
9

Clique-width III: Hamiltonian Cycle and the Odd Case

of Graph Coloring

FEDOR V. FOMIN, PETR A. GOLOVACH, and DANIEL LOKSHTANOV,

Department of Informatics, University of Bergen, Norway

SAKET SAURABH, Department of Informatics, University of Bergen, Norway and The Institute of

Mathematical Sciences, HBNI, India

MEIRAV ZEHAVI, Computer Science Department, Ben-Gurion University of the Negev, Israel

Max-Cut, Edge Dominating Set, Graph Coloring, and Hamiltonian Cycle on graphs of bounded clique-

width have received significant attention as they can be formulated in MSO2 (and, therefore, have linear-time

algorithms on bounded treewidth graphs by the celebrated Courcelle’s theorem), but cannot be formulated in

MSO1 (which would have yielded linear-time algorithms on bounded clique-width graphs by a well-known

theorem of Courcelle, Makowsky, and Rotics). Each of these problems can be solved in time д(k)nf (k) on

graphs of clique-width k . Fomin et al. (2010) showed that the running times cannot be improved to д(k)nO (1)

assuming W[1]�FPT. However, this does not rule out non-trivial improvements to the exponent f (k) in the

running times. In a follow-up paper, Fomin et al. (2014) improved the running times for Edge Dominating Set

and Max-Cut to nO (k) , and proved that these problems cannot be solved in time д(k)no (k) unless ETH fails.

Thus, prior to this work, Edge Dominating Set and Max-Cut were known to have tight nΘ(k) algorithmic

upper and lower bounds.

In this article, we provide lower bounds for Hamiltonian Cycle and Graph Coloring. For Hamiltonian

Cycle, our lower boundд(k)no (k) matches asymptotically the recent upper boundnO (k) due to Bergougnoux,

Kanté, and Kwon (2017).

As opposed to the asymptotically tight nΘ(k) bounds for Edge Dominating Set, Max-Cut, and Hamil-

tonian Cycle, the Graph Coloring problem has an upper bound of nO (2k) and a lower bound of merely

no (
4√
k) (implicit from the W[1]-hardness proof). In this article, we close the gap for Graph Coloring by

proving a lower bound of n2o (k)
. This shows that Graph Coloring behaves qualitatively different from the

other three problems. To the best of our knowledge, Graph Coloring is the first natural problem known to

require exponential dependence on the parameter in the exponent of n.

CCS Concepts: • Mathematics of computing → Graph coloring; Graph algorithms; • Theory of

computation → Parameterized complexity and exact algorithms;

The preliminary version of this article appeared as an extended abstract in the proceedings of SODA 2018.

This work is supported by the Research Council of Norway via the projects “CLASSIS” and “MULTIVAL”, the Israel Science

Foundation under Grant No. 1176/18, and the European Research Council under ERC Starting Grant No. 715744 “Pareto-

Optimal Parameterized Algorithms”.

Authors’ addresses: F. V. Fomin, P. A. Golovach, and D. Lokshtanov, Department of Informatics, University of Bergen,

Bergen, PB 7803, 5020, Norway; emails: {fedor.fomin, petr.golovach}@uib.no, daniello@ii.uib.no; S. Saurabh, The Institute

of Mathematical Sciences, HBNI, 4th Cross Street, CIT Campus, Tharamani, Chennai, Tamil Nadu, 600113, India; email:

saket@imsc.res.in; M. Zehavi, Computer Science Department, Ben-Gurion University of the Negev, Alon High-Tech Build-

ing, Beersheba, Israel; email: meiravze@bgu.ac.il.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1549-6325/2018/11-ART9 $15.00

https://doi.org/10.1145/3280824

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

mailto:permissions@acm.org
https://doi.org/10.1145/3280824

9:2 F. V. Fomin et al.

Additional Key Words and Phrases: Coloring, Hamiltonian cycle, fine-grained complexity, exponential time

hypothesis

ACM Reference format:

Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. 2018. Clique-width

III: Hamiltonian Cycle and the Odd Case of Graph Coloring. ACM Trans. Algorithms 15, 1, Article 9 (November

2018), 27 pages.

https://doi.org/10.1145/3280824

1 INTRODUCTION

Many NP-hard problems become polynomial time solvable on trees and cliques. This has motivated
researchers to look for families of graphs that have algorithmic properties similar to those of trees
and cliques. In particular, ideas of being “tree-like” and “clique-like” were explored, leading to the
notions of treewidth and clique-width, respectively. Treewidth has been introduced independently
by several authors over the last 50 years. It was first introduced by Bertelé and Brioschi [3] in
1972 under the name of dimension. Later, it was rediscovered by Halin [30], and finally, in 1984,
Robertson and Seymour [44] introduced it under the current name, as a part of their Graph Minors
project. Since then, the notion of treewidth has been studied by several authors, and now it is one
of the most important parameters in graph algorithms. We refer to the survey of Bodlaender [4]
for further references on treewidth.

The notion of treewidth captures the fact that trees are structurally simple, but fails to do
this for cliques. In fact, the treewidth of a clique on n vertices is n − 1. Courcelle and Olariu [15]
defined new kind of graph decompositions that capture the structure both of bounded treewidth
graphs and of cliques and clique-like graphs, and at the same time enjoy most of the algorithmic
properties of bounded treewidth graphs. The corresponding notion that measures the quality of
the decomposition was called the clique-width of the graph. Clique-width is a generalization of
treewidth in the sense that graphs of bounded treewidth also have bounded clique-width [12]. It is
also worth mentioning here the related graph parameters NLC-width, introduced by Wanke [46],
rankwidth introduced by Seymour and Oum [41], and Booleanwidth, introduced by Bui-Xuan,
Telle, and Vatshelle [8]. We refer to the survey of Hlinený et al. [32] for further references on
clique-width and related parameters.

In the last decade, clique-width as a graph parameter has received significant attention. Corneil
et al. [11] show that graphs of clique-width at most three can be recognized in polynomial time.
Fellows et al. [22] settled a long-standing open problem by showing that computing clique-width
is NP-hard. Oum and Seymour [41] describe an algorithm that, for any fixed k , runs in time
O (n9 logn) and computes (23k+2 − 1)-expressions for a n-vertex graph G of clique-width at most
k .1 Oum [42] improved this result by providing an algorithm computing (8k − 1)-expressions in
time O (n3). Finally, Hliněný and Oum [31] obtained an algorithm running in time O (n3) and com-
puting (2k+1 − 1)-expressions for a graph G of clique-width at most k .

Most of the algorithms on graphs of bounded treewidth or clique-width are based on dynamic
programming over the corresponding decomposition tree and are very similar to each other. This
similarity hinted at the existence of meta-theorems that could simultaneously provide algorithms
on bounded treewidth and clique-width graphs for large classes of problems. Indeed, Courcelle [13]
(see, also, Ref. [1]) proved that every problem expressible in monadic second-order logic (MSO2),
say, by a sentence ϕ, is solvable in time f (|ϕ |,k) · n on graphs with n vertices and treewidth k .

1The clique-width of a graph is the minimum t for which it admits a decomposition of with t called a t -expression, defined

in Section 2.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

https://doi.org/10.1145/3280824

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:3

That is, these problems are fixed parameter tractable (FPT) parameterized by the treewidth and
the length of the formula. For problems expressible in monadic second-order logic with logical
formulas that do not use edge set quantifications (so-called MSO1), Courcelle, Makowsky, and
Rotics [14] extended the meta-theorem of Courcelle to graphs of bounded clique-width. More
concretely, they proved that every problem expressible in MSO1, say, by a sentence ϕ, is solvable
in time τ (|ϕ |,k) · n on graphs with n vertices and clique-width k . Thus, these problems are FPT

parameterized by the clique-width and the length of the formula.
Comparing the two meta-theorems reveals a tradeoff between expressive power of the logic and

applicability to larger (bounded cliqewidth) or smaller (bounded treewidth) classes of graphs. This
leads to the question on whether this tradeoff is unavoidable. Courcelle, Makowsky, and Rotics
[14] addressed this question and proved that there exist problems that are definable in MSO2 but
are not polynomial time solvable, even on cliques, unless NEXP = EXP. For several natural graph
problems, such as Max-Cut, Edge Dominating Set, Graph Coloring, and Hamiltonian Cycle,
linear time algorithms on bounded treewidth graphs were known to follow from (variants of [1,
6]) Courcelle’s theorem [13]. At the same time, these problems, and many others, were known to

admit algorithms with running time O (nf (k)) on graphs with n vertices and clique-width k [21,
26–28, 35, 36, 39, 43, 45, 46].

The existence of FPT algorithms (parameterized by the clique-width k of the input graph) for
these problems (or their generalizations) was asked as open problems by Gerber and Kobler [26];
Kobler and Rotics [35, 36]; and, Makowsky, Rotics, Averbouch, Kotek, and Godlin [28, 39].

A subset of the authors in Ref. [23] showed that the EDS, HC, and GC problems parameterized
by clique-width are all W[1]-hard. In particular, this implies that these problems do not admit algo-
rithms with running times of the form O (д(k) · nc), for any function д and constant c independent
of k , unless FPT=W[1]. However, the lower bounds of Fomin et al. [23] did not rule out non-trivial
improvements to the exponent f (k) of n in the running times.

In a follow-up article, Fomin et al. [24] improved the running times for Edge Dominating Set

and Max-Cut from nO (k2) to nO (k) , and proved д(k)no (k) lower bounds for Edge Dominating
Set and Max-Cut, assuming the Exponential Time Hypothesis (ETH). Together, these lower and
upper bounds gave asymptotically tight algorithmic bounds for Edge Dominating Set and Max-
Cut. However, for Hamiltonian Cycle and Graph Coloring, large gaps remained between the
known running time upper and lower bounds. This article bridges the gaps for Graph Coloring
and Hamiltonian Cycle by proving new lower bounds, which asymptotically match the known
upper bounds.

Graph Coloring has an upper bound of nO (2k) [36] and, prior to this work, a lower bound

of merely no (
4√
k) (implicit from the W[1]-harness proof). Our first theorem shows that the upper

bound is asymptotically tight, by providing a lower bound of n2o (k)
. Specifically, we prove the

following.

Theorem 1. Unless ETH fails, Graph Coloring cannot be solved in time f (k) · n2o (k)
for any

function f of k , where k is the clique-width of the input graph.

In fact, we prove a stronger result, and Theorem 1 follows as a corollary. Specifically, we prove
that the lower bound of Theorem 1 holds even for graphs of linear clique-width k , when a linear
clique-width expression (see Ref. [29]) of width at most k is given as input.

Theorem 1 shows that Graph Coloring behaves qualitatively different from every other prob-
lem previously studied on graphs of bounded clique-width. Indeed, to the best of our knowl-
edge, Graph Coloring parameterized by clique-width is the first (natural) parameterized problem
known to require exponential dependence on the parameter in the exponent of n. Note here that

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:4 F. V. Fomin et al.

there do exist problems for which the tight upper and lower bounds on the dependence of the run-
ning time on the parameter are double exponential, triple exponential, or even non-elementary
(see, e.g., Refs [17, 25, 37, 40]). However, these lower bounds are all for the д(k) factor of FPT

algorithms and not for the exponent of the input size n.

Our second theorem provides a lower boundд(k) · no (k) for Hamiltonian Cycle, where k is the
clique-width of the input graph. This result was announced (without a proof) in the concluding
section of Ref. [24]. At the time of publishing Ref. [24], the best known upper bound for Hamil-

tonian Cycle was nO (k2) . Due to the significant gap between the known lower and upper bounds

for Hamiltonian Cycle, the proof of the д(k) · no (k) lower bound for Hamiltonian Cycle was
omitted from Ref. [24]. In 2017, Bergougnoux, Kanté, and Kwon [2] closed this gap by provid-

ing a beautiful new algorithm with running time nO (k) . In other words, Bergougnoux, Kanté, and

Kwon [2] showed that the д(k) · no (k) lower bound for Hamiltonian Cycle claimed in Ref. [24] is
tight. In this article, we provide a full proof of this claim. In particular, we prove the following.

Theorem 2. Unless ETH fails, Hamiltonian Cycle cannot be solved in time f (k) · no (k) for any

function f of k , where k is the clique-width of the input graph.

