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Abstract
For a graph H, a graph G is an H-graph if it is an intersection graph of connected 
subgraphs of some subdivision of H. H-graphs naturally generalize several impor-
tant graph classes like interval graphs or circular-arc graph. This class was intro-
duced in the early 1990s by Bíró, Hujter, and Tuza. Recently, Chaplick et al. initi-
ated the algorithmic study of H-graphs by showing that a number of fundamental 
optimization problems like MaxiMuM Clique, MaxiMuM independent Set, or Mini-
MuM doMinating Set are solvable in polynomial time on H-graphs. We extend and 
complement these algorithmic findings in several directions. First we show that for 
every fixed H, the class of H-graphs is of logarithmically-bounded boolean-width 
(via mim-width). Pipelined with the plethora of known algorithms on graphs of 
bounded boolean-width, this describes a large class of problems solvable in poly-
nomial time on H-graphs. We also observe that H-graphs are graphs with polyno-
mially many minimal separators. Combined with the work of Fomin, Todinca and 
Villanger on algorithmic properties of such classes of graphs, this identify another 
wide class of problems solvable in polynomial time on H-graphs. The most funda-
mental optimization problems among the problems solvable in polynomial time on 
H-graphs are MaxiMuM Clique, MaxiMuM independent Set, and MiniMuM doMinat-
ing Set. We provide a more refined complexity analysis of these problems from the 
perspective of parameterized complexity. We show that MaxiMuM independent Set 
and MiniMuM doMinating Set are W[1]-hard being parameterized by the size of H 
plus the size of the solution. On the other hand, we prove that when H is a tree, 
then MiniMuM doMinating Set is fixed-parameter tractable parameterized by the size 
of H. For MaxiMuM Clique we show that it admits a polynomial kernel parameter-
ized by H and the solution size.

Keywords H-topological intersection graphs · Mim-width · Minimal separators · 
Dominating set
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1 Introduction

The notion of H-graph was introduced in the work of Bíró et al. [4] on precoloring 
extensions of graphs. H-graphs nicely generalize several popular and widely studied 
classes of graphs. For example, the classical definition of an interval graph is as a 
graph which is an intersection graph1 of intervals of a line. Equivalently, a graph is 
interval if it is an intersection graph of some subpaths of a path. Or, equivalently, if 
it is an intersection graph of some subgraphs of some subdivision (which is a graph 
obtained by placing vertices of degree 2 on the edges) of P2 , the graph with two 
adjacent vertices. Similarly, every chordal graph is an intersection graph of subtrees 
of some tree. More generally, for a fixed graph H, a graph G is an H-graph if it is an 
intersection graph of some connected subgraphs of some subdivision of H. Thus for 
example, an interval graph is a P2-graph, a circular-arc graph is a C2-graph, where 
C2 is a double-edge with two endpoints, a split graph is a K1,d-graph for some d ≥ 0 , 
where K1,d is a star with d leaves, etc.

The main motivation behind the study of H-graphs is the following. It is well-
known that on interval, chordal, circular-arc, and other graphs with “simple” inter-
section models many NP-hard optimization problems are solvable in polynomial 
time, see e.g. the book of Golumbic [19] for an overview. It is a natural question 
whether at least some of these algorithmic results can be extended to more general 
classes of intersection graphs. Chaplick et al. [9] and Chaplick and Zeman [10] initi-
ated the systematic study of algorithmic properties of H-graphs. They showed that a 
number of fundamental optimization problems like MaxiMuM independent Set and 
MiniMuM doMinating Set are solvable in polynomial time on H-graphs for any fixed 
H. Most of the algorithms developed on H-graphs in [9, 10] run in time nf (H) , where 
n is the number of vertices in the input graph and f is some function. In other words, 
being parameterized by H most of the problems are known to be in the class XP.

Our work is driven by the following question.

• Are there generic explanations why many problems admit polynomial time algo-
rithms on H-graphs?

We address the first question by proving the following combinatorial results. We 
show first that every H-graph has mim-width (a graph parameter to be defined in 
the corresponding section) at most 2|E(H)| + 1 . Moreover, a decomposition of mim-
width 2|E(H)| + 1 can be found in polynomial time. Using known inequalities, this 
gives upper-bounds on the boolean-width of H-graphs. This combinatorial result 
extends the results of Belmonte and Vatshelle [1, 2] on the boolean-width of interval 
(resp. circular-arc) graphs to H-graphs. Together with the algorithms for a vast class 
of problems called LC-VSP problems [2, 7] and their distance versions [22], which 

1 The intersection graph of a family S  of sets has vertex set S  and edge set {SS�, S ∩ S
� ≠ �}.
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are solvable on n-vertex graphs of boolean-width b in time 2b ⋅ nO (1) , this implies 
immediately that all these problems are solvable in polynomial time on H-graphs, 
when H is fixed. The illustrative problems solvable in polynomial time on H-graphs 
by making use of this approach are MaxiMuM Weight independent Set, MiniMuM 
Weight doMinating Set, total doMinating Set, induCed MatChing, and many oth-
ers. We also obtain polynomial-time algorithms for problems related to induced 
paths such as longeSt induCed path and diSjoint induCed pathS using the results 
of Jaffke et al. [23]. Incidentally, these results demonstrate the applicability of the 
parameter mim-width.

Then we prove that every n-vertex H-graph has at most 
(2n + 1)|E(H)| + |E(H)| ⋅ (2n)2 minimal separators.2 Pipelining the bound on the 
number of minimal separators in H-graphs with meta-algorithmic results of Fomin 
et al. [16], we obtained another wide class of problems solvable in polynomial time 
on H-graphs. Examples of such problems are treeWidth, MiniMuM FeedbaCk Ver-
tex Set, MaxiMuM induCed Subgraph exCluding a planar Minor, and various pack-
ing problems.

All these generic algorithmic results provide XP algorithms when parameterized 
by the size of H. This brings us immediately to the second question defining the 
direction of our research.

• What is the parameterized complexity of the fundamental optimization problems 
being parameterized by the size of H?

The first steps in this direction were done by Chaplick et al. in [9] who showed that 
MiniMuM doMinating Set is fixed-parameter tractable (FPT) on K1,d-graphs param-
eterized by d. In this paper we show that MiniMuM doMinating Set is W[1]-hard 
parameterized by the size of H plus the solution size. Thus the existence of an FPT 
algorithm for a general graph H is very unlikely. (We refer to books [11, 12] for 
definitions from parameterized complexity and algorithms.) We also prove a similar 
lower bound for MaxiMuM independent Set parameterized by the size of H plus the 
solution size. Combined with our combinatorial results, these lower-bounds show 
that MaxiMuM independent Set and MiniMuM doMinating Set are also W [1]-hard 
when parameterized by mim-width of the input and the solution size. The technique 
we develop to establish lower bounds on H-graphs found applications beyond the 
topic of this paper [23, 24].

On the positive side, we show that when H is a tree, then MiniMuM doMinating 
Set is FPT parameterized by the size of H. This significantly extends the result from 
[9] for stars to arbitrary trees. Furthermore, our algorithm does not require the inter-
section representation of the input graph to be given. We actually prove a slightly 
more general result, namely that MiniMuM doMinating Set is FPT on chordal graphs 
G parameterized by the leafage of the graph, i.e. the minimum number of leaves in a 
clique tree of G.

2 It was reported to us by Steven Chaplick and Peter Zeman that they also obtained this result indepen-
dently and that it will be included in the journal version of their paper.
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Finally we show that Clique admits a polynomial kernel when parameterized 
by the size of H plus the solution size. This strengthens the result of Chaplick and 
Zeman who showed that Clique is FPT for such a parameterization. Our algorithmic 
results about H-graphs are summarized in Table 1.

Organization of the paper Section 2 contains the necessary definitions. In Sect. 3, 
we upper-bound the boolean-width of H-graphs and provide algorithmic applica-
tions. Section  4 is devoted to the study of minimal separators in H-graphs, again 
with algorithmic consequences. Finally, Sect. 5 contains our results on the param-
eterized complexity of some classic optimization problems on H-graphs.

2  Definitions

Basics All graphs in this paper are finite, undirected, loopless, and may have mul-
tiple edges. If G is a graph, we respectively denote by |G| and ‖G‖ its numbers of 
vertices and edges (counting multiplicities). If X and Y are disjoint subsets of V(G), 
X is the complement of X in V(G) (i.e. X = V(G)⧵X ), G[X] is the subgraph of G 
induced by the vertices of X, and G[X, Y] is the bipartite subgraph of G with vertex 
set X ∪ Y  and as edge set those edges of G that have one endpoint in X and the other 
in Y. Unless otherwise specified, logarithms are binary.

H-graphs Let H be a (multi) graph. We say that a graph G is an H-graph if there is 
a subdivision H′ of H and a collection M = {Mv}v∈V(G) (called an H-representation 
or, simply, representation) of subsets of V(H�) , each inducing a connected subgraph, 

Table 1  Summary of algorithmic results on H-graphs, including the classic results on chordal graphs (H 
is a tree)

The fourth column indicates whether a representation of the input as an H-graph is given. For each of 
the mentioned problems, k denotes the solution size. See Sects. 3 and 4, for details about the first three 
problem

Problem Parameters Restrictions Repr. Complexity Ref.

Any LC-VSP-problem ‖H‖ None Y XP Theorem 4
Induced path problems ‖H‖ None Y XP Theorem 5
OIS(P, t) , P is CMSOL ‖H‖ None N XP Corollary 3
doMinating Set None H is a tree N NP-hard [5]

‖H‖ H is a star N FPT [9]
H is a tree N FPT Theorem 9
None Y XP [9]

‖H‖ + k None Y W[1]-hard Theorem 8
independent Set None H is a tree N Polynomial [17]

‖H‖ None Y XP [9]
‖H‖ + k None Y W[1]-hard Theorem 8

Clique None H is a tree N Polynomial [17]
‖H‖ None Y Para-NP-hard [10]
‖H‖ + k None N FPT [10]

Y Poly. kernel Theorem 10
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such that G is isomorphic to the intersection graph of M  . To avoid confusion, we 
refer to the vertices of H′ as nodes. We also say that the nodes of H are branching 
nodes of H′ and the other nodes are subdivision nodes. If v is a vertex of G, then Mv 
is the model of v in the representation M .

For every set A ⊆ V(G) , we define MA =
⋃

v∈A Mv . For every node u of H′ , we 
denote by Vu the set of vertices of G whose model contains u, that is,

Parameterized Complexity We refer to the books [11, 12] for the detailed introduc-
tion to the field. Here we only briefly review the basic notions.

Parameterized Complexity is a two dimensional framework for studying the 
computational complexity of a problem. One dimension is the input size  |I| of an 
instance I of the problem and the other is a parameter k associated with the input. A 
parameterized problem is said to be fixed-parameter tractable (or FPT) if it can be 
solved in time f (k) ⋅ |I|O (1) for some function f. The parameterized complexity class 
FPT consists of all fixed-parameter tractable problems. A parameterized problem is 
in the class XP if it can be solved in time |I|f (k) for a function f. Note that if a param-
eterized problem is NP-hard for some fixed value of the parameter, then it is said that 
the problem is para-NP-hard and it cannot be in XP (and, therefore, in FPT) unless 
P = NP . Parameterized Complexity also provides special tools to refute the FPT 
algorithms under plausible complexity-theoretic assumptions. The main assumption 
is the conjecture that FPT ≠ W[1] for the parameterized complexity class W[1] that 
play a central role in obtaining lower complexity bounds. The basic way to show that 
it is unlikely that a parameterized problem admit an FPT algorithm is to show that 
it is W[1]-hard using a parameterized reduction from a known W[1]-hard problem.

A kernelization for a parameterized problem is a polynomial algorithm that maps 
each instance (I, k) of a parameterized problem with the input I and parameter k to 
an instance (I�, k�) of the same problem such that 

1. (I, k) is a yes-instance if and only if (I�, k�) is a yes-instance, and
2. |I�| + k� is bounded by f(k) for a computable function f.

The output (I�, k�) is called a kernel. The function f is said to be the size of the kernel. 
A kernel is polynomial if f is polynomial. While it can be shown that every decid-
able parameterized problem is FPT if and only if it admits a kernel, it is unlikely that 
every problem in FPT has a polynomial kernel up to certain complexity assump-
tions. We refer to the aforementioned books and to [15] for more details.

3  H‑Graphs have Logarithmic Boolean‑Width

Boolean-width is a graph invariant that has been introduced in [7] and which is 
related to the number of different neighborhoods along a cut. Belmonte and Vat-
shelle showed in [2] that n-vertex interval graphs and circular-arc graphs have 
boolean-width O (log n) . In this section, we generalize their result by proving that, 

Vu = {v ∈ V(G), u ∈ Mv}.
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for any fixed graph H, n-vertex H-graphs have boolean-width O (log n) . This is done 
by first upper-bounding the mim-width of H-graphs by max{1, 2‖H‖} (Theorem 1). 
Using the results of [8, 22, 23], we obtain polynomial time algorithms for a vast 
class of optimization problems on H-graphs. Before we proceed with the proofs, we 
need to introduce some notions specific to this section.

Definition 1 A branch decomposition of a graph G is a pair (T , �) where T is a full 
binary rooted tree (that is, every non-leaf vertex has degree 3) and � is a bijection 
from the leaves of T to the vertices of G. A branch decomposition (T , �) is a caterpil-
lar decomposition if T can be obtained from a path by adding a vertex of degree one 
adjacent to every internal vertex. If w ∈ V(T) , let us denote by Vw the set of vertices 
of G in bijection with the leaves of the subtree of T rooted at w.

Definition 2 (maximum induced matching along a cut) A set of vertices of a graph 
G is an induced matching if it induces a disjoint union of edges. If X ⊆ V(G) , we 
denote by mim G(X) the maximum number of edges in an induced matching of 
G[X,X] . We drop the subscript when there is no ambiguity. If (T , �) is a branch 
decomposition of G, we denote by mim (T , �) the maximum of mim (Vw) taken over 
all w ∈ V(T) and call it the mim-width of (T , �) . The mim-width of G is the mini-
mum mim-width of a branch decomposition of G.

