
1 23

Data Mining and Knowledge
Discovery

ISSN 1384-5810
Volume 34
Number 2

Data Min Knowl Disc (2020) 34:478-532
DOI 10.1007/s10618-019-00669-5

Parameterized low-rank binary matrix
approximation

Fedor V. Fomin, Petr A. Golovach &
Fahad Panolan

1 23

Your article is protected by copyright and all
rights are held exclusively by The Author(s),
under exclusive licence to Springer Science
+Business Media LLC, part of Springer
Nature. This e-offprint is for personal use only
and shall not be self-archived in electronic
repositories. If you wish to self-archive your
article, please use the accepted manuscript
version for posting on your own website. You
may further deposit the accepted manuscript
version in any repository, provided it is only
made publicly available 12 months after
official publication or later and provided
acknowledgement is given to the original
source of publication and a link is inserted
to the published article on Springer's
website. The link must be accompanied by
the following text: "The final publication is
available at link.springer.com”.

Data Mining and Knowledge Discovery (2020) 34:478–532
https://doi.org/10.1007/s10618-019-00669-5

Parameterized low-rank binary matrix approximation

Fedor V. Fomin1 · Petr A. Golovach1 · Fahad Panolan2

Received: 21 March 2019 / Accepted: 9 December 2019 / Published online: 2 January 2020
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
Low-rank binary matrix approximation is a generic problem where one seeks a good
approximation of a binary matrix by another binary matrix with some specific prop-
erties. A good approximation means that the difference between the two matrices in
some matrix norm is small. The properties of the approximation binary matrix could
be: a small number of different columns, a small binary rank or a small Boolean rank.
Unfortunately, most variants of these problems are NP-hard. Due to this, we initiate
the systematic algorithmic study of low-rank binary matrix approximation from the
perspective of parameterized complexity. We show in which cases and under what
conditions the problem is fixed-parameter tractable, admits a polynomial kernel and
can be solved in parameterized subexponential time.

Keywords Binary matrices · Clustering · Low-rank approximation · Fixed-parameter
tractability

Responsible editor: Pauli Miettinen.

The work was done within the CEDAS center in Bergen. The preliminary version of this paper appeared
as an extended abstract in the proceedings of ICALP 2018.

B Petr A. Golovach
Petr.Golovach@uib.no

Fedor V. Fomin
Fedor.Fomin@uib.no

Fahad Panolan
fahad@iith.ac.in

1 Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, Norway
2 Department of Computer Science and Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana

502285, India

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-019-00669-5&domain=pdf
http://orcid.org/0000-0002-2619-2990

Parameterized low-rank binary matrix approximation 479

1 Introduction

Low-rank approximation is a generic optimization problem, in which a given data
matrix has to be approximated by another matrix of low rank. It is in the heart of
the basic methods in data analysis like principal component analysis (PCA) or factor
analysis. It is well-known that the low-rank matrix approximation with respect to the
Frobenius norm over reals can be efficiently solved with singular value decomposition
(SVD). However SVD can return real-valued matrices; this makes it hard to use for
interpretation of data which is originally binary or integer. For many applications in
data mining and knowledge discovery it is highly desired that the low-rank matrix
approximating the data matrix is also binary (Bartl et al. 2010; Miettinen et al. 2008;
Miettinen and Vreeken 2011). Unfortunately, most of the interesting variants of low-
rank binary matrix approximation are NP-complete.

The fact that a problem is NP-hard only means that it is “hard” in the “worst-case”.
It is rarely the case that the input instances we actually want to solve look like the
instances onwhich the algorithmperforms theworst. In this paperwe propose the study
of the computational complexity of low-rank approximation problems from the per-
spective of parameterized complexity. The core idea behind parameterized complexity
is very general—to measure the running time in terms of both input size as well as
various parameters that capture structural properties of the input instance. Originating
in the late 80s from the foundational work of Downey and Fellows (1992), the area of
parameterized algorithms and complexity has experienced tremendous growth, and is
now considered one of the central subfields of theoretical computer science. The com-
plexity of computational problems on high-dimensional data is naturally governed by
various parameters and viewing high-dimensional data through parameterized com-
plexity lens could lead to a new level of understanding of the existing methods, and
yield powerful new tools for designing better heuristics, as well as provably correct
and efficient algorithms.

In this paper we consider the following generic problem. Given a binary m × n
matrix, that is, a matrix with entries from domain {0, 1},

A =

⎛

⎜⎜⎜⎝

a11 a12 . . . a1n
a21 a21 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎞

⎟⎟⎟⎠
= (ai j) ∈ {0, 1}m×n,

the task is to find a “simple” binary m × n matrix B which approximates A subject
to some specified constrains. One of the most widely studied error measures is the
Frobenius norm, which for a matrix A is defined as

∥A∥F =
√√√√

m∑

i=1

n∑

j=1

|ai j |2.

123

Author's personal copy

480 F. V. Fomin et al.

Here, the sums are taken over R. Then, for a given nonnegative integer k, we want to
decide whether there is a matrix B with certain properties such that

∥A − B∥2F ≤ k.

We consider the binary matrix approximation problems when for a given integer r ,
the approximation binary matrix B

(A1) has at most r distinct columns,
(A2) is of GF(2)-rank at most r ,
(A3) is of Boolean rank at most r .

Each of these variants is very well-studied. Before defining each of the problems
formally and providing an overview of the relevant results, the following observation
is in order. Since we approximate a binary matrix by a binary matrix, in this case
minimizing the Frobenius norm of A − B is equivalent to minimizing the ℓ0-norm of
A−B, where the measure ∥X∥0 is the number of nonzero entries of matrixX. We also
will be using another equivalent way of measuring the quality of approximation of a
binary matrix A by a binary matrix B by taking the sum of the Hamming distances
between their columns. Let us recall that the Hamming distance between two vectors
x, y ∈ {0, 1}m , where x = (x1, . . . , xm)ᵀ and y = (y1, . . . , ym)ᵀ, is dH (x, y) =∑m

i=1 |xi − yi | or, in words, the number of positions i ∈ {1, . . . ,m} where xi and yi
differ. Then, for binary m × n matrix A with columns a1, . . . , an and matrix B with
columns b1, . . . ,bn , we define

dH (A,B) =
n∑

i=1

dH (ai ,bi).

In other words, dH (A,B) is the number of positions with different entries in matrices
A and B. Then

∥A − B∥2F = ∥A − B∥0 = dH (A,B) =
n∑

i=1

dH (ai ,bi). (1)

Problem (A1): Binary r -MeansBy (1), the problem of approximating a binarym×n
matrixA by a binarym×nmatrixBwith at most r different columns (problem (A1)) is
equivalent to the following clustering problem. Given a set of n binarym-dimensional
vectors a1, . . . , an (which constitute the columns of matrixA) and a positive integer r ,
Binary r -Means aims to partition the vectors in at most r clusters, so as to minimize
the sum of within-clusters sums of Hamming distances to their binary means. More
formally,

123

Author's personal copy

Parameterized low-rank binary matrix approximation 481

Input: Anm×nmatrixAwith columns (a1, . . . , an), a positive integer
r and a nonnegative integer k.

Task: Decide whether there is a positive integer r ′ ≤ r , a partition
{I1, . . . , Ir ′} of {1, . . . , n} and vectors c1, . . . , cr

′ ∈ {0, 1}m
such that

r ′∑

i=1

∑

j∈Ii
dH (ci , a j) ≤ k.

Binary r - Means

To see the equivalence of Binary r -Means and problem (A1), it is sufficient to
observe that distinct columns of an approximate matrix B such that dH (A,B) ≤ k
can be used as vectors c1, . . . , cr

′
, r ′ ≤ r . As far as the mean vectors are selected,

a partition of columns of A can be obtained by assigning each column-vector ai to
its closest mean vector c j (ties breaking arbitrarily). Then, for such clustering the
total sum of distances from vectors within cluster to their centers does not exceed
k. Similarly, a solution to Binary r -Means can be used as columns (with possible
repetitions) of matrix B such that dH (A,B) ≤ k. For that we put bi = c j , where c j is
the closest vector to ai .

This problem was introduced by Kleinberg et al. (2004) as one of the examples of
segmentation problems. Approximation algorithms for optimization versions of this
problem were given by Alon and Sudakov (1999) and Ostrovsky and Rabani (2002),
who referred to it as clustering in the Hamming cube. In bioinformatics, the case when
r = 2 is known under the name Binary- Constructive- MEC (Minimum Error
Correction) and was studied as a model for the Single Individual Haplotyping
problem by Cilibrasi et al. (2007). This problemwas studied byMiettinen et al. (2008)
under the name Discrete Basis Partitioning Problem.

Binary r -Means can be seen as a discrete variant of the well-known k-Means
Clustering. (Since in problems (A2) and (A3)we use r for the rank of the approxima-
tion matrix, we also use r in (A1) to denote the number of clusters which is commonly
denoted by k in the literature on means clustering.) This problem has been studied
thoroughly, particularly in the areas of computational geometry and machine learning.
We refer to Agarwal et al. (2004), Badoiu et al. (2002), and Kumar et al. (2010) for
further references to the works on k-Means Clustering.

Problem (A2): Low GF(2)-Rank Approximation Let A be a m × n binary matrix.
In this case we view the elements of A as elements of GF(2), the Galois field of two
elements {0, 1}. Then the GF(2)-rank of A is the minimum r such that A = U × V,
where U and V are m × r and r × n binary matrices respectively, and arithmetic
operations are over GF(2), that is, 0+ x = x+0 = x , 1x = x1 = x and 0x = x0 = 0
for x ∈ {0, 1}, and 1 + 1 = 0. Equivalently, this is the minimum number of binary
vectors, such that every column (row) of A is a linear combination (over GF(2)) of
these vectors. Then, (A2) is the following problem.

123

Author's personal copy

482 F. V. Fomin et al.

Input: An m × n-matrix A over GF(2), and nonnegative integers r and
k.

Task: Decidewhether there is a binarym×n-matrixBwithGF(2)-rank
(B) ≤ r such that dH (A,B) ≤ k.

Low GF(2)- Rank Approximation

Low GF(2)- Rank Approximation arises naturally in applications involving
binary data sets and serves as an important tool in dimension reduction for high-
dimensional data sets with binary attributes, see Dan et al. (2015), Jiang et al. (2014),
Gutch et al. (2012), Koyutürk and Grama (2003), Painsky et al. (2016), Shen et al.
(2009), and Yeredor (2011) for further references and numerous applications of the
problem.

Low GF(2)- Rank Approximation can be rephrased as a special variant (over
GF(2)) of the problemfinding the rigidity of amatrix. (For a target rank r , the rigidity of
amatrix A over a fieldF is theminimumHamming distance between A and amatrix of
rank at most r .) Rigidity is a classical concept in Computational Complexity Theory
studied due to its connections with lower bounds for arithmetic circuits (Grigoriev
1976, 1980; Valiant 1977; Razborov 1989).We refer to Lokam (2009) for an extensive
survey on this topic.

Low GF(2)- Rank Approximation is also a special case of a general class
of problems approximating a matrix by a matrix with a small nonnegative rank.
Already Nonnegative Matrix Factorization (NMF) is a nontrivial problem
and it appears in many settings. In particular, in machine learning, approximation by
a nonnegative low rank matrix has gained extreme popularity after the influential arti-
cle of Lee and Seung (1999) in Nature. NMF is an ubiquitous problem and besides
machine learning, it has been independently introduced and studied in combinatorial
optimization (Fiorini et al. 2015; Yannakakis 1991), and communication complexity
(Aho et al. 1983; Lovász and Saks 1988). An extended overview of applications of
NMF in statistics, quantum mechanics, biology, economics, and chemometrics, can
be found in Cohen and Rothblum (1993) and recent books of Cichocki et al. (2009),
Naik (2016), and Fu (2014).

Problem (A3): Low Boolean-Rank Approximation LetA be a binarym×n matrix.
This time we view the elements of A as Boolean variables. The Boolean rank of
A is the minimum r such that A = U ∧ V for a Boolean m × r matrix U and a
Boolean r × n matrix V, where the product is Boolean, that is, the logical ∧ plays
the role of multiplication and ∨ the role of sum. Here, 0 ∧ 0 = 0, 0 ∧ 1 = 0,
1 ∧ 1 = 1 , 0 ∨ 0 = 0, 0 ∨ 1 = 1, and 1 ∨ 1 = 1. Thus the matrix product is
over the Boolean semi-ring (0, 1,∧,∨). This can be equivalently expressed as the
normal matrix product with addition defined as 1+ 1 = 1. Binary matrices equipped
with such algebra are called Boolean matrices. Equivalently, A = (ai j) ∈ {0, 1}m×n

has the Boolean rank 1 if A = xᵀ ∧ y, where x = (x1, x2, . . . , xm) ∈ {0, 1}m and
y = (y1, y2, . . . , yn) ∈ {0, 1}n are nonzero vectors and the product is Boolean, that
is, ai j = xi ∧ y j . Then the Boolean rank of A is the minimum integer r such that
A = A(1) ∨ · · · ∨ A(r), where A(1), . . . ,A(r) are matrices of Boolean rank 1; zero

123

Author's personal copy

Parameterized low-rank binary matrix approximation 483

matrix is the unique matrix with the Boolean rank 0. Then, Low Boolean- Rank
Approximation is defined as follows.

Input: A Boolean m × n matrix A, and nonnegative integers r and k.
Task: Decide whether there is a Boolean m × n matrix B of Boolean

rank at most r such that dH (A,B) ≤ k.

Low Boolean- Rank Approximation

For r = 1 Low Boolean- Rank Approximation coincides with Low GF(2)-
Rank Approximation, but for r > 1, these are different problems. Boolean low-
rank approximation has attracted much attention, especially in the data mining and
knowledge discovery communities. In data mining, matrix decompositions are often
used to produce concise representations of data. Since much of the real data is binary
or even Boolean in nature, Boolean low-rank approximation could provide a deeper
insight into the semantics associated with the original matrix. There is a big body of
work done on Low Boolean- Rank Approximation, see e.g. Bartl et al. (2010),
Belohlávek and Vychodil (2010), Dan et al. (2015), Lu et al. (2012), Miettinen et al.
(2008),Miettinen andVreeken (2011), andVaidya (2012). In the literature the problem
appears under different names likeDiscrete Basis Problem (Miettinen et al. 2008)
or Minimal Noise Role Mining Problem (Vaidya et al. 2007; Lu et al. 2012;
Mitra et al. 2016).

P-Matrix ApproximationWhile at first glance Low GF(2)- Rank Approximation
and Low Boolean- Rank Approximation look very similar, algorithmically the
latter problem is more challenging. The fact that GF(2) is a field allows to play with
different equivalent definitions of rank like row rank and column ranks. We exploit
this strongly in our algorithm for Low GF(2)- Rank Approximation. For Low
Boolean- Rank Approximation the matrix product is over the Boolean semi-ring
and nice properties of the GF(2)-rank cannot be used here (see e.g. Guterman 2008).
Our algorithm for Low Boolean- Rank Approximation is based on solving an
auxiliary P-Matrix Approximation problem, where the task is to approximate a
matrix A by a matrix B whose block structure is defined by a given pattern matrix P.
It appears, that P-Matrix Approximation is also an interesting problem on its own.

More formally, let P = (pi j) ∈ {0, 1}p×q be a binary p × q matrix. We say
that a binary m × n matrix B = (bi j) ∈ {0, 1}m×n is a P-matrix if there is a partition
{I1, . . . , Ip} of {1, . . . ,m} and a partition {J1, . . . , Jq} of {1, . . . , n} such that for every
i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, s ∈ Ii and t ∈ J j , bst = pi j . In words, the columns
and rows of B can be permuted such that the block structure of the resulting matrix is
defined by P. Note that by this definition, each block of B should be nonempty.

Input: An m × n binary matrix A, a pattern binary matrix P and a
nonnegative integer k.

Task: Decide whether there is an m × n P-matrix B such that
dH (A,B) ≤ k.

P- Matrix Approximation

123

Author's personal copy

484 F. V. Fomin et al.

The notion of P-matrix was implicitly defined byWulff et al. (2013) as an auxiliary
tool for their approximation algorithm for the related monochromatic biclustering
problem. P-Matrix Approximation is also closely related to the problems arising
in tiling transaction databases (i.e., binary matrices), where the task is to find a tiling
covers of a given binary matrix with a small number of submatrices full of 1s, see
Geerts et al. (2004).

SinceLow GF(2)- Rank Approximation remainsNP-complete for r = 1 (Gillis
and Vavasis 2015), we have that P-Matrix Approximation is NP-complete already

for the very simple pattern matrix P =
(
0 0
0 1

)
.

1.1 Related work

In this subsection we give an overview of previous related algorithmic and complex-
ity results for problems (A1)–(A3), as well as related problems. Since each of the
problems has many practical applications, there is a tremendous amount of literature
on heuristics and implementations. In this overview we concentrate on known results
about algorithms with proven guarantee, with emphasis on parameterized complexity.

Problem (A1): Binary r -MeansBinary r -Means is trivially solvable in polynomial
time for r = 1, and it is NP-complete for every r ≥ 2 (Feige 2014). PTAS (polyno-
mial time approximation scheme) for optimization variants of Binary r -Meanswere
developed by Alon and Sudakov (1999) and Ostrovsky and Rabani (2002). Approx-
imation algorithms for more general k-Means Clustering is a thoroughly studied
topic (Agarwal et al. 2004; Badoiu et al. 2002; Kumar et al. 2010). It have been shown
by Inaba et al. (1994) that the general k-Means Clustering is solvable in nmr+1

time (here n is the number of vectors,m is the dimension and r the number of required
clusters). We are not aware of any, except the trivial brute-force, exact algorithm for
Binary r -Means prior to our work.

Problem (A2): LowGF(2)-RankApproximationWhen the low-rank approximation
matrix B is not required to be binary, then the optimal Frobenius norm rank-r approx-
imation of (not necessarily binary) matrix A can be efficiently found via the singular
value decomposition (SVD). This is an extremely well-studied problem and we refer
to surveys for an overview of algorithms for low rank approximation (Kannan and
Vempala 2009; Mahoney 2011; Woodruff 2014). However, SVD does not guarantee
to find an optimal solution in the case when additional structural constrains on the
low-rank approximation matrix B (like being nonnegative or binary) are imposed.

In fact, most of these constrained variants of low-rank approximation are NP-
hard. In particular, it have been shown by Gillis and Vavasis (2015) and Dan et al.
(2015) that Low GF(2)- Rank Approximation is NP-complete for every r ≥ 1.
Approximation algorithms for the optimization version of Low Boolean- Rank
Approximation were considered by Jiang and Heath (2013), Jiang et al. (2014),
Dan et al. (2015), Koyutürk and Grama (2003), Shen et al. (2009), and Bringmann
et al. (2017) among others. Recently, polynomial time approximation schemes for this
problem were obtained by Ban et al. (2019) and Fomin et al. (2018a).

123

Author's personal copy

Parameterized low-rank binary matrix approximation 485

Most of the known results about the parameterized complexity of the problem
follows from the results for Matrix Rigidity. Fomin et al. (2018a) proved that
for every finite field, and in particular GF(2), Matrix Rigidity is W[1]-hard being
parameterized by k. This implies that Low GF(2)- Rank Approximation is W[1]-
hard when parameterized by k. However, when parameterized by k and r , the problem
becomes fixed-parameter tractable. Fomin et al. (2018b) also proved that Matrix
Rigidity for a finite field admits a polynomial kernel. By these results, Low GF(2)-
Rank Approximation has a kernel of size O(r2k2).

For Low GF(2)- Rank Approximation, the algorithm of Fomin et al. (2018b)
runs in 2O(f (r)

√
k log k)(nm)O(1) time, where f is a certain function of r . While the

function f (r) is not specified by Fomin et al. (2018b), the algorithm invokes enumer-
ation of all 2r × 2r binary matrices of rank r , and thus the running time is at least
double-exponential in r .

Meesum et al. (2016) and Meesum and Saurabh (2016) considered parameterized
algorithms for related problems about editing of the adjacencies of a graph (or directed
graph) targeting a graph with adjacency matrix of small rank.

Problem (A3): Low Boolean-Rank Approximation It follows from the rank defini-
tions that a matrix is of Boolean rank r = 1 if and only if its GF(2)-rank is 1. Thus, by
the results of Gillis and Vavasis (2015) and Dan et al. (2015) Low Boolean- Rank
Approximation isNP-complete already for r = 1.A formulation of Low Boolean-
Rank Approximation as an integer programming problemwith exponential number
of variables and constraints was given by Lu et al. (2008).

While computing GF(2)-rank (or rank over any other field) of a matrix can be per-
formed in polynomial time, deciding whether the Boolean rank of a given matrix is at
most r is already an NP-complete problem. Thus, Low Boolean- Rank Approxi-
mation is NP-complete already for k = 0. This follows from the well-known relation
between the Boolean rank and covering edges of a bipartite graph by bicliques (Gre-
gory et al. 1991). Let us briefly describe this equivalence. For Boolean matrix A, let
GA be the corresponding bipartite graph, i.e. the bipartite graph whose biadjacency
matrix is A. By the equivalent definition of the Boolean rank, A has Boolean rank r if
and only if it is the logical disjunction of r Boolean matrices of rank 1. But, for every
bipartite graph whose biadjacency matrix is a Boolean matrix of rank at most 1, its
edges can be covered by at most one biclique (complete bipartite graph). Thus, decid-
ingwhether amatrix is of Boolean rank r is exactly the same as decidingwhether edges
of a bipartite graph can be covered by at most r bicliques. The latter Biclique Cover
problem is known to be NP-complete (Orlin 1977). Biclique Cover is solvable in
22

O(r) · (nm)O(1) time (Gramm et al. 2008) and unless Exponential Time Hypothesis
(ETH) fails, it cannot be solved in 22

o(r) · (nm)O(1) time (Chandran et al. 2016).
For the special case r = 1 and k ≤ ∥A∥0/240, an exact algorithm of running

time 2k/
√∥A∥0 · (nm)O(1) for Low Boolean- Rank Approximation was given

in Bringmann et al. (2017).
More generally, exact algorithms for NMF were studied by Cohen and Rothblum

(1993). In was shown by Arora et al. (2012) andMoitra (2016) that for a fixed value of
r , NMF is solvable in polynomial time. There are also related works of Razenshteyn

123

Author's personal copy

486 F. V. Fomin et al.

et al. (2016) on weighted low-rank approximation, Clarkson and Woodruff (2015) on
robust subspace approximation, and Basu et al. (2016) on PSD factorization.

