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For a graph G , a set D ⊆ V (G) is called a [1, j]-dominating set if every vertex in V (G) \ D
has at least one and at most j neighbors in D . A set D ⊆ V (G) is called a [1, j]-total 
dominating set if every vertex in V (G) has at least one and at most j neighbors in D . In 
the [1, j]-(Total) Dominating Set problem we are given a graph G and a positive integer k. 
The objective is to test whether there exists a [1, j]-(total) dominating set of size at most k. 
The [1, j]-Dominating Set problem is known to be NP-complete, even for restricted classes 
of graphs such as chordal and planar graphs, but polynomial-time solvable on split graphs. 
The [1, 2]-Total Dominating Set problem is known to be NP-complete, even for bipartite 
graphs. As both problems generalize the Dominating Set problem, both are W[1]-hard 
when parameterized by solution size. In this work, we study the aforementioned problems 
on various graph classes from the perspective of parameterized complexity and prove the 
following results:

• [1, j]-Dominating Set parameterized by solution size is W[1]-hard on d-degenerate 
graphs for d = j + 1.

• [1, j]-Dominating Set parameterized by solution size is FPT on nowhere dense graphs.
• The known algorithm for [1, j]-Dominating Set on split graphs is optimal under the 

Strong Exponential Time Hypothesis (SETH).
• Assuming SETH, we provide a lower bound for the running time of any algorithm 

solving the [1, 2]-Total Dominating Set problem parameterized by pathwidth.
• Finally, we study another variant of Dominating Set, called Restrained Dominating 

Set, that asks if there is a dominating set D of G of size at most k such that no vertex 
outside of D has all of its neighbors in D . We prove this variant is W[1]-hard even on 
3-degenerate graphs.
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Fig. 1. Inclusion relations among well-studied classes of sparse graphs [12].

1. Introduction

A dominating set of a graph G is a subset D of vertices such that each vertex in V (G) \ D is adjacent to at least one 
vertex in D . Various extensions of domination, such as independent, total, efficient, and perfect domination, have been 
introduced and widely studied both combinatorially and algorithmically. A discussion of these extensions can be found in 
[1]. A [1, j]-dominating set, as first defined in [2], is a set that dominates the vertices of the graph but every vertex outside 
of the set must have at most j neighbors in it. In [2], it was shown that a minimum [1, 2]-dominating set and a minimum 
dominating set are of the same size in several classes of graphs such as claw-free graphs, P4-free graphs, and caterpillars. 
It was also shown that the problem is NP-complete, even for bipartite graphs. In the [1, j]-Dominating Set problem the 
input is a graph G and a positive integer k. The objective is to test whether there is a [1, j]-dominating set of size at 
most k. The authors in [2] raised several open problems, including whether restricting to specific classes of graphs leads to 
strictly better upper bounds for the size of [1, j]-dominating sets and whether [1, j]-Dominating Set is efficiently solvable 
on trees. In [3] the first question was answered negatively for the classes of planar, bipartite, and triangle-free graphs in 
which the smallest [1, 2]-dominating set is the entire set of vertices. In [4] the second question was answered positively via 
a linear-time algorithm. In [5], the [1, j]-Dominating Set problem was shown to be NP-hard even for chordal and planar 
graphs. However, for a constant j, a polynomial-time algorithm running in time O (n j p(lg n)) where p is a polynomial 
function, was obtained for n-vertex split graphs [5]. This is in contrast to the classic Dominating Set problem which is 
NP-hard for this class of graphs.

The Dominating Set problem has been widely studied in the realm of parameterized complexity. In general, finding 
a dominating set of size k is a canonical W[2]-complete problem and therefore, unlikely to admit an FPT algorithm [6]. 
Moreover, the problem remains W[2]-complete for split and bipartite graphs [7]. Nevertheless, there are interesting classes 
of sparse graphs for which the Dominating Set problem admits FPT algorithms. For example, there is an O ∗(3tw)-time1

algorithm for graphs of treewidth at most tw [8,9], and FPT algorithms for nowhere dense graphs [10] and d-degenerate
graphs [11]. Also, an FPT algorithm was reported in [12] for t-biclique-free graphs, i.e., graphs that do not contain Kt,t as a 
subgraph. To the best of our knowledge, this is the largest class of graphs for which the Dominating Set problem is known 
to be fixed-parameter tractable; d-degenerate and nowhere dense graphs are subclasses of t-biclique-free graphs. Fig. 1
shows an inclusion hierarchy among the most commonly studied classes of sparse graphs.

Another variant of dominating sets and [1, j]-dominating sets is [1, j]-total dominating sets. For a graph G , a subset 
D ⊆ V (G) is called a [1, j]-total dominating set if 1 ≤ |N(v) ∩ D| ≤ j for all v ∈ V (G), where N(v) denotes the open 
neighborhood of v in G . In the [1, j]-Total Dominating Set problem we are given a graph G and a positive integer k. 

1 We sometimes use the modified big-Oh notation O ∗ that suppresses all factors bounded polynomially in the input size.
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The objective is to check whether G admits a [1, j]-total dominating set of size at most k. [1, 2]-Total Dominating Set

is NP-complete even for bipartite graphs [13]. Sharp upper bounds on the [1, 2]-total domination number of a graph are 
investigated in [3,14]. Using a result of Rooij et al. [8], we can show that [1, j]-Dominating Set and [1, j]-Total Dominating 
Set are solvable in time O ∗(( j + 2)tw) and O ∗((2 j + 2)tw), respectively, on graphs of treewidth at most tw. A third variant 
of domination, called restrained domination was introduced in [15]. In the Restrained Dominating Set problem, the input is 
a graph G and a positive integer k. The objective is to test whether there is a dominating set D of size at most k such that 
for any v ∈ V (G) \ D , v is adjacent to a vertex in V (G) \ D . In other words, a set D ⊆ V of a graph G is called a restrained 
dominating set if every vertex not in D is adjacent to a vertex in D and a vertex in V \ D .