Definition 3 (neighborhood equivalence, [2, 8]) Let G be a graph and let A ⊆ V(G) . 
We say that two subsets X, Y ⊆ A are neighborhood equivalent with respect to A, 
denoted by X ≡A Y  , if N(X) ∩ A = N(Y) ∩ A.

It is not hard to see that ≡A is an equivalence relation. We write nec (A) for its 
number of equivalence classes. If (T , �) is a branch decomposition of G, we denote 
by nec (T , �) the maximum of nec (Vw) and nec (Vw) over all w ∈ V(T).

The following lemma relates maximum induced matchings to neighborhood 
equivalence.

Lemma 1 ( [2, Lemma  1]) For every n-vertex graph G and A ⊆ V(G) , we have 
mim (A) ≤ k if and only if, for every S ⊆ A there is a R ⊆ S such that R ≡A S and 
|R| ≤ k.

Definition 4 (Boolean-width) If (T , �) is a branch decomposition of a graph G, 
the boolean-width of (T , �) , denoted by boolw (T , �) , is defined as the maximum of 
log( nec (Vw)) over all w ∈ V(T) . The boolean-width of G, denoted by boolw (G) , is 
the minimum boolean-width of a branch decomposition of G.

Our results on the boolean-width of H-graphs follow from the next result.

Theorem 1 Let H be a graph. Given any H-graph G on n ≥ 2 vertices, an H-repre-
sentation of G and the corresponding H-subdivision, one can compute in polynomial 
time a caterpillar decomposition (T , �) with mim (T , �) ≤ max{1, 2‖H‖}.
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Proof We first assume that H is connected, and explain at the end of the proof how 
we proceed when it is not the case. Let F be the subdivision of H in which G can be 
realized and let {Mv}v∈V(G) be the intersection representation of G. We assume that 
both F and {Mv}v∈V(G) are given as input of the algorithm that we describe now (in 
addition to G).

Let us arbitrarily fix a branching node r of F. Let v1,… , vn be an ordering of V(G) 
by non-decreasing distance of Mvi

 ’s to r.

Claim 1 For every prefix A of v1,… , vn and every S ⊆ A , there is a set R ⊆ S of size 
at most max{1, 2‖H‖} such that R ≡A S.

Proof Let A be a prefix of v1,… , vn and let S ⊆ A . If there is a vertex u ∈ S such that 
N(u) ∩ A = N(S) ∩ A , we set R = {u} and we are done. This includes the case where 
G is a disjoint union of cliques, which happens for example when H = K1 . If such 
a vertex does not exist, then H has more than one node; since we assume that it is 
connected, it also has at least one edge. Recall that MA =

⋃
v∈A Mv and similarly for 

M
A
 and MS . Let us consider the path Pe corresponding to some edge e ∈ E(H) . Let 

x1,… , xp be the nodes of Pe in the same order.
Let v ∈ A and notice that since, by definition, H[Mv] is connected, the vertex set 

Mv ∩ V(Pe) induces at most two connected components in Pe . Indeed if Mv ∩ V(Pe) 
induced more than two connected components, then one of them would not contain 
any endpoint of Pe , and thus this component would not be connected to other nodes 
of Mv in H[Mv] . Let us assume that it induces at least one connected component 
and let xi and xj be the first and last nodes (wrt. the ordering x1,… , xp ) of this com-
ponent. If {x1,… , xi−1} is disjoint from M

A
 , we say that v is a left-protector of Pe . 

If j is maximum among all vertices that protect the left of Pe , then v is a rightmost 
left-protector. (Informally, it extends the most to the right.) Similarly, v is a right-
protector when the right of Pe if {xj+1,… , xp} is disjoint from M

A
 and is a leftmost 

right-protector if i is minimal.
Let Ze be a set containing one (arbitrarily chosen) rightmost left-protector and 

one leftmost right-protector of e if some exist, and let R =
⋃

e∈E(H) Ze . Clearly 
�R� ≤ 2‖H‖ . Let us now show that N(S) ∩ A ⊆ N(R) ∩ A . We consider a vertex 
u ∈ N(S) ∩ A and we show that it also belongs to N(R). Let v be a neighbor of u in S. 
As u and v are adjacent, Mu and Mv have non-empty intersection. Let e be an edge of 
H such that Mu and Mv meet on Pe , i.e. Mu ∩Mv ∩ V(Pe) ≠ � . Again, we denote by 
x1,… , xp the nodes of Pe  ◻.

Claim 2 Let w ∈ A . If Mw = {xi,… , xj} for some i, j ∈ {1,… p} with i ≤ j , then one 
of {x1,… xi−1} and {xj+1,… , xp} is disjoint from M

A
.

Proof If there are vertices u, u′ of A such that Mu and Mu′ respectively intersect 
{x1,… xi−1} and {xj+1,… , xp} , then one of dist F(Mu, r) and dist F(Mu� , r) is smaller 
than dist F(Mw, r) . This contradicts the fact that w ∈ A whereas u, u� ∉ A and proves 
Claim 2.   ◻
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Claim 3 Let w ∈ A . If Mw intersects V(Pe) then it is a right-protector or a 
left-protector.

Proof By definition, if x1 ∈ Mw then Mw is a left-protector of Pe (and symmetrically 
for the right). The case where Mw contains none of x1 and xp follows from Claim 2.  
 ◻

As Mu intersects Mv on Pe , it intersects the vertex set C of one component induced 
by Mv on Pe (recall that there are either one or two such components). In the case 
where there are two components, we assume without loss of generality that this is 
the “left” one (i.e. that with smallest indices). In the case where there is one com-
ponent, we assume that v is a left-protector of Pe (according to Claim 3, v is a left-
protector or a right-protector of Pe ). Observe that in both cases, v is a left-protector 
of Pe . Let z be the rightmost left-protector of Pe that belongs to R and let xk,… xk� 
be the nodes of the corresponding component of Pe[Mz ∩ V(Pe)] (that is, the compo-
nent used in the definition of left-protector).

Notice that C ⊆ {x1,… , xk� } , by maximality of z (informally, because it is “right-
most”). As z is a left-protector, Mu ∩ {x1,… , xk−1} = � . Since Mu and C intersect, 
they intersect in {xk,… , xk� } . Therefore Mu ∩Mz ≠ � : z is adjacent to u. As z ∈ R , 
we are done.

This concludes the proof of Claim 1.   ◻

We construct a caterpillar decomposition that follows the ordering v1,… , vn as 
follows. We construct a path x1 … xn and n vertices y1,… , yn . Then we make yi adja-
cent to xi , for every i ∈ {1,… , n} . We define �(yi) = vi for i ∈ {1,… , n} . The root is 
chosen arbitrarily. According to Claim 1 and Lemma remy, this caterpillar decompo-
sition satisfies mim (T , �) ≤ max{1, 2‖H‖} . Regarding the running time, we observe 
that the ordering v1,… , vn can be found by first labelling the vertices of F with their 
distance from r obtained by a BFS (in O (�F� + ‖F‖) steps) then finding, for each 
v ∈ V(G) , then minimum label of a vertex in Mv (in O(

∑n

i=1
�Mv�) = O(n�F�) steps) 

and finally sorting these values (in O(n log n) steps). Overall, the algorithm thus 
takes polynomial time in the sizes of G and F.

We now consider the case when H is not connected. Then G is the disjoint union 
of connected graphs G1,… ,Gp where for every i ∈ {1,… , p} , H has a connected 
component H′ such that Gi is an H′-graph. For each Gi we can obtain an ordering 
vi
1
,… , vi|Gi|

 as explained above. Let T be a graph obtained from the path on vertex set

(in this order) by adding a degree one vertex yi
j
 adjacent to xi

j
 , for every i ∈ {1,… , p} 

and every j ∈ {1,… , |Gi|} . We root T at x1
1
 . We also define �(yi

j
) = xi

j
 for i and j as 

above. It is easy to check that (T , �) is a caterpillar decomposition of G and that

x1
1
,… , x1|G1|

,… , xi
1
,… , xi|Gi|

,… , x
p

1
,… , x

p

|Gp|

(
T[xi

1
,… , xi|Gi|

, yi
1
,… , yi|Gi|

], �|{yi
1
,…,yi|Gi |

}

)
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is a caterpillar decomposition of Gi as defined at the end of the connected case. 
(Intuitively, we constructed a caterpillar decomposition of G by attaching the cater-
pillar decompositions of the Gi ’s end-to-end.) As there is no edge in G between ver-
tices of distinct Gi’s, we have mim G(Vxi

j
) = mim Gi

(Vxi
j
) and 

mim G(Vyi
j
) = mim Gi

(Vyi
j
) , for every i ∈ {1,… , p} and every j ∈ {1,… , |Gi|} . 

Hence the desired bound on the width of (T , �) follows from the connected case.
This concludes the proof of Theorem 1.  ◻

Remark 1 We note that when H is a tree, the bound in Theorem 1 can be improved 
to max{1, ‖H‖} . Indeed in this case, in the proof of Claim 1, for v ∈ A and e ∈ H , 
the vertex set Mv ∩ V(Pe) induces at most one component (this follows from 
the choice of the sequence v1,… , vn ). Therefore |Ze| ≤ 1 for every e ∈ H and 
�R� ≤ max{1, ‖H‖} . The rest of the proof is identical.

The following is immediate.

Corollary 1 Let H be a graph. Every H-graph has mim-width at most max{1, 2‖H‖}
.

From the definition of boolean-width, we also get the next result.

Corollary 2 Let H be a graph. Every n-vertex H-graph with n ≥ 2 has boolean-
width at most

By choosing H to be a single or double edge, we recover the results of [2] 
on the boolean-width of interval and circular-arc graphs, respectively, as special 
cases of Corollary 2. As proven in the same paper, there is a infinite family of 
interval graphs with boolean-width �(log n) . Apart of the degenerate case where 
H is edgeless (in which case H-graphs are disjoint unions of cliques), every inter-
val graph is an H-graph. This shows that the bound in Corollary 2 is tight up to a 
constant factor.

We now provide algorithmic applications of our results. Boolean-width has 
been used [7] to design parameterized algorithms for the problems MaxiMuM 
Weight independent Set and MiniMuM Weight doMinating Set. Later, invariants 
related to neighborhood equivalence were used in [8] as parameters of FPT algo-
rithms for the vast class of locally checkable vertex subset and vertex partitioning 
problems ( LC-VSP problems), defined as follows.

Definition 5 [8] Let � and � be finite or co-finite subsets of natural numbers. A sub-
set S of vertices of a graph G is a (�, �)-set of G if

max{1, 2‖H‖} ⋅ log n.

∀v ∈ V(G), |N(v) ∩ S| ∈
{

� if v ∈ S

� otherwise.



 Algorithmica

1 3

A computational problem is LC-VSP if it consists in finding a minimum or maxi-
mum (�, �)-set in an input graph, for some � and � as above.

The class of LC-VSP problems include fundamental problems as independent 
Set, independent doMinating Set, total doMinating Set, and induCed MatCh-
ing. We refer to [8] for several other examples of classic computational problems 
expressed as LC-VSP problems. The main result of [8] is the following. While its 
original statement deals with the relation of d-neighborhood equivalence (an exten-
sion of the notion defined in Definition 3), we state it here in terms of mim-width 
using the direct connection between these two notions given in [2, Lemma 2].

Theorem 2 [8] For every LC-VSP problem � , there are constants d and q such 
that � can be solved in time O (q ⋅ n3qdmim (T ,�)+4) on an input graph of order n, if a 
decomposition (T , �) of the input is given.

Furthermore, it was recently proved [22] that the distance versions of LC-VSP 
problems (such as r-independent Set, which asks for vertices pairwise at distance 
at least r), are also solvable in polynomial time on graphs of bounded mim-width. 
We refer to [22] for more details. Regarding problems that are not LC-VSP, Jaffke, 
Kwon, and Telle obtained polynomial-time algorithms for problems pertaining to 
induced paths in graphs of bounded mim-width.

Theorem  3 [23] The problems longeSt induCed path, induCed diSjoint pathS, 
and, for every graph J, the problem J -induCed SubdiViSion3 can be solved in time 
nO (mim (T ,�)) on an input graph of order n, if a decomposition (T , �) of the input is 
given.

Composing Theorem 1 with the two aforementioned results, we get the following 
meta-algorithmic consequences.

Theorem 4 Let H be a graph and let � be a (distance) LC-VSP problem. Given 
any H-graph, an H-representation of it and the corresponding H-subdivision F, one 
can solve � in polynomial time.

By summing the running times of Theorem 1 (as detailed in its proof) and Theo-
rem 2, we can bound the running time of the algorithm of Theorem 4 by

where q, d > 0 are the constants depending on the problem � given by Theorem 2 
and n is the order of G.4

O (‖F‖ + n�F� + q ⋅ n6qd‖H‖+4),

3 We refer the reader to [23] for an accurate definition of these problems.
4 We here assumed, for the sake of readability, that H has at least one edge. In the opposite case, G has a 
simple structure: it is a disjoint union of cliques.
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Theorem  5 Let H and J be two graphs. Given any H-graph, an H-representa-
tion of it and the corresponding H-subdivision F, one can solve any of long-
eSt induCed path, induCed diSjoint pathS, and J -induCed SubdiViSion in 
O (‖F‖ + n�F� + nO (‖H‖)) time.

4  H‑Graphs have Few Minimal Separators

Let G be a graph. If a, b ∈ V(G) , we say that X ⊆ V(G) is an (a, b)-separator if a 
and b are in distinct connected components of G ⧵ X . It is a minimal (a, b)-separator 
if it is inclusion-wise minimal with this property. A subset of V(G) is a minimal 
separator of G if it is a minimal (a, b)-separator for some a, b ∈ V(G).

The study of minimal separators is an active line of research that found many 
algorithmic applications (see e.g. [3, 6, 16, 25]). In general, the number of mini-
mal separators of a graph may be as large as exponential in its number of verti-
ces. We prove in this section that in an H-graph, this number is upper-bounded by a 
polynomial (Theorem 6). By combining this finding with meta-algorithmic results 
of Fomin, Todinca and Villanger [16], we deduce that a wide class of optimization 
problems can be solved in polynomial time on H-graphs (Corollary 3). We com-
plement these results by providing in Lemma 2 a lower bound on the function of 
Theorem 6.

