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Abstract. We obtain new polynomial kernels and compression algorithms for Path Cover and
Cycle Cover, the well-known generalizations of the classical Hamiltonian Path and Hamiltonian
Cycle problems. Our choice of parameterization is strongly influenced by the work of Bir\'o, Hujter,
and Tuza, who in 1992 introduced H-graphs, intersection graphs of connected subgraphs of a sub-
division of a fixed (multi-)graph H. In this work, we turn to proper H-graphs, where the containment
relationship between the representations of the vertices is forbidden. As the treewidth of a graph
measures how similar the graph is to a tree, the size of graph H is the parameter measuring the
closeness of the graph to a proper interval graph. We prove the following results. Path Cover
admits a kernel of size \scrO (\| H\| 8), where \| H\| is the size of graph H. In other words, we design
an algorithm that for an n-vertex graph G and integer k \geq 1, in time polynomial in n and \| H\| ,
outputs a graph G\prime of size \scrO (\| H\| 8) and k\prime \leq | V (G\prime )| such that the vertex set of G is coverable by
k vertex-disjoint paths if and only if the vertex set of G\prime is coverable by k\prime vertex-disjoint paths.
Hamiltonian Cycle admits a kernel of size \scrO (\| H\| 8). Cycle Cover admits a polynomial kernel.
We prove it by providing a compression of size \scrO (\| H\| 10) into another NP-complete problem, namely,
Prize Collecting Cycle Cover, that is, we design an algorithm that, in time polynomial in n and
\| H\| , outputs an equivalent instance of Prize Collecting Cycle Cover of size \scrO (\| H\| 10). In all
our algorithms we assume that a proper H-decomposition is given as a part of the input.
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1. Introduction. The Hamiltonian Cycle problem, an old mathematical
puzzle whose study can be traced back to the 19th century, is still a topic of active
research. Our results about the Hamiltonian Cycle problem are at the intersection
of two research areas: kernelization and algorithms on special graph classes. In both
areas Hamiltonian Cycle has been intensively investigated.

Parameterized algorithms and kernelization. The most popular general-
ization of the Hamiltonian Cycle problem studied in parameterized complexity is
known under the name Longest Cycle. This problem is to decide whether a graph
contains a cycle of length at least k, where k is an integer parameter. Longest Cycle
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and its close relative Longest Path are important representatives of the so-called
family of ``nonlocal"" problems, and this is why these problems served as test-beds in
the development of various fundamental techniques in areas such as color coding [1],
algebraic methods [31, 37, 4], and Cut \& Count [16], to name a few. We refer the
reader to the book of Cygan et al. [15] for an overview of these techniques. From
the perspective of kernelization, the framework developed by Bodlaender et al. [5] ex-
cludes the existence of a polynomial kernel (up to some reasonable assumption from
complexity theory) for Longest Cycle with the natural parameter k. This lower
bound initiated the development of kernelization algorithms for Hamiltonian Cy-
cle with ``structural kernelization."" Fellows et al. [20] proved that Hamiltonian
Cycle parameterized by the max leaf number of the input graph G, that is, the max-
imum number of leaves in a spanning tree of G, admits a kernel of polynomial size. A
systematic approach in the study of structural kernelization of Hamiltonian Cycle
(and other related problems) was taken by Bodlaender, Jansen, and Kratsch [6], who
considered kernelization of Hamiltonian Cycle parameterized by the size of the
modulator to some nice graph property. More precisely, for a graph G the modulator
to a graph property \Pi is a set of vertices or edges such that after removing this set
from graph G, the resulting graph has property \Pi . In particular, Bodlaender, Jansen,
and Kratsch [6] have shown that Hamiltonian Cycle admits a polynomial kernel
when parameterized by the size of a minimum vertex cover (a minimum modulator
to an independent set) or by the size of a minimum modulator to the cluster graph,
that is, the disjoint union of complete graphs. They also provided a number of lower
bounds on the structural kernelization of the problem by showing, for example, that
the problem does not admit a polynomial kernel when the parameter is the minimum
size of a modulator to an outerplanar graph.

Graph classes. There is a large research area in graph algorithms, where the
structural properties of graphs, like being interval or chordal, are exploited for de-
veloping efficient algorithms for problems intractable on general graphs. We refer
the reader to the books [8, 25] for the introduction and survey of the known results.
Without a doubt, the oldest and the most studied class of intersection graphs is the
class of interval graphs, and there is a long history of research on the Hamilton-
ian Cycle and Hamiltonian Path problems on interval, circular-arc, and related
graph classes. It was shown by Keil [30] in 1985 that Hamiltonian Cycle can be
solved in linear time for interval graphs (see also [9, 10, 17, 33]). The problem for
circular-arc graphs proved to be much more involved, and the first polynomial-time
algorithm for Hamiltonian Cycle on circular-arc graphs was given by Shih, Chern,
and Hsu [36] in 1992 (see also [28]). On the other hand, for proper interval graphs,
it was already shown by Bertossi [2] that every connected proper interval graph has
a Hamiltonian path, and a proper interval graph has a Hamiltonian cycle if and only
if it is a 2-connected graph with at least three vertices (see also [14, 29]). This im-
mediately implies a linear time algorithm for the problem. It follows from the results
of Brandst\"adt, Dragan, and K\"ohler [7] that Hamiltonian Cycle can be solved in
linear time for circular-arc graphs. Thus, Hamiltonian Cycle can be solved in
linear time for (proper) interval graphs. For chordal graphs, Hamiltonian Cycle
is well known to be \sansN \sansP -complete and is even \sansN \sansP -complete for strongly chordal split
graphs [34].

Our results. In this paper we follow the main question of structural kerneliza-
tion: if a computational problem can be solved in polynomial time on instances with
some structural properties, does it admit a polynomial kernel parameterized by some
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``distance"" to this nice structural property? In our setting the nice structural property
is being a proper interval graph. However, the ``distance"" we use is quite different
from the commonly used size of a modulator.

Our measure of similarity with proper interval graphs is based on the beautiful
concept of H-graphs introduced by Bir\'o, Hujter, and Tuza [3] in the context of the
precoloring extension problem. An intersection representation of a graph G assigns a
set Sv to every vertex v \in V (G) such that Su \cap Sv \not = \emptyset if and only if uv \in E(G). In
the case when the sets Su are intervals of the real line, this defines an interval graph.
From a different perspective, every interval graph can be viewed as an intersection
graph of subpaths of some (sufficiently long) path. Similarly, circular-arc graphs, a
natural generalization of interval graphs, are the intersection graphs of subpaths of
some cycle. It is also a well-known fact that a graph is chordal if and only if it is an
intersection graph of subtrees of some tree. All of these classes are known to have
efficient algorithms for various computational problems. We refer the reader to [8, 25]
for the introduction and survey of the known results. A natural generalization of
these classes is intersection graphs of subgraphs of some subdivision of an arbitrary
underlying graph H. For a fixed graph H, we say that a graph G is an H-graph if it is
an intersection graph of connected subgraphs of a subdivision of H. In this language,
interval graphs are K2-graphs, circular-arc graphs are K3-graphs, and every chordal
graph is a T -graph for some tree T .

An intersection representation \{ Sv\} v\in V (G) of a graph G is a proper representation
if Su \subseteq Sv implies u = v. Then a graph G is a proper H-graph if it admits a
proper intersection representation by connected subgraphs of a subdivision of H. For
example, proper K2-graphs are proper interval graphs, that is, the graphs admitting
a proper representation by intervals of the real line. Various aspects of proper interval
and proper circular-arc representations have been well studied, and our goal is again
to study how these carry to general proper H-graphs. Clearly, all positive algorithmic
results obtained for H-graphs in [12, 13, 21] are valid for proper H-graphs, but since
we consider a more restricted graph class, we hope that the tractability area can be
expanded.

We consider the following fundamental generalizations of Hamiltonian Cycle
and Hamiltonian Path problems, whose tasks are to cover the vertices of a graph
by the minimum number of disjoint cycles and paths, respectively (see section 2 for
the formal definition).

Input: A graph G and a positive integer k.
Task: Decide whether G has a cycle cover \scrC with at most k cycles.

Cycle Cover

and

Input: A graph G and a positive integer k.
Task: Decide whether G has a path cover \scrP with at most k paths.

Path Cover

Note that for k = 1, Cycle Cover is Hamiltonian Cycle and Path Cover
is Hamiltonian Path.

The main results of this paper are the following theorems about kernelization
of Cycle Cover and Path Cover. In both theorems we assume that a proper
H-representation of the input graph G is given.

Theorem 1. Path Cover admits a kernel of size \scrO (h8), where h is the size of
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the graph H in a proper H-representation of the input graph G.

For Cycle Cover we succeed only in constructing a polynomial compression
of explicitly given size. (Roughly speaking, the difference between kernelization and
compression is that a kernelization algorithm outputs an equivalent instance of the
same parameterized problem, while a compression algorithm maps an instance of a
parameterized problem to an equivalent instance of another nonparameterized prob-
lem. We refer the reader to section 2 with preliminaries, where we define kernelization
and compressing algorithms.) Note that since we compress into an \sansN \sansP -complete prob-
lem, the standard trick involving the Cook--Levin theorem (see, e.g., [22]) implies the
existence of a polynomial-in-h kernel for Cycle Cover, but we are unable to give
the exact size of such a kernel.

Theorem 2. Cycle Cover admits a compression of size \scrO (h10), where h is the
size of the graph H in a proper H-representation of the input graph G.

However, for the special case of k = 1, namely, Hamiltonian Cycle, we also
are able to obtain a kernel of size \scrO (h8).

It is not clear whether the requirement that a proper H-representation is given
in the input of the considered problems on proper H-graphs could be avoided. The
hardness result of Chaplick et al. [12] can be extended for proper H-graphs, and it
can be shown that the recognition problem for proper H-graphs is \sansN \sansP -hard even for
small fixed graphs H. This indicates that the aforementioned requirement may be
unavoidable.

Organization of the paper. The remaining part of the paper is organized
as follows. In section 2, we introduce the notions and notation used throughout
the paper. In section 3, we give an informal description of our kernelization and
compression algorithms before going into detail. In section 4, we obtain intermediate
kernelization results for the aforementioned problems parameterized by the size of a
clique cover, that is, by the size of a family of pairwise disjoint cliques that cover the
vertices of the input graph. In section 5, we introduce additional notation for proper
H-graphs and obtain a number of structural and auxiliary algorithmic results about
path and cycle covers in H-graphs. In section 6, we show that Hamiltonian Cycle
and Path Cover on proper H-graphs admit polynomial kernels, and we prove that
Cycle Cover admits a polynomial compression. We conclude the paper in section 7
by stating some open problems.

2. Preliminaries.

Graphs. All graphs considered in this paper are assumed to be finite and sim-
ple, that is, finite undirected graphs without loops or multiple edges, unless it is said
explicitly that we consider a multigraph. In this respect, the following basic defini-
tions are given for simple graphs. For each of the graph problems considered in this
paper, we let n = | V (G)| and m = | E(G)| denote the number of vertices and edges,
respectively, of the input graph G if it does not create confusion; \| G\| = | E(G)| is the
size of G. For a graph G and a subset X \subseteq V (G) of vertices, we write G[X] to denote
the subgraph of G induced by X; for X = \{ x1, . . . , xk\} , we also write G[x1, . . . , xk]
instead of G[\{ x1, . . . , xk\} ]. We write G - X to denote the subgraph of G induced by
V (G) \setminus X, and we write G - u instead of G - \{ u\} for a single element set. Similarly,
for an edge e, G  - e denotes the graph obtained from G by the deletion of e. For a
vertex v, we denote by NG(v) the (open) neighborhood of v, i.e., the set of vertices
that are adjacent to v in G. The closed neighborhood NG[v] is NG(v)\cup \{ v\} . For a set
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of vertices X \subseteq V (G), NG[X] is
\bigcup 

v\in X NG[v] and NG(X) is NG[X] \setminus X. The degree
of a vertex v is dG(v) = | NG(v)| . A matching is a set of edges with pairwise distinct
end-vertices. A vertex cover of a graph is a set of vertices such that every edge of the
graph is incident to a vertex of the set.