Overview. The remaining part of the article is organized as follows. In Section 2, we set up basic
notations and definitions. Section 3 is devoted to the proof of Theorem 1 and it has the follow-
ing structure. In Section 3.1, we define an intermediate problem called 4-Monotone min-CSPand
prove a running time lower bound for this problem. The proof of this lower bound (Section 3.1)
is quite standard and can be skipped by a reader interested in going directly to the crux of our
lower bound proof—the reduction from 4-Monotone min-CSP to Graph Coloring on graphs of
bounded clique-width. This reduction is presented in Section 3.2. We remark, however, that our
intermediate problem can potentially help to obtain other lower bounds. In Section 4, we prove
Theorem 2 about Hamiltonian Cycle. In Section 5, we wrap up with concluding remarks and
open problems.

2 PRELIMINARIES

We use [n] and [n]0 as shorthands for {1, 2, . . . ,n} and {0, 1, . . . ,n}, respectively. Given a function
f : A→ B, we let dom(f) and ima(f) denote the domain and image of f , respectively. Moreover,
given A′ ⊆ A, we denote f (A′) = { f (a) : a ∈ A′}.

Basic Graph Theory. We refer to standard terminology from the book of Diestel [18] for those
graph-related terms that are not explicitly defined here. Given a graph G, we denote its vertex
set and its edge set by V (G) and E (G), respectively. Moreover, when the graph G is clear from
context, denote n = |V (G) |. Given a subset U ⊆ V (G), G[U] denotes the subgraph of G induced
by U . For X ⊆ V (G), G − X denotes the graph obtained from G by the deletion of the vertices of
X , i.e., G − X = G[V (G) \ X]. We say that G is a clique if for all distinct vertices u,v ∈ V (G), we
have that {u,v} ∈ E (G), and thatV (G) is an independent set if for all distinct vertices u,v ∈ V (G),
we have that {u,v} � E (G). Given a vertex v ∈ V (G), NG (v) denotes the neighborhood of v in
G. Moreover, given two subsets U ,T ⊆ V (G), the subset U is a module with respect to T if for all
u,u ′ ∈ U and v ∈ T , either both u and u ′ are adjacent to v or both u and u ′ are not adjacent to v ,
and if, in addition, T = V (G) \U , thenU is simply called a module. A matching M in G is a subset
of E (G) whose edges do not share any endpoint, and a perfect matching M is a matching of size
n/2 (that is, every vertex in V (G) is incident to exactly one edge in M). A feedback vertex set of a
graph is a set of vertices X ⊆ V (G) such that G − X is a forest. The feedback vertex number of a
graph G, denoted as fvn(G), is the minimum size of a feedback vertex set of G.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:5

A coloring of G is a function χ : V (G) → N. The integers in the codomain of χ are called colors.
We say that χ is a proper coloring of G if for every edge {u,v} ∈ E (G), we have that χ (u) � χ (v).
Moreover, a subgraph H of G is said to be multicolored if for all distinct vertices u,v ∈ V (H),
we have that χ (u) � χ (v). We remark that a clique is multicolored if and only if it is properly
colored. The chromatic number of G is the smallest integer t such that G has a proper coloring
χ : V (G) → [t], that is, a proper coloring that uses only t colors.

A cycle C of a graph G is Hamiltonian if C contains all the vertices of G. Respectively, G is said
to be Hamiltonian if it has a Hamiltonian cycle.

Clique-width. Let G be a graph, and t be a positive integer. A t-graph is a graph with vertices
labeled by integers from [t]. We refer to a t-graph consisting of exactly one vertex labeled by some
integer from [t] as to an initial t-graph. The clique-width cw(G) of G is the smallest integer t such
that G can be constructed by means of repeated application of the following four operations:

i (v) : Introduce operation constructing an initial t-graph with vertex v labeled by i ,
⊕ : Disjoint union,
ρi→j , i � j : Relabel operation changing all labels i to j, and
ηi, j , i � j : Join operation making all vertices labeled by i adjacent to all vertices labeled by j.

Respectively, an expression tree of a graph G defined as a rooted treeT with nodes of four types
i , ⊕, η and ρ:

— Introduce nodes i (v) are leaves ofT corresponding to initial t-graphs with verticesv labeled
by i .

—Union node ⊕ stands for a disjoint union of graphs associated with its children.
—Relabel node ρi→j has one child and is associated with the t-graph obtained by applying of

the relabeling operation to the graph corresponding to its child.
—Join node ηi, j has one child and is associated with the t-graph resulting by applying the join

operation to the graph corresponding to its child.
—The graph G is isomorphic to the graph associated with the root of T (with all labels re-

moved).

The width of the treeT is the number of different labels appearing inT . We have that cw(G) = t if
and only if there is a rooted expression tree T of width t of G. We call the elements of V (T) nodes

to distinguish them from the vertices of G. Given a node X of an expression tree of G, the graph
GX represents the graph formed by the subtree TX of the expression tree rooted at X .

The linear clique-width lcw(G) of G is defined similarly, except that now the application of the
operation ⊕ is restricted as follows: for two t-graphs G1 and G2, we can perform the operation
G1 ⊕ G2 only if at least one graph among G1 and G2 is an initial t-graph. Clearly, as the set of
operations relevant to linear clique-width is more restrictive than the set of operations relevant to
clique-width, the following observation is correct.

Observation 2.1. For any graph G, cw(G) ≤ lcw(G).

Let us now present an almost equivalent definition of linear clique-width, known as the neigh-

borhood width [29]. To this end, let σ be an ordering of V (G) as vσ
1 ,v

σ
2 , . . . ,v

σ
n . For all i ∈ [n],

denote V σ
i = {vσ

1 ,v
σ
2 , . . . ,v

σ
i }. Two vertices u,v ∈ V σ

i are i-equivalent under σ if their neighbor-
hoods outside V σ

i are identical, that is, NG (u) \V σ
i = NG (v) \V σ

i . Accordingly, the i-equivalence

partition under σ , denoted by EQ (G,σ , i), is a partition {S1, S2, . . . , St } of V σ
i , for some t ∈ [n],

that satisfies (i) for all j ∈ [t], every two vertices u,v ∈ S j are i-equivalent under σ , and (ii) for
all j, � ∈ [t], every u ∈ S j and v ∈ S� are not i-equivalent under σ . As the notion of i-equivalence

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:6 F. V. Fomin et al.

under σ defines an equivalence relation, this partition is well-defined. Specifically, EQ (G,σ , i) is
the partition of V σ

i into the equivalence classes of the relation i-equivalent under σ .

Definition 2.1. Let G be a graph. For an ordering σ of G, the neighborhood-width of G under σ is

defined as nw(G,σ) � maxi ∈[n] |EQ (G,σ , i) |. Furthermore, the neighborhood-width of G is defined
as nw(G) = minσ nw(G,σ) where σ ranges over all possible orderings of V (G).

The following proposition asserts that, for our purpose, we can work with nw(G) rather than
lcw(G).

Proposition 2.1 ([29]). For any graph G, lcw(G) ≤ nw(G) + 1.

Parameterized Complexity. Let Π be an NP-hard problem. In the framework of Parameter-
ized Complexity, each instance of Π is associated with a parameter k . Here, the goal is to confine
the combinatorial explosion in the running time of an algorithm for Π to depend only on k . For-

mally, we say that Π is FPT if any instance (I ,k) of Π is solvable in time f (k) · |I |O (1) , where f
is an arbitrary function of k . A weaker request is that for every fixed k , the problem Π would be
solvable in polynomial time. Formally, we say that Π is slice-wise polynomial (XP) if any instance

(I ,k) of Π is solvable in time f (k) · |I |д (k) , where f and д are arbitrary functions of k . Nowadays,
Parameterized Complexity supplies a rich toolkit to design FPT and XP algorithms, or to show that
such algorithms are unlikely to exist.

To obtain (essentially) tight conditional lower bounds for the running time of FPT or XP algo-
rithms, we rely on the well-known ETH [9, 33, 34]. To formalize the statement of ETH, we first
recall that given a formula φ in conjunctive normal form (CNF) with n variables and m clauses,
the task of CNF-SAT is to decide whether there is a truth assignment to the variables that satisfies
φ. In the p-CNF-SAT problem, each clause is restricted to have at most p literals. ETH asserts that

3-CNF-SAT cannot be solved in time O (2o (n)). Additional details on Parameterized Complexity
and ETH can be found in Refs. [16, 20].

3 GRAPH COLORING

In this section, we prove Theorem 1. The proof is quite involved, and before diving into technical
details, we provide some intuition about how it goes.

The key insights of the proof are in some sense dual to the key insights of the n2O (k)
time

algorithm [36]. It is convenient to consider graphs of bounded neighborhood-width rather than
bounded clique-width. In this setting, the vertices of G are given according to an ordering σ =
vσ

1 ,v
σ
2 , . . . ,v

σ
n , and satisfy the following property. For every i ≤ n, the vertex set {vσ

1 , . . . ,v
σ
i } can

be partitioned into k sets S1, . . . Sk such that the sets S j are “equivalence classes with respect to
the future” in the following sense. For every set S j , all of the vertices in S j have exactly the same
neighborhood in {vσ

i+1, . . . ,v
σ
n }.

Consider a coloring algorithm that tries to color the vertices of G in the order given by σ using
at most η colors. When the vertices {vσ

1 , . . . ,v
σ
i } have already been colored, this affects which

colors can be used on the remaining vertices. For each color c , the set of vertices in {vσ
i+1, . . . ,v

σ
n }

that cannot be colored by c are exactly the vertices that have at least one neighbor in {vσ
1 , . . . ,v

σ
i }

colored with c . This vertex set is completely determined by the subset Ic of {1, . . . ,k } of indices
such that j ∈ Ic if and only if some vertex in S j has been colored with c . In other words, two color
classes c and c ′ for which Ic and Ic ′ are the same are interchangeable—any vertex in {vσ

i+1, . . . ,v
σ
n }

that can be colored with c can be colored with c ′ instead and vice versa. Hence, to completely
describe how the partial coloring affects what can be done in the future, it is sufficient to record,

for evey subset I of {1, . . . ,k }, the number of colors c such that Ic = I . This gives rise to an n2O (k)

time dynamic programming algorithm.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:7

To prove the lower bound, we encode instances of the “2k -Cliqe” problem in terms of graph
coloring on graphs of neighborhood-width O (k). In the 2k -Cliqe problem, the input is a graph
G on n vertices, an integer k , and the task is to determine whether the graph contains a clique of

size 2k . Since the usual k-Cliqe problem can not be solved in time f (k)no (k) [10, 16] assuming

the ETH, the 2k -Cliqe problem can not be solved in time f (k)no (2k) under the same assumption.
In the 2k -Cliqe problem, one has to select 2k vertices correctly out of a set of n candidates.

There is a natural correspondence between selecting “one out of n vertices” in the 2k -Cliqe and
selecting one number nI between 1, . . . ,n—for a fixed subset I the number of colors c such that
Ic = I . In other words, the selection of a vertex is encoded as the number of color classes of a
specific “type,” where the type of a color is which of the sets S1, . . . Sk it intersects. While the
correspondence itself is natural, carrying out the reduction is a rather delicate task. In particular,
it is challenging to “implement” vertex selection in terms of selecting the numbers nI , and “im-
plementing” adjacency testing only using relations between the numbers nI , without, at the same
time, increasing the neighborhood width too much. The crucial gadget used to achieve this is the
“Mini-Constraint Selector” introduced in Section 3.2.

3.1 Reduction to Monotone min-CSP

The starting point of our proof of Theorem 1 is the Multicolored Cliqe problem, which is
defined as follows.

Multicolored Cliqe (Parameterized by Solution Size) Parameter: k
Input: A graph G with a coloring χ : V (G) → [k].
Question: Does G contain a multicolored clique C on k vertices?

For Multicolored Cliqe, we have the following known proposition.

Proposition 3.1 ([38]). Unless ETH fails, Multicolored Cliqe cannot be solved in time f (k) ·
no (k) for any function f of k .

The focus of this section is to reduce Multicolored Cliqe to a new problem that we call
Monotone min-CSP. Later, in Section 3.2, we present the main part of our proof, which is a re-
duction from Monotone min-CSP to Graph Coloring. Let us first formally define the Monotone
min-CSP problem. To this end, let X be a set of variables whose size is denoted by k . Let n ∈ N. A
function α : X → [n]0 is called an assignment. The cost of an assignment α , denoted by cost(α), is∑

x ∈X α (x). Given X ′ ⊆ X , a set R of pairs (x , c) such that x ∈ X ′ and c ∈ [n]0 is called an X ′-mini-

constraint, or simply a mini-constraint. We say that an assignment α satisfies a mini-constraint R if
for all (x , c) ∈ R, we have that α (x) ≥ c . A constraint is a pairC = (X ′,R), whereX ′ ⊆ X and R is a
set ofX ′-mini-constraints. The arity of a constraintC = (X ′,R) is |X ′ |. We say that an assignment
α satisfies a constraint C = (X ′,R) if α satisfies at least one mini-constraint R ∈ R. Furthermore,
we say that an assignment α satisfies a set C of constraints if α satisfies every constraint in C.