Our Contribution. In this paper, we study [1, j]-Dominating Set, [1, j]-Total Dominating Set, and Restrained Domi-

nating Set from the parameterized complexity perspective. We prove the following results.

• For any ε > 0, there is no algorithm with running time O (n j−ε) for [1, j]-Dominating Set on split graphs assuming the 
Strong Exponential Time Hypothesis (SETH).

• For the case of d-degenerate graphs, we tighten the complexity results and show that [1, j]-Dominating Set is 
W[1]-hard for d = j + 1. As [1, j]-Dominating Set generalizes Dominating Set, the class of degenerate graphs is one 
example where the latter problem is “easy” (under the parameterized complexity framework) while the former (gen-
eralized) problem is hard. This result also implies that [1, j]-Dominating Set is W[1]-hard on classes of biclique-free 
graphs, the largest class of graphs for which the Dominating Set problem is known to be fixed-parameter tractable.

• [1, j]-Dominating Set is FPT on classes of nowhere dense graphs.
• There is no algorithm for [1, 2]-Total Dominating Set running in time O ∗((4 − ε)pw) assuming SETH, where pw is the 

pathwidth of the input graph.
• Restrained Dominating Set is W[1]-hard even on 3-degenerate graphs.

We begin by defining some basic terminology and notation in Section 2. Then the next sections each address one of the 
results mentioned above.

2. Preliminaries

Graphs. We assume G is a simple graph with vertex set V (G) and edge set E(G). For brevity, we often denote these 
sets by V and E . We let n = |V (G)| denote the order of G . For a vertex v ∈ V , the open neighborhood of v , denoted by 
N(v), is defined as {u : {u, v} ∈ E} and the closed neighborhood N[v] is defined as N(v) ∪ {v}. For a set S ⊆ V , we use N(S)

and N[S] to denote the open and closed neighborhood of S , respectively. That is, N[S] = ⋃
v∈S N[v] and N(S) = N[S] \ S . 

For a set U ⊆ V , we use G[U ] to denote the subgraph of G induced on U .
A tree decomposition of a graph G is a tree T in which each vertex x ∈ T has an assigned set of vertices Bx ⊆ V (G)

(called a bag) which satisfies the following properties:

(i)
⋃

x∈T Bx = V (G);
(ii) For any {u, v} ∈ E , there exists x ∈ V (T ) such that u, v ∈ Bx;

(iii) For any v ∈ V (G), the subtree of T induced on {x ∈ V (T ) : v ∈ Bx} is connected.

The width of a tree decomposition T is maxx∈V (T )(|Bx| − 1). The treewidth of G , denoted by t w(G), is the minimum 
width over all tree decompositions of G . The pathwidth of G , denoted by pw(G), is the minimum width over all tree 
decompositions T of G , where T is a path.

Parameterized complexity. We now review some necessary concepts from parameterized complexity. For more details, 
we refer the reader to [16,17]. Given a finite alphabet �, a parameterization of �∗ is a function p : �∗ →N . A parameterized 
language L is a subset of {(x, k) | x ∈ �∗ ∧ k = p(x)}. Here k is called the parameter. A parameterized language L ⊆ �∗ ×N
is called fixed-parameter tractable (FPT) if there exists an algorithm A (called an FPT algorithm) and a computable function 
f : N → N such that given (x, k) ∈ �∗ ×N , the algorithm A correctly decides whether (x, k) ∈ L in time f (k) · |(x, k)|O (1) . 
The class of all fixed-parameter tractable problems is denoted by FPT.

Definition 2.1. Let L and L′ be two parameterized languages with parameterization functions p and p′ , respectively. An FPT 
reduction from L to L′ is a mapping ρ : �∗ → �∗ such that the following holds.

• For all x ∈ �∗ , (x, p(x)) ∈ L if and only if (ρ(x), p′(ρ(x))) ∈ L′ .
• There exists a computable function g :N →N such that for all x ∈ �∗ , p′(ρ(x)) ≤ g(p(x)).
• ρ is computable in FPT time, i.e., there exists a computable function f such that ρ(x) is computable in time O ( f (p(x)) ·

|x|O (1)).
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Fig. 2. Constructed Split Graph.

To classify problems that are not FPT, Downey and Fellows [17] introduced the W-hierarchy. The hierarchy consists of 
complexity class W[t] for every integer t ∈ N such that W [t] ⊆ W [t + 1], for all t . More generally, FPT ⊆ W[1] ⊆ W[2] ⊆
· · · ⊆ W[t]. For our purposes, it is sufficient to note that these classes are closed under FPT reductions.

ETH and SETH. For q ≥ 3, let δq be the infimum of the set of constants c for which there exists an algorithm 
solving q-SAT with n variables and m clauses in time 2cn · mO (1) . The Exponential-Time Hypothesis (ETH) and the Strong 
Exponential-Time Hypothesis (SETH) are then formally defined as follows. ETH conjectures that δ3 > 0 and SETH conjectures 
that limq→∞ δq = 1. In other words, SETH conjectures that for all 0 < ε < 1, there exists a (large) q = q(ε) such that q-SAT 
cannot be solved in time O (2(1−ε)n), where n is the number of variables in the input formula.

3. Split graphs

A graph G is called a split graph if its vertices can be partitioned into V 1 
 V 2 such that G[V 1] is a complete graph 
and G[V 2] is an empty graph (i.e., V 2 is an independent set in G). Several domination-like problems such as domination, 
total domination, and k-tuple domination are known to be NP-complete even on split graphs. On the other hand, there is 
an n j · (lg n)O (1)-time algorithm for [1, j]-Dominating Set on split graphs [5]. In this section, we prove that this is optimal, 
in the sense that one cannot obtain an O (n j−ε ) algorithm for [1, j]-Dominating Set on split graphs unless SETH fails.

The reduction. Given an instance I = C1 ∧ C2 ∧ . . .∧ Cm of q-SAT over the set X = {x1, . . . , xn} of variables, we construct 
a graph G I as follows.