A set of vertices X is said to be connected if G[X] is a connected graph. It is said
that a set of vertices X \subset V (G) is a cut-set of a graph G if G - X has more connected
components than G; a vertex u is a cut-vertex if \{ u\} is a cut-set. A connected graph G
is 2-connected if it has no cut-vertex. A block B of a connected graph G is a maximal
subgraph which does not contain a cut-vertex, and we use nB to denote the number
of vertices in B. Clearly, a block of a connected graph with at least one edge is either
a single edge (i.e., trivial) or is 2-connected with at least three vertices (i.e., non-
trivial), and we use bl(G) and tbl(G) to respectively denote the number of nontrivial
and trivial blocks of G. For a connected graph G, the block-cutpoint decomposition
BC(G) of G is a bipartite graph consisting of one node xB for each block B of G and
one node xv for each cut-vertex v of G such that xv is connected to xB if and only if v
is a vertex of B. It is well known that BC(G) is a tree and that it can be constructed
in linear time [26].

A path P in a graph G is a connected subgraph whose vertices except at most two
of them, called its end-vertices, have degree two and the end-vertices have degree one
or zero if P is a single-vertex graph (called trivial). We refer to the degree two vertices
of a path as internal. We write P = v1 \cdot \cdot \cdot vs to denote the path with the vertices
v1, . . . , vs such that vi - 1vi \in E(P ) for i \in \{ 2, . . . , s\} . Clearly, vs \cdot \cdot \cdot v1 denotes the
same path, but we use P - 1 to denote this sequence if we need to be specific. Then v1
and vs are the end-vertices of the path and v2, . . . , vs - 1 are internal vertices. A path
P with end-vertices u and v is called a (u, v)-path. A subpath is a connected subgraph
of a path P ; a subpath is proper if it is distinct from P . A cycle C in a graph G is
a connected subgraph where each vertex has degree two. We write C = v0 \cdot \cdot \cdot vs to
denote that C is the cycle consisting of distinct vertices v1, . . . , vs such that v0 = vs
and vi - 1vi \in E(C) for i \in \{ 2, . . . , s\} . Clearly, vi \cdot \cdot \cdot vsv1 \cdot \cdot \cdot vi for i \in \{ 1, . . . , s\} 
denotes the same cycle, and we can reverse the ordering. A proper connected subgraph
of a cycle C is called a segment. Trivially, a segment is a path. Observe that a cycle
has two segments with the same pair of end-vertices. To distinguish such a pair of
segments for C = v0 \cdot \cdot \cdot vs, we use the following convention: For i, j \in \{ 1, . . . , s\} such
that i < j, we say that the paths vi \cdot \cdot \cdot vj and vi \cdot \cdot \cdot vsv1 \cdot \cdot \cdot vj are the (vi, vj)-segment
and (vj , vi)-segment of C, respectively. A path P = v1 \cdot \cdot \cdot vs (a cycle C = v0 \cdot \cdot \cdot vs)
in G is Hamiltonian if \{ v1, . . . , vs\} = V (G). A family of paths \scrP = \{ P1, . . . , Pk\} 
(a family of cycles \scrC = \{ C1, . . . , Ck\} ) is a path cover (cycle cover, respectively) if
the paths (cycles, respectively) are pairwise disjoint and the union of their vertices is
V (G). The size of a path or cycle cover is the number of paths or cycles in it.

A clique in a graph G is a set of pairwise adjacent vertices. A family \scrQ =
\{ Q1, . . . , Qs\} of cliques is said to be a (vertex) clique cover if the cliques are pairwise
disjoint and

\bigcup s
i=1 Qi = V (G). Note that we consider only vertex clique covers in our

paper.
Let \scrS be a collection of sets. The intersection graph of \scrS has \scrS as its vertex

set and two distinct vertices X,Y \in \scrS are adjacent if and only if X \cap Y \not = \emptyset . For
an intersection graph G, \scrS is called an (intersection) model of G. The intersection
graph of a family of intervals of the real line is called an interval graph; it is also
said that G is an interval graph if there is a family of intervals (called interval model
or representation) such that G is isomorphic to the intersection graph of this family.
Throughout the paper it is assumed that the intervals of an interval model are closed.
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An interval graph is proper if it has an interval model such that no interval is a
subinterval of another one.

Let H be a multigraph. As for simple graphs, \| H\| = | E(H)| is the size of H. We
say that H \prime is obtained from H by the subdivision of an edge e = xy if, to construct
H \prime , we delete e, add a new vertex z, and introduce two new edges zx and zy. Similarly,
H \prime is a subdivision of H if H \prime is obtained from H by consecutively subdividing its
edges. The dissolution of a vertex z that is incident to exactly two edges zx and zy
for z \not = x, y (note that it could happen that x = y) is the opposite operation, that is,
we delete z and add a new edge xy.

For a multigraphH, a simple graphG is anH-graph ifG is an intersection graph of
connected subgraphs of some subdivision H \prime of H or, equivalently, G is an intersection
graph of connected subsets of vertices of H. Throughout the paper we only allow the
H's in H-graphs to be multigraphs and all other graphs are assumed to be simple. To
distinguish the vertices ofH andH \prime from the vertices ofG, we refer to the vertices ofH
and H \prime as nodes. We also say the nodes of H are branching nodes of H \prime and the other
nodes are subdivision nodes. A pair (H \prime ,\scrM ), where \scrM = \{ Mv\} v\in V (G) is a collection
of connected vertex sets of H \prime such that G is the intersection graph of \scrM , is called an
H-representation of G. A representation (H \prime ,\scrM ) is proper if, for every two distinct
u, v \in V (G), neither Mu \subseteq Mv nor Mv \subseteq Mu. In this sense, G is a proper H-graph if
it has a proper H-representation. It is straightforward to see that interval graphs are
precisely the K2-graphs and the proper interval graphs are the proper K2-graphs.

Note that every graph has the following trivial representation. For a graph G,
let I(G) denote the incidence graph of G, that is, the graph obtained by subdividing
each edge of G exactly once.

Observation 1. Every graph G is a proper G-graph. Its trivial proper G-repre-
sentation is (I(G), \{ NI(G)[v]\} v\in V (G)).

Parameterized complexity and kernelization. We refer the reader to the
books [15, 18, 22] for a detailed introduction to the field. Here we only briefly review
the basic notions.

Parameterized complexity is a two-dimensional framework for studying the com-
putational complexity of a problem. One dimension is the input size n and the other
is a parameter k associated with the input. The main goal is to confine the com-
binatorial explosion in the running time of an algorithm for a (typically, \sansN \sansP -hard)
problem to depend only on k. In this sense, a parameterized problem is said to be
fixed parameter tractable (or \sansF \sansP \sansT ) if it can be solved in time f(k) \cdot n\scrO (1) for some
function f .

A compression of a parameterized problem \Pi 1 into a (nonparameterized) problem
\Pi 2 is a polynomial-time algorithm that maps each instance (I, k) of \Pi 1 with the
input I and the parameter k to an instance I \prime of \Pi 2 such that

(i) (I, k) is a yes-instance of \Pi 1 if and only if I \prime is a yes-instance of \Pi 2, and
(ii) | I \prime | is bounded by f(k) for a computable function f .

The output I \prime is also called a compression. The function f is said to be the size of
the compression. A compression is polynomial if f is polynomial. A kernelization
algorithm for a parameterized problem \Pi is a polynomial-time algorithm that maps
each instance (I, k) of \Pi to an instance (I \prime , k\prime ) of \Pi such that

(i) (I, k) is a yes-instance of \Pi if and only if (I \prime , k\prime ) is a yes-instance of \Pi , and
(ii) | I \prime | + k\prime is bounded by f(k) for a computable function f .

Respectively, (I \prime , k\prime ) is a kernel and f is its size. A kernel is polynomial if f is
polynomial. While it can be shown that every decidable parameterized problem is
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\sansF \sansP \sansT if and only if it admits a kernel, it is unlikely that every problem in \sansF \sansP \sansT has a
polynomial kernel (see, e.g., [15, 22] for details).

For Cycle Cover, we show that it admits a polynomial compression into a
special problem called Prize Collecting Cycle Cover which we define here.

Let G be a graph and let \omega : E(G) \rightarrow N0 be a weight function; note that we
allow zero weights. For a cycle C, \omega (C) is the sum of the weights of its edges. Let
\alpha : N \rightarrow N be a nondecreasing penalty function. For a cycle cover \scrC = \{ C1, . . . , Ck\} of

G, the weight of \scrC is \omega (\scrC ) =
\sum k

i=1 \omega (Ci) and the cost of \scrC is c\alpha ,\omega (\scrC ) = \omega (\scrC ) - \alpha (| \scrC | ).
Observe that the cost may be negative.

Input: A graph G with a weight function \omega : E(G) \rightarrow N0, a non-
decreasing penalty function \alpha : \{ 1, . . . , | V (G)| \} \rightarrow N, and an
integer r.

Task: Decide whether G has a cycle cover \scrC of cost c\alpha ,\omega (\scrC ) \geq r.

Prize Collecting Cycle Cover

Notice that if G is a graph with zero edge-weights and the penalty function \alpha (x) =
x for x \in N, then G has a cycle cover with at most k cycles if and only if G has a cycle
cover of cost at least r =  - k, that is, Prize Collecting Cycle Cover generalizes
Cycle Cover. We prove that Cycle Cover admits a polynomial compression to
Prize Collecting Cycle Cover of size \scrO (h10) when parameterized by the size h
of H if a proper H-representation is given in the input.

3. Description of algorithms. In this section, we give an informal high-level
description of our kernelization and compression algorithms to both outline how they
work and provide the general flow of the subsequent technical sections of the paper.

Our first step towards the kernelization of Path Cover and compression of
Cycle Cover is a kernelization algorithm for Cycle Cover, Path Cover, and
Prize Collecting Cycle Cover being parameterized by the size of a clique cover
of the input graph. These results are of independent interest. The parameterization
of Hamiltonian Cycle by the clique cover size was considered by Lampis et al. [32],
who proved that the problem is \sansF \sansP \sansT for this parameterization. We extend their result
by showing the following theorem.

Theorem 3. Cycle Cover, Path Cover, and Hamiltonian Cycle admit
kernels of size \scrO (s8), where s is the size of a clique cover. Prize Collecting Cycle
Cover admits a kernel of size \scrO ((s+ \ell )10), where s is the size of a clique cover and
\ell is the number of edges of the input graph with nonzero weights. In all kernels we
assume that a clique cover of size s is given in the input.

We sketch the main ideas of the kernelization for Cycle Cover, which is the
easiest among these problems, and then explain how to modify the algorithm for the
other problems.

Recall that a clique cover is a collection \scrQ = \{ Q1, . . . , Qs\} of pairwise disjoint
cliques such that V (G) =

\bigcup s
i=1 Qi. First, we show that there is always an optimal

solution to Cycle Cover with very specific properties. We call a cycle cover \scrC 
regular with respect to \scrQ if for every distinct i, j \in \{ 1, . . . , s\} ,

(i) at most one cycle of \scrC has an edge between Qi and Qj ,
(ii) the number of edges between Qi and Qj in each of the cycles of \scrC is at most

2.
It is possible to prove that every cycle cover can be transformed into a regular one
without increasing its size. Informally, if two distinct cycles have edges between two
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Qj Qi Qj

(a) (b)
Qi

Fig. 1. Rerouting cycles; the deleted edges are shown by dashed lines, and the added edges are
shown by thick lines.

cliques Qi and Qj , we can ``glue"" them together (as shown in Figure 1(a)), and if
a cycle has at least three edges between the cliques, then we can pick two of them
that are in the ``same direction"" according to an arbitrary orientation of the cycle and
reroute the cycle (see Figure 1(b)).

Because the cycles of a regular cycle cover have a limited number of edges that
are between the cliques of \scrQ , it is possible to modify and/or reroute them using the
fact that the vertices of the same clique are pairwise adjacent. The regularity of a
cycle cover allows us to apply the following reduction rules.

Reduction Rule 3.1.
\bullet If there is a clique Qi \in \scrQ and v \in Qi such that NG[v] = Qi and | Qi| \geq s+3,
then set G = G - v and Qi = Qi \setminus \{ v\} .