Monotone min-CSP (Parameterized by Variable Number) Parameter: |X | = k
Input: A set of variables X , a set of constraints C and n,W ∈ N.
Question: Does there exist an assignment of cost at mostW that satisfies C?

The special case of Monotone min-CSP where the arity of every input constraint is at most
r , for some fixed r ∈ N, is called r -Monotone min-CSP. The rest of this section is devoted to the
proof of the following lemma.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:8 F. V. Fomin et al.

Lemma 3.1. Unless ETH fails, 4-Monotone min-CSPcannot be solved in time f (k) · no (k) for any

function f of k .

Construction. Let (G, χ ,k) be an instance of Multicolored Cliqe. Without loss of generality,
we assume that for all i, j ∈ [k], it holds that |χ−1 (i) | = |χ−1 (j) |, and denote this size by n′. Indeed,
this condition can be easily ensured by adding isolated vertices of the appropriate colors toG. For
every color i ∈ [k], we denote χ−1 (i) = {vi

1,v
i
2, . . . ,v

i
n′ }.

Let us now construct an instance red(G, χ ,k) = (X ,C,n′,W) of 4-Monotone min-CSP, where

n′ is as defined above and |X | � k ′ = 2k (the value k is the same in both instances). First, we define
X = {x1,x2, . . . ,xk } ∪ {x1,x2, . . . ,xk } as some set of k ′ = 2k variables. Intuitively, each variable xi

represents a color i ∈ [k], and each value j ∈ [n′] that can be assigned to xi can be thought of as the
potential choice of vi

j as the vertex of color i selected into a multicolored clique of size k . We will

force the copy x i of each variable xi to be assigned the value “complementary” to the one assigned
to xi , which will allow us to encode inequalities of the form ≤ involving xi using inequalities of
the form ≥ involving x i . Moreover, we defineW = k (n′ + 1). Now, it remains to define the set C.

The set C will consist of two sets of constraints, CV and CE (that is, C = CV ∪ CE). Let us
first define the set CV as follows. For all i ∈ [k] and j ∈ [n′], we have the {xi ,x i }-mini-constraint
RV

i, j = {(xi , j), (x i ,n
′ − j + 1)}. Then, for all i ∈ [k], we have the constraint CV

i = ({xi ,x i },RV
i =

{RV
i, j : j ∈ [n′]}), whose arity is 2. Next, we define CV = {CV

i : i ∈ [k]}. Intuitively, this set of con-

straints, together with the choice ofW , will ensure that for all i ∈ [k], xi and x i must be assigned
complementary values.

Finally, we define the set CE . We say that two vertices vi
a ,v

j

b
∈ V (G) have a conflict if

i � j and {vi
a ,v

j

b
} � E (G). For every two conflicting vertices vi

a ,v
j

b
∈ V (G), we have the con-

straintCE
(i,a), (j,b)

= ({xi ,x i ,x j ,x j },RE
(i,a), (j,b)

) of arity 4, where RE
(i,a), (j,b)

= {{(xi ,a + 1)}, {(x j ,b +

1)}, {(x i ,n
′ − a + 2)}, {(x j ,n

′ − b + 2)}}.2 Next, we define CE = {CE
(i,a), (j,b)

: vi
a ,v

j

b
∈ V (G) have a

conflict}. Intuitively, this set of constraints will ensure that a set of vertices selected as implied by
some satisfying assignment forms a clique.

Correctness. Let us first prove the forward direction of the correctness of our construction.

Lemma 3.2. Let (G, χ ,k) be an instance of Multicolored Cliqe. If (G, χ ,k) is a Yes-instance

of Multicolored Cliqe, then red(G, χ ,k) = (X ,C,n′,W) is a Yes-instance of 4-Monotone
min-CSP.

Proof. Suppose that (G, χ ,k) is a Yes-instance of Multicolored Cliqe, and letC be a multi-
colored clique inG of sizek . For every i ∈ [k], let id(i) be the integer in [n′] such thatvi

id(i)
∈ V (C).

Then, we define an assignment α : X → [n′] as follows. For all i ∈ [k], set α (xi) = id(i) and
α (x i) = n′ − id(i) + 1.

Let us first observe that cost(α) =
∑k

i=1 (α (xi) + α (x i)) = k (n′ + 1) =W . Now, note that for all

i ∈ [k], the mini-constraint RV
i,id(i)

is satisfied by α , and, therefore, RV
i is satisfied by α . Thus, the

set CV is also satisfied by α . Next, consider some constraint CE
(i,a), (j,b)

∈ CE . Then, we have that

the two verticesvi
a ,v

j

b
∈ V (G) have a conflict, which means that i � j and {vi

a ,v
j

b
} � E (G). SinceC

is a multicolored clique in G of size k , we have that at least one vertex in {vi
a ,v

j

b
} does not belong

2In the definition of RE
(i,a), (j,b)

, if one of the values exceeds n′ (e.g., a + 1 > n′), simply discard the corresponding mini-

constraint from RE
(i,a), (j,b)

.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:9

to V (C). Without loss of generality, suppose that this vertex is vi
a , that is, id(i) � a. In this case,

either id(i) ≥ a + 1, in which case α (xi) ≥ a + 1 and then α satisfies (xi ,a + 1), or id(i) ≤ a − 1, in
which case α (x i) ≥ n′ − (a − 1) + 1 = n′ − a + 2 and then α satisfies (x i ,n

′ − a + 2). In both cases,
we deduce that α satisfiesCE

(i,a), (j,b)
. Since the choice of this constraint was arbitrary, we have that

α satisfies CE . Overall, we have that α is an assignment of cost at most W that satisfies C, and,
therefore, (X ,C,n′,W) is a Yes-instance of 4-Monotone min-CSP. �

We proceed by proving the reverse direction.

Lemma 3.3. Let (G, χ ,k) be an instance of Multicolored Cliqe. If red(G, χ ,k) = (X ,C,n′,W)
is a Yes-instance of 4-Monotone min-CSP, then (G, χ ,k) is a Yes-instance of Multicolored Cliqe.

Proof. Suppose that (X ,C,n′,W) is a Yes-instance of 4-Monotone min-CSP, and let α be an
assignment of cost at most W that satisfies C. Since α satisfies CV , we have that for all i ∈ [k],

α (xi) + α (x i) ≥ n′ + 1. Moreover, since cost(α) ≤W , we have that
∑k

i=1 (α (xi) + α (x i)) ≤ k (n′ +
1). Thus, we derive that for all i ∈ [k], α (xi) + α (x i) = n′ + 1. For all i ∈ [k], denote id(i) = α (xi),
and note that n′ − id(i) + 1 = α (x i). We define C as the graph G[{vi

id(i)
: i ∈ [k]}].

The definition of C directly implies that it is a multicolored graph on k vertices. We
now argue that C is also a clique. By way of contradiction, suppose that this claim is false,

and therefore, there exist two distinct vertices vi
id(i)
,v j

id(j)
∈ V (C) such that {vi

id(i)
,v j

id(j)
} �

E (G). Then, vi
id(i)

and v j

id(j)
have a conflict. Since α satisfies CE , it in particular sat-

isfies CE
(i,id(i)), (j,id(j))

= ({xi ,x i ,x j ,x j },RE
(i,id(i)), (j,id(j))

), where RE
(i,id(i)), (j,id(j))

= {{(xi , id(i) +

1)}, {(x j , id(j) + 1)}, {(x i ,n
′ − id(i) + 2)}, {(x j ,n

′ − id(j) + 2)}}. In other words, at least one of the
following four conditions is satisfied: (i) α (xi) ≥ id(i) + 1, which contradicts that id(i) = α (xi);
(ii)α (x j) ≥ id(j) + 1, which contradicts that id(j) = α (x j); (iii)α (x i) ≥ n′ − id(i) + 2, which con-
tradicts that n′ − id(i) + 1 = α (x i); (iv) α (x j) ≥ n′ − id(j) + 2, which contradicts that n′ − id(j) +
1 = α (x j). We thus conclude that C is a multicolored clique on k vertices, and, therefore, (G, χ ,k)
is a Yes-instance of Multicolored Cliqe. �

We are now ready to conclude the correctness of Lemma 3.1.

Proof of Lemma 3.1. Suppose, by way of contradiction, that there exists an algorithm A that

solves 4-Monotone min-CSP in time f (k) · no (k) for some function f of k . Then, consider the fol-
lowing algorithm B for Multicolored Cliqe. Given an instance (G, χ ,k) of Multicolored
Cliqe, algorithm B first constructs the instance red(G, χ ,k) = (X ,C,n′,W) of 4-Monotone
min-CSP in polynomial time. Then, it calls algorithm A with (X ,C,n′,W) as input and answers
the reply given by algorithm A. By Lemmata 3.2 and 3.3, algorithm B is correct. Furthermore,
as in the output instance, n′ = n/k and k ′ = 2k , we have that algorithm B solves Multicolored

Cliqe in time f (k) · no (k) , which contradicts Proposition 3.1. This concludes the proof. �

3.2 Reduction to Graph Coloring

In this section, we prove Theorem 1 by presenting a reduction from 4-Monotone min-CSP to
Graph Coloring.

Construction. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP, where |X | = 2k . Here,
we denote X = {x0,x1, . . . ,x2k−1} (in particular, the first index is 0). We remark that the implicit
assumption that |X | is a power of 2 is made without loss of generality, as otherwise we can add
some t new dummy variables, where t is the smallest possible integer to ensure that |X | is a power
of 2 (which means that at worst, the number of variables is merely doubled). Moreover, without
loss of generality, we assume that W ≤ 2kn; else it is clear that (X ,C,n,W) is a Yes-instance of

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:10 F. V. Fomin et al.

Fig. 1. Assignment Encoder. The thick line is used to denote all edges joining B∗ with the remaining vertices

of the graph.

4-Monotone min-CSP (to see this, simply assign n to every variable). Finally, without loss of
generality, we assume that every variable xi ∈ X belongs to exactly one pair in any individual
mini-constraint—otherwise, ifxi belongs to more than one pair, then the mini-constraint contains a
useless inequality that can be removed, and if xi belongs to no pair, then we can add the useless pair
(xi , 0). In what follows, we construct an instance red(X ,C,n,W) = (G,k ′) of Graph Coloring,
where k ′ = 2k + O (1) is the neighborhood-width ofG. (Note that, as will be formally proved later,
the parameter changes from 2k to O (k)).

Assignment Encoder. We first create k vertex-disjoint cliques, B1,B2, . . . Bk , each on 2kn new
vertices. We denote B = {B1,B2 . . . ,Bk }. Furthermore, for all i ∈ [k], we arbitrarily partition Bi

into two vertex-disjoint cliques of equal size (that is, 2k−1n), to which we refer as Bi
0 and Bi

1. In

addition, we add another clique, called B�, on 2kn −W new vertices, and denote B� = B ∪ {B�}.
Note that there are no edges between vertices that belong to distinct cliques among the cliques
created so far, and we remark that no such edges will be added later. Moreover, whenever we create
a new vertex below, we implicitly assume that we also add all edges between that vertex and the
vertices in B�. An illustration of the construction up to this point is given in Figure 1.

Before we proceed with the description of our construction, let us informally explain the intu-
ition behind the definition of these cliques. For every index i ∈ [2k − 1]0, let us think of i as the
unique ID of the variable xi . Note that every such ID i ∈ [2k − 1]0 can be encoded in binary using
only k bits. Intuitively, for all b ∈ [k], the clique Bb can be thought of as being associated with the
bst bit of all IDs, where for specific IDs, Bb

0 and Bb
1 indicate whether that bit is 0 or 1, respectively.

Moreover, for all i ∈ [2k − 1]0 and b ∈ [k], let bit(i,b) denote the bst bit of the ID i . That is,

i =
k∑

b=1

bit(i,b)2b−1.