• We partition the set X into j subsets X1, . . . , X j of size at most �n/ j�.
• For each Xi we add a set Si of 2|Xi | vertices to the graph, each corresponding to one possible valuation of the variables 

in Xi . We also add two distinguished vertices ui and vi and connect them to all of Si .
• We connect all the vertices in 

⋃ j
i=1 Si . That is 

⋃ j
i=1 Si forms a clique in G I .

• For every clause Ci , we add a vertex ci and connect it to every vertex w ∈ S j where the valuation corresponding to w
satisfies Ci .

This completes the construction of G I . See Fig. 2 for an illustration. Our reduction algorithm will output the instance (G I , j)
of [1, j]-Dominating Set. We now proceed to proving the correctness of the reduction.

Remark 3.1. The graph G I is a split graph.

Lemma 3.2. If I is satisfiable then G I has a [1, j]-dominating set of size j.

Proof. Take one satisfying valuation of I and let s1 ∈ S1, s2 ∈ S2, . . . , s j ∈ S j be the vertices of G I that correspond to this 
valuation. We claim that S = {s1, s2, . . . , s j} is a [1, j]-dominating set. Every vertex in any of the Si ’s is dominated by all 
of S , every {ui, vi} pair is dominated only by the corresponding si and every ci is dominated by a non-empty subset of 
S , i.e., the vertices whose corresponding valuation forces satisfaction of Ci . Given that |S| = j, there can be at most j such 
vertices. �
Lemma 3.3. If G I has a [1, j]-dominating set of size j then I is satisfiable.

Proof. First note that any dominating set of G I of size j is also a [1, j]-dominating set. Let S be a dominating set of size 
at most j (and hence a [1, j]-dominating set) in G I . Since {N[ui] : i ∈ {1, . . . , j}} are pairwise vertex disjoint we have that 
|S| = j and |S ∩ N[ui]| = 1 for all i ∈ {1, . . . , j}. Moreover, since N(ui) = N(vi), we conclude that S ⊆ (

⋃ j Si). Consider 
i=1



M. Alambardar Meybodi et al. / Theoretical Computer Science 804 (2020) 207–218 211
Fig. 3. Reducing the Multicolored Independent Set problem to the [1, j]-Dominating Set problem.

the valuation of variables in X that corresponds to the vertices in S . This valuation satisfies every Ci , because S dominates 
every ci . �
Theorem 3.4. For any ε < 1 and constant j, there is no O (n j−ε) time algorithm for [1, j]-Dominating Set on split graphs unless 
SETH fails.

Proof. For the sake of contradiction assume that there is an O (n j−ε ) time algorithm A for [1, j]-Dominating Set on split 
graphs. Then we claim that SETH is false. Let ε′ = (1 − ε

j ). Let q = q(ε′) be the constant defined in the SETH conjecture. 
Given a q-SAT instance I we construct the instance (G I , j) as mentioned in the reduction. By Lemmas 3.2 and 3.3 we know 
that I is satisfiable if and only if (G I , j) is a yes-instance. Therefore, we use algorithm A to solve q-SAT. Now consider the 
running time for solving q-SAT using A. The construction of (G I , j) takes time 2�n/ j� ·nO (1) and the number of vertices in G I
is at most O (2 j +m + j2�n/ j�) = O (2�n/ j� ·nO (1)). Thus the algorithm A on instance (G I , j) takes time O (2�n/ j�( j−ε) ·nO (1)) =
O (2(n/ j+( j−1))( j−ε) · nO (1)) = O (2(n/ j)( j−ε) · nO (1)) = O (2n(1−ε/ j) · nO (1)) = O (2ε′n · nO (1)). This refutes SETH and the proof of 
the theorem is complete. �
4. Degenerate graphs

A graph G is d-degenerate if every subgraph of G contains a vertex of degree at most d. Equivalently, a graph G is 
d-degenerate if and only if there exists an elimination ordering on its vertices such that every vertex has at most d neighbors 
appearing later in the ordering. In this section we prove the following result.

Theorem 4.1. [1, j]-Dominating Set parameterized by solution size is W[1]-hard on graphs of degeneracy j + 1.

The following parameterized problem, proved to be W[1]-hard in [18], is used in our proof. In the Multicolored Inde-

pendent Set problem, we are given a graph G and a proper vertex coloring of V (G) with k colors. The parameter k is equal 
to the number of colors and the goal is to find a k-sized independent set in G containing exactly one vertex from each color 
class (such independents sets are called k-colored independent sets). We note that the coloring of G need not be proper but 
the given definition of the problem is more suitable for our argumentation. We shall reduce the Multicolored Independent 
Set problem (with parameter k) to the problem of finding a [1, j]-dominating set of size at most 2k + j − 1 in a graph of 
degeneracy j + 1.

The reduction. Let k be an integer and G be a proper k-vertex colored graph such that its vertices are partitioned into 
k groups V 1, V 2, . . . , Vk , where each group corresponds to an independent set of the same color. Now we construct an 
instance (G ′, 2k + j − 1) of [1, j]-Dominating Set as follows. For every edge e = {u, v} ∈ E(G), we replace it by a path uve v , 
where ve is a new vertex corresponding to the edge e. Let S E = {ve : e ∈ E(G)}. For each group V i , 1 ≤ i ≤ k, we build a 
K1,2k+ j graph centered at a new vertex ui . We also add new vertices xi

1 and xi
2 and connect the vertices ui, xi

1 and xi
2 to the 

vertices of V i . Moreover, we build j − 1 star graphs K1,2k+ j centered at vertices r1, . . . , r j−1 and make r1, . . . , r j−1 adjacent 
to the vertices in S E . This concludes the construction of G ′ . See Fig. 3 for an illustration. Now we output (G ′, 2k + j − 1) as 
an instance of [1, j]-Dominating Set. Clearly our reduction takes time polynomial in |V (G)| and k.