\bullet If there are distinct i, j \in \{ 1, . . . , s\} such that the bipartite graph Gij, whose
vertex set is Qi \cup Qj and whose edges are the edges of G between Qi and Qj,
has a matching M of size at least 4s  - 3, then select (arbitrarily) an edge
e \in M , set G = G - e.

\bullet If there is a clique Qi \in \scrQ and v \in V (G)\setminus Qi such that | NG(v)\cap Qi| \geq 2s+1,
then for an arbitrary edge e = uv with u \in Qi, set G = G - e.

The first item in Reduction Rule 3.1 asserts that if a sufficiently large clique of
the clique cover has a simplicial vertex, then this vertex is irrelevant. Similarly, if
there is a large matching between two cliques, then one edge of this matching can be
deleted safely. Finally, if there is a vertex outside a clique which sees many vertices
of the clique, any edge between this vertex and a vertex of the clique can be removed.
We apply the rules exhaustively. We prove that any irreducible instance has \scrO (s4)
vertices, that is, the size of the obtained instance of Cycle Cover is \scrO (s8), and this
implies the claim of Theorem 3 for the problem.

As Hamiltonian Cycle is the special case of Cycle Cover when k = 1 and
Reduction Rule 3.1 does not modify k, the kernelization algorithm for Hamiltonian
Cycle is the same. For Path Cover, we need a tiny adjustment to reroute the
paths of a path cover in a slightly different way. However, Prize Collecting Cycle
Cover requires additional work.

Let (G,\omega , \alpha , r) be an instance of Prize Collecting Cycle Cover and let S
be the set of edges of G with nonzero weights, \ell = | S| . First, we modify the clique
cover \scrQ of G by making the end-vertices of the edges of S trivial cliques of size one.
Thus, we obtain the clique cover \^\scrQ of size t \leq s + 2\ell . Then we observe that the
modifications of the cycles of a cycle cover that were used for Cycle Cover never
affect edges of G with both end-vertices in trivial cliques. In particular, if the cycles
of a cycle cover contain e \in S, one of the cycles of the cycle cover obtained by the
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reroutings still contains e. Also, we do not increase the number of cycles in cycle
covers by such reroutings. This implies that we still can use Reduction Rule 3.1. It is
possible to show that an irreducible instance of Prize Collecting Cycle Cover
obtained by the exhaustive application of the rules has \scrO (t4) vertices.

Note that this is not a polynomial kernel yet because we still have to compress the
edge-weights as well as the values of the penalty function \alpha and r. For this, we apply
the approach proposed by Etscheid et al. [19] for constructing kernels for weighted
problems. These techniques are based on the classical algorithm for compressing
numbers given by Frank and Tardos in [23]. This allows us to encode the value of the
weight function for each e \in S and the value of the penalty function for each i = \scrO (t4)
by a binary string of length \scrO ((s+\ell )6). Summarizing, we obtain an instance of Prize
Collecting Cycle Cover of size \scrO ((s + \ell )10). This completes the sketch of the
kernelization algorithm.

Note that Theorem 3 requires that a clique cover of the input graph is given.
This seems to be unavoidable as it is already \sansN \sansP -complete to decide whether a graph
has a clique cover of size 3 [24] (the problem is equivalent to 3-Coloring for the
complement of the graph).

From proper \bfitH -models to small clique covers. Now we use Theorem 3
to construct kernelization and compression algorithms for Path Cover and Cycle
Cover on properH-graphs, i.e., we build equivalent instances with small clique covers
by using a given proper H-representation.

Suppose that G is a proper H-graph given together with its proper H-representa-
tion (H \prime ,\scrM ). Notice that for every node x \in V (H \prime ), the set Kx = \{ v \in V (G) | x \in 
Mv\} is a clique of G. Observe also that the graph G  - 

\bigcup 
x\in V (H) Kx can be seen as

a union of proper interval graphs Ge corresponding to the edges e \in E(H). More
formally, let e = xy \in E(H) and consider the (x, y)-path P in H \prime obtained from
e by the subdivisions. We denote by Ge the subgraph of G induced by Ve = \{ v \in 
V (G) | Mv \subseteq V (Pe) \setminus \{ x, y\} \} . Clearly, Ge is a proper interval graph and the sets Mv

for v \in Ve form a proper interval representation of it. This representation defines a
corresponding total ordering of its vertices (see [35]) by choosing a direction of e and
reading the left endpoints of the individual intervals from left to right. We assume
that these orderings are fixed for every Ge. In particular, whenever we speak about
leftmost and rightmost vertices of Ge, we mean the leftmost and rightmost vertices
with respect to this ordering. Notice that for e = xy, NG(Ve) \subseteq Kx \cup Ky, that is,
paths or cycles that cover the vertices in Ge are either completely in Ge or enter Ge

via the vertices of Kx or Ky that we call the left and right cliques, respectively.
The graphs Ge could be huge but, since they are proper interval graphs, they

have a relatively simple structure. We exploit this structure in order to replace them
by small gadget graphs while maintaining the equivalence of the instances of the
considered problems. Since the vertices of

\bigcup 
x\in V (H) Kx can be covered by at most

| V (H)| cliques and the set of vertices of each gadget replacing Ge can be covered
by a constant number of cliques, we obtain a graph that has a clique cover of size
\scrO (| V (H)| + | E(H)| ).

To simplify the arguments, we show that we can assume that the considered H-
representation (H \prime ,\scrM ) of G has no redundancies, that is, for every node x \in V (H \prime ),
there is a vertex v \in V (G) with x \in Mv and, moreover, for every edge xy \in E(H \prime ),
there is v \in V (G) with x, y \in Mv. We call such a representation nice. To achieve
this niceness, we first observe that if the input graph G has a component F that is a
proper interval graph, we can find the minimum number of paths or cycles that cover
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F depending on the considered problem, and then delete F and modify the parameter
k of Path Cover or Cycle Cover, respectively. Somewhat surprisingly, to the best
of our knowledge Cycle Cover was not studied on proper interval graphs. Therefore,
we design a linear time algorithm for the problem. Note that it may happen that we
solve the problem by applying the reduction rules. Otherwise, we obtain an induced
subgraph G\prime of G such that every component of G\prime has a vertex v with Mv containing
a branching node of H \prime . Then we modify H \prime by removing irrelevant nodes and edges.
This procedure can create new nodes of degree one from some subdivision nodes of
H \prime , but the number of such vertices is at most 2| E(H)| . From this, we derive that G\prime 

is an \^H-graph for some \^H with at most 3| E(H)| nodes and at most 2| E(H)| edges,
and we construct the corresponding nice proper \^H-representation.

From now on we can concentrate only on nice representations. In particular, we
assume that every graph Ge for e = xy \in E(H) is connected and that the leftmost
and the rightmost vertices of Ge have neighbors in the left and the right cliques,
respectively.

Recall that for Path Cover, we prove the following theorem.

Theorem 1. Path Cover admits a kernel of size \scrO (h8), where h is the size of
the graph H in a proper H-representation of the input graph G.

Let G be a proper H-graph given together with its nice proper representation
(H \prime ,\scrM ). Let \scrP be a path cover of G. For e \in E(H), let \scrP e denote the family of
inclusion-maximal subpaths of the paths P \in \scrP with all their vertices in Ve. In other
words, \scrP e contains the subpaths of every path P obtained by the deletion of the
vertices that are outside Ve. We say that \scrP e is the projection of \scrP on Ge. Since \scrP is
a path cover of G, \scrP e is a path cover of Ge. It is possible to show that if G has a path
cover of size at most k, then G has a path cover of size at most k such that the paths
in each projection \scrP e have a very special structure in the case when the vertices of
the graph Ge cannot be covered by two cliques. We call such a cover tamed (this is
a slightly simplified definition which we use only for the high-level description of the
algorithm). We prove the following properties of \scrP e.

\bullet If Ge is 2-connected, then either
-- \scrP e consists of one Hamiltonian path of Ge such that its end-vertices

are the two leftmost vertices of Ge (symmetrically, the two rightmost
vertices), or

-- \scrP e consists of two paths such that each of them has one of its end-
vertices among the two leftmost vertices of Ge and the second end-
vertex is among the two rightmost vertices of Ge, and these paths are
proper subpaths of the same path P of \scrP that occur in P in ``opposite
directions"" for an arbitrary orientation of P .

\bullet If Ge has a cut-vertex, then \scrP e consists of two paths such that one of them
has its end-vertices in the two leftmost vertices or just in the leftmost vertex
if the path is trivial, and the second path behaves symmetrically.

The structure of paths in the projection of a tamed path cover is shown in Figure 2;
the vertices of Ge are denoted by ve1, . . . , v

e
p(e) in the figure according to their proper

interval ordering. Note that every path of \scrP that enters Ge uses the (one or two)
leftmost and rightmost vertices as entry points.

We use this structural result for our kernelization. For each Ge that cannot be
covered by two cliques, we analyze the possible structure of paths in \scrP e for a tamed
path cover \scrP e. It appears that the types of paths in \scrP e are defined by cut-vertices
of Ge and the adjacencies of the second leftmost and the second rightmost vertices of
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Ge to the corresponding left and right cliques (if, say, the second leftmost vertex is
not adjacent to the left clique, then the leftmost vertex ``cuts"" in a special sense this
clique from the remaining part of Ge). Then we replace Ge by a gadget from Figure 4
which has the same structure with respect to how they can be covered by a tamed
path cover. Since each of these gadgets can be covered by at most two cliques, in the
end we obtain an equivalent instance of Path Cover such that the input graph can
be covered by at most | V (H)| + 2| E(H)| cliques.

Then we can apply Theorem 3 where h \leq | V (H)| + 2| E(H)| . Notice that the
kernelization from Theorem 3 can destroy the proper H-representation. Thus we
have to be a bit careful here to specify the value of the parameter. We do it by
using Observation 1 and output the trivial proper \^G-representation for the obtained
graph \^G.

Cycle Cover is more complicated. While the general idea follows the one for
Path Cover, there are several nontrivial differences, which we underline below. We
first recall the statement of the main result for Cycle Cover.

Theorem 2. Cycle Cover admits a compression of size \scrO (h10), where h is the
size of the graph H in a proper H-representation of the input graph G.

Let G be a proper H-graph given together with its nice proper representation
(H \prime ,\scrM ). Let \scrC be a cycle cover of G. Similarly to path covers, for each e \in E(H),
we define the projection \scrC e of \scrC on Ge that is now a family of paths and cycles of Ge.
We show that it suffices to only consider cycle covers of a special structure that again
are called tamed ; the structure of paths and cycles in the projection of a tamed cycle
cover can be seen in Figure 3. Note that the crucial difference between projections
of tamed path and cycle covers is that the number of elements of the projection
of a tamed cycle cover is not bounded by any constant. In particular, if G has at
least three blocks, then either \scrC e contains a Hamiltonian path with its end-vertices in
the leftmost and the rightmost vertices of Ge or each nontrivial middle block should
contain a cycle of \scrC e. This implies that we cannot replace Ge by a gadget which both
has the same number of cycles as the original projection and can be covered by cliques
whose number is any function of the size of H.

To deal with this situation we introduce weights that encode the number of cycles
that we need to cover Ge if we do not use a Hamiltonian path between the leftmost
and the rightmost vertices. For each Ge, we construct a gadget with at most three
edges of positive weight. The remaining edges of the considered graph receive zero
weights. To give a rough idea how this works, we observe that the nonzero weights
are assigned to the edges of a gadget in such a way that (i) there is a Hamiltonian
path between the leftmost and rightmost vertices that contains all these edges, and
(ii) for any cycle cover whose projection has no such path, the cycles of the cover miss
some edges of nonzero weights. The simplest way to achieve this property is to use
bridges in the replacement gadgets for the assignment of nonzero weights, but this is
not always possible and we have to use also more complicated gadgets. We replace the
leftmost (rightmost) block by a copy of K5 if it has size at least 6 and leave it intact
otherwise. The replacement gadgets are attached to the graph by the two leftmost
(rightmost) vertices of Ge and the unique cut-vertices of the corresponding blocks.
The same replacement is done for the middle part if Ge has a unique middle block.
If Ge has at least two middle blocks, we replace them by one of the graphs F1--F11

shown in Figure 8; the edges with nonzero weights are shown by thick lines, and the
gadgets are attached via vertices s and t.
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This way we construct an instance of Prize Collecting Cycle Cover where
at most 3| E(H)| edges have nonzero weights. Then we apply Theorem 3.