Observe that all the problems studied in this paper could be seen as matrix editing
problems. For Binary r -Means, we can assume that r ≤ n as otherwise we have
a trivial yes-instance. Then, the problem asks whether it is possible to edit at most
k entries of the input matrix, that is, replace some 0s by 1s and some 1s by 0s, in
such a way that the obtained matrix has at most r distinct columns. Respectively, Low
GF(2)- Rank Approximation asks whether it is possible to edit at most k entries of
the input matrix to obtain a matrix of rank at most r . In P-Matrix Approximation,
we ask whether we can edit at most k elements to obtain a P-matrix. A lot of work in
graph algorithms has been done on graph editing problems, in particular parameterized
subexponential time algorithms were developed for a number of problems, including
various cluster editing problems (Drange et al. 2015; Fomin et al. 2014).

1.2 Our results andmethods

The main conceptual contribution of this paper is two-fold. On one hand, it demon-
strates that the field of Data Mining, which remains almost unexplored from the
perspective of Parameterized Complexity, is full of interesting challenges that could
and should be explored. On the other hand, some of the algorithmic approaches
developed in this paper, like kernelization (or preprocessing) techniques are not of
theoretical interest only and potentially can bring to new practical algorithms. Below
we elaborated on these statements.

The core idea behind Parameterized Complexity is very general—to measure the
running time in terms of both input size as well as various parameters that capture
structural properties of the input instance. Originating in the late 80s from the foun-
dational work of Downey and Fellows (1992), the area of parameterized algorithms
and complexity has experienced tremendous growth, and is now considered one of the
central subfields of theoretical computer science. So far the scope of Parameterized
Complexity has been mostly limited to problems on graphs, networks, strings, hyper-
graphs, and sets, with exceptions few and far between. However, there is no inherent
reason why the parameterized algorithmic approach cannot be successful in other
domains. The ideas of Parameterized Complexity hold the potential to address the
need for a framework for refined algorithm analysis for different kinds of problems
arising in the data analysis. The only reason why the ideas and concepts of Param-
eterized Complexity are not met frequently in Data Mining, where the core objects
are matrices and vector spaces, is the lack of algorithmic and complexity tools to deal
with such objects. Our work can be seen as one of the first steps in this direction.

While the results of the paper are mainly of a theoretical nature, we believe that at
least some of our algorithms have a strong potential from practical perspective too.
For example, the preprocessing procedure (Algorithm 1) for Binary r -Means can be
used as a subroutine in any heuristic algorithm for the problem. Moreover, while for
large rank values r and k the running time of our algorithms is not practical, which is
not surprising since we deal withNP-hard problems, for small values of the parameters
(especially r), our algorithms can solve the problem. For example, a popular approach

123

Author's personal copy

Parameterized low-rank binary matrix approximation 487

Table 1 Parameterized complexity of low-rank approximation

k r k + r

Binary
r -Means

2O(k log k)(nm)O(1)

Theorem 1, No
poly-kernel Theorem 4

NP-c for r ≥ 2 (Feige
2014)

2O(
√
rk log (k+r) log r)

Theorem 5, Poly-kernel
Theorem 2

GF(2) Appr W[1]-hard (Fomin et al.
2018b)

NP-c for r ≥ 1 (Gillis and
Vavasis 2015) (Dan
et al. 2015)

2O(r
√
k log(rk))

Theorem 6, Poly-kernel
(Fomin et al. 2018b)

Bool Appr NP-c for k = 0 (Orlin
1977)

NP-c for r ≥ 1 (Gillis and
Vavasis 2015) (Dan
et al. 2015)

2O(r2r
√
k log k)

Theorem 8

GF(2)Appr stands for Low GF(2)- Rank Approximation and Bool Appr for Low Boolean- Rank
Approximation. We omit the factor nm in the running times in Theorems 5, 6 and 8

to robust Principal Component Analysis (PCA) is to seek a represenation of a data
matrix M as a low-rank component L and a sparse component S. That is, M = L+ S,
see e.g. Candès et al. (2011), Wright et al. (2009), and Chandrasekaran et al. (2011).
By our theorems, the binary variant of robust PCA is solvable in polynomial timewhen
the rank r is constant and ∥S∥0, the number of non-zero entries of the sparse matrix S,
is inO(log2 n/ log log n). Also it is solvable in polynomial time when r ∈ O(

√
log n)

and ∥S∥0 ∈ O(log n/ log log n). This marks interesting islands of tractability for
seemingly very difficult data mining problems (see Corollary 1). Observe also that
it is know that Low GF(2)- Rank Approximation is interesting even for the case
r = 1, that is, when the data are represented as the product of two vectors that
are usually called presence vector and pattern vector respectively (see e.g. Lu et al.
2011; Shi et al. 2014 and the references therein). In this case our subexponential in k
Algorithm 4may be practical. In fact, for r = 1, we can apply the simpler Algorithm 2
for Binary 2-Means as Low GF(2)- Rank Approximation for r = 1 is equivalent
to Binary 2-Means with the additional requirement that one of the means is the zero
vector.

Description of the results We study the parameterized complexity of Binary r -
Means, Low GF(2)- Rank Approximation and Low Boolean- Rank Approx-
imation. We refer to the recent books of Cygan et al. (2015) and Downey and Fellows
(2013) for an introduction to Parameterized Algorithms and Complexity. Our results
are summarized in Table 1.

Our first main result concerns Binary r -Means. We show (Theorem 1) that the
problem is solvable in 2O(k log k) · (nm)O(1) time. Therefore, Binary r -Means is FPT
parameterized by k. Since Low GF(2)- Rank Approximation parameterized by k
is W[1]-hard and Low Boolean- Rank Approximation is NP-complete for any
fixed k ≥ 0, we find Theorem 1 quite surprising. The proof of Theorem 1 is based on
a fundamental result of Marx (2008) about the complexity of a problem on strings,
namely Consensus Patterns. We solve Binary r -Means by constructing a two-
stage FPT Turing reduction to Consensus Patterns. First, we use the color coding
technique of Alon et al. (1995) to reduce Binary r -Means to some special auxiliary

123

Author's personal copy

488 F. V. Fomin et al.

problem and then show that this problem can be reduced to Consensus Patterns,
and this allows us to apply the algorithm of Marx (2008). We also prove (Theorem 2)
that Binary r -Means admits a polynomial kernel when parameterized by r and k.
That is, we give a polynomial time preprocessing algorithm that for a given instance
of Binary r -Means outputs an equivalent instance with O(k(k + r) columns and
rows. Since the the kernelization algorithm outputs an equivalent instance, it can be
safely pipelined with any other exact or heuristic algorithm. For parameterization by
k only, we show in Theorem 4 that Binary r -Means has no polynomial kernel unless
NP ⊆ coNP /poly, a standard complexity assumption.

Our second main result concerns Low Boolean- Rank Approximation. As we
mentioned above, the problem is NP-complete for k = 0, as well as for r = 1, and
hence is intractable being parameterized by k or by r only. On the other hand, a sim-
pler Low GF(2)- Rank Approximation is not only FPT parameterized by k + r ,
by Fomin et al. (2018b) it is solvable in 2O(f (r)

√
k log k)(nm)O(1) time, where f is some

function of r , and thus is subexponential in k. It is natural to ask whether a similar
complexity behavior could be expected for Low Boolean- Rank Approximation.
Our result, Theorem 8, shows that this is indeed the case: Low Boolean- Rank
Approximation is solvable in 2O(r2r ·√k log k) · nm time. Note that the running time
of our algorithm is linear in the size nm of the input matrix. The proof of this the-
orem is technical and consists of several steps. We first develop a subexponential
algorithm for solving auxiliary P-Matrix Approximation, and then construct an
FPT Turing reduction from Low Boolean- Rank Approximation to P-Matrix
Approximation.

Let us note that due to the relation of Boolean rank computation to Biclique
Cover, the result of Chandran et al. (2016) implies that unless Exponential Time
Hypothesis (ETH) fails, Low Boolean- Rank Approximation cannot be solved
in 22

o(r) · f (k) · (nm)O(1) time for any function f . Thus the dependence in r in our
algorithm cannot be improved significantly unless ETH fails.

Interestingly, the technique developed for solving P-Matrix Approximation can

be used to obtain algorithms of running times 2O(
√

rk log (k+r) log r) · nm for Binary

r -Means1 and 2O(r
√

k log(rk)) · nm for Low GF(2)- Rank Approximation (Theo-
rems 5 and 6 respectively). For Binary r -Means, Theorem 5 provides much better
running time than Theorem 1 for values of r ∈ o(k log k). Notice also that we achieve
the linear dependence of the running time on the size of the input matrix.

For Low GF(2)- Rank Approximation, comparing Theorem 6 and
2O(f (r)

√
k log k)(nm)O(1) running time obtained by Fomin et al. (2018b), let us note

that Theorem 6 not only slightly improves the exponential dependence in k by the
factor

√
log k; it also drastically improves the exponential dependence in r , from 22

r

to 2r
√
log r .

The remaining part of the paper is organized as follows. In Sect. 2, we introduce
basic notations and obtain some auxiliary results. In Sect. 3, we show that Binary
r -Means is FPT when parameterized by k only. In Sect. 4, we discuss kernelization

1 We are grateful to the anonymous reviewer who pointed to us that the running time of our algorithm can

be improved from the original 2O(r
√
k log (k+r)) · nm to 2O(

√
rk log (k+r) log r) · nm.

123

Author's personal copy

Parameterized low-rank binary matrix approximation 489

for Binary r -Means. In Sects. 5 and 6, we construct FPT algorithms for Binary
r -Means and Low GF(2)- Rank Approximation, respectively, parameterized by
k and r , that are subexponential in k. In Sect. 7, we give a subexponential algorithm
for Low Boolean- Rank Approximation. We conclude our paper in Sect. 8 by
stating some open problems.

2 Preliminaries

In this section we introduce the terminology used throughout the paper and obtain
some properties of the solutions to our problems.

Matrices and strings All matrices and vectors considered in this paper are assumed
to be (0, 1)-matrices and vectors, respectively, unless explicitly specified otherwise.
Let A = (ai j) ∈ {0, 1}m×n be an m × n-matrix. Thus, ai j , i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}, are the elements of A. For I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n}, we
denote by A[I , J] the |I |× |J |-submatrix of A with the elements ai j where i ∈ I and
j ∈ J . We say that two matrices A and B are isomorphic if B can be obtained from
A by permutations of rows and columns. We use “+” and “

∑
” to denote sums and

summations over R, and we use “⊕” and “
⊕

” for sums and summations over GF(2);
it is assumed that the summation

⊕
over the empty set of indices is the zero-vector.

We also consider string of symbols. For two strings a and b, we denote by ab
their concatenation. For a positive integer k, ak denotes the concatenation of k copies
of a; a0 is assumed to be the empty string. Let a = a1 · · · aℓ be a string over an
alphabet Σ . Recall that a string b is said to be a substring of a if b = ahah+1 · · · at
for some 1 ≤ h ≤ t ≤ ℓ; we write that b = a[h..t] in this case. Let a = a1 · · · aℓ

and b = b1 · · · bℓ be strings of the same length ℓ over Σ . Similar to the the definition
of Hamming distance between two (0, 1)-vectors, the Hamming distance dH (a, b)
between two strings is defined as the number of positions i ∈ {1, . . . , ℓ} where the
strings differ. The Hamming distance satisfies the triangle inequality: for any three
strings a, b, c of length n each, dH (a, c) ≤ dH (a, b)+ dH (b, c).

Parameterized complexityWe refer to the book of Cygan et al. (2015) for the detailed
introduction to thefield, see also the recent bookonkernelizationofFomin et al. (2019).
Here, we only briefly introduce basic notions.

A parameterized problem is a language Q ⊆ Σ∗ ×NwhereΣ∗ is the set of strings
over a finite alphabet Σ . Respectively, an input of Q is a pair (I , k) where I ⊆ Σ∗

and k ∈ N; k is the parameter of the problem.
A parameterized problem Q is fixed-parameter tractable (FPT) if it can be decided

whether (I , k) ∈ Q in f (k) · |I |O(1) time for some function f that depends on the
parameter k only. Respectively, the parameterized complexity class FPT is composed
by fixed-parameter tractable problems.

Parameterized complexity theory also provides tools to rule-out the existence of FPT
algorithms under plausible complexity-theoretic assumptions. For this, a hierarchy of
parameterized complexity classes

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

123

Author's personal copy

490 F. V. Fomin et al.

was introduced by Downey and Fellows (1992), and it was conjectured that the inclu-
sions are proper. The basic way to show that it is unlikely that a parameterized problem
admit an FPT algorithm is to show that it isW[1] or W[2]-hard.

A data reduction rule, or simply, reduction rule, for a parameterized problem Q is
a function φ : Σ∗ × N → Σ∗ × N that maps an instance (I , k) of Q to an equivalent
instance (I ′, k′) of Q such that φ is computable in time polynomial in |I | and k. We
say that two instances of Q are equivalent if the following holds: (I , k) ∈ Q if and
only if (I ′, k′) ∈ Q. We refer to this property of the reduction rule φ, that it translates
an instance to an equivalent one, as to the safeness of the reduction rule.

Informally, kernelization is a preprocessing algorithm that consecutively applies
various data reduction rules in order to shrink the instance size as much as possible.
A preprocessing algorithm takes as input an instance (I , k) ∈ Σ∗ × N of Q, works
in polynomial in |I | and k time, and returns an equivalent instance (I ′, k′) of Q. The
quality of a preprocessing algorithm A is measured by the size of the output. More
precisely, the output size of a preprocessing algorithm A is a function sizeA : N →
N ∪ {∞} defined as follows:

sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = A(I , k), I ∈ Σ∗}.

A kernelization algorithm, or simply a kernel, for a parameterized problem Q is a
preprocessing algorithm A that, given an instance (I , k) of Q, works in polynomial
in |I | and k time and returns an equivalent instance (I ′, k′) of Q such that sizeA(k) ≤
g(k) for some computable function g : N → N. It is said that g(·) is the size of a kernel.
If g(·) is a polynomial function, then we say that Q admits a polynomial kernel.

It is well-known that every FPT problem admits a kernel but, up to some reasonable
complexity assumptions, there are FPT problems that have no polynomial kernels. In
particular, we are using the composition technique introduced by Bodlaender et al.
(2009) to show that a parameterized problem does not admit a polynomial kernel
unless NP ⊆ coNP /poly.

Properties of Binary r -Means We conclude this section by giving some properties
of Binary r -Means that are used in Sects. 3–5.

Let (A, r , k) be an instance of Binary r -Means where A is a matrix with
columns (a1, . . . , an). We say that a partition {I1, . . . , Ir ′} of {1, . . . , n} for r ′ ≤ r
is a solution for (A, r , k) if there are vectors c1, . . . , cr

′ ∈ {0, 1}m such that∑r ′
i=1

∑
j∈Ii dH (c

i , a j) ≤ k. We say that each Ii or, equivalently, the multiset of
columns {a j | j ∈ Ii } (some columns could be the same) is a cluster and call ci the
mean of the cluster. Observe that given a cluster I ⊆ {1, . . . , n}, one can easily com-
pute an optimal mean c = (c1, . . . , cm)ᵀ that minimizes

∑
i∈I dH (c, a

i) as follows.
Let a j = (a1 j , . . . , amj)

ᵀ for j ∈ {1, . . . , n}. For each i ∈ {1, . . . ,m}, consider the
multiset Si = {ai j | j ∈ I } and put ci = 0 or ci = 1 according to the majority of
elements in Si , that is, ci = 0 if at least half of the elements in Si are 0s and ci = 1
otherwise. We refer to this construction of c as the majority rule.

In the opposite direction, given a set of means c1, . . . , cr
′
, we can construct clusters

{I1, . . . , Ir ′} as follows: for each column a j , find the closest ci , i ∈ {1, . . . , r ′}, such
that dH (ci , a j) is minimum and assign j to Ii . Note that this procedure does not

123

Author's personal copy

Parameterized low-rank binary matrix approximation 491

guarantee that all clusters are nonempty but we can simply delete empty clusters.
Hence, we can define a solution as a set of means C = {c1, . . . , cr ′}. These arguments
also imply the following observation.

Observation 1 The task of Binary r-Means can equivalently be stated as follows:
decide whether there exist a positive integer r ′ ≤ r and vectors c1, . . . , cr

′ ∈ {0, 1}m
such that

∑n
i=1 min{dH (c j , ai) | 1 ≤ j ≤ r ′} ≤ k.

We observe that the same columns of A can always be put in the same cluster. To
state this property formally, we give the following definition.

Definition 1 (Initial cluster and regular partition) Let A be an m × n-matrix with
columns a1, . . . , an . An initial cluster is an inclusion maximal set I ⊆ {1, . . . , n}
such that all the columns in the multiset {a j | j ∈ I } are equal.

We say that a partition {I1, . . . , Ir ′} of the columns of matrix A is regular if for
every initial cluster I , there is i ∈ {1, . . . , r ′} such that I ⊆ Ii .

By the definition of the regular partition, every initial cluster of A is in some set Ii but
the set Ii may contain many initial clusters.

Lemma 1 Let (A, r , k)be a yes-instance of Binary r-Means. Then, there is a solution
{I1, . . . , Ir ′}, r ′ ≤ r which is regular (i.e, for any initial cluster I of A, there is
i ∈ {1, . . . , r ′} such that I ⊆ Ii).

Proof Let a1, . . . , an be the columns of A. By Observation 1, there are vectors
c1, . . . , cr

′
for some r ′ ≤ r such that

∑n
i=1 min{dH (c j , ai) | 1 ≤ j ≤ r ′} ≤ k.

Once we have the vectors c1, . . . , cr
′
, a solution can be obtained by assigning each

vector ai to a closest vector in {c1, . . . , cr ′}. This implies the conclusion of the lemma.
⊓2

3 BINARY r-MEANS parameterized by k

In this section we prove that Binary r -Means is FPT when parameterized by k. That
is we prove the following theorem.

Theorem 1 Binary r-Means is solvable in 2O(k log k) · (nm)O(1) time.

The proof of Theorem 1 consists of two FPT Turing reductions. First we define a
new auxiliary problem Cluster Selection and show how to reduce this problem to
the Consensus Patterns problem. Then we can use as a black box the algorithm
of Marx (2008) for this problem. The second reduction is from Binary r -Means to
Cluster Selection and is based on the color coding technique of Alon et al. (1995).
Note that our reductions are not classical polynomial but FPT Turing reductions, that
is, the algorithms constructing the instances of Consensus Patterns and Cluster
Selection respectively run in FPT time and, in particular, the numbers of constructed
instances are bounded by functions that depend exponentially on the parameters but
polynomially on the input sizes.

From Cluster Selection to Consensus Patterns In the Cluster Selection
problem we are given a regular partition {I1, . . . , Ip} of columns of matrix A. Our

123

Author's personal copy

492 F. V. Fomin et al.

task is to select from each set Ii exactly one initial cluster such that the total deviation
of all the vectors in these clusters from their mean is at most d. More formally,

Input: Anm×n-matrixAwith columns a1, . . . , an , a regular partition
{I1, . . . , Ip} of {1, . . . , n}, and a nonnegative integer d.

Task: Decide whether there is a set of initial clusters J1, . . . , Jp and a
vector c ∈ {0, 1}m such that Ji ⊆ Ii for i ∈ {1, . . . , p} and

p∑

i=1

∑

j∈Ji

dH (c, a j) ≤ d.

Cluster Selection

If (A, {I1, . . . , Ip}, d) is a yes-instance of Cluster Selection, then we say
that the corresponding sets of initial clusters {J1, . . . , Jp} and the vector c (or just
{J1, . . . , Jp} as c can be computed by the majority rule from the set of cluster) is a
solution for the instance. We show that Cluster Selection is FPT when parame-
terized by d. Towards that, we use the results of Marx (2008) about the Consensus
Patterns problem.

Input: A (multi) set of p strings {s1, . . . , sp} over an alphabet Σ , a
positive integer t and a nonnegative integer d.

Task: Decide whether there is a string s of length t over Σ , and a
length-t substring s′

i of si for every i ∈ {1, . . . , p} such that∑p
i=1 dH (s, s

′
i) ≤ d.

Consensus Patterns

Marx (2008) proved that Consensus Patterns can be solved in δO(δ) · |Σ |δ · L9

time, where δ = d/p and L is the total length of all the strings in the input. This gives
us the following lemma.

Lemma 2 (Marx 2008) Consensus Patterns can be solved in 2O(d log d) · L9 time,
where L is the total length of all the strings in the input if the size of Σ is bounded by
a constant.

Now we are ready to show the following result for Cluster Selection.

Lemma 3 Cluster Selection can be solved in 2O(d log d) · (nm)O(1) time.

Proof Let (A, {I1, . . . , Ip}, d) be an instance of Cluster Selection. Let a1, . . . , an

be the columns of A. First, we check whether there are initial clusters J1, . . . , Jp and
a vector c = ai for some i ∈ {1, . . . , n} such that J j ⊆ I j for j ∈ {1, . . . , p} and∑p

j=1
∑

h∈J j dH (c, a
h) ≤ d. Towards that we consider all possible choices of c = ai

for i ∈ {1, . . . , n}. Suppose that c is given. For every j ∈ {1, . . . , p}, we find an initial
cluster J j ⊆ I j such that

∑
h∈J j dH (c, a

h) is minimum. If
∑p

j=1
∑

h∈J j dH (c, a
h) ≤

d, thenwe return the corresponding solution, i.e., the set of initial clusters {J1, . . . , Jp}

123

Author's personal copy

Parameterized low-rank binary matrix approximation 493

and c. Otherwise, we discard the choice of c. It is straightforward to see that this
procedure is correct and can be performed in polynomial time, as we have at most
n choices of c and each sum

∑
h∈J j dH (c, a

h) can be computed in polynomial time.
From now on we assume that this is not the case. That is, if (A, {I1, . . . , Ip}, d) is
a yes-instance, then c ̸= ai for any solution. In particular, it means that for every
solution ({J1, . . . , Jp}, c), dH (c, a j) ≥ 1 for j ∈ J1 ∪ . . . ∪ Jp. If p > d, we obtain
that (A, {I1, . . . , Ip}, d) is a no-instance. In this case we return the answer and stop.
Hence, from now we assume that p ≤ d. Moreover, observe that |J1|+ · · ·+ |Jp| ≤ d
for any solution ({J1, . . . , Jp}, c).