Accordingly, for all i ∈ [2k − 1]0, let us denote the set of cliques that together represent the encod-
ing of i in binary by B[i] = {Bb

bit(i,b)
: b ∈ [k]}, and also let us denote the complementary set by

B[i] = {Bb
1−bit(i,b)

: b ∈ [k]}.
We will later ensure (as will be clear in the proof) that all of the cliques in B� must be together

properly colored using exactly 2kn colors (clearly, they cannot be colored using less than 2kn
colors, as every clique Bb ∈ B is of the size 2kn). The clique B� can be thought of as a garbage

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:11

collector, which forces that at most W colors can be reused to color both vertices in cliques in
B and vertices outside the cliques in B�. For the sake of clarity of what follows, we now give a
rough (partial) explanation of how the cliques in B are meant to encode assignments. To this end,
let us consider some specific variable xi ∈ X . Suppose we want to assign some value v ∈ [n]0 to
this variable. Then, the manner to do so is to arbitrarily choose some v vertices in every clique in
B[i], to color the set of the chosen vertices (across all the k cliques in B[i]) using exactly v colors,
and to avoid reusing any of these v colors to color any vertex in B�. Conversely, to decode the
value v assigned to xi , we compute how many colors have the properties of being used to color
a vertex in every clique in B[i] as well as not being used to color any vertex in B�. Importantly,
note that the ways in which we encode and decode values of distinct variables are independent of
one another—for all distinct i, j ∈ [2k − 1]0, a color that appears in all the cliques in B[i] cannot
also appear in all the cliques in B[j], and vice versa.

Constraint Variable. LetM denote the maximum number of mini-constraints of a constraint in
C. For every constraintC = (X ′,R) ∈ C and variable xi ∈ X ′, we create a gadget as follows. First,

we create a new clique, calledA(C,i) , onnM new vertices. We arbitrarily partitionA(C,i) into |R | + 1

vertex-disjoint cliques, denoted by A(C,i)
R

for all R ∈ R and A(C,i)
� , where for all R ∈ R, the clique

A(C,i)
R

contains n vertices, and the clique A(C,i)
� contains n(M − |R|) vertices (this clique might be

empty). Now, we add an edge between every vertex in A(C,i) and every vertex that belongs to a

clique in B[i]. In addition, we create another clique, called F (C,i) , on (n − 1)M vertices. We add

edges to the graph so that each of the vertices in F (C,i) is adjacent to all vertices in the graph

(including those that will be added later) except for the vertices in A(C,i) . An illustration of the
Constraint Variable gadget is given in Figure 2.

We proceed by presenting a brief intuitive explanation of this gadget. Here, our purpose will

be to ensure that A(C,i) can be colored only using colors of the following three types: (i) colors

of vertices in F (C,i) ; (ii) colors used to decode the value of xi as explained above; (iii) colors of
“matching vertices,” which will be defined later. (Observe that due to the existence of edges be-

tween the vertices in F (C,i) and any other vertex in the graph excluding those in A(C,i) , colors of

the first type can, in fact, only be used to color vertices in F (C,i) andA(C,i) .) In particular, to be able

to properly color A(C,i) , there should be at least n colors of the second and third types available to
use. Specifically, we will ensure that if we are interested to enforce that α (xi) ≥ c in the context
of some assignment α and pair (xi , c) in a mini-constraint in R, then exactly n − c colors of the
third type will be available, which would mean that at least c colors of the second type should be
available.

Mini-Constraint Selector. For every constraintC = (X ′,R) ∈ C, we now present a gadget that
aims to encode the selection of a mini-constraint in R that should be satisfied. For this purpose,
we first add one new special vertex, denoted by sC . Now, for every mini-constraint R ∈ R, we add

an independent set I (C,R) on
∑

(xi ,c)∈R
(n − c)

new vertices that are each adjacent to all the vertices in the cliques in B (in addition to the vertices

in B� and cliques of the form F (C ′,i′)). Denote IC = {I (C,R) : R ∈ R}. We add an edge between sC

and every vertex in the graph (including those that will be added later) except for the vertices in the
independent sets in IC . Moreover, for all distinct R,R′ ∈ R, we add an edge between every vertex

in I (C,R) and every vertex in I (C,R′) . For every R ∈ R, let us now turn to refine the independent

set I (C,R) by considering subsets of it. For every i ∈ [2k − 1]0 such that R ∈ R, let I (C,R)
i denote a

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:12 F. V. Fomin et al.

Fig. 2. Constraint Variable;C = (X ′,R),X ′ = {i, i ′, i ′′},R = {R1,R2,R3}. The thick lines are used to denote all

edges joining the cliquesA(C,i) ,A(C,i′) ,A(C,i′′) , F (C,i) , F (C,i′) , and F (C,i′′) with each other and the remaining

vertices of the graph.

subset of I (C,R) of size (n − c) where c is the unique integer in [n]0 satisfying (xi , c) ∈ R, so that

for all distinct i, j ∈ [2k − 1]0, it holds that I (C,R)
i ∩ I (C,R)

j = ∅. Clearly, as

���I
(C,R) ��� =

∑

(xi ,c)∈R
(n − c),

we have that every vertex in I (C,R) belongs to exactly one independent set I (C,R)
i . An illustration

of the Mini-Constraint Selector gadget is given in Figure 3.
Let us now explain the intuition underlying the construction of this gadget. To this end, first

observe that since sC is adjacent to all the vertices in the graph apart from those in the independent
sets in IC , it would definitely have a “new” color. As vertices in distinct independent sets in IC are
adjacent, only one independent set can have vertices colored with the same color as sC . Moreover,
as our color set is the resource we aim to use as little as possible, it would be possible to assume that
exactly one independent set has vertices colored with the same color as sC and, furthermore, all the

vertices of this independent set have the same color. The mini-constraint R ∈ R such that I (C,R) is
the independent set that “won” this unique color is the one to be thought of as the mini-constraint

in R that we should satisfy. Roughly speaking, we note that I (C,R) is thought of as one unit, in

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:13

Fig. 3. Mini-Constraint Selector. The thick lines are used to denote all edges joining sC and the independent

sets I (C,R1) , I (C,R2) , I (C,R3) , . . . with each other and the remaining vertices of the graph.

the sense that all the variables that occur in R will be affected simultaneously by the selection of
R (using the Matching Vertices gadget defined below), which is done to comply with the demand
that if a mini-constraint is to be satisfied, all of the inequalities corresponding to its pairs must be
satisfied simultaneously.

Matching Edges and Vertices. For every constraintC = (X ′,R) ∈ C, we now add a gadget that
relates the Constraint Variable gadgets associated with C to the Mini-Constraint Selector gadgets

associated withC . For this purpose, for every (existing) clique of the formA(C,i)
R

for some i ∈ [2k −
1]0 and R ∈ R, we perform the following operations. We first let Â(C,i)

R
denote some arbitrarily

chosen subclique of A(C,i)
R

on (n − c) vertices where (n − c) = |I (C,R)
i |. Now, we add a set of (n − c)

new edges to G, denoted by M (C,i)
R

, that together form an arbitrarily chosen perfect matching of

size (n − c) inG[I (C,R)
i ∪V (Â(C,i)

R
)], where each new edge has one endpoint in I (C,R)

i and the other

endpoint in Â(C,i)
R

. Finally, we add (n − c) new vertices, denoted by ve for all e ∈ M (C,i)
R

, and add
edges between each ve and all the vertices inG apart from the two vertices that are the endpoints

of the edge e . Let us denote M̂ (C,i)
R
= {ve : e ∈ M (C,i)

R
}. An illustration of this construction is given

in Figure 4.

Intuitively, the addition of the new sets M (C,i)
R

and M̂ (C,i)
R

aims to relate A(C,i)
R

and I (C,R)
i as

follows. First, observe that the color of each of the new vertices ve ∈ M̂ (C,i)
R

can be reused only to

color one of the endpoints of e . In case I (C,R) is colored with the same color as sC —that is, R is the
mini-constraint in R that we would like to satisfy—we are “free” to reuse the colors of the vertices

in M̂ (C,i)
R

in order to color the vertices in Â(C,i)
R

, and, otherwise, we are “forced” to spend these colors

on the vertices in I (C,R)
i . Roughly speaking, notice that the larger c = n − |I (C,R)

i | is, the harder it
is for an assignment α to ensure that α (xi) ≥ c as required to satisfy (xi , c) ∈ R; and, indeed, the

larger c is, the smaller the set of “free” colors is since its size is |M̂ (C,i)
R
| = n − c . Recalling the

three types of colors that can be used to color A(C,i) (in the description of the Constraint Variable
gadgets), and combining this with our last note, it would be possible to formally argue in our proofs
that if we choose to satisfy the mini-constraint R while overall using only “few” colors, the (n − c)

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:14 F. V. Fomin et al.

Fig. 4. Matching Edges and Vertices. The white bullets are used to depict the vertices ve and the incident

dashed lines show non-edges.

free colors of M̂ (C,i)
R

would have to be complemented with c colors of type (ii) in order to properly

color A(C,i) . As desired, this means that we would be able to argue that if I (C,R) is the independent
set reusing the color of sC , then for all (xi , c) ∈ R, the assignment α decoded from the coloring will
satisfy α (xi) ≥ c .

Chromatic Number of a Yes-instance. Denote

η = 2kn + ��
�
(n − 1)M

∑

(X ′,R)∈C
|X ′ |��

	
+ |C| + ��

�

∑

(X ′,R)∈C

∑

R∈R

∑

(xi ,c)∈R
(n − c)��

	
.

(This value is polynomial in the input size because |X | = 2k .) Informally, this value would be the
threshold for the chromatic number of the output graph according to which we will determine
whether the input instance of 4-Monotone min-CSP is a Yes-instance or a No-instance.

Correctness. Let us first prove the forward direction of the correctness of our construction.

Lemma 3.4. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k . If

(X ,C,n,W) is a Yes-instance of 4-Monotone min-CSP, then the chromatic number of G in

red(X ,C,n,W) = (G,k ′) is at most η.

Proof. Suppose that (X ,C,n,W) is a Yes-instance of 4-Monotone min-CSP, and let α be
an assignment of cost at most W that satisfies C. Without loss of generality, we can assume
that cost(α) =W ; we otherwise can increase the value assigned to some variables so that
this condition will be satisfied. In what follows, we construct a proper coloring χ : V (G) →
[η]. This would imply that the chromatic number of G is at most η, which would con-
clude the proof. Recall that μ = η − 2kn. First, we use μ = ((n − 1)M ·∑(X ′,R)∈C |X ′ |) + |C| +
(
∑

(X ′,R)∈C
∑

R∈R
∑

(xi ,c)∈R (n − c)) colors, say the colors in [μ], to (arbitrarily) color all the vertices

in the set (
⋃

C=(X ′,R)∈C
⋃

xi ∈X ′ V (F (C,i)) ∪ {sC : C ∈ C} ∪ (
⋃

C=(X ′,R)∈C
⋃

xi ∈X ′ M̂
(C,i)
R

), whose size

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:15

is exactly μ, with distinct colors. Since we have not reused any color so far, it is clear that we have
also not colored the endpoints of any edge with the same color so far.

We proceed by usingW new colors, that is, the colors in [μ +W] \ [μ] ⊆ [η] (note that 2kn ≥W
and, hence, μ +W ≤ η), to color some of the vertices in the cliques in B. For every index i ∈ [2k −
1]0 and B ∈ B[i], let alloc(i,B) be some (arbitrarily chosen) set of α (xi) vertices in B, so that for all
distinct i, j ∈ [k] and B ∈ B[i] ∩ B[j], alloc(i,B) ∩ alloc(j,B) = ∅. Since for all i ∈ [k], the size
of each clique B ∈ B[i] is 2k−1n (recall that such B is only a “half” of a clique in B) and there exist
at most 2k−1 indices j ∈ [2k − 1]0 in total such that B ∈ B[j], as well as since the maximum value
assigned by α is n, we have that there is a sufficient number of vertices to ensure that alloc can be
well-defined. Moreover, for all i ∈ [2k − 1]0, let col(i) denote some (arbitrarily chosen) set of α (xi)
colors in [μ +W] \ [μ], so that for all distinct i, j ∈ [k], col(i) ∩ col(j) = ∅. Since cost(α) ≤W ,
there is a sufficient number of colors in [μ +W] \ [μ] to ensure that col can be well-defined. Now,
for all i ∈ [2k − 1]0 and B ∈ B[i], we (arbitrarily) color all the vertices in alloc(i,B) with distinct
colors from col(i). Clearly, all the vertices of the same clique in B that we have colored so far
received distinct colors (because for all distinct i, j ∈ [k], col(i) ∩ col(j) = ∅), and there are no
edges between vertices in different cliques in B. Therefore, it still holds that we have not colored
the endpoints of any edge with the same color so far.

Note that we have not yet used any of the colors in [η] \ [μ +W], and that for every color in [μ +
W] \ [μ], each clique in B has exactly one vertex with that color (because cost(α) =W). Since the
size of each clique in B is exactly 2kn and η = μ + 2kn, for every clique in B, individually, we can
use the remaining colors in [η] \ [μ +W] to color every yet uncolored vertex with a distinct color.
Moreover, since |V (B�) | = 2kn −W and there are no edges between vertices in B� and vertices in
the cliques in B, we can also color every vertex in B� with a distinct color from [η] \ [μ +W] so
that still no edge has both endpoints colored with the same color.

