ∈ NG (W)). Let wv ∈ O. Then O′ := (O \ {xy,wv}) ∪ {vy,wu} is a desired collection. �

Finally, we are ready to state the reduction rule that removes an irrelevant vertex.

Reduction Rule 7.2. Let x be an arbitrary vertex in Â. Remove x from T . The new instance is

(T \ {x },k).

Lemma 7.8. Reduction Rule 7.2 is safe.

Proof. It is obvious that if (T \ {x },k) is a Yes-instance, then (T ,k) is a Yes-instance. Conversely,
suppose that (T ,k) is a Yes-instance with some solution O�, while (T \ {x },k) is a No-instance.
Then |O� | = k . LetO be the collection of local triangles and strong arcs obtained fromO as follows.
For every uvw ∈ O�, if uvw is local, then uvw ∈ O; otherwise, uvw must contain some strong
arcs, then choose an arbitrary strong arc of uvw to be in O. Then |O| = k . Applying Lemma 7.7,
we obtain a collection O′ such that x does not belong to any local triangle and strong arc of O′.

We now construct a solution to (T \ {x },k) by repeating the following argument sequentially.
Pick an arbitrary strong arc of O′—say,yz. We choose a vertexw such thatyzw is a triangle,w � x ,
and w does not belong to any element of O′ and set O′ := (O′ \ {yz}) ∪ {yzw }. It is clear that we

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems 13:43

can always proceed with the exchange since the vertex set O′ \ {yz} has at most 3k − 3 vertices,
while there are 3k possible choices for w since yz is strong. Thus, we can always find the desired
w . At the end of the process O′ is a solution to (T \ {x },k). This concludes the proof. �

7.4 Proof of Theorem 4

We are finally ready to present the proof of Theorem 3.

Proof of Theorem 3. Let (T ,k) be an instance of TPT. Our kernelization algorithm simply
applies (exhaustively) Reduction Rules 7.1 and 7.2. The output is the instance obtained once none
of these rules is applicable. Let us observe that each of Reduction Rules 7.1 and 7.2 can be ap-
plied in polynomial time; it strictly decreases the size of G and it does not increase k . Thus, our
kernelization algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the output instance by (T ,k). Let
us observe that V (T) consists of the following vertices.

• Vertices in S , whose number is at most 3k .
• Vertices of X , whose number is at most pβ

√
k = O (k3/2) since p ≤ (3

α
+ 3)
√
k .

Thus, the total number of vertices is, indeed, O (k3/2). This completes the proof. �

8 CONCLUSION

In this article, we designed the first subquadratic vertex kernels for FVST, CVD, TPT, and Induced
P3-Packing. All of our kernels were based on the classical Expansion Lemma and the two new
versions we proved in this article. We believe that our approach of designing kernels will be fruitful
for similar implicit packing and covering problems. A most natural open question is whether these
problems admit a kernel with O (k) vertices. Another interesting avenue is to find other problems
for which the methods developed in this article can be applied.

REFERENCES

[1] Faisal N. Abu-Khzam. 2010. An improved kernelization algorithm for r-set packing. Inf. Process. Lett. 110, 16 (2010),
621–624.

[2] Faisal N. Abu-Khzam. 2010. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76, 7 (2010), 524–531.
[3] S. Bessy, M. Bougeret, and J. Thiebaut. 2017. Triangle packing in (sparse) tournaments: Approximation and kernel-

ization. In Proceedings of the 25th Annual European Symposium on Algorithms (ESA’17). 4:1–14:13.
[4] Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan

Thomassé. 2011. Kernels for feedback arc set in tournaments. J. Comput. Syst. Sci. 77, 6 (2011), 1071–1078.
[5] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. 2009. On problems without poly-

nomial kernels. J. Comput. System Sci. 75, 8 (2009), 423–434.
[6] Hans L. Bodlaender, Fedor V. Fomin, and Saket Saurabh. 2010. Open problems, WORKER 2010. Retrieved November

27, 2018 from http://fpt.wikidot.com/open-problems (2010).
[7] Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. 2016. A fast branching algorithm for

cluster vertex deletion. Theory Comput. Syst. 58, 2 (2016), 357–376.
[8] Mao-cheng Cai, Xiaotie Deng, and Wenan Zang. 2000. An approximation algorithm for feedback vertex sets in tour-

naments. SIAM J. Comput. 30, 6 (2000), 1993–2007.
[9] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer, New York, NY.
[10] Holger Dell and Dániel Marx. 2012. Kernelization of packing problems. In Proceedings of the 23rd Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA’12). 68–81.
[11] Holger Dell and Dieter van Melkebeek. 2014. Satisfiability allows no nontrivial sparsification unless the polynomial-

time hierarchy collapses. J. ACM 61, 4 (2014), 23:1–23:27.
[12] Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. 2010. Fixed-parameter tractability results

for feedback set problems in tournaments. J. Discrete Algorithms 8, 1 (2010), 76–86.
[13] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer, New York,

NY.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

http://fpt.wikidot.com/open-problems

13:44 F. V. Fomin et al.