We consider all p-tuples of positive integers (ℓ1, . . . , ℓp) such that ℓ1+· · ·+ℓp ≤ d
and for each p-tuple check whether there is a solution ({J1, . . . , Jp}, c)with |Ji | = ℓi

for i ∈ {1, . . . , p}. Note that there are at most
(d
p

)
≤ 2d such p-tuples. If we find a

solution for one of the p-tuples, we return it and stop. If we have no solution for any
p-tuple, we conclude that we have a no-instance of the problem.

Assume that we are given a p-tuple (ℓ1, . . . , ℓp). If there is i ∈ {1, . . . , p} such
that there is no initial cluster Ji ⊆ Ii with |Ji | = ℓi , then we discard the current choice
of the p-tuple. Otherwise, we reduce the instance of the problem using the following
rule: if there is i ∈ {1, . . . , p} and an initial cluster J ⊆ Ii such that |J | ̸= ℓi , then
delete columns ah for h ∈ J from the matrix and set Ii = Ii\J . By this rule, we can
assume that each Ii contains only initial clusters of size ℓi . Let Ii = {J i1, . . . , J iqi }
where J i1, . . . , J

i
qi are initial clusters for i ∈ {1, . . . , p}.

We reduce the problem of checking the existence of a solution ({J1, . . . , Jp}, c)
with |Ji | = ℓi for i ∈ {1, . . . , p} to the Consensus Patterns problem. Towards
that, we first define the alphabet Σ = {0, 1, a, b} and strings

a = a . . . a︸ ︷︷ ︸
m+d

, b = b . . . b︸ ︷︷ ︸
m+d

, and 0 = 0 . . . 0︸ ︷︷ ︸
d

.

Then x = ab · · · ab is defined to be the string obtained by the alternating concatenation
of d + 1 copies of a and d + 1 copies of b. Now we construct ℓ = ℓ1 + · · · + ℓp

strings s ji for i ∈ {1, . . . , p} and j ∈ {1, . . . , ℓi }. For each i ∈ {1, . . . , p}, we do the
following.

– For every q ∈ {1, . . . , qi }, select a column a fi,q for fi,q ∈ J iq and, by slightly
abusing the notation, consider it to be a (0, 1)-string.

– Then for every j ∈ {1, . . . , ℓi }, set s ji = xa fi,10x . . . xa fi,qi 0x .

Observe that the strings s ji for j ∈ {1, . . . , ℓi } are the same. We denote by S = {s ji |
1 ≤ i ≤ p, 1 ≤ j ≤ ℓi } the collection (multiset) of all constructed strings. Finally,
we define t = (m + d)(4d + 5) and output (S,Σ, t, d) as an instance of Consensus
Patterns. Now we prove the correctness of the reduction. ⊓2

Claim 1 The instance (A, {I1, . . . , Ip}, d) of Cluster Selection has a solution
({J1, . . . , Jp}, c) with |Ji | = ℓi for i ∈ {1, . . . , p} if and only if (S,Σ, t, d) is a
yes-instance of Consensus Patterns.

123

Author's personal copy

494 F. V. Fomin et al.

Proof (of Claim 1) Suppose that the instance (A, {I1, . . . , Ip}, d) of Cluster Selec-
tion has a solution ({J1, . . . , Jp}, c) with |Ji | = ℓi for i ∈ {1, . . . , p}. For every
i ∈ {1, . . . , p} and j ∈ {1, . . . , ℓi }, we select the substring ŝ ji = xa fi, j 0x where
fi, j ∈ Ji . By the definition, |ŝ ji | = 2|x | + m + d = t . We set s = xc0x considering
the vector c being a (0, 1)-string. Clearly, |s| = t . We have that

p∑

i=1

ℓi∑

j=1

dH (s, ŝ
j
i) =

p∑

i=1

ℓi dH (c, a fi, j) =
p∑

i=1

∑

f ∈Ji

dH (c, a f) ≤ d.

Therefore, (S,Σ, t, d) is a yes-instance of Consensus Patterns.
Now we prove the reverse direction. Assume that (S,Σ, t, d) is a yes-instance of

Consensus Patterns. Let ŝ ji be a substring of s ji of length t for i ∈ {1, . . . , p} and
j ∈ {1, . . . , ℓi }, and let s be a string of length t over Σ such that

p∑

i=1

ℓi∑

j=1

dH (s, ŝ
j
i) ≤ d.

The crucial claim is that there is a positive integer α ≤ t − m + 1 such that
for every i ∈ {1, . . . , p} and j ∈ {1, . . . , ℓi }, ŝ ji [α..α + m − 1] = ahi, j for some
hi, j ∈ Ii . The intuition behind the claim is that the choice of every ŝ ji should be
“synchronized” with the choice of ŝ11 due to the padding strings x . Otherwise, ŝ11 and
ŝ ji would disagree in at least d+1 symbols and we would obtain that dH (ŝ11 , ŝ

j
i) > d.

Then dH (ŝ11 , s)+dH (s, ŝ
j
i) > d for any s by the triangle inequality. The two possible

types of disagreements are shown in Fig. 1.
Consider the substring ŝ11 . Since |ŝ11 | = t , by the definition of the string s11 , we have

that there is a positive integer β ≤ t − |x | + 1 = t − 2(m + d)(d + 1) + 1 such
that ŝ11 [β..β + |x | − 1] = ŝ11 [β..β + 2(m + d)(d + 1) − 1] = x . Let i ∈ {1, . . . , p}
and j ∈ {1, . . . , ℓi }. Suppose that ŝ ji [β..β + 2(m + d)(d + 1) − 1] ̸= x . Recall that

0

ŝ11

a b a b ah1,1 0 a b a

ŝ11
ŝji

a a b a

a b a b ahi,j 0 a b a

b ahi,j 0 a b a b a b

ŝji

disagreements

disagreements
b a b ah1,1 0

ŝ11

a b a b ah1,1 0 a b a

ŝ11
ŝji

a a b a

a b a b ahi,j 0 a b a

b ahi,j 0 a b a b a b

ŝji

disagreements

disagreements
b a b ah1,1

Fig. 1 Disagreements of ŝ11 and ŝ ji

123

Author's personal copy

Parameterized low-rank binary matrix approximation 495

x contains 2(d + 1) alternating copies of a and b and |a| = |b| = m + d. Because
dH (ŝ11 , ŝ

j
i) ≤ dH (ŝ11 , s) + dH (s, ŝ

j
i) ≤ d (by the triangle inequality) and by the

construction of the strings of S, we have that that either

(i) there is γ = β + 2(m + d)h for some nonnegative integer h ≤ d such that
ŝ ji [β..γ − 1] = x[β..γ − 1] and ŝ ji [γ ..γ +m − 1] = ahi, j for some hi, j ∈ Ii , or

(ii) there is γ = β+2(m+d)h for some integer 1 ≤ h ≤ d such that ŝ ji [γ ..β+2(m+
d)(d+1)−1] = x[γ ..β+2(m+d)(d+1)−1] and ŝ ji [γ −(m+d)..γ −d+1] =
ahi, j for some hi, j ∈ Ii .

We would like to mention that in the above two cases, in one of them x[β..γ −1] or
x[γ ..β + 2(m+ d)(d + 1)− 1]may not be well defined. But at least in one of them it
will be well defined. These cases are symmetric and without loss of generality we can
consider only the case (i).Wehave that ŝ ji [γ ..γ+(m+d)−1] and ŝ11 [γ ..γ+(m+d)−1]
differ in all the symbols, because all the symbols of ŝ ji [γ ..γ + (m + d) − 1] are 0
or 1 and ŝ11 [γ ..γ + (m + d) − 1] = a. Since m + d > d, it contradicts the property
that dH (ŝ11 , ŝ

j
i) ≤ d. So we have that ŝ ji [β..β + 2(m + d)(d + 1) − 1] = x for every

i ∈ {1, . . . , p} and j ∈ {1, . . . , ℓi }.
If β > m+d, then we set α = β−(m+d). Notice that that for every i ∈ {1, . . . , p}

and j ∈ {1, . . . , ℓi }, ŝ ji [α..α+m−1] = ahi, j for some hi, j ∈ Ii . Suppose β ≤ m+d.
Then we set α = β + 2(m + d)(d + 1). Because t = (m + d)(4d + 5), it holds that
α ≤ t−m+1 and for every i ∈ {1, . . . , p} and j ∈ {1, . . . , ℓi }, ŝ ji [α..α+m−1] = ahi, j
for some hi, j ∈ Ii . This concludes the proof.

Now consider c = s[α..α + m − 1]. Because for every i ∈ {1, . . . , p} and j ∈
{1, . . . , ℓi }, ŝ ji [α..α + m − 1] = ahi, j for some hi, j ∈ Ii , we can assume that c is a
(0, 1)-string. We consider it as a vector of {0, 1}m .

Let i ∈ {1, . . . , p}. We consider the columns ahi, j for j ∈ {1, . . . , ℓi } and find
among them the column ahi such that dH (c, ahi) is minimum. Let J iri ⊆ Ii for ri ∈
{1, . . . , qi } be an initial cluster that contains hi . We show that ({J 1r1 , . . . , J

p
rp }, c) is a

solution for the instance (A, {I1, . . . , Ip}, d) of Cluster Selection. To see it, it is
sufficient to observe that the following inequality holds:

p∑

i=1

∑

h∈J iri

dH (c, ah) =
p∑

i=1

ℓi dH (c, ahi) ≤
p∑

i=1

ℓi∑

j=1

dH (c, ahi, j)

≤
p∑

i=1

ℓi∑

j=1

dH (s, ŝ
j
i) ≤ d.

This concludes the proof of the claim. ⊓2

Using Claim 1 and Lemma 2, we solve Consensus Patterns for (S,Σ, t, d).
This completes the description of our algorithm and its correctness proof. To evaluate
the running time, recall first that we check in polynomial time whether we have a
solution with c coinciding with a column of A. If we fail to find such a solution,

123

Author's personal copy

496 F. V. Fomin et al.

then we consider at most 2d p-tuples (ℓ1, . . . , ℓp). Then for each p-tuple, we either
discard it immediately or construct in polynomial time the corresponding instance of
Consensus Patterns, which is solved in 2O(d log d) · (nm)O(1) time by Lemma 2.
Hence, the total running time is 2O(d log d) · (nm)O(1). ⊓2

Let us note that we are using Lemma 2 as a black box in our algorithm for Cluster
Selection. By adapting the algorithm of Marx (2008) for Consensus Patterns
to solve Cluster Selection it is possible to improve the polynomial factor in the
running time but this would demand repeating and rewriting various parts of Marx
(2008).

From Binary r -Means to Cluster Selection Now we prove the main result of the
section.

Proof (of Theorem 1) Our algorithm for Binary r -Means uses the color coding tech-
nique introduced by Alon et al. (1995) (see also Cygan et al. 2015) for the introduction
to this technique). In the end we obtain a deterministic algorithm but it is more con-
venient for us to describe a randomized Monte-Carlo algorithm and then explain how
it could be derandomized.

Let (A, r , k) be a yes-instance of Binary r -MeanswhereA = (a1, . . . , an). Then
by Lemma 1, there is a regular solution {I1, . . . , Ir ′} for this instance. Let c1, . . . , cr ′

be the corresponding means of the clusters. Recall that regularity means that for any
initial cluster I , there is a cluster in the solution that contains it. We say that a cluster
Ii of the solution is simple if it contain exactly one initial cluster and Ii is composite
otherwise. Let Ii be a composite cluster of {I1, . . . , Ir ′} that contains h ≥ 2 initial
clusters. Then

∑
j∈Ii dH (c

i , a j) ≥ h − 1. This observation immediately implies that
a regular solution contains at most k composite clusters and the remaining clusters
are simple. Moreover, the total number of initial clusters in the composite clusters is
at most 2k. Note also that if Ii is a simple cluster then ci = ah for arbitrary h ∈ Ii ,
because

∑
j∈Ii dH (c

i , a j) = 0, That is, simple clusters do not contribute to the total
cost of the solution.

Let (A, r , k) be an instance of Binary r -MeanswhereA = (a1, . . . , an). We con-
struct the set I of initial clusters for the matrixA. Let s = |I|. The above observations
imply that finding a solution for Binary r -Means is equivalent to finding a set I ′ ⊆ I
of size at most 2k such that I ′ can be partitioned into at most r − s + |I ′| composite
clusters. More precisely, we are looking for I ′ ⊆ I of size at most 2k such that there
is a partition {P1, . . . , Pt } of I ′ with t ≤ r − s+ |I ′| and vectors s1, . . . , st ∈ {0, 1}m
with the property that

t∑

i=1

∑

I∈Pi

∑

j∈I
dH (si , a j) ≤ k.

If s ≤ r , then (A, r , k) is a trivial yes-instance of the problem with I being a
solution. If r + k < s, then (A, r , k) is a trivial no-instance. Hence, we assume from
now that r < s ≤ r+k. Note that at most 2k initial cluster are in composite clusters of
any solution.We color the elements of I independently and uniformly at random by 2k
colors 1, . . . , 2k. Observe that if (A, r , k) is a yes-instance, then the initial clusters in

123

Author's personal copy

Parameterized low-rank binary matrix approximation 497

composite clusters of any fixed solution are colored by distinct colors with probability
at least (2k)!

(2k)2k ≥ e−2k (see e.g. Cygan et al. 2015). We say that a solution {I1, . . . , Ir ′}
for (A, r , k) is a colorful solution if all initial clusters that are included in composite
clusters of {I1, . . . , Ir ′} are colored by distinct colors. We construct an algorithm for
finding a colorful solution (if it exists).

Denote by I1, . . . , I2k the sets of color classes of initial clusters, i.e., the sets of
initial clusters that are colored by 1, . . . , 2k, respectively. Note that some sets could
be empty. We consider all possible partitions P = {P1, . . . , Pt } of nonempty subsets
of {1, . . . , 2k} such that each set of P contains at least two elements. Notice that if
(A, r , k) has a colorful solution {I1, . . . , Ir ′}, then there is P = {P1, . . . , Pt } such
that the following holds: a cluster Ii of the solution is a composite cluster containing
initial clusters colored by a set of colors Xi if and only if there is Xi ∈ P . Since we
consider all possible P , if (A, r , k) has a colorful solution, we will find P satisfying
this condition. Assume thatP = {P1, . . . , Pt } is given. If s− |P1|− · · ·− |Pt |+ t > r ,
we discard the current choice of P . Assume from now that this is not the case.

For each i ∈ {1, . . . , t}, we do the following. Let Pi = {i1, . . . , i p} ⊆ {1, . . . , 2k}.
Let J ij =

⋃
I∈Ii j I and J i = J i1∪· · ·∪ J ip. Denote byAi the submatrix ofA containing

the columns ah with h ∈ J i .We use Lemma 3 to find theminimumnonnegative integer
di ≤ k such that (Ai , {J i1, . . . , J ip}, di) is a yes-instance of Cluster Selection. If
such a value of di does not exist, we discard the current choice of P . Otherwise,
we find the corresponding solution ({Li

1, . . . , L
i
p}, si) of Cluster Selection. Let

Li = Li
1 ∪ . . . ∪ Li

p.
If we computed di and constructed Li for all i ∈ {1, . . . , t}, we check whether

d1 + · · · + dt ≤ k. If it holds, we return the colorful solution with the composite
clusters L1, . . . , Lt whosemeans are s1, . . . , st respectively and the remaining clusters
are simple. Otherwise, we discard the choice of P . If for one of the choices of P we
find a colorful solution, we return it and stop. If we fail to find a solution for all possible
choices of P , we return the answer NO and stop.

If the described algorithmproduces a solution, then it is straightforward to verify that
this is a colorful solution to (A, r , k) recalling that simple clusters do not contribute
to the total cost of the solution. In the other direction, if (A, r , k) has a colorful
solution {I1, . . . , Ir ′}, then there is P = {P1, . . . , Pt } such that cluster Ii of the
solution is a composite cluster containing initial clusters colored by a set of colors
Xi if and only if there is Xi ∈ P . Let L1, . . . , Lt be the composite clusters of the
solution that correspond to P1, . . . , Pt , respectively and denote by s1, . . . , st their
means. Let di =

∑
h∈Li

dH (si , ah) for i ∈ {1, . . . , t}. It immediately follows that for
each i ∈ {1, . . . , t}, it holds that if Pi = {i1, . . . , i p}, then the constructed instance
(Ai , {J i1, . . . , J ip}, di) of Cluster Selection is a yes-instance. Hence, the algorithm
returns a colorful solution.

To evaluate the running time, recall that we consider 2O(k log k) partitions P =
{P1, . . . , Pt } of nonempty subsets of {1, . . . , 2k}. Then for each P , we construct in
polynomial time at most k|P| instances of Cluster Selection. These instances are
solved in 2O(k log k) · (nm)O(1) time by Lemma 3. We conclude that the total running
time of the algorithm that checks the existence of a colorful solution is 2O(k log k) ·
(nm)O(1).

123

Author's personal copy

498 F. V. Fomin et al.

Clearly, if for a random coloring of I, there is a colorful solution to (A, r , k), then
(A, r , k) is a yes-instance.We consider N = ⌈e2k⌉ random colorings of I and for each
coloring, we check the existence of a colorful solution. If we find such a solution, we
return it and stop. Otherwise, if we failed to find a solution for all colorings, we return
the answer NO. Recall that if (A, r , k) is a yes-instance with a solution {I1, . . . , Ir ′},
then the initial clusters that are included in the composite clusters of the solution
are colored by distinct colors with the probability at least (2k)!

(2k)2k ≥ e−2k . Hence, the

probability that a yes-instance has no colorful solution is at most (1 − e−2k) and,
therefore, the probability that a yes-instance has no colorful solution for N ≥ e2k

random colorings is at most (1 − e−2k)e
2k ≤ e−1. We conclude that our randomized

algorithm returns a false negative answer with probability at most e−1 < 1. The total
running time of the algorithm is N ·2O(k log k) · (nm)O(1), that is, 2O(k log k) · (nm)O(1).

By the standard derandomization technique using perfect hash families, see Alon
et al. (1995) and Naor et al. (1995), our algorithm can be derandomized. Thus, we
conclude that Binary r -Means is solvable in 2O(k log k) ·(nm)O(1) deterministic time.

⊓2

4 Kernelization for BINARY r-MEANS

In this section we show that Binary r -Means admits a polynomial kernel when
parameterized by r and k. Then we complement this result and Theorem 1 by proving
that it is unlikely that the problem has a polynomial kernel when parameterized by k
only.

4.1 Polynomial kernel with parameter k+ r

We need the following simple lemma.

Lemma 4 Let (A, r , k) be a yes-instance of Binary r-MeanswithA = (a1, . . . , an).
For i, j ∈ {1, . . . , n}, if dH (ai , a j) > k, then i and j are in distinct clusters of any
solution.

Proof Let (I1, . . . , Ir) be a solution for (A, r , k). Let also c1, . . . , cr
′
be the means of

I1, . . . , Ir ′ . Supposethat dH (ai , a j) > k for some i, j ∈ {1, . . . , n}. For the sake of
contradiction, assume that there is a cluster Ip such that i, j ∈ Ip. Then

r ′∑

i=1

∑

h∈Ii
dH (ch, a j) ≥

∑

h∈Ip
dH (cp, ah) ≥ dH (cp, ai)+ dH (cp, a j)

≥ dH (ai , a j) > k

by the triangle inequality, contradicting that {I1, . . . , Ir ′} is a solution. ⊓2
To construct a polynomial kernel for Binary r -Means, we first describe Algo-

rithm 1. This algorithm takes as the input an instance (A, r , k) of Binary r -Means

123

Author's personal copy

Parameterized low-rank binary matrix approximation 499

Algorithm 1: Preprocessing for Binary r -Means
input : An n × m matrix A = (a1, . . . , an), positive integer r and nonnegative integer k.
output: Matrices A1, . . . ,As or NO.

1 begin
2 Set I := {1, . . . , n};
3 Construct the partition {I1, . . . , It } of I into initial clusters;
4 if t > k + r then
5 Return NO
6 else
7 for i := 1 to t do
8 while |Ii | > k + 1 do
9 Select arbitrary j ∈ Ii ;

10 Set Ii := Ii\{ j} and I := I\{ j}
11 end
12 end
13 Set s := 0;
14 while I ̸= ∅ do
15 Set s := s + 1;
16 Select arbitrary j ∈ I ;
17 Set S := { j} and I := I\{ j};
18 while there are p ∈ S and q ∈ I s.t. dH (ap, aq) ≤ k do
19 Set S := S ∪ {q} and I := I\{q}
20 end
21 Set J := {1, . . .m};
22 while |J | ≥ 2 and A[J , S] has a uniform row with an index h ∈ J do
23 Set J := J\{h}
24 end
25 Set As := A[S, J];
26 end
27 if s > r then Return NO else Return A1, . . . ,As
28 end
29 end

and ether concludes that (A, r , k) is a no-instance or returns s ≤ r matricesA1, . . . ,As
of bounded in k and r size such that (A, r , k) is a yes-instance of Binary r -Means
if and only if there are positive r1, . . . , rs and nonnegative k1, . . . ks such that (i)
r1 + · · · + rs ≤ r , (ii) k1 + · · · + ks ≤ k, and (iii) (Ai , ri , ki) is a yes-instance of
Binary r -Means for every i ∈ {1, . . . , s}.

We say that a row of a binary matrix is uniform if all its elements are equal. Thus,
a uniform row consists entirely from 0s or from 1s. Otherwise, a row is nonuniform.

The properties of Algorithm 1 are summarized in the following lemma.

Lemma 5 Given an instance (A, r , k) of Binary r-Means, Algorithm 1 runs in
O(n2m) time and either correctly concludes that (A, r , k) is a no-instance of Binary
r-Means and returns NO or returns s ≤ r matrices A1, . . . ,As such that

– (A, r , k) is a yes-instance of Binary r-Means if and only if there are positive
r1, . . . , rs and nonnegative k1, . . . ks such that (i) r1 + · · · + rs ≤ r , (ii) k1 +
· · · + ks ≤ k, and (iii) (Ai , ri , ki) is a yes-instance of Binary r-Means for every
i ∈ {1, . . . , s},

123

Author's personal copy

500 F. V. Fomin et al.

– for every i ∈ {1, . . . , s}, Ai is mi × ni matrix with mi ≤ max{(ℓi − 1)k, 1}, where
ℓi is the number of distinct columns of Ai , and n1 + · · · + ns ≤ (k + 1)(k + r),

– the total number of distinct columns in A1, . . . ,As is at most k + r .