In what follows, we proceed to color the vertices in all the cliques of the form A(C,i) as well as

in all the independent sets of the form I (C,R) . Here, we will only consider colors already used—in
particular, when we color a vertex v , we will say that v is to be colored with the color of some
previously colored vertex. Thus, it will be clear that, overall, we do not exceed our budget of colors
η. The point that we will have to argue about each time is that each newly colored vertex is not
adjacent to a vertex with the same color. To this end, we consider the constraintsC = (X ′,R) ∈ C
one by one, and in each iteration color the vertices in A(C,i) for all xi ∈ X ′ as well as IC . Since

for distinct constraintsC = (X ′,R), Ĉ = (X̂ , R̂) ∈ C, there is no edge between a vertex inA(C,i) for

some xi ∈ X ′ or in IC and a vertex in A(Ĉ, j) for some x j ∈ X̂ or in IĈ , we can indeed analyze each
constraint separately. Next, we fix some constraintC = (X ′,R) ∈ C. Moreover, we let R be a mini-
constraint in R that is satisfied by α , whose existence follows from the fact that α satisfies C. For
all i ∈ [2k − 1]0 such that xi ∈ X ′, let ci denote the (unique) integer in [n]0 satisfying (xi , ci) ∈ R.

Let us begin by coloring the vertices in the independent sets in IC . To this end, we first color

all the vertices in I (C,R) with the color of sC . Since the color of sC is not used by any other vertex
and I (C,R) ∪ {sC } is an independent set, no edge has both endpoints colored with the same color.

For every R′ ∈ R \ {R} and for every edge e ∈ M (C,R′) , we color the endpoint of e in I (C,R′) with
the color ofve (which is adjacent to neither endpoint of e and whose color was not reused before).

Clearly, we have thus colored all the vertices in all the independent sets in IC \ {I (C,R) } so that no
edge has both endpoints colored with the same color.

It remains to color the vertices in A(C,i) . First, for every edge e ∈ M (C,R) , we color the endpoint

of e in Â(C,i)
R

with the color of ve . In this context, note that ve is adjacent to neither endpoint of

e , and its color was not reused before, as the endpoint of e in I (C,R) was colored by sC . So far, we

have colored |M (C,R) | = n − ci vertices among thenM vertices inA(C,i) . Since α satisfies R, we have

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:16 F. V. Fomin et al.

that α (xi) ≥ ci , and, therefore, |col(i) | ≥ ci . Note that all the vertices colored by colors in col(i)
belong to cliques in B[i], and that no vertex in any of these cliques is adjacent to any vertex in

A(C,i) (only the vertices in the cliques in B[i] are adjacent to the vertices in A(C,i)). Therefore, we

can safely color ci additional vertices in A(C,i) using the colors in col(i). The remaining (n − 1)M
vertices in A(C,i) are now colored using the (n − 1)M colors used to color the vertices in F (C,i) .
Thus, we have overall ensured that no edge has both endpoints colored with the same color. This
completes the proof. �

Toward the proof of the reverse direction, we first establish several definitions and claims. We
begin by defining an assignment decoded from a proper coloring of a graph outputted by our
reduction.

Definition 3.1. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k , and de-
note red(X , C,n,W) = (G,k ′). Let χ be a proper coloring of G. Then, the assignment αχ : X →
[n]0 is defined as follows. For all i ∈ [2k − 1]0, denote colχ (i) = {j ∈ ima(χ) : every clique in B[i]

has a vertex colored j by χ } \ χ (V (B�)). Then, for all xi ∈ X , α (xi) � |colχ (i) |.
It will also be convenient for us to use the following notation: In the context of an

output red(X ,C,n,W) = (G,k ′), we denote D = (
⋃

C=(X ′,R)∈C
⋃

xi ∈X ′ V (F (C,i))) ∪ {sC : C ∈ C} ∪
(
⋃

C=(X ′,R)∈C
⋃

xi ∈X ′ M̂
(C,i)
R

).

Observation 3.1. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k , and

denote red(X , C,n,W) = (G,k ′). Then, for all i ∈ [k], any two distinct vertices in V (Bi) ∪ D are

assigned distinct colors by χ .

Proof. For all i ∈ [k], the subgraph of G induced by V (Bi) ∪ D forms a clique, and, therefore,
the observation is correct. �

By using Observation 3.1, we derive the following result.

Lemma 3.5. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k , and denote

red(X , C,n,W) = (G,k ′). Let χ be a proper coloring of G such that ima(χ) ⊆ [η]. For all i ∈ [k],
χ (V (Bi)) = [η] \ χ (D) and χ (V (B�)) ⊆ χ (V (Bi)).

Proof. First, notice that |D | = η − 2kn, and that for all i ∈ [k], |Bi | = 2kn. By Observation 3.1,
for all i ∈ [k], we have that χ (Bi) ⊆ ima(χ) \ χ (D). However, since ima(χ) ⊆ [η], this implies that
for all i ∈ [k], indeed χ (Bi) = ima(χ) \ χ (D). Since every vertex in B� is adjacent to all vertices
in G apart from those in the cliques in B, we have that for any i ∈ [k], indeed also χ (V (B�)) ⊆
χ (V (Bi)). �

At this point, we are already able to analyze the cost of a decoded assignment.

Lemma 3.6. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k , and denote

red(X , C,n,W) = (G,k ′). Let χ be a proper coloring ofG such that ima(χ) ⊆ [η]. Then, cost(αχ) ≤
W .

Proof. By the definition of αχ (Definition 3.1), it holds that cost(αχ) =
∑2k−1

i=0 |colχ (i) |. Thus,

to prove that the lemma is correct, we need to show that
∑2k−1

i=0 |colχ (i) | ≤W . For this pur-

pose, first note that for all distinct i, j ∈ [2k − 1]0, it holds that B[i] � B[j], and, hence, from

the definition of col(·), we have that col(i) ∩ col(j) = ∅. Thus,
∑2k−1

i=0 |colχ (i) | = |⋃2k−1
i=0 col(i) |.

Now, note that for any i ∈ [k],
⋃2k−1

i=0 col(i) ⊆ χ (V (Bi)) \ χ (V (B�)), |V (Bi) | = 2kn and |V (B�) | =
2kn −W . Moreover, by Lemma 3.5, for any i ∈ [k], χ (V (B�)) ⊆ χ (V (Bi)). Therefore, for any

i ∈ [k], |⋃2k−1
i′=0 col(i ′) | = |V (Bi) | − |V (B�) | =W . We thus have that cost(αχ) ≤W . �

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:17

We proceed by defining a special kind of proper coloring with respect to the graphs outputted
by our reduction.

Definition 3.2. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k , and de-
note red(X , C,n,W) = (G,k ′). A function χ is a nice coloring of G if it is a proper coloring of G,
ima(χ) ⊆ [η], and for all C = (X ′,R) ∈ C, the two following conditions hold.

(1) There exists exactly one mini-constraint in R, denote by RC
χ , such that all the vertices in

I (C,RC
χ) have the same color as sC .

(2) For all R ∈ R \ {RC
χ } andv ∈ I (C,R) , the color ofv is the same asve where e is the (unique)

edge in
⋃

xi ∈X ′M
(C,i)
R

incident to v .

Lemma 3.7. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k , and denote

red(X , C,n,W) = (G,k ′). If there exists a proper coloring χ of G such that ima(χ) ⊆ [η], then there

also exists a nice coloring χ̂ of G.

Proof. Let χ be a proper coloring of G such that ima(χ) ⊆ [η]. Consider some constraint C =
(X ′,R) ∈ C. First, recall that for every two distinct R,R′ ∈ R, all the vertices in I (C,R) are adjacent

to all the vertices in I (C,R′) . Thus, there exists at most one R ∈ R such that at least one vertex
in I (C,R) has the same color as sC . Let RC

χ denote the mini-constraint with this property, where

if no such mini-constraint exists, arbitrarily choose some mini-constraint from R. Now, since sC

is adjacent to all the vertices that do not belong to I (C,R) for some R ∈ R, we can recolor all the

vertices in I (C,RC
χ) with the color of sC , so that the resulting coloring χ̂ remains a proper coloring,

and, clearly, it still holds that only colors from [η] are used. To complete the proof, it remains to
show that χ̂ satisfies the second property in the list. For this purpose, consider some R ∈ R \ {RC

χ }
andv ∈ I (C,R) . Observe thatv is adjacent to all the vertices inD ∪ (

⋃
i ∈[k]V (Bi)) apart from sC and

ve where e is the (unique) edge in
⋃

xi ∈X ′M
(C,i)
R

incident to v . By Lemma 3.5 and since ima(χ̂) ⊆
[η], we get that v has the same color as either sC or ve . However, as we have already argued that

no vertex in I (C,R) has the same color as sC , we conclude that v necessarily has the same color as
ve . As the choice ofC was arbitrary, the above modification can be done for every constraint in C
individually. This completes the proof. �

Now, we present two claims that shed light on the usefulness of analyzing nice colorings.
To this end, it will be convenient to use the following notation: In the context of an output

red(X ,C,n,W) = (G,k ′) and a nice coloring χ of G, for all C = (X ′,R) ∈ C and xi ∈ X ′, let c (C,i)
χ

denote a unique integer in [n]0 satisfying (xi , c
(C,i)
χ) ∈ RC

χ .

Lemma 3.8. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k , and de-

note red(X , C,n,W) = (G,k ′). Let χ be a nice coloring of G. For all Ĉ = (X̂ , R̂) ∈ C and x î ∈
X̂ , at most n − c (Ĉ, î)

χ vertices in A(Ĉ, î) are colored with a color that is also used for vertices in
⋃

C=(X ′,R)∈C
⋃

xi ∈X ′ M̂
(C,i)
R

.

Proof. Let us fix some Ĉ = (X̂ , R̂) ∈ C and x î ∈ X̂ . First, note that all the vertices in A(Ĉ, î) are

adjacent to all the vertices in
⋃

C=(X ′,R)∈C\{Ĉ }
⋃

xi ∈X ′ M̂
(C,i)
R

, and, therefore, they can clearly not

be colored as the vertices in this set. Moreover, for all R ∈ R̂ \ {RĈ
χ } and v ∈ I (Ĉ,R) , we have that

v is colored as ve where e is the edge in
⋃

xi ∈X ′M
(C,i)
R

incident to v (as χ is a nice coloring of

G), and we note that every vertex in A(Ĉ, î) is incident to either v or ve . Thus, among the vertices

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:18 F. V. Fomin et al.

in
⋃

C=(X ′,R)∈C
⋃

xi ∈X ′ M̂
(C,i)
R

, the vertices in A(Ĉ, î) can only be colored as the vertices in M̂ (Ĉ, î)

RĈ
χ

.

Since |M̂ (Ĉ, î)

RĈ
χ

| = n − c (Ĉ, î)
χ , this completes the proof. �

Lemma 3.9. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k , and denote

red(X , C,n,W) = (G,k ′). Let χ be a nice coloring ofG. For allC = (X ′,R) ∈ C and xi ∈ X ′, at least

c (C,i)
χ vertices in A(C,i) are colored using colors j ∈ [η] with the following property: Every clique in

B[i] has a vertex colored j, and no vertex in B� is colored j.

Proof. Fix some C = (X ′,R) ∈ C and xi ∈ X ′. By Observation 3.1 and since ima(χ) ⊆ [η], all

the vertices in A(C,i) must be colored as vertices in B î ∪ D for any î ∈ [k]. However, by Lemma 3.8

and since every vertex in A(C,i) is adjacent to every vertex in the cliques F (C ′,i′) for (C ′, i ′) � (C, i)

and B ∈ B[i], we have that all the vertices in A(C,i) , apart from at most n − c (C,i)
χ vertices, are

colored as either some vertex in the clique F (C,i) or with a color that is present in every clique in

B[i]. Because |F (C,i) | = (n − 1)M and |A(C,i) | = nM , we further derive that at least c (C,i)
χ vertices

in A(C,i) are colored with some color that is present in every clique in B[i]. Since every vertex in

A(C,i) is adjacent to every vertex in B�, the correctness of the lemma follows. �

Finally, we are ready to prove the reverse direction.

Lemma 3.10. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k . If the chro-

matic number of G in red(X ,C,n,W) = (G,k ′) is at most η, then (X ,C,n,W) is a Yes-instance of

4-Monotone min-CSP.