Theorem  6 Let H be a graph. If G is a H-graph, it has at most 
(2�G� + 1)‖H‖ + ‖H‖ ⋅ (2�G�)2 minimal separators.

Proof Let G be a H-graph. Observe that if H is edgeless, then G is a disjoint union 
of cliques and thus has either only one minimal separator, the empty set, or none if 
G is a complete graph. Therefore we may now assume that H has at least one edge.

Let F be a subdivision of H where G can be represented as the intersection graph 
of {Mv, v ∈ V(G)} . For every subset V ⊆ V(G) , the border edges of V are the edges 
of F with one endpoint in MV and one endpoint in V(F) ⧵MV . Let R be the union of 
border edges over {Mv, v ∈ V(G)} . Observe that for every V ⊆ V(G) , the set of bor-
der edges of V is a subset of R. For every edge e ∈ E(F) , we set

and extend this notation to sets S ⊆ E(F) as follows:

Informally, VS is the set of all vertices of G whose models contain some edge of S. 
 ◻

Claim 4 For every minimal separator X in G, there is a S ⊆ R such that X = VS.

Proof Let A, B be two connected components of G ⧵ X such that N(A) = N(B) = X . 
As X is an (A, B)-separator (i.e. A and B are included in the vertex sets of distinct 

Ve = {v ∈ V(G), e ⊆ Mv}

VS = {v ∈ V(G), ∃s ∈ S, s ⊆ Mv}.
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connected components of G ⧵ X ), MA ∩MB = � . Let S be the set of all border edges 
of MA that belong to some inclusion-wise minimal path that starts in A and ends in 
B. As noted above, S ⊆ R . First we show VS ⊆ X . Let v ∈ VS . That is, v is a vertex 
G such that Mv ⊇ s for some s ∈ S . Then Mv contains both endpoints of s, one of 
which belongs to MA . The vertex v is adjacent to A but does not belong to A (as Mv 
contains a vertex of A ), so it has to belong to the separator X. Therefore, Vs ⊆ X . 
Now we show X ⊆ VS . Let x ∈ X . By definition, x has a neighbor in both A and B. 
Therefore, Mx meets both MA and MB . As Mx induces a connected subgraph of F and 
MA is disjoint from MB , it contains an edge s ∈ E(F) with one endpoint in MA and 
the other in V(F) ⧵MA . Then s is a border edge of MA in a minimal path from A to B: 
x ∈ VS . Hence X = VS .   ◻

From Claim 4 we can already deduce that the number of minimal separators of 
G is at most the number of subsets of R. In order to obtain better bounds, we need 
other observations.

Claim 5 For every V ⊆ V(G) such that MV induces a connected subgraph of F, 
and every e ∈ E(H) , the set MV has at most two border edges in E(Pe) . Hence, 
�R� ≤ 2�G� ⋅ ‖H‖.

Proof Follows from the fact that F[MV ] is connected.   ◻

Claim 6 For every minimal separator X of G, if S ⊆ R is the subset of edges of F 
defined in the proof of Claim 4, then

• either |S ∩ E(Pe)| ≤ 1 for every e ∈ E(H);
• or |S| = 2 and S ⊆ E(Pe) for some e ∈ E(H).

Proof Let A and B be as in the proof of Claim 4. According to Claim 5 and as S is a 
subset of the border edges of MA , we deduce |S ∩ E(Pe)| ≤ 2 for every e ∈ E(H) . Let 
us assume that |S ∩ E(Pe)| = 2 for some e ∈ E(H) . Let u, u′ and v, v′ be the endpoints 
of the two edges shared by S and E(Pe) , respectively and in this order on the path. 
Then the model of one of A and B has its vertices in the subpath Q of Pe delimited 
by u′ and v. Indeed, both {u, u�} and {v, v�} and have an endpoint that does not belong 
to MA . As MA induces a connected subgraph of F, either these endpoints are u′ and 
v (intuitively, the exterior endpoints) or they are u, v′ (the interior endpoints). In the 
first case MA ⊆ E(Q) and in the second one, MB ⊆ E(Q) . From the definition of R, 
we can then conclude that S ⊆ E(Pe) and we get |S| = 2 .   ◻

Therefore, for every minimal separator X of G, there is a set S ⊆ R such that: 

1. either |S ∩ E(Pe)| ≤ 1 for every e ∈ E(H);
2. or |S| = 2 and S ⊆ E(Pe) for some e ∈ E(H);
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In order to upper-bound the number of possible minimal separators of G, it suf-
fices to upper-bound the number of sets S ⊆ R that satisfy one of the two condi-
tions above. As noted in Claim 5, for every e ∈ E(H) we have R ∩ E(Pe) ≤ 2|G| . 
Hence there are at most (2|G|)2 possible choices of set S that satisfy (2) for each 
e ∈ E(H) . We deduce that there are at most ‖H‖ ⋅ (2�G�)2 distinct sets S ⊆ R satisfy-
ing (2). Let us now consider sets S ⊆ R that satisfy (1). For every e ∈ E(H) , either 
S contains one of the 2|G| edges of R ∩ E(Pe) or it does not contain any of them. 
This makes 2|G| + 1 possible choices for each e ∈ E(H) , and (2�G� + 1)‖H‖ in total. 
Consequently, G has at most (2�G� + 1)‖H‖ + ‖H‖ ⋅ (2�G�)2 minimal separators. This 
proves Theorem 6.   ◻

For every r ∈ ℕ , let �r be the graph with 2 vertices and r parallel edges. The 
following shows that the exponential contribution of ‖H‖ in Theorem 6 cannot be 
avoided.

Lemma 2 For every r ∈ ℕ , there is a �r-graph G with at least 
(

|G|−2
r

)r

 minimal 
separators.

Proof Let G be the graph obtained from �r by subdividing k times each edge (see 
Fig. 1 for an example with r = 4 ). Then G is a �r-graph and |G| = kr + 2 . Notice that 
any choice of r subdivision nodes, each corresponding to a different edge of �r , gives 
a distinct minimal separator of G. Hence G has at least kr =

(
|G|−2

r

)r

 minimal sepa-
rators.   ◻

Our results on minimal separators have algorithmic consequences. Let t ∈ ℕ and 
let P be a boolean function depending on a graph and a subset of its vertices. (More 
formally, P(G,X) is a boolean value, for every graph G and X ⊆ V(G) .) We con-
sider the following generic problem described in [16].

optiMal induCed Subgraph For P and t, oiS(P, t) for short 

Input: A graph G
Task: Find sets X ⊆ Y ⊆ V(G) such that X is of maximum size, the induced sub-

graph G[Y] is of treewidth at most t, and P(G[Y],X) is true.

For various choices of P and t, this generic problem corresponds to natural families 
of optimization meta-problems like F  -Minor-deletion (where F  is a class of graphs 
containing at least one planar graph) whose goal is to delete a minimum number of 

Fig. 1  A �
4

-graph with at least 
k4 minimal separators

. . .

. . .

. . .

. . .

k
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vertices in order to get an F-minor free graph5 and independent F  -paCking (where 
F  is a class of connected graphs), which asks for a maximum number of disjoint 
copies of graphs in F  as pairwise independent subgraphs of the input. Fomin, Tod-
inca, and Villanger proved that when the property P can be expressed in Counting 
Monadic Second Order logic (CMSOL, see [16]), the above problem can be easily 
solved on classes of graphs that have a polynomial number of minimal separators.

Theorem 7 [16] For any fixed t ∈ ℕ and CMSOL property P , OIS(P, t) is solv-
able on an n-vertex graph with s minimal separators in time O (s2 ⋅ nt+4 ⋅ f (t,P)) , 
for some function  f of t and P only.

We deduce that OIS(P, t) can be solved in polynomial time in H-graphs:

Corollary 3 Let H be a graph. For any fixed t ∈ ℕ and CMSOL property P , 
OIS(P, t) can be solved on an n-vertex H-graph in time nO (‖H‖+t+4)

⋅ f (t,P) , for 
some function  f of t and P only.

5  Parameterized Complexity of Basic Problems for H‑Graphs

In this section we investigate the parameterized complexity of some basic graph 
problems for H-graphs: doMinating Set, independent Set and Clique. First, in 
Sect. 5.1, we show that doMinating Set and independent Set are W [1]-hard when 
parameterized by the solution size and the size of H. In Sect.  5.2, we show that 
doMinating Set is FPT when parameterized by the number of vertices of H if H is a 
tree. In fact, we show a more general result by proving that doMinating Set is FPT 
for chordal graphs if the problem is parameterized by the leafage of the input graph, 
that is, by the minimum number of leaves in a clique tree for the input graph. This 
result is somehow tight since doMinating Set is well-known to be W [2]-hard for 
split graphs when parameterized by the solution size [28]. Recall also that independ-
ent Set is polynomial-time solvable for chordal graphs [17, 19] and, therefore, for 
H-graphs if H is a tree. Finally, in Sect. 5.3, we show that Clique admits a polyno-
mial kernel when parameterized by the solution size and the size of H, in the case 
where the representation is given.

5.1  Hardness of Independent Set and Dominating Set on H‑Graphs

In this section we prove W [1]-hardness of doMinating Set and independent Set 
for H-graphs (Theorem 8). Recall that doMinating Set and independent Set, given 
a graph G and a positive integer k, ask whether G has a dominating set of size at 
most k and independent set of size at least k respectively. To show hardness, we 

5 In fact, optiMal induCed Subgraph For P and t corresponds to the dual equivalent problem of F  
-Minor-deletion, which asks for a largest F-minor free subgraph of the input.
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reduce from the MultiColored Clique problem. This problem, given a graph G with 
a k-partition of its vertex set V1,… ,Vk , asks whether G has a k-clique with exactly 
one vertex in each Vi for i ∈ {1,… , k} . The problem is well-known to be W [1]-com-
plete when parameterized by k [13, 27].

Theorem  8 doMinating Set and independent Set are W [1]-hard for H-graphs 
when parameterized by k + ‖H‖ and the hardness holds even if an H-representation 
of G is given.

Proof First, we show the W [1]-hardness for independent Set and then explain how 
to modify the reduction for doMinating Set. The reduction is from MultiColored 
Clique.

Let (G,V1,… ,Vk) be an instance of MultiColored Clique. We assume that 
k ≥ 2 and |Vi| = p for i ∈ {1,… , k} . The second assumption can be made without 
loss of generality because we always can add isolated vertices to the sets V1,… ,Vk 
to ensure that they have the same size. Denote by vi

1
,… , vi

p
 the vertices of Vi for 

i ∈ {1,… , k}  ◻.

We construct the multigraph H as follows (see Fig. 2a)). 

1. Construct k nodes u1,… , uk.
2. For every i, j ∈ {1,… , k} with i < j , construct a node wi,j and two pairs of parallel 

edges uiwi,j and ujwi,j.

Note that |H| = k(k + 1)∕2 and ‖H‖ = 2k(k − 1).
Then we construct the subdivision H′ of H obtained by subdividing each edge p 

times. We denote the subdivision nodes for the 4 edges of H constructed for each 
i, j ∈ {1,… , k} with i < j in (ii) by x(i,j)

1
,… , x

(i,j)
p  , y(i,j)

1
,… , y

(i,j)
p  , x(j,i)

1
,… , x

(j,i)
p  and 

y
(j,i)

1
,… , y

(j,i)
p  as it is shown in Fig.  2b). To simplify notations, we assume that 

ui = x
(i,j)

0
= y

(i,j)

0
 , uj = x

(j,i)

0
= y

(j,i)

0
 and wi,j = x

(i,j)

p+1
= y

(i,j)

p+1
= x

(j,i)

p+1
= y

(j,i)

p+1
.

x( j,i)2

u1

u2

u3

w1,2

w1,3

w2,3

ui u j

x(i, j)p

y(i, j)1 y( j,i)1

(a) (b)

y(i, j)p

x( j,i)p

wi, j
y( j,i)p

x(i, j)2

x(i, j)1
x( j,i)1

Fig. 2  The construction of H for k = 3 and the subdivision of the edges of H 
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Now we construct the H-graph G′ by defining its H-representation M = {Mv}v∈V(G�) 
where the model of each vertex is a connected subset of V(H�) (see Fig. 3). Recall that 
G is the graph of the original instance of MultiColored Clique. 

1. For each i ∈ {1,… , k} and s ∈ {1,… , p} , construct a vertex zi
s
 with the model 

2. For each edge vi
s
v
j

t ∈ E(G) , s, t ∈ {1,… , p} and i, j ∈ {1,… , k} with i < j , con-
struct a vertex r(i,j)s,t  with the model 

Note that the neighborhood of r
(i,j)
s,t  is (Vi ∪ Vj) − vi

s
, v

j

t . Finally, we define 
k� = k(k + 1)∕2 . We claim that (G,V1,… ,Vk) is a yes-instance of MultiColored 
Clique if and only if G′ has an independent set of size k′ . The proof is based on the fol-
lowing crucial property of our construction, that can be easily checked.

Claim 7 For every i, j ∈ {1,… , k} with i < j , a vertex zi
h
∈ V(G�) (a vertex 

z
j

h
∈ V(G�) ) is not adjacent to a vertex r(i,j)s,t ∈ V(G�) corresponding to the edge 

vi
s
v
j

t ∈ E(G) if and only if h = s ( h = t , respectively).

  ◻

We now show that G′ has an independent set of size k′ if G has a clique of size k, and 
vice-versa. Let {v1

h1
,… , vk

hk
} be a clique of G. Consider the set

of vertices of G′ . It is straightforward to verify using Claim 7 that I is an independ-
ent set of size k′ in G′.

Mzi
s
=

⋃

j∈{1,…,k},j≠i

{{
x
(i,j)

0
,… , x

(i,j)

s−1

}
∪
{
y
(i,j)

0
,… , y(i,j)

p−s

}}
.