Proof Let (A, r , k) be an instance of Binary r -Means. ⊓2
In Line 3, Algorithm 1 construct the partition {I1, . . . , It } of I = {1, . . . , n} into

initial clusters. Let us remind that an initial cluster is an inclusion maximal set of
equal columns of the input matrix. Suppose that (A, r , k) is a yes-instance of Binary
r -Means. By Observation 1, there is a set of means {c1, . . . , cr ′} for some r ′ ≤ r
such that

∑n
i=1 min{dH (c j , ai) | 1 ≤ j ≤ r ′} ≤ k. It immediately implies that A

has at most k columns that are distinct from c1, . . . , cr
′
. Therefore, A has at most

k + r distinct columns. Therefore, if t > k + r , then (A, r , k) is a no-instance and the
algorithm correctly returns NO in Line 5. From now on, assume that t ≤ k + r .

In Lines 7–12, Algorithm 1 performs the following for every i ∈ {1, . . . , t}: if the
initial cluster has size at least k + 2, then we delete an arbitrary j ∈ Ii from Ii and I .
Let I ′ = I\{ j}. We show the following claim.

Claim 2 (A[{1, . . . ,m}, I], r , k) is a yes-instance of Binary r-Means if and only if
(A[{1, . . . ,m}, I ′], r , k) is a yes-instance.
Proof (of Claim 2) Since A[{1, . . . ,m}, I ′] is a sub-matrix of A[{1, . . . ,m}, I] we
have that if (A[{1, . . . ,m}, I], r , k) is a yes-instance of Binary r -Means, then
(A[{1, . . . ,m}, I ′], r , k) is a yes-instance as well.

For the reverse direction, suppose that (A[{1, . . . ,m}, I ′], r , k) is a yes-instance.
Then, by Observation 1, there exist r ′ ≤ r and r ′ vectors c1, . . . , cr

′ ∈ {0, 1}m such
that

∑

h∈I\{ j}
min{dH (ch

′
, ah) | 1 ≤ h′ ≤ r ′} ≤ k.

This implies that

∑

h∈Ii\{ j}
min{dH (ch

′
, ah) | 1 ≤ h′ ≤ r ′} ≤ k. (2)

Since |Ii | > k + 1 and all the vectors {ah : h ∈ Ii } are identical, by (2), we have that
there is a vector ch

′ ∈ {c1, . . . , cr ′} such that ch
′ = a j . This implies that

∑

h∈I
min{dH (ch

′
, ah) | 1 ≤ h′ ≤ r ′} ≤ k.

Therefore, (A[{1, . . . ,m}, I], r , k) is a yes-instance of Binary r -Means. ⊓2
Claim 2 implies that for the set I obtained after the execution of Lines 7–12,

(A[{1, . . . ,m}, I], r , k) is a yes-instance of Binary r -Means if and only if the orig-
inal instance (A, r , k) is a yes-instance. Notice also that |Ii | ≤ k + 1 and t ≤ k + r .
Therefore, |I | ≤ (k + 1)(k + r).

123

Author's personal copy

Parameterized low-rank binary matrix approximation 501

In Lines 13–26, Algorithm 1 greedily constructs sets S ⊆ I for s ≤ r . Denote by
S1, . . . , Ss these sets. By the construction, these sets form a partition of I . Notice that
the Hamming distance between any two columns of A with indices in different sets
Si and S j is more than k. The crucial property of these sets is that every cluster of a
solution is entirely in one of the sets by Lemma 4. This way S1, . . . , Ss separate the
clustering problem into subproblems. More precisely,

Claim 3 Let {R1, . . . , Rr ′} be a solution for (A[{1, . . . ,m}, I], r , k). Then for every
i ∈ {1, . . . , r ′} there is j ∈ {1, . . . , s} such that Ri ⊆ S j .

By Claim 3, if s > r , then (A[{1, . . . ,m}, I], r , k) is a no-instance of Binary r -
Means. Hence, if in Line 27, Algorithm 1 returns NO, then (A, r , k) is a no-instance.
Assume that this is not the case.

By Claim 3, we conclude that (A[{1, . . . ,m}, I], r , k) is a yes-instance of Binary
r -Means if and only if there are positive r1, . . . , rs and nonnegative k1, . . . ks such
that (i) r1 + · · · + rs ≤ r , (ii) k1 + · · · + ks ≤ k and (iii) (A[{1, . . . ,m}, Si], ri , ki) is
a yes-instance of Binary r -Means for i ∈ {1, . . . , s}.

In Lines 13–26, besides constructing S1, . . . , Ss , Algorithm 1 deletes indices of
uniform rows in eachA[{1, . . . ,m}, Si] to constructAi (except one index if all the rows
are uniform). It is straightforward to see that uniform rows are irrelevant for Binary
r -Means and (A[{1, . . . ,m}, Si], ri , ki) is a yes-instance if and only if (Ai , ri , ki) is
a yes-instance.

We conclude that Algorithm 1 either correctly returns NO in Lines 5 or 27, or
returns s ≤ r matrices A1, . . . ,As such that (A, r , k) is a yes-instance of Binary
r -Means if and only if there are positive r1, . . . , rs and nonnegative k1, . . . ks such
that (i) r1 + · · · + rs ≤ r , (ii) k1 + · · · + ks ≤ k and (iii) (Ai , ri , ki) is a yes-instance
of Binary r -Means for i ∈ {1, . . . , s}.

Assume that Algorithm 1 returned A1, . . . ,As . Let Ai be mi × ni matrix for i ∈
{1, . . . , s}. Since |I | ≤ (k + 1)(k + r) after the execution of Lines 7–12 and n1 +
· · · + ns = |I |, we have that n1 + · · · + ns ≤ (k + 1)(k + r).

To bound mi from above, we show the following claim.

Claim 4 For every i ∈ {1, . . . , s}, the matrix A[{1, . . . ,m}, Si] has at most (ℓi − 1)k
nonuniform rows, where ℓi is the number of initial clusters in Si .

Proof (of Claim 4) Fix an index i ∈ {1, . . . , s} and let ℓ = ℓi . Recall that Si is con-
structed greedily by adding the index of a column that is at distance at most k from
some columns whose index is already included in Si . Suppose that S contains ini-
tial clusters Ii1 , . . . , Iiℓ . We can assume that Si constructed by consecutive adding
Ii1 , . . . , Iiℓ . Denote by Q j = Ii1 ∪ . . . Ii j for j ∈ {1, . . . , ℓ}.

For every j ∈ {1, . . . , ℓ}, we show inductively that A[{1, . . . ,m}, Q j] has at most
(j − 1)k nonuniform rows. The claim is trivial for j = 1. Let p ∈ Ii1 and q ∈ Ii2 .
Since dH (ap, aq) ≤ k, we have that ap and aq differ in at most k positions. Therefore,
A[{1, . . . ,m}, Q2] has at most k nonuniform rows.

Now consider the case j ≥ 3. Let p ∈ Ii j . By the induction hypothe-
sis, A[{1, . . . ,m}, Q j−1] has at least m − (j − 2)k uniform rows. Denote by
J ⊆ {1, . . . ,m}, the set of indices of uniform rows of A[{1, . . . ,m}, Q j−1]. Since

123

Author's personal copy

502 F. V. Fomin et al.

dH (ap, aq) ≤ k for some q ∈ Qi−1, there are at most k positions where ap and aq

are distinct. In particular, this implies that there are at most k indices of J for which
the corresponding elements of ap and aq are distinct. This immediately implies that
A[{1, . . . ,m}, Q j] has at least |J |− k ≥ m − (j − 2)k − k = m − (j − 1)k uniform
rows. Hence, A[{1, . . . ,m}, Q j] has at most (j − 1)k nonuniform rows. ⊓2

By Claim 4, we obtain that mi ≤ max{(ℓi − 1)k, 1} for i ∈ {1, . . . , s}.
Notice that each initial cluster is included in some Si for ∈ {1, . . . , s}. Since t ≤

k + r , this implies that the total number of distinct columns in A1, . . . ,As is at most
k + r . This concludes the correctness proof.

To evaluate the running time, observe that Lines 2 and 3 can be done in O(n2m)

time. Lines 7–12 can be done inO(n) time. Then Lines 13–26 can be done inO(n2m).
This implies that the total running time is O(n2m). ⊓2

Webelieve that the preprocessingAlgorithm 1 is interesting by itself as it reduces an
instance of our clustering problem to a collection of instanceswithmatrices of bounded
size that are independent of each other and may be solved separately. In other words,
the algorithm gives a Turing kernel for Low GF(2)- Rank Approximation [we
refer to Fomin et al. (2019) for the definition of the notion]. It is also useful to make
the following observation.

Observation 2 Algorithm 1 can be implemented to run in O(k(k + r)mn) time.

Proof Observe that in Lines 3, we construct the partition {I1, . . . , It } of {1, . . . , n}
into initial clusters, and then, in Lines 4–5, we stop and return NO if t > k + r .
Instead, we can stop immediately if constructing the partition into initial clusters we
discover k + r + 1 distinct columns of A. This allows to reduce the running time to
O((k + r)nm). Then after executing Lines 7–12, we have that |I | ≤ (k + 1)(k + r)
and the remaining steps can be done in O(k(k + r)mn) time. ⊓2

Now we show that Binary r -Means admits a polynomial kernel when parameter-
ized by r and k.

Theorem 2 Binary r-Means admits a kernel of size O(k2(k + r)2). Moreover, the
kernelization algorithm in (k + r)O(1) · nm time either solves the problem or outputs
an equivalent instance of Binary r-Means such that the matrix in this instance has
at most k + r pairwise distinct columns and O(k(k + r)) pairwise distinct rows and
the values of r and k are the same as in the input instance.

Proof Let (A, r , k) be an instance of Binary r -Means. Let a1, . . . , an be the columns
of A. ⊓2

We apply Algorithm 1. If the algorithm returns NO, we output a trivial no-instance,
say, the instance with A = (0, 1), r = 1 and k = 0. Assume that this is not the case.
Then, by Lemma 5, the algorithm returns s ≤ r matrices A1, . . . ,As such that

– (A, r , k) is a yes-instance of Binary r -Means if and only if there are positive
r1, . . . , rs and nonnegative k1, . . . ks such that (i) r1 + · · · + rs ≤ r , (ii) k1 +
· · · + ks ≤ k, and (iii) (Ai , ri , ki) is a yes-instance of Binary r -Means for every
i ∈ {1, . . . , s},

123

Author's personal copy

Parameterized low-rank binary matrix approximation 503

– for every i ∈ {1, . . . , s},Ai ismi ×ni matrix withmi ≤ max{(ℓi −1)k, 1}, where
ℓi is the number of distinct columns of Ai , and n1 + · · · + ns ≤ (k + 1)(k + r),

– the total number of distinct columns in A1, . . . ,As is at most k + r .

To construct a kernel, we “glue” the matrices A1, . . . ,As into a single matrix.
Let ℓ = max1≤i≤s mi . For i ∈ {1, . . . , s}, we construct ℓ × ni matrix A′

i from Ai
by adding ℓ − mi zero rows. For i ∈ {1, . . . , s}, 0i and 1s denote ⌈(k + 1)/2⌉ × ni -
matrices with all the elements 0 and 1, respectively. We use the matrices A′

i , 0i and
1i as blocks to define

B =

⎛

⎜⎜⎜⎜⎜⎝

A′
1 A′

2 · · · A′
s

11 02 · · · 0s
01 12 · · · 0s
...

...
. . .

...

01 02 · · · 1s

⎞

⎟⎟⎟⎟⎟⎠
.

Weassume that the columns ofAi are indexed by the set of indexes Si for i ∈ {1, . . . , s}
and the columns ofB are denoted by bi with i ∈ S1∪ . . .∪Ss following the convention

that the columns of

(
A′
i
...

)

are indexed by j ∈ Si according to the indexing of the

corresponding columns ofAi .We also assume that the rows orB are indexed by j ∈ J .
Then, our kernelization algorithm returns the instance (B, r , k) of Binary r -

Means. The correctness of the algorithm is based on the following claim.

Claim 5 (A, r , k) is a yes-instance of Binary r-Means if and only if (B, r , k) is a
yes-instance.

Proof (of Claim 5) Suppose that (A, r , k) is a yes-instance. By Lemma 5, there are
positive r1, . . . , rs and nonnegative k1, . . . ks such that (i) r1 + · · · + rs ≤ r , (ii)
k1 + · · · + ks ≤ k and (iii) (Ai , ri , ki) is a yes-instance of Binary r -Means for
i ∈ {1, . . . , s}. Then the union of solutions for (Ai , ri , ki) for i ∈ {1, . . . , s} gives a
solution for (B, r , k). Therefore, (B, r , k) is a yes-instance.

Assume that (B, r , k) is a yes-instance. Notice that if p ∈ Si and q ∈ S j for
distinct i, j ∈ {1, . . . , s}, then dH (bp,bq) > k. Then by Lemma 4, p and q are in
distinct clusters of every solution. This implies that there are positive r1, . . . , rs and
nonnegative k1, . . . ks such that (i) r1 + · · · + rs ≤ r , (ii) k1 + · · · + ks ≤ k, and (iii)
(B[J , Si], ri , ki) is a yes-instance of Binary r -Means for every i ∈ {1, . . . , s}. By the
construction ofB, (Ai , ri , ki) is a yes-instance of Binary r -Means for i ∈ {1, . . . , s}.
Then by Lemma 5, (A, r , k) is a yes-instance. ⊓2

To bound the size of B, note that B has n1 + · · · + ns ≤ (k + 1)(k + r) columns
and at most k+ r of them are pairwise distinct. The matrices A′

1, . . . ,A
′
s have ℓ rows.

Because s ≤ r , we obtain that B has at most ℓ+ ⌈(k + 1)/2⌉r rows and at most ℓ+ r
distinct rows. Since ℓ = max1≤i≤s mi and mi ≤ max{(ℓi − 1)k, 1} for i ∈ {1, . . . , s},
ℓ ≤ k(k + r). Therefore, B has O(k(k + r)) (pairwise distinct) rows. Respectively,
the number of elements of B is O(k2(k + r)2).

123

Author's personal copy

504 F. V. Fomin et al.

Finally, to evaluate the running time, note that Algorithm 1 can be implemented to
run inO(k(k+ r)mn) time by Observation 2. Then, the construction of B can be done
in (k + r)O(1) time. Thus, the total running time is (k + r)O(1) · nm. ⊓2

4.2 Ruling out polynomial kernel with parameter k

Our next aim is to show that Binary r -Means parameterized by k does not admit a
polynomial kernel unless NP ⊆ coNP /poly. We do this in two steps. First, we use
the composition technique introduced by Bodlaender et al. (2009) (see also Cygan
et al. (2015) for the introduction to this technique) to show that it is unlikely that the
Consensus String with Outliers problem introduced by Boucher et al. (2011)
has a polynomial kernel. Then, we use this result to prove the claim for Binary
r -Means.

Input: A (multi) set of n strings S = {s1, . . . , sn} of the same length
ℓ over an alphabet Σ , a positive integer r , and a nonengative
integer d.

Task: Decide whether there is a string s of length ℓ over Σ and I ⊆
{1, . . . , n} with |I | = r such that

∑
i∈I dH (s, si) ≤ d.

Consensus String with Outliers

The parameterized complexity of Consensus String with Outlierswas inves-
tigated by Boucher et al. (2011) and the authors obtained a number of approximation
and inapproximability results. In particular, they proved that the problem is FPT when
parameterized by d. We show that it is unlikely that this problem has a polynomial
kernel for this parameterization.

Theorem 3 Consensus String with Outliers has no polynomial kernel when
parameterized by d unlessNP ⊆ coNP /poly even for strings over the binary alphabet.
Moreover, the result holds for the instances with r ≤ d.

Proof We use the fact that Consensus String with Outliers is NP-complete for
strings over the binary alphabet Σ = {0, 1} (Boucher et al. 2011) and construct a
composition algorithm for the problem parameterized by d. ⊓2

Let (S1, r , d), . . . , (St , r , d) be instances of Consensus String with Outliers
where S1, . . . , St are (multi) sets of binary strings of the same length ℓ. Denote by 0̄
and 1̄ the strings of length d + 1 composed by 0s and 1s, respectively. That is,

0̄ = 0 . . . 0︸ ︷︷ ︸
d+1

and 1̄ = 1 . . . 1︸ ︷︷ ︸
d+1

.

For each i ∈ {1, . . . , t}, we define the set of strings

S′
i = {s0̄i−11̄0̄t−i | s ∈ Si }.

123

Author's personal copy

Parameterized low-rank binary matrix approximation 505

Then,we put S∗ = ⋃t
i=1 S

′
i . Our composition algorithmoutputs the instance (S∗, r , d)

of Consensus String with Outliers.
We show that (S∗, r , d) is a yes-instance of Consensus String with Outliers

if and only if there exists i ∈ {1, . . . , t} such that (Si , r , d) is a yes-instance. Before
proving the correctness let us define some notations. Assume that for i ∈ {1, . . . , t},
the strings of Si and S′

i are indexed by indices from a set Ii , where I1, . . . , It are
disjoint, and denote the strings of S = ⋃t

i=1 Si and S∗ by s j and s′
j , respectively, for

j ∈ ⋃t
i=1 Ii .

Claim 6 (S∗, r , d) is a yes-instance of Consensus String with Outliers if and
only if there exists i ∈ {1, . . . , t} such that (Si , r , d) is a yes-instance.

Proof (of Claim 6) Suppose there exists i ∈ {1, . . . , t} such that (Si , r , d) is a yes-
instance of Consensus String with Outliers. Then, there exist I ⊆ Ii and a
binary string s of length ℓ such that |I | = r and

∑
i∈I dH (s, si) ≤ d. Let s′ =

s0̄i−11̄0̄t−i . Since I ⊆ Ii , we have that

∑

i∈I
dH (s′, s′

i) =
∑

i∈I
dH (s, si) ≤ d.

That is, (S∗, r , d) is a yes-instance.
For the other direction, assume that (S∗, r , d) is a yes-instance of Consensus

String with Outliers. Then, there exit I ⊆ ⋃t
i= Ii and a binary string s′ of length

ℓ + (d + 1)t such that |I | = r and
∑

i∈I dH (s
′, s′

i) ≤ d. We show that there is
i ∈ {1, . . . , t} such that I ⊆ Ii . To obtain a contradiction, assume that there are
distinct i, j ∈ {1, . . . , t} such that I ∩ Ii ̸= ∅ and I ∩ I j ̸= ∅. Let p ∈ I ∩ Ii and
q ∈ I ∩ I j . We conclude that

∑

h∈I
dH (s′, s′

h) ≥ dH (s′, s′
p)+ dH (s′, s′

q) ≥ dH (s′
p, s

′
q)

≥ dH (0̄i−11̄0̄t−i , 0̄ j−11̄0̄t− j) ≥ 2(d + 1) > d.

This is a contradiction. Hence, there is i ∈ {1, . . . , t} such that I ⊆ Ii . Let s be a
substring of s′ containing the first ℓ symbols. Then, we have that

∑

h∈I
dH (s, sh) ≤

∑

h∈I
dH (s′, s′

h) ≤ d.

That is, (Si , r , d) is a yes-instance of Consensus String with Outliers. ⊓2

Observe that every string of S∗ is of length ℓ+(d+1)t and that |S∗| = ∑t
i=1 |Si |. This

means that the size of (S∗, r , d) is polynomial in the sum of the sizes of (Si , r , d) and
t . Note also that the parameter d remains the same. By the results of Bodlaender et al.
(2009), we conclude that Consensus String with Outliers has no polynomial
kernel when parameterized by d unless NP ⊆ coNP /poly.

123

Author's personal copy

506 F. V. Fomin et al.

To see that the result holds even if r ≤ d, we observe that for r ≥ d+1,Consensus
String with Outliers is solvable in polynomial time. Let (S, r , d) be a yes-instance
of Consensus String with Outlierswhere S = {s1, . . . , sn} and r ≥ d+1. Then,
there is a string s and I ⊆ {1, . . . , n} with |I | = r such that

∑
i∈I dH (s, si) ≤ d.

Since |I | = r ≥ d + 1, there is i ∈ I such that s = si . That is, the mean string s is
one of the input strings. This brings us to the following simple algorithm. Let (S, r , d)
be an instance of Consensus String with Outliers with S = {s1, . . . , sn} and
r ≥ d+1. For each i ∈ {1, . . . , n}, we check whether the instance has a solution with
s = si . We do it by the greedy selection of r strings closest to s. It is straightforward
to see that this is a polynomial time algorithm solving the problem. ⊓2

We use Theorem 3 to obtain our kernelization lower bound for Binary r -Means.

Theorem 4 Binary r-Means has no polynomial kernel when parameterized by k
unless NP ⊆ coNP /poly.

Proof We reduce Consensus String with Outliers for strings over the binary
alphabet to Binary r -Means.

Let (S, r̂ , d) be an instance of Consensus String with Outliers, where S =
{s1, . . . , sn} is a (multi) set of binary strings of length ℓ and r̂ ≤ d. Denote by 0̄ and 1̄
the strings of length d+1 composed by 0s and 1s, respectively. For i ∈ {1, . . . , n}, we
set s′

i = si 0̄i−11̄0̄n−i . We construct the matrix A considering s′
1, . . . , s

′
n to be vectors

of {0, 1}ℓ+(d+1)n composing the columns of A. Slightly abusing notation, we use
s′
1, . . . , s

′
n to denote the columns ofA. We set k = (d+1)̂r+d and set r ′ = n− r̂+1.

We claim that (S, r̂ , d) is a yes-instance of Consensus String with Outliers
if and only if (A, r ′, k) is a yes-instance of Binary r -Means.

Suppose that (S, r̂ , d) is a yes-instance of Consensus String with Outliers.
Let I ⊆ {1, . . . , n} and a string s of length ℓ be a solution, that is, |I | = r̂ and∑

i∈I dH (s, si) ≤ d. Denote s′ = s0̄n . By the definition of s′
1, . . . , s

′
n , we have that

∑

i∈I
dH (s′, s′

i) ≤ d + (d + 1)̂r .

We construct clusters I1, . . . , Ir ′ for (A, r ′, k) as follows. We put I1 = I and let
I2, . . . , Ir ′ be one-element disjoint subsets of {1, . . . , n}\I . Then, we define the
means c1, . . . , cn as follows. We set c1 = s′ considering s′ to be a binary vector.
For every single-element cluster Ii = { j} for i ∈ {2, . . . , r ′}, we set ci = s′

j . Note
that dH (ci , s j) = 0 for i ∈ {2, . . . , r ′} and j ∈ Ii . Then, we have

r ′∑

i=1

∑

j∈Ii
dH (ci , s′

j) =
∑

j∈I
dH (c1, s′

j) =
∑

j∈I
dH (s′, s′

j) ≤ d + (d + 1)̂r ≤ k.