Notice that for Hamiltonian Cycle, we have no such difficulties, because we
are looking for a single cycle. This allows us to construct a kernel of size \scrO (h8).

4. Parameterization by the size of a clique cover. In this section we show
that Cycle Cover and Path Cover admit a polynomial kernel when parameterized
by the size s of a clique cover if such a cover is given. For Prize Collecting Cycle
Cover, we show that it admits a polynomial kernel when parameterized by s and the
number of edges of the input graph with nonzero weights. We need some auxiliary
terminology.

Let \scrQ = \{ Q1, . . . , Qs\} be a clique cover of G. We say that a clique Qi is trivial if
| Qi| = 1. An edge e \in E(G) is trivial if both of its end-vertices are in trivial cliques.
For distinct i, j \in \{ 1, . . . , s\} , we say that an edge uv \in E(G) is between Qi and Qj

if u \in Qi and v \in Qj , or vice versa. Let \scrP be a path cover (\scrC be a cycle cover of
G, respectively). It is said that \scrP (\scrC , respectively) is regular with respect to \scrQ if for
every distinct i, j \in \{ 1, . . . , s\} ,

(i) at most one path of \scrP (cycle of \scrC , respectively) has an edge between Qi and
Oj ,

(ii) the number of edges between Qi and Qj in each of the paths of \scrP (cycles of
\scrC , respectively) is at most 2.

Lemma 1. Let \scrQ = \{ Q1, . . . , Qs\} be a clique cover of G and let S be a set of
trivial edges of G with respect to \scrQ . If G has a path cover (cycle cover, respectively)
of size at most k whose paths (cycles, respectively) contain the edges of S, then G has
a regular path cover (cycle cover, respectively) with respect to \scrQ of size at most k with
paths (cycles, respectively) containing the edges of S.

Proof. Let \scrP = \{ P1, . . . , Pk\} (\scrC = \{ C1, . . . , Ck\} , respectively) be a path cover
(cycle cover, respectively) of G with the paths (cycles, respectively) containing the
edges of S such that the number of edges in the paths of \scrP (cycles of \scrC , respectively)
that are between the cliques of \scrQ is minimum. We show that \scrP (\scrC , respectively) is
regular.

First, we prove the claim for \scrP . To obtain a contradiction, assume that \scrP is
not regular. Assume that condition (i) does not hold, that is, there are two distinct
paths Pi = u1 \cdot \cdot \cdot up and Pi\prime = v1 \cdot \cdot \cdot vq in \scrP that contain edges between two distinct
cliques Qj and Qj\prime of \scrQ . Let ut - 1ut and vt\prime  - 1vt\prime be edges of Pi and Pi\prime , respectively,
that are between Qj and Qj\prime . By symmetry, assume without loss of generality that
ut - 1, vt\prime  - 1 \in Qj and ut, vt\prime \in Qj\prime . Clearly, ut - 1vt\prime  - 1, utvt\prime \in E(G). We replace Pi

and Pi\prime by two new paths, \^Pi = u1 \cdot \cdot \cdot ut - 1vt\prime  - 1 \cdot \cdot \cdot v1 and \^Pi\prime = up \cdot \cdot \cdot utvt\prime \cdot \cdot \cdot vq.
Note that we replaced the edges ut - 1ut, vt\prime  - 1vt\prime that are between Qj and Qj\prime by two
edges with their end-vertices in Qj and Qj\prime , respectively. Since these paths cover the

same vertices as Pi and Pi\prime , \^\scrP = (\scrP \setminus \{ Pi, Pi\prime \} )\cup \{ \^Pi, \^Pi\prime \} is a path cover of G of the
same size k. It is straightforward to see that the edges of S are in the paths of \^\scrP .
Since the number of edges that are between the cliques of \scrQ in \^\scrP is less than in \scrP ,
we obtain a contradiction with the choice of \scrP .

Suppose now that condition (ii) is broken, that is, there is a path P = v1 \cdot \cdot \cdot vp
in \scrP that contains at least three edges between some cliques Qi and Qj . Then P
contains two edges that go between Qi and Qj in the ``same direction,"" that is, there
are distinct edges vt - 1vt and vt\prime  - 1vt\prime of P such that either vt - 1, vt\prime  - 1 \in Qi and
vt, vt\prime \in Qj or vt - 1, vt\prime  - 1 \in Qj and vt, vt\prime \in Qi. Assume without loss of generality
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that t < t\prime and it holds that vt - 1, vt\prime  - 1 \in Qi and vt, vt\prime \in Qj . We create the new path
\^P = v1 \cdot \cdot \cdot vt - 1vt\prime  - 1 \cdot \cdot \cdot vtvt\prime \cdot \cdot \cdot vp. Observe that we replaced vt - 1vt and vt\prime  - 1vt\prime that
are between Qi and Qj by two edges with the end-vertices in Qi and Qj , respectively.

Since \^P is the path with the same vertices as P , \^\scrP = (\scrP \setminus \{ P\} ) \cup \{ \^P\} is a path
cover of G of size k. Clearly, the edges of S are not affected by the rerouting, that
is, \^\scrP contains the edges of S. Because the number of edges of \^\scrP that are between
the cliques of \scrQ is reduced by the rerouting of P , we obtain a contradiction with the
choice of \scrP .

This completes the proof for \scrP . The proof of the claim for \scrC is similar. We
again consider two cases corresponding to (i) and (ii) and reroute cycles to reduce the
number of edges that are between the cliques. The rerouting is essentially the same,
the only difference being that in the rerouting that was used to obtain a contradiction
if condition (i) is not fulfilled, we obtain one cycle out of two.

Lemma 2. Let \scrQ = \{ Q1, . . . , Qs\} be a clique cover of a graph G and let S be a
set of trivial edges of G with respect to \scrQ . The minimum size of a path cover (cycle
cover, respectively) whose paths (cycles, respectively) contain the edges of S is at most
s(s+ 1)/2.

Proof. We show the lemma for path covers. For cycle covers, the proof is the
same.

Let \scrP be a path cover whose paths contain the edges of S of minimum size. By
Lemma 1, we can assume that \scrP is regular with respect to \scrQ . For every clique Qi of
\scrQ , \scrP contains at most one path with all the vertices in Qi by minimality. Hence, \scrP 
contains at most s paths with their vertices included in one clique. By regularity, the
number of paths with edges between the cliques is at most

\bigl( 
s
2

\bigr) 
. Therefore, the total

number of paths is at most
\bigl( 
s
2

\bigr) 
+ s = s(s+ 1)/2.

Since Prize Collecting Cycle Cover is a weighted problem, we need special
kernelization tools to deal with integers in the input. We follow the approach of
Etscheid et al. [19] that is based on the algorithm for compressing numbers given by
Frank and Tardos in [23]. We state the result of Frank and Tardos in the form given
in [19].

Lemma 3 (see [23]). There is an algorithm that, given a vector w \in Qh and an

integer N , in polynomial time finds a vector \=w \in Zh with \| \=w\| \infty \leq 24h
3

Nh(h+2) such
that \sanss \sansi \sansg \sansn (w \cdot b) = \sanss \sansi \sansg \sansn ( \=w \cdot b) for all vectors b \in Zh with \| b\| 1 \leq N  - 1.

Now we are ready to prove the main result of the section.

Theorem 3. Cycle Cover, Path Cover, and Hamiltonian Cycle admit
kernels of size \scrO (s8), where s is the size of a clique cover. Prize Collecting Cycle
Cover admits a kernel of size \scrO ((s+ \ell )10), where s is the size of a clique cover and
\ell is the number of edges of the input graph with nonzero weights. In all kernels we
assume that a clique cover of size s is given in the input.

Proof. We construct a kernelization algorithm for Prize Collecting Cycle
Cover as this problem demands the most complicated analysis and then explain how
the algorithm can be adapted for Cycle Cover and Path Cover.

Let (G,\omega , \alpha , r) be an instance of Prize Collecting Cycle Cover and let \scrQ 
be a clique cover of G of size s. Denote by S the set of edges of G with nonzero
weights and let \ell = | S| . We modify \scrQ by making the end-vertices of S trivial cliques,
that is, we let

\^\scrQ = \{ Q \setminus X | Q is a clique of \scrQ \} \cup \{ x | x \in X\} ,
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where X is the set of end-vertices of S. We assume that \^\scrQ = \{ Q1, . . . , Qt\} . Note that
t \leq s+ 2\ell and every edge of S is a trivial edge with respect to \^\scrQ .

We say that a cycle cover \scrC of G of cost at most r is a regular solution if \scrC is
regular with respect to \^\scrQ . We need the following property.

Claim 4.1. If (G,\omega , \alpha , r) is a yes-instance of Prize Collecting Cycle Cover,
then it has a regular solution.

Proof of Claim 4.1. To see this, consider a solution for the instance, that is, a
cycle cover \scrC of cost at most r. Let S\prime be the set of edges of the cycles of \scrC with
nonzero weights that are between the cliques of \^\scrQ . Clearly, S\prime \subseteq S. Then by Lemma 1,
there is a regular cycle cover \^\scrC whose size is at most the size of \scrC and whose cycles
contain the edges of S\prime . Because \omega has nonnegative values and \alpha is nondecreasing,
we have that

c\alpha ,\omega (\scrC ) = \omega (S\prime ) - \alpha (| \scrC | ) \leq c\alpha ,\omega ( \^\scrC ),

that is, \^\scrC is a regular solution.

We say that a regular solution for (G,\omega , \alpha , r) is minimal if it is a regular solution
with the minimum number of cycles. Then we have the following property.

Claim 4.2. Let \scrC = \{ C1, . . . , Ch\} be a minimal regular solution. Then for every
i \in \{ 1, . . . , t\} , at most one cycle of \scrC has edges with both end-vertices in Qi, and the
total number of vertices of Qi that are in the cycles without edges with both end-vertices
in Qi is at most t - 1.

Proof of Claim 4.2. To show the claim, assume that there are two distinct cycles
Cj = u0 \cdot \cdot \cdot up and Cj\prime = v0 \cdot \cdot \cdot vp\prime such that uq - 1, uq, vq\prime  - 1, vq\prime \in Qi for some i \in 
\{ 1, . . . , t\} and q \in \{ 1, . . . , p\} and q\prime \in \{ 1, . . . , p\prime \} . Denote by R the (vq\prime , vq\prime  - 1)-
segment of Cj\prime . Then we can replace Cj and Cj\prime in \scrC by the single cycle C \prime =
u0 \cdot \cdot \cdot uq - 1Ruq \cdot \cdot \cdot up. In other words, we delete the edges uq - 1uq and vq - 1vq from
the cycles and add uq - 1vq\prime and uqvq\prime  - 1 to form a singe cycle. It is straightforward

to verify that \^\scrC = (\scrC \setminus \{ Cj , Cj\prime \} ) \cup \{ C \prime \} is a regular solution of cost at most r since

\omega (uq - 1uq) = \omega (uq\prime  - 1uq\prime ) = 0 and \alpha is nondecreasing. But | \^\scrC | = | \scrC |  - 1, contradicting
the minimality of \scrC . Hence, at most one cycle of \scrC has edges in each clique. If a cycle
Cj has no edge in a clique Qi, then for every vertex v of Cj that is in Qi, the edges
of Cj incident to v are edges between Qi and other cliques. By regularity, at most
two edges between Qi and another clique of \scrQ can be in the cycles of \scrC . Therefore,
the total number of vertices of Qi that are in the cycles without edges with both
end-vertices in Qi is at most t - 1.

For a solution \scrC for (G,\omega , \alpha , r), we say that a vertex v \in V (G) is marked if v
is incident to an edge between some cliques of \scrQ that is in a cycle of \scrC ; the other
vertices are unmarked. The following claim is straightforward to see.

