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We consider the fundamental Matroid Theory problem of finding a circuit in a matroid containing a set T
of given terminal elements. For graphic matroids, this corresponds to the problem of finding a simple cycle

passing through a set of given terminal edges in a graph. The algorithmic study of the problem on regular

matroids, a superclass of graphic matroids, was initiated by Gavenčiak, Král’, and Oum [ICALP’12], who

proved that the case of the problem with |T | = 2 is fixed-parameter tractable (FPT) when parameterized by
the length of the circuit. We extend the result of Gavenčiak, Král’, and Oum by showing that for regular

matroids

• the Minimum Spanning Circuit problem, deciding whether there is a circuit with at most � elements
containing T , is FPT parameterized by k = � − |T |;

• the Spanning Circuit problem, decidingwhether there is a circuit containingT , is FPT parameterized
by |T |.

We note that extending our algorithmic findings to binary matroids, a superclass of regular matroids, is

highly unlikely: Minimum Spanning Circuit parameterized by � is W[1]-hard on binary matroids even

when |T | = 1. We also show a limit to how far our results can be strengthened by considering a smaller
parameter. More precisely, we prove that Minimum Spanning Circuit parameterized by |T | is W[1]-hard
even on cographic matroids, a proper subclass of regular matroids.
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1 INTRODUCTION

Deciding if a given graph G contains a cycle passing through a specified set T of terminal edges
or vertices is a classical problem in graph theory. The study of this problem can be traced back to
the fundamental theorem of Dirac from 1960s about the existence of a cycle in k-connected graph
passing through a given set of k vertices [13]. According to Kawarabayashi [20] “...cycles through
a vertex set or an edge set are one of central topics in all of graph theory.” We refer to [19] for an
overview on the graph-theoretical study of the problem, including the famous Lovász-Woodall
Conjecture.
The algorithmic version of this question, “Is there a polynomial time algorithm deciding if a
given graph contains a cycle passing through the set of terminal vertices or edges,” is the prob-
lem of a fundamental importance in graph algorithms. Since the problem generalizes the classical
Hamiltonian cycle problem, it is NP-complete. However, for a fixed number of terminals the prob-
lem is solvable in polynomial time. The case |T | = 1 with one terminal vertex or edge is trivially
solved by the breadth first search. The case of |T | = 2 can be reduced to finding a flow of size 2
between two vertices in a graph. The case of |T | = 3 is already nontrivial and was shown to be
solvable in linear time in [22], see also [16]. The fundamental result of Robertson and Seymour
on the disjoint path problem [29] implies that the problem can be solved in time O (n3) time for a
fixed number of terminals. Kawarabayashi [20] provided a quantitative improvement by showing
that the problem is solvable in polynomial time for |T | = O ((log logn)1/10), where n is the size of
the input graph.1 Björklund et al. [3] gave a randomized algorithm solving the problem in time

2 |T |nO (1) . The algorithm of Björklund et al. solves also the minimization variant of the problem,
where the task is to find a cycle of minimum length passing through terminal vertices. We refer
to Cygan et al. [8] for an overview of different techniques in parameterized algorithms for solving
problems about cycles and paths in graphs.
Matroids are combinatorial objects generalizing graphs and linear independence. The study of
the structure of subsets of elements that span certain elements of a matroid is one of the central
themes in matroid theory. In particular, the problem of finding a circuit containing specified ele-
ments has a long history. For graphic matroids, this problem corresponds to finding in a graph a
simple cycle passing through specified edges. The classical theorem of Whitney [35] asserts that
any pair of elements of a connected matroid are in a circuit. Seymour [32] obtained a character-
ization of binary matroids with a circuit containing a triple of elements. See also [9, 25, 28] and
references there for combinatorial results about circuits containing certain elements in matroids.
However, compared to graphs, the algorithmic aspects of “circuits through elements” in matroids
are much less understood.
In their work on deciding first-order properties on matroids of locally bounded branch-width,
Gavenčiak et al. [17] initiated the algorithmic study of the following problem.

1We are grateful to the anonymous reviewer who pointed to us that it is possible to improve the range when the algorithm

of Kawarabayashi [20] is polynomial using the recent results of Chekuri and Chuzhoy [6] but such an improvement is a

separate task that is outside of the framework of our article.
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Here and further we use N = {1, 2, . . .} to denote the the set of natural numbers (without 0). We
also assume that a binary matroid in the problem input is given by its representation over GF(2).
Since graphic matroids are binary, this problem is a generalization of the problem of finding
a cycle through a given set of edges in a graph. By the result of Vardy [34] about the Minimum
Distance problem from coding theory, Minimum Spanning Circuit is NP-complete even when
T = ∅. Gavenčiak et al. [17] observed that the hardness result of Downey et al. [15] also implies that
Minimum Spanning Circuit is W[1]-hard on binary matroids with unit-weights elements when
parameterized by � even if |T | = 1. Parameterized complexity of Minimum Spanning Circuit for
T = ∅ on binary matroids, i.e., the case when we ask about the existence of a circuit of length at
most �, is known as Even Set in parameterized complexity and is a long-standing open problem
in the area. Very recently it was shown by Bhattacharyya et al. [2] that Even Set does not admit
FPT algorithms under the (randomized) Gap Exponential Time Hypothesis (we refer to [12, 24]
for the definition). The intractability of the problem changes when we restrict the input binary
matroid to be regular, i.e., matroid, which has a representation by columns of a totally unimodular
matrix. In particular, Gavenčiak et al. show that for |T | = 2, Minimum Spanning Circuit is fixed
parameter tractable (FPT) being parameterized by � by giving time ��

�O (�)

nO (1) algorithm, where n
is the number of elements in the input matroid. Recall that all graphic and cographic matroids are
regular and thus algorithmic results for regularmatroids yield algorithms on graphic and cographic
matroids.

Our results. In this work, we show, and this is the main result of the article, that on regular
matroids Minimum Spanning Circuit is FPT being parameterized by � without any additional
condition on the size of the terminal set. Actually, we obtain the algorithm for “stronger” param-

eterization k = � −w (T ). The running time of our algorithm is 2O (k2 logk ) · nO (1) .
Our approach is based on the classic decomposition theorem of Seymour [31]. Roughly speaking,
the theorem allows to decompose a regularmatroid bymaking use of 1-, 2-, and 3-sums into graphic
matroids, cographic matroids, and matroids of a fixed size (we refer to Section 3 for the precise
formulation of the theorem). Thus, to solve the problem on regular matroids, one has to understand
how to solve a certain extension of the problem on graphic and cographic matroids (matroids of
constant size are usually trivial) and then employ Seymour’s theorem to combine solutions. This
is exactly the approach taken by Gavenčiak et al. [17] for solving the problem for |T | = 2, and this
is the approach we adapt in this article. However, the details are very different. In particular, to use
the general framework, we have to solve the problem on cographicmatroids, which is already quite
non-obvious. Gavenčiak et al. [17] adapt the method of Kawarabayashi and Thorup [21], who used
it to prove that finding an edge-cut with at most s edges that separates the input graph into at least
k component is FPT when parameterized by s . This approach works for |T | = 2 and probably may
be extended for the case when the number of terminals is bounded, but we doubt that it could be
applied for the parameterization by k = � −w (T ). Hence, to solve Minimum Spanning Circuit on
cographic matroids, we use the recent framework of recursive understanding developed by Chitnis
et al. [7].We apply recursive understanding for solving theMinimal Terminal Cut problem. Here
we are given a a connected graphG with a terminal set of edgesT ⊆ E (G ) and terminal vertex sets
R1,R2 ⊆ V (G ), and the task is to find a cutC of small weight satisfying the following constraints:
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52:4 F. V. Fomin et al.

(a) this cut should be a minimal cut-set,
(b) it should contain all edges of T , and
(c) it should separateR1 fromR2, meaning thatG −C contains distinct connected components

X1 and X2 such that Ri ⊆ Xi for i ∈ {1, 2}.

We believe that this problem is interesting on its own. Finally, constructing a solution by going
through Seymour’s matroid decomposition when |T | is unbounded is also a non-trivial procedure.
With a similar approach, we also obtain an algorithm for the following decision version of the
problem, where we put no constrains on the size of the circuit.

We show that on regular matroids Spanning Circuit is FPT parameterized by |T |.
The remaining part of the article is organized as follows. In Section 2, we introduce basic no-
tions used in the article. In Section 3, we briefly introduce the fundamental structural results of
Seymour [30] about regular matroids. We also explain the refinement of the decomposition theo-
rem of Seymour [30] given by Dinitz and Kortsarz [11] that is more convenient for the algorithmic
purposes. We conclude this section by some structural results about circuits in regular matroids.
Section 4 contains the algorithm for Minimal Terminal Cut . In Section 5, we give the algorithm
for Minimum Spanning Circuit on regular matroids. First, we solve the extended variant of Min-
imum Spanning Circuit on matroids that are basic for the Seymour’s decomposition [30]. Then,
we explain how to obtain the general result. We follow the same scheme in Section 6 for Spanning
Circuit parameterized by |T |. In Section 7, we provide some hardness observations and state open
problems.

2 PRELIMINARIES

Parameterized Complexity. Parameterized complexity is a two-dimensional framework for
studying the computational complexity of a problem. One dimension is the input size n and an-
other one is a parameter k . It is said that a problem is fixed parameter tractable (or FPT) if it can

be solved in time f (k ) · nO (1) for some function f . We refer to the recent books of Cygan et al. [8]
and Downey and Fellows [14] for the introduction to parameterized complexity.
It is standard for a parameterized algorithm to use (data) reduction rules, i.e., polynomial or FPT
algorithms that either solve an instance or reduce it to another one that typically has a lesser
input size and/or a lesser value of the parameter. We say that reduction rule is safe if it either
correctly solves the problem or outputs an equivalent instance of the problem without increasing
the parameter.

Graphs. We consider finite undirected (multi) graphs that can have loops or multiple edges.
Throughout the article, we use n to denote the number of vertices and m the number of edges
of considered graphs unless it creates confusion. For a graphG and a subsetU ⊆ V (G ) of vertices,
we writeG[U ] to denote the subgraph ofG induced byU . We writeG −U to denote the subgraph
ofG induced byV (G ) \U , andG − u ifU = {u}. Respectively, for S ⊆ E (G ),G[S] denotes the graph
induced by S , i.e., the graph with the set of edges S whose vertices are the vertices ofG incident to
the edges of S . We denote byG − S the graph obtained fromG by the deletion of the edges ofG; for
a single element set, we write G − e instead of G − {e}. For e ∈ E (G ), we denote by G/e the graph
obtained by the contraction of e . Since we consider multigraphs, it is assumed that if e = uv , then
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to construct G/e , we delete u and v , construct a new vertex w , and then for each ux ∈ E (G ) and
eachvx ∈ E (G ), where x ∈ V (G ) \ {u,v}, we construct new edgewx (and possibly obtain multiple
edges), and for each e ′ = uv � e , we add a new loop ww . For a vertex v , we denote by NG (v ) the
(open) neighborhood of v , i.e., the set of vertices that are adjacent to v in G. For a set S ⊆ V (G ),
NG (S ) = (

⋃
v ∈S NG (v )) \ S . We denote by NG [v] = NG (v ) ∪ {v} the closed neighborhood of v . To

vertices u and v are true twins if NG [u] = NG [v], and u and v are false twins if NG (u) = NG (v ).

Cuts. Let G be a graph. A cut (A,B) of a graph G is a partition of V (G ) into two disjoint sets A
and B. A set S ⊆ E (G ) is an (edge) cut-set if the deletion of S increases the number of components.
A cut-set S is (inclusion) minimal if any proper subset of S is not a cut-set. A bridge is a cut-set
of size one. For two disjoint vertex sets of vertices A and B of a graph G, E (A,B) = {uv ∈ E (G ) |
u ∈ A,v ∈ B}. Clearly, E (A,B) is an edge cut-set, and for any cut-set S ⊆ E (G ), there is a cut (A,B)
with S = E (A,B). Notice also that E (A,B) is a minimal cut-set of a connected graph G if and only
if G[A] and G[B] are connected.

Matroids.We refer to the book of Oxley [27] for the detailed introduction tomatroid theory. Recall
that a matroid M is a pair (E,I), where E is a finite ground set of M and I ⊆ 2E is a collection of
independent sets that satisfy the following three axioms:

I1. ∅ ∈ I,
I2. if X ∈ I and Y ⊆ X , then Y ∈ I,
I3. if X ,Y ∈ I and |X | < |Y |, then there is e ∈ Y \ X such that X ∪ {e} ∈ I.

We denote the ground set ofM by E (M ) and the set of independent set by I (M ) or simply by E and
I if it does not create confusion. If a set X ⊆ E is not independent, then X is dependent. Inclusion
maximal independent sets are called bases ofM . We denote the set of bases by B (M ) (or simply by
B). The matroidM∗ with the ground set E (M ) such that B (M∗) = B∗ (M ) = {E \ B | B ∈ B (M )} is
dual toM .
An (inclusion) minimal dependent set is called a circuit of M . We denote the set of all circuits
of M by C (M ) or simply C if it does not create a confusion. The circuits satisfy the following
conditions (circuit axioms):

C1. ∅ � C,
C2. if C1,C2 ∈ C and C1 ⊆ C2, then C1 = C2,
C3. ifC1,C2 ∈ C,C1 � C2, and e ∈ C1 ∩C2, then there isC3 ∈ C such thatC3 ⊆ (C1 ∪C2) \ {e}.

An one-element circuit is called loop, and if {e1, e2} is a two-element circuit, then it is said that
e1 and e2 are parallel. An element e is coloop if e is a loop of M∗ or, equivalently, e ∈ B for every
B ∈ B. A circuit ofM∗ is called cocircuit ofM . A set X ⊆ E is a cycle ofM if X either empty or X is
a disjoint union of circuits. By S (M ) (or S) we denote the set of all cycles ofM . The sets of circuits
and cycles completely define matroid. Indeed, a set is independent if and only if it does not contain
a circuit, and the circuits are exactly inclusion minimal nonempty cycles.
Let M be a matroid, e ∈ E (M ). The matroid M ′ = M − e is obtained by deleting e if E (M ′) =

E (M ) \ {e} and I (M ′) = {X ∈ I (M ) | e � X }. We say that M ′ is obtained from M by adding a par-
allel to e element if E (M ′) = E (M ) ∪ {e ′}, where e ′ is a new element, and I (M ′) = I (M ) ∪ {(X \
{e}) ∪ {e ′} | X ∈ I (M ) and e ∈ X }. It is straightforward to verify that I (M ′) satisfies the axioms
I.1-3, i.e., M ′ is a matroid with the ground set E (M ) ∪ {e ′}. It is also easy to see that {e, e ′} is a
circuit, that is, e and e ′ are parallel elements ofM ′.
We can observe the following.

Observation 2.1. Let {e1, e2},C ∈ C for a matroid M . If e1 ∈ C and e2 � C , thenC ′ = (C \ {e1}) ∪
{e2} is a circuit.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 52. Publication date: October 2019.



52:6 F. V. Fomin et al.

Proof. By the axiom C3, ({e1, e2} ∪C ) \ {e1} = (C \ {e1}) ∪ {e2} = C ′ contains a circuitC ′′. Sup-
pose thatC ′′ � C ′. Notice that becauseC \ {e1} contains no circuit, e2 ∈ C ′′. As e1 � C ′′, we obtain
that ({e1, e2} ∪C ′′) \ {e2} contains a circuit, but ({e1, e2} ∪C ′′) \ {e2} is a proper subset ofC; a con-
tradiction. Hence, C ′′ = C ′, i.e., C ′ is a circuit. �

Matroids associated with graphs. LetG be a graph. The cyclematroidM (G ) has the ground set
E (G ) and a set X ⊆ E (G ) is independent if X = ∅ or G[X ] has no cycles. Notice that C is a circuit
ofM (G ) if and only ifC induces a cycle ofG. The bondmatroidM∗ (G ) with the ground set E (G ) is
dual to M (G ), and X is a circuit of M∗ (G ) if and only if X is a minimal cut-set of G. Respectively,
Minimum Spanning Circuit for a cycle matroid M (G ) is to decide whether G has a cycle C of
weight at most � that goes through the edges of T , and for a bond matroid M∗ (G ) it is to decide
whetherG has a minimal cut-setC of weight at most � that containsT . We say thatM is a graphic
matroid ifM is isomorphic toM (G ) for some graphG. Respectively,M is cographic if there is graph
G such that M is isomorphic to M∗ (G ). Notice that e ∈ E is a loop of a cycle matroid M (G ) if and
only if e is a loop of G, and e is a loop ofM∗ (G ) if and only if e is a bridge of G.
Notice also that by the addition of an element parallel to e ∈ E for M (G ) we obtain M (G ′) for
the graph G ′ obtained by adding a new edge with the same end vertices as e . Respectively, by
adding of an element parallel to e ∈ E for M∗ (G ) we obtain M∗ (G ′) for the graph G ′ obtained by
subdividing e . Hence, adding or deleting a parallel element of graphic or cographic matroid does
not put it outside the corresponding class.

Matroid representations. LetM be a matroid and let F be a field. An n ×m-matrix A over F is a
representation ofM over F if there is one-to-one correspondence f between E and the set of columns
of A such that for any X ⊆ E, X ∈ I if and only if the columns f (X ) are linearly independent (as
vectors of Fn ); if M has such a representation, then it is said that M has a representation over F .
In other words, A is a representation of M if M is isomorphic to the column matroid of A, i.e., the
matroid whose ground set is the set of columns of A and a set of columns is independent if and
only if these columns are linearly independent. A matroid is binary if it can be represented over
GF(2). A matroid is regular if it can be represented over any field. In particular, it is well-known
that graphic and cographic matroids are regular [27]. Equivalently, a matroid is regular if it can be
represented by a totally unimodular matrix over reals [27].
As we are working with binary matroids, we assume throughout the article that for an input
matroid, we are given its representation over GF(2). Then it can be checked in polynomial time
whether a subset of the ground set is independent by checking the linear independence of the
corresponding columns.

3 STRUCTURE OF REGULAR MATROIDS

Our results for regular matroids use the structural decomposition for regular matroids given by
Seymour [30]. Recall that, for two set X and Y , X 	 Y = (X \ Y ) ∪ (Y \ X ) denotes the symmetric
difference of X and Y . For our purpose we also need the following proposition.

Proposition 3.1 (see [27]). LetC1 andC2 be circuits (cycles) of a binary matroid M . ThenC1 	C2
is a cycle of M .