That is, {I1, . . . , Ir ′} is a solution for (A, r ′, k). This means that (A, r ′, k) is a yes-
instance of Binary r -Means.

Next, assume that (A, r ′, k) is a yes-instance of Binary r -Means. Let {I1, . . . , Ip},
p ≤ r ′, be a solution. Denote by c1, . . . , cp the corresponding means obtained by the

123

Author's personal copy

Parameterized low-rank binary matrix approximation 507

majority rule. If r̂ = 1, then (S, r̂ , d) is a trivial yes-instance of Consensus String
with Outliers. Let r̂ ≥ 2. Then, because r ′ = n − r̂ + 1, we have that there are
clusters I j with at least two elements. We assume that |I j | ≥ 2 for j ∈ {1, . . . , q} for
some q ≤ p and |I j | = 1 for j ∈ {q + 1, . . . , p}.

We show that q = 1. Targeting towards a contradiction, let us assume that q ≥ 2.
We have that

∑q
i=1 |Ii | = n − (p − q), that is, n − (p − q) columns of A are in

clusters with at least two elements. By the construction of A, we have that the last
n(d + 1) elements of each mean ci are 0s for i ∈ {1, . . . , q}, because the means were
constructed by the majority rule. This implies that dH (ci , s′

j) ≥ d + 1 for j ∈ Ii and
i ∈ {1, . . . , q}. Clearly, dH (ci , s′

j) = 0 for j ∈ Ii and i ∈ {q + 1, . . . , p} as these
clusters Ii contain one element each. Then,

p∑

i=1

∑

j∈Ii
dH (ci , s′

j) =
q∑

i=1

∑

j∈Ii
dH (ci , s′

j) ≥
q∑

i=1

|Ii |(d + 1) = (n − (p − q))(d + 1)

≥ (n − r ′ + 2)(d + 1) = (̂r + 1)(d + 1) > k.

This is a contradiction to the assumption that {I1, . . . , Ip} is a solution. Therefore,
q = 1. Thus, we have that |I1| = n − p + 1 ≥ n − r ′ + 1 = r̂ . Let I ⊆ I1 with
|I | = r̂ . Recall that we defined the string s′

j = s j 0̄ j−11̄0̄n− j for j ∈ {1, . . . , n}
and we consider these strings as the columns of A. In particular, the first ℓ elements
correspond to s j and the last n(d + 1) elements correspond to the string 0̄ j−11̄0̄n− j .
As above, we have that the last n(d + 1) elements of c1 are 0s. Denote by s the vector
composed by the first ℓ elements of c1. We have that

∑

j∈I
dH (c1, s′

j) ≤
∑

j∈I1
dH (c1, s′

j) ≤
p∑

i=1

∑

j∈Ii
dH (ci , s′

j) ≤ k = (d + 1)̂r + d.

Since

∑

j∈I
dH (c1, s′

j) =
∑

j∈I
(dH (s, s j)+ (d + 1)) =

∑

j∈I
dH (s, s j)+ (d + 1)̂r ,

we conclude that
∑

j∈I (dH (s, s j) ≤ d. This implies that (S, r̂ , d) is a yes-instance of
Consensus String with Outliers.

Summarizing, we have constructed a parameterized reduction from Consensus
String with Outliers to Binary r -Means. Notice that for the new parameter k
of Binary r -Means, we have that k = (d + 1)̂r + d = O(d2) since r̂ ≤ d. This
observation togetherwithTheorem3 implies thatBinary r -Means has no polynomial
kernel when parameterized by k unless NP ⊆ coNP /poly. ⊓2

123

Author's personal copy

508 F. V. Fomin et al.

5 Subexponential algorithms for BINARY r-MEANS

We have already seen that Binary r -Means is solvable in 2O(k log k) · (nm)O(1) time
(Theorem 1) In this section, we show that with respect to the combined parame-
terization by k and r , there is an algorithm for Binary r -Means which runs in
subexponential in k time. For constant rank r , the running time of this algorithm
is 2O(

√
k log k) · nm, which outperforms the algorithms from Theorem 1. On the other

hand, we are paying for the improvements on the dependency on k by making the
dependency on r worse. Formally, the main result of this section is stated as follows.

Theorem 5 Binary r-Means is solvable in 2O(
√

rk log(k+r) log r) · nm time.

Towards the proof of Theorem 5, we prove some auxiliary lemmas. We will be
seeking for solutions of a special type.

Definition 2 Let A be an m × n-matrix with rows a1, . . . , am . We say that a vector
c = (c1, . . . , cm)ᵀ ∈ {0, 1}m agrees with A if ci = c j whenever ai = a j for i, j ∈
{1, . . . ,m}.

We will be using the following properties of vectors that agree with matrix A.

Lemma 6 Let (A, r , k) be a yes-instance of Binary r-Means. Then (A, r , k) has a
solution such that for each cluster of the solution its mean agrees with A.

Proof Let {I1, . . . , Ir ′} be a solution to (A, r , k). For i ∈ {1, . . . , r ′}, let ci =
(ci1, . . . , c

i
m)

ᵀ ∈ {0, 1}m be the mean of the cluster Ii computed by the majority
rule. Then, if a j and ah are rows of A and a j = ah , then cij = cih because the major-
ity rule computes the same value. Hence, we have that ci agrees with A for each
i ∈ {1, . . . , r ′}. ⊓2

Lemma 7 Let A be a binary m × n matrix with at most t different rows, a be a column
of A and h be a positive integer. Then, there are at most

∑h
i=1

(t
i

)
binary vectors

b ∈ {0, 1}m agreeing with A that are within the Hamming distance at most h from a.

Proof Let I1, . . . , It be the partition of rows ofA into inclusion-maximal sets of equal
rows. Clearly, vector a agrees withA. Also, for every vector b that agrees withA there
is J ⊆ {1, . . . , t}, such that b is obtained from a by changing for every i ∈ J the
coordinates corresponding to all rows from Ii . But since the distance from a and b is
at most h, the size of J is at most h. Hence, the number of such vectors is at most∑h

i=1
(t
i

)
. ⊓2

Now we are ready to describe the algorithm.
Let (A, r , k) be an instance of Binary r -Means with A = (a1, . . . , an). First,

we preprocess the instance using the kernelization algorithm from Theorem 2. If the
algorithm solves the problem, we return the answer and stop. Assume that this is not
the case. Then, the algorithm returns an instance of Binary r -Meanswhere thematrix
has at most k + r pairwise distinct columns and O(k(k + r)) pairwise distinct rows.
To simplify notations, we use the same notation (A, r , k) for the obtained instance and

123

Author's personal copy

Parameterized low-rank binary matrix approximation 509

we use m and n to denote the number of rows and columns of A. Observe that now
n,m = (k + r)O(1). Denote by w the number of pairwise distinct rows of A.

Informally, our algorithm does the following. For a given partial clustering of some
columns of A, budget d, and a new subset I of columns of A which have to be
clustered, it tries to extend the partial solution by not exceeding the budget d. Some
of the columns from I can go to the existing cluster and some can form new clusters.
Suppose that we know the minimum distance h from vectors in new clusters to their
means. Then, all vectors which are within the distance less than h to the already
existing means, can be assigned to the existing clusters. Eventually, we will be left
with two options. Either the number of columns to be assigned to new clusters does
not exceed

√
dr logw/ log r ; in this case we brute-force in all possible partitions of I .

Or we can bound h ≤
√
k log r/(r logw) and invoke recursive arguments branching

on the choices of a new mean that is at distance h from the unclustered columns.

Algorithm 2: Extend- Means
input : A set I ⊆ {1, . . . , n}, a set of vectors S ⊆ {0, 1}m of size at most r that agree with A, and a

nonnegative integer d.
output: A set of vectors C ⊆ {0, 1}m of size at most r such that each of the vectors agrees with A,

S ⊆ C and
∑

i∈I min{dH (c, ai) | c ∈ C} ≤ d or NO.

1 begin
2 if

∑
i∈I min{dH (s, ai) | s ∈ S} ≤ d then Return C = S and quit if |S| = r then Return NO

and quit Set h := 0;
3 while h ≤ d do
4 foreach i ∈ I do
5 if ℓ = min{dH (s, ai) | s ∈ S} ≤ h − 1 then
6 Set I := I\{i} and d := d − ℓ
7 end
8 end
9 if d ≥ 0 and |I | ≤ √

dr logw/ log r then
10 for p := 1 to min{|I |, r − |S|} do
11 foreach partition {J0, . . . , Jp} of I , where J0 may be empty do
12 for j := 1 to p do
13 find the optimal mean s j for the cluster J j using the majority rule
14 end
15 end
16 Set S := S ∪ {s1, . . . , sp};
17 if

∑
i∈I min{dH (s, ai) | s ∈ S} ≤ d then Return C = S and quit

18 end
19 end
20 if h ≤ d/|I | then
21 foreach vector s ∈ {0, 1}m s.t. s agrees with A and dH (s, ai) = h for some i ∈ I do
22 Call Extend- Means{I , S ∪ {s}, d};
23 if the algorithm returns a solution C then return C and quit
24 end
25 end
26 Set h := h + 1
27 end
28 Return NO
29 end

123

Author's personal copy

510 F. V. Fomin et al.

Now we give a formal description of the algorithm. Towards that we design the
recursive algorithm Extend- Means (Algorithm 2). The input of Extend- Means is
a set I ⊆ {1, . . . , n}, a set of vectors S ⊆ {0, 1}m of size at most r that agree with A,
and a nonnegative integer d. The ouput of Extend- Means is either a set of vectors
C ⊆ {0, 1}m of size at most r such that each of the vectors agrees with A, S ⊆ C and∑

i∈I min{dH (c, ai) | c ∈ C} ≤ d or NO if such a set does not exist. We say that such
a set C is a solution. Thus, we are looking for a solution extending the partial solution
S for the set of column vectors indexed by I .

To solve Binary r -Means, we call Extend- Means(I = {1, . . . , n}, S = ∅, d =
k). Recall that w is the number of pairwise distinct rows of A.

Now we are ready to prove Theorem 5.

Proof (of Theorem 5) We first show the correctness of Algorithm 2 and then evaluate
the running time.

Correctness First of all, by its construction, if Algorithm 2 returns a set of vec-
tors C , then each of the vectors from C agrees with A, |C | ≤ r , S ⊆ C , and∑

i∈I min{dH (c, ai) | c ∈ C} ≤ d, because the algorithm verifies this condition
in Lines 2 and 19 before returning C .

Now we show that if there is a solution to (I , S, d) then the algorithm returns a
solution. The proof is by induction on r − |S|. We assume that there is a solution to
(I , S, d). The base case is when |S| = r . Then, C = S is a solution and the algorithm
returns C in Step 1.

Now we consider the induction step. That is |S| < r . By induction hypothesis, we
have that for any S′ ⊃ S of size at most r , I ′ ⊆ {1, . . . , n} and a nonnegative integer
d ′ such that each vector from S′ agrees with A, the algorithm returns a solution to the
input (S′, I ′, d ′) if such a solution exists.

If S is a solution, then the algorithm outputs it in Line 2 and we are done. Now
we assume that S is not a solution. By assumption there is a solution to (I , S, d). We
choose a solution C∗ for (I , S, d) such that for each c ∈ C∗\S, there exists i ∈ I , for
all s ∈ S, dH (c, ai) ≤ dH (s, ai) (i.e., each vector in C∗\S is a mean of a non-empty
cluster). Let h be the smallest integer such that there exists i ∈ I and c ∈ C∗\S, for
all s ∈ S, dH (s, ai) ≥ dH (c, ai) = h. Clearly, h ≤ d. We claim that the algorithm
outputs a solution in the while loop in Lines 5–29 for this value of h unless it already
produced a solution for some lesser value of h. In the later case we are done. So now
we have that the loop is executed for this value of h. Let the set J ⊆ I and an integer
d ′ be constructed as follows:

– set J = I and d ′ = d,
– for every i ∈ J , if ℓ = min{dH (s, ai) | s ∈ S} ≤ h − 1, then set J = J\{i} and
d ′ = d ′ − ℓ.

Notice that for every j ∈ I\J , min{dH (s, a j) | s ∈ S} ≤ min{dH (c, a j) | c ∈ C∗\S}.
Therefore, C∗ is a solution for (J , S, d ′). Observe that by the choice of h, and by the
construction of J , we have that for every c ∈ C∗ and j ∈ J , dH (c, a j) ≥ h. Let
c∗ ∈ C∗\S and i∗ ∈ J be such that dH (c∗, ai

∗
) = h. Observe that c∗ and i⋆ exist

by the choice of h and C∗. Note that for the set I and the integer d constructed in

123

Author's personal copy

Parameterized low-rank binary matrix approximation 511

Line 6–9, we have that I = J and d = d ′. Now, we have two cases according to the
cardinality of J .

Case 1 |J | ≤
√
d ′r logw/ log r . This case is considered in Lines 11–21. Let C∗\S =

{c1, . . . , cp}. We construct partition {J0, . . . , Jp} of J as follows. For each i ∈ J ,
find t = min{dH (c, ai) | c ∈ C∗}. If t = dH (c, ai) for c ∈ S, then include i ∈
J0; note that J0 may be empty. Otherwise, find minimum i ∈ {1, . . . , p} such that
t = dH (ci , ai) and include i in Ji . Assume without loss of generality that J1, . . . , Jp
are nonempty (otherwise, we can just ignore empty sets and consider a solution with
less means). For each i ∈ {1, . . . , p}, let si be the optimum mean for the cluster
Ji constructed by the majority rule. Clearly,

∑
j∈Ji dH (s

i , a j) ≤ ∑
j∈Ji dH (c

i , a j).
Recall also that themajority rule constructs vectors that agree withA. This implies that
C ′ = S ∪ {s1, . . . , sp} is a solution. Since, we consider all p ≤ min{|I |, r − |S|}, and
all partitions of I into p + 1 subsets in Lines 12–20, the algorithm outputs a solution
C ′ in Line 19.

Case 2 |J | >
√
d ′r logw/ log r . This case is analyzed in Lines 22–27. Note that for

every c ∈ C∗ and j ∈ J , dH (c, a j) ≥ h. Hence, h ≤ d ′/|J |. In Lines 23–26, for each
vector s ∈ {0, 1}m which agrees with A and which is at the Hamming distance h from
some a j , j ∈ J , we call Extend- Means(J , S∪{s}, d ′). We have that in some branch
of the algorithm, we call Extend- Means(J , S ∪ {c∗}, d ′), because dH (c∗, ai

∗
) = h

and i∗ ∈ J . By the induction hypothesis, the algorithm outputs a solution C ′ for the
input (J , S ∪ {c∗}, d ′). Then, C ′ is a solution to (I , S, d) and Algorithm 2 returns it
in Line 25.

To complete the correctness proof, note that the depth of the recursion is bounded
from above by r . It follows that the algorithm perform finite number of steps and
returns either a solution or the answer NO.

Running time To evaluate the running time, recall that the kernelization algorithm
from Theorem 2 preforms the preprocessing in (k + r)O(1) · nm time and afterwards
we have that n,m = (k + r)O(1). Note that Lines 2–3 can be done in polynomial
time. In the while loop in Lines 5–29, we consider d + 1 ≤ k + 1 values of h
and for each h, we perform Lines 6–28. The step in Lines 6–11 is done in polyno-
mial time. Since |I | ≤ √

dr logw/ log r and p ≤ r in Lines 12–20, we consider
2O(log r

√
rk logw/ log r) = 2

√
rk logw log r partitions of I . Because w = O(k(k + r)),

these lines can be done in 2O(
√

rk log(k(k+r)) log r) · (nm)O(1) time. In Lines 22–27, we
have that h ≤ d/|I | ≤

√
d log r/(r logw) ≤

√
k log r/(r logw). Recall that A has at

most r + k pairwise-distinct columns. Hence, to construct s in Line 23, we consider at
most r + k columns ai for i ∈ I . Recall also thatA hasw distinct rows. Since s agrees
withA, by Lemma 7, we have that there are at most 2O(logw

√
k log r/(r logw) vectors s at

the Hamming distance at most h from ai . It follows that the steps in Lines 23–26 with-
out recursive calls of Extend- Means can be performed in 2O(logw

√
k log r/(r logw)) ·

(nm)O(1) time and we have 2O(
√
k log r logw/r) recursive calls of the algorithm. The

depth of the recursion is bounded from above by r . Hence, the number of leaves of the
search tree is 2O(

√
rk log r logw).Notice that the stepsLines 11–21 are performedonly for

the leaves of the search tree. Using the property thatw = O(k(k+r)), we have that the

123

Author's personal copy

512 F. V. Fomin et al.

running time of our recursive branching algorithm is 2O(
√

rk log k(k+r) log r) · (nm)O(1)

or 2O(
√

rk log(k+r) log r) · (nm)O(1). Using the fact that n,m = (k + r)O(1), we have

that it runs in 2O(
√

rk log(k+r) log r) time. Taking into account the preprocessing, the

total running time is 2O(
√

rk log(k+r) log r) + (k + r)O(1)nm and can be bounded from

above by 2O(
√

rk log(k+r) log r) · nm. ⊓2

6 Subexponential algorithm for LOW GF(2)-RANK APPROXIMATION

Recall that it was proved by Fomin et al. (2018b) that Low GF(2)- Rank Approx-
imation is FPT when parameterized by k and r . Throughout the section, by rank, we
mean the GF(2)-rank of the concerned matrix. To demonstrate that the total depen-
dency on k + r could be relatively small, we describe the simple recursive algorithm
RankAppox (Algorithm 3) that, given an m × n matrixA, nonnegative integers r and
k, either returns anm×n matrixB of GF(2)-rank set at most r such that dH (A,B) ≤ k
or NO if such amatrix does not exist. Form×nmatrixA = (ai j) over GF(2) and a pair
of integers i ∈ {1, . . .m} and j ∈ {1, . . . ,m}, flipi j (A) denotes the matrix obtained
from A by the replacement of ai j by 1 ⊕ ai j , that is, by replacing the value of ai j by
the opposite.

Algorithm 3: RankApprox
input : An m × n matrix A, nonnegative integers r and k.
output: An m × n matrix B of GF(2)-rank set at most r such that dH (A,B) ≤ k or NO.

1 begin
2 if rank(A) ≤ r then return B = A and quit if k = 0 then return NO and quit else Find

I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} s.t. |I | = |J | = r + 1 and rank(A(I , J)) = r + 1;
3 foreach i ∈ I and j ∈ J do
4 Call RankApprox(flipi j (A), r , k − 1);
5 if the algorithm outputs a matrix B then
6 return B and quit
7 end
8 end
9 Return NO

10 end

The algorithm gives us the following proposition.

Proposition 1 Low GF(2)- Rank Approximation is solvable in2O(k log r)·(nm)O(1)

time.

Proof To see the correctness of Algorithm 3, It is convenient to interpret Low GF(2)-
Rank Approximation as a matrix editing problem: given a matrix A over GF(2), a
positive integer r and a nonnegative integer k, decide whether it is possible to obtain
a matrix B from A with rank(B) ≤ r , by editing at most k elements, i.e., by replacing
0s by 1s and 1s by 0s. Algorithm 3 uses the following simple observation. Let B be an

123

Author's personal copy

Parameterized low-rank binary matrix approximation 513

m × n-matrix of rank at most r . If rank(A[I , J]) > r + 1 for some I ⊆ {1, . . . ,m}
and J ⊆ {1, . . . , n}, then dH (A[I , J],B[I , J]) ≥ 1, i.e, A[I , J] and B[I , J] differ
in at least one element. Respectively, if the rank of the input matrix is at least r + 1
and k > 0, then the algorithm finds an (r + 1)× (r + 1) submatrix of rank r + 1 and
branches on its elements reducing k.

To evaluate the running time, notice that we can compute rank(A) in polynomial
time, and if rank(A) > r , then we can find in polynomial time an (r + 1) × (r + 1)-
submatrix ofA of rank r +1. Then, we have (r +1)2 branches in our algorithm. Since
we decrease the parameter k in every recursive call, the depth of the recurrence tree is
at most k. This implies that the algorithm runs in (r + 1)2k · (nm)O(1) time. ⊓2

Similarly to Theorem 5, we show that we can improve the dependency on k and
obtains an algorithm for Low GF(2)- Rank Approximation that runs in subexpo-
nential in k time. Again, we are paying by making the dependency on r worse. The
main result of this section is the following theorem.

Theorem 6 Low GF(2)- Rank Approximation is solvable in 2O(r
√

k log(rk)) · nm
time.

In particular, this gives the following tractability island for Low GF(2)- Rank
Approximation.

Corollary 1 If either r is a fixed constant and k ∈ O(log2 n/ log log n) or if r ∈
O(

√
log n) and k ∈ O(log n/ log log n), then Low GF(2)- Rank Approximation

can be solved in polynomial time.

Proof If r is a constant, then the running time from Theorem 1 may be writ-

ten as 2O(
√

k log k)) · nm. Because log2 n/ log log n ≤ log2 n, we have that for
k ∈ O(log2 n/ log log n), the running time is 2O(log n) · nO(1), that is, it is polyno-
mial in n. Similarly, since log n/ log log n ≤ log n, it holds that the running time is
2O(log n) · nO(1) whenever r ∈ O(

√
log n) and k ∈ O(log n/ log log n). ⊓2

The general idea of parameterized subexponential time algorithm for Low GF(2)-
Rank Approximation (Theorem 6) is similar to the parameterized subexponential
time algorithm for Binary r -Means. However, because we cannot use the major-
ity rule like in the case of Binary r -Means, we have to overcome some technical
difficulties. We start with some auxiliary claims and then prove Theorem 6.

In our algorithm, it is more convenient to use the alternative formulation of Low
GF(2)- Rank Approximation.

Observation 3 The task of Low GF(2)- Rank Approximation of binary matrix A
with columns a1, . . . , an can equivalently be stated as follows: decide whether there
is a nonnegative integer r ′ ≤ r and linearly independent vectors c1, . . . , cr

′ ∈ {0, 1}m
over GF(2) such that

n∑

i=1

min{dH (s, ai) | s =
⊕

j∈I
c j , I ⊆ {1, . . . , r ′}} ≤ k;

if r ′ = 0, then the set of vectors is empty.