Claim 4.3. For every i \in \{ 1, . . . , t\} , Qi has at most 2(t - 1) marked vertices with
respect to a regular solution \scrC .

We apply a number of reduction rules to reduce the size of the graph. These rules
delete some nontrivial vertices and edges. Whenever we apply these rules and delete
edges, we always assume that the weight function \omega is adjusted by restricting it to
the set of remaining edges. Observe that since we never delete trivial vertices and
edges, the edges of nonzero weight are not affected, and Claims 4.1--4.3 hold for the
obtained instances.
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Reduction Rule 4.1. If there is a clique Qi \in \^\scrQ and v \in Qi such that NG[v] =
Qi and | Qi| \geq t+ 3, then set G = G - v and Qi = Qi \setminus \{ v\} .

To show that the rule is safe, assume that the rule is applied for v \in Qi and let
G\prime = G - v and Q\prime 

i = Qi \setminus \{ v\} .
Suppose that (G,\omega , \alpha , r) is a yes-instance of Prize Collecting Cycle Cover

and let a cycle cover \scrC = \{ C1, . . . , Ck\} be a minimal regular solution of cost at most
r that exists because of Claim 4.1. Then there is Cj \in \scrC containing v. Let x and y be
the neighbors of v in Cj . We claim that Cj is not a triangle. Otherwise, Cj contains
the edge xy and, by Claim 4.2, the other cycles have at most t - 1 vertices in Qi. Since
Ci is a triangle, | Qi| \leq t + 2, contradicting the condition that | Qi| \geq t + 3. Hence,
if we replace the segment xvy in Cj by xy, we obtain a cycle. Denote it by C \prime 

j . As

\omega (vx) = \omega (vy) = 0, we have that \^\scrC = (\scrC \setminus \{ Cj\} ) \cup \{ C \prime 
j\} is a solution for (G\prime , \omega , \alpha , r),

that is, this is a yes-instance.
Assume that (G\prime , \omega , \alpha , r) is a yes-instance of Prize Collecting Cycle Cover.

By Claim 4.1, there is a minimal regular solution \scrC = \{ C1, . . . , Ck\} for the instance.
Since | Q\prime 

i| = | Qi|  - 1 \geq t+2, there is a cycle Cj = u0 \cdot \cdot \cdot up in \scrC such that uq - 1, uq \in Q\prime 
i

by Claim 4.2. Let C \prime 
j = u0 \cdot \cdot \cdot uq - 1vuq \cdot \cdot \cdot up and \^\scrC = (\scrC \setminus \{ Cj\} ) \cup \{ C \prime 

j\} . We have

that \^\scrC is a solution for (G,\omega , \alpha , r) and, therefore, (G,\omega , \alpha , r) is a yes-instance. This
completes the safeness proof.

For distinct i, j \in \{ 1, . . . , t\} , denote by Gij the bipartite graph with the set of
vertices Qi \cup Qj whose edges are the edges of G between Qi and Qj .

Reduction Rule 4.2. If there are distinct i, j \in \{ 1, . . . , t\} such that Gij has a
matching M of size at least 4t  - 3, then for an arbitrarily chosen edge e \in M , set
G = G - e.

Assume that G\prime = G  - e is obtained by the application of the rule for i, j \in 
\{ 1, . . . , t\} . Clearly, if (G\prime , \omega , \alpha , r) is a yes-instance of Prize Collecting Cycle
Cover, then (G,\omega , \alpha , r) is a yes-instance as well. Hence, to show safeness, we assume
that (G,\omega , \alpha , r) is a yes-instance and prove that (G\prime , \omega , \alpha , r) is a yes-instance. Let
\scrC = \{ C1, . . . , Ck\} be a minimal regular solution for (G,\omega , \alpha , r). If e is not an edge
of a cycle of \scrC , \scrC is a solution for (G\prime , \omega , \alpha , r). Suppose that e = uu\prime is an edge of
some cycle Cp of \scrC . Since | M | \geq 4t  - 3, there is an edge vv\prime \in M such that v and
v\prime are unmarked with respect to \scrC by Claim 4.3. We assume that u, v \in Qi and
u\prime , v\prime \in Qj . The vertices v and v\prime are included in some cycles Cq and Cq\prime of \scrC (note
that they could be the same and may coincide with Cp). Let x, y be the neighbors
of v in Cq and let x\prime , y\prime be the neighbors of v\prime in Cq\prime . As v and v\prime are unmarked,
x, y \in Qi and x\prime , y\prime \in Qj . Observe that Cq and Cq\prime contain edges with both end-
vertices in Qi and Qj , respectively. Therefore, each of these cycles contains at least
(4t - 3) - (t - 1) = 3t - 2 \geq 4 vertices of Qi and Qj , respectively, by Claim 4.2. We use
this and modify Cq and Cq\prime by replacing the segments xvy and x\prime v\prime y\prime by xy and x\prime y\prime ,
respectively. Next, we replace uu\prime in Cp by uvv\prime u\prime . Clearly, this modification leads

to the new cycle cover \^\scrC of the same size as \scrC . Since the edges of G with both their
end-vertices in Qi \cup Qj have zero weight, the cost of \^\scrC is the same as the cost of \scrC .
As uu\prime is not included in the cycles of \^\scrC , we have that \^\scrC is a solution for (G\prime , \omega , \alpha , r),
that is, (G\prime , \omega , \alpha , r) is a yes-instance.

Reduction Rule 4.3. If there is a clique Qi \in \^\scrQ and v \in V (G) \setminus Qi such that
| NG(v) \cap Qi| \geq 2t+ 1, then for an arbitrary edge e = uv with u \in Qi, set G = G - e.

The safeness of the rule is proved along the same lines as the proof for Reduction
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Rule 4.2. Assume that G\prime = G  - e is obtained by the application of the rule for
Qi \in \scrQ and v /\in Qi. Again, it is sufficient to prove that if (G,\omega , \alpha , r) is a yes-instance
of Prize Collecting Cycle Cover, then (G\prime , \omega , \alpha , r) is a yes-instance. Assume
that (G,\omega , \alpha , r) is a yes-instance and let \scrC = \{ C1, . . . , Ck\} be a minimal regular
solution. Trivially, (G\prime , \omega , \alpha , r) is a yes-instance with the same solution \scrC if e is not
included in cycles of \scrC . Suppose that e = uv is an edge of Cp \in \scrC . By Claim 4.3,
there is unmarked w \in Qi\cap NG\prime (v). We have that w is a vertex of some cycle Cq \in \scrC ;
it can happen that q = p. Let x and y be the neighbors of w in Cq. Notice that
Cq has edges with both their end-vertices in Qi. By Claim 4.2, Cq contains at least
(2t+1) - (t - 1) = t+2 \geq 4 vertices, that is, Cq is not a triangle. Then we can modify
Cq by replacing the segment xwy by xy and then replacing uv in Cp by uwv. We

obtain the cycle cover \^\scrC of the same cost as \scrC whose cycles do not contain e. Hence,
\^\scrC is a solution for (G\prime , \omega , \alpha , r) and (G\prime , \omega , \alpha , r) is a yes-instance.

We apply Reduction Rules 4.1--4.3 exhaustively whenever possible. The following
claim shows that we obtain a graph of bounded size.

Claim 4.4. If no Reduction Rules 4.1--4.3 can be applied for (G,\omega , \alpha , r), then
| V (G)| = \scrO (t4).

Proof of Claim 4.4. Let i \in \{ 1, . . . , t\} . Our goal is to find an upper-bound on
| Qi| . Consider j \in \{ 1, . . . , t\} . Recall that Gij denotes the bipartite graph with the
vertex set Qi \cup Qj whose edge set is the set of edges of G between Qi and Qj . There
is a vertex cover of size at most 8t - 8 in Gij having at most 4t - 4 vertices in Qi and
at most 4t - 4 vertices in Qj composed of the end-vertices of a maximum matching in
Gij , as Reduction Rule 4.2 is not applicable. We say that these are covering vertices.

Observe that each covering vertex in Qj has at most 2t neighbors in Qi, since
Reduction Rule 4.3 is not applicable to those vertices. Notice also that the covering
vertices in Qi are neighbors of the covering vertices in Qj by the construction of the
vertex cover. Summing over all j \not = i, we obtain that Qi contains at most 2t(4t  - 
4)(t  - 1) neighbors of covering vertices. Therefore, we conclude that there are at
most 2t(4t  - 4)(t  - 1) vertices in Qi that are incident to the edges of G between
Qi and other cliques. Since Reduction Rule 4.1 is not applicable, Qi has at most
2t(4t - 4)(t - 1) vertices. Summing up over all cliques in the cover yields the claimed
bound | V (G)| = \scrO (t4).

Denote by \^G the graph obtained from the input graph G by Reduction Rules 4.1--
4.3. By Claim 4.4, \^G has \scrO (t4) vertices and, therefore, \scrO (t8) edges. As the rules are
safe, we have that the instance ( \^G,\omega , \alpha , r) of Prize Collecting Cycle Cover
is equivalent to (G,\omega , \alpha , r). Note also that in parallel we get the clique cover of \^G
obtained from the original cover \^\scrQ by the vertex deletions, that is, the obtained graph
has a clique cover of size at most t.

Our next aim is to compress the weights and penalties. For this, we use Lemma 3.
Recall that S is the set of edges of G with nonzero weights and \ell = | S| . Note that
S \subseteq E( \^G). Let S = \{ e1, . . . , e\ell \} and p = min\{ | V ( \^G)| , t(t + 1)/2\} . We construct the
vector w \in Zh for h = \ell +p+1 by setting w = (\omega (e1), . . . , \omega (e\ell ), \alpha (1), . . . , \alpha (p), r) and
define N = \ell + 3 \geq 3. We apply the algorithm of Frank and Tardos from Lemma 3
and this algorithm constructs the vector \=w = (\=\omega 1, . . . , \=\omega \ell , \=\alpha 1, . . . , \=\alpha p, \^r) that has the
property that

(4.1) \sanss \sansi \sansg \sansn (w \cdot b) = \sanss \sansi \sansg \sansn ( \=w \cdot b) for all vectors b \in Zh with \| b\| 1 \leq N  - 1.

We define the weight function \^\omega : E( \^G) \rightarrow Z by setting \^\omega (ei) = \=\omega i for i \in \{ 1, . . . , \ell \} 
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and \^\omega (e) = 0 for e \in E( \^G) \setminus S, and we define \^\alpha : \{ 1, . . . , | V ( \^G)| \} \rightarrow Z by setting
\^\alpha (i) = \=\alpha i for i \in \{ 1, . . . , p\} and \^\alpha (i) = maxj\in \{ 1,...,p\} \=\alpha j for j \in \{ p + 1, . . . , | V ( \^G)| \} .
Note that the number of edges of nonzero weight is at most \ell .

Claim 4.5. The instance ( \^G, \^\omega , \^\alpha , \^r) is a feasible instance of Prize Collecting
Cycle Cover and ( \^G, \^\omega , \^\alpha , \^r) is equivalent to ( \^G,\omega , \alpha , r).

Proof of Claim 4.5. Observe that for every i \in \{ 1, . . . , \ell \} , \sanss \sansi \sansg \sansn (\^\omega (ei)) = \sanss \sansi \sansg \sansn (\omega (ei)),
because (4.1) holds for vectors b with one nonzero element that is equal to one.
Hence, \^\omega has nonnegative values. By the same arguments, \sanss \sansi \sansg \sansn (\^\alpha (i)) = \sanss \sansi \sansg \sansn (\alpha (i)) for
i \in \{ 1, . . . , p\} . This implies that \^\alpha has positive values, since \^\alpha (i) for i > p is positive
by the definition if \=\alpha j > 0 for j \leq p. Since (4.1) holds for vectors b with two nonzero
elements, one of which is 1 and the other is  - 1, we obtain that for i \in \{ 2, . . . , p\} ,
\sanss \sansi \sansg \sansn (\^\alpha (i  - 1)  - \^\alpha (i)) = \sanss \sansi \sansg \sansn (\alpha (i  - 1)  - \alpha (i)). Also we have that \^\alpha (j) for j > p
has the same values and \^\alpha (j) \geq \^\alpha (i) for i \leq p by the definition. Therefore, \^\alpha is a
nondecreasing function. We conclude that ( \^G, \^\omega , \^\alpha , \^r) is a feasible instance of Prize
Collecting Cycle Cover.