M
r
(i,j)
s,t

=
{
x(i,j)
s

,… , x
(i,j)

p+1

}

∪
{
y
(i,j)

p−s+1
,… , y

(i,j)

p+1

}

∪
{
x
(j,i)
t ,… , x

(j,i)

p+1

}

∪
{
y
(j,i)

p−t+1
,… , y

(j,i)

p+1

}
.

I =
{
z1
h1
,… , zk

hk

}
∪
{
r
(i,j)

hi,hj
∣ 0 ≤ i < j ≤ k

}

Mr(i, j)s,t

wi, j u jui

y( j,i)p−ty( j,i)p−t+1x(i, j)s−1 x(i, j)s

y(i, j)p−s y(i, j)p−s+1
x( j,i)t

x( j,i)t−1

Mzis Mzjt

Fig. 3  The construction of G′
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Suppose now that G′ has an independent set I of size k′ . For each i ∈ {1,… , k} , the 
set Zi =

{
zi
h
∣ 1 ≤ h ≤ p

}
 is a clique of G′ , and for each i, j ∈ {1,… , k} with i < j , the 

set

is also a clique of G′ . Since all these k +
(
k

2

)
= k(k + 1)∕2 = k� cliques form a par-

tition of V(G�) , we have that for each i ∈ {1,… , k} , there is a unique zi
hi
∈ Zi ∩ I , 

and for every i, j ∈ {1,… , k} with i < j , there is a unique r(i,j)si,sj
∈ Ri,j ∩ I . Since r(i,j)si,sj

 is 
not adjacent to zi

hi
 and zj

hj
 , we obtain that si = hi and sj = hj by Claim 7. It implies 

that vi
hi
v
j

hj
∈ E(G) . Since it holds for every i, j ∈ {1,… , k} with i < j , 

{
v1
h1
,… , vk

hk

}
 

is a clique in G.
This completes the W [1]-hardness proof for independent Set. Now we explain 

how we modify our proof to show the W [1]-hardness of doMinating Set. This time 
we do not reduce from MultiColored Clique but from the MultiColored independ-
ent Set problem that, given a graph G with a k-partition of its vertex set V1,… ,Vk , 
asks whether G has a independent set of size k with exactly one vertex in each Vi for 
i ∈ {1,… , k} . Clearly, the W [1]-completeness of MultiColored Clique parameter-
ized by k [13, 27] immediately implies the same for MultiColored independent Set.

Let (G,V1,… ,Vk) be an instance of MultiColored independent Set. We assume 
without loss of generality that k ≥ 2 and |Vi| = p for i ∈ {1,… , k} . As before, denote 
by vi

1
,… , vi

p
 the vertices of Vi for i ∈ {1,… , k} . We construct the same multigraph 

H and its subdivision H′ as above. We construct the H-graph G′′ from the graph G′ 
constructed above by adding k new vertices d1,… , dk with the models Mdi

= {ui} 
for i ∈ {1,… , k}.

We show that (G,V1,… ,Vk) is a yes-instance of MultiColored independent Set 
if and only if G′′ has a dominating set of size k.

Suppose that 
{
v1
h1
,… , vk

hk

}
 is an independent set of G. Consider the set 

D =
{
z1
h1
,… , zk

hk

}
 . By Claim 7 and the construction of G′′ , we obtain that D is a 

dominating set of G′′.
Let now D be a dominating set of G′′ with |D| = k . Note that each vertex di is 

adjacent only to the vertices of the set Zi =
{
zi
h
∣ 1 ≤ h ≤ p

}
 for i ∈ {1,… , k} . It 

implies that for every i ∈ {1,… , k},

Since Zi is a clique, we can assume without loss of generality that D ∩ Zi ≠ � as, 
otherwise, we can replace di in D by an arbitrary vertex of Zi . Since Zi ∩ Zj = � if 
i ≠ j , we conclude that D contains a unique vertex from each Zi and no other verti-
ces. Let D =

{
z1
h1
,… , zk

hk

}
 . We claim that I =

{
v1
h1
,… , vk

hk

}
 is an independent set 

of G. To obtain a contradiction, assume that vi
hi
v
j

hj
∈ E(G) for some i, j ∈ {1,… , k} 

where i < j . Consider the vertex r(i,j)
hi,hj

 of G′′ . By Claim 7, r(i,j)
hi,hj

 is adjacent neither to zi
hi
 

Ri,j =
{
r
(i,j)
s,t ∣ 1 ≤ s, t ≤ p, vi

s
v
j

t ∈ E(G)
}

D ∩ (Zi ∪ {di}) ≠ �.
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no zj
hj
 . Because r(i,j)

hi,hj
 is not adjacent to zs

hs
 for any s ∈ {1,… , k} such that s ≠ i, j , we 

have that r(i,j)
hi,hj

 is not dominated by D. This contradiction shows the claim and con-
cludes the proof of Theorem 8.   ◻

Recall that we proved in Theorem 1 that for every fixed H, every H-graph has 
mim-width at most 2‖H‖ + 1 . We deduce from the negative results above the fol-
lowing corollary.

Corollary 4 doMinating Set and independent Set are W [1]-hard when parameter-
ized by the solution size plus the mim-width of the input.

We note that the construction in the proof of Theorem 8 has been adapted in [24] 
to show that the FeedbaCk Vertex Set problem is W [1]-hard on H-graphs when 
parameterized by the solution size plus the number of edges of H.

5.2  Dominating Set for T‑Graphs

In this section we show that doMinating Set is FPT for chordal graphs if the prob-
lem is parameterized by the leafage (hereafter defined) of the input graph. We stress 
that our algorithm does not require the intersection representation of the input graph 
to be given.

Let G be a graph. As it is standard, we say that u ∈ V(G) dominates v ∈ V(G) if 
v ∈ NG[u] and u dominates a set W ⊆ V(G) if every vertex of W is dominated by u. 
Respectively, a set D ⊆ V(G) dominates W ⊆ V(G) if every vertex of W is domi-
nated by some vertex of D.

Let G be a graph. Let K  be the set of (inclusion-wise) maximal cliques of G and 
let Kv ⊆ K  be the set of maximal cliques containing v ∈ V(G) . A tree T whose 
node set is K  such that each Kv (for v ∈ V(G) ) induces a subtree of T is called a 
clique tree of G. It is well-known [18] that G is a chordal graph if and only if G has 
a clique tree T. Moreover, if T is a clique tree of G, then G is an intersection graph 
of subtrees of T, that is, G is a T-graph. Conversely, if G is a T-graph, then there is a 
clique tree T ′ of G where the number of leaves of T ′ is at most the number of leaves 
of T. Note that a clique tree of a chordal graph is not necessarily unique. For a con-
nected chordal graph G, the leafage �(G) of G is the minimum number of leaves in 
tree T such that G is a T-graph [26] which is also, by the above remarks, the mini-
mum number of leaves in a clique tree of G. It was shown by Habib and Stacho in 
[20] that the leafage of a connected chordal graph G can be found in polynomial 
time. Their algorithm also constructs a corresponding clique tree T with the mini-
mum number of leaves. In other words, given a connected chordal graph G, we can 
construct in polynomial time a clique tree T with �(G) leaves and a T-representation 
of G. Also, if one is given a graph G that is promised to be a T-graph, then one can 
produce a clique tree T ′ of G in polynomial time where the number of leaves of T ′ is 
at most the number of leaves of T.

To solve doMinating Set, we are going to use a dynamic programming algo-
rithm over a clique tree T ′ of the input graph G. However, to do it, we have to 
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treat the vertices of G whose models contain branching nodes of T ′ in a special 
way. The vertices of other type, that is, the vertices whose models contain only 
subdivision nodes of T ′ on each path corresponding to an edge of T, induce an 
interval graph and a minimum dominating set can be selected by a well-known 
greedy procedure (see, e.g., [19]). If the model of a vertex v contains branching 
nodes, then this vertex can dominate various vertices whose models are in dif-
ferent parts of T ′ that can be far away from each other and, symmetrically, such 
a vertex can be dominated by vertices with models that are in different parts of 
T ′ . To overcome these difficulties, we show that it is possible to upper bound the 
number of these vertices in a minimum dominating set. This allows us to guess 
the structure of models of the vertices in a minimum dominating sets with respect 
to branching vertices in them. Furthermore, we apply some reduction rules to the 
input graph G and T ′ to simplify the models of the vertices of G. More precisely, 
we obtain a representation such that each model contains at most one branching 
node. We are paying for these reductions by switching to a special labeled variant 
of doMinating Set called doMinating Set extenSion. Nevertheless, the obtained 
representation has local models and we can use it to construct a dynamic pro-
gramming algorithm.

Let T be a tree and let G be a connected T-graph with its T-representation 
M = {Mv}v∈V(G) with respect to a subdivision T ′ of T. For every non-empty 
Q ⊆ V(T) , we say that v ∈ V(G) is a Q-vertex if Mv ∩ V(T) = Q . If Q = {u} , we 
write u-vertex instead of {u}-vertex. Also, we denote the set of Q-vertices by VG(Q) 
and VG(u) if Q = {u} . We also denote by VG(T) the set of all Q-vertices of G for 
every non-empty Q ⊆ V(T) . In other words, these are the vertices of G whose mod-
els contain nodes of T. For every e ∈ E(T) , v ∈ V(G) is an e-vertex if Mv contains 
only subdivision nodes of T ′ from the path in T ′ corresponding to e in T. The set of 
e-vertices is denoted by VG(e).

We need the following lemma that allows us to upper bound the number of verti-
ces in a minimum dominating set whose models contain given nodes of T.

Lemma 3 Let ‖T‖ ≥ 2 and let D be a minimum dominating set of G. Let also 
X ⊆ V(T) be a connected set of nodes of T such that

Fig. 4  The construc-
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1. for every x ∈ X , there is u ∈ D with x ∈ Mu ; and
2. for every xy ∈ E(T) with x, y ∈ X , there is u ∈ D with x, y ∈ Mu

(see Fig. 4). Then the set U = {u ∈ D ∣ X ∩Mu ≠ �} contains at most  |NT [X]| − 1 
vertices.
Proof Denote by v1,… , vs the nodes of NT (X) . To obtain a contradiction, assume 
that |U| ≥ |NT [X]| = s + |X| . For each i ∈ {1,… , s} , let ui ∈ U be a vertex such that 
the distance between Mui

 and vi in T ′ is minimum, and for each xy ∈ E(T) with 
x, y ∈ X , let uxy ∈ U be an arbitrary vertex with x, y ∈ Muxy

 (see Figure  4). Let 
U� = {u1,… , u

�
} ∪ {uxy ∣ x, y ∈ X, xy ∈ E(T)} . Note that 

�U�� ≤ s + ‖T[X]‖ = s + �X� − 1 = �NT [X]� − 1 . Since X induces a subtree of T, we 
have that ∪u∈UMu ⊆ ∪u∈U�Mu . This immediately implies that D� = (D ⧵ U) ∪ U� is a 
dominating set of G contradicting the minimality of D.   ◻

In particular, since |NT (X)| is at most the number of leaves � , we have that 
|U| ≤ |X| + � − 1 . Notice also that �NT [X]� − 1 = ‖T[NT [X]]‖.

The next lemma gives an upper bound for the number of vertices in a minimum 
dominating set whose models contain nodes of T (a very similar bound was given in 
[9, Lemma 13]).

Lemma 4 Let D be a minimum dominating set of G and let ‖T‖ ≥ 1 . Then  
|D ∩ VG(T)| ≤ 2|T| − 2.

Proof Let D be a minimum dominating set of G. Consider the set W of nodes of T 
that are included in the models of the vertices of D. Let X1,… ,Xr be the partition 
of W into inclusion maximal connected subsets such that for each i ∈ {1,… , r} and 
adjacent x, y ∈ Xi , there is u ∈ D with x, y ∈ Mu . By Lemma 3 and the fact that each 
edge of T belongs to at most two subtrees T[NT [Xi]],

  ◻

For an edge e ∈ E(T) , we say that G′ is obtained by contracting e in T if G′ is the 
(T/e)-graph with the model obtained as follows: 

1. contract xy in T and, respectively, the (x, y)-path P in T ′ , and denote the node 
obtained from x and y by z,

2. delete all e-vertices of G,
3. for each remaining vertex u ∈ V(G) , delete from Mu the subdivision nodes of P 

and replace x and y by z if at least one of these nodes is in Mu.

Note that V(G�) ⊆ V(G) and G[V(G�)] is a subgraph of G′ but not necessarily induced 
since two vertices of G′ that are not adjacent in G could be adjacent in G′.

�D ∩ VG(T)� ≤
r�

i=1

‖T[NT (Xi)]‖ ≤ 2‖T‖ = 2�T� − 2.
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Consider a coloring c ∶ VG(T) → {1,… , 2|T|} such that for u, v ∈ VG(T) , 
c(u) = c(v) if and only if u and v are Q-vertices for the same Q ⊆ V(T) . The next 
lemmas are used to simplify the models of vertices of G by contracting edges of T.

Lemma 5 Let C ⊆ c(VG(T)) and let

Further, let G′ be the graph obtained from G by iteratively contracting edges of A 
in T. Then for any set D ⊆ V(G) , D is a minimum dominating set of G satisfying the 
condition C = c(D ∩ VG(T)) if and only if D is a minimum dominating set of G′ satis-
fying the same condition  C = c(D ∩ VG(T)).

Proof Before we start proving the lemma, observe that VG(T) ⊆ V(G�) and that 
VG(T) is the set of Q-vertices of G′ for non-empty subsets Q of the set of nodes of 
T/A. Note also that for G′ and T/A, the coloring c does not necessarily have the prop-
erty that if u and v are Q-vertices of the same Q, then c(u) = c(v).

Suppose that D is a dominating set of G with C = c(D ∩ VG(T)) that has the mini-
mum size. We claim that D ⊆ V(G�) . To see it assume that there is u ∈ D ⧵ V(G�) . 
Then u is an e-vertex of G for some e = xy ∈ A . Then there is v ∈ VG(T) such that 
x, y ∈ Mv and c(v) ∈ C . Since D has a vertex v′ with c(v�) = c(v) , we have that 
x, y ∈ Mv� . Clearly, Mu ⊆ Mv′ . This implies that D ⧵ {u} is a dominating set of G. 
Since u is an e-vertex, u is not colored and the obtained dominating set contains 
vertices with all the colors from C, but this contradicts the choice of D. Therefore, 
D ⊆ V(G�) . Because G[V(G�)] is a subgraph of G′ , we have that D is a dominating 
set of G′.