To describe the decomposition ofmatroidswe need the notion of “r -sums” ofmatroids. However,
for our purpose it is sufficient that we restrict ourselves to binary matroids and up to 3-sums. We
refer to [33, Chapter 8] for a more detailed introduction to matroid sums. LetM1 andM2 be binary
matroids. The sum of M1 and M2, denoted by M1 	M2, is the matroid M with the ground set
E (M1) 	 E (M2). The cycles ofM are all subsetsC ⊆ E (M1) 	 E (M2) of the formC1 	C2, whereC1
is a cycle ofM1 andC2 is a cycle ofM2. This does indeed define a binary matroid [30] as can be seen
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from Proposition 3.1, in which the circuits are the minimal nonempty cycles and the independent
sets are (as always) the sets that do not contain any circuit. For our purpose the following special
cases of matroid sums are sufficient.

Definition 3.1.

(1) If E (M1) ∩ E (M2) = ∅ and E (M1),E (M2) � ∅, then M is the 1-sum of M1 and M2 and we
writeM = M1 ⊕1 M2.

(2) If |E (M1) ∩ E (M2) | = 1, the unique e ∈ E (M1) ∩ E (M2) is not a loop or coloop ofM1 orM2,
and |E (M1) |, |E (M2) | ≥ 3, thenM is the 2-sum ofM1 andM2, and we writeM = M1 ⊕2 M2.

(3) If |E (M1) ∩ E (M2) | = 3, the 3-element set Z = E (M1) ∩ E (M2) is a circuit ofM1 andM2, Z
does not contain a cocircuit ofM1 orM2, and |E (M1) |, |E (M2) | ≥ 7, thenM is the 3-sum of
M1 andM2 and we writeM = M1 ⊕3 M2.

IfM = M1 ⊕r M2 for some r ∈ {1, 2, 3}, then we writeM = M1 ⊕ M2.

Definition 3.2. An {1, 2, 3}-decomposition of a matroid M is a collection of matroidsM, called
the basic matroids and a rooted binary tree T in which M is the root and the elements ofM are
the leaves such that any internal node is 1-, 2-, or 3-sum of its children.

We also need the special binary matroid R10 to be able to define the decomposition theorem for
regular matroids. It is represented over GF(2) by the 5 × 10-matrix whose columns are formed by
vectors that have exactly three non-zero entries (or rather three ones) and no two columns are
identical:

�������
�

1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 0 1 1
0 0 1 0 1 1 0 1 1 1

�������
�

Now we are ready to give the decomposition theorem for regular matroids due to Seymour [30].

Theorem 1 ([30]). Every regular matroid M has an {1, 2, 3}-decomposition in which every basic
matroid is either graphic, cographic, or isomorphic to R10. Moreover, such a decomposition (together
with the graphs whose cycle and bond matroids are isomorphic to the corresponding basic graphic and
cographic matroids) can be found in time polynomial in |E (M ) |.

For our algorithmic purposes, we will not use Theorem 1 but rather a modification proved by
Dinitz and Kortsarz [11]. Dinitz and Kortsarz [11] observed that some restrictions in the defini-
tions of 2- and 3-sums are not important for the algorithmic purposes. In particular, in the def-
inition of the 2-sum, the unique e ∈ E (M1) ∩ E (M2) is not a loop or coloop of M1 or M2, and
|E (M1) |, |E (M2) | ≥ 3 could be dropped. Similarly, in the definition of 3-sum the conditions that
Z = E (M1) ∩ E (M2) does not contain a cocircuit of M1 or M2, and |E (M1) |, |E (M2) | ≥ 7 could be
dropped. We define extended 1-, 2- and 3-sums by omitting these restrictions. Clearly, Theorem 1
holds if we replace sums by extended sums in the definition of the {1, 2, 3}-decomposition. To sim-
plify notations, we use ⊕1, ⊕2, ⊕3, and ⊕ to denote these extended sums. Finally, we also need the
notion of a conflict graph associated with an {1, 2, 3}-decomposition of a matroidM given by Dinitz
and Kortsarz [11].

Definition 3.3 ([11]). Let (T ,M) be a {1, 2, 3}-decomposition of a matroidM . The intersection (or
conflict) graph of (T ,M) is the graphGT with the vertex setM such that distinctM1,M2 ∈ M are
adjacent in GT if and only if E (M1) ∩ E (M2) � ∅.
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Dinitz and Kortsarz [11] showed how to modify a given decomposition to make the conflict
graph a forest. In fact, they proved a slightly stronger condition that for any 3-sum (which by
definition is summed along a circuit of size 3), the circuit in the intersection is contained entirely
in two of the lowest-level matroids. In other words, while the process of summing matroids might
create new circuits that contain elements that started out in different matroids, any circuit that is
used as the intersection of a sum existed from the very beginning.
This allows us to choose in which order to perform 1-, 2-, or 3-sums. More formally, let T be a
decomposition tree whose nodes are matroids fromM such that the following holds. For any two
distinct matroidsM1,M2 ∈ M with a nonempty intersection

(i) M1 andM2 are adjacent in T , and
(ii) |E (M1) ∩ E (M2) | ∈ {1, 3}.

For every subtree T ′ of T , we define MT ′ associated with T ′ as follows. If T ′ is an isolated
node, then MT ′ is the corresponding matroid ofM. Otherwise, we select an arbitrary edge e =
M1M2 ∈ E (T ′) and consider the subtrees T1 and T2 of T ′ − e . We construct MT1 and MT2 and
defineMT ′ = MT1 ⊕i MT2 for i = |E (M1) ∩ E (M2) | + 1 if |E (M1) ∩ E (M2) | ≤ 1 and i = 3 otherwise.
This waywe constructMT . Such a decomposition is not uniquely defined as the choice of edges for
constructing the decomposition was arbitrary. Nevertheless, the conditions (i) and (ii) guarantee
that the construction can be performed as described and, moreover, that the matroidMT is unique.
We state the result of [11] in the following form that is convenient for us.

Theorem 2 ([11]). For a given regular matroid M , there is a (conflict) tree T , whose set of nodes
is a set of matroids M, where each element of M is a graphic or cographic matroid, or a matroid
obtained from R10 by (possible) deleting some elements and adding parallel elements, that has the
following properties:

(i) if two distinct matroids M1,M2 ∈ M have nonempty intersection, then M1 and M2 are ad-
jacent in T ,

(ii) for any distinct M1,M2 ∈ M, |E (M1) ∩ E (M2) | = 0, 1 or 3,
(iii) M = MT .

Moreover, T can be constructed in a polynomial time.

If T is a conflict tree for a matroidM , then we say thatM = MT is defined by T .
In our algorithms we are working with rooted conflict trees. Fixing a root r in T defines the
natural parent–child, descendant, and ancestor relationships on the nodes of T . Our algorithms
are based on performing bottom-up traversal of the tree T . We say that a nodeM� of T is a leaf if
it has no children, andMs is a sub-leaf if it has at least one child and the children ofMs are leaves.
Let M� be a leaf and let Ms be its adjacent sub-leaf. We say that M� is an h-leaf for h ∈ {1, 2, 3} if
the edge betweenMs andM� corresponds to the extended h-sum.

As in Minimum Spanning Circuit and Spanning Circuit we are looking for circuits contain-
ing terminals, we need some results about the structure of circuits of matroids and matroid sums.

Lemma 3.1. Let Z = {e1, e2, e3} be a circuit of a binary matroid M . Let alsoC be a circuit of M such
that C ∩ Z = {e3}. If C ′ = C 	 Z is not a circuit, then C ′ is a disjoint union of two circuits C1 and C2
containing e1 and e2, respectively, and C1 	 Z and C2 	 Z are circuits.

Proof. By Proposition 3.1, C ′ is a cycle of M . If C ′ is not a circuit, then C ′ is a disjoint union
of circuits of M . If C ′ contains a circuit C ′′ such that C ′′ ∩ Z = ∅, then C ′′ ⊂ C contradicting the
condition that C is a minimal dependent set. Hence, each circuit of C ′ contains an element of
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Z . Since Z ∩C ′ = {e1, e2}, C ′ is a disjoint union of two circuits C1 and C2 containing e1 and e2,
respectively.
Suppose that, say, C1 	 Z , is not a circuit. Then by the above, C1 	 Z is a disjoint union of two
circuitsC ′2 andC

′
3 containing e2 and e3, respectively. But thenC

′′ = C2 	C ′2 is a cycle andC ′′ ⊂ C
contradicting that C is a circuit. Hence, C1 	 Z and C2 	 Z are circuits. �

Lemma 3.2. Let Z = {e1, e2, e3} be a circuit of a binary matroid M . Let alsoC be a circuit of M such
that C ∩ Z = {e1, e2}. Then C ′ = C 	 Z is a circuit of M .

Proof. By Proposition 3.1, C ′ is a cycle of M . Because e3 ∈ C ′, there is a circuit C ′′ ⊆ C ′ con-
taining e3. If C

′′ � C ′, then the cycle C ′′ 	 Z ⊂ C contradicting the fact that C is a circuit. Hence,
C ′ = C ′′, i.e., C ′ is a circuit. �

Lemma 3.3. Let M = M1 ⊕r M2 for r ∈ {1, 2, 3}, where M1 and M2 are binary matroids, and Z =
E (M1) ∩ E (M2).

(i) If r = 1, then C (M ) = C (M1) ∪ C (M2).
(ii) If r = 2 and Z = {e}, then

C (M ) = {C ∈ C (M1) | e � C} ∪ {C ∈ C (M2) | e � C}
∪ {C1 	C2 | C1 ∈ C (M1),C2 ∈ C (M2), e ∈ C1, e ∈ C2}.

(iii) If r = 3, then

C (M ) ={C ∈ C (M1) | Z ∩C = ∅} ∪ {C ∈ C (M2) | Z ∩C = ∅}
∪{C1 	C2 | C1 ∈ C (M1),C2 ∈ C (M2),C1 ∩ Z = {e} and C2 ∩ Z = {e}

for some e ∈ Z , and C1 	 Z ∈ C (M1) or C2 	 Z ∈ C (M2)}.

Proof. The claims (i) and (ii) follow directly from Definition 3.1. Hence, we have to prove only
(iii). Recall that Z is a circuit ofM1 andM2 in the case of the extended 3-sum. Notice that the struc-
ture of C (M ) is more complicated in this case. In particular, ifC1 ∈ C (M1),C2 ∈ C (M2),C1,C2 � Z ,
and C1 ∩ Z = C2 ∩ Z � ∅, then C = C1 	C2 is a cycle of M by the definition, but C is not neces-
sarily a circuit. In fact, it may happen that C is a disjoint union of two circuits. We show that this
happens if and only ifC1 	 Z andC2 	 Z are circuits ofM1 andM2, respectively. Now we proceed
with the formal proof.
Let C be a circuit of M . If C ⊆ E (Mi ) for i ∈ {1, 2}, then C is a cycle of Mi and, by minimality,

C is a circuit of Mi . Assume that C \ E (Mi ) � ∅ for each i ∈ {1, 2}. By definition, C = C1 	C2 and
C1 ∩ Z = C2 ∩ Z , where C1 and C2 are cycles ofM1 andM2, respectively.
If Z ⊆ E (C1), then by Proposition 3.1,C

′ = C1 	 Z ⊆ C is a cycle ofM1. Hence,C
′ is a cycle ofM

contradicting thatC is a minimal dependent set. IfC1 ∩ Z = ∅, thenC1 ⊂ C is a circuit ofM and this
contradicts the minimality of C . Therefore 1 ≤ |C1 ∩ Z | ≤ 2. Suppose that |C1 ∩ Z | = 2. Consider
C ′1 = C1 	 Z andC ′2 = C2 	 Z . By Proposition 3.1,C ′i is a cycle ofMi , i ∈ {1, 2}. Clearly,C = C ′1 	C ′2,
but now |C ′1 ∩ Z | = |C ′2 ∩ Z | = 1. It means that we always can assume that C = C1 	C2, where
C1 ∩ Z = {e} and C2 ∩ Z = {e} for some e ∈ Z .
Suppose that one of the cycles C1 and C2, say, C1, is not a circuit. Then C1 is a disjoint union of
circuits ofM1. This union contains a circuitC

′
1 with e ∈ C ′1. ThenC ′ = C ′1 	C2 ⊂ C is a cycle ofM

contradicting the minimality of C . Hence, C1 and C2 are circuits ofM1 andM2, respectively.
Suppose that C ′1 = C1 	 Z and C ′2 = C2 	 Z are not circuits of M1 and M2, respectively. By
Lemma 3.1, for i ∈ {1, 2}, C ′i is a disjoint union of two circuits C1i and C2i of Mi containing e1 and
e2, respectively, for distinct e1, e2 ∈ Z \ {e}. Then C ′ = C11 	C12 is a cycle of M contradicting the
minimality of C . Hence, for at least one i ∈ {1, 2}, C ′i is a circuit ofMi .
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In the opposite direction, ifC is a circuit ofM1 orM2 such thatC ∩ Z = ∅, thenC is a circuit ofM .
Suppose now that C = C1 	C2, where C1 and C2 are circuits ofM1 andM2, respectively,C1 ∩ Z =
{e} and C2 ∩ Z = {e} for some e ∈ Z , and C1 	 Z or C2 	 Z is a circuit of M1 or M2, respectively.
We show that C is a circuit ofM .
To obtain a contradiction, assume that C is not a circuit. By Proposition 3.1, C is a cycle of

M . Therefore, there is a circuit C ′ ⊂ C . If C ′ ⊆ E (M1) or C
′ ⊆ E (M2), then C

′ ⊂ C1 or C
′ ⊂ C2,

but this contradicts the condition that C1 and C2 are circuits of M1 and M2, respectively. Hence,
C ′ \ E (M1) � ∅ andC ′ \ E (M2) � ∅. As we already proved above,C ′ = C ′1 	C ′2, whereC ′i is a circuit
of Mi , i ∈ {1, 2}, and C ′i ∩ Z = {e ′} and C ′2 ∩ Z = {e ′} for some e ′ ∈ Z . Clearly, C ′1 \ {e ′} ⊆ C1 \ {e}
andC ′2 \ {e ′} ⊆ C2 \ {e} and at least one of the inclusions is proper. If e ′ = e , thenC ′1 ⊆ C1 andC

′
2 ⊆

C2 and at least one of the inclusions is proper contradicting the fact thatC1 andC2 are circuits ofM1
and M2, respectively. Hence, e

′ � e . If C ′1 \ {e ′} = C1 \ {e}, then {e, e ′} = C ′1 	C1. This contradicts
the condition that Z is a circuit. Hence, C ′1 \ {e ′} ⊂ C1 \ {e}. But then C ′1 ⊂ C1 	 Z , and therefore
C1 	 Z is not a circuit of M1. Symmetrically, C2 	 Z is not a circuit of M2; a contradiction. Hence,
C is a circuit ofM . �

Lemma 3.3 gives an idea how to solve Minimum Spanning Circuit and Spanning Circuit
using Theorem 2 and, simultaneously, indicates the main technical difficulties. First, we should be
able to solve the problems on basic matroids. Then we “glue” circuits together using Lemma 3.3.
Assume that M = M1 ⊕ M2, T1 = T ∩ E (M1) � ∅, and T2 = T ∩ E (M2). Suppose that we are able
to solve, say, Minimum Spanning Circuit for M1 and M2. If M = M1 ⊕1 M2, then it is trivial
to solve Minimum Spanning Circuit on M : If T2 � ∅, then we have a no-instance, and, oth-
erwise, we should solve the problem on M1. The case M = M1 ⊕2 M2 is more complicated but
still straightforward. Let {e} = E (M1) ∩ E (M2). We have two subcases: T2 = ∅ and T2 � ∅. In the
first subcase, we find a circuit of minimum weight ω in M2 containing e by solving the auxil-
iary instance of Minimum Spanning Circuit on M2 with the unique terminal e assuming that
w (e ) = 0. Then we assign the weight ω to e in M1 and solve the instance of the problem on M1.
In the second subcase, whenT2 � ∅, we find a solution of minimum weight ω for Minimum Span-
ning Circuit on M2 with the set of terminals T2 ∪ {e} assuming that w (e ) = 0. Then we assign
the weight ω to e in M1 and solve the problem on M1 with the set of terminals T1 ∪ {e}. For
M = M1 ⊕3 M3, we follow the same strategy, but here the situation is more difficult as demon-
strated by Lemma 3.3 (iii). In particular, if T2 � ∅, we obtain six cases that should be analyzed. Let
Z = {e1, e2, e3} = E (M1) ∩ E (M2). Then a (hypothetical) solution C for Minimum Spanning Cir-
cuit on M can be represented as C = C1 	C2 for circuits C1 and C2 of M1 and M2, respectively,
such that C1 ∩C2 = {ei } and C1 ∩ Z = C2 ∩ Z = {ei } for some i ∈ {1, 2, 3}, and this gives us three
possibilities. Then, for each i ∈ {1, 2, 3}, we either demand Z 	C1 be a circuit ofM1 or, symmetri-
cally, demand Z 	C2 be a circuit of M2. To be able to go through these cases, we have to switch
from the original Minimum Spanning Circuit to the special version of the problem tailored for
this analysis that is formally defined in Section 5. For Spanning Circuit, the situation is slightly
more simple as we have no weights, but we still have to overcome the same difficulties.
We conclude this section by the following lemma about circuits in graphic and cographic ma-
troids. We need this lemma to be able to impose the conditions that, given a circuit Z of size three,
C 	 Z is a circuit of a graphic (cographic) matroid for a circuit C .

Lemma 3.4. Let Z = {e1, e2, e3} be a circuit of a binary matroid M . Let alsoC be a circuit of M such
that C ∩ Z = {e3}. Then the following holds:

(i) If M = M (G ) for a graphG, thenC ′ = C 	 Z is a circuit of M if and only ifC induces a cycle
of G −v , where v is the vertex of G incident with e1 and e2.
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(ii) If M = M∗ (G ) for a connected graph G, then C ′ = C 	 Z is a circuit of M if and only if
C = E (A,B) for a cut (A,B) ofG such thatG[A] andG[B] are connected graphs and e1, e2 ∈
E (G[A]) or e1, e2 ∈ E (G[B]).

Proof. The first claim is straightforward. To show (ii), recall that C is a minimal cut-set of G.
Hence, there is a cut (A,B) of G such that C = E (A,B) and G[A] and G[B] are connected.
Assume that e1 ∈ E (G[A]) and e2 ∈ E (G[B]). Since Z is a minimal cut-set of G, we have that

e1 and e2 are bridges of G[A] and G[B], respectively. Then C 	 Z is a cut-set separating G into
three components. Hence C ′ is not a minimal cut-set, which is a contradiction. Therefore, e1, e2 ∈
E (G[A]) or e1, e2 ∈ E (G[B]).
Suppose now that C = E (A,B) for a cut (A,B) of G such that G[A] and G[B] are connected and

e1, e2 ∈ E (G[A]). Because Z is a minimal cut-set, {e1, e2} is a minimal cut-set of G[A]. Let (A1,A2)
be a cut ofG[A] such that E (A1,A2) = {e1, e2}. Assume that the end-vertex of e3 inA is inA1. Since
Z is a minimal cut-set, the edges ofC \ {e3} joinA2 with B. It implies thatC 	 Z is a minimal cut-set
that separates A2 and A1 ∪ B. �

4 MINIMAL CUT WITH SPECIFIED EDGES

To construct an algorithm for Minimum Spanning Circuit for regular matroids, we need an al-
gorithm for cographic matroids. LetG be a connected graph, and letT ⊆ E (G ) be a set of terminal
edges. For sets R1,R2 ⊆ V (G ), we say that C ⊆ E (G ) is (R1,R2)-terminal cut-set if C is (a) a mini-
mal cut-set; (b)C ⊇ T ; and (c)G −C contains distinct connected components X1 and X2 such that
Ri ⊆ Xi for i ∈ {1, 2}.
We will need solve the following auxiliary parameterized problem.