To show that ( \^G, \^\omega , \^\alpha , \^r) and ( \^G,\omega , \alpha , r) are equivalent, assume first that ( \^G,\omega ,
\alpha , r) is a yes-instance of Prize Collecting Cycle Cover. By Claim 4.1, there is
a minimal regular solution \scrC for the instance. Let S\prime be the set of edges with nonzero
weights included in the cycles of \scrC . Clearly, S\prime \subseteq S. By Lemma 2, we have that
q = | \scrC | \leq t(t + 1)/2 \leq p. Let \ell \prime = | S\prime | . Because N = \ell + 3, (4.1) holds for vectors b
with \ell \prime + 2 nonzero elements such that \ell \prime elements are 1's and 2 elements are  - 1's.
Then we have that

\sanss \sansi \sansg \sansn 

\Biggl( \sum 
e\in S\prime 

\omega (e) - \alpha (q) - r

\Biggr) 
= \sanss \sansi \sansg \sansn 

\Biggl( \sum 
e\in S\prime 

\^\omega (e) - \^\alpha (q) - \^r

\Biggr) 
.

Then c\alpha ,\omega (\scrC ) =
\sum 

e\in S\prime \omega (e) - \alpha (q) \leq r if and only if c\^\alpha ,\^\omega (\scrC ) =
\sum 

e\in S\prime \^\omega (e) - \^\alpha (q) \leq \^r.

Hence, \scrC is a solution for ( \^G, \^\omega , \^\alpha , \^r) and, therefore, ( \^G, \^\omega , \^\alpha , \^r) is a yes-instance. For
the opposite direction, the arguments are the same. If ( \^G, \^\omega , \^\alpha , \^r) is a yes-instance of
Prize Collecting Cycle Cover, it has a minimal regular solution \scrC . Then we
repeat the same arguments as above and conclude that \scrC is a solution for ( \^G,\omega , \alpha , r).
Then ( \^G,\omega , \alpha , r) is a yes-instance.

By Lemma 3, we have that for every e \in E( \^G), \^\omega (e) \leq 24h
3

Nh(h+2). Hence, the
weight of e can be encoded in binary by a string of length \scrO (h3 + h2 logN). Since
h \leq \ell + t(t+1)/2+ 1 and N = \ell +3, the weight can be encoded by a string of length
\scrO ((\ell + t2)3). Recall that t = s+ \ell and \ell edges of \^G have nonzero weights. It follows
that the weights can be encoded by \scrO (\ell (s + \ell )6) symbols. Similarly, we have that

for each i \in \{ 1, . . . , | V ( \^G)| \} , \^\alpha (i) \leq 24h
3

Nh(h+2) and \alpha (i) can be encoded by a string
of length \scrO ((s + \ell )6). As \^G has \scrO ((s + \ell )4) vertices, the penalty function \^\alpha can be
encoded by \scrO ((s+ \ell )10) symbols. Taking into account that \^G has \scrO ((s+ \ell )4) vertices
and \scrO ((s+\ell )8) edges, we obtain that the size of the instance ( \^G, \^\omega , \^\alpha , \^r) is \scrO ((s+\ell )10).

It remains to evaluate the running time of our kernelization algorithm. Observe
that Reduction Rules 4.1--4.3 can be applied in polynomial time. In particular, to
apply Reduction Rule 4.2, we have to find a maximum matching in a bipartite graph,
and this can be done, e.g., by the classical algorithm of Hopcroft and Karp [27]. Since
the algorithm of Frank and Tardos is polynomial (see Lemma 3), we conclude that
the kernelization algorithm is polynomial.

This completes the proof of the theorem for Prize Collecting Cycle Cover.
Now we explain how to adapt the proof for Cycle Cover (Hamiltonian Cycle)
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and Path Cover.
For Cycle Cover, we just apply our kernelization algorithm for Prize Col-

lecting Cycle Cover for S = \emptyset and skip the compression of weights and penal-
ties. Recall that an instance (G, k) of Cycle Cover is equivalent to the instance
(G,\omega , \alpha , r) of Prize Collecting Cycle Cover with zero edge weights, \alpha (x) = x
and r =  - k. Respectively, given an instance (G, k) of Cycle Cover together with a
clique cover \scrQ of size s, we apply Reduction Rules 4.1--4.3. This immediately implies
that we obtain a kernel of size \scrO (s8). For Hamiltonian Cycle, it is sufficient to
observe that a graph G has a Hamiltonian cycle if and only if (G, k) is a yes-instance
of Cycle Cover for k = 1. Since Reduction Rules 4.1--4.3 do not modify k, we
immediately conclude that the kernelization algorithm for (G, 1), in fact, produces an
instance of Hamiltonian Cycle.

For Path Cover, we use the same approach, but we have to adjust the reduction
rules and the safeness proofs.

Let (G, k) be an instance of Path Cover and let \scrQ = \{ Q1, . . . , Qs\} be a clique
cover of G.

We say that a path cover \scrP is a regular solution if | \scrP | \leq k and \scrP is regular with
respect to \scrQ . Lemma 1 immediately implies the following claim.

Claim 4.6. If (G, k) is a yes-instance of Path Cover, then it has a regular
solution.

In exactly the same way as in Claim 4.2, we show the following claim.

Claim 4.7. Let \scrP be a regular solution. Then for every i \in \{ 1, . . . , s\} , the total
number of vertices of Qi that are internal vertices of the paths of \scrP without edges with
both end-vertices in Qi is at most s - 1.

For a solution \scrP , we say that a vertex v \in V (G) is marked if v is incident to an
edge between some cliques of \scrQ that is in a path of \scrP ; the other vertices are unmarked.
Then we have the next claim.

Claim 4.8. For every i \in \{ 1, . . . , s\} , Qi has at most 2(s - 1) marked vertices with
respect to a regular solution \scrP .

We use Claims 4.7 and 4.8 to construct the analogues of Reduction Rules 4.1--4.3
for Path Cover. Notice that \^\scrQ = \scrQ in this case.

Reduction Rule 4.4. If there is a clique Qi \in \scrQ and v \in Qi such that NG[v] =
Qi and | Qi| \geq s+ 1, then set G = G - v and Qi = Qi \setminus \{ v\} .

To show that the rule is safe, assume that the rule is applied for v \in Qi and let
G\prime = G - v and Q\prime 

i = Qi \setminus \{ v\} .
Suppose that (G, k) is a yes-instance of Path Cover. Then there is a regular

solution \scrP = \{ P1, . . . , Pr\} for the instance by Claim 4.6. Since \scrP is a path cover,
there is Pj = u1 \cdot \cdot \cdot ut in \scrP that contains v. If t = 1, that is, v = u1 = ut, we define
\^\scrP = \scrP \setminus \{ Pi\} . Otherwise, if t \geq 2, we define \^\scrP as follows. If v = u1 or v = ut, we set
P \prime 
i = u2 \cdot \cdot \cdot ut or u1 \cdot \cdot \cdot ut - 1, respectively, and if v = ui for i \in \{ 2, . . . , t  - 2\} , we set

P \prime 
i = u1 \cdot \cdot \cdot ui - 1ui+1 \cdot \cdot \cdot ut. Then we define \^\scrP = (\scrP \setminus \{ Pi\} )\cup \{ P \prime 

i\} . It is straightforward
to verify that \^\scrP is a solution for (G\prime , k), that is, (G\prime , k) is a yes-instance.

Assume that (G\prime , k) is a yes-instance of Path Cover. By Claim 4.6, there is
a regular solution \scrP = \{ P1, . . . , Pr\} for the instance. Because | Q\prime 

i| \geq s, there is a
path Pj = u1 \cdot \cdot \cdot ut in \scrP that either has an end-vertex in Q\prime 

i or an edge with both
end-vertices in Q\prime 

i by Claim 4.7. If u1 \in Q\prime 
i or ut \in Q\prime 

i, let P \prime 
i = vu1 \cdot \cdot \cdot ut or P \prime 

i =
u1 \cdot \cdot \cdot utv, respectively. If u1, ut /\in Q\prime 

i and uh - 1, uh \in Q\prime 
i for some h \in \{ 2, . . . , t\} , then

D
ow

nl
oa

de
d 

01
/0

3/
22

 to
 1

29
.1

77
.1

46
.2

29
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

858 CHAPLICK ET AL.

P \prime 
i = u1 \cdot \cdot \cdot uh - 1vuh \cdot \cdot \cdot us. Let \^\scrP = (\scrP \setminus \{ Pi\} ) \cup \{ P \prime 

i\} . We have that \^\scrP is a solution
for (G, k) and, therefore, this is a yes-instance. This completes the safeness proof.

Reduction Rule 4.5. If there are distinct i, j \in \{ 1, . . . , s\} such that Gij has a
matching M of size at least 4s  - 3, then for an arbitrarily chosen edge e \in M , set
G = G - e.

Assume that G\prime = G  - e is obtained by the application of the rule for i, j \in 
\{ 1, . . . , t\} . It is sufficient to show that if (G, k) is a yes-instance of Path Cover,
then (G\prime , k) is a yes-instance. Let \scrP = \{ P1, . . . , Pr\} be a regular solution for (G, k).
If e is not an edge of a path of \scrP , \scrP is a solution for (G\prime , k). Suppose that e = uu\prime is
an edge of some path Ph of \scrP . Since | M | \geq 4s - 3, there is an edge vv\prime \in M such that
v and v\prime are unmarked with respect to \scrP by Claim 4.8. We assume that u, v \in Qi

and u\prime , v\prime \in Qj . The vertices v and v\prime are included in some paths Pt and Pt\prime of \scrP 
that could be the same and may coincide with Ph. We modify Pt and Pt\prime and exclude
v and v\prime from the paths. Let Pt = x1 \cdot \cdot \cdot xp. If p = 1, we simply delete Pt. If v = x1

or v = xp, we delete w from the path. If v = x\ell for \ell \in \{ 2, . . . , p - 2\} , we replace Pt

by x1 \cdot \cdot \cdot x\ell  - 1x\ell +1 \cdot \cdot \cdot xp. This replacement can be done, because v is unmarked and,
therefore, x\ell  - 1, x\ell +1 \in Qi. The path Pt\prime is modified in the same way (if Pt and Pt\prime 

are the same, we modify the path obtained from Pt by the exclusion of v). Next, we
modify Ph (or the path obtained from Ph by the modification of Pt and/or Pt\prime ) by
replacing the subpath uu\prime by the subpath uvv\prime u\prime . Clearly, this modification creates
the new path cover \^\scrP of the same size as \scrP , but now e is not included in a path of
\^\scrP , that is, \^\scrP is a solution for (G\prime , k). Therefore, (G\prime , k) is a yes-instance.

Reduction Rule 4.6. If there is a clique Qi \in \scrQ and v \in V (G) \setminus Qi such that
| NG(v)\cap Qi| \geq 2s - 1, then for an arbitrary edge e = uv with u \in Qi, set G = G - e.

The safeness of the rule is proved similarly to the safeness proof of Reduction
Rule 4.5. Assume that G\prime = G  - e is obtained by the application of the rule for
Qi \in \scrQ and v /\in Qi. Again, it is sufficient to prove that if (G, k) is a yes-instance
of Path Cover, then (G\prime , k) is a yes-instance. Assume that \scrP = \{ P1, . . . , Pr\} is
a regular solution. If e is not included in any path of \scrP , then \scrP is a solution for
(G\prime , k). Suppose that e = uv is an edge of Ph \in \scrP . By Claim 4.8, there is unmarked
w \in Qi \cap NG(v). We have that w is a vertex of some path Pt \in \scrP ; it can happen that
t = h. We modify Pt = x1 \cdot \cdot \cdot xp to exclude w from it. If p = 1, we simply delete Pt.
If w = x1 or w = xp, we delete w from the path. If w = x\ell for \ell \in \{ 2, . . . , p  - 2\} ,
we replace Pt by x1 \cdot \cdot \cdot x\ell  - 1x\ell +1 \cdot \cdot \cdot xp. This replacement can be done, because w in
unmarked and, therefore, x\ell  - 1, x\ell +1 \in Qi. Next, we modify Ph (or the path obtained
from Ph by the modification of Pt if h = t) by replacing the subpath vu by the sub-
path vwu. Clearly, this modification creates the new path cover \^\scrP of the same size
as \scrP , but now e is not included in a path of \^\scrP , that is, \^\scrP is a solution for (G\prime , k). We
obtain that (G\prime , k) is a yes-instance.