Lemma 4.2. The constructed graph G ′ has degeneracy j + 1.
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Proof. The proof is by constructing a degeneracy ordering, which is an ordering on the vertices that we get from repeat-
edly removing a vertex of minimum degree in the remaining subgraph. First, we put all of the degree-one vertices in the 
degeneracy ordering and delete them. In the remaining subgraph, we select all the vertices in S E and put them in ordering, 
because every vertex in S E has degree j + 1 in G ′ . After removing all vertices of S E from the graph, each vertex in any 
block V i , for 1 ≤ i ≤ k, has degree three because after removing S E such vertices are only connected to xi

1, xi
2, and ui . So, 

next we can put the vertices 
⋃k

i=1 V i in the ordering. Finally we add all the remaining vertices. �
Lemmas 4.2, 4.3, and 4.4 below, imply Theorem 4.1.

Lemma 4.3. If there exists a k-colored independent set in G then there exists a [1, j]-dominating set of size 2k + j − 1 in G ′ .

Proof. Suppose that S is a k-colored independent set in G . We claim that D = S ∪ {ui : i ∈ {1, . . . , k}} ∪ {ri : i ∈ {1, . . . , j −
1}} is a [1, j]-dominating set of G ′ . Clearly, the size of D is 2k + j − 1. Each vertex v j ∈ V i is dominated only by ui in 
D . Moreover, each pair of xi

1, x
i
2 vertices is dominated by the single vertex in V i ∩ S . All the vertices in S E are dominated 

by {ri : i ∈ {1, . . . , j − 1} and by at most one vertex from S (since S is an independent set). Moreover all the degree one 
vertices in G ′ are dominated exactly once by D . �
Lemma 4.4. If there exists a [1, j]-dominating set of size 2k + j − 1 in G ′ then there exists a k-colored independent set in G.

Proof. Let D be a [1, j]-dominating set of size at most 2k + j − 1. First, note that since |D| ≤ 2k + j − 1, we have that 
{r1, . . . , r j−1} ∪ {ui, . . . , uk} ⊆ D (because each ui and ri is connected to 2k + j degree one vertices). We claim that S =
D \ ({r1, . . . , r j−1} ∪ {ui, . . . , uk}) is a k-colored independent set in G . Clearly |S| ≤ k. Also, to dominate all the vertices xi

1, x
2
i

for 1 ≤ i ≤ k, we should have exactly one vertex from each V i . Therefore S ⊆ V (G) and |S ∩ V i | = 1 for all 1 ≤ i ≤ k. Suppose 
u, v ∈ S is adjacent in G . Then the vertex ve , where e = {u, v} is dominated j + 1 times by D (because ve is adjacent to 
{u, v} and {r1, . . . , r j−1}). Therefore, since D is a [1, j]-dominating set in G ′ , S is a k-colored independent set in G This 
completes the proof of the lemma. �
5. Nowhere dense graphs

The notion of nowhere denseness was introduced by Nešetřil and Ossona de Mendez [19,20] as a general model of 
uniform sparseness of graphs. Many familiar classes of sparse graphs, like planar graphs, graphs of bounded tree-width, 
graphs of bounded degree, and all classes that exclude a fixed (topological) minor, are nowhere dense. An important and 
related concept is the notion of a graph class of bounded expansion, which was also introduced by Nešetřil and Ossona de 
Mendez [21–23].

Definition 5.1. Let H be a graph and let r ∈ N . An r-subdivision of H is obtained by replacing all edges of H by internally 
vertex disjoint paths of length at most r.

Definition 5.2. A class C of graphs is nowhere dense if there exists a function t : N →N such that for all q ∈N and for all 
G ∈ C , we do not find an q-subdivision of the complete graph Kt(q) as a subgraph of G . Otherwise, C is called somewhere 
dense.

Definition 5.3. A class C of graphs has bounded expansion if there exists a function d : N →N such that for all r ∈N and 
all graphs H , where an r-subdivision of H is a subgraph of G for some G ∈ C , satisfy |E(H)|/|V (H)| ≤ d(r).

Every class of bounded expansion is nowhere dense, which in turn excludes some biclique as a subgraph and hence is 
biclique-free. For an extensive background on bounded expansion and nowhere dense graphs we refer to the textbook of 
Nešetřil and Ossona de Mendez [24].

Before we state our result, we quickly recall the necessary definitions from logic. For our purpose, it suffices to consider 
first-order logic over the vocabulary of graphs. We refer to the textbook [25] for an extensive background on logic. A (re-
lational) vocabulary is a finite set of relation symbols, each with a prescribed arity. Let σ be a vocabulary. A σ -structure 
A consists of a (not necessarily finite) set V (A), called the universe or the vertex set of A, and for each k-ary relation 
symbol R ∈ σ a k-ary relation R(A) ⊆ V (A)k . A structure A is finite if its universe is finite. For example, graphs may be 
viewed as {E}-structures, where the vertex set of the graph is the universe and E is a binary relation symbol. First-order 
formulas of vocabulary σ are formed from atomic formulas x = y and R(x1, . . . , xk), where R ∈ σ is a k-ary relation symbol 
and x, y, x1, . . . , xk are variables (we assume that we have an infinite supply of variables) by the usual Boolean connec-
tives ¬ (negation), ∧ (conjunction), ∨ (disjunction), and existential and universal quantifications ∃x and ∀x, respectively.