We say that an (R1,R2)-terminal cut-set C with the required weight is a solution of Minimal
Terminal Cut. Observe that if in the instance of Minimal Terminal Cut we have R1 ∩ R2 � ∅,
then the problem does not have a solution and this is a no-instance.
Notice that in the special case when R1 = R2 = ∅, Minimal Terminal Cut asks whether G has
a minimal cut-setC containingT such thatw (C ) −w (T ) ≤ k . This means that Minimal Terminal
Cut parameterized by k is equivalent to Minimum Spanning Circuit parameterized by k = � −
w (T ) on M∗ (G ). Nevertheless, we have to consider nonempty sets R1 and R2 to be able to impose
the following additional condition on solution C: Set C 	 Z should be a minimal cut-set (a circuit
of M∗ (G )) for a given cut-set Z of size three as it is explained in Lemma 3.4 (ii). We will need this
to invoke Theorem 2. For our purposes, it is sufficient to consider the cases when R1 and R2 are
either empty or contain the end-vertices of two edges of the cut-set Z , but it is more convenient
to solve Minimal Terminal Cut for arbitrary R1 and R2. We also believe that Minimal Terminal
Cut is interesting in its own. In what follows, we prove that Minimal Terminal Cut is FPT.

Theorem 3. Minimal Terminal Cut is solvable in time 2O (k2 logk ) · nO (1) .

The proof of Theorem 3 is technical and is given in the remaining part of the section. It is
based on a (non-trivial) application of the recent algorithmic technique of recursive understanding
introduced by Chitnis et al. [7].
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4.1 Preliminaries

First, we introduce some notions required for the proof of Theorem 3.
LetG be a graph, X ⊆ V (G ). We say thatG ′ is obtained fromG by the contraction of X , if we get

G ′ by deleting the vertices of X and replacing by a vertex x , and then each edge uv ∈ E (G ) with
u,v ∈ X is replaced by a loop xx , and each edgeuv ∈ E (G ) withu ∈ X andv � X is replaced by xv .
Notice that while contracting, we do not reduce the number of edges and that we can obtain loops
and multiple edges by this operation. For an edge weighted graph, we assume that every new edge
has the same weight as the edge it replaces. To simplify notations, throughout this section we also
assume that if the contraction is done for some set X ⊆ V (G ) in an instance (G,w,T ,R1,R2,k ) of
Minimal Terminal Cut, then ifX ∩ Ri � ∅ for i ∈ {1, 2}, then the vertex obtained fromX is in Ri ,
and if a terminal edge is replaced, then the obtained edge is included in T .
For a set X , we denote by P (X ) the set of all partitions of X . We assume that P (X ) = ∅ if X = ∅.
The main idea behind the recursive understanding technique [7] is the following. We try to find
a minimal cut-set of bounded size that separates an input graph into two sufficiently big parts. If
such a cut-set exists, thenwe solve the problem recursively for one of the parts and replace this part
by an equivalent graph of bounded size; the equivalence here means that the replacement keeps
all essential solutions of the original part. In our case, the replacement is obtained by contracting
some edges. This way, we obtain a graph of smaller size. If the input graph has no cut-set with the
required properties, then it either has a bounded size or has high connectivity. In the case of the
bounded size graph we can apply brute force, and if the graph is highly connected, then we can
exploit this property to solve the problem. To define formally what we mean by high connectivity,
we need the following definition.

Definition 4.1 ([7]). Let G be a connected graph and let p,q be positive integers. A cut (A,B) of
G is called a (q,p)-good edge separation if

(i) |A|, |B | > q,
(ii) |E (A,B) | ≤ p,
(iii) G[A] and G[B] are connected.

Chitnis et al. proved the following lemma [7].

Lemma 4.1 ([7]). There exists a deterministic algorithm that, given a connected graph G along

with integers p and q, in time 2O (min{p,q } log(p+q )) · n3 logn either finds a (q,p)-good edge separation
or correctly concludes that no such separation exists.

LetG be a connected graph and let p,q be positive integers. We say thatG is (q,p)-unbreakable
if there is no cut (A,B) of G such that

(i ) |A|, |B | > q, and
(ii ) |E (A,B) | ≤ p,

Notice that in this definition, it is not required that G[A] and G[B] should be connected. It
particular, this means that every (q,p)-unbreakable graph has no (q,p)-good edge separation but
not the other way around. We use Lemma 4.1 to show the following.

Lemma 4.2. There exists a deterministic algorithm that, given a connected graph G along with

integers p and q, in time 2O (min{p,q } log(p+q )) · n3 logn either finds a (q,p)-good edge separation or
correctly concludes that G is (pq,p)-unbreakable.

Proof. We use Lemma 4.1 to find a (q,p)-good edge separation. If the algorithm returns a (q,p)-
good edge separation, then we return it. Assume that the algorithm reported that no such separa-
tion exists. We claim that G is (pq,p)-unbreakable. To obtain a contradiction, assume that (A,B)
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is a cut of G such that |A|, |B | > pq and |E (A,B) | ≤ p. Consider G[A]. Because G is connected and
|E (A,B) | ≤ p, G[A] has at most p components. Hence, G has a component HA with at least q + 1
vertices. Symmetrically, we obtain thatG[B] has a components HB with at least q + 1 vertices. Let
C be a minimum cut-set inG that separatesV (HA) andV (HB ). Clearly, |C | ≤ p. Let (A′,B′) be the
cut of G with V (HA) ⊆ A′, V (HB ) ⊆ B′ and E (A′,B′) = C . We have that (A′,B′) is a (q,p)-good
separation, but it contradicts the assumption that the algorithm reported that there is no such a
separation. �

We use Lemma 4.2 to find a (q,p)-good edge separation for appropriate p and q. If such a cut
(A,B) exists, then we solve the problem recursively for one of the parts, say, for G[A]. But to be
able to obtain a solution for the original instance, we should combine solutions for the both parts.
We use the fact that G[A] is separated from the remaining part of the graph by a small number
of vertices that are the end-vertices of the edges of the cut-set that are called border terminals. (In
fact, we keep 2p border terminals to execute the recursive step.) As we want to find all essential
solutions for G[A] to replace this graph by a graph of bounded size, we have to take into account
all possibilities for the part of a solution in B to separate the border terminals.
This leads us to the following definition. Let (G,w,T ,R1,R2,k ) be an instance of Minimal Ter-
minal Cut given together with a set X ⊆ V (G ) of border terminals of G. We say that an instance

(Ĝ,w,T , R̂1, R̂2, k̂ ) of Minimal Terminal Cut is obtained from (G,w,T ,R1,R2,k ) by border con-

traction if k̂ ≤ k and there is a partition (X1, . . . ,Xt ) ∈ P (X ) and partition (I1, I2) of {1, . . . , t },
where Ii can be empty, such that Ĝ is obtained by consecutively contractingX1, . . . ,Xt , and setting

R̂i = Ri ∪ {x j | j ∈ Ii } for i ∈ {1, 2}, where each x j is the vertex obtained from X j by contraction.
Let us note that the total number of different border contractions of a given instance depends only

on the size of X and k and is k · |X |O ( |X |) .
It leads us to the following auxiliary problem. In this problem, we have to output a solution (if
there is any) for each of the instances of Minimal Terminal Cut obtained by all possible border
contractions of a given instance. Notice that this is not a decision problem.

Thus an output for Border Contractions is a family of edge sets, where the total number

of edges in the solution is at most k · (4k )4k · 24k = 2O (k logk ) . . Notice also that to solve Minimal
Terminal Cut , we can apply an algorithm for Border Contractions for the special caseX = ∅.

4.2 High-connectivity Phase

In this section, we construct an algorithm for Border Contractions for the case when an input
graph is (pq,p)-unbreakable for p = 2k and q = k2 · 24k+4k log 4k + 4k + 1; we fix the values of p and
q for the remaining part of Section 4. First, we solve Minimal Terminal Cut and then explain
how to obtain the algorithm for Border Contractions.
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Lemma 4.3. Let G be a graph with an edge weight function w : E (G ) → N ,T ⊆ E (G ) and let k be

a positive integer. It can be decided in time 2O (k ) · nO (1) whether there is a cut (A,B) of G such that
T ⊆ E (A,B), and w (E (A,B) \T ) ≤ k .

Proof. We show the lemma by the reduction of the problem to the Odd Cycle Transversal
(OCT) problem. Let us remind that in the OCT problem we are given a graph G and a positive
integer k , the task is to decide whether there is a set of at most k vertices S such that G − S is
bipartite. Since OCT is known to be solvable in time 2O (k ) · nO (1) , this will prove the lemma.
LetG be a graph with an edge weight functionw : E (G ) → N ,T ⊆ E (G ), and let k be a positive
integer. Recall that we allow loops and multiple edges. To slightly simplify reduction, we first
exhaustively apply two simple reduction rules.
If e ∈ T is a loop, then e � E (A,B) for any cut (A,B). If a loop e � T , then e is irrelevant. Hence
we have the following reduction rule.

Reduction Rule 4.1 (Loop reduction rule). Let e ∈ E (G ) be a loop. If e � T , then delete e .
Otherwise (if e ∈ T ), report that there is no required cut (A,B).

Clearly, any two parallel edges are either both included in a cut-set or both are excluded from it.
Notice also that the weights of terminals are irrelevant. Hence, we can safely apply the following
rule.

Reduction Rule 4.2 (Parallel terminal reduction rule). If there are two parallel edges
e1, e2 ∈ T , then delete one of them and change the weight of the remaining edge to 1.

From now on we assume that the rules cannot be applied. We construct (unweighted) graphG ′

from G as follows.

• Subdivide each edge uv � T , that is, add a new vertex zuv and replace uv by uzuv andvzuv ;
we call the new vertices subdivision vertices.

• Replace each subdivision vertex zuv by r = min{w (uv ),k + 1} false twins, i.e., we replace
zuv by r vertices adjacent to u and v ; denote by Zuv the set of obtained vertices.

• Replace each vertex v of V (G ) by k + 1 false twins, i.e., we replace v by k + 1 vertices with
the same neighbors as v ; denote byUv the set of obtained vertices.

Notice that because of reduction rules, G ′ is a simple graph. We claim that there is a cut (A,B) of
G such that T ⊆ E (A,B), andw (E (A,B) \T ) ≤ k if and only of (G ′,k ) is a yes-instance of OCT.
Suppose that (A,B) is a cut of G such that T ⊆ E (A,B), and w (E (A,B) \T ) ≤ k . We construct
the set S ⊆ V (G ′) by including in S the set of vertices Zuv for each uv ∈ E (A,B) \T . Then G ′ − S
is bipartite.
Suppose that there is S ⊆ V (G ′) of size at most k such that G ′ − S is bipartite. Without loss of
generality we assume that S is an inclusion minimal set with this property. Because S is minimal,
if x and y are false twins of G, then either x ,y ∈ S , or x ,y � S . Let (X ,Y ) be a bipartition of G ′ −
S . Since |Uv | > k , we have that Uv ∩ S = ∅ for v ∈ V (G ). Notice also that we can assume that
eitherUv ⊆ X orUv ⊆ Y forv ∈ V (G ), as otherwise, if there isv ∈ V (G ) such thatUv ∩ X � ∅ and
Uv ∩ Y � ∅, then the vertices of Uv are isolated vertices of G

′ − S . Let A = {v ∈ V (G ) | Uv ⊆ X }
and B = {v ∈ V (G ) | Uv ⊆ Y }. Clearly, (A,B) is a cut of G. Let uv ∈ T . Assume that Uu ⊆ X . Then
Uv ⊆ Y and, therefore, uv ∈ E (A,B). Let uv ∈ E (A,B) \T and assume that u ∈ A and v ∈ B. Then
Uu ⊆ X andUv ⊆ Y . Hence,Zuv ⊆ S . Since |Zuv | = min{w (uv ),k + 1} and |S | ≤ k , the total weight
of the edges of E (A,B) \T is at most k .
This proves the correctness of the reduction. Since OCT can be solved in time 2.3146k · nO (1) by
the results of Lokshtanov et al. [23], we get the claim of the lemma. �
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Let (A1,B1) and (A2,B2) be cuts of a graph G. We define the distance between these cuts as

dist((A1,B1), (A2,B2)) = min{|A1 	 A2 |, |A1 	 B2 |}.
The following structural lemmata are crucial for our algorithm.

Lemma 4.4. Let G be a graph with an edge weight function w : E (G ) → N , set of terminals T ⊆
E (G ), and let k be a positive integer. Let (A1,B1) and (A2,B2) be cuts of G such that T ⊆ E (Ai ,Bi )
and w (E (Ai ,Bi ) \T ) ≤ k for i ∈ {1, 2}. Then w (E (A1 	 A2,A1 	 B2)) ≤ 2k .

Proof. Notice that (A1 	 A2,A1 	 B2) is a cut of G. For each i ∈ {1, 2}, we have that T ⊆
E (Ai ,Bi ). Therefore, the set

E (A1 ∩A2,A1 ∩ B2) ∪ E (B1 ∩A2,B1 ∩ B2) ∪ E (A2 ∩A1,A2 ∩ B1) ∪ E (B2 ∩A1,B2 ∩ B1)
does not contain edges from T .
Hence,

E (A1 ∩A2,A1 ∩ B2) ∪ E (A2 ∩ B1,B1 ∩ B2) ⊆ E (A2,B2) \T ,
and therefore,

w (E (A1 ∩A2,A1 ∩ B2) ∪ E (A2 ∩ B1,B1 ∩ B2) ≤ k .

Symmetrically,
w (E (A1 ∩A2,A2 ∩ B1) ∪ E (A1 ∩ B2,B1 ∩ B2)) ≤ k .

Since
A1 	 A2 = (A1 ∩ B2) ∪ (A2 ∩ B1) and A1 	 B2 = (A1 ∩A2) ∪ (B1 ∩ B2),

the claim follows. �

Let us recall that in this section we fix p = 2k and q = k24k+4k log 4k + 4k + 1.

Lemma 4.5. Let G be a connected (pq,p)-unbreakable graph with an edge weight function w :
E (G ) → N , T ⊆ E (G ) and let k be a positive integer. Let (A1,B1) and (A2,B2) be cuts of G such that
T ⊆ E (Ai ,Bi ) and w (E (Ai ,Bi ) \T ) ≤ k for i ∈ {1, 2}. Then

dist((A1,B1), (A2,B2)) ≤ pq.

Proof. Aiming toward a a contradiction, we assume that dist((A1,B1), (A2,B2)) > pq. Let us
note that (A1 	 A2,A1 	 B2) is a partition ofV (G ). Since dist((A1,B1), (A2,B2)) > pq, we have that
|A1 	 A2 | > pq and |A1 	 B2 | > pq. By Lemma 4.4,w (E (A1 	 A2,A1 	 B2)) ≥ |A1 	 A2,A1 	 B2) | ≤
2k = p; contradicting the assumption that G is (pq,p)-unbreakable. �

Our algorithm for Minimal Terminal Cut uses the random separation technique proposed by
Cai, Chan and Chan [5]. For derandomization, we use the following lemma proved by Chitnis
et al. [7].

Lemma 4.6 ([7]). Given a set U of size n, and integers 0 ≤ a,b ≤ n, one can in time

2O (min{a,b } log(a+b )) · n logn construct a family F of at most 2O (min{a,b } log(a+b )) · logn subsets of U ,
such that the following holds: for any sets A,B ⊆ U , A ∩ B = ∅, |A| ≤ a, |B | ≤ b, there exists a set
S ∈ F with A ⊆ S and B ∩ S = ∅.
Now we are ready to give the algorithm for Minimal Terminal Cut for unbreakable graphs.

Lemma 4.7. Minimal Terminal Cut can be solved in 2O (k2 logk )nO (1) time for (pq,p)-unbreakable
graphs.

Proof. Let (G,w,T ,R1,R2,k ) be an instance of Minimal Terminal Cut, where G is (pq,p)-
unbreakable. If n ≤ pq, then we solve the problem by the brute-force selection of at most k edges

in time 2O (k2 logk )nO (1) . From now we assume that n > pq.
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Using Lemma 4.3, we find a cut (A,B) ofG such thatT ⊆ E (A,B) andw (E (A,B) \T ) ≤ k . If such
a cut does not exist, then we conclude that we are a given a no-instance.
Let (G,w,T ,R1,R2,k ) be a yes-instance and letC = E (A′,B′) be a solution. Without loss of gen-
erality, we assume that dist((A,B), (A′,B′)) = |A 	 A′|. By Lemma 4.5, |A 	 A′| ≤ pq. It means that
to solve the problem, we can either find a cut (A′,B′) or, equivalently,A 	 A′ with these properties
or conclude correctly that such a cut does not exist. First, we describe a randomized algorithm that
finds A 	 A′ and then explain how to derandomize it.
We randomly color the vertices ofV (G ) \ (R1 ∪ R2) by two colors red and bluewith the probabil-
ities 1 − 1

pq
and 1

pq
, respectively. We are looking for a setX ⊆ V (G ) such that the following holds:

(i) |X | ≤ pq.
(ii) For A′ = A 	 X and B′ = V (G ) \A′, C = E (A′,B′) is a solution for (G,w,T ,R1,R2,k ).
(iii) The vertices of X are red and the vertices of NG (X ) are blue.

We say that C = E (A′,B′) is a colorful solution.
The vertices of G are colored in red and in blue induce subgraphs that we call red and blue
correspondingly. We also say that H is a red component if H is a connected component of the red
(respectively, blue) subgraph of G. Because of (i)–(iii), we have the following properties:

• if H is a red component, then either V (H ) ⊆ X or V (H ) ∩ X = ∅,
• if v ∈ V (G ) is colored blue, then v � X .

We use (i)–(iii) and these properties to obtain reduction rules that recolor red components in blue,
that is, each vertex of such a component becomes blue. We apply these rules exhaustively.
SinceT ⊆ E (A′,B′) ifC = E (A′,B′) is a solution for (G,w,T ,R1,R2,k ), we get the following rule.

Reduction Rule 4.3 (T -reduction Rule). If there isuv ∈ T such thatu is red andv is blue, then
recolor the red component H containing u in blue.