Let now D be a dominating set of G′ with C = c(D ∩ VG(T)) that has the mini-
mum size. We show that D is a dominating set of G.

First, we prove that D dominates every u ∈ V(G) ⧵ V(G�) . If u ∈ V(G) ⧵ V(G�) , 
then u is an e-vertex for some e = xy ∈ A . We have that there is v ∈ VG(T) such that 
x, y ∈ Mv and c(v) ∈ C . Because C ⊆ c(D ∩ VG(T)) , there is v� ∈ D with c(v�) = c(v) . 
This implies that x, y ∈ Mv� in G and, therefore, v′ dominates u.

Now we show that D dominates the vertices of V(G�) in G. To obtain a contra-
diction, assume that there is u ∈ V(G�) that is not dominated by D in G. As D is 
a dominating set of G′ , there is v ∈ D such that uv ∈ E(G�) and uv ∉ E(G) . It fol-
lows that there are x, y ∈ V(T) such that x ∈ Mu , y ∈ Mv and for the (x, y)-path P 
in T, E(P) ⊆ A . Let xy′ be the edge of P that is incident to x. Since xy� ∈ A , there is 
w ∈ VG(T) such that x, y ∈ Mw in G and c(w) ∈ C . Because C ⊆ c(D ∩ VG(T)) , there 
is w� ∈ D with c(w�) = c(w) . This implies that x ∈ Mw� in G and, therefore, w′ domi-
nates u.   ◻

Lemma 6 Let C ⊆ c(VG(T)) and

A = {xy ∈ E(T) ∣ x, y ∈ Mu for some u ∈ VG(T) such that c(u) ∈ C}.
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and assume that for every e ∈ A� , G has no e-vertices (see Fig. 5 for an example). 
Further, let G′ be the graph obtained from G by iteratively contracting of edges of A′ 
in T. Then for any set D ⊆ V(G) , D is a minimum dominating set of G satisfying the 
condition C = c(D ∩ VG(T)) if and only if D is a dominating set of G′ satisfying the 
same condition C = c(D ∩ VG(T)).

Proof Observe that V(G�) = V(G) , because we do not delete e-vertices when we 
contract A′ . Notice also that the model Mu of a vertex u ∈ VG(T) with c(u) ∈ C 
remains the same in the modified representation obtained by the contraction.

If D is a dominating set of G with C = c(D ∩ VG(T)) , then it is straightforward to 
verify that D is a dominating set of G′ . Suppose that D is a dominating set of G′ with 
C = c(D ∩ VG(T)) . We have that G is a subgraph of G′ . Suppose that u, v ∈ V(G) 
are adjacent in G′ but are not adjacent in G. It follows that there are x, y ∈ V(T) 
such that x ∈ Mu , y ∈ Mv and there is an (x,  y)-path P in T such that E(P) ⊆ A� . 
Then c(u), c(v) ∉ C by the definition of A′ . Hence, u, v ∉ D . We obtain that for every 
u, v ∈ V(G) that are adjacent in G′ but are not adjacent in G, u, v ∉ D . Hence, D is a 
dominating set of G.   ◻

We say that M  is a nice representation if |Mv ∩ V(T)| ≤ 1 for each v ∈ V(G) , i.e., 
each set Mv contains at most one branching node of T ′.

We say that a T-representation M = {Mv}v∈V(G) of G with respect to a subdivision 
T ′ is an r-rooted representation if a node r of T is chosen to be a root. The root defines 
the parent-child relation on V(T) and V(T �) . For x ∈ V(T) ( x ∈ V(T �) ), we denote by 
Tx ( T ′

x
 respectively) the subtree of T ( T ′ respectively) induced by x and its descendants. 

For x ∈ V(T) and any child y of x, we denote by Txy the subtree of T induced by x, y and 
the descendants of y. For each x ∈ V(T) , we use Vx(G) to denote the vertices of whose 
models use nodes of the subtree rooted at x, that is,

A� = {xy ∈ E(T) ∣ x, y ∈ Mu for some u ∈ VG(T) s.t. c(u) ∉ C and

x, y ∉ Mv for all v ∈ VG(T) s.t. c(v) ∈ C},

Vx(G) = {v ∈ V(G) ∣ Mv ∩ V(T �
x
) ≠ �}.

Fig. 5  A� = {xy} ; the models 
of vertices of VG(T) with colors 
from C are shown by solid lines 
and the other models are shown 
by dashed lines

y

Mu

x
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For a child y of x, we denote by Vxy(G) the union of the set of vertices of Vy(G) and 
the xy-vertices, that is,

Let M = {Mv}v∈V(G) be a nice r-rooted T-representation of G with respect to T ′ . For 
any vertex x ∈ V(T �) , we denote by dist (x) the distance between r and x in T ′ . For 
every set X ⊆ V(T �) , we define

Consider an edge e = xy ∈ E(T) , where y is a child of x, and denote by Pe the (x, y)-
path in T ′ corresponding to e. Consider u, v ∈ V(G) such that Me

u
= Mu ∩ V(Pe) ≠ � 

and Me
v
= Mv ∩ V(Pe) ≠ � . We write u ⪯e v if either

• dmin(M
e
u
) < dmin(M

e
v
) ; or

• dmin(M
e
u
) = dmin(M

e
v
) and dmax(M

e
u
) ≤ dmax(M

e
v
).

Respectively, u ≺e v if either

• dmin(M
e
u
) < dmin(M

e
v
) ; or

• dmin(M
e
u
) = dmin(M

e
v
) and dmax(M

e
u
) < dmax(M

e
v
).

We consider the following auxiliary problem for T-graphs with nice representations.
doMinating Set extenSion

Input: A tree T and a graph G with a T-representation of G, positive integers k and 
d, a labeling function c ∶

⋃
x∈V(T) VG(x) → ℕ , and a collection of sets {Cx}x∈V(T) 

of size at most d where for each Cx ⊆ c(VG(x)) (some sets could be empty) such 
that for every dominating set D of G of minimum size with the properties that 

(a) D has at most d x-vertices for each x ∈ V(T),
(b) for each x ∈ V(T) , Cx ⊆ c(D ∩ VG(x)),

   it holds that the number of nodes x ∈ V(T) such that D contains an x-vertex is 
maximum and for each x ∈ V(T) , Cx = c(D ∩ VG(x)).

Task: Decide whether there is a dominating set D′ of G of size at most k containing 
at most d x-vertices for x ∈ V(T) such that for each x ∈ V(T) , Cx = c(D� ∩ VG(x)).

Note that doMinating Set extenSion is a promise problem: we are promised that 
there is D with the described properties but D itself is not given. Moreover, the 
promise could be false but we are not asked to verify it.

Lemma 7 Given a nice r-rooted representation T of the input graph where T 
is a tree with at most � leaves, Dominating Set extenSion can be solved in time 

Vxy(G) = {v ∈ V(G) ∣ x ∉ Mv andMv ∩ V(T �
xy
) ≠ �}.

dmin(X) = min{ dist (x) ∣ x ∈ X} and dmax(X) = max{ dist (x) ∣ x ∈ X}.
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2O ((d+𝓁) log d)
⋅ nO (1) . Moreover, it can be done by an algorithm that either returns 

a correct yes-answer or (possibly incorrect) no-answer even if the promise is false.

Proof Let G be a T-graph for a tree T rooted in r that has a nice r-rooted T-repre-
sentation M  with respect to a subdivision T ′ of T. If G is disconnected, then we 
reduce the problem to solving doMinating Set extenSion for the components of 
G. Assume from now that G is connected. Let also k and d be positive integers, 
c ∶

⋃
x∈V(T) VG(x) → ℕ be a labeling function, and {Cx}x∈V(T) be a collection of sets 

where each Cx ⊆ c(VG(x)) . Since G is connected, we can assume without loss of 
generality that for every x ∈ V(T �) , there is v ∈ V(G) with x ∈ Mv . Otherwise, we 
can replace T by its subtree or reduce the number of subdivision nodes of T ′ without 
increasing the number of leaves. We also assume that |Cx| ≤ d ≤ |VG(x)| as, other-
wise, we have a trivial no-instance of doMinating Set extenSion. We construct a 
dynamic programming algorithm for the problem that finds the minimum size of 
a dominating set D of G containing at most d x-vertices for x ∈ V(T) such that for 
each x ∈ V(T) , Cx = c(D ∩ VG(x)) . Our algorithm assumes that the promise is ful-
filled for the considered instance of doMinating Set extenSion. The algorithm uses 
the properties that every node of T has at most � children, i.e., the number of the 
children is bounded by the parameter, and for each edge e of T, the set of e-vertices 
of G composes an interval graphs for which the domination problem can be solved 
efficiently.

First, we construct a subroutine that solves the following auxiliary problem 
for each e = xy ∈ E(T) . Let Pe be the (x,  y)-path in T ′ corresponding to e. Let 
Ue = {v ∈ V(G) ∣ Mv ∩ V(Pe) ≠ �} . For X ⊆ Ue , �e(X) is the minimum size of a 
set S of e-vertices of G that dominates X; we assume that �e(X) = 0 if X = � and 
�e(X) = +∞ if such a dominating set of e-vertices S does not exist.

Claim 8 For every e ∈ E(T) and  X ⊆ Ue , �e(X) can be computed in time nO (1).

Proof If X = � , then �e(X) = 0 by the definition. Assume that X ≠ ∅ . If there is a 
vertex in X that is not dominated by any e-vertex of G, then we set �e(X) = +∞ . 
Otherwise, it is straightforward to see that S exists, and we construct S using the 
well-known greedy approach for constructing a minimum dominating set in an inter-
val graph.

Initially, we set S = � and then increase it iteratively until all the vertices of X are 
dominated. Denote by Y ⊆ X the set of vertices that are not dominated by the the 
current S. Then we do the following: 

1. Find a vertex w in Y that is maximum with respect to the ordering ⪯e.
2. Find a minimum with respect to ⪯e e-vertex v that dominates w, set S = S ∪ {v} 

and recompute Y.
3. If Y ≠ ∅ , then return to Step 1.

It is straightforward to verify that the algorithm correctly computes �e(X) in poly-
nomial time. This proves Claim 8.   ◻
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We say that a node x ∈ V(T) is loaded if Cx ≠ ∅ and x is unloaded otherwise. 
We say that a set of vertices S is extendable if there is a dominating set D such 
that 

(a) D has at most d x-vertices for x ∈ V(T),
(b) for each x ∈ V(T) , Cx ⊆ c(D ∩ VG(x)),
(c) D has the minimum size, contains S, and the conditions of the promise are 

fulfilled: the number of nodes x ∈ V(T) such that D contains an x-vertex is 
maximum and for each x ∈ V(T) , Cx = c(D ∩ VG(x)).

We are ready to explain our dynamic programming algorithm for doMinating Set 
extenSion. It works on T starting from the leaves and moving towards the root. 
To avoid dealing with the root that has no parent separately, we add an artificial 
node r′ to T and T ′ and make r′ the parent of r and the new root. Observe that r′ is 
the unique node of the tree that is not included in Mv for any v ∈ V(G).

We start with defining the tables of data that the algorithm stores for each 
x ≠ r′ of T. Let y be a parent of x and let e = yx . Consider the set W = {v1,… , vp} 
of x-vertices of G and assume that v1 ⪯e … ⪯e vp (note that if x = r and y = r� , 
then the ordering is arbitrary). The tables constructed in different ways for loaded 
and unloaded vertices, because if x is loaded, then some vertices whose models 
contain x should be included in every partial solutions and, otherwise, the partial 
solutions should exclude such vertices.

If x is loaded, then for x and i ∈ {1,… , p} , the algorithm stores the value �(x, i) 
that is either the minimum size of a set S ⊆ Vx(G) such that 

1. vi ∈ S,
2. S contains at most d z-vertices for each z ∈ V(Tx),
3. for each z ∈ V(Tx) , Cz = c(S ∩ VG(z)) , and
4. S dominates all the vertices of Vx(G),

or we may set �(x, i) = +∞ if we detect that there is no S ⊆ Vx(G) satisfying 
(1)–(4) such that S is extendable. In particular, it can happen if every set S satis-
fying (1)–(4) contradicts the promise of doMinating Set extenSion.

Similarly, if x is unloaded, then for x and i ∈ {0,… , p} the algorithm stores the 
value �(x, i) that is either the minimum size of a set S ⊆ Vx(G) such that 

5. vi+1,… , vp are dominated by S,
6. S contains at most d z-vertices for each z ∈ V(Tx),
7. for each z ∈ V(Tx) , Cz = c(S ∩ VG(z)) , and
8. S dominates all the vertices of Vx(G) ⧵ {v1,… , vp},

or we may set �(x, i) = +∞ if we detect that there is no S ⊆ Vx(G) satisfying 
(5)–(8) such that S is extendable. Similarly to �(x, i) , we do it if we detect that 
every set S satisfying (5)–(8) contradicts the promise of doMinating Set exten-
Sion. In particular, it happens when we gain by including an x-vertex of G into a 
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partial solution, that is, we can increase the number of x-vertices for x ∈ V(T) in 
the partial solution without decreasing its size.

It also is assumed that �(x, i) = +∞ and �(x, i) = +∞ if there is no S that satis-
fies the conditions (1)–(4) or (5)–(8) respectively.

Now we explain how we compute the values �(x, i) and �(x, i) . First, we do it 
for leaves.

Computing �(x, i) and �(x, i) for leaves. When x is a loaded leaf of T, we set:

When x is an unloaded leaf, we set:

Now we compute the values �(x, i) and �(x, i) for non-leaves. Suppose that x ≠ r′ 
is a non-leaf node of T. Let z1,… , zs be the children of x in T and let ej = xzj for 
j ∈ {1,… , s} . Assume that the functions � and � are computed for the children of x 
depending on whether they are loaded or not.