The set of all first-order formulas of vocabulary σ is denoted by FO[σ ], and the set of all first-order formulas by FO. 
The free variables of a formula are those not in the scope of a quantifier, and we write φ(x1, . . . , xk) to indicate that the 
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free variables of the formula φ are x1, . . . , xk . A sentence is a formula without free variables. To define the semantics, we 
inductively define a satisfaction relation |=, where for a σ -structure A, a formula φ(x1, . . . , xk), and elements a1, . . . , ak ∈
V (A), A |= φ(a1, . . . , ak) means that A satisfies φ if the free variables x1, . . . , xk are interpreted by a1, . . . , ak , respectively. If 
φ(x1, . . . , xk) = R(x1, . . . , xk) is atomic, then A |= φ(a1, . . . , ak) if (a1, . . . , ak) ∈ R(A). The meaning of the equality symbol, the 
Boolean connectives, and the quantifiers is the usual one. For example, consider the formula φ(x1, x2) = ∀y(x1 = y ∨x2 = y ∨
E(x1, y) ∨ E(x2, y)) in the vocabulary {E} of graphs. For every graph G and vertices v1, v2 ∈ V (G) we have G |= φ(v1, v2) if 
any only if {v1, v2} is a dominating set of G . Thus G satisfies the sentence ∃x1∃x2φ(x1, x2) if and only if it has a (nonempty) 
dominating set of size at most 2.

Theorem 5.4. The [1, j]-Dominating Set problem parameterized by solution size k is fixed-parameter tractable on nowhere dense 
classes of graphs.

Proof. Our proof is based on a result of Grohe, Kreutzer, and Siebertz [26], which states that for every first-order sentence 
ψ (or formula without free variables), every nowhere dense class C of graphs and every real ε > 0, there exists a constant 
f (|ψ |, ε), such that given an n-vertex graph G ∈ C , one can decide in time f (|ψ |, ε) · n1+ε whether ψ holds in G .

It is easy to verify that the [1, j]-Dominating Set problem is expressible in FO. Let ψ be the following sentence.

∃v1, v2, . . . , vk∀u

(
(u = v1 ∨ · · · ∨ vk) ∨ ((φ1(u, v1, v2, . . . , vk) ∨ φ2(u, v1, v2, . . . , vk)

· · · ∨ φ j(u, v1, v2, . . . , vk))

)
,

where the function φi(u, v1, v2, . . . , vk) is true where the vertex u is adjacent to exactly i vertices of v1, v2, . . . , vk , which 
can be represented using a formula of length bounded by a function of i and k. Note that the length of ψ is bounded 
by a function depending only on k (and on j, though only as a fixed constant). Then, by fixing any ε > 0 and using the 
result of [26], we conclude that [1, j]-Dominating Set is fixed-parameter tractable parameterized by solution size k on every 
nowhere dense class C . �
6. Bounded treewidth graphs

It is well-known [16] that the Dominating Set problem can be solved in O ∗(3t) time on graphs of treewidth at most t . 
Lokshtanov et al. [9] showed that this is essentialy optimal, i.e., they showed that the problem cannot be solved in O ∗((3 −
ε)t) time unless SETH fails. The situation is almost identical for the Connected Dominating Set problem. The problem can 
be solved in O ∗(4t) time, but cannot be solved in time O ∗(4 −ε)t unless SETH fails [27]. The [1, j]-Dominating Set problem 
is a special case of the (σ , ρ)-domination problem. The concept of (σ , ρ)-domination was introduced by Telle [28]. Let σ , ρ
be a pair of non-empty sets of non-negative integers. A set S of vertices of a graph G is called (σ , ρ)-dominating if for every 
vertex v ∈ S, |S ∩ N(v)| ∈ σ , and for every v /∈ S, |S ∩ N(v)| ∈ ρ . [1, j]-Dominating Set and [1, j]-Total Dominating Set are 
special cases of the (σ , ρ)-Dominating Set problem. For [1, j]-Dominating Set, we set σ = {0, 1, . . .} and ρ = {1, . . . , j}. On 
the other hand for [1, j]-Total Dominating Set we set σ = ρ = {1, . . . , j}. The next result is due to the work of Rooij et 
al. [8].

Proposition 6.1 ([8]). [1, j]-Dominating Set and [1, j]-Total Dominating Set are solvable in time O ∗(( j + 2)tw) and O ∗((2 j +
2)tw), respectively, on graphs of treewidth at most tw.

We prove that the [1, 2]-Total Dominating Set problem cannot be solved in time O ∗(4 − ε)pw (unless SETH fails), which 
is also a lower bound in terms of the treewidth of the input graph. It remains open whether a similar result holds for
[1, 2]-Dominating Set. Our proof closely follows the work of Cygan et al. [27] and we use the notions of path decom-
positions, pathwidth, tree decompositions, treewidth, and mixed search games. We give a reduction from CNF-SAT to the
[1, 2]-Total Dominating Set problem and prove that the reduced graph has pathwidth at most n

2 + O (1), where n is the 
number of variables in the input CNF-SAT formula.

The reduction. Given ε > 0 and an instance 	 of CNF-SAT with n variable and m clauses, we construct a graph G as 
follows. We assume that the number of variables n is even, otherwise we add a single dummy variable. We partition the 
variables of 	 into groups F1, F2, . . . , Fn′ , each of size two, where n′ = n/2. We let a = m(n + 1).

For each 1 ≤ t ≤ n′ we create a path Pt of length 4a = 4m(n + 1) consisting of vertices vα
t,q and hα

t,q , where 
1 ≤ α ≤ 2 and 0 ≤ q < a. The vertices are arranged on the path in the following order: v1

t,0, h
1
t,0, v

2
t,0, h

2
t,0, v

1
t,1,

h1
t,1, v

2
t,1, h

2
t,1, . . . , v

1
t,a−1, h

1
t,a−1, v

2
t,a−1, h

2
t,a−1. We let V and H denote the sets of all vα

t,q vertices and hα
t,q vertices, re-

spectively.
For each vertex vα

t,q , we add a forcing gadget consisting of a 4-cycle with one additional pendant vertex connected to a 
vertex which we denote as the root vertex rα

t,q . We add an edge between vα
t,q and the root of the cycle rα

t,q . Similarly, for 



214 M. Alambardar Meybodi et al. / Theoretical Computer Science 804 (2020) 207–218
Fig. 4. Parts of the construction.

each vertex hα
t,q , we add a forcing gadget consisting of a 4-cycle rooted at vertex sαt,q (i.e. the pendant vertex is connected to 

sαt,q). We add an edge between hα
t,q and sαt,q (see Fig. 4). Note that any dominating set in the graph will contain at least two 

vertices from a forcing gadget and if a [1, 2]-total dominating set contains only two vertices from a forcing gadget, then it 
includes the root vertex and one of its neighbors on the 4-cycle (by the definition of a [1, 2]-total dominating set).