We say that uv ∈ E (G ) is a crossing edge for a red component H if u ∈ V (H ), v � V (H ), and
either u ∈ A and v ∈ B or u ∈ B and v ∈ A. Notice that v is colored blue. Notice also that if H is
a red component without crossing edges and V (H ) ⊆ X , then for A′ = A 	 X and B′ = V (G ) \A′,
V (H ) ∩A′ and V (H ) ∩ B′ induce components of G[A′] and G[B′], respectively. If |V (H ) | ≤ pq,
then we have that G[A′] or G[B′] is not connected, because |V (G ) | > pq. Hence, V (H ) ∩ X = ∅ if
C = E (A′,B′) is a solution for (G,w,T ,R,k ). It gives us the next rule.

Reduction Rule 4.4 (Crossing reduction rule). If there is a red componentH without crossing
edges, then recolor H blue.

After the exhaustive applications of Rules 4.3 and 4.4, each red componentH has crossing edges
and these crossing edges are not inT . Sincew (E (A,B) \C ) ≤ k , the total number of crossing edges
is at most k and, therefore, there are at most k red components. Because X is a union of some red
components, we check all possibilities for X (the number of all possibilities is at most 2k ), and
for each choice, we check whether C = E (A′,B′) is a solution for (G,w,T ,R1,R2,k ). If we do not
succeed in finding a solution for at least one of the choices, then we return that there is no solution.
Since Rules 4.3 and 4.4 can be run in polynomial time, a colorful solution for (G,w,T ,R1,R2,k )
can be found in time 2k · nO (1) .
Our next aim is to evaluate the probability of existence of a colorful solution for (G,w,

T ,R1,R2,k ) if (G,w,T ,R1,R2,k ) is a yes-instance of Minimal Terminal Cut. Assume that
(G,w,T ,R1,R2,k ) is a yes-instance and C = E (A′,B′) is a solution, where (A′,B′) is a cut
of G. We assume that dist((A,B), (A′,B′)) = |A 	 A′ |. Let X = A 	 A′. By Lemma 4.5, |X | =
dist((A,B), (A′,B′)) ≤ pq. By Lemma 4.4, |E (X ,V (G ) \ X ) | ≤ 2k and, therefore, |NG (X ) | ≤ 2k .

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 52. Publication date: October 2019.



Spanning Circuits in Regular Matroids 52:17

Then the probability that the vertices of X are colored red and the vertices of NG (X ) are col-
ored blue is at least (1 − 1

pq
)pq · 1

(pq )2k
≥ 1
4(pq )2k

if pq ≥ 2. If we run our randomized algorithm
N = 4(pq)2k times, then the probability that we do not have a colorful solution for each of the N
random colorings, is at most (1 − 1

4(pq )2k
)N ≤ e−1. It means, that it is sufficient to run the algorithm

N times to claim that if we do not find a solution for N random colorings, then with probability at
least 1 − e−1 > 0, (G,w,T ,R1,R2,k ) is a no-instance. In other words, we have a true-biased Monte-
Carlo algorithm that runs in time N · 2k · nO (1) if the initial partition (A,B) is given. Since p = 2k
and q = k24k+4k log 4k + 4k + 1 and the initial partition (A,B) can be found in time 2O (k ) · nO (1) , see

Lemma 4.3, the total running time is 2O (k2 logk ) · nO (1) .
To derandomize the algorithm, we use Lemma 4.6 for a = q, b = p andU = V (G ). We construct
the family F of subsets ofV (G ) described in Lemma 4.6, and instead of random colorings, for each
S ∈ F , we consider the coloring of G such that the vertices of S are colored red and the vertices
of V (G ) \ S are blue. Lemma 4.6 guarantees that (G,w,T ,R1,R2,k ) is a yes-instance of Minimal
Terminal Cut if and only if we have a colorful solution for at least one of |F | colorings. Since F
can be constructed in time 2O (k2 logk ) · nO (1) and |F | = 2O (k2 logk ) · nO (1) , the running time of the

derandomized algorithm is 2O (k2 logk ) · nO (1) . �

We use Lemma 4.7, to solve Border Contractions.

Lemma 4.8. Border Contractions can be solved in time 2O (k2 logk ) · nO (1) for (pq,p)-unbreakable
graphs.

Proof. Let (G,w,T ,R1,R2,k,X ) be an instance of Border Contractions. Let us recall that
the output of Border Contractions consists of solutions of Minimal Terminal Cut for all

possible border contractions (Ĝ,w,T , R̂1, R̂2, k̂ ) of (G,w,T ,R1,R2,k,X ). Notice that if G is (pq,p)-
unbreakable, then each graph Ĝ is (pq,p)-unbreakable as well, because contractions of sets do not

violate this property. We apply Lemma 4.7 for each instance (Ĝ,w,T , R̂, k̂ ) of Minimal Terminal
Cut. Since the number of all possible border contractions is in 2O (k logk ) , the total running time

required to output the family of edge sets for Border Contractions is in 2O (k2 logk ) · nO (1) . �

4.3 Proof of Theorem 3

We are ready to proceed with the proof of Theorem 3, which says that Minimal Terminal Cut is

solvable in time 2O (k2 logk ) · nO (1) . We give a recursive algorithm solving the more general Border
Contractions. Then to solve Minimal Terminal Cut we solve the special caseX = ∅ of Border
Contractions. Recall that we fixed p = 2k and q = k24k+4k log 4k + 4k + 1.
Let (G,w,T ,R1,R2,k,X ) be an instance of Border Contractions.
It is convenient to sort out a trivial case first. Notice that if for (G,w,T ,R1,R2,k,X ) the set of
terminal edges is a cut-set of the input graph but not a minimal cut-set, then this is a no-instance.
It gives us the following rule.

Reduction Rule 4.5 (Stopping rule). If graphG −T has at least two components without border
terminals, then output the empty set for every partition (X1, . . . ,Xt ) and every partition (I1, I2) of
{1, . . . , t }.
From now we assume that Stopping rule is not applicable to the given instance.
We apply Lemma 4.2 on G. If G is (pq,p)-unbreakable, then we apply Lemma 4.8 to solve the
problem. Otherwise, the algorithm from Lemma 4.2 returns a (q,p)-good edge separation (U ,W )
of G.
The set of border terminals X has size at most 4k = 2p. Hence, |X ∩U | ≤ p or |C ∩W | ≤ p. As-
sume without loss of generality that |X ∩U | ≤ p. LetT ′ = T ∩ E (G[U ]), R′1 = R1 ∩U , R′2 = R2 ∩U ,
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and denote byw ′ the restriction ofw on E (G[U ]). We also define the set of border terminals

X ′ = (X ∩U ) ∪ {v ∈ V (G[U ]) | v is incident with an edge of E (U ,W )};
observe that |X ′ | ≤ 2p = 4k , because |E (U ,W ) | ≤ p. We consider the instance (G[U ],w ′,
T ′,R′1,R

′
2,k,X

′) of Border Contractions and solve the problem recursively.
Recall that the output of Border Contractions for (G[U ],w ′,T ′,R′1,R

′
2,k,X

′) is a family of
solutions C for all possible border contractions. In other words, this is a family of solutions for

instances (Ĝ ′,w ′,T ′, R̂′1, R̂
′
2, k̂ ) for all k̂ ≤ k such that a solution exist, and ∅ if there is no solutions.

Each Ĝ ′ and R̂′i is constructed as follows: For every partition (X1, . . . ,Xt ) ∈ P (X ′) and every par-

tition (I1, I2) of {1, . . . , t }, where Ii can be empty, we construct Ĝ ′ by consecutively contracting
X1, . . . ,Xt , and set R̂

′
i = R′i ∪ {x j | j ∈ Ii } for i ∈ {1, 2}, where each x j is the vertex obtained from

X j by the contraction. For each of the subproblems, solution C is a set of edges of G[U ].
Denote by L the union of all sets generated by the algorithm for (G[U ],w ′,T ′,R′1,R

′
2,k,X

′).
Let G ′′ be the graph obtained from G by contracting the edges of E (G[U ]) \ (L ∪T ). Denote by
α : V (G ) → V (G ′′) the mapping that maps each vertex v ∈ V (G ) to the vertex obtained from v
by edge contractions. Let R′′1 = α (R1), R

′′
2 = α (R2) and X

′′ = α (X ). Notice that the edges of T are
not contracted. Denote by T ′′ the edges of G ′′ obtained from T ; clearly, for each uv ∈ T , we have
α (u)α (v ) ∈ T ′′. For every uv ∈ E (G ) that was not contracted, the weight of the obtained edge
α (u)α (v ) isw ′′(α (u)α (v )) = w (uv ). We obtain a new instance (G ′′,w ′′,T ′′,R′′1 ,R

′′
2 ,k,X

′′) of Bor-
der Contractions. As before, we do not distinguish between the edges obtained by contracting
edges or the original edges; thus T ′′ = T .
We claim that the original (G,w,T ,R1,R2,k,X ) and new (G ′′,w ′′,T ′′,R′′1 ,R

′′
2 ,k,X

′′) in-
stances are equivalent in the following sense: there is a solution (in fact, every solution) for
(G ′′,w ′′,T ′′,R′′1 ,R

′′
2 ,k,X

′′) that is a solution for (G,w,T ,R1,R2,k,X ), and there is a solution for
(G,w,T ,R1,R2,k,X ) that is a solution for (G ′′,w ′′,T ′′,R′′1 ,R

′′
2 ,k,X

′′).

Lemma 4.9. For every partition (X1, . . . ,Xt ) ∈ P (X ), every partition (I1, I2) of {1, . . . , t }, and ev-

ery nonnegative k̂ ≤ k , the instances (Ĝ,w,T , R̂1, R̂2, k̂ ) and (Ĝ ′′,w ′′,T ′′, R̂′′1 , R̂
′′
2 , k̂ ) of Minimal Ter-

minal Cut are equivalent, where Ĝ is constructed from G by consecutive contracting X1, . . . ,Xt ,

R̂i = Ri ∪ {x j | j ∈ Ii } for i ∈ {1, 2}, where each x j is the vertex obtained from X j by contraction, and,

respectively, Ĝ ′′ is constructed fromG ′′ by consecutive contracting α (X1), . . . ,α (Xt ), R̂′′i = R′′i ∪ {x j |
j ∈ Ii } for i ∈ {1, 2}, where each x j is the vertex obtained from α (X j ) by contraction.

Proof. Let P = (X1, . . . ,Xt ) ∈ P (X ), (I1, I2) be a partition of {1, . . . , t } and k̂ ≤ k .

Suppose that (Ĝ,w,T , R̂1, R̂2, k̂ ) is a yes-instance and denote by C a corresponding solution.
Denote by (A,B) the cut of Ĝ such that C = E (A,B) and assume that R̂1 ⊆ A and R̂2 ⊆ B. Let C ′ =
C ∩ E (G[U ]) and k ′ = w (C ′ \T ).
We construct the partition P ′ ∈ P (X ′) in two stages. Recall that some of the border terminals
in instance (G[U ],w ′,T ′,R′1,R

′
2,k,X

′) could be also border terminals in the original instance. We
include two such border terminals in the same set of P ′ if they are in the same set of P . This way
we obtain partition (Y1, . . . ,Ys ) of X ′. Then we replace two distinct sets Yi and Yj , i, j ∈ {1, . . . , s},
by their union if they can be “connected” in Ĝ by a path avoiding G[U ] and C . More precisely, if
there are vertices x ∈ Yi and y ∈ Yj such that Ĝ contains an (x ′,y ′)-path, where x ′ and y ′ are the

vertices of Ĝ that are x or y, or obtained by contracting set containing x or y, respectively, such
that this path does not contain edges of G[U ] and C . Notice that for any pair of such vertices x
an y, either x ′,y ′ ∈ A or x ′,y ′ ∈ B, i.e., we never contract two vertices from different parts of the
cut (A,B). Denote by (X ′1 . . . ,X

′
r ) the obtained partition P ′ of X ′. We define the partition (I ′1, I

′
2) of

{1, . . . , r } by including j ∈ {1, . . . , r } in I1 ifX ′j is obtained by contracting vertices ofA and we put j
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in I2 otherwise. Consider the instance (Ĝ ′,w ′,T ′, R̂′1, R̂
′
2, k̂ ) of Minimal Terminal Cut , where Ĝ ′

is constructed formG[U ] by contractingX ′1, . . . ,X
′
r , and R̂

′
i = R′i ∪ {x j | j ∈ I ′i } for i ∈ {1, 2}, where

each x j is the vertex obtained from X ′j by contraction.

By the construction of P ′ and (I ′1, I
′
2), we have that (Ĝ

′,w ′,T ′, R̂′1, R̂
′
2, k̂ ) is a yes-instance. Hence,

for instance (G[U ],w ′,T ′,R′1,R
′
2,k,X

′) the output of Border Contractions contains a solution
C ′′ for this choice of P ′ and (I ′1, I

′
2), and w (C ′′ \T ) ≤ k ′. Again, by the construction, we have that

S = (C \C ′) ∪C ′′ is a solution for (Ĝ ′′,w ′′,T ′′, R̂′′1 , R̂
′′
2 , k̂ ). Hence (Ĝ ′′,w ′′,T ′′, R̂′′1 , R̂

′′
2 , k̂ ) is a yes-

instance of Minimal Terminal Cut.
Finally, if (Ĝ ′′,w ′′,T ′′, R̂′′1 , R̂

′′
2 , k̂ ) is a yes-instance, then (Ĝ,w,T , R̂1, R̂2, k̂ ) is a yes-instance,

because G ′′ is obtained from G by contracting nonterminal edges, and every solution for

(Ĝ ′′,w ′′,T ′′, R̂′′1 , R̂
′′
2 , k̂ ) is a solution for (Ĝ,w,T , R̂1, R̂2, k̂ ). �

By Lemma 4.9, that instead of deciding whether instance (G,w,T ,R1,R2,k,X ) is a yes-instance
of Border Contractions, we can solve the problem on instance (G ′′,w ′′,T ′′,R′′1 ,R

′′
2 ,k,X

′′).
What remains is to bound the size of G ′′, and this is what the next lemma does.

Lemma 4.10. |V (G ′′) | < |V (G ) |.

Proof. Recall that G ′′ is the graph obtained from G by contracting the edges of E (G[U ]) \
(L ∪T ), where L is the union of all sets generated by the algorithm for Border Contractions
for (G[U ],w ′,T ′,R′1,R

′
2,k,X

′). Notice that for any C in a solution for (G[U ],w ′,T ′,R′1,R
′
2,k,X

′),
w (C \T ) ≤ k . Hence, |C \T | ≤ k . Since |X ′ | ≤ 4k , the total number of sets in the output is at most
k · 24t · (4t )4t . Therefore, the graph H obtained from G[U ] by contracting the edges of E (G[U ]) \
(L ∪T ) has at most k2 · 24t · (4t )4t nonterminal edges. Notice that G[U ] −T has at most 4k + 1
components, because of Rule 4.5. Hence, H has at most k2 · 24t · (4t )4t + 4k + 1 ≤ q vertices. Since
(U ,W ) is a (q,p)-good edge separation, |V (H ) | < |U |. As we replace G[U ] by H to construct G ′′,
the claim follows. �

Lemma 4.10 shows that we reduce the size of an input graph at each iterative step. Together

with Lemma 4.8, it implies that Border Contractions is solvable in time 2O (k2 logk ) · nO (1) . This
concludes the proof of Theorem 3.

5 SOLVING MINIMUM SPANNING CIRCUIT ON REGULAR MATROIDS

This section is devoted to the proof of the first main result of the article.

Theorem 4. Minimum Spanning Circuit is solvable in time 2O (k2 logk ) · nO (1) on regular n-
element matroids, where k = � −w (T ).

The remaining part of the section contains the proof of the theorem. For technical reasons, in
our algorithm we solve a special variant of Minimum Spanning Circuit. The technicalities are
due to the difficulties of handling 3-sums in the decomposition of the input matroid. We need the
following technical definition.

Definition 5.1 (Circuit Constraints and Extensions). LetM be a binarymatroid given togetherwith
a set of terminals T ⊆ E (M ), and a family X of pairwise disjoint circuits of M of size 3, which are
also disjoint withT . Then a circuit constraint forM,T , andX is an 8-tuple (M,T ,X, P ,Z,w,W,k ),
where

• P is a mapping assigning to each X ∈ X a nonempty set P (X ) of subsets of X of size 1 or 2,
• Z is either the empty set, or is a pair of the form (Z , t ), where Z is a circuit of size 3 disjoint
with the circuits of X and with terminals T , and t is an element of Z ,
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• w is a weight function,w : E \ L → N , where L =
⋃

X ∈X X ,
• W = {wX | X ∈ X} is a family of weight functions, wherewX : P (X ) → N for eachX ∈ X,
and

• k is an integer.

We say that a circuit C of M is a feasible extension satisfying circuit constraint (M,T ,X, P ,
Z,w,W,k ) (or just feasible when it is clear from the context) if

• C ∩ X ∈ P (X ) for each X ∈ X,
• ifZ � ∅, then C 	 Z is a circuit ofM and Z ∩C = {t }, and
• w (C \ (T ∪ L)) +

∑
X ∈XwX (C ∩ X ) ≤ k .

We consider the following auxiliary problem.

Notice that Minimum Spanning Circuit parameterized by k = � −w (T ) is the special case of
ExtendedMinimum Circuit forX = ∅ andZ = ∅. We call a circuitC satisfying the requirements
of the problem, i.e., which is an extension satisfying the corrsponding circuit constraint, by a
solution. We also refer to the value ω (C ) = w (C \ (T ∪ L)) +

∑
X ∈XwX (C ∩ X ) as to the weight

of C .
To see the intuition behind the definition of Minimum Spanning Circuit , recall that we are
going to apply Theorem 2 that allows to obtain a tree T whose nodes are basic matroids and
the input matroid M is defined by T . Recall also that we assume that T is rooted and perform
the bottom-up transversal of T with respect to its root. Note that we can choose the root ma-
troid in such a way that it contains a terminal. For a node Mi of T , assume that Ti is the subtree
of T rooted in Mi . Let Mi be a node of T and assume that Mj1 , . . . ,Mjr

are its children in T .
Assume also that we are able to obtain partial solutions for the matroids M̂1, . . . , M̂r defined by
Tj1 , . . . ,Tjr

, respectively. Consider a child Mjh
of Mi . If MiMjh

∈ E (T ) corresponds to the 1-sum

in the decomposition of M , then handling of M̂h is trivial as we explained in Section 3. If MiMjh

corresponds to the 2-sum, then we are able to incorporate the information about the partial solu-

tion for M̂h or about M̂h if M̂h has no terminals by assigning a special weight to the unique edge
of E (Mi ) ∩ E (Mjh

) as was discussed in Section 3. Assume thatMiMjh
corresponds to the 3-sum. If

M̂h has no terminals, then we are able to encode the information about M̂h by a weight assignment

to the edges of X = E (Mi ) ∩ E (Mjh
). Let E (M̂h ) ∩T � ∅. Then we should overcome the technical

difficulties corresponding to this case explained in Section 3. In particular, we obtain at most six

partial solutions C , that is, circuits of M̂h , depending on the choice of an edge of X to be in C and
on the property whether C 	 X is a circuit or not. We encode these partial solutions by including
X in X and defining P (X ) and the function wX . In particular, we create an one-element subset of
P (X ) for a partial solution C such thatC 	 X is a circuit and we create a two-element subset for a
partial solution without this restriction. This explains the appearance of X, P andW in Minimum
Spanning Circuit. Now recall that unless Mh is the root, it has a parent Ms in T . If MsMh cor-
respond to the 3-sum in the decomposition, then we should be able to handle the case when we
require C 	 Z to be a circuit for a partial solution C and Z = E (Ms ) ∩ E (Mh ). We also have to fix
t ∈ E (Mh ) that we use as an additional terminal in this case. This is the reason for the inclusion of
Z in the input of Minimum Spanning Circuit.
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In what follows, we construct an algorithm for Extended Minimum Circuit. In Section 5.1, we
solve Extended Minimum Circuit on matroids of basic types, and in Section 5.2, we construct
the algorithm for regular matroids.