Computing �(x, i) for loaded x.  Consider zj for j ∈ {1,… , s} . Let Wj = {u1,… , uq} 
be the set of zj-vertices of G. We assume that u1 ⪯ej

… ⪯ej
uq . As a first step we 

compute, for every i� ∈ {1,… , p} , the value of the auxiliary function �j(x, i�) defined 
as follows, depending whether zj is loaded or not. Informally, �j(x, i�) is the minimum 
size of a set of vertices Sj (satisfying the constraints for considered partial solutions) 
of Vxzj

(G) that dominate the vertices of Vxzj
(G) which are not dominated by vi′ . In 

particular, this means that if we add vi′ to a partial solution, we dominate Vxzj
(G).

Case 1 The vertex zj is loaded. For each i� ∈ {1,… , p} and h ∈ {1,… , q} , let

Recall that �ej (X) is the minimum size of a set S of ej-vertices of G that dominates X. 
We set

Case 2 The vertex zj is unloaded. For i� ∈ {1,… , p} , let

and for h ∈ {0,… , q},

�(x, i) =

{
|Cx| if c(vi) ∈ Cx,

+∞ otherwise .

𝛾(x, i) =

{
0 if i = p,

+∞ if i < p.

Xi�,h = {w ∈ V(G) ∣ w ∈ VG(ej), Mw ∩ (Mvi�
∪Muh

) = �}.

�j(x, i
�) = min

1≤h≤q
{�(zj, h) + �ej (Xi�,h)}.

Yi� = {w ∈ V(G) ∣ w ∈ VG(ej), Mw ∩Mvi�
= �}

Yi�,h =

{
Yi� if h = 0,

Yi� ∪ {uh} if h > 0.
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We set

We have that �j(x, i�) is defined in both cases. Note that if vi′ is included in a partial 
solution, then it can be used to dominate vertices of Vxzj

(G) for distinct j ∈ {1,… , s} . 
Therefore, we extend the definition of this function on subsets of {1,… , s} . For 
i� ∈ {1,… , p} and each non-empty J ⊆ {1,… , s} , we set

We consider all possible partitions P = {J1,… , Jt} of {1,… , s} for all 
t ∈ {|Cx|,… , d} , where some sets may be empty. We then consider all possible sur-
jections � ∶ {1,… , t} → Cx . For every x and i ∈ {1,… , p} , we set

where the minimum is taken over all P and � ; we assume to simplify notation that

if h ≥ 2 and there is no i� ∈ {1,… , p} such that c(vi� ) = �(h) or if h = 1 and 
�(1) ≠ c(vi) . The intuition behind (1) is the following. We are selecting t x-vertices 
vi1 ,… , vit with i = i1 (recall that vi should be in a solution) to include them in a par-
tial solution. The partition {J1,… , Jt} encodes the property that each vih is used to 
dominate some vertices of Vxzj

(G) for j ∈ Jh . The function � encodes colors of the 
selected vertices.

Computing �(x, i) for unloaded x. Consider zj for each j ∈ {1,… , s} . Let 
Wj = {u1,… , uq} be the set of zj-vertices of G. We assume that u1 ⪯ej

… ⪯ej
uq . 

Recall that W denotes the set of x-vertices. Consider also the ordering v
i
j

1

,… , v
i
j
p
 of the 

vertices of W such that v
i
j

1

⪯ej
… ⪯ej

v
i
j
p
 . We use the following crucial property to com-

pute �(x, i) . Since x is unloaded, the vertices of W should be dominated by vertices 
whose models do not contain x and for each j ∈ {1,… , s} , the vertices of VG(xzj) 
should be dominated by some vertices from this set. Let Sj ⊆ Vxzj

(G) is the set of verti-
ces that dominate the vertices of VG(xzj) and some vertices of W. If Sj is not a set of 
minimum size (satisfying the constraints of doMinating Set extenSion) dominating the 
vertices of VG(xzj) , then Sj can be replaces by a set S′

j
 of minimum size and a vertex of 

W that is used to dominate the vertices of W. This way, we obtain a partial solution that 
contains an x-vertex contradicting the promise of doMinating Set extenSion. This 
means that to dominate the vertices of VG(xzj) , we should select a set Sj ⊆ Vxzj

(G) of 
minimum size that contains a vertex whose model is at minimum possible distance 
from x. To exploit this property, we define the auxiliary functions �(j) and �(j) as 

�j(x, i
�) = min

0≤h≤q
{�(zj, h) + �ej (Yi�,h)}.

�J(x, i
�) =

∑

j∈J

�j(x, i
�) and ��(x, i

�) = 0.

(1)

�(x, i) = min

{
t +

t∑

h=1

min
{
�Jh (x, i

�) ∣ 1 ≤ i� ≤ p, i� = i if h = 1, c(vi� ) = �(h)
}
∣ P, �

}
,

min{�Jh (x, i
�) ∣ 1 ≤ i� ≤ p, i� = i if h = 1, c(vi� ) = �(h)} = +∞
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follows depending on whether zj is loaded or not. The value of �(j) is the minimum size 
of a set of vertices Sj that dominate the vertices of VG(xzj) . The value of �(j) is the 
minimum t ∈ {1,… , p + 1} such that there is a set Sj of size �(j) that additionally dom-
inates the vertices v

i
j
t
,… , v

i
j
p
 (if t = p + 1 , then the vertices of W are not dominated by 

Sj).
Case 1 The vertex zj is loaded. For each h ∈ {1,… , q} , let

and let

For each t ∈ {1,… , p + 1} and h ∈ {1,… , q + 1} , denote

and let

Case 2 The vertex zj is unloaded. For each h ∈ {0,… , q} , let

and let

For each t ∈ {1,… , p + 1} and h ∈ {1,… , q + 1} , denote

and let

Now for each i ∈ {0,… , p} , we set

We compute � and � for all nodes of T except the artificial root r′ . The algorithm is 
based on the following properties of these values.

Xh = {w ∈ V(G) ∣ w ∈ VG(ej), Mw ∩Muh
= �},

(2)�(j) = min
1≤h≤q

(�(zj, h) + �ej (Xh)).

Xh,t =

{
Xh ∪ {v

i
j
t
,… , v

i
j
p
} if t ≤ p,

Xh if t = p + 1,

(3)�(j) = min{t ∣ 1 ≤ t ≤ p + 1, �(j) = min
1≤h≤q

(�(zj, h) + �ej (Xh,t))}.

Yh =

{
{w ∈ V(G) ∣ w ∈ VG(ej)} if h = 0,

{w ∈ V(G) ∣ w ∈ VG(ej)} ∪ {u1,… , uh} if h ≥ 1,

(4)�(j) = min
0≤h≤q

(�(zj, h) + �ej (Yh)).

Yh,t =

{
Yh ∪ {v

i
j
t
,… , v

i
j
p
} if t ≤ p,

Yh if t = p + 1,

(5)�(j) = min{t ∣ 1 ≤ t ≤ p + 1, �(j) = min
0≤h≤q

(�(zj, h) + �ej (Yh,t))}.

(6)

�(x, i) =

�∑s

j=1
�(j) if for h ∈ {i + 1,… , p}, there is j ∈ {1,… , s} s.t. v

i
j

�(j)

⪯ej
vh

+∞ otherwise .
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Claim 9 If x is a loaded node and i ∈ {1,… , p} , then the following is fulfilled:

• if 𝛽(x, i) < +∞ , then there is a set S ⊆ Vx(G) satisfying the conditions (1)–(4) 
of size at most �(x, i) ; and

• if there is a set S ⊆ Vx(G) of minimum size satisfying the conditions (1)–(4) 
that is extendable, then |S| = �(x, i).

Similarly, if x is unloaded, then for x and i ∈ {0,… , p} , the following is fulfilled:

• if 𝛾(x, i) < +∞ , then there is a set S ⊆ Vx(G) satisfying the conditions (5)–(8) 
of size at most �(x, i) ; and

• if there is a set S ⊆ Vx(G) of minimum size satisfying the conditions (5)–(8) 
that is extendable, then |S| = |�(x, i).

Proof It is straightforward to verify these properties for the leaves of T by the defini-
tion of � and �.

We use standard approach for proving correctness of dynamic programming algo-
rithms. We assume inductively that the properties of the values of � and � are ful-
filled for the children of x using as the base of the induction the fact that we already 
verified the properties of � and � for the leaves of T.

As in the description of the algorithm, we assume that W = {v1,… , vp} is the set 
of x-vertices and assume that v1 ⪯e … ⪯e vp where e = yx and y is the parent of x. In 
the same way, z1,… , zs are the children of x.

First, we prove the claim for � . Let x be a loaded node and let i ∈ {1,… , p}.
Let 𝛽(x, i) < +∞ . We show that there is a set S ⊆ Vx(G) of size at most �(x, i) 

such that 

1. vi ∈ S,
2. S contains at most d z-vertices for each z ∈ V(Tx),
3. for each z ∈ V(Tx) , Cz = c(S ∩ VG(z)) , and
4. S dominates all the vertices of Vx(G).

Consider a partition P = {J1,… , Jt} of {1,… , s} and a mapping 
� ∶ {1,… , t} → Cx for which the minimum in the right part of  (1) is 
achieved. Further, for each j ∈ {1,… , s} , let ij be a value of i′ for which 
min{�Jh (x, i

�) ∣ 1 ≤ i� ≤ p, i� = i if h = 1, c(vi� ) = �(h) is achieved; note that i1 = i.
We define Sx = {vi1 ,… , vit} ; observe that some vertices could be repeated and 

in this case we remove the duplicates. We have that |Sx| ≤ t ≤ d and vi ∈ Sx . Since 
� is a surjection, Cx = c(Sx ∩ VG(x)) . We obtain that (1)–(3) are fulfilled for z = x . 
Clearly, all x-vertices of G are dominated by Sx , so (4) also holds.

Consider zj for j ∈ {1,… , s} . As in the description of the algorithm, we assume 
that Wj = {u1,… , uq} is the set of zj-vertices of G. We also assume that 
u1 ⪯ej

… ⪯ej
uq . Let j ∈ Ji� . We consider two cases depending on whether zj is 

loaded or not.
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Case 1 The vertex zj is loaded. Let h ∈ {1,… , q} be such that �(zj, h) + �ej (Xi�,h) 
has the minimum value. By the inductive assumption, there is Szj ⊆ Vzj

(G) of size at 
most �(zj, h) such that 

1. uh ∈ Sj,
2. Szj contains at most d z-vertices for each z ∈ V(Tzj),
3. for each z ∈ V(Tzj) , Cz = c(Szj ∩ VG(z)) , and
4. Szj dominates all the vertices of Vzj

(G).

Consider Xi�,h = {w ∈ V(G) ∣ w ∈ VG(ej), Mw ∩ (Mvi�
∪Muh

) = �} . Notice that if w 
is an ej-vertex and w ∉ Xi�,h , then w is dominated either by vi� ∈ Sx or uh ∈ Szj , i.e., 
w is dominated by Sx ∪ Szj . By the definition of �ej (Xi�,h) , there is a set Sxzj of ej
-vertices of size �ej (Xi�,h) that dominates Xi′,h.

Case 2 The vertex zj is unloaded. Let h ∈ {1,… , q} be such that �(zj, h) + �ej (Yi�,h) 
has the minimum value.

By the inductive assumption, there is Szj ⊆ Vzj
(G) of size at most �(zj, h) such that 

5. uh+1,… , uq are dominated by Szj,
6. Szj contains at most d z-vertices for each z ∈ V(Tzj),
7. for each z ∈ V(Tzj) , Cz = c(S ∩ VG(z)) , and
8. Szj dominates all the vertices of Vzj

(G) ⧵ {u1,… , uq}.

Recall that we defined

If w is a ej-vertex and w ∉ Xi�,h , then w is dominated by vi� ∈ Sx , i.e., w is dominated 
by Sx ∪ Szj . By the definition of �ej (Yi�,h) , there is a set Sxzj of ej-vertices of size 
�ej (Yi�,h) that dominates Yi′,h . This set dominates the ej-vertices that are not domi-
nated by Sx and the zj-vertices u1,… , uh if h ≥ 1 that are the only vertices of Vzj

(G) 
that (possibly) are not dominated by Szj.

Now we let

We have that (1)–(4) are fulfilled for S. It remains to notice that |S| ≤ �(x, i) by the 
definition.

Assume now that S ⊆ Vx(G) is a set of minimum size satisfying (1)–(4) and S 
is extendable. Since S is a set of minimum size satisfying these conditions, as we 
already proved, |S| ≤ �(x, i) . We prove that |S| ≥ �(x, i).

Yi� = {w ∈ V(G) ∣ w ∈ VG(ej), Mw ∩Mvi�
= �}, and

Yi�,h =

{
Yi� if h = 0,

Yi� ∪ {uh} if h > 0.

S = Sx ∪

(
s⋃

j=1

(
Szj ∪ Sxzj

))
.
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We consider the partition (Sx, Sz1 ,… , Szs , Sxz1 ,… , Sxzs) of S, where Szj ⊆ Vzj
(G) 

and Sxzj are ej-vertices for each j ∈ {1,… , s} ; some sets in the partition could be 
empty.

Let t = |Sx| . For each j ∈ {1,… , s} , select vi(j) ∈ Sx to be a maximum element of 
Sx with respect to the relation ⪯ej

 . Observe that the selection is not necessarily 
unique. We consider a partition P = {J1,… , Jt} of {1,… , s} such that 
j, j� ∈ {1,… , s} are in the same set of P if and only if i(j) = i(j�) . We define 
� ∶ {1,… , t} → Cx as follows. If Jh ≠ ∅ , then �(h) = c(vi(j)) for j ∈ Jh . Then we 
extend � on h ∈ {1,… , t} with Jt = � greedily to ensure that � is a surjection. Such 
a mapping always exists because Cx = c(Sx ∩ VG(x)).