Proof. Suppose that the chromatic number of G is at most η. By Lemma 3.7, G has a nice
coloring χ . Let α denote the assignment αχ : X → [n]0. By Lemma 3.6, we have that cost(α) ≤W .
Now, let us consider some C = (X ′,R) ∈ C. Then, Lemma 3.9 directly implies that for all xi ∈ X ′,
|col(i) | ≥ c (C,i)

χ . However, this means that α (xi) ≥ c (C,i)
χ , and, therefore, α satisfies RC

χ . In turn, this
means that α satisfies C . Since the choice of C was arbitrary, we have that α satisfies C. Hence,
(X ,C,n,W) is a Yes-instance of 4-Monotone min-CSP. �

3.3 Clique-width

Toward the proof of Theorem 1, it remains to bound the clique-width of the output graph.

Lemma 3.11. Let (X ,C,n,W) be an instance of 4-Monotone min-CSP with |X | = 2k . The

neighborhood-width of G in red(X ,C,n,W) = (G,k ′) is at most 2k + O (1).

Proof. We define an ordering σ onV (G) = {v1,v2, . . . ,vn′ } as follows. We let the first 2kn(k +
1) −W vertices in this order be all the vertices in the cliques inB�, where the internal order among
them is arbitrary. Notice that B� as well as every clique of the form Bi

b
is a module inG. Since there

are exactly 2k + 1 such cliques, we have that for all i ∈ [2kn(k + 1) −W], |EQ (G,σ , i) | ≤ 2k + 1.
Let us denote the set of vertices inserted so far by D0.

Let us denote C = {C1,C2, . . . ,Cm }, and for all j ∈ [m], denote Cj = (X j ,Rj). For

j = 1, 2, . . . ,m, we will consecutively insert all the vertices in D j � (
⋃

xi ∈X j
V (A(Cj ,i)) ∪

V (F (Cj ,i))) ∪ {sCj } ∪ (
⋃

R∈Rj
I (Cj ,R)) ∪ (

⋃
xi ∈X j

⋃
R∈Rj

M̂
(Cj ,i)

R
) in an order defined as fol-

lows. Fix some j ∈ [m], and let t be the number of vertices inserted so far, that is, the

vertices in D j′ for all 0 ≤ j ′ < j. Now, note that
⋃j−1

j′=1 D
j′ consists of two modules with

respect to V (G) \ (
⋃j−1

j′=0 D
j′)—namely,

⋃
j′<j ((

⋃
xi ∈X j′ V (A(Cj′,i)) ∪ (

⋃
R∈Rj′ I

(Cj′,R))) and

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:19

⋃
j′<j (V (F (Cj′,i))) ∪ {sCj′ } ∪ (

⋃
xi ∈X j′

⋃
R∈Rj′ M̂

(Cj′,i)

R
)). Therefore, |EQ (G,σ , t) | ≤ 2k + 3. We

now insert sCj . Thus, |EQ (G,σ , t + 1) | ≤ 2k + 4. Next, for all xi ∈ X j , we insert all the vertices

of the clique G[V (A(Cj ,i)) \ (
⋃

R∈Rj
Â

(Cj ,i)

R
)] in an arbitrary order and then all the vertices of the

clique F (Cj ,i) in an arbitrary order (where vertices of the same clique appear consecutively). Since
the arity of Rj is at most 4, we have thus inserted at most eight cliques. Moreover, observe that
each one of these cliques is a module with respect to V (G) \ D0. Let t ′ denote the total number of
vertices of these cliques. Then, we so far have that for all i ′ ∈ [t + t ′ + 1], |EQ (G,σ , i ′) | ≤ 2k + 12.

Let us denote Rj = {R1,R2, . . . ,Rr }. For p = 1, 2, . . . , r (outer loop) and q = 1, 2, . . . , |X j | (in-

ner loop), we will consecutively insert all the vertices in D j
p,q � V (Â

(Cj ,q)

Rp
) ∪ I (Cj ,Rp)

q ∪ M̂ (Cj ,q)

Rp

in an order defined as follows. Fix some p ∈ [r] and q ∈ [|X j |], and let t̂ be the total number

of vertices inserted so far, that is, the vertices in D j′ for all 0 ≤ j ′ < j as well as the vertices

in D j
p′,q′ where (p ′,q′) < (p,q); that is, either 1 ≤ p ′ < p or both p ′ = p and 1 ≤ q′ < q. Now,

note that
⋃

(p′,q′)< (p,q) D
j

(p′,q′)
consists of seven modules with respect to V (G) \ (

⋃j−1
j′=0 D

j′) ∪

(
⋃

(p′,q′)< (p,q) D
j

(p′,q′)
)—namely,

⋃
p′ V (Â

(Cj ,q
′)

Rp′
) for each q′ ≤ |X j | where p ′ ranges over all val-

ues in [p] such that (p ′,q′) < (p,q) (four modules since |X j | ≤ 4),
⋃

p′<p

⋃
q′ ∈[|X j |] I

(Cj ,Rp′)

q′ and
⋃

q′<q I
(Cj ,Rp)

q′ (two modules), and
⋃

(p′,q′)< (p,q) M̂
(Cj ,q)

Rp
(one module). Therefore, |EQ (G,σ , t̂) | ≤

2k + 19.
Finally, let us denote M

(Cj ,q)

Rp
= {e1, e2, . . . , es }. For � = 1, 2, . . . , s , we consecutively insert the

vertex ve� ∈ M̂ (Cj ,q)

Rp
and the two endpoints of e� (one in V (Â

(Cj ,q)

Rp
) and the other in I

(Cj ,Rp)
q) in an

arbitrary order. When we reach any iteration corresponding to some � ∈ [s], observe that the sets

of vertices (from D j
p,q) inserted in the previous iterations of this innermost loop form three mod-

ules (that are each either a clique or an independent set)—one consisting of the vertices inserted

from V (Â
(Cj ,q)

Rp
), another consisting of the vertices inserted from I

(Cj ,Rp)
q , and the last consisting

of the vertices inserted from M̂
(Cj ,q)

Rp
. In addition, each of the vertices inserted in the iteration

corresponding to � can form its own module before the iteration finishes, but only two such ver-
tices are inserted (the third vertex finished the iteration). Overall, we derive that for all i ∈ [n′],
|EQ (G,σ , i) | ≤ 2k + 24.

By the arguments above, we have that nw(G,σ) ≤ 2k + 24. Therefore, nw(G) ≤ 2k + O (1). This
completes the proof. �

We are now ready to conclude the correctness of our first main theorem.

Theorem 3. Unless ETH fails, Graph Coloring cannot be solved in time f (k) · n2o (k)
for any

function f of k , where k is the neighborhood-width of G.

Proof. Suppose, by way of contradiction, that there exists an algorithm A that solves Graph

Coloring in time f (k) · n2o (k)
for some function f of k , where k is the neighborhood-width. As

we would like to reserve n and k to be used in the context of 4-Monotone min-CSP, let us next
use n′ and k ′, respectively, in the context of Graph Coloring, e.g., under this notationA runs in

time f (k ′) · n′2o (k′)
. Now, consider the following algorithm B for 4-Monotone min-CSP. Given an

instance (X ,C,n,W) of 4-Monotone min-CSP where k = 2k̂ , algorithm B first constructs the in-
stance red(X ,C,n,W) = (G,k ′) of Graph Coloring in polynomial time. Then, it calls algorithm
A with (G,k ′) as input, and answers Yes if the reply given by algorithm A is at most η, and No

otherwise. By Lemmata 3.4 and 3.10, algorithm B is correct. Furthermore, in the output instance

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:20 F. V. Fomin et al.

n′ = nO (1) , and by Lemma 3.11, we also have that k ′ = 2k̂ + O (1) = 2 log2 k + O (1). Thus, algo-

rithm B solves 4-Monotone min-CSP in time f (k ′) · n′2o (k′)
= f (logk) · (nO (1))2o (log k)

= д(k)no (k)

for some function д of k , which contradicts Lemma 3.1. This concludes the proof. �

We remark that the proof above, in fact, shows that unless ETH fails, Graph Coloring cannot

be solved in time f (k) · no (2k/2) for any function f of k , where k is the neighborhood-width of G.
By Proposition 2.1, we have the following corollary to Theorem 3.

Corollary 3.1. Unless ETH fails, Graph Coloring cannot be solved in time f (k) · n2o (k)
for any

function f of k , where k is the linear clique-width of G.

Finally, due to Observation 2.1, Theorem 1 follows as a consequence of Corollary 3.1.

4 HAMILTONIAN CYCLE

In this section, we consider the Hamiltonian Cycle problem. Recall that in Hamiltonian Cycle,
we are given a graph G and the objective is to check whether there exists a cycle passing through
every vertex of G, i.e., a Hamiltonian cycle. We prove Theorem 2, which provides an algorithmic
lower bound for the Hamiltonian Cycle problem when parameterized by the clique-width of
the input graph. To prove it, we give a reduction from the Red-Blue Capacitated Dominating
Set problem parameterized by the feedback vertex number of the input graph. Respectively, in
Section 4.1, we introduce this problem, and in Section 4.2 give the proof of Theorem 2.

4.1 Capacitated Domination

A red-blue capacitated graph is a pair (G, c), whereG is a bipartite graph with the vertex bipartition
R and B, and c : R → N is a capacity function such that 1 ≤ c (v) ≤ dG (v) for every vertex v ∈
R. The vertices of R are called red and the vertices of B are called blue. A set S ⊆ R is called a
capacitated dominating set if there is a domination mapping f : B → S mapping every vertex from
B to one of its neighbors in S such that the total number of vertices mapped by f to each vertex
v ∈ S does not exceed its capacity c (v). For v ∈ S , we say that vertices in f −1 (v) are dominated by

v . We consider the following variant of the Capacitated Domination problem.

Red-Blue Capacitated Dominating Set (Red-Blue CDS) Parameter: k
Input: A red-blue capacitated graph (G, c).
Question: Does G contain a capacitated dominating set of size at most k?

The investigation of the parameterized complexity of the Capacitated Domination problem
was initiated by Dom et al. [19] and Bodlaender, Lokshtanov, and Penninkx [5]. Further, Red-Blue
CDS proved to be a good tool problem for establishing hardness of problems parameterized by the
clique-width of the input graph. In particular, some of the authors of this article used reductions
from Red-Blue CDS to show the W[1]-hardness of Edge Dominating Set and Hamiltonian
Cycle in Ref. [23]; and then in Ref. [24], Red-Blue CDS was used to establish asymptotically tight
lower bounds for Edge Dominating Set and Max-Cut, assuming ETH (see also Ref. [7] for the
related results). The following lemma was shown in Ref. [24].

Lemma 4.1 ([24, Theorem 3.1]). Unless the ETH fails, Red-Blue CDS cannot be solved in time

f (h)no (h) , where h is the feedback vertex number of the input graph. Moreover, the problem cannot

be solved in time f (h)no (h) even if the input is restricted to graphs G such that for every minimum

feedback vertex set X ⊆ V (G),

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:21

Fig. 5. Graphs L1 and L2. Paths P1, P2, R1, R2, and P are shown by thick lines.

—X is independent, and

—each vertex of the forest G − X is adjacent to at most one vertex of X .

We also need the following upper bound for clique-width.

Lemma 4.2 ([24, Lemma 2.1]). Let X be a feedback vertex set of a graph G such that each vertex v
of the forest F = G − X is adjacent to at most one vertex of X . Then cw(G) ≤ 4 · |X | + 3.

4.2 Proof of Theorem 2

Now we are ready to prove the main results of the section. We reduce from Red-Blue CDS pa-
rameterized by the feedback vertex number of the input graph. We first give a construction, then
prove its correctness, and, finally, argue on the clique-width of the transformed instance.

Our reduction is, in fact, a variant of the reduction that was used in Ref. [23] to prove the W[1]-
hardness of Hamiltonian Cycle parameterized by the clique-width of the input graph. The main
difference is that now we have to construct a graph whose clique-width is linear in the feedback
vertex number of the input graph. Hence, we modify the reduction to ensure this property and
show the new upper bound for the clique-width.

As our reduction is based on the reduction from Ref. [23], we use some auxiliary results obtained
in that article.

Auxiliary Gadgets. We denote, by L1, the graph with the vertex set {x ,y, z,a,b, c,d } and the edge
set {xa,ab,bc, cd,dy,bz, cz}. Let P1 be the path xabzcdy, and P2 = xabcdy. (See Figure 5.)

We use the following property of this graph.