5.1 Solving Minimum Spanning Circuit on Basic Matroids

First, we consider matroids obtained from R10 by deleting elements and adding parallel elements.

Lemma 5.1. Extended Minimum Circuit can be solved in polynomial time on the class of matroids
that can be obtained from R10 by adding parallel elements and deleting some elements.

Proof. Let (M,T ,X, P ,Z,w,W,k ) be an instance of Extended Minimum Circuit, where M
is a matroid obtained from R10 by adding parallel elements and deleting some elements. Since
M has no circuit of odd size, X = ∅ and Z = ∅. If e1, e2 ∈ E \T are parallel, then any circuit C
contains at most one of the elements e1, e2, and if e1 ∈ C , then C ′ = (C \ {e1}) ∪ {e2} is a circuit by
Observation 2.1. It means that we can apply the following reduction rule:

Reduction Rule 5.1. If there are parallel e1, e2 ∈ E \T and w (e1) ≤ w (e2), then delete e2.

The matroid obtained fromM by the exhaustive application of the rule has at most 10 nonterminal
elements. Hence, the problem can be solved by brute force: for each set S of nonterminal elements
we check whether S ∪T is a circuit and find a circuit of minimum weight it it exists. �

To construct an algorithm for Extended Minimum Circuit for graphic matroids, we consider
the following parameterized problem:

We show that Cycle Through Terminals is FPT. This problem can be solved in time 2knO (1)

by making use of the randomized algorithm of Björklund et al. [3]. As the running time of our
algorithms for Minimum Spanning Circuit is dominated by the running time of the algorithm
for cographic matroids, we give here a deterministic algorithm with a worse constant in the base
of the exponent. The algorithm is based of the color coding technique of Alon et al. [1].

Lemma 5.2. Cycle Through Terminals is solvable in time 2O (k ) · nO (1) .

Proof. Let (G,w,T ,k ) be an instance of Cycle Through Terminals. First, we exhaustively
apply the following reduction rules.

Reduction Rule 5.2 (Stopping Rule). IfG[T ] is not a disjoint union of paths orG[T ] has at least
k + 1 components, then return a no-answer and stop.

Reduction Rule 5.3 (Dissolving Rule). If there is a vertex v incident to two distinct edges
vx ,vy ∈ T , then do the following:

• delete each edge e ∈ E (G ) \T incident to v ;
• delete v and replace vx ,vy by an edge xy and set w (xy) = 1; set T = (T \ {vx ,vy}) ∪ {xy}.

It is straightforward to see that the rules are safe. Assume that we do not stop when applying
Rule 5.2, and, to simplify notations, we use (G,w,T ,k ) to denote the instance obtained after ap-
plying Dissolving Rule. LetT = {x1y1, . . . ,xryr }. Notice that the edges ofT are independent, i.e.,
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have no common end-vertices, and r ≤ k . If r = 1, then we find a shortest (x1,y1)-path inG − x1y1
using the Dijkstra’s algorithm [10]. If the weight of the path is at most k , then we are done. Oth-
erwise, we have a no-instance.
We assume from now that r ≥ 2. Let U = {x1, . . . ,xr } ∪ {y1, . . . ,yr } and denote h = k − r . Ob-
serve that any cycle C such that T ⊆ E (C ) and w (E (C ) \T ) ≤ k has at most k vertices and, there-
fore, at most h vertices in V (G ) \U . We use the color coding technique [1] to find a cycle C of
minimum weight with at most k vertices such that T ⊆ E (C ). First, we describe a randomized
true-biased Monte-Carlo algorithm and then explain how to derandomize it.
We color the vertices ofV (G ) \U by h colors uniformly at random. Denote by c (v ) the color of

v ∈ V (G ) \U . Our aim is to find a colorful cycle C in G of minimum weight such that T ⊆ E (C )
and the vertices of V (C ) \U have distinct colors.
First, for each set of colorsX ⊆ {1, . . . ,h}, for each pair {i, j} of distinct i, j ∈ {1, . . . , r } and each

u ∈ {xi ,yi } andv ∈ {x j ,yj }, we find a (u,v )-path P ofminimumweight such thatV (P ) ∩U = {u,v}
and the internal vertices of P are colored by distinct colors from X . It can be done in a standard
way by dynamic programming across subsets (see [1, 8]). For completeness, we sketch how to find
the weight of such a path.
Denote for z ∈ V (G ) \ {xi ,yi }, by s (X ,u, z) the minimum weight of a (u, z)-path P inG with all
internal vertices inV (G ) \U such thatV (P ) \U are colored by distinct colors from X ; we assume
that s (X ,u, z) = +∞ if such a path does not exist. We also assume slightly abusing notations that
s (X ,u,u) = 0 for any X ⊆ {1, . . . ,h}. Clearly,

s (∅,u, z) =

{
w (uz) if uz ∈ E (G ) and z ∈ U \ {xi ,yi },
+∞ otherwise.

If X � ∅, then it is straightforward to verify that for z ∈ V (G ) \U , s (X ,u, z)

=

{
min{s (X \ {c (z)},u,x ) +w (xz) | xz ∈ E (G ),x ∈ (V (G ) \U ) ∪ {u}} if c (z) ∈ X ,
+∞ if c (z) � X ,

and for z ∈ U \ {xi ,yi },
s (X ,u, z) = min{s (X ,u,x ) +w (xz) | xz ∈ E (G ),x ∈ (V (G ) \U ) ∪ {u}}.

Using these recurrences, we compute s (X ,u,v ) for all X ∈ {1, . . . ,h} and v ∈ U \ {xi ,yi } in time
2h · nO (1) . We do these computations for all u ∈ {xi ,yi } for every i ∈ {1, . . . , r }.
Using the table of values of s (X ,u,v ), we compute the table of values of c ′(X ,Y ,v ) for v ∈
{xi ,yi }, where i ∈ {2, . . . , r }, X ⊆ {1, . . . ,h} and Y ∈ {2, . . . , r } \ {i}, where c ′(X ,Y ,v ) is a mini-
mum weight of a (y1,v )-path P inG such that E (P ) ∩T = {x jyj | j ∈ X } and the verticesV (P ) \U
are colored by distinct colors from X . Notice that c ′({1, . . . ,h}, {2, . . . , r },y1) is the minimum
weight of a cycle C containing the edges of T with |V (C ) \U | ≤ h. For Y = ∅,

c ′(X ,Y ,v ) = c (X ,y1,v ).

For Y � ∅, we have that
c ′(X ,Y ,v ) = min{min{c ′(X \ X ′,Y \ {j},x j ) +w (x jyj ) + c (X ′,yj ,v ),

c ′(X \ X ′,Y \ {j},yj ) +w (x jyj ) + c (X ′,x j ,v )} | X ′ ⊆ X , j ∈ {1, . . . , r }}.
The correctness of the recurrence is proved by the standard arguments. We obtain that the table

of values of c ′(X ,Y ,v ) can be constructed in time 2h2r · nO (1) . Hence, c ′({1, . . . ,h}, {2, . . . , r },y1)
can be computed in time 2k · nO (1) .

We have that in time 2k · nO (1) we can check whether we have a colorful solution, i.e., a cycle C
of weight at mostw (T ) + k such thatT ⊆ E (C ) and the vertices ofV (C ) \U are colored by distinct
colors. If we have a colorful solution, then we return it.
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Notice that if C is a solution for (G,w,T ,k ), that is, T ⊆ E (C ) and w (E (C ) \T ) ≤ k , then the
probability that the vertices of V (C ) \U are colored by distinct colors from the set {1, . . . ,h} is at
least h!/hh ≥ e−k . Hence, it is sufficient to repeat the algorithm for ek random colorings to claim
that the probability that (G,w,T ,k ) has a solution but our algorithm returns a no-answer for ek

random colorings is at most (1 − 1/ek )ek ≤ 1/e , that is, we have a true biased Monte-Carlo FPT
algorithm that runs in time (2e )k · nO (1) .
This algorithm can be derandomized by the standard tools [1, 8] by replacing the random col-
orings by perfect hash functions. The currently best family of perfect hash functions is constructed
by Naor et al. [26]. �

Lemma 5.3. Extended Minimum Circuit can be solved in time 2O (k ) · |E (M ) |O (1) on graphic
matroids.

Proof. Let (M,T ,X, P ,Z,w,W,k ) be an instance of Extended Minimum Circuit, where M
is a graphic matroid. We find G such that M is isomorphic to M (G ) in polynomial time using the
results of Seymour [31]. Clearly, the choice ofG such thatM is isomorphic toM (G ) is not unique
and, in particular, we can assume thatG is connected. The only property ofG, besides connectivity,
that we need is that a set of edges of G composes a cycle of G is and only if the corresponding
set of elements of M is a circuit of M . Hence, we assume that M = M (G ). We reduce the problem
to Cycle Through Terminals. If |X| > k , then we have a trivial no-instance. Assume from now
that |X| ≤ k and let X = {X1, . . . ,Xr }.
First, we solve the problem for the caseZ = ∅. If C is a solution, thenC ∩ X ∈ P (X ) for X ∈ X.
For each Xi ∈ X, we guess a set Yi ∈ P (Xi ) such that C ∩ Xi = Yi for a hypothetic solution C .
Since Yi has size 1 or 2, we have at most 6

k possibilities to guess Y1, . . . ,Yr . If
∑r

i=1wXi
(Yi ) > k ,

then we discard the guess. Assume that
∑r

i=1wXi
(Yi ) ≤ k . We define the graphG ′ = G −⋃r

i=1 (Xi \
Yi ), T ′ = T ∪ (

⋃r
i=1 Yi ) and k ′ = k −∑r

i=1wXi
(Yi ). We also define w ′(e ) = w (e ) for e ∈ E (G ′) \T ′

and set w ′(e ) = 1 for e ∈ T ′. Then we solve Cycle Through Terminals for (G ′,w ′,T ′,k ′) using
Lemma 5.2. It is straightforward to see that we have a solution C for the considered instance of
Extended Minimum Circuit such that C ∩ Xi = Yi for i ∈ {1, . . . , r } if and only if (G ′,w ′,T ′,k ′)
is a yes-instance of Cycle Through Terminals.
Assume now thatZ = (Z , t ). Clearly, Z induces a cycle inG. Let u be a vertex of this cycle that
is not incident to the edge t . We construct the instances of Cycle Through Terminals for every
guess of Y1, . . . ,Yr in almost the same way as before. The difference is that we delete u from the
obtained graph, define t to be a terminal and reduce the parameter byw (t ). Notice that if a terminal
is incident tou, we have a no-instance for the considered guess. Lemma 3.4 (i) immediately implies
the correctness of the reduction.
Since Cycle Through Terminals can be solved in time 2O (k ) · nO (1) by Lemma 5.2 for each
constructed instance, and we consider at most 6k instances, and each instance is constructed in
polynomial time; the total running time is 2O (k ) · nO (1) . Because G is connected, we can write the
running time as 2O (k ) · |E (M ) |O (1) . �

We use Theorem 3 to solve Extended Minimum Circuit on cographic matroids.

Lemma 5.4. Extended Minimum Circuit can be solved in time 2O (k2 logk ) · |E (M ) |O (1) on co-
graphic matroids.

Proof. Let (M,T ,X, P ,Z,w,W,k ) be an instance of Extended Minimum Circuit, where M
is a cographic matroid. We findG such thatM is isomorphic toM∗ (G ) in polynomial time using the
results of Seymour [31]. Notice that we can assume without loss of generality thatG is connected.
Because we only need the property that a set of edges of G is a minimal cut-set if and only if the
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corresponding set of elements is a cocircuit ofM∗, we can assume thatM = M∗ (G ). We reduce the
problem to Minimal Terminal Cut.
If |X| > k , then we have a trivial no-instance. Assume from now that |X| ≤ k and let X =
{X1, . . . ,Xr }. If C is a solution, then C ∩ X ∈ P (X ) for X ∈ X. For each Xi ∈ X, we guess a set
Yi ∈ P (Xi ) such that C ∩ Xi = Yi for a hypothetic solution C . Since Yi has size 1 or 2, we have
at most 6k possibilities to guess Y1, . . . ,Yr . If s =

∑r
i=1wXi

(Yi ) > k , then we discard the guess. If
Z = (Z , t ) and s +w (t ) > k , then we also can discard the guess. Assume that it is not the case.
We construct G ′ by contracting the edges of

⋃r
i=1 (Xi \ Yi ); for simplicity, we do not distinguish

the edges of G ′ obtained by contractions from the edges of the original graph. If Z = ∅, then we
set T ′ = T ∪ (

⋃r
i=1 Yi ), R1 = ∅ and k ′ = k − s , and if Z = (Z , t ), then T ′ = T ∪⋃r

i=1 Yi ∪ {t }, R1 is
defined to be the set containing the end-vertices of the edges of Z \ {t } and k ′ = k − s −w (t ). We
also define w ′(e ) = w (e ) for e ∈ E (G ′) \T ′ and set w ′(e ) = 1 for e ∈ T ′. Then we solve Minimal
Terminal Cut for (G ′,w ′,T ′,R1, ∅,k ′) using Theorem 3. If Z = ∅, then it is straightforward to
see that we have a solution C for the considered instance of Extended Minimum Circuit such
thatC ∩ Xi = Yi for i ∈ {1, . . . , r } if and only if (G ′,w ′,T ′,k ′) is a yes-instance of Cycle Through
Terminals. IfZ = (Z , t ), then correctness follows from Lemma 3.4 (ii).

Since Minimal Terminal Cut can be solved in time 2O (k2 logk ) · nO (1) by Theorem 3 for each
constructed instance and we consider at most 6k instances, and each instance is constructed in
polynomial time, the total running time is 2O (k2 logk ) · nO (1) . BecauseG is connected, we can write

the running time as 2O (k2 logk ) · |E (M ) |O (1) . �

5.2 Proof of Theorem 4

Now we are ready to give an algorithm for Minimum Spanning Circuit parameterized by
k = � −w (T ) on regular matroids. Let (M,w,T , �) be an instance of Minimum Spanning Circuit,
where M is regular. We consider it to be an instance (M,T ,X, P ,Z,w,W,k ) of Extended Mini-
mum Circuit, where X = ∅ and Z = ∅. If M can be obtained from R10 by the addition of parallel
elements or is graphic or cographic, then we solve the problem directly using Lemmas 5.1–5.4.
Assume that it is not the case. Using Theorem 2, we find a conflict tree T . Recall that the set of
nodes of T is the collection of basic matroidsM and the edges correspond to extended 1-, 2-, and
3-sums. We select a node r of T containing an element of T as a root.
We say that an instance (M,T ,X, P ,Z,w,W,k ) of Extended Minimum Circuit is consistent

(with respect to T ) ifZ = ∅, and for anyX ∈ X,X ∈ E (M ′) for someM ′ ∈ M. Clearly, the instance
obtained from the original input instance (M,w,T , �) ofMinimum Spanning Circuit is consistent.
We use reduction rules that remove leaves keeping this property.
LetM� ∈ M be amatroid that is a leaf of T . We construct reduction rules depending onwhether

M� is 1-, 2-, or 3-leaf. Denote byMs its neighbor in T . Let also T ′ be the tree obtained from T be
the deletion ofM� , and letM

′ be the matroid defined by T ′. Clearly,M = M ′ ⊕ M� .
Throughout this section, we say that a reduction rule is safe if it either correctly solves the
problem or returns an equivalent instance of Extended Minimum Circuit together with corre-
sponding conflict tree of the obtained matroid that is consistent and the value of the parameter
does not increase.
From now onward, let (M,T ,X, P ,Z,w,W,k ) be a consistent instance of Extended Minimum
Circuit. Denote L =

⋃
X ∈X X .

Reduction Rule 5.4 (1-Leaf reduction rule). If M� is a 1-leaf, then do the following.

(i) If T ∩ E (M� ) � ∅ or there is X ∈ X such that X ⊆ E (M� ), then stop and return a no-answer,
(ii) Otherwise, return the instance (M ′,T ,X, P , ∅,w ′,W,k ), where w ′ is the restriction of w on

E (M ′) \ L, and solve it using the conflict tree T ′.
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Since the root matroid contains at least one terminal, Lemma 3.3 (i) immediately implies the
following lemma.

Lemma 5.5. Reduction Rule 5.4 is safe and can be implemented to run in time polynomial in |E (M ) |.

Reduction Rule 5.5 (2-Leaf reduction rule). If M� is a 2-leaf, then let {e} = E (M� ) ∩ E (Ms )
and do the following.

(i) If T ∩ E (M� ) = ∅ and there is no X ∈ X such that X ⊆ E (M� ), then find a circuit C� of M�

containing e with minimum w (C� \ {e}) ≤ k . If there is no such a circuit, then set w ′(e ) =
k + 1, and let w ′(e ) = w (C� \ {e} otherwise. Assume that w ′(e ′) = w (e ′) for e ′ ∈ E (M ′) \ L.
Return the instance (M ′,T ,X, P , ∅,w ′,W,k ) and solve it using the conflict tree T ′.

(ii) Otherwise, if T ∩ E (M� ) � ∅ or there is X ∈ X such that X ⊆ E (M� ), then consider T� =
(T ∩ E (M� )) ∪ {e} and X� = {X ∈ X | X ⊆ E (M� )}. Define P� , w� ,W� by restricting the cor-
responding functions by E (M� ) assuming additionally that w� (e ) = 1 (the value is, in fact,
irrelevant here). Find the minimum k� ≤ k such that (M�,T�,X�, P�, ∅,w�,W�,k� ) is a yes-
instance of Extended Minimum Circuit. Stop and return a no-answer if such k� does not exist.
Otherwise, do the following. Set T ′ = (T ∩ E (M ′)) ∪ {e} and X′ = {X ∈ X | X ⊆ E (M ′)}. De-
fine P ′, w ′, W′ by restricting the corresponding functions by E (M ′) assuming additionally
that w ′(e ) = 1. Return the instance (M ′,T ′,X′, P ′, ∅,w ′,W′,k − k� ) and solve it using the
conflict tree T ′.