123

Author's personal copy

514 F. V. Fomin et al.

The vectors c1, . . . , cr
′
form a basis of the column space of the matrix of rank r ′

approximating A. Throughout this section we say that a set of linearly independent
vectors C = {c1, . . . , cr ′} satisfying the condition

n∑

i=1

min{dH (s, ai) | s =
⊕

j∈I
c j , I ⊆ {1, . . . , r ′}} ≤ k

is a solution for (A, r , k). Note that C could be empty; in this case A is approximated
by the zero matrix.

To construct our algorithm for Binary r -Means, we first preprocessed the input
instance. We follow the same strategy and use the kernelization algorithm for Low
GF(2)- Rank Approximation given by Fomin et al. (2018b).

Lemma 8 (Fomin et al. 2018b) Low GF(2)- Rank Approximation admits a kernel
such that the output matrix has at most (r + 1)(k + 1) rows and columns and the
values of r and k are the same as in the input instance. Moreover, the kernelization
algorithm runs in (rk)O(1) · nm time.

Note that Fomin et al. (2018a) do not claim that the running time of their algorithm
is (rk)O(1) · nm but this is implicit in the paper.

Let (A, r , k) be an instance of Low GF(2)- Rank Approximation with A =
(a1, . . . , an). First, we preprocess the instance using the kernelization algorithm from
Lemma 8 that returns an instance with at most (r + 1)(k + 1) columns and rows. For
convenience, we use the same notation for the obtained instance and the columns of
the matrix as before. Note that m, n ≤ (r + 1)(k + 1).

As in Algorithm 2, we construct an algorithm extending a partial solution. For the
simplicity of explanation, we solve the decision version of the problem. Our algorithm
could be easily modified to produce a solution if it exists. Towards that we design a
recursive algorithm Extend- Basis (Algorithm 4). This algorithm extends a column
basis of amatrix approximatingA. The input of Extend- Basis is a set I ⊆ {1, . . . , n},
a p-sized set of linearly independent vectors S = {s1, . . . , sp} ⊆ {0, 1}m over GF(2),
and a nonnegative integer d. The output of Extend- Basis is either YES if there is a
set of linearly independent vectors C = {c1, . . . , cr ′} ⊆ {0, 1}m over GF(2), such that
|C | ≤ r , S ⊆ C and

∑
i∈I min{dH (s, ai) | s =

⊕
j∈J c

j , J ⊆ {1, . . . , r ′}} ≤ d or
NO if there is no such a set. We say that such a set C is a solution, and call (I , S, d)
an instance of Extend- Basis. Then, to solve Low GF(2)- Rank Approximation,
we call Extend- Basis({1, . . . , n},∅, k).

We denote by S = (s1, . . . , sp) the m × p-matrix whose columns are the vectors
of S and denote by s1, . . . , sm its rows. For p ≤ r ′ ≤ r , we say that an r ′-tuple of
(x1, . . . , xr

′
) with xi ∈ {0, 1}p for i ∈ {1, . . . , r ′} is a zero-extended row basis of S if

x1, . . . , xp is a row basis of S and xp+1, . . . , xr
′
are zero-vectors.

For I ⊆ {1, . . . , n}, we define AI = A[{1, . . . ,m}, I]. We denote by aI1, . . . , a
I
m

the rows of AI . Our algorithm uses the following properties of S and AI .

Lemma 9 Let (x1, . . . , xr
′
) be a zero-extended row basis of S. A solution C for an

instance (I , S, d) exists if and only if there is r ′ ≤ r and an r ′-tuples of vectors

123

Author's personal copy

Parameterized low-rank binary matrix approximation 515

(y1, . . . , yr
′
) with yi ∈ {0, 1}|I | for i ∈ {1, . . . , r ′} such that

m∑

i=1

min{dH (y, (aIi)ᵀ) | J ⊆ {1, . . . , r ′}, y =
⊕

j∈J

y j , and sᵀi =
⊕

j∈J

x j } ≤ d.

Proof For an m × p-matrix X and an m × q-matrix Y, we denote by (X|Y) the
augmentation of X by Y, that is, the m × (p + q)-matrix whose first p columns are
the columns of X and the last q columns are the columns of Y.

Note that we have a solution C for an instance (I , S, d) if and only if there is

an m × |I |-matrix Â
I
such that rank(S|ÂI

) = r ′ ≤ r and dH (AI , Â
I
) ≤ d. This

observation immediately implies the lemma. ⊓2
Now we are ready to describe Extend- Basis formally (see Algorithm 4) for Low

GF(2)- Rank Approximation.

Proof (of Theorem 6) First, we prove the correctness of Algorithm 4. Then we evaluate
the running time.

Correctness The construction of Algorithm 4 imply that if the algorithm returns YES,
then there is a solution C for the instance (I , S, d). To see this, it is sufficient to
observe that the algorithm verifies whether there is a solution in Line 2 and it verifies
the conditions of Lemma 9 in Line 15 before returning YES.

Now we show the reverse direction. That is, we show that if there is a solution C
for (I , S, d), then the algorithm returns YES. We assume that there is a solution C for
(I , S, d). The proof is by induction on r − |S|. The base case is when |S| = r . In this
case C = S, and algorithm returns YES in Line 2.

Now consider the induction step. That is, |S| < r . By the induction hypothesis we
have that for every I ′ ⊆ {1, . . . , n}, a set of size at most r linearly independent vectors
S′ ⊃ S and a nonnegative integer d ′, the algorithm returnsYES if a solution for the input
(S′, I ′, d ′) exists. If the algorithm output YES in Line 2, then we are done. Otherwise,
we have that S is not a solution. Since |S| < r , the algorithm does not return NO in
Line 3. Since S is not a solution, we have that every solution C = {c1, . . . , cr ′} ⊃ S
minimizing the sum

∑
i∈I min{dH (c, ai) | c = ⊕

j∈J c
j , J ⊆ {1, . . . , r ′}} satisfies

the following property: there exists i ∈ I such that for every linear combination
s ∈ {0, 1}m of vectors from S we have dH (s, ai) > h, where h = min{dH (c, ai) | c =⊕

j∈J c
j , J ⊆ {1, . . . , r ′}}. We choose a solution C = C∗ and i = i∗ ∈ I in such

a way that the value of h is minimum. Notice that there is a subset J ∗ ⊆ {1, . . . , r ′}
such that c∗ = ⊕

j∈J∗ c j , h = dH (c∗, ai
∗
) and {c j : j ∈ J ∗}\S ̸= ∅. We assume that

c∗ ∈ C∗. Otherwise, we just add c∗ to the solution and exclude arbitrary c j /∈ S with
j ∈ J ∗ from C∗ (because c∗ = ⊕

j∈J∗ c j). Let C∗ = {c1, . . . , cr ′}. Clearly, h ≤ d.
We claim that the algorithm outputs YES in the while loop in Lines 5–24 for this value
of h unless it already produced the same answer for some smaller value of h. Let the
set I ′ ⊆ I and the integer d ′ be constructed as follows:

– set I ′ = I and d ′ = d,
– for every i ∈ I ′, if ℓ = min{dH (s, ai) | s =

⊕
j∈J s

j , J ⊆ {1, . . . , p}} ≤ h − 1,
then set I ′ = I ′\{i} and d ′ = d ′ − ℓ.

123

Author's personal copy

516 F. V. Fomin et al.

Algorithm 4: Extend- Basis
input : A set I ⊆ {1, . . . , n}, a p-sized set of linearly independent vectors

S = {s1, . . . , sp} ⊆ {0, 1}m over GF(2), and a nonnegative integer d.
output: YES or NO.

1 begin
2 if

∑
i∈I min{dH (s, ai) | s = ⊕

j∈J s
j , J ⊆ {1, . . . , p}} ≤ d then Return YES and quit if

p = r then Return NO and quit Set h := 0;
3 while h ≤ d do
4 foreach i ∈ I do
5 if ℓ = min{dH (s, ai) | s = ⊕

j∈J s
j , J ⊆ {1, . . . , p}} ≤ h − 1 then

6 Set I := I\{i} and d := d − ℓ
7 end
8 end
9 if d ≥ 0 and |I | ≤

√
d log(rk) then

10 for r ′ := p to r do
11 construct a zero-extended row basis (x1, . . . , xr

′
) of S;

12 foreach r ′-tuple of vectors (y1, . . . , yr ′) with yi ∈ {0, 1}|I | for i ∈ {1, . . . , r ′} do
13 if

∑m
i=1 min{dH (y, (aIi)

ᵀ) | y = ⊕
j∈J y

j , J ⊆ {1, . . . , r ′} and sᵀi =
⊕

j∈J x
j } ≤ d then Return YES and quit

14 end
15 end
16 end
17 if h ≤ d/|I | then
18 foreach vector s ∈ {0, 1}m such that s is linearly independent with the vectors of S and

dH (s, ai) = h for some i ∈ I do
19 Call Extend- Basis{I , S ∪ {s}, d};
20 if the algorithm returns YES then return YES and quit
21 end
22 end
23 Set h := h + 1
24 end
25 Return NO
26 end

Notice that for every j ∈ I\I ′,

min{dH (s, a j) | s =
⊕

j∈J

s j , J ⊆ {1, . . . , p}}

≤ min{dH (c, a j) | c =
⊕

j∈J

c j , J ⊆ {1, . . . , r ′}} (3)

Because of the choice of h, we have a solution for (I ′, S, d ′) if and only if there is
a solution for the original input (I , S, d). Moreover, C∗ is a solution for (I ′, S, d ′).
Observe also that by the choice of h we have that i∗ ∈ I ′. Note that for the set I and
an integer d constructed in Lines 6–10, we have that I = I ′ and d = d ′.

Case 1 |I ′| ≤
√
d ′ log(rk). This case is considered in Lines 11–17. By Lemma 9,

there is p ≤ r ′′ ≤ r and an r ′′-tuple of vectors (y1, . . . , yr
′′
) with yi ∈ {0, 1}|I ′| for

123

Author's personal copy

Parameterized low-rank binary matrix approximation 517

i ∈ {1, . . . , r ′′} such that for a zero-extended row basis (x1, . . . , xr
′
) of S it holds that

m∑

i=1

min{dH (y, aᵀ
i) | y =

⊕

j∈J

y j , J ⊆ {1, . . . , r ′′} and sᵀi =
⊕

j∈J

x j } ≤ d ′. (4)

Since our algorithm considers all r ′′ ≤ r in the for loop in Lines 12–16 and all
possible r ′′-tuples of vectors (y1, . . . , yr

′′
) with yi ∈ {0, 1}|I ′| for i ∈ {1, . . . , r ′′} in

Lines 14–16 and verifies (4), we obtain that the algorithm outputs YES in Line 15.

Case 2 |I ′| >
√
d ′ log(rk). This case is analyzed in Lines 19–23. Note that for every

j ∈ I ′ and J ⊆ {1, . . . , r ′}, dH (c, a j) ≥ h for c = ⊕
i∈J c

i . Hence, h ≤ d ′/|I ′|. In
the loop in Lines 20–23, we consider every vector s ∈ {0, 1}m such that s is linearly
independent with the vectors of S and dH (s, a j) = h for some j ∈ I ′, and call
Extend- Basis(I ′, S ∪ {s}, d ′). We have that in some recursive call of the algorithm,
we call Extend- Basis(J , S ∪ {c∗}, d ′), because dH (c∗, ai

∗
) = h and i∗ ∈ I ′. By the

induction hypothesis, the algorithm outputs YES for the input (I ′, S ∪ {c∗}, d ′). Then
we output YES for (I , S, d) in Line 22.

To complete the correctness proof, note that the depth of the recursion is at most
r . It follows that the algorithm performs a finite number of steps and correctly reports
that (I , S, d) is a yes-instance or a no-instance.

Running time To evaluate the running time, recall that the algorithm from Lemma 8
runs in (rk)O(1) · nm time and afterwards we have n,m ≤ (r + 1)(k + 1). Now we
evaluate the running time of Algorithm 4.

Observe that the steps in Lines 2 and 3 can be done in polynomial time.
In the while loop in Lines 5–26, we consider d + 1 ≤ k + 1 values of h and for

each h, perform steps in Lines 6–24. Clearly, the steps in Lines 6–10 can be done in
polynomial time.

Consider Lines 11–18. Clearly, a zero-extended row basis (x1, . . . , xr
′
) of S can be

found in polynomial time. Since r ′ ≤ r , |I | ≤
√
d log(rk) ≤

√
k log(rk) and p ≤ r ,

we consider 2O(r
√

k log(rk)) r ′-tuples of vectors (y1, . . . , yr
′
). It implies that the steps

in Lines 11–18 take 2O(r
√

k log(rk)) · (nm)O(1) time.
In Lines 19–24, we have that h ≤ d/|I | ≤ d/

√
d log(rk) ≤

√
k/ log(rk). Recall

that A has at most (r + 1)(k + 1) columns. Hence, to construct s is Line 20, we
consider at most (r + 1)(k + 1) columns ai for i ∈ I . Recall also that A has at most
(r + 1)(k+ 1) rows. Then there are at most (r + 1)(k+ 1) · ((r + 1)(k+ 1))

√
k/ log(rk)

vectors s at distance h from ai . It follows that the steps in Lines 19-24without recursive
calls of Extend- Basis can be done in 2O(r

√
k log(rk)) · (nm)O(1) time and we have

2O(r
√

k log(rk)) recursive calls of the algorithm.
The depth of the recursion is at most r . Note that Lines 12–18 are executed only

for the leaves of the search tree. Therefore, the total running time of the branching

algorithm is 2O(r
√

k log(rk)) · (nm)O(1). Since n,m ≤ (r + 1)(k + 1), we have that its

running time can be bounded from above by 2O(r
√

k log(rk)). Taking into account the

preprocessing, the total running time is 2O(r
√

k log(rk)) · nm. ⊓2

123

Author's personal copy

518 F. V. Fomin et al.

7 Subexponential algorithms for P-MATRIX APPROXIMATION and
LOW BOOLEAN-RANK APPROXIMATION

In this section we give a parameterized subexponential algorithm for Low Boolean-
Rank Approximation. This algorithm is more complicated than the one for Low
GF(2)- Rank Approximation. This is because ({0, 1},∨,∧) do not form a field,
and thus many nice properties of matrix-rank cannot be used here. The way we handle
this issue is to solve the P-Matrix Approximation problem. As soon as we obtain
a subexponential algorithm for P-Matrix Approximation, a simple reduction will
provide an algorithm for Low Boolean- Rank Approximation.

We will be using the following observation which follows directly from the defini-
tion of a P-matrix.

Observation 4 Let P be a binary p × q matrix. Then every P-matrix B has at most p
pairwise distinct rows and at most q pairwise distinct columns.

In our algorithm for P-Matrix Approximation, we need a subroutine for check-
ing whether a matrix A is a P-matrix. For that we employ the following brute-force
algorithm.LetAbe anm×n-matrix. Leta1, . . . , am be the rowsofA, and leta1, . . . , an

be the columns ofA. Let I = {I1, . . . , Is} be the partition of {1, . . . ,m} into inclusion-
maximal sets of indices such that for every i ∈ {1, . . . , s} the rows a j for j ∈ Ii are
equal. Similarly, let J = {J1, . . . , Jt } be the partition of {1, . . . , n} into inclusion-
maximal sets such that for every i ∈ {1, . . . , t}, the columns a j for j ∈ Ii are equal.
We say that (I,J) is the block partition of A.

Observation 5 There is an algorithm which given an m × n-matrix A = (ai j) ∈
{0, 1}m×n and a p × q-matrix P = (pi j) ∈ {0, 1}p×q , runs in 2O(p log p+q log q) ·
(nm)O(1) time, and decides whether A is a P-matrix or not.

Proof Let (I = {I1, . . . , Is},J = {J1, . . . , Jt }) be the block partition of A and let
(X = {X1, . . . , X p′},Y = {Y1, . . . ,Yq ′}) be the block partition of P. Observe that
A is a P-matrix if and only if s = p′, t = q ′, and there are permutations α and β

of {1, . . . , p′} and {1, . . . , q ′}, respectively, such that the following holds for every
i ∈ {1, . . . , p′} and j ∈ {1, . . . , q ′}:
(i) |Ii | ≥ |Xα(i)| and |J j | ≥ |Yβ(j)|,
(ii) ai ′ j ′ = pi ′′ j ′′ for i ′ ∈ Ii , j ∈ J j , i ′′ ∈ Xα(i) and j ′′ ∈ Yβ(i).

Thus, in order to check whether A is a P-matrix, we check whether s = p′ and
t = q ′, and if it holds, we consider all possible permutations α and β, and verify (i)
and (ii). Note that the block partitions of A and P can be constructed in polynomial
time. Since there are p′! ∈ 2O(p log p) and q ′! ∈ 2O(q log q) permutations of {1, . . . , p′}
and {1, . . . , q ′}, respectively, and (i)–(ii) can be verified in polynomial time, we obtain
that the algorithm runs in 2O(p log p+q log q) · (nm)O(1) time. ⊓2

Let (A,P, k) be an instance of P-Matrix Approximation. We say that a matrix
B is a solution for (A,P, k) if dH (A,B) ≤ k, and B is a P-matrix. Next, we observe
that P-Matrix Approximation admits a polynomial kernel when parameterized by
the size of the pattern matrix and k.

123

Author's personal copy

Parameterized low-rank binary matrix approximation 519

Lemma 10 Let P be a p×q binary matrix. Then P-Matrix Approximation admits
a kernel such that the output matrix has at most (max{k, p} + 1)(p + k) rows, and
at most (max{k, q} + 1)(q + k) columns. Moreover, the kernelization algorithm runs
in O((p + q + k)nm) time, and either solves the problem or outputs an equivalent
instance of P-Matrix Approximation such that the matrix in this instance has at
least p rows, at least q columns, at most p + k pairwise distinct rows and at most
q + k distinct columns.

Proof Let (A,P, k) be an instance of P-Matrix Approximation. We apply the
following reduction rules. ⊓2
Reduction Rule 1 If A has at most p − 1 rows or at most q − 1 columns or at least
p+ k + 1 pairwise distinct rows or at least q + k + 1 pairwise distinct columns, then
return a trivial no-instance (say, ((1), (0), 0)) and stop.

Clearly, ifA has at most p−1 rows or at most q−1 columns, then (A,P, k) is a no-
instance. Assume that this is not the case, and suppose that (A,P, k) is a yes-instance.
Then, there is a solution B, that is, an m × n binary P-matrix with dH (A,B) ≤ k. By
Observation 4, B has at most p pairwise distinct rows and at most q pairwise distinct
columns. Since dH (A,B) ≤ k, we conclude thatA has at most p+ k pairwise distinct
rows and at most q + k pairwise distinct columns. Hence, if A has at least p + k + 1
pairwise distinct rows or at least q + k + 1 pairwise distinct columns, then (A,P, k)
is a no-instance.

Assume that we did not stop by Reduction Rule 1. Then, A has at most p + k
pairwise distinct rows and at most q + k pairwise distinct columns.

Reduction Rule 2 If A has at least max{p, k} + 2 identical rows, then delete one of
these rows that is chosen arbitrarily.

Claim 7 Reduction Rule 2 is safe.

Proof (of Claim 7) Let a1, . . . , am be the rows of A and assume that the rows ai for
i ∈ I ⊆ {1, . . . ,m} are the same and it holds that |I | ≥ max{p, k} + 2. Let A′ be the
matrix obtained from A by the deletion of ah for some h ∈ I .

Suppose that (A,P, k) is a yes-instance of P-Matrix Approximation. Then,
there is a P-matrix B = (bst) with dH (A,B) ≤ k. Since B is a P-matrix, there a
partition {I1, . . . , Ip} of {1, . . . ,m}, and a partition {J1, . . . , Jq} of {1, . . . , n} such
that for every i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, s ∈ Ii , and t ∈ J j , bst = pi j .
Since |I | ≥ p + 2, there is i ∈ {1, . . . , p} such that |Ii | ≥ 2 and Ii ∩ I ̸= ∅. Let
h′ ∈ Ii ∩ I , and denote byA′′ andB′′ the matrices obtained fromA andB, respectively,
by the deletion of h′-th row. Since |Ii | ≥ 2, we have that B′′ is a P-matrix. Clearly,
dH (A′′,B′′) ≤ dH (A,B) ≤ k. Because A′ and A′′ are the same up to a permutation
of rows, we have that (A′,P, k) is a yes-instance.

Assume that (A′,P, k) is a yes-instance of P-Matrix Approximation. We have
that there is a P-matrix B ′ = (bst) with dH (A′,B′) ≤ k. We assume that the rows of
A′ and B′ are indexed by the elements of {1, . . . ,m}\{h}. Since B′ is a P-matrix, there
a partition {I1, . . . , Ip} of {1, . . . ,m}\{h}, and a partition {J1, . . . , Jq} of {1, . . . , n}
such that for every i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, s ∈ Ii and t ∈ J j , bst = pi j .

123

Author's personal copy

520 F. V. Fomin et al.

Because |I\{h}| ≥ k + 1 and dH (A′,B′) ≤ k, there is i ∈ {1, . . . , p} such that
I ∩ Ii ̸= ∅, and there is h′ ∈ I ∩ Ii with h′-th row of B′ is the same as ah′ . Let B be
the matrix obtained from B′ by inserting ah as the h-th row. Observe that dH (A,B) =
dH (A′,B′) ≤ k. We also have thatB is a P-matrix. To see this, it is sufficient to modify
the partition {I1, . . . , Ip} by replacing Ii by Ii ∪ {h}. We conclude that (A,P, k) is a
yes-instance of P-Matrix Approximation. This completes the safeness proof.

⊓2
The safeness of the next rule is proved by the same arguments using the symmetry

between rows and columns.

Reduction Rule 3 If A has at least max{q, k} + 2 identical columns, then delete one
of these columns that is chosen arbitrarily.

We apply Reduction Rules 2 and 3 exhaustively. Denote by (A′,P, k) the obtained
instance of P-Matrix Approximation. Because A′ has at most p + k pairwise
distinct rows and at most q + k pairwise distinct columns, and Reduction Rules 2 and
3 cannot be applied, we have that A′ has at most (max{k, p} + 1)(p+ k) rows and at
most at most (max{k, q} + 1)(q + k) columns. Notice that the values of the elements
of P were never used in the reduction rules.