Lemma 4.3 ([23, Lemma 8]). Let G be a Hamiltonian graph such that G[V ′] is isomorphic to L1

for V ′ ⊆ V (G). Furthermore, if all edges in E (G) \ E (G[V ′]) incident to V ′ are incident to the copies

of the vertices x , y, and z in V ′, then every Hamiltonian cycle in G either includes the path P1, or the

path P2 as a segment.

Our second auxiliary gadget is the graph L2. This graph has {x ,y, z, s, t ,a,b, c,d, e, f ,д,h} as its
vertex set. We first include xa,ab,bz, cz, cd,dy, se, e f , f b, ch,hд,дt in its edge set. Then, an (x ,y)-
path of length 10, xw1 · · ·w9y, is added, and edges f w3,w1w6,w4w9,w7h are included in the set of
edges. Let P = xabzcdy, R1 = se f baxw1w2 . . .w9ydchдt , and R2 = se f w3w2w1w6w5w4w9w8w7hдt .
(See Figure 5.) This graph has the following property.

Lemma 4.4 ([23, Lemma 8]). Let G be a Hamiltonian graph such that G[V ′] is isomorphic to L2

for V ′ ⊆ V (G). Furthermore, if all edges in E (G) \ E (G[V ′]) incident to V ′ are incident to the copies

of the vertices x ,y, z, s, t in V ′, then every Hamiltonian cycle in G includes either the path R1, or two

paths P and R2 as segments.

Final Reduction. Now we describe our reduction. Let (G, c) be red-blue capacitated graph with
R = {u1, . . . ,un } being the set of red vertices and B = {v1, . . . ,vr } being the set of blue vertices and
k be a positive integer.

The general idea of the reduction is to replace each red vertex ui and the edges incident to ui

by gadgets to achieve the following property: if ui is selected to be in a capacitated dominating

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:22 F. V. Fomin et al.

Fig. 6. Graph G ′(c).

set, then exactly c (ui) paths with end-vertices in the gadget corresponding to ui and the internal
vertices in the gadgets corresponding to the edges incident toui should form segments of a (poten-
tial) Hamiltonian cycle. Then, the property that a blue vertexvj is dominated by ui corresponds to
the property that vi is included in one of the paths. To achieve this, each red vertex ui is replaced
by two vertices ai ,bi , the vertices ai and bi are joined by c (ui) + 1 paths of length two. Let Ci

denote the set of middle vertices of these paths, and Xi = Ci ∪ {ai ,bi }. Each edge uivj ∈ E (G), is

replaced by a copy Li j
2 of L2 with z = vj and vertices x and y are made adjacent to all the vertices

ofCi . The vertices corresponding to s and t are called si j and ti j in Li j
2 . Furthermore, let xi j and yi j

denote the vertices corresponding to x and y in Li j
2 . The paths corresponding to P , R1, and R2 are

called P i j , Ri j
1 , and Ri j

2 , respectively, in Li j
2 . Denote the obtained graph by G ′(c). (See Figure 6 for

an illustration.)
We are going to have k red vertices selected to be in a capacitated dominating set. Respectively,

n − k red vertices should be outside of the set. Then the vertices of the gadgets constructed above
for these vertices and the incident edges should be included in a Hamiltonian cycle (if exists).
Therefore, we need a gadget that allows to constrict segments of a Hamiltonian cycle to collect
these vertices. We add two vertices д and h, which are joined by

∑n
i=1 (c (vi) + 3) +m + 1 paths

of length two where m = |E (G) |. Let Y be the set of middle vertices of these paths. All vertices
si j and ti j are joined by edges with all vertices of Y . For every vertex w such that w ∈ Xi (recall
Xi = Ci ∪ {ai ,bi }), i ∈ [n], a copy Lw

1 of L1 with z = w is attached and the vertices x ,y of this gadget
are joined to all vertices of Y . We let xw and yw denote the vertices corresponding to x and y in
Lw

1 . Similarly, Pw
1 and Pw

2 denotes the paths in Lw
1 corresponding to P1 and P2, respectively.

Finally, we need a selection gadget constructed by adding k + 1 vertices, namely p1, . . . ,pk+1,
and making them adjacent to the vertices of {ai ,bi : 1 ≤ i ≤ n} and to д and h. The segments of a
(potential) Hamiltonian cycle with their end-vertices in {p1, . . . ,pk+1} are used to select k gadgets
corresponding to the red vertices that are going to be included in a capacitated dominating set.

Denote by H the obtained graph. The construction of H can easily be done in time polynomial
in n and r .

Lemma 4.5. A graph (G, c) has a capacitated dominating set of size at most k if and only if H has

a Hamiltonian cycle.

Proof. Let S be a capacitated dominating set of size at most k in (G, c) with the corresponding
dominating mapping f . Without loss of a generality, we assume that |S | = k and S = {u1, . . . ,uk }.
The Hamiltonian cycle we are trying to construct is naturally divided into k + 1 parts by the ver-
tices p1, . . . ,pk+1. We construct the Hamiltonian cycle starting from the vertex p1. Assume that
the part of the cycle up to the vertex pi is already constructed. We show how to construct the part
from pi to pi+1. We include the edge piai in it. Let J = {j ∈ {1, . . . ,x } : f (vj) = ui }. If J = ∅, then
ai is joined with bi by a path of length two, which goes through one vertex of Ci . Otherwise, for

all gadgets Li j
2 where j ∈ J , the paths P i j are included to the cycle as segments, and endpoints of

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:23

these paths are joined consecutively by paths of length two through vertices of Ci with ai and bi

(that is, ai is joined with one endpoint of the first path through a vertex of Ci , another endpoint
of this path is joined the endpoint of the second path through another vertex ofCi , and so on; the
remaining endpoint of the last path is joined with bi). Since |J | ≤ c (ui) and |Ci | = c (ui), we can
always find vertices in Ci for this construction. Finally we include the edge bipi+1 to the cycle.

When the vertex pk+1 is reached, we move to the set Y . Note that, at this stage, the vertices
v1, . . . ,vr are already included in the cycle. We start by including the edge pk+1д. We will add the
following segments to the cycle and connect them appropriately.

—For every Li j
2 , the path Ri j

1 is added to the cycle if P i j was not included to it; else, the path

Ri j
2 is added. Note thatm such paths are included to the cycle.

—For every vertexw such thatw ∈ Xi for some i ∈ [n], the path Pw
2 is included in the cycle if

w is already included in the constructed part of the cycle; else the path Pw
1 is added. Clearly,

we add
∑n

i=1 (c (vi) + 3) paths.

Finally, the total number of paths we will add is
∑n

i=1 (c (vi) + 3) +m = |Y | − 1. We add the seg-
ments of the paths mentioned with the help of vertices in Y in the way we added the paths P i j

with the help of vertices in Ci . Let the end points of the resultant joined path be {q1,q2}. Notice
that (a) q1,q2 ∈ Y and (b) this path includes all the vertices of Y . Now, we add edges дq1, q2h, and
hp1. This completes the construction of the Hamiltonian cycle.

For the reverse direction of the proof, we assume that we have been given C , a Hamiltonian
cycle in H . This cycle is divided into k + 1 segments by the vertices p1, . . . ,pk+1. Let S = {ui :
pjai ∈ E (C),aips � E (C), j � s , for some j ∈ [k + 1]}. We prove that S is a capacitated dominating
set inG of cardinality at most k . We first argue about the size of S ; clearly its size is upper bounded
by k + 1. To argue that it is at most k , it is enough to observe that, by Lemmata 4.3 and 4.4, either
pjд or pjh must be in E (C) for some j ∈ [k + 1]. Now, we show that S is indeed a capacitated
dominating set. Our proof is based on the following observations.

—By Lemma 4.4, every vertex vj appears in a segment P i j for some j ∈ [r] in C . We set the
domination function f (vj) = ui if vj is included in the segment P i j in C .

—By Lemmata 4.3 and 4.4, the endpoints of paths P i j can be reached only through vertices ai

and bi from outside of the set Xi . This implies that all paths P i j , which appear as segments
inC for some i ∈ [n], are joined together and with vertices ai and bi into one segment ofC
by paths that go through vertices ofCi . It means that ui ∈ S and f (B) ⊆ S . Moreover, since
|Ci | = c (ui) + 1, at most c (ui) paths P i j can be segments ofC for each i ∈ [n] and, therefore,
| f −1 (ui) | ≤ c (ui) for ui ∈ S .

This concludes the proof of the lemma. �

The next lemma upper bounds the clique-width of H .]

Lemma 4.6. Let G be such that there is a minimum feedback vertex set X ⊆ V (G) such that (i) X
is independent, and (ii) each vertex of the forest G − X is adjacent to at most one vertex of X . Then,

cw(H) ≤ 16 · |X | + 36.

Proof. Let Ĝ be the graph obtained fromG by subdividing each edge ofG, that is, for each edge
e ∈ E (G), we replace e by a new vertex we and make it adjacent to the end-vertices of e; we say

that we is the e-vertex of Ĝ.
Clearly, X is a feedback vertex set of Ĝ. Because of (i) and (ii), every vertex of Ĝ − X is adjacent

to at most one vertex of X . By Lemma 4.2, cw(Ĝ) ≤ 4 · |X | + 3. Let t = 4 · |X | + 3. Consider an

expression tree T of Ĝ of width t and assume that the labels from the set [t] are used in the

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:24 F. V. Fomin et al.

construction of G with respect to T . We construct the expression tree T ∗ for H of width (4t + 24)
by making modifications of T .

We use the following five groups of disjoint labels:

—Labels α1, . . . ,αt for the vertices of sets Ci for i ∈ [n].
—Labels β1, . . . , βt for the vertices v1, . . . ,vr .
—Labels γ1, . . . ,γt and δ1, . . . ,δt for the vertices in the copies of L2, which are adjacent to the

vertices of C1, . . . ,Cn and v1, . . . ,vr , respectively.
—Labels ξ1, ξ2, ξ3 for marking some vertices.
—Working labels ζ1, . . . , ζ21.

First, we consider the leaves of T where the vertices of Ĝ are introduced and replace these
introduce nodes by expression trees for induced subgraphs of H .

Let p (we) be an introduce node for an e-vertex of Ĝ where e = uivj for some i ∈ [n] and j ∈
[r]. We use the labels ζ1, . . . , ζ21 to create the expression tree for a copy of the graph L2 − z (for
simplicity, we use a separate label for each vertex). Then, we add the path of relabel nodes whose
one end-node is made adjacent to the root and the other end-node becomes the new root. The
relabel nodes are used to relabel the vertices x and y of this copy of L2 − z by γp , the vertices b and
c (adjacent to z) by δp , the vertices s and t by ξ1, and the remaining vertices are relabeled by ξ3.

Let p (ui) be an introduce node for ui , i ∈ [n]. We construct the expression tree for the graph
obtained as follows by making use of introduce, disjoint union, relabel, and join operations. We
omit the union operations from our descriptions here and from the forthcoming descriptions of
this type assuming, implicitly, that if some vertex is introduced, then union is always performed.
First, we create the vertex ai labeled ζ1. Then, the six vertices of a copy of the gadget L1 attached to
ai labeled ζ5, . . . , ζ10 are introduced, and edges of L1 are created by corresponding join operations.
We relabel vertices x andy of this copy of L1 by ξ1 and remaining vertices of L1 − z are relabeled by
ξ3. Next step is to introduce bi with the label ζ2. After this, we introduce a copy of L1 attached to bi ,
relabel x and y by ξ1 and relabel remaining vertices of L1 − z by ξ3. Now, we repeat the following
c (ui) times (to create vertices of Ci with attached gadgets L1): introduce a vertex labeled ζ3, use
the labels ζ5, . . . , ζ10 (together with the vertex labeled ζ3) to make a copy of L1, relabel x and y of
L1 by ξ1, relabel vertices L1 − z by ξ3, and relabel the vertex labeled ζ3 by ζ4. Finally, the vertices
labeled by ζ4 are joined with the vertices labeled ζ1 and ζ2; the vertices ai and bi are relabeled by
ξ2, and the vertices labeled by ζ4 are relabeled by αp .

Finally, let p (vj) be an introduce node for vj , j ∈ [r]. In this case, we replace this node by the
introduce node βp (vj).

Now, we consider non-leaf nodes of T . For every such node Z , we assume that the new expres-
sion trees corresponding to the subtrees of T rooted in the children of Z are already constructed.

If Z = ⊕, then we keep the union node whose children are the roots of the expression trees
constructed for the children of Z in T .

Let Z = ηp,q for p,q ∈ [t]. We create the path of join nodes ηαp,γq
, ηδp,βq

, ηαq,γp
, and ηδq,βp

. One
end-node is made the parent for the root of the expression tree that is constructed for the child of
Z in T , and the other end-node of the path is the root of the expression tree for Z .