Lemma 5.6. Reduction Rule 5.5 is safe and can be implemented to run in time 2O (k2 logk ) ·
|E (M ) |O (1) .

Proof. Clearly, if the rule returns a new instance, then it is consistent with respect to T ′ and
the parameter does not increase.
We show that the rule either correctly solves the problem or returns an equivalent instance.
Suppose that (M,T ,X, P ,Z,w,W,k ) is a consistent yes-instance.We prove that the rule returns
a yes-instance. Denote byC a circuit ofM that is a solution for the instance. We consider two cases
corresponding to the cases (i) and (ii) of the rule.

Case 1. T ∩ E (M� ) = ∅ and there is no X ∈ X such that X ∈ E (M� ). If C ⊆ E (M ′), then by
Lemma 3.3 (ii), C is a circuit of M ′. It is straightforward to see that C is a solution for
(M ′,T ,X, P , ∅,w ′,W,k ). Suppose thatC ∩ E (M� ) � ∅. ThenC = C1 	C2, whereC1 ∈ C (M ′),C2 ∈
C (M2), and e ∈ C1 ∩C2 by Lemma 3.3 (ii). It remains to observe that C1 is a feasible circuit for
(M ′,T ,X, P , ∅,w ′,W,k ) and its weight is at most the weight of C . Hence, C1 is a solution for
(M ′,T ,X, P , ∅,w ′,W,k ), and the algorithm returns is a yes-instance.

Case 2. T ∩ E (M� ) � ∅ or there is X ∈ X such that X ⊆ E (M� ). Then by Lemma 3.3 (ii), C =
C1 	C2, where C1 ∈ C (M ′), C2 ∈ C (M2), and e ∈ C1 ∩C2. We have that C2 is a solution for
(M�,T�,X�, P�, ∅,w�,W�,k

′), where k ′ ≤ k is the weight of C2 and the algorithm does not stop.
Also we have that C1 is a solution for (M ′,T ′,X′, P ′, ∅,w ′,W′,k − k� ) as C1 is feasible, and its
weight is ω (C ) − k ′ ≤ k − k� , i.e., the rule returns a yes-instance.
Suppose now that the instance constructed by the rule is a yes-instance with a solution C ′. We
show that the original instance (M,T ,X, P ,Z,w,W,k ) is a yes-instance. We again consider two
cases.

Case 1∗. The new instance is constructed by Rule 5.5 (i). If e � C ′, then C ′ is a circuit of M by
Lemma 3.3 (ii), and, therefore, C ′ is a solution for (M,T ,X, P ,Z,w,W,k ), that is, the original
instance is a yes-instance. Assume that e ∈ C ′. In this case,w ′(e ) ≤ k . Hence, there is a circuitC ′′
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ofM� containing e withw (C ′′ \ {e}) = w ′(e ). By Lemma 3.3 (ii),C = C ′ 	C ′′ is a circuit ofM . We
have that C is a solution for (M,T ,X, P ,Z,w,W,k ), and it is a yes-instance.

Case 2∗. The new instance is constructed by Rule 5.5 (ii). In this case, (M�,T�,X�, P�, ∅,w�,W�,k� )
has a solution C ′′ of weight k� . Notice that e ∈ C ′ ∩C ′′. We have that C = C ′ 	C ′′ is a circuit of
M by Lemma 3.3 (ii). We have that C is a solution for (M,T ,X, P ,Z,w,W,k ) and, therefore, the
original instance is a yes-instance.
We proved that the rule is safe. To evaluate the running time, notice first that we can find a circuit

C� ofM� containing e with minimumw (C� \ {e}) ≤ k in Rule 5.5 (i) in time 2O (k2 logk ) · |E (M� ) |O (1)

using the observation that we have an instance of Minimum Spanning Circuit with T = {e} and
can apply Lemmas 5.1–5.4 depending on the type ofM� (in fact, it can be done in polynomial time
for this degenerate case). We find k� in Rule 5.5 (ii) by solving (M�,T�,X�, P�, ∅,w�,W�,k� ) for

k� ≤ k using Lemmas 5.1–5.4 depending on the type ofM� in time 2
O (k2 logk ) · |E (M� ) |O (1) . �

Reduction Rule 5.6 (3-Leaf reduction rule). If M� is a 3-leaf, then let S = {e1, e2, e3} =
E (M� ) ∩ E (Ms ) and do the following.

(i) If T ∩ E (M� ) = ∅ and there is no X ∈ X such that X ⊆ E (M� ), then for each i ∈ {1, 2, 3},
find a circuit C (i )

�
of M� such that C (i )

�
∩ S = {ei } and C (i )

�
	 S is a circuit of M� with mini-

mum w (C (i )
�
\ {ei }) ≤ k . If there is no such a circuit, then set w ′(ei ) = k + 1, and let w ′(ei ) =

w (C (i )
�
\ {ei }) otherwise. Assume that w ′(e ′) = w (e ′) for e ′ ∈ E (M ′) \ (L ∪ S ). Return the in-

stance (M ′,T ,X, P , ∅,w ′,W,k ) and solve it using the conflict tree T ′.
(ii) If there is no X ∈ X such that X ⊆ E (M� ), but T� = T ∩ E (M� ) � ∅ and there is i ∈ {1, 2, 3}

such that C� = T� ∪ {ei } is a circuit of M� , then consider two cases.
—C� 	 S is a circuit of M� . Set w ′(ei ) = 1 and assume that w ′(e ′) = w (e ′) for e ′ ∈
E (M ′) \ (S ∪ L). For each j ∈ {1, 2, 3} \ {i}, do the following. Let h ∈ {1, 2, 3} \ {i, j}. Set
X� = {S }, P� (S ) = {ej }, wS ({eh }) = 1, and W� = {wS }. Let w� be a restriction of w on

E (M� ). Find a minimum k (h)
�
≤ k + 1 such that (M�,T�,X�, P�, ∅,w�,W�,k

(h)
�

) is a yes-

instance of Extended Minimum Circuit. If there is no such k (h)
�

, then set w ′(ej ) = k +

1 and set w ′(ej ) = k
(h)
�
− 1 otherwise. Set T ′ = (T ∩ E (M ′)) ∪ {ei }. Return the instance

(M ′,T ′,X, P , ∅,w ′,W,k ) and solve it using the conflict tree T ′.
—C� 	 S is not a circuit of M� . Setw ′(ei ) = k + 1 andw ′(ej ) = 1 for j ∈ {1, 2, 3} \ {i}. Assume

that w ′(e ′) = w (e ′) for e ′ ∈ E (M ′) \ (L ∪ S ). Set T ′ = (T ∩ E (M ′)) ∪ (S \ {ei }). Return the
instance (M ′,T ′,X, P , ∅,w ′,W,k ), and solve it using the conflict tree T ′.

(iii) Otherwise, letT� = T ∩ E (M� ) andX� = {X ∈ X | X ⊆ E (M� )}. Define P� ,w� ,W� by restrict-
ing the corresponding functions by E (M� ). Construct the set Y of subsets of S and the function
wS : Y → N as follows. Initially, set Y = ∅.
—Define w ′

�
(ei ) = 1 for i ∈ {1, 2, 3} and let w ′

�
(e ) = w� (e ) for e ∈ E (M� ) \ (L ∪ S ). For i ∈

{1, 2, 3}, find the minimum k (i )
�
≤ k + 1 such that (M�,T�,X�, P�, (S, ei ),w ′

�
,W�,k

(i )
�

) is a

yes-instance of Extended Minimum Circuit. If such k (i )
�

exists, then add {ei } in Y and set

wS ({ei }) = k (i )
�
− 1.

—Let X′
�
= X� ∪ {S }. For each i ∈ {1, 2, 3}, do the following. Set P (i )

�
(X ) = P� (X ) for X ∈ X�

and P (i )
�

(Y ) = {xi }, set w (i )
S

({ei }) = 1 andW (i )
�
=W� ∪ {w (i )

S
}. Find the minimum k (i )

�
≤

k + 1 such that (M�,T�,X′�, P
(i )
�
, ∅,w�,W (i )

�
,k (i )

�
) is a yes-instance of Extended Minimum

Circuit. If such k (i )
�

exists, then add S \ {ei } in Y and set wS (S \ {ei }) = k (i )
�
− 1.

If Y = ∅, then return a no-answer and stop. Otherwise, set T ′ = T ∩ E (M ′), X′ = {X ∈ X |
X ⊆ E (M ′)} ∪ {S } and for X ∈ X′, let P ′(X ) = P (X ) if X ⊆ P (X ) and P ′(S ) = Y . Also let
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W′ = {wX | X ∈ X′} and let w ′ be the restriction of w on E (M ′). Return the instance
(M ′,T ′,X′, P ′, ∅,w ′,W′,k ) and solve it using the conflict tree T ′.

Lemma 5.7. Reduction Rule 5.6 is safe and can be implemented to run in time 2O (k2 logk ) ·
|E (M ) |O (1) .

Proof. It is straightforward to see that if the rule returns a new instance, then it is consistent
with respect to T ′ and the parameter does not increase. We show that the rule either correctly
solves the problem or returns an equivalent instance.
Suppose that (M,T ,X, P ,Z,w,W,k ) is a consistent yes-instance.We prove that the rule returns
a yes-instance. Denote by C a circuit of M that is a solution for the instance. We consider three
cases corresponding to the cases (i)–(iii) of the rule.

Case 1. T ∩ E (M� ) = ∅ and there is no X ∈ X such that X ∈ E (M� ).
If C ⊆ E (M ′), then by Lemma 3.3 (iii), C is a circuit of M ′, and C is a solution for the instance

(M ′,T ,X, P , ∅,w ′,W,k ) returned by Rule 5.6 (i), that is, we get a yes-instance. Suppose that C ∩
E (M� ) � ∅. Then, by Lemma 3.3 (iii), C = C1 	C2, where C1 ∈ C (M ′), C2 ∈ C (M� ), C1 ∩ S = C2 ∩
S = {ei } for some i ∈ {1, 2, 3}, and C1 	 S is a circuit ofM ′ or C2 	 S is a circuit ofM� .
Suppose that C2 	 S is a circuit of M� . Then C2 is a circuit of M� containing ei such that C2 	 S
is a circuit and w (C2 \ {ei }) ≤ k . We have that w ′(ei ) ≤ w (C2 \ {ei }). Hence, C1 is a solution for
the instance (M ′,T ,X, P , ∅,w ′,W,k ) returned by Rule 5.6 (i) and, therefore, the rule returns a
yes-instance.
Assume now that C2 	 S is a not circuit of M� . By Lemma 3.1, C2 	 S is a disjoint union of two
circuitsC (1)

2 andC
(2)
2 ofM� containing eh , ej ∈ S \ {ei }, andC (1)

2 	 S andC
(2)
2 	 S are circuits ofM� .

We obtain thatw ′(eh ) ≤ w (C (1)
2 \ {eh }) andw ′(ej ) ≤ w (C (2)

2 \ {ej }). ConsiderC ′1 = C1 	 S . Because
C2 	 S is not a circuit ofM� ,C

′
1 is a circuit ofM

′. Since eh , ej ∈ E (M ′), we have thatC ′1 is a solution
for (M ′,T ,X, P , ∅,w ′,W,k ) returned by Rule 5.6 (i). Hence, we get a yes-instance.

Case 2. There is no X ∈ X such that X ⊆ E (M� ), butT� = T ∩ E (M� ) � ∅, and there is i ∈ {1, 2, 3}
such that C� = T� ∪ {ei } is a circuit ofM� .
Notice that w ′(e ) ≥ 1 for e ∈ E (M ′) \ L, that is, the instance returned by 5.6 (ii) is a feasible
instance of Extended Minimum Circuit. To prove it, observe that ifC� 	 S is a circuit ofM� and

j ∈ {1, 2, 3} \ {i}, thenk (h)
�
≥ 2, because any solutionC ′ for (M�,T�,X�, P�, ∅,w�,W�,k

(h)
�

) contains
at least one element of E (M� ) \ (T� ∪ S ). Otherwise, we get thatC� 	C ′ = {ei , eh } is a cycle ofM�

contradicting that S is a circuit ofM� .
By Lemma 3.3 (iii), C = C1 	C2, where C1 ∈ C (M ′), C2 ∈ C (M� ), C1 ∩ S = C2 ∩ S = {eh } for
some h ∈ {1, 2, 3}, and C1 	 S is a circuit ofM ′ or C2 	 S is a circuit ofM� .
Assume first thatC� 	 S is a circuit ofM� . If h = i , then it is straightforward to verify thatC

′ =
C1 	C� is a solution for the instance (M ′,T ′,X, P , ∅,w ′,W,k ) returned by Rule 5.6 (ii) and, there-
fore, the rule returns a yes-instance. Suppose that h ∈ {1, 2, 3} \ {i}. We have that C2 is a solution
for (M�,T�,X�, P�, ∅,w�,W�,k

(h)
�

) constructed in Rule 5.6 (ii). Hence,w ′(ej ) = k
(h)
�
− 1, where k (h)

�

is at most the weight of the solutionC2 for (M�,T�,X�, P�, ∅,w�,W�,k
(h)
�

) and j ∈ {1, 2, 3} \ {i,h}.
Notice thatC� ⊂ C2 	 S , that is,C2 	 S is not a circuit ofM� . Hence,C

′
1 = C1 	 S is a circuit ofM ′.

We obtain thatC ′1 is a solution for the instance (M ′,T ′,X, P , ∅,w ′,W,k ) returned by Rule 5.6 (ii).
Hence, we get a yes-instance of the problem.
Suppose now that C� 	 S is not a circuit of M� . We claim that h = i and C2 = C� in this case.
If h = i , then C2 = C� by minimality, because T� ⊆ C2. Suppose that h � i . By Lemma 3.1, C� 	
S is disjoint union of two circuits C (1)

�
and C (2)

�
of M� containing eh and ej , respectively, where
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j ∈ {1, 2, 3} \ {i,h}. Therefore, C (1)
�
⊆ C2 and, by minimality, C2 = C

(1)
�
, but at least one terminal of

T� is in C
(2)
�
contradicting T� ⊆ C2. Hence, h = i and C2 = C� . Then C

′
1 = C1 	 S is a circuit of M ′

and is a solution for the instance (M ′,T ′,X, P , ∅,w ′,W,k ) returned by Rule 5.6 (ii) and, therefore,
the rule returns a yes-instance.

Case 3. Cases 1 and 2 do not apply, that is, we are in the conditions of Rule 5.6 (iii). By Lemma 3.3
(iii),C = C1 	C2, whereC1 ∈ C (M ′),C2 ∈ C (M� ),C1 ∩ S = C2 ∩ S = {ei } for some i ∈ {1, 2, 3}, and
C1 	 S is a circuit ofM ′ orC2 	 S is a circuit ofM� . Notice that if Rule 5.6 (iii) returns an instance,

then wS has only positive values, because it always holds that k
(i )
�
≥ 2, since the conditions of

Rule 5.6 (ii) are not fulfilled.
Assume first that C2 	 S is a circuit of M� . Notice that C2 is a feasible circuit for

(M�,T�,X�, P�, (S, ei ),w ′
�
,W�,k� ) for k� ≤ k and its weight with respect to this instance is at most

k . Hence, {ei } ∈ Y � ∅. It means that we do not stop while executing Rule 5.6 (iii) and wS ({ei }) is
at most the weight of C2. It implies that C1 is a solution for (M ′,T ′,X′, P ′, ∅,w ′,W′,k ) returned
by Rule 5.6 (iii), i.e., we obtain a yes-instance.
Suppose that C2 	 S is not a circuit of M� . Then C1 	 S is a circuit of M ′. We have that C2 is
a feasible circuit for (M�,T�,X′�, P

(i )
�
, ∅,w�,W (i )

�
,k (i )

�
) for k� ≤ k and its weight with respect to

this instance is at most k . Hence, S \ {ei } ∈ Y � ∅. Therefore, we do not stop andwS (S \ {ei }) is at
most the weight ofC2. It implies thatC

′
1 = C1 	 S is a solution for (M�,T�,X′�, P

(i )
�
, ∅,w�,W (i )

�
,k (i )

�
)

returned by Rule 5.6 (iii), that is, the rule returns a yes-instance.

Suppose now that the instance constructed by the rule is a yes-instance with a solution C ′. We
show that the original instance (M,T ,X, P ,Z,w,W,k ) is a yes-instance.
We consider three cases corresponding to the cases of the rule.

Case 1∗. The new instance is constructed by Rule 5.6 (i). If C ′ ∩ S = ∅, then it is straightforward
to see that C ′ is a solution for the original instance, and, therefore, (M,T ,X, P ,Z,w,W,k ) is a
yes-instance. Suppose that C ′ ∩ S � ∅. Clearly, |C ′ ∩ S | ≤ 2.
Assume that C ′ ∩ S = {ei } for some i ∈ {1, 2, 3}. Clearly,w ′(ei ) ≤ k . Hence,M� has a circuit C

′′

with C ′′ ∩ S = {ei } such that w ′(ei ) = w (C ′′ \ {ei }) and C ′′ 	 S is a circuit of M� . By Lemma 3.3
(iii),C = C ′ 	C ′′ is a circuit ofM . We obtain thatC is a solution for (M,T ,X, P ,Z,w,W,k ), that
is, it is a yes-instance.
Suppose that C ′ ∩ S = {ei , ej } for distinct i, j ∈ {1, 2, 3}. Let h ∈ {1, 2, 3} \ {i, j}. We have that

w ′(ei ) ≤ k andw ′(ej ) ≤ k . It means, thatM� has circuitsC
′′
1 andC

′′
2 such thatC

′′
1 ∩ S = {ei },C ′′2 ∩

S = {ej } andw ′(ei ) = w (C ′′1 \ {ei }),w ′(ej ) = w (C ′′2 \ {ei }). ConsiderC ′′ = C ′′1 	C ′′2 . By Lemma 3.1,
C ′′ is a cycle of M� . Then there is a circuit C

′′′ ⊆ C ′′ of M� such that C
′′′ ∩ S = {eh }. Notice that

w (C ′′′ \ {eh } ≤ w ′(ei ) +w ′(ej ). By Lemma 3.2, C
′ 	 S is a circuit ofM . Let C = (C ′ 	 S ) 	C ′′′. By

Lemma 3.3 (iii), C is a circuit of M . We have that C is a solution for (M,T ,X, P ,Z,w,W,k ), and,
therefore, it is a yes-instance.