We apply Reduction Rules 4.4--4.6 exhaustively whenever possible. Then we have
the following claim that is proved by the same arguments as Claim 4.4

Claim 4.9. If no Reduction Rules 4.4--4.6 can be applied for (G, k), then | V (G)| =
\scrO (s4).

Let \^G be the graph obtained by the exhaustive application of Reduction Rules 4.4--
4.6. We have that | V ( \^G)| = \scrO (s4) and, therefore, | E( \^G)| = \scrO (s8). We also have that
the instances (G, k) and ( \^G, k) are equivalent. The final step is to replace k by
\^k = min\{ k, s(s+ 1)/2\} . By Lemma 2, the instances ( \^G, k) and ( \^G, \^k) are equivalent.
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Clearly, the size of ( \^G, \^k) is \scrO (s8). Since Reduction Rules 4.4--4.6 can be applied in
polynomial time in the same way as Reduction Rules 4.1--4.3, we conclude that Path
Cover admits a polynomial kernel of size \scrO (s8).

5. Structure of path and cycle covers in proper \bfitH -graphs. In this section
we introduce additional notation and obtain a number of structural and auxiliary
algorithmic results about path and cycle covers in proper H-graphs.

5.1. Path and cycle covers in proper interval graphs. Our kernelization
algorithms for proper H-graphs use the algorithms for Path Cover and Cycle
Cover on proper interval graphs. Path Cover on proper interval graphs is easy.
Recall that every connected proper interval graph has a Hamiltonian path, and a
proper interval graph has a Hamiltonian cycle if and only if it has at least three vertices
and is 2-connected [2, 14, 29]. This immediately implies the following observation.

Observation 2. For a proper interval graph G, the minimum size of a path cover
is exactly the number of components of G.

It is also useful to make some further observations about the structure of Hamil-
tonian paths in proper interval graphs. Let G be a proper interval graph and let
\scrI = \{ [\ell v, rv] | v \in V (G)\} be its proper interval representation. Notice that by proper-
ness, \ell u \not = \ell v (ru \not = rv) for distinct u, v \in V (G) and \ell u \leq \ell v implies that ru \leq rv.
In particular, this means that \scrI provides a total order \pi \scrI = v1, . . . , vn on V (G).
Throughout this subsection we consider proper interval graph G with a given repre-
sentation denoted by \scrI = \{ [\ell v, rv] | v \in V (G)\} and fix the ordering \pi \scrI = v1, . . . , vn of
V (G). Observe that v1 and vn are simplicial vertices, that is, NG(v1) and NG(vn) are
cliques. A vertex v is the leftmost (rightmost, respectively) vertex if \ell v is minimum
(respectively, maximum). We extend this definition in a natural way for two leftmost
(rightmost, respectively) vertices. It is said that a path x1 \cdot \cdot \cdot xk in G is monotone if
\ell x1

< \cdot \cdot \cdot < \ell xk
. It is well known [2] that every connected proper interval graph has

a monotone Hamiltonian path. Clearly, the leftmost and the rightmost vertices are
the end-vertices of such a path. Also every 2-connected proper interval graph with at
least three vertices has a Hamiltonian cycle that is the concatenation of two monotone
paths [2]. This leads to the following lemma.

Lemma 4. Let G be a connected proper interval graph with at least two vertices.
Then G has a Hamiltonian (v1, vn)-path. Moreover, if G is 2-connected, then G has a
Hamiltonian (v1, v2)-path (a Hamiltonian (vn - 1, vn)-path) and, provided additionally
that | V (G)| \geq 3, G has a path cover of size two formed by (a1, b1)- and (a2, b2)-paths
with \{ a1, a2\} = \{ v1, v2\} and \{ b1, b2\} = \{ vn - 1, vn\} .

Proof. The first claim trivially follows from the results of Bertossi [2]. To show
the second claim, assume that | V (G)| \geq 3 and G is 2-connected. Then G has a
Hamiltonian cycle formed by two monotone paths x1 \cdot \cdot \cdot xs and y1 \cdot \cdot \cdot yt with x1 =
y1 = v1 and xs = yt = vn [2]. Since the paths are monotone, either v2 = x2 or v2 = y2.
In the first case, we have that y1 \cdot \cdot \cdot ytxs - 1 \cdot \cdot \cdot x2 is a Hamiltonian (v1, v2)-path, and
x1 \cdot \cdot \cdot xsyt - 1 \cdot \cdot \cdot y2 is a Hamiltonian (v1, v2)-path in the other case. Similarly, either
vn - 1 = xs - 1 or vn - 1 = yt - 1. If v2 = x2 and vn - 1 = xs - 1, we have the path
cover \{ x2 \cdot \cdot \cdot xs1 , y1 \cdot \cdot \cdot yt\} , and if v2 = x2 and vn - 1 = yt - 1, we obtain the path
cover \{ x2 \cdot \cdot \cdot xs, y1 \cdot \cdot \cdot yt - 1\} . All other cases are symmetric with these two. Clearly, if
| V (G)| = 2, then v1v2 = vn - 1vn is a Hamiltonian path.

Even though many algorithms are known for dozens of problems when the input
is restricted to (proper) interval graphs, the complexity of Cycle Cover seems to
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be unknown. We provide a linear time algorithm using a greedy approach based on a
standard decomposition of a graph into 2-connected components in order to compute
the minimum cycle cover of a proper interval graph.

First, we need some properties of the blocks of a proper interval graph.

Observation 3. Let B be a block of G and vi \in V (B) be a cut-vertex of G. Then
either j \leq i for every vj \in V (B) or i \leq j for every vj \in V (B).

Proof. Suppose otherwise; then there are vertices vj and vj\prime in B with j < i < j\prime .
Since B is a block, there is a path P in B connecting vj and vj\prime which does not use vi.
In particular, in the interval representation, the intervals of the vertices on P cover
the interval Ivi , contradicting the fact that vi is a cut-vertex.

Observation 3 directly implies the following lemma.

Lemma 5. Let G be a connected proper interval graph. Then the following hold:
(i) For every block B of G, the vertices of B occur consecutively in \pi \scrI , say as

vB1 , . . . , vBnB
.

(ii) The block-cutpoint decomposition graph BC(G) is a path.
(iii) For each block B of G, if B is not a leaf of BC(G), then precisely vB1 and

vBnB
are the cut-vertices contained in B.

(iv) If G contains at least one cut-vertex and B is the block containing v1 (vn,
respectively), then vBnB

(vB1 , respectively) is the only cut-vertex in B.

Lemma 6. If G is a 2-connected proper interval graph, then G[v1, . . . , vn - 1] is
also 2-connected (symmetrically, G[v2, . . . , vn] is also 2-connected).

Proof. We first observe that N(vn) is a clique. Namely, let vi be a neighbor of vn.
Clearly, in order for Ivi to intersect Ivn , it must also intersect Ivj for every j between
i and n, i.e., N(vn) is a clique.

Now consider any path P in G. Suppose P = P1vnP2 for some paths P1 and P2,
i.e., P uses vn as an internal node. Since N(vn) is a clique, it is clear that P \prime = P1P2

is also a path in G and, in particular, P \prime is a path in G\prime = G[v1, . . . , vn - 1]. However,
if there is a cut-vertex v in G\prime , it would need to belong to every (u, u\prime )-path in G\prime 

for some pair of vertices u, u\prime \in V (G\prime ) and, as such, it would also belong to every
(u, u\prime )-path in G. This would contradict the 2-connectedness of G.

Notice that if G contains a trivial block, then the edge in this block cannot be
used in any cycle cover of G. Namely, to compute a minimum cycle cover, it suffices to
compute a minimum cycle cover of each of the two induced subgraphs of G obtained
by deleting the edge of a trivial block. This together with Lemma 5 (ii) provides the
following observation.

Observation 4. For any proper interval graph G, if two trivial blocks share a
cut-vertex, then G has no cycle cover.

We use the above structural observations to construct a linear time algorithm
to solve the cycle cover problem on proper interval graphs. Note that in this proof
we will at times implicitly use the properties (i)--(iv) given in Lemma 5. Recall that
bl(G) denotes the number of blocks of G and tbl(G) is the number of trivial blocks.

Theorem 4. Let G be a proper interval graph. In linear time, we can decide
whether G has a cycle cover, and when it does a minimum cycle cover can be con-
structed. Additionally, this cover will use precisely bl(G) - tbl(G) cycles.

Proof. Recall that if G contains a trivial block, then the edge in this block cannot
be used in any cycle cover of G. Namely, to compute a minimum cycle cover, it
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suffices to compute a minimum cycle cover of each of the two induced subgraphs of
G obtained by deleting the edge of a trivial block. Therefore, we delete the edges
from the trivial blocks and consider each connected subgraph which remains. At this
point, we also apply Observation 4 and conclude that G has no cycle cover if we have
created any isolated vertices.

Recall that when a proper interval graph is 2-connected (and has at least three
vertices), it has a Hamiltonian cycle. In particular, every nontrivial block of G has
a Hamiltonian cycle. From now on we assume that G is a connected graph without
trivial blocks.

We proceed inductively on the number of blocks in G. Namely, we will see that
when G has a cycle cover, it has a cycle cover by bl(G) cycles. Such a cycle cover
is optimal, since we only have nontrivial blocks, i.e., each block has a private vertex
which cannot be covered simultaneously with the private vertex of another block.

If G is a block, then, since G has no trivial blocks, it has at least three vertices
and in particular has a Hamiltonian cycle.

So, suppose G contains at least two blocks and let B be the block containing v1.
This gives us two cases to consider.

Case 1: B contains exactly three vertices. Then V (B) = \{ v1, v2, v3\} .
Note that B is a triangle, and this triangle is the only cycle which contains v1,

i.e., if G has a cycle cover, then B must be a cycle in every cycle cover of G. Moreover,
G has a cycle cover if and only if G\prime = G - V (B) = G[v4, . . . , vn] has a cycle cover.

Now, since G only contains nontrivial blocks, v4 is not a cut-vertex of G, i.e.,
there is a block B\prime in G which contains v4. If this block has only three vertices, then
the block containing v4 in G\prime has only two vertices. In particular, G has no cycle
cover because we cannot simultaneously cover both v1 and v4 by cycles. On the other
hand, if B\prime contains at least four vertices, then in G\prime the block containing v4, which is
precisely B\prime  - v3 by Lemma 6, has at least three vertices, i.e., G\prime is a proper interval
graph with no trivial blocks, and bl(G\prime ) = bl(G)  - 1, and applying induction on G\prime 

completes this case.

Case 2: B contains at least four vertices.
Now, by Lemma 6, G[v1, . . . , vnB - 1] is 2-connected and as such has a Hamiltonian

cycle CB which can be computed in linear time [29]. Moreover, G\prime = G[vnB
, . . . , vn]

consists of only nontrivial blocks, and as such we can apply induction to see that if G\prime 

has a cycle cover, then it has a cycle cover using bl(G\prime ) = bl(G) - 1 blocks. Namely,
if G\prime has a cycle cover \scrC \prime , then \scrC \prime \cup \{ CB\} is a cycle cover of G using bl(G) cycles.

So, it only remains to argue that when G has a cycle cover, G\prime also has a cycle
cover. Let \scrC be a minimum cycle cover of G, and let C be the cycle which covers vnB

(i.e., the cycle covering the cut-vertex contained in B).
Suppose C is not contained in B. Now, the only vertex of B covered by C is vnB

.
Thus, removing all cycles contained in B from \scrC provides a cycle cover of G\prime .