Next, we add three pairs of guard vertices p1
t,q , p2

t,q , and p3
t,q , for each 1 ≤ t ≤ n′ and 0 ≤ q < a. Each of the vertices in 

these pairs are of degree two and are connected to other vertices as follows: (i) vertices in p1
t,q are adjacent to v1

t,q and 
v2

t,q; (ii) vertices in p2
t,q are adjacent to v2

t,q and v2
t,q+1; and (iii) vertices in p3

t,q are adjacent to h1
t,q and h2

t,q . This structure 
forces a dominating set to either contain the vertices from the guard sets or one of their two neighbors. For instance, to 
dominate the pair p1

t,q , either both vertices in p1
t,q must be in the dominating set or one of v1

t,q or v2
t,q . We use G to denote 

the set of all guard vertices The intuition of the construction made so far is as follows. For each two-variable block Ft we 
encode any assignment of the variables in Ft as a choice of whether to take v1

t,q or v2
t,q and h1

t,q or h2
t,q into the dominating 

set. This concludes the construction of the “variable gadgets” which are required for encoding an assignment. The forcing 
gadgets attached to vertices in V and H will guarantee that those vertices are all dominated at least once.

We now add “clause gadgets” required for checking the satisfiability of 	. For each clause Ci , we build (n + 1) vertices 
ci, j , one for each 0 ≤ j ≤ n. Consider a clause Ci and a group of variables Ft = {x1

t , x2
t }. If x1

t occurs positively as the �th
literal in Ci , then connect v1

t,mj+i to ci, j via a path of length five by adding four vertices w�
i, j , x�

i, j , y�
i, j and z�

i, j and edges 
{ci, j, w�

i, j}, {w�
i, j, x

�
i, j}, {x�

i, j, y
�
i, j}, {y�

i, j, z
�
i, j}, and {z�

i, j, v
1
t,mj+i}. If x1

t occurs negatively as the �th literal in Ci , we connect 
v2

t,mj+i to ci, j again via a path of length five by adding four vertices w�
i, j , x

�
i, j , y�

i, j and z�
i, j and edges {ci, j, w�

i, j}, {w�
i, j, x

�
i, j}, 

{x�
i, j, y

�
i, j}, {y�

i, j, z
�
i, j}, and {z�

i, j, v
2
t,mj+i}. Similarly, if x2

t occurs positively as the �th literal in Ci , we connect h1
t,mj+i to ci, j

via a path of length five and if it occurs negatively, we connect h2
t,mj+i to ci, j via a path of length five. Let W , X , Y , and 

Z denote the sets of all w , x, y, and z vertices added between clause vertices and vertices in V ∪ H, respectively. This 
concludes the construction of the graph G (see Fig. 5).

Lemma 6.2. If 	 is satisfiable then G has a [1, 2]-total dominating set D of size k = 10an′ + 2(n + 1)�m
i=1|Ci |.

Proof. Consider a satisfying assignment φ for 	. We construct a [1, 2]-total dominating set D of size k in G as follows. 
We first add the root vertex and one of its neighbors on the 4-cycle of each forcing gadget to D . Then, for each block 
Ft = {x1

t , x2
t } and each 0 ≤ q < a, we add the vertex v1

t,q to D if the value of x1
t is true, otherwise we add v2

t,q to D . Similarly, 
if the value of x2

t is true, we add h1
t,q to D , otherwise we add h2

t,q . Since the clause Ci is satisfied, at least one of the vertices 
vα

t,q or hα
t,q (for some t, α) will be in the dominating set D . Hence, the corresponding z�

i, j vertex will be dominated, for some 
1 ≤ � ≤ |Ci |. We can therefore add vertices x�

i, j and w�
i, j to D as to dominate ci, j and y�

i, j (and maintain the [1, 2]-total 
dominating set property). To dominate the remaining vertices in the clause gadget for ci, j , we add all y�′

i, j and x�′
i, j vertices, 

where 1 ≤ �′ ≤ |Ci | and �′ �= �.
It is clear that for each clause Ci , we add 2(n + 1)|Ci | vertices to D , for a total of 2(n + 1)�m

i=1|Ci | vertices. Moreover, for 
each path Pt , we add 10a vertices to D . Therefore, accounting for the fact that we have n′ paths in total, the total number of 
vertices in D is 10an′ + 2(n + 1)�m

i=1|Ci | = k. It remains to show that D is in fact a [1, 2]-total dominating set. Every vertex 
in V ∪H is dominated at most twice; once by a vertex in its corresponding forcing gadget and possibly once by a neighbor 
in V ∪ H. Each vertex in the guard sets is dominated exactly once and each vertex in W , X , Y , and Z is dominated at 
most twice (as they have degree two). Finally, each vertex ci, j is dominated exactly once (by a vertex in W), as needed. 
This concludes the proof of the lemma. �
Lemma 6.3. If G has a [1, 2]-total dominating set of size at most k = 10an′ + 2(n + 1)�m

i=1|Ci | then 	 is satisfiable.
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Proof. Consider a [1, 2]-total dominating set D of size at most k. The set D must contain at least 2 vertex from each 
forcing gadget. This constitute at least 8an′ vertices from forcing gadgets. Since 2(n + 1)|Ci | vertices are required to total 
dominate the vertices in the clause gadget for Ci , we know that |D ∩ (W ∪X ∪ Y ∪Z)| ≥ 2(n + 1)�m

i=1|Ci | and, therefore, 
|D ∩ (V ∪ H ∪ G)| ≤ 2an′ . Moreover, G contains n′ paths each of length 4a and the guard vertices in G ensure that at 
least 2a vertices are required to dominate the vertices of each path. Finally, since we have 2an′ pairs of guards with 
disjoint neighbors, exactly one vertex from {v1

t,q, v2
t,q} and one vertex from {h1

t,q, h2
t,q} must be in D , for each 1 ≤ t ≤ n′ and 

0 ≤ q < a. This implies that each forcing gadget will contribute two vertices to D– the root vertex and one of its neighbor 
in the 4-cycle. Moreover |D ∩ (W ∪X ∪Y ∪Z)| = 2(n + 1)�m

i=1|Ci |. This implies that exactly two vertex from a path from 
ci, j to a vertex in V ∪H is included in D . Moreover, this in turn implies that ci, j /∈ D for any i, j.