Consider zj for j ∈ {1,… , s} . It is assumed again that Wj = {u1,… , uq} is the set 
of zj-vertices of G. We also assume that u1 ⪯ej

… ⪯ej
uq . Let j ∈ Ji� . We consider 

two cases depending on whether zj is loaded or not.
Case 1 The vertex zj is loaded. Let h ∈ {1,… , q} be such that uh is a minimum 

element of Szj with respect to ⪯ej
 . By our inductive assumption, we have that 

�(zj, h) ≤ |Szj | , because Szj is extendable. Consider

By the definition of i(j) and h, the vertices of Xi(j),h are not dominated by Sx ∪ Szj . 
Therefore, they are dominated by Sxzj . By the definition of �ej , we have that 
�ej (Xi(j),h) ≤ |Sxzj | . Then

Case 2 The vertex zj is unloaded. Let h ∈ {0,… , q} be the minimum integer such 
that uh+1,… , uq are dominated by Szj . Clearly, if h > 0 , then uh is not dominated by 
Szj . By the inductive assumption, we have that �(zj, h) ≤ |Szj | as Szj is extendable. 
Consider the set Yi(j),h . By the definition of this set, we obtain that the vertices of 
Xi(j),h are not dominated by Sx ∪ Szj . Therefore, they are dominated by Sxzj . By the 
definition of �ej , we have that �ej (Yi(j),h) ≤ |Sxzj | . Then

Now we combine (7) and (8) and conclude that for each h� ∈ {1,… , t},

Xi(j),h = {w ∈ V(G) ∣ w ∈ VG(ej), Mw ∩ (Mvi(j)
∪Muh

) = �}.

(7)

�j(x, i(j)) = min
1≤h�≤q

{�(zj, h
�) + �ej (Xi�,h� )}

≤ �(zj, h) + �ej (Xi(j),h)

≤ |Szj | + |Sxzj |.

(8)

�j(x, i(j)) = min
0≤h�≤q

{�(zj, h
�) + �ej (Yi�,h� )}

≤ �(zj, h) + �ej (Yi(j),h)

≤ |Szj | + |Sxzj |.

(9)�Jh� (x, i
�) ≤

∑

j∈Jh�

(|Szj | + |Sxzj |),
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where i� = i(j) for j ∈ Jh�.
By (1) and (9), we obtain that

Our next aim is to prove Claim 9 for � . Assume that x is unloaded and let 
i ∈ {0,… , p}.

We suppose that 𝛾(x, i) < +∞ and prove that there is a set S ⊆ Vx(G) with 
|S| ≤ �(x, i) such that 

5. vi+1,… , vp are dominated by S,
6. S contains at most d z-vertices for each z ∈ V(Tx),
7. for each z ∈ V(Tx) , Cz = c(S ∩ VG(z)) , and
8. S dominates all the vertices of Vx(G) ⧵ {v1,… , vp}.

Since 𝛾(x, i) < +∞ , �(x, i) =
∑s

j=1
�(j) . Recall that �(j) is computed differently 

depending on whether zj is loaded or not. We consider each j ∈ {1,… , s} and 
analyze the corresponding cases. Recall that v

i
j

1

,… , v
i
j
p
 is the ordering of the verti-

ces of W with respect to ⪯ej
.

Case 1 The vertex zj is loaded.
We select t ∈ {1,… , p + 1} for which the minimum achieved in (3), that is, 

�(j) = t . In particular, we have that

where

and Xh = {w ∈ V(G) ∣ w ∈ VG(ej), Mw ∩Muh
= �} . Let h ∈ {1,… , q} be such that 

the minimum in the right part of (10) is achieved for this value.
By the inductive assumption, there is a set Szj ⊆ Vzj

(G) of size at most �(zj, h) 
such that 

1. uh ∈ Sj,
2. Szj contains at most d z-vertices for each z ∈ V(Tzj),
3. for each z ∈ V(Tzj) , Cz = c(Szj ∩ VG(z)) , and
4. Szj dominates all the vertices of Vzj

(G).

By the definition of �ej (Xh,t) , there is a set of ej-vertices Sxzj of size �ej (Xh,t) that 
dominates Xh,t . Note that |Szj | + |Sxzj | ≤ �(j) . Observe also that Szj ∪ Sxzj dominates 
all vertices of Vzj

(G) and the ej-vertices.
Case 2 The vertex zj is unloaded.

�(x, i) ≤ |Sx| +
s∑

j=1

(|Szj | + |Sxzj |) = |S|.

(10)�(j) = min
1≤h≤q

(�(zj, h) + �ej (Xh,t)),

Xh,t =

{
Xh ∪ {v

i
j
t
,… , v

i
j
p
} if t ≤ p,

Xh if t = p + 1
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We select t ∈ {1,… , p + 1} for which the minimum achieved in (5), that is, 
�(j) = t . In particular, we have that it holds

where

and

Let h ∈ {1,… , q} be such that the minimum in the right part of (11) is achieved for 
this value. By the inductive assumption, there is a set Szj ⊆ Vzj

(G) of size at most 
�(zj, h) such that 

5. uh+1,… , uq are dominated by Szj,
6. Szj contains at most d z-vertices for each z ∈ V(Tzj),
7. for each z ∈ V(Tzj) , Cz = c(Szj ∩ VG(z)) , and
8. Szj dominates all the vertices of Vx(G) ⧵ {u1,… , uq}.

By the definition of �ej (Yh,t) , there is a set of ej vertices Sxzj of size �ej (Yh,t) that 
dominates Yh,t . We have that |Szj | + |Sxzj | ≤ �(j) . Notice that Szj ∪ Sxzj dominates all 
vertices of Vzj

(G) and the ej-vertices.
Now we define

We have that

By the definition of S, we have that (6)–(8) are fulfilled. To show  (5), recall that 
𝛾(x, i) < +∞ . Then for each h ∈ {i + 1,… , p} , there is j ∈ {1,… , s} such that 
v
i
j

�(j)

⪯ej
vh and, therefore, vh is dominated by Sxzj.

Assume now that S ⊆ Vx(G) is a set of minimum size satisfying (5)–(8) for x and 
i ∈ {1,… , p} and S is extendable. Because S is a set of minimum size satisfying 
these conditions, |S| ≤ �(x, i) . We show that |S| ≥ �(x, i).

We consider the partition (Sz1 ,… , Szs , Sxz1 ,… , Sxzs) of S, where Szj ⊆ Vzj
(G) and 

Sxzj are ej-vertices for j ∈ {1,… , s} ; some sets in the partition could be empty. Note 
that since S is extendable, all the sets in the partition are extendable as well.

(11)�(j) = min
1≤h≤q

(�(zj, h) + �ej (Yh,t)),

Yh,t =

{
Yh ∪ {v

i
j
t
,… , v

i
j
p
} if t ≤ p,

Yh if t = p + 1,

Yh =

{
{w ∈ V(G) ∣ w ∈ VG(ej)} if h = 0,

{w ∈ V(G) ∣ w ∈ VG(ej)} ∪ {u1,… , uh} if h ≥ 1.

S = ∪s
j=1

(Szj ∪ Sxzj).

|S| =
s∑

j=1

(|Szj | + |Sxzj |) ≤
s∑

j=1

�(j) = �(x, i).
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First, we show that �(j) ≤ |Szj | + |Sxzj | for j ∈ {1,… , s}.
If xj is loaded then �(j) is computed by (2). Let h ∈ {1,… , q} be such that uh is a 

minimum with respect to ⪯ej
 vertex in Szj . By induction, |Szj | ≥ �(zj, h) . Since the 

vertices of G that are in Xh = {w ∈ V(G) ∣ w ∈ VG(ej), Mw ∩Muh
= �} are not dom-

inated by Szj , they are dominated by Sxzj . By the definition of �ej (Xh) , |Sxzj | ≥ �ej (Xh) . 
Therefore, �(j) ≤ �(zj, h) + �ej (Xh) ≤ |Szj | + |Sxzj |.

If zj is unloaded, then �(j) is computed by (4). We find minimum h ∈ {0,… , q} 
such that uh+1,… , uq are dominated by Szj . By induction, |Szj | ≥ �(zj, h) We consider

and observe that the vertices of Yh are not dominated by Szj . Hence, the vertices of Yh 
are dominated by Sxzj . By the definition of �zj(Yh) , |Sxzj | ≥ �(Yh) . Hence, 
�(j) ≤ �(zj, h) + �ej (Xh) ≤ |Szj | + |Sxzj |.

Since �(j) ≤ |Szj | + |Sxzj | for all j ∈ {1,… , s} , we have that if �(x, i) =
∑s

j=1
�(j) , 

then

Suppose now that �(x, i) ≠
∑s

j=1
�(j) . By (6), we have that there is h� ∈ {i + 1,… , p} 

such that vh� ≺ej
v
i
j

𝜓(j)

 for all j ∈ {1,… , s} . The vertex vh′ is dominated by S by the 
condition (v). Assume that vh′ is dominated by Szj ∪ Sxzj for j ∈ {1,… , s} . Let 
vh� = vitt

 according to the ordering of x-vertices with respect to ⪯ej
 . We again con-

sider two cases.
Case 1 The vertex zj is loaded.
By (3), 𝜂(j) < min1≤h≤q(𝛽(zj, h) + 𝛼ej (Xh,t)) , where 

Xh = {w ∈ V(G) ∣ w ∈ VG(ej), Mw ∩Muh
= �} and

Let h ∈ {1,… , q} be such that uh is a minimum with respect to ⪯ej
 vertex in Szj . By 

induction, |Szj | ≥ �(zj, h) . Since the ej-vertices of G that are in Xh,t are not dominated 
by Szj , they are dominated by Sxzj . By the definition of �ej (Xh,t) , |Sxzj | ≥ �ej (Xh,t) . This 
means that 𝜂(j) < |Szj | + |Sxzj |.

Let h∗ ∈ {1,… , q} be such that the minimum in the right part of (10) is achieved 
for this value, that is, �(j) = �(zj, h) + �ej (Xh∗ ) . By the inductive assumption, there is 
a set S�

zj
⊆ Vzj

(G) of size at most �(zj, h∗) such that 

1. uh∗ ∈ S�
j
,

2. S′
zj
 contains at most d z-vertices for each z ∈ V(Tzj),

Yh =

{
{w ∈ V(G) ∣ w ∈ VG(ej)} if h = 0,

{w ∈ V(G) ∣ w ∈ VG(ej)} ∪ {u1,… , uh} if h ≥ 1,

�(x, i) =

s∑

j=1

�(j) ≤

s∑

j=1

(|Szj | + |Sxzj |) = |S|.

Xh,t =

{
Xh ∪ {v

i
j
t
,… , v

i
j
p
} if t ≤ p,

Xh if t = p + 1.
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3. for each z ∈ V(Tzj) , Cz = c(Szj ∩ VG(z)) , and
4. S′

zj
 dominates all the vertices of Vzj

(G).

By the definition of �ej (Xh∗ ) , there is a set of ej vertices S′
xzj

 of size �ej (Xh∗ ) that domi-
nates Xh∗ . Note that |Szj | + |Sxzj | ≤ �(j) . Observe also that S�

zj
∪ S�

xzj
 dominates all ver-

tices of Vzj
(G) and the ej-vertices. Let S� = S�

zj
∪ S�

xzj
∪ {v1} . This set dominates all 

the vertices of Vx(G) . Note that |S�| ≤ |Szj ∪ Sxzj |.
Case 2 The vertex zj is unloaded.
By (5), 𝜂(j) < min1≤h≤q(𝛾(zj, h) + 𝛼ej (Yh,t)) , where

and

Let h ∈ {0,… , q} be the minimum index such that uh+1,… , uq are dominated by Szj . 
By induction, |Szj | ≥ �(zj, h) . Since the vertices of G that are in Yh,t are not domi-
nated by Szj , they are dominated by Sxzj . By the definition of �ej (Xh,t) , |Sxzj | ≥ �ej (Xh,t) . 
It means that 𝜂(j) < |Szj | + |Sxzj |.

Let h∗ ∈ {1,… , q} be such that the minimum in the right part of (11) is achieved 
for this value, that is, �(j) = �(zj, h

∗) + �ej (Yh∗ ) . By the inductive assumption, there 
is a set S�

zj
⊆ Vzj

(G) of size at most �(zj, h∗) such that 

5. uh∗+1,… , uq are dominated by Szj,
6. Szj contains at most d z-vertices for each z ∈ V(Tzj),
7. for each z ∈ V(Tzj) , Cz = c(Szj ∩ VG(z)) , and
8. Szj dominates all the vertices of Vx(G) ⧵ {u1,… , uq}.

By the definition of �ej (Xh) , there is a set of ej vertices S′
xzj

 of size �ej (Yh∗ ) that domi-
nates Yh∗ . Note that |Szj | + |Sxzj | ≤ �(j) . Observe also that S�

zj
∪ S�

xzj
 dominates all ver-

tices of Vzj
(G) and the ej-vertices. Let S� = S�

zj
∪ S�

xzj
∪ {v1} . This set dominates all 

the vertices of Vx(G) . Note that |S�| ≤ |Szj ∪ Sxzj |.
Now we use the set S′ obtained in both cases to obtain a contradiction to the 

extendability of S. The set S is extendable, that is, there is a dominating set D of G 
such that 

(a) D has at most d x-vertices for x ∈ V(T),
(b) for each x ∈ V(T) , Cx ⊆ c(D ∩ VG(x)),

Yh,t =

{
Yh ∪ {v

i
j
t
,… , v

i
j
p
} if t ≤ p,

Yh if t = p + 1,

Yh =

{
{w ∈ V(G) ∣ w ∈ VG(ej)} ifh = 0,

{w ∈ V(G) ∣ w ∈ VG(ej)} ∪ {u1,… , uh} if h ≥ 1.
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that has the minimum size and contains C and the conditions of the promise is 
fulfilled: the number of nodes z ∈ V(T) such that D contains an z-vertex is maxi-
mum and for each z ∈ V(T) , Cz = c(D ∩ VG(z)) . Let D� = (D ⧵ (Szi ∪ Sxzj)) ∪ S� . It 
is straightforward to see that D is a dominating set and |D′| ≤ |D| . We also have 
that (a) and (b) are fulfilled for D′ , because of (ii′ ), (iii′ ), (vi′ ) and (vii′ ), but this 
contradicts the condition that the number of nodes x ∈ V(T) such that D contains 
an x-vertex is maximum because D′ contains the x-vertex v1 . Hence, 
�(x, i) ≠

∑s

j=1
�(j) and this completes the proof of the claim that |S| ≥ �(x, i) . We 

thus proved Claim 9.   ◻

Now we are ready to complete the description of our algorithm for doMinating Set 
extenSion. The algorithm computes the table of values of �(r, i) if r is loaded and the 
table of values of �(r, i) if r is unloaded. If r is loaded, we find the minimum value 
�(r, i∗) in the table for i. By Claim 9, if 𝛽(r, i∗) < +∞ , then G has a dominating set S 
of size at most �(r, i∗) containing at most d x-vertices for x ∈ V(T) such that for each 
x ∈ V(T) , Cx = c(S ∩ VG(x)) . Moreover, if the promise is true, then 𝛽(r, i∗) < +∞ 
and the minimum size of S is �(r, i∗) . If r is unloaded, then we consider �(r, 0) in 
the table for r. By Claim 9, if 𝛾(r, 0) < +∞ , then G has a dominating set S of size at 
most �(r, 0) containing at most d x-vertices for x ∈ V(T) such that for each x ∈ V(T) , 
Cx = c(S ∩ VG(x)) , and if the promise is true, then 𝛾(r, 0) < +∞ and the minimum size 
of S is �(r, 0) . It remains to check whether �(r, i∗) ≤ k or �(r, 0) ≤ k respectively and 
return the answer.