The running time in the same way as in the proofs of Theorem 2 and Lemma 8: we
list pairwise distinct columns and rows in O((p + q + k)nm) time and immediately
stop if we obtained at least p + k + 1 distinct rows or at least q + k + 1 distinct row.
In parallel, we count the number of columns and rows that are same. ⊓2

Observe that Lemma 10 immediately implies the following straightforward algo-
rithm for P-Matrix Approximation. First, we apply the kernelization algorithm
from Lemma 10. We obtain an instance of P-Matrix Approximation such that the
input matrix A has at most (max{k, p} + 1)(max{k, q} + 1)(p+ k)(q + k) elements.
We verify whetherA is a P-matrix using Observation 5. If it holds, then we return YES
as an answer. Otherwise, if k ≥ 1, we branch on all possible edits of one element of
A and reduce the parameter. This leads to a trivial branching algorithm, and gives the
following proposition.

Proposition 2 For a (p × q) binary matrix P, P-Matrix Approximation can be
solved in 2O(k log[(k+p)(k+q)]+p log p+q log q) · nm time.

Similarly to the algorithms for Binary r -Means and Low GF(2)- Rank
Approximation in Theorems 5 and 6, respectively, we construct a recursive branch-
ing algorithm for P-Matrix Approximation that is subexponential in k. Recall that
in the algorithms for Binary r -Means and Low GF(2)- Rank Approximation,
we solved auxiliary problems. In these auxiliary problems one has to extend a partial
solution while reducing the set of “undecided” columns. In particular, if the set of
these undecided columns is sufficiently small, we use brute force algorithms to solve
the problems. Here, we use a similar strategy, but the auxiliary extension problem is
slightly more complicated. Following is the auxiliary extension problem.

123

Author's personal copy

Parameterized low-rank binary matrix approximation 521

Input: An m × n binary matrix A, a pattern p× q-matrix P, a partition
{X , Y , Z} of {1, . . . , n}, where some sets could be empty, such
that |X | + |Y | = q, and a nonnegative integer k.

Task: Decide whether there is an m × n-matrix B such
that (i) B[{1, . . . ,m}, X] = A[{1, . . . ,m}, X], (ii)
B[{1, . . . ,m}, X ∪ Y] is a P-matrix and each column of B
coincides with a column of B[{1, . . . ,m}, X ∪ Y], and (iii)
dH (A,B) ≤ k.

Extendable P- Matrix Approximation

We call a matrix B satisfying (i)–(iii) a solution for Extendable P-Matrix
Approximation. Next, we prove that P-Matrix Approximation is a special case
of Extendable P-Matrix Approximation.

Lemma 11 There is an algorithm that, given an instance (A,P, k) of P-Matrix
Approximation such that input matrix A has at most ℓ pairwise distinct columns, in
ℓq(nm)O(1) time outputs a collection I = {(A,P, {Xi = ∅,Yi , Zi }, k) : 1 ≤ i ≤ t}
of t ≤ ℓq instances of Extendable P-Matrix Approximation such that B is a
solution of (A,P, k) if and only if B is a solution of at least one instance in I.

Proof Let B = (b1, . . . ,bn) be a solution to the instance (A,P, k) of P-Matrix
Approximation. We say that a set J ⊆ {1, . . . , n} represents P with respect to B
if (a) |J | = q, (b) B[{1, . . . ,m}, J] is a P-matrix, (c) for each j ∈ {1, . . . , n}\J ,
b j = bi for some i ∈ J . Observe that for every solution B, there is J ⊆ {1, . . . , n}
that represents P with respect to B.

We say that two sets of indices J , J ′ ⊆ {1, . . . , n} are equivalent with respect to A
if the matrices A[{1, . . . ,m}, J] and A[{1, . . . ,m}, J ′] are the same up to a column
permutation. Observe that if J , J ′ are equivalent with respect to A, then (A,P, k) has
a solution B such that J represents Pwith respect to B if and only if the same instance
has a solution B′ such that J ′ represents P with respect to B′.

Because A has at most ℓ pairwise distinct columns, there are at most ℓq sets
of indices J ∈ {1, . . . , n} of size q that are pairwise nonequivalent with respect
to A. We consider such sets, and for each such set Ji , we construct the instance
(A,P, {Xi ,Yi , Zi }, k) of Extendable P-Matrix Approximation with Xi = ∅,
Yi = J , and Zi = {1, . . . , n}\Ji . Let I be the set of constructed instances. Clearly, I
can be constructed in ℓq(nm)O(1) time.

If B is a solution for the instance (A,P, k) of P-Matrix Approximation with
Ji representing P with respect to B, then B is a solution to (A,P, {Xi ,Yi , Zi }, k)
of Extendable P-Matrix Approximation, that is, I contains a yes-instance of
Extendable P-Matrix Approximation. For the opposite direction, observe that if
B is a solution of some (A,P, {Xi , Yi , Zi }, k) ∈ I, thenB is a solution for the instance
(A,P, k) of P-Matrix Approximation. This completes the proof of the lemma. ⊓2

The following lemmawill be used in the algorithm forP-Matrix Approximation
when the sum |Y | + |Z | is sufficiently small.

123

Author's personal copy

522 F. V. Fomin et al.

Lemma 12 Extendable P-Matrix Approximation can be solved in
2O(p(r+log k)+p log p+q log q) · (nm)O(1) time, where r = |Y | + |Z |, if the input matrix
A has at least p rows, at least q columns, at most p+ k pairwise-distinct rows and at
most q + k pairwise-distinct columns.

Proof Let (A,P, {X , Y , Z}, k) be an instance of Extendable P-Matrix Approx-
imation. Let a1, . . . , an be the columns and a1, . . . , am be the rows of matrix
A = (ai j) ∈ {0, 1}m×n .

Suppose that matrix B with the rows b1, . . . ,bm is a solution to the instance
(A,P, {X ,Y , Z}, k). We say that a set I ⊆ {1, . . . ,m} represents P with respect
to B if (a) |I | = p, (b) B[I , X ∪Y] is a P-matrix and each column of B[I , {1, . . . , n}]
coincides with a column of B[I , X ∪ Y], and (c) for every i ∈ {1, . . . ,m}\I , there is
j ∈ I such that bi = b j . Clearly, for every solution B, there is I ⊆ {1, . . . ,m} that
represents P with respect to B.

We say that two sets of indices I , I ′ ⊆ {1, . . . ,m} are equivalent with respect to A
if the matricesA[I , {1, . . . , n}] andA[I ′, {1, . . . , n}] are the same up to a permutation
of rows. Observe that if I , I ′ are equivalent with respect toA, then (A,P, {X , Y , Z}, k)
has a solution B such that I represents P with respect to B if and only if the same
instance has a solution B′ such that I ′ represents P with respect to B′.

Since A has at most p + k pairwise-distinct rows, there are at most (p + k)p

pairwise nonequivalent with respect to A sets of indices I ⊆ {1, . . . ,m} of size p.
We consider such sets, and for each I , we check whether there is a solution B for
(A,P, {X ,Y , Z}, k) with I representing P with respect to B. If we find that there is a
solution, we return YES, and we return NO if there is no solution for every choice of
I . Now on, we assume that I is given.

Our aim now is to check the existence of a solution B = (bi j) ∈ {0, 1}m×n with
I representing P with respect to B. We denote by b1, . . . ,bm the rows of B. We
consider all possible matrices B[I , {1, . . . , n}]. Recall that for each i ∈ {1, . . . ,m},
we should have that bi j = ai j for j ∈ X . It implies that there are at most 2|Y |+|Z |

possibilities to construct bi for i ∈ I , and there are at most 2(|Y |+|Z |)p possible
matrices B[I , {1, . . . , n}]. Since the matrix should satisfy the condition (b), we use
Observation 5 to check this condition in 2O(p log p+q log q) · (nm)O(1) time. If it is vio-
lated, we discard the current choice of B[I , {1, . . . , n}]. Otherwise, we check whether
B[I , {1, . . . , n}] can be extended to a solution B satisfying the condition (c). For
i, j ∈ {1, . . . ,m}, we define

d∗
H (bi , a j) =

{
dH (bi , a j) if bih = a jh for h ∈ X ,
+∞ otherwise.

We observe that B[I , {1, . . . , n}] can be extended to a solution B satisfying the con-
dition (c) if and only if

∑

i∈I
dH (bi , ai)+

∑

j∈{1,...,m}\I
min{d∗

H (bi , a j) | i ∈ I } ≤ k.

123

Author's personal copy

Parameterized low-rank binary matrix approximation 523

We verify the condition, and return YES. Otherwise we discard the current choice of
B[I , {1, . . . , n}]. If we fail for all choices of B[I , {1, . . . , n}], we return NO and stop.

It remains to evaluate the running time.We can check in polynomial timewhetherA
has at most p+k rows and at most q+k columns. Then, we construct at most (p+k)p

pairwise nonequivalent (with respect toA) sets of indices I ∈ {1, . . . ,m} of size p, and
for each I , we consider atmost 2(|Y |+|Z |)p possiblematricesB[I , {1, . . . , n}]. Then, for
each choice of matrix B[I , {1, . . . , n}], we first check in 2O(p log p+q log q) · (nm)O(1)

time whether this matrix satisfies the condition (b), and then check in polynomial
time whether B[I , {1, . . . , n}] can be extended to a solution. We obtain that the total
running time is 2O(p(log k+|Y |+|Z |)+p log p+q log q) · (nm)O(1). ⊓2

Now we are ready to prove the main technical result of this section.

Theorem 7 P-Matrix Approximation is solvable in time

2O((p+q)
√

k log(p+k)+p log p+q log q+q log(q+k)) · nm.

Proof Let (A,P, k) be an instance ofP-Matrix Approximation, whereP is a p×q-
matrix. Let a1, . . . , am and a1, . . . , an denote the rows and columns ofA, respectively.

First, we preprocess the input instance using the kernelization algorithm from
Lemma 10. If the algorithm solves the problem,we return the answer and stop. Assume
that this is not the case and the algorithm returns an equivalent instance. For simplicity,
we use the same notation for it. Recall thatA has at most p+k pairwise-distinct rows,
at most q + k pairwise-distinct columns and p ≤ m ≤ (max{k, p} + 1)(p + k) and
q ≤ n ≤ (max{k, q} + 1)(q + k).

Next, we apply Lemma 11 and we get a collection

I = {(A,P, {Xi = ∅,Yi , Zi }, k) : 1 ≤ i ≤ t}

of t ≤ (q + k)q instances of Extendable P-Matrix Approximation such that B
is a solution of (A,P, k) if and only if B is a solution of at least one instance in I.
Therefore, it is enough to solve Extendable P-Matrix Approximation for each
instance I.

In what follows, we design a recursive branching algorithm for Extendable
P-Matrix Approximation called Extend-P-Solution (Algorithm 5). The algo-
rithm takes as an input a matrix A, disjoint sets of indices X , Y , Z ⊆ {1, . . . , n}
such that |X | + |Y | = q, and a nonnegative integer k and outputs either Yes if
(A,P, {X ,Y , Z}, k) is a yes-instance of Extendable P-Matrix Approximation
or NO otherwise.

Correctness To prove correctness, first we show that if Algorithm 5 returns YES, then
(A,P, {X ,Y , Z}, k) is a yes-instance of Extendable P-Matrix Approximation.

Suppose that Y = ∅. This case is considered in Lines 2–8. If the algorithms returns
YES, then it does not stop in Lines 3–5. Hence, A[{1, . . . ,m}, X] is a P-matrix. If
Z = ∅, we have that B = A[{1, . . . ,m}, X] = A is a solution for the instance
(A,P, {X ,Y , Z}, k) of Extendable P-Matrix Approximation, and the algorithm
correctly returns YES in Line 6, since the condition in this line trivially holds. Let

123

Author's personal copy

524 F. V. Fomin et al.

Algorithm 5: Extend- P- Solution
input : A matrix A, disjoint sets X , Y , Z ⊆ {1, . . . , n} s.t. |X | + |Y | = q, and k ≥ 0.
output: YES or NO.

1 begin
2 if Y = ∅ then
3 if A[{1, . . . ,m}, X] is not a P-matrix then
4 Return NO and quit
5 end
6 if

∑
i∈Z min{dH (ai , a j) | j ∈ X} ≤ k then Return YES and quit else Return NO and quit

7 end
8 Set h := 0;
9 while h ≤ k do

10 foreach i ∈ Z do
11 if ℓ = min{dH (ai , a j) | j ∈ X} ≤ h then
12 Set Z := Z\{i} and k := k − ℓ
13 end
14 end
15 if k ≥ 0 and |Y | + |Z | ≤

√
k log(p + k) then

16 solve the problem for the instance (A[{1, . . . ,m}, X ∪ Y ∪ Z],P, {X , Y , Z}, k) using the
algorithm from Lemma 12, return the answer and quit

17 end
18 if h ≤ k/(|Y | + |Z |) then
19 foreach i ∈ Y ∪ Z and a vector âi ∈ {0, 1}m s.t. dH (ai , âi) = h do
20 if i ∈ Y then
21 call Extend- P- Solution(Â, X ∪ {i}, Y\{i}, Z , k − h), where Â is obtained

from A by replacing the column ai by âi ;
22 if the algorithm returns YES then
23 Return YES and quit
24 end
25 end
26 if i ∈ Z then
27 foreach j ∈ Y do
28 Call Extend- P- Solution(Â, X ∪ { j}, Y\{ j}, Z , k − dH (a j , âi)), where

Â is obtained from A by replacing the column a j by âi ;
29 if the algorithm returns YES then
30 Return YES and quit
31 end
32 end
33 end
34 end
35 end
36 Set h := h + 1
37 end
38 Return NO
39 end

Z ̸= ∅. For every i ∈ X , we set bi = ai , and for each i ∈ Z , we define the vector
bi = ah for h ∈ X , where dH (ai , ah) = min{dH (ai , a j) | j ∈ X}. Consider the
matrix B composed of the columns bi for i ∈ X ∪ Y ∪ Z . It is easy to verify that B is
a solution to (A,P, {X , Y , Z}, k). Hence, if the algorithm returns YES in Line 6, then
(A,P, {X ,Y , Z}, k) is a yes-instance.

123

Author's personal copy

Parameterized low-rank binary matrix approximation 525

Now consider the case Y ̸= ∅. This case is considered in Lines 9–38 and if the
algorithm returnsYES, then it is done in thewhile loop in these lines. Let h ∈ {0, . . . , k}
be such that algorithm returns YES for this value of h.

Denote by Z ′ the set obtained from Z in the for loop in Lines 11–15, and
let k′ be the value of k obtained after the execution of these steps. Observe that
(a) if (A[{1, . . . ,m}, X ∪ Y ∪ Z ′],P, {X , Y , Z ′}, k′) is a yes-instance, then (A =
A[{1, . . . ,m}, X ∪ Y ∪ Z],P, {X , Y , Z}, k) is a yes-instance as well. Indeed, let B̂
be a solution to (A[{1, . . . ,m}, X ∪ Y ∪ Z ′],P, {X , Y , Z ′}, k′) with the columns b̂

i

for i ∈ X ∪ Y ∪ Z ′. We define B with the columns bi for i ∈ X ∪ Y ∪ Z as follows:
for i ∈ X ∪ Y ∪ Z ′, bi = b̂

i
, and for i ∈ Z\Z ′, bi = as = b̂

s
for s ∈ X such

that dH (ai , as) = min{dH (ai , a j) | j ∈ X}. It is easy to see that B is a solution for
(A,P, {X ,Y , Z}, k).

Therefore, if the algorithm returns YES in Line 17, then, by the statement (a),
(A[{1, . . . ,m}, X ∪ Y ∪ Z ′],P, {X , Y , Z ′}, k′) and (A,P, {X ,Y , Z}, k) are yes-
instances.

Suppose that the algorithm returns YES in Lines 19–36 for i ∈ Y ∪ Z ′. Here, we
have two cases. The first case is when Algorithm 5 returns YES in Line 24. Then
i ∈ Y and (Â[{1, . . . ,m}, X ∪ Y ∪ Z ′],P, {X ∪ {i},Y\{i}, Z ′}, k′ − h) is a yes-
instance. Since dH (ai , âi) = h, we have that every solution to (Â[{1, . . . ,m}, X ∪
Y ∪ Z ′],P, {X ∪ {i}, Y\{i}, Z ′}, k′ − h) is also a solution to (A[{1, . . . ,m}, X ∪ Y ∪
Z ′],P, {X ,Y , Z ′}, k′). This implies that (A,P, {X ,Y , Z}, k) is a yes-instance (by the
statement (a)).

The second case is when the algorithm returns YES in Line 31. Then i ∈ Z ′. Since
the algorithm returns YES in Lines 27–34 for the value i , we have that there exists j ∈ Y
such that Extend-P-Solution(Â, X ∪ { j}, Y\{ j}, Z ′, k′ − dH (a j , âi)) returns YES,
where Â is the matrix obtained from A by replacing column a j by âi . This implies
that (A[{1, . . . ,m}, X ∪ Y ∪ Z ′],P, {X , Y , Z ′}, k′). Hence, by by the statement (a),
(A,P, {X ,Y , Z}, k) is a yes-instance.

Next we prove that (b) if (A,P, {X , Y , Z}, k) is a yes-instance, then the algorithm
will output YES. We show this using induction on |Y |.

The base case is when |Y | = 0, i.e., Y = ∅. This case is considered in Lines 2–8 of
Algorithm 5. Let B be a solution for (A,P, {X , Y , Z}, k). Since A[{1, . . . ,m}, X] =
B[{1, . . . ,m}, X], we have that A[{1, . . . ,m}, X] is a P-matrix. In particular, the
algorithm does not stop in Lines 3–4. If Z = ∅, then the algorithm returns YES in
Line 6. Notice that, when Z = ∅, A = A[{1, . . . ,m}, X] is a P-matrix, and hence A
is a solution. Now, consider the case Z ̸= ∅. Notice that because A[{1, . . . ,m}, X] =
B[{1, . . . ,m}, X] and B is a solution we have that

∑

i∈Z
min{dH (ai , a j) | j ∈ X} ≤

∑

i∈Z
dH (ai ,bi) ≤ k.

Hence, the algorithm returns YES in Line 6.
Now we consider the induction step. That is, we assume that |Y | > 0 and we the

statement (b) holds for sets Y ′ whose cardinality is less than that of Y . Let h∗ =
min{dH (ai ,bi) | i ∈ Y ∪ Z}. Let also i∗ ∈ Y ∪ Z be such that h∗ = dH (ai

∗
,bi

∗
).

123

Author's personal copy

526 F. V. Fomin et al.

We claim that Extend-P-Solution returns YES in the while loop in Lines 10–38 for
h = h∗ unless it does not return YES before.

Denote by Z∗ the set obtained from Z in Lines 11–15 and let k∗ the value
of k obtained in Lines 11–15 for h = h∗. By the choice of h∗, it follows that
(A[{1, . . . ,m}, X ∪ Y ∪ Z∗],P, {X , Y , Z}, k∗) is a yes-instance of Extendable
P-Matrix Approximation. If |Y | + |Z∗| ≤

√
k∗ log(p + k∗), we solve Extend-

ableP-Matrix Approximation for (A[{1, . . . ,m}, X∪Y∪Z∗],P, {X , Y , Z∗}, k∗)
directly using Lemma 12. Hence, the algorithm returns YES in Line 17.

So, now on, we assume that |Y | + |Z∗| >
√
k∗ log(p + k∗). Notice that for each

i ∈ Z∗, we have that dH (ai ,bi) > h∗. Hence,

k∗ ≥
∑

i∈Y∪Z∗
dH (ai ,bi) > h∗ · (|Y | + |Z∗|)

and h∗ < k∗/(|Y |+ |Z∗|) ≤
√
k∗/ log(p + k∗). Hence Lines 20–35 will be executed.

In these lines, we consider every i ∈ Y ∪ Z∗ and each vector âi ∈ {0, 1}m such
that dH (ai , âi) = h∗. In particular, we consider the execution of Lines 21–34, when
i = i∗ and âi

∗ = bi
∗
. Here, we have two cases. In the first case i∗ ∈ Y . Then,

(Â[{1, . . . ,m}, X ∪ Y ∪ Z∗],P, {X ∪ {i∗}, Y\{i∗}, Z∗}, k∗ − h∗) is a yes-instance,
where Â is obtained fromA by the replacing column ai

∗
by âi

∗ = bi
∗
. By the induction

hypothesis, we have that the algorithm returns YES for this branch in Lines 23-24.
In the second case i∗ ∈ Z∗. We know that âi

∗ = bi
∗
is a column in

B[{1, . . . ,m}, X ∪ Y]. We claim that âi
∗ = b j for some j ∈ Y . For the sake of

contradiction assume that j ∈ X . Then,

dH (ai
∗
, a j) ≤ dH (ai

∗
, âi

∗
)+ dH (âi

∗
, a j) (by the triangle inequality)

= h∗ + dH (âi
∗
, a j)

= h∗ + dH (b j , a j) (Because âi
∗ = bi

∗
)

= h∗ + 0 (Because j ∈ X)

Since dH (ai
∗
, a j) ≤ h∗, in the for loop in Lines 11–15, i∗ will be deleted from Z

and hence i∗ /∈ Z∗. This is a contradiction to the assumption that i∗ ∈ Z∗. So, now
we have that j ∈ Y . Then, (Â, X ∪ { j}, Y\{ j}, Z∗, k −dH (a j , âi

∗
)) is a yes-instance,

where Â is thematrix obtained fromA by replacing column a j by âi
∗
. By the induction

hypothesis, we have that the algorithm returns YES in Lines 27-34 for this value of j
in the for loop in these lines. This completes the correctness proof of the algorithm
Extend-P-Solution.

Running time Recall that the kernelization algorithm from Lemma 10 runs inO((p+
q + k)nm) time and it holds that m ≤ (max{k, p} + 1)(p+ k) and n ≤ (max{k, q} +
1)(q+k) after this phase. Lemma 11 runs in (q+k)O(q)(p+q+k)O(1) time, because
m ≤ (max{k, p}+1)(p+k) and n ≤ (max{k, q}+1)(q+k) and it outputs a collection
of at most (q + k)q instance of P-Matrix Approximation. Now we evaluate the
running time of Algorithm 5.

123

Author's personal copy

Parameterized low-rank binary matrix approximation 527

By Observation 5, Lines 3–4 can be done in 2O(p log p+q log q) · (nm)O(1)

time. Clearly, Lines 6-7 are executed in polynomial time. In the while loop in
Lines 10–38, we consider k + 1 values of h and for each h perform Lines 11–
37. Lines 11–15 take polynomial time. The steps in Lines 16–18 can be done in

2O(p(
√

k log(p+k)+log k)+p log p+q log q) · (nm)O(1) time by Lemma 12. In Lines 19–36,
we consider at most |Y |+|Z | ≤ q+k values of i in the for loop in Lines 20–35, and for
each i , consider all vectors âi ∈ {0, 1}m such that dH (ai , âi) = h ≤

√
k/ log(p + k).