Now, for each 0 ≤ q < a, we construct an assignment φq as follows. For each block Ft = {x1
t , x2

t }, we define φq(x1
t ) as true 

if v1
t,q ∈ D and we define φq(x1

t ) to be false if v2
t,q ∈ D . Similarly, for x2

t , we define φq(x2
t ) to be true if h1

t,q ∈ D and we 
define φq(x2

t ) to be false if h2
t,q ∈ D . Note that for each block Ft = {x1

t , x2
t } and each 0 ≤ q < a, we have:

• If φq(x1
t ) is true then φq+1(x1

t ) is true. Otherwise, both v2
t,q and v1

t,q+1 are not in the dominating set and vertices in p2
t,q

is not dominated by D .
• If φq(x2

t ) is false then φq+1(x2
t ) is false. Otherwise, both h2

t,q and h1
t,q+1 are in the dominating set and vertex v1

t,q+1 is 
dominated three times in D; by h2

t,q , h1
t,q+1, and the root of the forcing gadget corresponding to v1

t,q+1.

For each variable x, we define a sequence φ̂x = φ0(x)φ1(x) . . . φa−1(x). By the discussion above we infer that for each variable 
x, the sequence φ̂x can change its value at most once. Hence, as a = m(n + 1), we conclude that there exists 0 ≤ j < n + 1
such that for all 0 ≤ i < m, the assignment φmj+i(x) are equal. We claim that the assignment φ = φmj(x) satisfies φ. Consider 
a clause Ci and focus on the vertex ci, j . We know that ci, j /∈ D . Thus one of its neighbors from W (say w�′

i, j) is contained in 
D . Therefore, by the definition of a [1, 2]-total dominating set, x�′

i, j is in D . We have already argued that any path from ci, j

to any vertex in V ∪ H can contain at most 2 vertices in D . This implies that z�′
i, j is dominated by a vertex in V ∪ H and 

the literal corresponding to it will be set to true by φ. This completes the proof of the lemma. �
Lemma 6.4. pw(G) ≤ n′ + O (1).

Proof. Let us first recall the definition of a mixed search game. In a mixed search game, the graph G represents a “system 
of tunnels”. Initially, all edges are contaminated by a gas. An edge is cleared by placing searchers at both its endpoints 
simultaneously or by sliding a searcher along the edge. A cleared edge is re-contaminated if there is a path from an 
uncleared edge to the cleared edge without any searchers on its vertices or edges. A search is a sequence of operations 
that can be of the following types: (i) placement of a new searcher on a vertex; (ii) removal of a searcher from a vertex; 
(iii) sliding a searcher on a vertex along an incident edge and placing the searcher on the other end. A search strategy is 
winning if after its termination all edges are cleared. The mixed search number of a graph G , denoted by ms(G), is the 
minimum number of searchers required for a winning strategy of mixed searching on G. Takahashi et al. [29] obtained the 
following relationship between pw(G) and ms(G): pw(G) ≤ ms(G) ≤ pw(G) + 1.

We give a mixed strategy to clean the graph with n′ + O (1) searchers. The cleaning process will be done in a rounds. 
At each round 0 ≤ q < a, we put a searcher on clause variable ci, j and keep this searcher there until the cleaning round 
is completed. It is clear we could clean each forcing gadget by four searcher and keep searcher on the root vertex after 
cleaning the edges in the force gadget. For each 1 ≤ t ≤ n′ and 0 ≤ q < a, after cleaning four connected forcing gadgets we 
slide the searchers from the root of forcing gadgets to the vertices v1

t,q , h1
t,q , v2

t,q , h2
t,q . Then we put searchers on the (at 

most two) z vertices connected to them and the guard vertices in sets p1
t,q , p2

t,q and p3
t,q . As we have a searcher on ci, j until

the end of this round we could clean the paths between vertex ci, j and those z vertices using one more searcher. The last 
step of the round is removing the searchers from vertices v1

t,q, h1
t,q, v2

t,q, h2
t,q and searchers on the guard sets p1

t,q, p2
t,q and 

p3
t,q . We just keep the searcher on v1

t,q+1. Also, we remove searchers on the path between ci, j and V ∪ H except for the 
one standing on the ci, j . To commence the next round, the searcher in ci, j is deleted and a new searcher is put on ci, j+1. 
After the last round the whole graph G is cleaned. Since at any point in time we need at most 14 searchers (they are on 
ci, j , two z vertices, v1

t,q , h1
t,q , v2

t,q , h2
t,q , guard vertices in sets p1

t,q , p2
t,q and p3

t,q , one searcher to clean the paths between 
two z vertices and ci, j ) and we reuse 14 searchers in the cleaning process, n′ + 14 searchers suffice to clean the graph. �

Theorem 6.5. Assuming SETH, for any ε > 0 there is no algorithm running in time (4 − ε)pw|V (G)|O (1) for [1, 2]-Total Dominating 
Set on a graph G with pathwidth pw.