Case 2∗. The new instance is constructed by Rule 5.6 (ii). Recall that C� = T� ∪ {ei } is a circuit of
M� . Clearly, 1 ≤ |C ′ ∩ S | ≤ 2.
Suppose, first, that C� 	 S is a circuit of M� . If |C ′ ∩ S | = 1, then C ′ ∩ S = {ei }. Then we ob-
tain that C = C ′ 	C� is a solution for (M,T ,X, P ,Z,w,W,k ), and it is a yes-instance. As-
sume that C ′ ∩ S = {ei , ej } for j ∈ {1, 2, 3} \ {i}. Then w ′(ej ) ≤ k . Then there is a circuit C ′′

of M� such that C
′′ ∩ S = {eh } for h ∈ {1, 2, 3} \ {i, j} that is a solution of weight w ′(ej ) + 1

for (M�,T�,X�, P�, ∅,w�,W�,k
(h)
�

) considered by Rule 5.6 (ii). Notice that C ′ 	 S is a circuit
of M ′ by Lemma 3.2. By Lemma 3.3 (iii), we obtain that C = (C ′ 	 S ) 	C ′′ is a solution for
(M,T ,X, P ,Z,w,W,k ), and, therefore, it is a yes-instance.
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Assume now that C� 	 S is a not circuit of M� . Then C
′ ∩ S = {eh , ej } for {h, j} = {1, 2, 3} \ {i}.

By Lemma 3.2, C ′ 	 S is a circuit of M ′, and by Lemma 3.3 (iii), we obtain that C = (C ′ 	 S ) 	C�

is a solution for (M,T ,X, P ,Z,w,W,k ), that is, it is a yes-instance.

Case 3∗. The new instance is constructed by Rule 5.6 (iii). We have that C ′ ∩ S ∈ Y for the set Y
constructed by the rule.
Assume that C ′ ∩ S = {ei } for i ∈ {1, 2, 3}. Then wS ({ei }) ≤ k and, therefore, there is a solution

C ′′ of weight k (i )
�
= wS ({ei }) + 1 for the instance (M�,T�,X�, P�, (S, ei ),w ′

�
,W�,k

(i )
�

) constructed
by the rule. Notice that C ′′ 	 S is a circuit of M� . We obtain that C = C

′ 	C ′′ is a solution for
(M,T ,X, P ,Z,w,W,k ), and it is a yes-instance.
Suppose now thatC ′ ∩ S = {ei , ej } for distinct i, j ∈ {1, 2, 3}. Leth ∈ {1, 2, 3} \ {i, j}. We have that

wS ({ei , ej }) ≤ k . Hence, there is a solution C ′′ of weight k (h)
�
= w ({ei , ej }) + 1 for the instance

(M�,T�,X′�, P
(i )
�
, ∅,w�,W (i )

�
,k (h)

�
). By Lemma 3.2, C ′ 	 S is a circuit of M ′, and by Lemma 3.3

(iii), C = C ′ 	C ′′ is a circuit of M . We have that C is a solution for the original instance
(M,T ,X, P ,Z,w,W,k ). Hence, it is a yes-instance.

To complete the proof, it remains to evaluate the running time. Rule 5.6 (i) can be executed

in time 2O (k2 logk ) · |E (M ) |O (1) .2 To see it, observe that to compute w ′(ei ) for i ∈ {1, 2, 3}, we
can solve Extended Minimum Circuit for (M�, ∅, ∅, ∅, (S, ei ),w�,k

(i )
�

) for k (i )
�
≤ k , where

w� (e ) = w (e ) for e ∈ E (M� ) \ (L ∪ S ) and w� (ei ) = 1 for i ∈ {1, 2, 3}, using Lemmas 5.1–5.4
depending on the type of M� . For Rule 5.6 (ii), observe that it can be checked in polynomial
time whether C� = T� ∪ {ei } and C� 	 S are circuits of M for i ∈ {1, 2, 3}. Then we can solve
the problem for each (M�,T�,X�, P�, ∅,w�,W�,k

(h)
�

) in time 2O (k2 logk ) · |E (M ) |O (1) by Lem-

mas 5.1–5.4. Finally, the problem for every auxiliary instance (M�,T�,X�, P�, (S, ei ),w ′
�
,W�,k

(i )
�

)

and every (M�,T�,X′�, P
(i )
�
, ∅,w�,W (i )

�
,k (i )

�
) can be solved in time 2O (k2 logk ) · |E (M ) |O (1) by

Lemmas 5.1–5.4. �

Now we can complete the proof of Theorem 4. Observe thatM and the corresponding conflict
tree T can be constructed in polynomial time by Theorem 2, and then we apply the reduction
rules at most |V (T ) | − 1 times until we obtain an instance of Extended Minimum Circuit for a
matroid of one of basic types and solve the problem using Lemmas 5.1–5.4.

6 SOLVING SPANNING CIRCUIT ON REGULAR MATROIDS

In this section, we prove the following theorem.

Theorem 5. Spanning Circuit is FPT on regular matroids when parameterized by |T |.

The remaining part of the section contains the proof of the theorem. Similarly to the proof of
Theorem 4, we solve a special variant of Spanning Circuit. We redefine a simplified variant of
circuit constraint that we need in this section as follows.

Definition 6.1 (Circuit Constraints and Extensions). LetM be a binarymatroid given togetherwith
a set X of nonempty pairwise disjoint subsets of E (M ) of size at most 3. Then a circuit constraint
forM and X is a 4-tuple (M,X, P ,Z), where

• P is a mapping assigning to each X ∈ X a nonempty set P (X ) of subsets of X of size 1 or 2,
• Z is either the empty set, or is a pair of the form (Z , t ), where Z is a circuit of size 3 disjoint
with the sets of X and t is an element of Z .

2In fact, it can be done in polynomial time for this degenerate case.
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We say that a circuitC ofM is a feasible extension satisfying circuit constraint (M,X, P ,Z) (or just
feasible when it is clear from the context) if

• C ∩ X ∈ P (X ) for each X ∈ X, and
• IfZ � ∅, then C 	 Z is a circuit ofM and Z ∩C = {t }.

We also say that a circuit C is a feasible extension satisfying circuit constraint (M,X, P ,Z) is a so-
lution for an instance of Extended Spanning Circuit. Clearly, Spanning Circuit is a special
case of Extended Spanning Circuit for X = {{t } | t ∈ T }, P ({t }) = {t } for t ∈ T , andZ = ∅. The
intuition behind the definition of Extended Spanning Circuit is essentially the same as for Ex-
tended Minimum Circuit. In fact, the absence of weights makes the problem less technical. In
Section 6.1, we construct algorithms for Extended Spanning Circuit for basic matroids, and in
Section 6.2 we explain how to use these results to solve Spanning Circuit on regular matroids.

6.1 Solving Extended Spanning Circuit on Basic Matroids

First, we consider matroids obtained from R10 by deleting elements and adding parallel elements.
Notice that, in fact, suchmatroids that occur in decompositions have bounded size but, formally, we
have to deal with the possibility that the number of parallel elements added to R10 can be arbitrary.

Lemma 6.1. Extended Spanning Circuit can be solved in polynomial time on the class of matroids
that can be obtained from R10 by adding parallel elements and deleting some elements.

Proof. Let (M,X, P ,Z) be an instance of Extended Spanning Circuit, where M is a ma-
troid with a ground set E that is obtained from R10 be adding parallel elements and deleting some
elements. Notice thatZ = ∅, becauseM has no circuits of odd size.
Notice that if e and e ′ are parallel elements of M , then for any circuit C of M , either C = {e, e ′}
or |C ∩ {e, e ′}| ≤ 1. It implies that if |X| > 10, then (M,X, P ,Z) is a no-instance, because for any
selection of sets S (X ) ∈ P (X ),

⋃
X ∈X S (X ) contains two parallel elements. Suppose that this does

not occur. Let Y =
⋃

X ∈X X . Let M
′ be the matroid obtained from M by the exhaustive deletions

of elements of E \ Y that are parallel to some other remaining element of E \ Y . We claim that
(M,X, P ,Z) is a yes-instance if and only if (M ′,X, P ,Z) is a yes-instance. If C is a circuit of
M ′ such that T ⊆ C , then C is a circuit of M as well. Hence, if (M ′,X, P ,Z) is a yes-instance,
then (M,X,P,Z ) is a yes-instance of Extended Spanning Circuit. Suppose that (M,X,P,Z )
is a yes-instance and let a circuit C of M be a solution for the instance such that |C \ E (M ′) | is
minimum. IfC ⊆ E (M ′), thenC is a circuit ofM ′ and (M ′,X, P ,Z) is a yes-instance. Assume that
there is e ∈ C \ E (M ′). Then there is e ′ ∈ E (M ′) that is parallel to e inM such that e ′ � Y . Consider
C ′ = C 	 {e, e ′}. By Observation 2.1, C ′ is a circuit of M . We obtain that C ′ is a solution such that
|C ′ \ E (M ′) | < |C \ E (M ′) |; a contradiction.
It remains to to observe thatM ′ has at most 40 elements. Hence, Extended Spanning Circuit
can be solved for (M ′,X, P ,Z) in time O (1) by brute force. �

Next, we consider graphic matroids. Recall that Björklund, Husfeldt, and Taslaman [3] proved
that a shortest cycle that goes through a given set of k vertices or edges in a graph can be found in
time 2k · nO (1) . The currently best deterministic algorithm that finds a cycle that goes through a
given set of k vertices or edges was given by Kawarabayashi [20]. We show that these results can
be applied to solve Extended Spanning Circuit.
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Lemma 6.2. Extended Spanning Circuit is FPT on graphic matroids when parameterized by |X|.

Proof. Let (M,X, P ,Z) be an instance of Extended Spanning Circuit, whereM is a graphic
matroid. We find G such that M is isomorphic to M (G ) using the results of Seymour [31] and
assume thatM = M (G ).
First, we show how to solve the problem for the case Z = ∅ and then explain how to modify
the algorithm ifZ � ∅. Because the sets of X have sizes 2 or 3, |P (X ) | ≤ 6 for X ∈ X and there is
at most 6 |X | possibilities to guess sets S (X ) ∈ P (X ) of representatives of the elements X ∈ X inC .
For each guess, letT =

⋃
X ∈X S (X ). Consider the graphG ′ obtained fromG by the deletion of the

elements of (
⋃

X ∈X X ) \T . Clearly, (M,X, P ,Z) has a solution corresponding to the considered
guess of sets S (X ) if and only ifG ′ has a cycle that goes through all the edges of T . To find such a
cycle, we can apply the results of [3, 20]. IfZ = (Z , t ), then we use Lemma 3.4 (i). We additionally
find a vertex v of the cycle of G induced by Z that is not incident to the specified element t . By
Lemma 3.4 (i), (M,X, P ,Z) has a solution corresponding to the considered guess of sets S (X ) if
and only if G ′ has a cycle that goes through all the edges of T ∪ {t } and avoids v . To find such a
cycle, we again can apply the results of [3, 20].
Since we consider at most 6 |X | guesses of sets S (X ) ∈ P (X ) and, for each guess, |T | ≤ 2|X|, we
conclude that the algorithm runs in FPT time. �

For cographic matroids, we obtain the following lemma using the results of Robertson and
Seymour [29].

Lemma 6.3. Extended Spanning Circuit is FPT on cographic matroids when parameterized by
|X|.

Proof. Let (M,X, P ,Z) be an instance of Extended Spanning Circuit, where M is a co-
graphic matroid. Using the results of Seymour [31], we can in polynomial time find a graph G
such thatM is isomorphic to the bondmatroidM∗ (G ). We assume thatM = M∗ (G ). We can assume
without loss of generality that G is connected. Recall that to solve Extended Spanning Circuit,
we have to check whether there is a cut (A,B) of G such that G[A] and G[B] are connected and
C = E (A,B) satisfies the requirements of Extended Spanning Circuit.
Because the sets ofX have sizes 2 or 3, |P (X ) | ≤ 6 forX ∈ X and there is at most 6 |X | possibilities
to guess sets S (X ) ∈ P (X ) of representatives of the elements X ∈ X in C . For each guess, let T =⋃

X ∈X S (X ). If Z = (Z , t ), then we additionally include t in T . Consider the graph G ′ obtained
from G by the contraction of the elements of (

⋃
X ∈X X ) \T .

If there is e ∈ T that is a loop ofG ′, then (M,X,Z ,P ) is a no-instance for the guess, since there is
no minimal cut containing e . Assume that the edges ofT are not loops. We guess the placement of
the end-vertices of the edges ofT inA and B considering at most 2 |T | possibilities. LetTA be the set
of end-vertices guessed to be in A, and letTB be the set of end-vertices in B. IfZ = (Z , t ), then we
additionally put the end-vertices of the edges of Z \ {t } in TB using Lemma 3.4 (ii). Now we have
to check whether there is a partition (A,B) of V (G ) such that TA ⊆ A, TB ⊆ B, andG[A] andG[B]
are connected. By the celebrated results of Robertson and Seymour [29] about disjoint paths, one
can find in FPT -time with the parameter |TA | + |TB | disjoint sets of vertices A′ and B′ containing
TA and TB , respectively, such that G[A

′] and G[B′] are connected if such sets exist. If there are no
such setsA′ and B′, then we conclude that there is no partition (A,B) with the required properties
for the considered guess of TA and TB . Otherwise, we extend A

′ and B′ to the partition of V (G )
by the exhaustive applying the following rule: If there is v ∈ V (G ) \ (A′ ∪ B′) that is adjacent to
a vertex of A′ or B′, then put v in A′ or B′, respectively. Clearly, we always obtain a partition of
V (G ), becauseG is connected.
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Since we consider at most 6 |X | guesses of sets S (X ) ∈ P (X ) and, for each guess, |T | ≤ 2|X| and
|TA | + |TB | ≤ 4|T | + 4, we conclude that the algorithm runs in FPT time. �

6.2 Proof of Theorem 5

Now we are ready to give an algorithm for Spanning Circuit on regular matroids. Let (M,T ) be
an instance of Spanning Circuit, whereM is regular.We consider it to be an instance (M,X, P ,Z)
of Extended Spanning Circuit, where X = {{t } | t ∈ T }, P (X ) = X for X ∈ X, and Z = ∅. If M
can be obtained from R10 by the addition of parallel elements or is graphic or cographic, then we
solve the problem directly using Lemmas 6.1–6.3. Assume that it is not the case. Using Theorem 2,
we find a conflict tree T . Recall that the set of nodes of T is the collection of basic matroidsM
and the edges correspond to extended 1-, 2-, and 3-sums. The key observation is that M can be
constructed from M by performing the sums corresponding to the edges of T in an arbitrary
order. We select an arbitrarily node r of T containing an element of T as a root. Our algorithm
is based on performing bottom-up traversal of the tree T . We exhaustively apply reduction rules
that remove leaves of T until we obtain a basic case for which we can apply Lemmas 6.1–6.3.
We say that an instance (M,X, P ,Z) of Extended Spanning Circuit is consistent (with respect

to T ) if Z = ∅ and for any X ∈ X, X ∈ E (M ′) for some M ′ ∈ M. Clearly, the instance obtained
from the original input instance (M,T ) of Spanning Circuit is consistent. Our reduction rules
keep this property.
Let M� ∈ M be a matroid that is a leaf of T . Denote by Ms its adjacent sub-leaf. We construct
reduction rules depending on whetherM� is 1-, 2-, or 3-leaf.
Throughout this section, we say that a reduction rule is safe if it either correctly solves the
problem or returns an equivalent instance of Extended Spanning Circuit together with corre-
sponding conflict tree of the obtained matroid that is consistent and the value of the parameter
does not increase.

Reduction Rule 6.1 (1-Leaf reduction rule). If M� is a 1-leaf, then do the following.

(i) If there is X ∈ X such that X ∈ E (M� ), then stop and return a no-answer,
(ii) Otherwise, delete M� from T and denote by T ′ the obtained conflict tree. Return the instance

(M ′,X, P , ∅) and solve it using the conflict tree T ′, where M ′ is the matroid defined by T ′.

Since the root matroid contains at least one set of X, Lemma 3.3 (i) immediately implies the
following lemma.

Lemma 6.4. Reduction Rule 6.1 is safe and can be implemented to run in time polynomial in |E (M ) |.

Reduction Rule 6.2 (2-Leaf reduction rule). If M� is a 2-leaf, then let {e} = E (M� ) ∩ E (Ms )
and do the following.

(i) If there is noX ∈ X such thatX ∈ E (M� ), then check whether there is a circuit ofM� containing
e . If there is no such a circuit, then delete e from Ms . Delete M� from T and denote by T ′ the
obtained conflict tree. Return the instance (M ′,X, P , ∅) and solve it using the conflict tree T ′,
where M ′ is the matroid defined by T ′.

(ii) Otherwise, if there is X ∈ X such that X ∈ E (M� ), consider X� = {X ∈ X | X ⊆ E (M� )} ∪
{{e}}. Set P� (X ) = P (X ) for X ∈ X� such that X � {e}, and set P� ({e}) = {e}. Solve Extended
Spanning Circuit for (M�,X�, P�, ∅). If (M�,X�, P�, ∅) is a no-instance, then stop and re-
turn a no-answer. Otherwise, do the following. Set X′ = {X ∈ X | X � E (M� )} ∪ {{e}}. Set
P ′(X ) = P (X ) for X ∈ X′ such that X � {e}, and set P ′({e}) = {e}. Delete M� from T and
denote the obtained conflict tree by T ′. Let M ′ be the matroid defined by T ′. Return the in-
stance (M ′,X′, P ′, ∅) and solve it using the conflict tree T ′.
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Lemma 6.5. Reduction Rule 6.2 is safe and can be implemented to run in time f (X) · nO (1) for some
function f of X only.

Proof. Clearly, if the rule returns a new instance, then it is consistent with respect to T ′ and
the parameter does not increase.
We show that the rule either correctly solves the problem or returns an equivalent instance.

Denote by M̂ the matroid defined by the conflict tree obtained from T by the deletion of the node
M� . Clearly,M = M̂ ⊕2 M� .
Suppose that (M,X, P ,Z) is a consistent yes-instance. We prove that the rule returns a yes-
instance. Denote by C a circuit of M that is a solution for (M,X, P ,Z). We consider two cases
corresponding to the cases (i) and (ii) of the rule.