Let Z = ρp→q for p,q ∈ [t]. We construct the path of relabel nodes ραp→αq
, ρβp→βq

, ργp→γq
, and

ρδp→δq
. In the same way as above, one end-node is made the parent for the root of the expression

tree that is constructed for the child of Z in T , and the other end-node of the path is the root of
the expression tree for Z .

This completes the part of the construction ofT ∗ where we followedT starting from the leaves.
Denote by T ′ the expression tree obtained in this stage.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:25

We construct the expression tree for the following graph. We construct vertices д and h using
labels ζ1 and ζ2. Then,

∑n
i=1 (c (vi) + 3) +m + 1 vertices of Y labeled ζ3 are introduced and joined

with the vertices labeled ζ1 and ζ2. The vertices д,h are relabeled by ξ2. We construct the union
node with the children in the roots of this expression tree and T ′. Notice that all the vertices that
have to be joined with vertices of Y are labeled by ξ1. So, we construct the join node ηζ3,ξ1

that is
the parent of the union node constructed above. Let T ′′ be the obtained expression tree.

To complete the construction ofT ∗, it remains to construct the vertices p1, . . . ,pk+1 and connect
them with the already constructed part of H . Notice that these vertices should be made adjacent to
the vertices labeled ξ2. To do this, we construct k + 1 introduce nodes ζ4 (pi) for i ∈ [k + 1]. Then,
we construct k + 1 union nodes that are used to make the disjoint union of p1, . . . ,pk+1 and the
graph corresponding to the root of T ′′. Finally, we construct a join node ηξ2,ζ4

.
Following the steps of the construction of T ∗, it is straightforward to see that the graph asso-

ciated with the root of T ∗ is, indeed, H . Since the width of T ∗ is 4t + 24, we have that cw(H) ≤
4t + 24 = 16 · |X | + 36. �

Now, we are ready to complete the proof of Theorem 2. Recall that by Lemma 4.1, unless ETH

fails, Red-Blue CDS cannot be solved in time f (h)no (h) , where h is the feedback vertex number of
the input graph, even if the input is restricted to graphs G such that for every minimum feedback
vertex set X ⊆ V (G), (i) X is independent and (ii) each vertex of the forest G − X is adjacent to at
most one vertex of X . Given such an input (G, c) of Red-Blue CDS, we construct the graph H . By
Lemma 4.5, (G, c) is a yes-instance of Red-Blue CDS if and only if H is Hamiltonian; that is, H is
a yes-instance of Hamiltonian Cycle. The construction of H can be done in polynomial time. By
Lemma 4.6, cw(H) ≤ 16 · fvn(G) + 36. This implies that Hamiltonian Cycle cannot be solved in

time f (t)no (t) , where t is the clique-width of the input graph, unless ETH fails.

5 CONCLUSION

In this article, we proved that unless the ETH fails, Graph Coloring cannot be solved in time

O (f (k) · n2o (k)
) and Hamiltonian Cycle cannot be solved in time O (f (k) · no (k)), where k is the

clique-width of the input graph. At this point, the complexity of Max-Cut, Edge Dominating
Set, Graph Coloring, and Hamiltonian Cycle on graphs of bounded clique-width is quite well-
understood. On the other hand, pinning down the right exponent ofn for these problems on graphs
of rank-width k remains open. The more intriguing open problem remains the complexity of com-
puting the clique-width of a graph. To the best of our knowledge, it is consistent with current
knowledge that determining whetherG has clique-width k is FPT or that determining whetherG
has clique-widthk has an algorithm with running timeд(k) · nf (k) and is W[1]-hard parameterized
by k , or that determining whether G has clique-width k is NP-complete for some fixed constant
k ≥ 5.

ACKNOWLEDGMENTS

We thank Michał Pilipczuk for insightful discussions.

REFERENCES

[1] Stefan Arnborg, Jens Lagergren, and Detlef Seese. 1991. Easy problems for tree-decomposable graphs. J. Algorithms

12, 2 (1991), 308–340.

[2] Benjamin Bergougnoux, Mamadou Moustapha Kanté, and O-joung Kwon. 2017. An optimal XP algorithm for Hamil-

tonian cycle on graphs of bounded clique-width. In Proceedings of the 15th International Symposium on Algorithms

and Data Structures (Lecture Notes in Computer Science), Vol. 10389. Springer, 121–132.

[3] Umberto Bertelé and Francesco Brioschi. 1972. Nonserial Dynamic Programming. Academic Press.

[4] Hans L. Bodlaender. 1998. A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1–2

(1998), 1–45.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

9:26 F. V. Fomin et al.

[5] Hans L. Bodlaender, Daniel Lokshtanov, and Eelko Penninkx. 2009. Planar capacitated dominating set is

W[1]-hard. In Proceedings of the 4th Fourth International Workshop on Parameterized and Exact Computa-

tion (IWPEC’09) (Lecture Notes in Computer Science), Vol. 5917. Springer, 50–60. DOI:https://doi.org/10.1007/

978-3-642-11269-0_4

[6] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. 1992. Automatic generation of linear-time algorithms from

predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 5–6 (1992),

555–581.

[7] Hajo Broersma, Petr A. Golovach, and Viresh Patel. 2013. Tight complexity bounds for FPT subgraph problems pa-

rameterized by the clique-width. Theor. Comput. Sci. 485 (2013), 69–84.

[8] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. 2011. Boolean-width of graphs. Theor. Comput. Sci. 412,

39 (2011), 5187–5204.

[9] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2009. The complexity of satisfiability of small depth

circuits. In Proceedings of the 4th International Workshop on Parameterized and Exact Computation (Lecture Notes in

Computer Science), Vol. 5917. Springer, 75–85.

[10] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. 2006. Strong computational lower bounds via parameterized

complexity. J. Comput. Syst. Sci. 72, 8 (2006), 1346–1367.

[11] Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce A. Reed, and Udi Rotics. 2012. Polynomial-time recog-

nition of clique-width ≤ 3 graphs. Discrete Appl. Math. 160, 6 (2012), 834–865.

[12] Derek G. Corneil and Udi Rotics. 2005. On the relationship between clique-width and treewidth. SIAM J. Comput. 34,

4 (2005), 825–847.

[13] B. Courcelle. 1992. The monadic second-order logic of graphs. III. Tree-decompositions, minors and complexity issues.

RAIRO Inform. Théor. Appl. 26, 3 (1992), 257–286.

[14] B. Courcelle, J. A. Makowsky, and U. Rotics. 2000. Linear time solvable optimization problems on graphs of bounded

clique-width. Theory Comput. Syst. 33, 2 (2000), 125–150.

[15] Bruno Courcelle and Stephan Olariu. 2000. Upper bounds to the clique width of graphs. Discrete Appl. Math. 101, 1–3

(2000), 77–114.

[16] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer. DOI:https://doi.org/10.1007/978-3-319-21275-3

[17] Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Known algorithms for edge clique cover are probably

optimal. SIAM J. Comput. 45, 1 (2016), 67–83.

[18] Reinhard Diestel. 2010. Graph Theory (4th ed.). Springer-Verlag, Heidelberg, Germany.

[19] Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. 2008. Capacitated domination and covering:

A parameterized perspective. In IWPEC 2008 (Lecture Notes in Computer Science), Vol. 5018. Springer, 78–90. DOI:
https://doi.org/10.1007/978-3-540-79723-4_9

[20] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer. DOI:
https://doi.org/10.1007/978-1-4471-5559-1

[21] Wolfgang Espelage, Frank Gurski, and Egon Wanke. 2001. How to solve NP-hard graph problems on clique-width

bounded graphs in polynomial time. In Proceedings of the 27th International Workshop on on Graph-Theoretic Concepts

in Computer Science, WG (Lecture Notes in Computer Science), Vol. 2204. Springer, 117–128.

[22] Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. 2009. Clique-width is NP-complete. SIAM

J. Discrete Math. 23, 2 (2009), 909–939.

[23] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. 2010. Intractability of clique-width param-

eterizations. SIAM J. Comput. 39, 5 (2010), 1941–1956.

[24] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. 2014. Almost optimal lower bounds for

problems parameterized by clique-width. SIAM J. Comput. 43, 5 (2014), 1541–1563.

[25] Markus Frick and Martin Grohe. 2004. The complexity of first-order and monadic second-order logic revisited. Ann.

Pure Appl. Logic 130, 1–3 (2004), 3–31.

[26] Michael U. Gerber and Daniel Kobler. 2003. Algorithms for vertex-partitioning problems on graphs with fixed clique-

width. Theoret. Comput. Sci. 299, 1–3 (2003), 719–734.

[27] Omer Giménez, Petr Hlinený, and Marc Noy. 2006. Computing the tutte polynomial on graphs of bounded clique-

width. SIAM J. Discret. Math. 20, 4 (2006).

[28] Benny Godlin, Tomer Kotek, and Johann A. Makowsky. 2008. Evaluations of graph polynomials. In Proceedings of

the 34th International Workshop on Graph-Theoretic Concepts in Computer Science (Lecture Notes in Computer Science),

Vol. 5344. 183–194.

[29] Frank Gurski. 2006. Linear layouts measuring neighbourhoods in graphs. Discrete Math. 306, 15 (2006), 1637–1650.

DOI:https://doi.org/10.1016/j.disc.2006.03.048

[30] Rudolf Halin. 1976. S-functions for graphs. J. Geom. 8, 1 (1976), 171–186.

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

https://doi.org/10.1007/978-3-642-11269-0_4
https://doi.org/10.1007/978-3-642-11269-0_4
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.disc.2006.03.048

Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring 9:27

[31] Petr Hlinený and Sang il Oum. 2008. Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38,

3 (2008), 1012–1032.

[32] Petr Hlinený, S.-il Oum, Detlef Seese, and Georg Gottlob. 2008. Width parameters beyond tree-width and their appli-

cations. Comput. J. 51, 3 (2008), 326–362.

[33] Russell Impagliazzo and Ramamohan Paturi. 2001. On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 2 (2001),

367–375. DOI:https://doi.org/10.1006/jcss.2000.1727

[34] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential com-

plexity? J. Comput. Syst. Sci. 63, 4 (2001), 512–530. DOI:https://doi.org/10.1006/jcss.2001.1774

[35] Daniel Kobler and Udi Rotics. 2001. Polynomial algorithms for partitioning problems on graphs with fixed clique-

width (extended abstract). In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA.

468–476.

[36] Daniel Kobler and Udi Rotics. 2003. Edge dominating set and colorings on graphs with fixed clique-width. Discrete

Appl. Math. 126, 2–3 (2003), 197–221.

[37] Michael Lampis. 2014. Model checking lower bounds for simple graphs. Logical Methods Comput. Sci. 10, 1 (2014),

1–21.

[38] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2011. Lower bounds based on the exponential time hypothesis.

Bull. EATCS 105 (2011), 41–72. DOI:cs/article/view/96

[39] Johann A. Makowsky, Udi Rotics, Ilya Averbouch, and Benny Godlin. 2006. Computing graph polynomials on graphs

of bounded clique-width. In Proceedings of the 32nd International Workshop on Graph-Theoretic Concepts in Computer

Science (Lecture Notes in Computer Science), Vol. 4271. Springer, 191–204.

[40] Dániel Marx and Valia Mitsou. 2016. Double-exponential and triple-exponential bounds for choosability problems

parameterized by treewidth. In Proceedings of the 43rd International Colloquium on Automata, Languages, and Pro-

gramming, Vol. 55. 28:1–28:15.

[41] S.-il Oum and Paul Seymour. 2006. Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96, 4

(2006), 514–528.

[42] Sang-il Oum. 2008. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5, 1 (2008), 10:1–

10:20.

[43] Michaël Rao. 2007. MSOL partitioning problems on graphs of bounded treewidth and clique-width. Theoret. Comput.

Sci. 377, 1–3 (2007), 260–267.

[44] Neil Robertson and Paul D. Seymour. 1984. Graph minors. III. planar tree-width. J. Comb. Theory, Ser. B 36, 1 (1984),

49–64.

[45] Karol Suchan and Ioan Todinca. 2007. On powers of graphs of bounded NLC-width (clique-width). Discrete Appl.

Math. 155, 14 (2007), 1885–1893.

[46] Egon Wanke. 1994. k-NLC graphs and polynomial algorithms. Discrete Appl. Math. 54, 2–3 (1994), 251–266.

Received February 2018; revised September 2018; accepted September 2018

ACM Transactions on Algorithms, Vol. 15, No. 1, Article 9. Publication date: November 2018.

https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
cs/article/view/96