Proof. Suppose that [1, 2]-Total Dominating Set can be solved in time (4 − ε)pw|V (G)|O (1) . Given an instance of CNF-

SAT, we can construct an instance of [1, 2]-Total Dominating Set using the above construction and solve it with a 
(4 − ε)pw|V (G)|O (1) time algorithm. The correctness of the algorithm follows from Lemmata 6.2 and 6.3. Lemma 6.4 implies 
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Fig. 5. Parts of the construction. Dashed edges are connecting vertices with a forcing gadget.

that the running time of the algorithm is (4 −ε)
n
2 |V (G)|O (1) . However, we have (4 −ε)

n
2 = (

√
4 − ε)n and 

√
4 − ε < 2 which 

refutes SETH. This concludes the proof. �
7. Restrained domination

Recall that a set D ⊆ V of a graph G is called a restrained dominating set if every vertex not in D is adjacent to a vertex 
in D and a vertex in V \ D . In this section, we prove the following theorem.

Theorem 7.1. The Restrained Dominating Set problem parameterized by the solution size k is W[1]-hard even when restricted to 
3-degenerate graphs.

Toward proving the above theorem, we give a reduction from the Multicolored Independent Set problem.

The reduction. As in Section 4, we reduce the Multicolored Independent Set problem (with parameter k) to the 
problem of finding a restrained dominating set of size at most 3k + 2 in a graph G ′ of degeneracy at most 3. Let k be an 
integer and G be a k-colored graph such that its vertices are partitioned into k groups V 1, V 2, . . . , Vk , where each group 
corresponds to an independent set of the same color. We replace every edge e = {u, v} ∈ E(G) by a length 2 path uve v , 
where ve is a new vertex corresponding to the edge e. The set S E is the collection of all vertices ve that are added to the 
graph G ′ . For each group V i , we add a new guard gadget constructed as follows. We add a claw graph (or a star with 4
vertices) centered at ui . We then add a vertex u′

i and add edges between u′
i and the three pendant vertices of the claw. 

Finally, we add a new vertex of degree one connected to u′
i . For each group V i , we add two vertices x1

i and x2
i . We connect 

x1, x2, and ui to all vertices in V i . We add another claw centered at r, connect its pendant vertices to a new vertex r′ , and 
i i
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Fig. 6. Constructed graph G with degeneracy at most 3.

then connect r′ to a new pendant vertex r′′ . Finally, we add edges between r and all of the vertices in S E . This concludes 
the construction of G ′ . Following simple observation is need to prove the correctness of the reduction (see Fig. 6).

Observation 7.2. Let D be a restrained dominating set of a graph G. Then, every vertex v of degree one in G must be in D.

Lemma 7.3. The degeneracy of the constructed graph G ′ is at most 3.

Proof. We prove the lemma by constructing a degeneracy ordering. First we add all the vertices S E , then we add all the 
vertices in V 1 ∪ . . . ∪ Vk to the order. Then we add the rest of the vertices. It is not hard to see that every vertex has at 
most 3 neighbors appearing later in the ordering, as needed. �
Lemma 7.4. If there exists a k-colored independent set in G then there exists a restrained dominating set of size 3k + 2 in G ′ .

Proof. Without loss of generality we assume that |V i | ≥ 2 for all i. Let S be a k-colored independent set. We construct a 
restrained dominating set D as follows. First, we add to D the vertices in S . Then we add the pendant vertices (there are 
k + 1 such vertices) to D . Then we add r and all ui vertices to D . Clearly |D| = 3k + 2. All x1

i , x
2
i vertices, 1 ≤ i ≤ k, are 

dominated by vertices in the k-colored independent set. Since |V i ∩ D| = 1, there is also a vertex from the neighborhood of 
x1

i , x
2
i which is not in D . Every vertex in the guard vertex set (which is not in D) other than u′

i is dominated by ui and u′
i

is one of its neighbor. Similarly, u′
i is dominated by the pendent vertex in the gadget and three of its neighbors are not in 

D . Since S is an independent set, for any vertex in S E at least one its neighbor is not in D , while r is in D . This completes 
the proof. �
Lemma 7.5. If there exists a restrained dominating set of size 3k + 2 in G ′ then there exists a k-colored independent set in G.

Proof. Let D be a restrained dominating set of size 3k + 2. By Observation 7.2, all the k + 1 vertices of degree one are in D . 
Note that at least one additional vertex is required to dominate the remaining vertices in each k + 1 guard gadgets. Since 
2k + 2 vertices are already fixed in D and x1

i and x2
i are dominated by D , we conclude that |D ∩ V i | = 1, for each V i . Hence, 

we can assume, without loss of generality, that vertex r and all the ui vertices, 1 ≤ i ≤ k, are contained in D . We claim 
that the k vertices from D ∩ V (G) must be independent. Let v1, v2, . . . , vk be the vertices in D ∩ V 1, D ∩ V 2, . . . , D ∩ Vk , 
respectively. If there exists an edge e between two of those vertices, say vl and v p , then the vertex ve ∈ S E corresponding 
to this edge does not have any neighbors in V \ D . Therefore, the vertices v1, v2, . . . vk must be independent, as needed. �
8. Conclusion

We have shown that the [1, j]-Dominating Set problem parameterized by the solution size is W[1]-hard on graphs of 
degeneracy ( j + 1). It is thus natural to ask whether the problem becomes fixed-parameter tractable when the degen-
eracy of the graph is smaller or equal to j. In particular, is the [1, j]-Dominating Set problem fixed-parameter tractable 
on j-degenerate graphs? There is a very rich literature [10,11,30] on kernelization for the Dominating Set problem on 
sparse graphs and it would be interesting to see where (if anywhere) the known techniques for the Dominating Set prob-
lem become applicable to the [1, j]-Dominating Set problem. Finally, we have shown a lower bound of O ∗((4 − ε)tw) for
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[1, 2]-Total Dominating Set assuming SETH, while the known upper bound is O ∗(6tw) (which follows from Proposition 6.1). 
Closing this gap is an interesting open problem. On the other hand [1, 2]-Dominating Set can be solved in time O ∗(4tw) and 
getting a matching lower bound is another open problem. Moreover, can we get lower bounds for more general problems 
such as [1, j]-Dominating Set and [1, j]-Total Dominating Set?
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