Case 1. There is no X ∈ X such that X ∈ E (M� ). IfC ⊆ E (M̂ ), then by Lemma 3.3 (ii),C is a circuit
ofM ′ constructed by the rule that is either M̂ or the matroid obtained by from M̂ by the deletion of
e , because e � C . Suppose that C ∩ E (M� ) � ∅. Then C = C1 	C2, where C1 ∈ C (M̂ ), C2 ∈ C (M2),
and e ∈ C1 ∩C2 by Lemma 3.3 (ii). Because C2 is a circuit of M2 containing e , we do not delete e
fromMs and, therefore,C1 is a circuit ofM

′ = M̂ constructed by the rule in this case. It remains to
observe that C1 is a solution for (M ′,X, P , ∅). Hence, (M ′,X, P , ∅) is a yes-instance.
Case 2. There is X ∈ X such that X ∈ E (M� ). Then by Lemma 3.3 (ii), C = C1 	C2, where C1 ∈
C (M̂ ),C2 ∈ C (M2), and e ∈ C1 ∩C2. We have thatC2 is a solution for (M�,X�, P�, ∅) and the algo-
rithm does not stop. Also we have that C1 is a solution for (M ′,X′, P ′, ∅), i.e., the rule returns a
yes-instance.

Suppose now that the instance constructed by the rule is a yes-instance with a solution C ′. We
show that the original instance (M,X, P ,Z) is a yes-instance. We again consider two cases.

Case 1∗. The new instance is constructed by Rule 6.2 (i). If e � C ′, then C ′ is a circuit of M by
Lemma 3.3 (ii) and, therefore,C ′ is a solution for (M,X, P ,Z), that is, (M,X, P ,Z) is a yes-instance.
Assume that e ∈ C ′. In this case, e was not deleted by the rule fromMs . Hence, there is a circuitC

′′

of M� containing e . By Lemma 3.3 (ii), C = C
′ 	C ′′ is a circuit of M . We have that C is a solution

for (M,X, P ,Z) and it is a yes-instance.

Case 2∗. The new instance is constructed by Rule 6.2 (ii). In this case, (M�,X�, P�, ∅) is a yes-
instance and there is a solution C ′′ for it. Notice that e ∈ C ′ ∩C ′′. We have that C = C ′ 	C ′′ is
a circuit of M by Lemma 3.3 (ii). We have that C is a solution for (M,X, P ,Z) and, therefore,
(M,X, P ,Z) is a yes-instance.

We proved that the rule is safe. To evaluate the running time, notice first that we can check
existence of a circuit ofM� containing e in Rule 6.2 (i) in polynomial time either directly or using the
straightforward observation that we have an instance of Spanning Circuit withT = {e} and can
apply Lemmas 6.1–6.3 depending on the type ofM� . The problem for (M�,X�, P�, ∅) in Rule 6.2 (ii)
can be solved in FPT time by Lemmas 6.1–6.3 depending on the type ofM� , because |X� | ≤ |X|. �

Reduction Rule 6.3 (3-Leaf Reduction Rule). If M� is a 3-leaf, then let Z = E (M� ) ∩ E (Ms ) =
{e1, e2, e3} and do the following.

(i) If there is noX ∈ X such thatX ∈ E (M� ), then for each i ∈ {1, 2, 3}, solve Extended Spanning
Circuit for the instance (M�, ∅, ∅, (Z , ei )), and if (M�, ∅, ∅, (Z , ei )) is a no-instance, then delete
ei from Ms . Delete M� from T and denote byT ′ the obtained conflict tree. Return the instance
(M ′,X, P , ∅) and solve it using the conflict tree T ′, where M ′ is the matroid defined by T ′.

(ii) Otherwise, if there is X ∈ X such that X ∈ E (M� ), set X� = {X ∈ X | X ⊆ E (M� )} and
P� (X ) = P (X ) for X ∈ X� . We construct the set R of subsets of Z as follows. Initially, R = ∅.
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—For i ∈ {1, 2, 3}, solve Extended Spanning Circuit for the instance (M�,X�, P�, (Z , ei )),
and if we get a yes-instance, then add {ei } in R.

—For i ∈ {1, 2, 3}, solve Extended Spanning Circuit for the instance (M�,X′�, P
(i )
�
, ∅), where

X′
�
= X� ∪ {Z } and P (i )

�
(X ) = P� (X ) for X ∈ X� and L(i )

�
(Z ) = {ei }. If we get a yes instance,

then add Z \ {ei } in R.
If R = ∅, then stop and return a no-answer. Otherwise, do the following. Set X′ = {X ∈ X |
X � E (M� )} ∪ {Z }. Set P ′(X ) = P (X ) for X ∈ X′ such that X � Z , and set P ′(Z ) = R. Delete
M� from T and denote the obtained conflict tree by T ′. Let M ′ be the matroid defined by T ′.
Return the instance (M ′,X′, P ′, ∅) and solve it using the conflict tree T ′.

Lemma 6.6. Reduction Rule 6.3 is safe and and can be implemented to run in time f (X) · nO (1) for
some function f of X only.

Proof. Clearly, if the rule returns a new instance, then it is consistent with respect to T ′ and
the parameter does not increase.
We show that the rule either correctly solves the problem or returns an equivalent instance.

Denote by M̂ the matroid defined by the conflict tree obtained from T by the deletion of the node
M� . Clearly,M = M̂ ⊕2 M� .
Suppose that (M,X, P ,Z) is a consistent yes-instance. We prove that the rule returns a yes-
instance. Denote by C a circuit of M that is a solution for (M,X, P ,Z). We consider two cases
corresponding to the cases (i) and (ii) of the rule.

Case 1. There is noX ∈ X such thatX ∈ E (M� ). IfC ⊆ E (M̂ ), then by Lemma 3.3 (iii),C is a circuit
of M ′ constructed by the rule that is obtained by from M̂ by the deletion of some elements of Z ,
because Z ∩C = ∅. Suppose that C ∩ E (M� ) � ∅. Then, by Lemma 3.3 (iii), C = C1 	C2, where
C1 ∈ C (M̂ ),C2 ∈ C (M� ),C1 ∩ Z = C2 ∩ Z = {ei } for some i ∈ {1, 2, 3}, andC1 	 Z is a circuit of M̂
or C2 	 Z is a circuit ofM� .
Suppose that C2 	 Z is a circuit of M� . Then (M�, ∅, ∅, (Z , ei )) is a yes-instance and, therefore,

ei ∈ E (M ′). Hence, C1 is a circuit of M
′ constructed by the rule. We have that C1 is a solution for

(M ′,X, P , ∅). Hence, (M ′,X, P , ∅) is a yes-instance.
Assume now thatC2 	 Z is a not circuit ofM� . By Lemma 3.1,C2 	 Z is a disjoint union of two
circuits C (1)

2 and C
(2)
2 of M2 containing eh , ej ∈ Z \ {ei }, and C (1)

2 	 Z and C
(2)
2 	 Z are circuits of

M� . Then (M�, ∅, ∅, (Z , eh )) and (M�, ∅, ∅, (Z , eh )) are yes-instances and, therefore, eh , ej ∈ E (M ′).

Consider C ′1 = C1 	 Z . Because C2 	 Z is a not circuit of M� , C
′
1 is a circuit of M̂ . Since eh , ej ∈

E (M ′), we have that C ′1 is a solution for (M ′,X, P , ∅). Hence, (M ′,X, P , ∅) is a yes-instance.

Case 2. There is X ∈ X such that X ∈ E (M� ). We have that C = C1 	C2, where C1 ∈ C (M̂ ), C2 ∈
C (M� ), C1 ∩ Z = C2 ∩ Z = {ei } for some i ∈ {1, 2, 3}, and C1 	 Z is a circuit of M̂ or C2 	 Z is a
circuit ofM� .
Suppose that C2 	 Z is a circuit of M� . Then (M�,X�, P�, (Z , ei )) is a yes-instance and, there-
fore, {ei } ∈ R. Since R � ∅, the algorithm does not stop. Also we have that C1 is a solution for
(M ′,X′, P ′, ∅), i.e., the rule returns a yes-instance.
Assume now that C2 	 Z is not a circuit of M� . Then (M�,X′�, P

(i )
�
, ∅) is a yes-instance and,

therefore, Z \ {ei } ∈ R. Since R � ∅, the algorithm does not stop. Consider C ′1 = C1 	 Z . Notice
that C ′1 is a circuit of M̂ . We obtain that C

′
1 is a solution for (M ′,X′, P ′, ∅), i.e., the rule returns a

yes-instance.

Suppose now that the instance constructed by the rule is a yes-instance with a solution C ′. We
show that the original instance (M,X, P ,Z) is a yes-instance. We again consider two cases.
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Case 1∗. The new instance is constructed by Rule 6.3 (i).
If C ′ ∩ Z = ∅, then C ′ is a circuit of M by Lemma 3.3 (iii) and, therefore, C ′ is a solution for

(M,X, P ,Z), that is, (M,X, P ,Z) is a yes-instance.
Suppose thatC ′ ∩ Z = {ei } for some i ∈ {1, 2, 3}. Then, by the construction of the rule, there is a
circuit C ′′ of M� such that C

′′ ∩ Z = {ei } and C ′′ 	 Z is a circuit. By Lemma 3.3 (iii), C = C ′ 	C ′′
is a circuit ofM . We have that C is a solution for (M,X, P ,Z) and it is a yes-instance.
Assume thatC ′ ∩ Z = {eh , ej } for some distinct h, j ∈ {1, 2, 3}. Let ei be the element of Z distinct
from eh and ej . We have thatM� has two circuitsCh andCj such thatCh ∩ Z = {eh },Cj ∩ Z = {ej }.
Then Ch 	Cj 	 Z is a cycle of M� by Lemma 3.1, and this cycle contains a circuit Ci such that

Ci ∩ Z = {ei }. Consider C ′′ = C ′ 	 Z . By Lemma 3.2, C ′′ is a circuit of M̂ and C ′′ 	 Z is a circuit.
By Lemma 3.3 (iii), we conclude that C = C ′′ 	Ci is a solution for (M,X, P ,Z) and, therefore,
(M,X, P ,Z) is a yes-instance.

Case 2∗. The new instance is constructed by Rule 6.2 (ii). In this case, C ′′ ∩ Z ∈ P ′(Z ) = R. Recall
that R contains sets of size 1 or 2.
Suppose that C ′ ∩ Z = {ei } for some i ∈ {1, 2, 3}. Then, by the construction of the rule, there
is a solution C ′′ for the instance (M�,X�, P�, (Z , ei )). Notice that C ′′ ∩ Z = {ei } and C ′′ 	 Z is a
circuit of M� . By Lemma 3.3 (iii), C = C

′ 	C ′′ is a circuit of M . We have that C is a solution for
(M,X, P ,Z) and it is a yes-instance.
Assume thatC ′ ∩ Z = {eh , ej } for some distinct h, j ∈ {1, 2, 3}. Let ei be the element of Z distinct

from eh and ej . There is a solution C
′′ for (M�,X′�, P

(i )
�
, ∅). Recall that C ′′ ∩ Z = {ei }. Consider

C ′′′ = C ′ 	 Z . By Lemma 3.2,C ′′′ is a circuit of M̂ andC ′′′ 	 Z is a circuit. SinceC ′′′ ∩ Z = {ei }, we
obtain thatC = C ′′′ 	C ′′ is a circuit ofM . It remains to observe thatC is a solution for (M,X, P ,Z)
and it is a yes-instance.

We proved that the rule is safe. To evaluate the running time, notice first that we can check
existence of a circuit ofM� containing each ei in Rule 6.3 (ii) in polynomial time using Lemmas 6.1–

6.3 depending on the type of M� . The problems for (M�,X�, P�, (Z , ei )) and (M�,X′�, P
(i )
�
, ∅) in

Rule 6.3 (i) can be solved in FPT time by Lemmas 6.1–6.3 depending on the type of M� , because
|X� | < |X′� | ≤ |X|. �

To complete the proof of Theorem 5, it remains to observe thatM and the corresponding conflict
tree T can be constructed in polynomial time by Theorem 2, and then we apply the reduction rules
atmost |V (T ) | − 1 times until we obtain an instance of Extended SpanningCircuit for amatroid
of one of basic types and solve the problem using Lemmas 6.1–6.3.

7 LOWER BOUNDS AND OPEN QUESTIONS

In this article, we gave FPT algorithms for Minimum Spanning Circuit and Spanning Circuit
for regular matroids. We conclude with a number of open algorithmic questions about circuits in
matroids. We also discuss here certain algorithmic limitations for extending our results.

Larger matroid classes. The first natural question is whether our results can be extended to
other classes of matroids? There is no hope (of course up to certain complexity assumptions) that
our results can be extended to binary matroids. Downey et al. proved in [15] that the following
problem is W[1]-hard being parameterized by k . (We refer to the book of Downey and Fellows
[14] for the definition of W-hierarchy.) In the Maximum-Likelihood Decoding problem we are
given a binary n ×m matrix A, a target binary n-element vector �s , and a positive integer k . The
question is whether there is a set of at most k columns of A that sum to �s? As it was observed by
Gavenciak et al. [17], the result of Downey et al. immediately implies the following proposition.
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Proposition 7.1 ([17]). Minimum Spanning Circuit isW[1]-hard on binary matroids with unit-
weights elements when parameterized by � even when |T | = 1.

Let us note that Minimum Spanning Circuit with |T | = 0 on binary matroids is equivalent to
Even Set, which parameterized complexity is a long-standing open question, see, e.g., [14].
However Proposition 7.1 does not rule out a possibility that our results can be extended from
the class of regular matroids to any proper minor-closed class of binary, and even more generally,
representable over some finite field, matroids. We doubt that our techniques tailored for regular
matroids could be directly used but it is very likely that the powerful structural theorems obtained
by Geelen et al. that were used to settle Rota’s conjecture, see [18] for further discussions, can shed
some light on this question.
Solving both problems on transversal matroids is another interesting problem.

Stronger parameterization. Björklund et al. [3] gave a randomized algorithm that finds a short-

est cycle through a given setT of vertices or edges in a graph in time 2 |T | · nO (1) . Hence Minimum
Spanning Circuit parameterized byw (T ) is (randomized) FPT on graphic matroids if the weights
are encoded in unary. Unfortunately, it is possible to show that Minimum Spanning Circuit is
W[1]-hard already on cographic matroids for this parameterization.

Theorem 6. Minimum Spanning Circuit isW[1]-hard on cographic matroids with unit-weights
elements when parameterized by |T |.

Proof. We reduce the following variant of the Multicolored Cliqe problem. In the Regular
Multicolored Cliqe we are given a regular graph G, a positive integer parameter k , and a
partitionV1, . . . ,Vk ofV (G ). The task is to decide whetherG have a cliqueK such that |Vi ∩ K | = 1
for i ∈ {1, . . . ,k }. RegularMulticolored Cliqe parameterized byk was shown to beW[1]-hard
by Cai [4].
Let (G,k,V1, . . . ,Vk ) be an instance of Regular Multicolored Cliqe, and assume thatG is a

d-regular n-vertex graph. Assume without loss of generality that k < d < n − 1. We construct the
graph H as follows.

• Construct a copy of G.
• For each i ∈ {1, . . . ,k }, construct a vertex vi and edges viu for u ∈ Vi .
• Construct n pairwise adjacent vertices x1, . . . ,xn and make them adjacent to the vertices
of G.

• Construct p = 2n2 pairwise adjacent vertices y1, . . . ,yp and make each of them adjacent to
x1, . . . ,xn .

• Construct edges y1v1, . . . ,y1vk and set T = {y1v1, . . . ,y1vk }.

We put � = n + (n + d − k + 1)k .
We claim that (G,k,V1, . . . ,Vk ) is a yes-instance of Regular Multicolored Cliqe if and only
if H has a minimal cut-set C of size at most � such that T ⊆ C .
Suppose that K is a clique inG with |Vi ∩ K | = 1 for i ∈ {1, . . . ,k }. Consider the partition (A,A)

of V (G ) with A = {v1, . . . ,vk } ∪ K . It is straightforward to verify that H [A] and H [A] connected.
ThereforeC = E (A,A) is a minimal cut-set. The verticesv1, . . . ,vk have n − k neighbors inV (G ) ∩
A in total and all their neighbors are distinct. Also each vi is adjacent to y1 ∈ A. Since G is d-
regular, each vertex u ∈ K has d − k + 1 neighbors inV (G ) ∩A and n neighbors x1, . . . ,xn among

the remaining vertices of A. Hence, |C | = (n − k ) + k + (n + d − k + 1)k = �.
Assume now that H has a minimal cut-setC of size at most � such thatT ⊆ C . Let (A,A) be the
partition of V (H ) with E (A,A) = C . We also assume that y1 ∈ A. Then v1, . . . ,vk ∈ A.
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First, we show that xi ,yj ∈ A for i ∈ {1, . . . ,n} and j ∈ {1, . . . ,p}. To obtain a contradiction,
assume that at least one of these vertices is in A. Because {x1, . . . ,xn } ∪ {y1, . . . ,yn } is a clique of
size 2n2 + n and T ⊆ E (A,A), we have that |E (A,A) | ≥ 2n2 + n − 1 + k > n + (n + d − k + 1)k = �
contradicting |E (A,A) | ≤ �.
Because H [A] is connected and v1, . . . ,vk ∈ A, there is ui ∈ Vi such that ui ∈ A for each

i ∈ {1, . . . ,k }. Let A′ = {v1, . . . ,vk } ∪ {u1, . . . ,uk }. The vertices v1, . . . ,vk have n − k neighbors
in total in V (G ) ∩A′ and all their neighbors are distinct. Also each vi is adjacent to y1 ∈ A′.
Since G is d-regular, each vertex ui has at least d − k + 1 neighbors in V (G ) ∩A′, and all the
vertices u1, . . . ,uk are incident to (d − k + 1)d edges of G with exactly one end-vertex in A′ if
and only if {u1, . . . ,uk } is a clique of G. Also each vertex ui is adjacent to x1, . . . ,xk . Therefore,

|E (A′,A′) | ≥ (n − k ) + k + (n + d − k + 1)k = �, and |E (A′,A′) | = � if and only if {u1, . . . ,uk } is a
clique of G.

Since xi ,yj ∈ A for i ∈ {1, . . . ,n} and j ∈ {1, . . . ,p}, A′ \A ⊆ V (G ). Because G is d-regular and

each vertex of G is adjacent to exactly one vertex vi and the vertices x1, . . . ,xn , � = |E (A,A) | ≥
|E (A′,A′) | + |A′ \A|(n − d − 1) ≥ |E (A′,A′) | ≥ �. As d < n − 1, we obtain that A = A′. Hence,
{u1, . . . ,uk } is a clique of G.
To complete the proof, we observe that H has a minimal cut-set C of size at most � such that

T ⊆ C if and only if (M (H ),w,T , �) is a yes-instance of Minimum Spanning Circuit with the
weight functionw (e ) = 1 for e ∈ E (H ). �

Interestingly, Theorem 6 does not rule out a possibility that for a fixed numbers of terminals
Minimum Spanning Circuit is still solvable in polynomial time or, in other words, that it is in XP
parameterized by |T |. We conjecture that this is not the case. More precisely, isMinimum Spanning
Circuit NP-complete on cographic matroids for a fixed number, say, |T | = 3, terminal elements?
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