[14] Andrew Drucker. 2015. New limits to classical and quantum instance compression. SIAM J. Comput. 44, 5 (2015),
1443–1479.

[15] Michael R. Fellows, Christian Knauer, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosamond, Ulrike Stege,
Dimitrios M. Thilikos, and Sue Whitesides. 2008. Faster fixed-parameter tractable algorithms for matching and pack-
ing problems. Algorithmica 52, 2 (2008), 167–176.

[16] Samuel Fiorini, Gwenaël Joret, and Oliver Schaudt. 2016. Improved approximation algorithms for hitting 3-vertex
paths. In Proceedings of the Integer Programming and Combinatorial Optimization - 18th International Conference

(IPCO’16), Liège, Belgium, June 1-3, 2016 (Lecture Notes in Computer Science), Vol. 9682. Springer, Berlin, 238–249.
[17] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer, Berlin. 493 pages.
[18] Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. 2016. Exact algorithms via monotone local

search. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC”16), Cambridge,

MA, USA, June 18-21, 2016. 764–775.
[19] Fedor V. Fomin and Saket Saurabh. 2014. Kernelization methods for fixed-parameter tractability. In Tractability. Cam-

bridge University Press, Cambridge, UK, 260–282.
[20] Lester R. Ford and Delbert R. Fulkerson. 1956. Maximal flow through a network. Can. J. Math. 8, 3 (1956), 399–404.
[21] Lance Fortnow and Rahul Santhanam. 2011. Infeasibility of instance compression and succinct PCPs for NP. J. Comput.

System Sci. 77, 1 (2011), 91–106.
[22] Jiong Guo and Rolf Niedermeier. 2007. Invitation to data reduction and problem kernelization. SIGACT News 38, 1

(2007), 31–45.
[23] Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and Xi Wu. 2015. A completeness theory for

polynomial (Turing) kernelization. Algorithmica 71, 3 (2015), 702–730.
[24] Danny Hermelin and Xi Wu. 2012. Weak compositions and their applications to polynomial lower bounds for ker-

nelization. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 104–113.
[25] Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. 2010. Fixed-parameter algorithms for

cluster vertex deletion. Theory Comput. Syst. 47, 1 (2010), 196–217.
[26] Bart M. P. Jansen and Dániel Marx. 2015. Characterizing the easy-to-find subgraphs from the viewpoint of

polynomial-time algorithms, kernels, and Turing kernels. In Proceedings of the 26th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA’15), San Diego, CA, USA, January 4-6, 2015. 616–629.
[27] Stefan Kratsch. 2014. Recent developments in kernelization: A survey. Bulletin of the EATCS 113 (2014). http://eatcs.

org/beatcs/index.php/beatcs/article/view/285
[28] Mithilesh Kumar and Daniel Lokshtanov. 2016. Faster exact and parameterized algorithm for feedback vertex set in

tournaments. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS’16), February 17-20, 2016, Orléans,

France (LIPIcs), Vol. 47. 49:1–49:13.
[29] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2012. Kernelization - Preprocessing with a guarantee. In

The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His

60th Birthday. Springer-Verlag Berlin Heidelberg, Germany, 129–161.
[30] Matthias Mnich, Virginia Vassilevska Williams, and László A. Végh. 2016. A 7/3-approximation for feedback vertex

sets in tournaments. In 24th Annual European Symposium on Algorithms (ESA’16), August 22-24, 2016, Aarhus, Denmark

(LIPIcs), Vol. 57. 67:1–67:14.
[31] Hannes Moser. 2009. A problem kernelization for graph packing. In Proceedings of SOFSEM’09: Theory and Practice

of Computer Science, 35th Conference on Current Trends in Theory and Practice of Computer Science, Spindleruv Mlýn,

Czech Republic, January 24-30, 2009 (Lecture Notes in Computer Science), Vol. 5404. 401–412.
[32] Rolf Niedermeier. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture series in Mathematics and its Ap-

plications, Vol. 31. Oxford University Press, Oxford, UK.
[33] Stéphan Thomassé. 2010. A 4k2 kernel for feedback vertex set. ACM Trans. Algor. 6, 2 (2010), 32:1–32.8.
[34] Magnus Wahlström. 2007. Algorithms, Measures and Upper Bounds for Satisfiability and Related Problems. Ph.D. Dis-

sertation. Linköping University, Sweden.
[35] Jie You, Jianxin Wang, and Yixin Cao. 2017. Approximate association via dissociation. Discrete Applied Mathematics

219 (2017), 202–209.

Received February 2018; revised October 2018; accepted October 2018

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 13. Publication date: January 2019.

http://eatcs.org/beatcs/index.php/beatcs/article/view/285
http://eatcs.org/beatcs/index.php/beatcs/article/view/285