Recall that after the preprocessing, we have that m ≤ (p + k)2. Hence, we have at

most (p+k)2
√

k/ log(p+k) vectors âi . The number of choices for j in Lines 28–33 is at
most q. This implies that in Lines 20–35 we have 2O(

√
k log(p+k)) recursive calls. On

each recursive call, we reduce the size of Y . It means that the depth of the recursion
is at most q. Then the total running time is

2O(p
√

k log(p+k)+q log
√

k log(p+k)+p log p+q log q+q log(q+k)) · (nm)O(1).

Since m ≤ (max{k, p} + 1)(p + k) and n ≤ (max{k, q} + 1)(q + k), the branching
algorithm runs in

2O(p
√

k log(p+k)+q log
√

k log(p+k)+p log p+q log q+q log(q+k))

time and after taking into account the kernelization algorithm and Lemma 11, the total
running time can be bounded from above by

2O(p
√

k log(p+k)+q log
√

k log(p+k)+p log p+q log q+q log(q+k)) · nm.

This competes the proof of the theorem. ⊓2

Note that the running time in Theorem 7 is asymmetric in p and q due to the fact that
we treat rows and columns in different way but, trivially, the instances (A,P, k) and
(Aᵀ,Pᵀ, k) of P-Matrix Approximation are equivalent. If p and q are assumed to
be constants, then P-Matrix Approximation is solvable in 2O(

√
k log k) · nm time.

Notice that we can invoke Theorem 7 to solve Low GF(2)- Rank Approxima-
tion as follows. We observe that (A, r , k) is a yes-instance of Low GF(2)- Rank
Approximation if and only if there is a p × q-matrix P of GF(2)-rank at most r
for p = min{m, 2r } and q = min{n, 2r } such that (A,P, k) is a yes-instance of P-
Matrix Approximation. A p×q-matrix P is of GF(2)-rank r if and only if it can be
represented as a product P = U ·V, whereU is p× r andV is r ×q binary matrix and
arithmetic operations are over GF(2). There are at most 2r2

r
different binary p × r -

matrices U, and at most 2r2
r
different binary r × q -matrices V. Thus there are at

most 22r2
r
candidate matrices P. For each such matrix P, we check whether (A,P, k)

is a yes-instance of P-Matrix Approximation by invoking Theorem 7. However
this approach gives a double exponential dependence in r , which is much worse the
bound provided by Theorem 6. Still, this approach is useful if we consider the variant
of Low GF(2)- Rank Approximation for Boolean matrices.

123

Author's personal copy

528 F. V. Fomin et al.

Let us remind that binary matrix A has the Boolean rank 1 if A = x ∧ yᵀ where
x ∈ {0, 1}m and y ∈ {0, 1}n are nonzero vectors. The Boolean rank of A is the
minimum integer r such that A = A(1) ∨ · · ·∨A(r) where A(1), . . . ,A(r) are matrices
of Boolean rank 1.

Theorem 8 Low Boolean- Rank Approximation admits an algorithm running in
time 2O(r2r

√
k log k) · nm.

Proof Let A be a Boolean m × n-matrix with the Boolean rank r ≥ 1. Then A =
A(1) ∨ . . .∨A(r) where A(1), . . . ,A(r) are matrices of Boolean rank 1. It implies that
A has at most 2r pairwise-distinct rows and at most 2r pairwise-distinct columns.
Hence, the Boolean rank of A is at most r if and only if there is a p × q-matrix P
of Boolean rank at most r for p = min{m, 2r } and q = min{n, 2r } such that A is a
P-matrix. Respectively, the Low Boolean- Rank Approximation problem can be
reformulated as follows: Decide whether there is a p × q-pattern matrix P with the
Boolean rank at most r and an m × n P-matrix B such that dH (A,B) ≤ k.

We generate all p × q-matrices P of Boolean rank at most r , and then for each
matrix P, we solve P-Matrix Approximation for the instance (A,P, k). We return
YES if we obtain at least one yes-instance of P-Matrix Approximation, and we
return NO otherwise.

By definition, the Boolean rank ofP is r if and only ifP = U∧V for a Boolean p×r
matrix U and a Boolean r × q matrix V. Since there are at most 2r2

r
p × r -matrices

(r × q-matrices respectively), we construct all the p× q-matrices P with the Boolean
rank at most r in 2O(r2r) time. By Theorem 7, the considered instances of P-Matrix
Approximation is solvable in 2O(r2r

√
k log k) · nm time. This implies that the total

running time is 2O(r2r
√
k log k) · nm. ⊓2

To conclude the section, we observe that we hardly can avoid the double expo-
nential dependence on r for Low Boolean- Rank Approximation. It was proved
by Chandran et al. (2016) that the Biclique Cover problem that asks, given a bipar-
tite graph G, whether the set of edges of G could be covered by at most r bicliques
(that is, complete bipartite graphs) cannot be solved in 22

o(r) · |V (G)|O(1) time, unless
theExponential Time Hypothesis (ETH) is false (we refer to Cygan et al. (2015) for the
introduction to the algorithmic lower bounds based on ETH). Since Biclique Cover
is equivalent to deciding whether the bipartite adjacency matrix of G has the Boolean
rank at most r , Low Boolean- Rank Approximation cannot be solved in time
22

o(r) · (nm)O(1) for k = 0 unless ETH fails. This implies the following proposition.

Proposition 3 For any computable function f , Low Boolean- Rank Approxima-
tion cannot be solved in 22

o(r)
f (k) · (nm)O(1) time unless ETH fails.

Proof Let (A, r , k) be an instance of Low Boolean- Rank Approximation. Con-
sider them×(k+1)n-matrixA∗ obtained fromA by taking k+1 copies of each column
of A. Observe that (A, r , k) is a yes-instance of Low Boolean- Rank Approxi-
mation if and only if (A∗, r , 0) is a yes-instance. Then any algorithm solving Low
Boolean- Rank Approximation in 22

o(r) · f (k) · (nm)O(1) time would imply that
Biclique Cover can be solved in 22

o(r) ·|V (G)|O(1) time contradictingETHbyChan-
dran et al. (2016). ⊓2

123

Author's personal copy

Parameterized low-rank binary matrix approximation 529

8 Conclusion and open problems

In this paper we provide a number of parameterized algorithms for a number of
binary matrix-approximation problems. Our results uncover some parts of the com-
plexity landscape of these fascinating problems. We hope that our work will facilitate
further investigation of this important and exciting area. We conclude with the follow-
ing concrete open problems about bivariate complexity of Binary r -Means, Low
GF(2)- Rank Approximation, and Low Boolean- Rank Approximation.

We have shown that Binary r -Means is solvable in 2O(k log k) · (nm)O(1) time. A
natural question is whether this running time is optimal. While the lower bound of the
kind 2o(k) · (nm)O(1) or 2o(k log k) · (nm)O(1) seems to be most plausible here, we do
not know any strong argument against, say a 2o(k) · (nm)O(1) time algorithm. At least
for the number of distinct columns r ∈ O(k1−ε)with ε > 0, we have a subexponential
in k algorithm, so maybe we can solve the problem in subexponential in k time for
any value of r?

For Low GF(2)- Rank Approximation, we have an algorithm solving the prob-
lem in 2O(r ·√k log rk)(nm)O(1) time. Here, shaving off the

√
log k factor in the exponent

seems to be a reasonable thing. However, we do not know how to do it even at the
cost of a worse dependence in r . In other words, could the problem be solvable in
2O(f (r)·

√
k)(nm)O(1) time for some function f ? On the other hand, we also do not

know how to rule out algorithms running in 2o(r)·o(k)(nm)O(1) time.
For Low Boolean- Rank Approximation, how far is our upper bound

2O(r2r ·√k log k)(nm)O(1) from the optimal? For example, we know that for any function
f , the solvability of the problem in 22

o(r)
f (k)(nm)O(1) time refutes ETH. Could we

rule out any 2o(
√
k) f (r)(nm)O(1) algorithm?

Acknowledgements We thank Daniel Lokshtanov, SyedMohammadMeesum and Saket Saurabh for help-
ful discussions on the topic of the paper. We also are very grateful to the anonymous reviewers whose
suggestions helped us to improve our results.

Funding The research leading to these results have been supported by the Research Council of Norway via
the projects “CLASSIS” (grant 249994) and “MULTIVAL” (grant 263317).

References

Agarwal PK, Har-Peled S, Varadarajan KR (2004) Approximating extent measures of points. J ACM
51(4):606–635

Aho AV, Ullman JD, Yannakakis M (1983) On notions of information transfer in VLSI circuits. In: Pro-
ceedings of the 15th annual ACM symposium on theory of computing (STOC), ACM, pp 133–139

Alon N, Sudakov B (1999) On two segmentation problems. J Algorithms 33(1):173–184
Alon N, Yuster R, Zwick U (1995) Color-coding. J ACM 42(4):844–856
Arora S, Ge R, Kannan R, Moitra A (2012) Computing a nonnegative matrix factorization—provably. In:

Proceedings of the 44th annual ACM symposium on theory of computing (STOC), ACM, pp 145–162
Badoiu M, Har-Peled S, Indyk P (2002) Approximate clustering via core-sets. In: Proceedings of the 34th

annual ACM symposium on theory of computing (STOC). ACM, pp 250–257
Ban F, Bhattiprolu V, Bringmann K, Kolev P, Lee E, Woodruff DP (2019) A PTAS for ℓp-low rank approxi-

mation. In: Proceedings of the thirtieth annual ACM-SIAM symposium on discrete algorithms, SODA
2019, San Diego, California, USA, 6–9 Jan 2019. SIAM, pp 747–766

123

Author's personal copy

530 F. V. Fomin et al.

Bartl E, Belohlávek R, Konecny J (2010) Optimal decompositions of matrices with grades into binary and
graded matrices. Ann Math Artif Intell 59(2):151–167

Basu A, Dinitz M, Li X (2016) Computing approximate PSD factorizations. CoRR arXiv:1602.07351
Belohlávek R, Vychodil V (2010) Discovery of optimal factors in binary data via a novel method of matrix

decomposition. J Comput Syst Sci 76(1):3–20
Bodlaender HL, Downey RG, Fellows MR, Hermelin D (2009) On problems without polynomial kernels.

J Comput Syst Sci 75(8):423–434
Boucher C, Lo C, Lokshtanov D (2011) Outlier detection for DNA fragment assembly. CoRR

arXiv:1111.0376
Bringmann K, Kolev P, Woodruff DP (2017) Approximation algorithms for ℓ0-low rank approximation. In:

Advances in neural information processing systems 30 (NIPS), pp 6651–6662
Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):11:1–11:37
Chandran LS, Issac D, Karrenbauer A (2016) On the parameterized complexity of biclique cover and

partition. In: Proceedings of the 11th international symposiumon parameterized and exact computation
(IPEC), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, LIPIcs, vol 63, pp 11:1–11:13

ChandrasekaranV, Sanghavi S, Parrilo PA,WillskyAS (2011) Rank-sparsity incoherence formatrix decom-
position. SIAM J Optim 21(2):572–596

Cichocki A, Zdunek R, Phan AH, Si Amari (2009) Nonnegative matrix and tensor factorizations: applica-
tions to exploratory multi-way data analysis and blind source separation. Wiley, Hoboken

Cilibrasi R, van Iersel L, Kelk S, Tromp J (2007) The complexity of the single individual SNP haplotyping
problem. Algorithmica 49(1):13–36

Clarkson KL, Woodruff DP (2015) Input sparsity and hardness for robust subspace approximation. In:
Proceedings of the 56th annual symposium on Foundations of Computer Science (FOCS). IEEE
Computer Society, pp 310–329

Cohen JE, Rothblum UG (1993) Nonnegative ranks, decompositions, and factorizations of nonnegative
matrices. Linear Algebra Appl 190:149–168

Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015)
Parameterized algorithms. Springer, Berlin

Dan C, Hansen KA, Jiang H,Wang L, Zhou Y (2015) On low rank approximation of binary matrices. CoRR
arXiv:1511.01699

Downey RG, Fellows MR (1992) Fixed-parameter tractability and completeness. In: Proceedings of the
21st Manitoba conference on numerical mathematics and computing Congressus Numerantium, vol
87, pp 161–178

Downey RG, Fellows MR (2013) Fundamentals of parameterized complexity. Texts in computer science.
Springer, Berlin

Drange PG, Reidl F, Villaamil FS, Sikdar S (2015) Fast biclustering by dual parameterization. CoRR
arXiv:1507.08158

Feige U (2014) NP-hardness of hypercube 2-segmentation. CoRR arXiv:1411.0821
Fiorini S, Massar S, Pokutta S, Tiwary HR, de Wolf R (2015) Exponential lower bounds for polytopes in

combinatorial optimization. J ACM 62(2):17
Fomin FV, Kratsch S, Pilipczuk M, Pilipczuk M, Villanger Y (2014) Tight bounds for parameterized

complexity of cluster editing with a small number of clusters. J Comput Syst Sci 80(7):1430–1447
Fomin FV,Golovach PA, LokshtanovD, Panolan F, Saurabh S (2018a)Approximation schemes for low-rank

binary matrix approximation problems. CoRR arXiv:1807.07156
Fomin FV, Lokshtanov D, Meesum SM, Saurabh S, Zehavi M (2018b) Matrix rigidity from the viewpoint

of parameterized complexity. SIAM J Discrete Math 32(2):966–985
Fomin FV, Lokshtanov D, Saurabh S, Zehavi M (2019) Kernelization. Theory of parameterized preprocess-

ing. Cambridge University Press, Cambridge
Fu Y (2014) Low-rank and sparse modeling for visual analysis, 1st edn. Springer, Berlin
Geerts F, Goethals B, Mielikäinen T (2004) Tiling databases. In: Proceedings of the 7th international

conference on discovery science, (DS), pp 278–289
Gillis N, Vavasis SA (2015) On the complexity of robust PCA and ℓ1-norm low-rank matrix approximation.

CoRR arXiv:1509.09236
Gramm J, Guo J, Hüffner F, Niedermeier R (2008) Data reduction and exact algorithms for clique cover.

ACM J Exp Algorithmics. https://doi.org/10.1145/1412228.1412236
Gregory DA, Pullman NJ, Jones KF, Lundgren JR (1991) Biclique coverings of regular bigraphs and

minimum semiring ranks of regular matrices. J Comb Theory Ser B 51(1):73–89

123

Author's personal copy

http://arxiv.org/abs/1602.07351
http://arxiv.org/abs/1111.0376
http://arxiv.org/abs/1511.01699
http://arxiv.org/abs/1507.08158
http://arxiv.org/abs/1411.0821
http://arxiv.org/abs/1807.07156
http://arxiv.org/abs/1509.09236
https://doi.org/10.1145/1412228.1412236

Parameterized low-rank binary matrix approximation 531

Grigoriev D (1976) Using the notions of separability and independence for proving the lower bounds on the
circuit complexity (in Russian). Notes of the Leningrad branch of the Steklov Mathematical Institute,
Nauka

Grigoriev D (1980) Using the notions of separability and independence for proving the lower bounds on
the circuit complexity. J Sov Math 14(5):1450–1456

Gutch HW, Gruber P, Yeredor A, Theis FJ (2012) ICA over finite fields—separability and algorithms. Sig
Process 92(8):1796–1808

Guterman AE (2008) Rank and determinant functions for matrices over semirings. In: Surveys in contem-
porary mathematics, LondonMathematical Society lecture note series, vol 347. Cambridge University
Press, Cambridge, pp 1–33

InabaM,KatohN, ImaiH (1994)Applications ofweightedVoronoi diagrams and randomization to variance-
based k-clustering. In: Proceedings of the 10th annual symposium on computational geometry. ACM,
pp 332–339

Jiang P, Heath MT (2013) Mining discrete patterns via binary matrix factorization. In: ICDM workshops.
IEEE Computer Society, pp 1129–1136

Jiang P, Peng J, Heath M, Yang R (2014) A clustering approach to constrained binary matrix factorization.
Springer, Berlin, pp 281–303

Kannan R, Vempala S (2009) Spectral algorithms. Found Trends Theor Comput Sci 4(3–4):157–288
Kleinberg J, Papadimitriou C, Raghavan P (2004) Segmentation problems. J ACM 51(2):263–280
Koyutürk M, Grama A (2003) Proximus: a framework for analyzing very high dimensional discrete-

attributed datasets. In: Proceedings of the 9th ACM SIGKDD international conference on knowledge
discovery and data mining (KDD). ACM, New York, pp 147–156

Kumar A, Sabharwal Y, Sen S (2010) Linear-time approximation schemes for clustering problems in any
dimensions. J ACM 57(2):5:1–5:32

Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature
401(6755):788–791

Lokam SV (2009) Complexity lower bounds using linear algebra. Found Trends Theor Comput Sci 4:1–155
Lovász L, Saks ME (1988) Lattices, möbius functions and communication complexity. In: Proceedings of

the 29th annual symposium on Foundations of Computer Science (FOCS). IEEE, pp 81–90
Lu H, Vaidya J, Atluri V (2008) Optimal boolean matrix decomposition: application to role engineering.

In: Proceedings of the 24th international conference on data engineering, (ICDE), pp 297–306
Lu H, Vaidya J, Atluri V, Shin H, Jiang L (2011) Weighted rank-one binary matrix factorization. In:

Proceedings of the eleventh SIAM international conference on data mining, SDM 2011, 28–30 Apr
2011, Mesa, Arizona, USA. SIAM/Omnipress, pp 283–294

Lu H, Vaidya J, Atluri V, Hong Y (2012) Constraint-aware role mining via extended boolean matrix decom-
position. IEEE Trans Dependable Secur Comput 9(5):655–669

Mahoney MW (2011) Randomized algorithms for matrices and data. Found Trends Mach Learn 3(2):123–
224

Marx D (2008) Closest substring problems with small distances. SIAM J Comput 38(4):1382–1410
Meesum SM, Saurabh S (2016) Rank reduction of directed graphs by vertex and edge deletions. In: Pro-

ceedings of the 12th Latin American symposium on (LATIN), lecture notes in computer science, vol
9644. Springer, pp 619–633

Meesum SM, Misra P, Saurabh S (2016) Reducing rank of the adjacency matrix by graph modification.
Theoret Comput Sci 654:70–79

Miettinen P, Vreeken J (2011) Model order selection for boolean matrix factorization. In: Proceedings of
the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD).
ACM, pp 51–59

Miettinen P, Mielikäinen T, Gionis A, Das G, Mannila H (2008) The discrete basis problem. IEEE Trans
Knowl Data Eng 20(10):1348–1362

Mitra B, Sural S, Vaidya J, Atluri V (2016) A survey of role mining. ACM Comput Surv 48(4):50:1–50:37
Moitra A (2016) An almost optimal algorithm for computing nonnegative rank. SIAM JComput 45(1):156–

173
Naik GR (2016) Non-negative matrix factorization techniques. Springer, Berlin
Naor M, Schulman LJ, Srinivasan A (1995) Splitters and near-optimal derandomization. In: Proceedings

of the 36th annual symposium on Foundations of Computer Science (FOCS). IEEE, pp 182–191
Orlin J (1977) Contentment in graph theory: covering graphs with cliques. Nederl AkadWetensch Proc Ser

A 80=Indag Math 39(5):406–424

123

Author's personal copy

532 F. V. Fomin et al.

Ostrovsky R, Rabani Y (2002) Polynomial-time approximation schemes for geometric min-sum median
clustering. J ACM 49(2):139–156

Painsky A, Rosset S, Feder M (2016) Generalized independent component analysis over finite alphabets.
IEEE Trans Inf Theory 62(2):1038–1053

Razborov AA (1989) On rigid matrices. Manuscript in Russian
Razenshteyn IP, Song Z,Woodruff DP (2016)Weighted low rank approximations with provable guarantees.

In: Proceedings of the 48th annual ACM symposium on theory of computing (STOC). ACM, pp 250–
263

Shen BH, Ji S, Ye J (2009) Mining discrete patterns via binary matrix factorization. In: Proceedings of
the 15th ACM SIGKDD international conference on knowledge discovery and data mining (KDD).
ACM, New York, pp 757–766

Shi Z, Wang L, Shi L (2014) Approximation method to rank-one binary matrix factorization. In: 2014 IEEE
international conference on automation science and engineering, CASE 2014, New Taipei, Taiwan,
18–22 Aug 2014. IEEE, pp 800–805

Vaidya J (2012) Boolean matrix decomposition problem: theory, variations and applications to data engi-
neering. In: Proceedings of the 28th IEEE international conference on data engineering (ICDE). IEEE
Computer Society, pp 1222–1224

Vaidya J, Atluri V, Guo Q (2007) The role mining problem: finding a minimal descriptive set of roles. In:
Proceedings of the 12th ACM symposium on access control models and (SACMAT), pp 175–184

Valiant LG (1977) Graph-theoretic arguments in low-level complexity. In: Mathematical foundations of
computer science (MFCS), Lecture Notes in Computer Science, vol 53. Springer, pp 162–176

Woodruff DP (2014) Sketching as a tool for numerical linear algebra. Found Trends Theor Comput Sci
10(1–2):1–157

Wright J, Ganesh A, Rao SR, Peng Y, Ma Y (2009) Robust principal component analysis: exact recovery
of corrupted low-rank matrices via convex optimization. In: Proceedings of 23rd annual conference
on neural information processing systems (NIPS). Curran Associates, Inc., pp 2080–2088

Wulff S, Urner R, Ben-David S (2013) Monochromatic bi-clustering. In: Proceedings of the 30th inter-
national conference on machine learning, (ICML), JMLR.org, JMLR workshop and conference
proceedings, vol 28, pp 145–153

Yannakakis M (1991) Expressing combinatorial optimization problems by linear programs. J Comput Syst
Sci 43(3):441–466

Yeredor A (2011) Independent component analysis over Galois fields of prime order. IEEE Trans Inf Theory
57(8):5342–5359

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Author's personal copy

	Parameterized low-rank binary matrix approximation
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our results and methods

	2 Preliminaries
	3 Binary r-Means parameterized by k
	4 Kernelization for Binary r-Means
	4.1 Polynomial kernel with parameter k+r
	4.2 Ruling out polynomial kernel with parameter k

	5 Subexponential algorithms for Binary r-Means
	6 Subexponential algorithm for Low GF(2)-Rank Approximation
	7 Subexponential algorithms for P-Matrix Approximation and Low Boolean-Rank Approximation
	8 Conclusion and open problems
	Acknowledgements
	References