To evaluate the running time, observe that to compute �(x, i) , we consider all 
possible partitions P = {J1,… , Jt} for 1 ≤ t ≤ d of {0, 1,… , s} into non-empty 
sets such that 0 ∈ J1 where s is the number of children of x. Since s ≤ � , we have 
that the number of partitions is 2O (� log d) . Then for each partition P = {J1,… , Jt} , 
we consider all possible surjections � ∶ {1,… , t} → Cx . Since t ≤ d and each 
|Cx| ≤ d , there are 2O (d log d) choices of � . Because each value of � and � can be 
computed in polynomial time, it implies that the total running time of the algorithms 
is 2O ((�+d) log d)nO (1) . This finishes the proof of Lemma 7 about doMinating Set 
extenSion.   ◻

Now we are ready to prove the main theorem of the section.

Theorem  9 Dominating Set can be solved in time 2O (𝓁2)
⋅ nO (1) for connected 

chordal graphs with leafage at most �.

Proof Let (G, k) be an instance of doMinating Set where G is a connected chordal 
graph.

We use the algorithm of Habib and Stacho [20] to compute its leafage �(G) . If 
�(G) > � , we stop and return a no-answer. Otherwise, we consider the clique tree 
T ′ of G constructed by the algorithm. If |T| = 1 , then G is a complete graph and 
doMinating Set has a straightforward solution. Let ‖T‖ ≥ 1 , that is, �(G) ≥ 2 . We 
construct the tree T from T ′ by dissolving nodes of degree two, that is, for a node 
x of degree two with the neighbors y and z, we delete x and make y and z adjacent. 
Observe that since T is a tree with at most � leaves that has no node of degree two, 
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|T| ≤ 2� − 2 . We have that G is a T-graph. Note also that the algorithm of Habib 
and Stacho [20] gives us a T-representation M = {Mv}v∈V(G) where Mv ∈ V(T �) for 
v ∈ V(G).

We consider the 2|T| − 1 ≤ 22�−2 − 1 non-empty subsets of V(T) and construct a 
coloring c ∶ VG(T) → {1,… , 2|T|} such that for u, v ∈ VG(T) , c(u) = c(v) if and only 
if u and v are Q-vertices for the same Q ⊆ V(T).

By Lemma 4, a minimum dominating set of G contains at most 2|T| − 2 ≤ 4� − 6 
vertices of VG(T) . Clearly, these vertices can have at most 4� − 6 distinct colors. We 
consider all sets C ⊆ {1,… , 2|T|} of distinct colors of size at most 4� − 6 and for 
each C, we aim to find a minimum dominating set of G whose vertices in VG(T) are 
colored by the maximum number of distinct colors and are colored exactly by the 
colors of C. Since we consider all possible choices of C, it holds for some C.

Toward this aim, we apply the following rule.

Rule 1 If there is an xy-vertex w of G for xy ∈ E(T) and 

1. x, y ∉ Mu for every u ∈ VG(T) with c(u) ∈ C ; and
2. there is v ∈ VG(T) (with c(v) ∉ C ) such that x, y ∈ Mv,

then discard the current choice of C.
To see that the rule is safe, observe that if D is minimum dominating set of G 

whose vertices in VG(T) are colored exactly by the colors of C, then w is dominated 
by some xy-vertex w′ . We have that v ∉ D , because c(v) ∉ C . Then it is straightfor-
ward to see that D� = (D ⧵ {w�}) ∪ {v} is a minimum dominating set of G whose 
vertices in VG(T) are colored by |C| + 1 colors.

Now we are looking for a dominating set D of minimum size such that 
c(D ∩ VG(T)) = C.

We use the following rule.

Rule 2 If there is a Q-vertex u of G for non-empty Q ⊆ V(T) such that 

1. c(u) ∉ C ; and
2. there is c ∈ C such that for every v ∈ VG(T) with c(v) = c , v dominates u,

then delete u.
To see that the rule is safe, observe that u cannot be included in a dominating set 

D of minimum size such that c(D ∩ VG(T)) = C and u is dominated by any set D 
such that c(D ∩ VG(T)) = C.

Let

A = {xy ∈ E(T) ∣ x, y ∈ Mu for some u ∈ VG(T) such that c(u) ∈ C}

A� = {xy ∈ E(T) ∣ x, y ∈ Mu for some u ∈ VG(T) such that c(u) ∉ C and

x, y ∉ Mv for v ∈ VG(T) such that c(v) ∈ C}.
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Observe that because of Rule 1, there are no e-vertices for e ∈ A� . We contract the 
edges e ∈ A ∪ A� . Denote by T̂  the tree obtained from T tree and let T̂ ′ be the tree 
obtained from T ′ by contracting the paths that correspond to the contracted edge. 
We also construct the graph Ĝ that is obtained from G by contracting these edges of 
T and we also construct its T̂-representation M̂ = {M̂v}v∈V(Ĝ) where M̂v ∈ V(T̂ �) for 
v ∈ V(Ĝ) . We set ĉ = c|V(Ĝ) and for every x ∈ V(T̂) define

Observe that M̂  is a nice T̂-representation of Ĝ . Indeed, for every xy ∈ E(T) such 
that x, y ∈ Mu for u ∈ VG(T) we have that xy ∈ A if c(u) ∈ C and xy ∈ A� if c(u) ∉ C 
because of Rule 2, and all such edges xy are contracted.

Combining Lemmas 5 and 6 we obtain that D is a dominating set of minimum 
size with C = c(D ∩ VG(T)) if and only if D is a dominating set of G′ of minimum 
size such that C = ĉ(D ∩ VĜ(T̂)) . Note that the condition C = ĉ(D ∩ VĜ(T̂)) is equiv-
alent to the condition that for every x ∈ V(T̂) , Cx = ĉ(D ∩ VĜ(x)) , because the T̂-rep-
resentation of Ĝ is nice and Cx ∩ Cy = � for distinct x, y ∈ V(T̂).

We set d = |T| + � − 1 ≤ 3� − 3 and apply the next rule.

Rule 3 If there is x ∈ V(T̂) with |Cx| > d , then discard the current choice of C.
To see that the rule is safe, assume that the input graph G has a minimum dom-

inating set D whose vertices in VG(T) are colored exactly by the colors of C. By 
Lemma 3, we have that if a set of nodes X of T is contracted into a single vertex x of 
T̂  , then D has at most |X| + � − 1 vertices whose models contain a vertex of X and, 
therefore, the number of vertices colored by the colors of Cx in D is at most d.

We arbitrarily select a node r to be the root of T̂  and T̂ ′ respectively. Then we 
apply Lemma 7 to the instance (T̂ , k, d, ĉ, {Cx}x∈V(T̂)) of doMinating Set extenSion.

Recall that doMinating Set extenSion is a promise problem. If the algorithm 
from Lemma 7 returns a yes-answer, it means that there is a dominating set D of Ĝ 
of size at most k such that for each x ∈ V(T̂) , Cx = c(D ∩ VĜ(x)) . This means that the 
input graph G has a dominating set of size at most k. Still, if the promise is false, the 
algorithm can return an incorrect no-answer. Recall that the promise of doMinating 
Set extenSion is the following: for every dominating set D of Ĝ of minimum size 
with the properties that 

(a) D has at most d x-vertices for x ∈ V(T̂),
(b) for each x ∈ V(T̂) , Cx ⊆ c(D ∩ VG(x̂)),

it holds that the number of nodes x ∈ V(T̂) such that D contains an x-vertex is maxi-
mum and for each x ∈ V(T̂) , Cx = c(D ∩ VG(x̂)) . By Lemmas 5 and 6, we have that 
if C is chosen in such a way that G has a minimum dominating set D that has the 
maximum number of vertices of VG(T) and whose vertices in VG(T) are colored 
exactly by the colors of C, then this promise holds for the corresponding instance of 
doMinating Set extenSion constructed for this choice of C. Therefore, if (G, k) is a 
yes-instance of doMinating Set, then for some choice of C, we obtain a yes-answer.

Cx = {c, ∃u ∈ VĜ(x) s.t. ĉ(u) = c}.
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To evaluate the running time of the algorithm, observe that T, T ′ and the repre-
sentation M  are constructed in polynomial time by the algorithm of Habib and Sta-
cho [20]. The coloring function c ∶ VG(T) → {1,… , 2|T|} can be constructed in time 
2O (𝓁)

⋅ nO (1) . Then we construct 2O (�2) sets C ⊆ {1,… , 2|T|} of size at most 6� − 8 
and it can be done in time 2O (�2) . For each C, the Rules 1 and 2 can be applied in 
polynomial time. Similarly, the construction of the instance (T̂ , k, d, ĉ, {Cx}x∈V(T̂)) of 
doMinating Set extenSion for a given C can be done in polynomial time. Clearly, 
Rule 3 can be applied in polynomial time. Then we solve the constructed instance of 
doMinating Set extenSion in time 2O (𝓁 log𝓁)

⋅ nO (1) . Hence, the total running time 
of the algorithm is 2O (𝓁2)

⋅ nO (1) .   ◻

The theorem immediately gives the following corollary for T-graphs.

Corollary 5 doMinating Set can be solved in time 2O (|T|2)
⋅ nO (1) for T-graphs if T 

is a tree.

5.3  A Polynomial Kernel for Clique

It was observed in [10] that the Clique problem is FPT for H-graphs when parame-
terized by the solution size k and ‖H‖ (even when no H-representation of G is given). 
We show that Clique admits a polynomial kernel when a representation is given.

Let G be an H-graph with an H-representation M = {Mv}v∈V(G) where, for the 
corresponding subdivision H′ of H and v ∈ V(G) , Mv ⊆ V(H�) . Recall that for 
e ∈ E(H) , v ∈ V(G) is an e-vertex if Mv contains only subdivision nodes of H′ from 
the path in H′ corresponding to e in H. We claim that we can find a maximum clique 
in G that contains some e-vertex in polynomial time.

Lemma 8 Let G be an H-graph given together with its H-representation. Then a 
clique of maximum size that contains at least one e-vertex for some e ∈ E(G) can be 
found in time O (n3∕2m).

Proof Let M = {Mv}v∈V(G) be an H-representation of G. For each e-vertex u of G, 
we find a maximum clique K such that Mu is inclusion minimal for K, that is, there is 
no v ∈ K with Mv ⊂ Mu . Let e = xy for x, y ∈ V(H) and denote by P the (x, y)-path 
corresponding to e in the subdivision H′ of G. Since u is an e-vertex, Mu ⊆ V(P) , 
that is, the nodes of Mu form a subpath of P. Denote by x′ and y′ the end-verti-
ces of the subpath. Note that it can happen that x� = y� . Because Mu is an inclu-
sion minimal model of a vertex of K, for every v ∈ K , x� ∈ Mv or y� ∈ Mv . Consider 
U = {v ∈ V(G) ∣ x� ∈ Mv or y

� ∈ Mv} . We have that finding K in G is equivalent to 
finding a maximum clique containing u in G� = G[U].

Notice that U can be partitioned into two cliques K1 = {v ∈ V(G) ∣ x� ∈ Mv} and 
K2 = {v ∈ V(G) ∣ y� ∈ Mv and x

� ∉ Mv} . This means that G′ is a cobipartite graph. 
A maximum clique in a cobipartite graph can be found in time O (

√
nm) by the algo-

rithm of Hopcroft and Karp [21] as finding a maximum clique in G′ is equivalent 
to finding a maximum independent set in the complement of G′ that is a bipartite 
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graph. Note that a maximum clique in G′ always contains u, because u is adjacent to 
every other vertex of G′.

Since we consider all e-vertices to find a maximum clique containing some e-ver-
tex for some e ∈ E(H) , the total running time is O (n3∕2m) .   ◻

Now we a ready to construct our kernel.

Theorem  10 The Clique problem for H-graphs admits a kernel with at most 
(k − 1)|H| vertices if an H-representation of the input graph is given, which can be 
computed in O (n3∕2m)-time.

Proof Let G be an H-graph with an H-representation M = {Mv}v∈V(G) where 
Mv ⊆ V(H�) for the corresponding subdivision H′ of H.

First, we use Lemma 8 to check whether G has a clique of size at least k that 
contains at least one e-vertex for some e ∈ E(G) . If we find such a clique we return 
a yes-answer. Assume that this is not the case. Let G′ be the graph obtained from G 
by the deletion of all e-vertices for e ∈ E(H) . We have that G has a clique of size at 
least k if and only if G′ has a clique of size at least k.

If there is x ∈ V(H) such that Vx = {v ∈ V(G�) ∣ x ∈ Mv} has size at least k, then 
it is a clique of size at least k and we return a yes-answer. Otherwise, we return G′ . 
Clearly, |G�| ≤ (k − 1)|H| in this case.   ◻
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