Finally, suppose that C is contained in B. Since G does not contain trivial blocks,
there is a well-defined block B\prime of G which contains vnB+1. Let \scrC B\prime be the cycles in
\scrC contained in B\prime . Note that \scrC B\prime must contain at least one cycle, namely, the cycle
which covers vnB+1. Moreover, \scrC B\prime covers either B\prime  - vnB

or B\prime  - \{ vnB
, vnB+nB\prime  - 1\} .

In either case, by Lemma 6, the subgraph of G induced by covered vertices together
with vnB

is 2-connected and as such has a Hamiltonian cycle CB\prime . Namely, replacing
\scrC B\prime with CB\prime in \scrC and then removing C results in a cycle cover of G\prime .

The algorithm implicitly contained in the above proof is extremely simple and
outlined as follows. We first compute the block-cutpoint decomposition of the given
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proper interval graph. We then delete any edges corresponding to trivial blocks. For
each of the connected components that remain, we proceed as follows. We iteratively
consider a leaf block and either add this cycle to the cover (when B has only three
vertices) or construct a Hamiltonian cycle of this block without its cut-vertex (say,
using [29]). In the former case we also check if the neighboring block of this leaf
block becomes trivial after deleting the cut-vertex. If it does, G has no cycle cover.
Otherwise, we remove the vertices covered by our constructed cycle and repeat. It is
straightforward to verify that this algorithm runs in linear time.

Theorem 4 implies the following useful lemma.

Lemma 7. Let G be a connected proper interval graph. Then if G and G  - v1
(G and G - vn, respectively) both have cycle covers, then the minimum sizes of cycle
covers of these graphs are the same. Moreover, if G and G - \{ v1, vn\} both have cycle
covers, then the minimum sizes of cycle covers of these graphs are the same.

Proof. Suppose that G and G\prime = G  - v1 have cycle covers. Then the minimum
sizes of cycle covers are bl(G)  - tbl(G) and bl(G\prime )  - tbl(G\prime ). If bl(G)  - tbl(G) \not =
bl(G\prime ) - tbl(G\prime ), the nontrivial block of G that contains v1 is G[v1, v2, v3] and G[v2, v3]
is a block of G\prime . This means that v2 has a unique neighbor in G\prime and, clearly, that
G\prime has no cycle cover, contradicting the assumption of the lemma. The proof of the
second claim uses the same arguments.

For a connected proper interval graph G, we define the signature of G as the
sequence \sigma (G) = \langle A1, A2, A3, A4\rangle of yes- or no-answers on the question of whether G,
G - v1, G - vn, or G - \{ v1, vn\} has a cycle cover, respectively.

We need the following lemma.

Lemma 8. There is no connected proper interval graph with one of the following
signatures:

(i) \langle yes, yes, no, yes\rangle .
(ii) \langle yes, no, yes, yes\rangle .
(iii) \langle yes, no, no, yes\rangle .
(iv) \langle no, yes, yes, yes\rangle .
(v) \langle no, yes, yes, no\rangle .
Proof. Let G be a connected proper interval graph G with n \geq 3. Let \sigma (G) =

\langle A1, A2, A3, A4\rangle . If G is 2-connected, then A1 = yes by the results of [2], and if
A2 = no or A3 = no, then n = 3. Clearly, we have that A4 = no in these cases. We
conclude that G cannot have signatures (i)--(v).

Assume that G has a cut-vertex. Suppose that A1 = A4 = yes, that is, G and
G - \{ v1, vn\} have cycle covers. Observe that v1 is included in a nontrivial block of size
at least 4. Otherwise, by Lemma 5, either G[v1, v2] or G[v1, v2, v3] is a block and either
v2 or v3, respectively, is a unique cut-vertex of G in the block. In the first case, v1 is
a vertex of degree one in G and A1 = no. In the second case, v2 is a vertex of degree
one in G  - \{ x1, xn\} and, therefore, A4 = no. In both cases, we get a contradiction.
By symmetry, vn is included in a nontrivial block of size at least 4. Then a cycle
cover \scrC of G - \{ v1, vn\} of minimum size has a cycle C1 with the vertices v2, . . . , vi for
some i \geq 3 and a cycle C with the vertices vj , . . . , vn - 1 for some i < j \leq n  - 3. By
Lemma 4, we obtain that G[v2, . . . , vi] has a Hamiltonian (v2, v3)-path. Since v1 is
adjacent to v2 and v3, we have that there is a cycle C \prime 

1 with the vertices v1, . . . , vi. By
symmetry, there is a cycle C \prime 

2 with the vertices vj , . . . , vn. By replacing C1 by C \prime 
1 and

C2 by C \prime 
2, we can construct cycle covers of G - v1 and G - vn, that is, A2 = A3 = yes.

This implies, that the signatures (i)--(iii) do not occur.
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Suppose that A2 = A3 = yes. Similarly to the above case, we have that v1 is
included in a nontrivial block of size at least 4: if G[v1, v2] is a block, then v1 is
a vertex of degree one and G  - vn has no cycle cover contradicting A3 = yes, and
if G[v1, v2, v3] is a block, then v2 is a vertex of degree one in G  - v1, contradicting
A2 = yes. Since A2 = yes, G - v1 has a cycle cover. Then a cycle cover \scrC of G - v1 of
minimum size has a cycle C with the vertices v2, . . . , vi for some i \geq 3 and, therefore,
G[v2, . . . , vi] has a Hamiltonian (v2, v3)-path. Also we obtain that G has a cycle C \prime 

with the vertices v1, . . . , vi, because v1 is adjacent to v2 and v3. By replacing C by
C \prime in \scrC , we obtain a cycle cover of G, that is, A1 = yes. Hence, (iv) and (v) do not
occur.

For a connected proper interval graph G given together with its proper interval
representation \scrI and the corresponding ordering of the vertices \pi \scrI = v1, . . . , vn, we
define \sansc \sanso \sansv \sanse \sansr (G) to be the minimum size of a cycle cover of the graphs G, G  - v1,
G - vn, and G - \{ v1, vn\} , and we assume that \sansc \sanso \sansv \sanse \sansr (G) = +\infty if none of these graphs
has a cycle cover. Note that the minimum sizes of vertex covers in the graphs that
have cycle covers are the same by Lemma 7.

5.2. Nice \bfitH -representations. To simplify the construction of our kerneliza-
tion and compression algorithms on H-graphs, it is convenient to restrict the con-
sidered H-representations. We say that an H-representation (H \prime ,\scrM ) with \scrM =
\{ Mv\} v\in V (G) is nice if H \prime is a simple graph and for every xy \in E(H \prime ) there is v \in V (G)
such that x, y \in Mv. We show the following lemma.

Lemma 9. There is a polynomial-time algorithm that, given an instance (G, k) of
Path Cover (Cycle Cover, respectively) for a proper H-graph G with its proper
H-representation (H \prime ,\scrM ), either solves the problem or constructs an equivalent in-

stance ( \^G, \^k) of Path Cover (Cycle Cover, respectively) and a nice proper \^H-
representation ( \^H \prime , \^\scrM ) of \^G such that the following hold:

(i) \^G is an induced subgraph of G and \^k \leq k.
(ii) | V ( \^H)| \leq 3| E(H)| and | E( \^H)| \leq 2| E(H)| .
Proof. To be able to switch to nice representations, we apply the following re-

duction rules for the considered instance (G, k) of Path Cover and Cycle Cover,
respectively.

Reduction Rule 5.1. If G has a connected component F that is a proper inter-
val graph, then set G = G - V (F ) and set k = k  - 1.

For Cycle Cover, the rule is slightly more complicated.

Reduction Rule 5.2. If G has a connected component F that is a proper inter-
val graph, then find the minimum size h of a cycle cover of F if it exists. If F has no
cycle cover, then stop and return a no-answer. Otherwise, set G = G - V (F ) and set
k = k  - h.

It is straightforward to see that the rules are safe. Moreover, they could be applied
in polynomial time. In particular, for Reduction Rule 5.2, we use Theorem 4.

Then we apply the following trivial stopping rule.

Reduction Rule 5.3. If G is empty and k \geq 0, then stop and return a yes-
answer, and if k < 0, then stop and return a no-answer.

We apply the rules exhaustively and either solve the problem or obtain an equiv-
alent instance ( \^G, \^k) of Path Cover or Cycle Cover, respectively, such than no

component of \^G is a proper interval graph. It is trivial to see that (i) holds for ( \^G, \^k).
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It is also clear that if G is a proper H-graph and (H \prime ,\scrM ) is its representation, then
\^G is a proper H-graph as well and its representation (H \prime , \^\scrM ) is obtained from the
representation of G by deleting from \scrM the sets corresponding to the vertices of the
deleted components. Our next aim is to reduce H \prime . We do it by deleting irrelevant
nodes and edges.

Reduction Rule 5.4.
\bullet If H \prime has a node x such that x /\in Mv for every v \in V ( \^G), then set H \prime = H \prime  - x.
\bullet If H \prime has an edge xy such that either x /\in Mv or y /\in Mv for every v \in V ( \^G),

then set H \prime = H \prime  - xy.
\bullet If H \prime has a loop e, then set H \prime = H \prime  - e.
\bullet If H \prime has at least two parallel edges e, e\prime = xy, then set H \prime = H \prime  - e.

Let \^H \prime be the graph obtained from H \prime by exhaustively applying the subrules of
Reduction Rule 5.4. It is straightforward to verify that every Mv is a connected subset
of V ( \^H \prime ). It is also easy to see that \^H \prime is a simple graph, and for every xy \in E( \^H \prime )
there is v \in V (G) such that x, y \in Mv. Now we construct \^H by dissolving some nodes
by the exhaustive application of the next rule.

Reduction Rule 5.5. If \^H \prime has a node z incident exactly to two edges zx and
zy such that z \not = x, y, then dissolve z.

Denote by \^H the obtained graph. We have that \^H \prime is a subdivision of \^H and,
therefore, ( \^H \prime , \^\scrM ) is a nice proper \^H-representation of G. Notice that some subdi-
vision nodes of H \prime could be nodes of \^H because of the deletion of some nodes and
edges of H \prime . Since \^G has no connected component that is a proper interval graph,
we have that for every component F of \^G, there is a vertex v \in V (F ) such that Mv

contains at least one branching node of H \prime . This immediately implies that at most
two subdivision nodes that are on the same edge e of H could become nodes of \^H.
Hence, at most 2| E(H)| subdivision nodes of H \prime could be nodes of \^H. Observe that an
isolated vertex of H is deleted by Reduction Rule 5.4. Therefore, | V ( \^H)| \leq 3| E(H)| .
By these arguments, we also have that | E( \^H)| \leq 2| E(H)| . We conclude that (ii) is
fulfilled.

To complete the proof, it is sufficient to observe that the construction of \^G, \^H,
and ( \^H \prime , \^\scrM ) can be done in polynomial time.

5.3. Tamed path and cycle covers. In this subsection we show that it suffices
to consider path and cycle covers of proper H-graphs that have special structure. To
do so, we need additional notation that will be used also in the next section of the
paper.

Let G be a proper H-graph and let (H \prime ,\scrM ) with \scrM = \{ Mv\} v\in V (G) be a nice
proper H-representation of G. For an edge e = xy of H, denote by Se = xe

0 \cdot \cdot \cdot xe
h(e)+1

the (x, y)-path of H \prime corresponding to e. We have that xe
0 = x, xe

h(e)+1 = y and

xe
1, . . . , x

e
h(e) are the subdivision nodes of H \prime ; for each e, we fix this ordering of the

subdivision nodes on e. Denote Xe =
\bigl\{ 
xe
1, . . . , x

e
h(e)

\bigr\} 
. We denote by Ge the sub-

graph of G induced by the vertices Ve = \{ v \in V (G) | Mv \subseteq Xe\} . Note that Ge

is a proper interval graph and for each v \in V (Ge), Mv = \{ x\ell v , . . . , xrv\} for some
1 \leq \ell v \leq rv \leq h(e). Observe also that \ell v and rv are distinct, because there is
u \in V (G) such that x\ell v , x\ell v+1 \subseteq Mu. Also, for distinct u, v \in Ve, either \ell u < \ell v
and ru < rv or \ell u > \ell v and ru > rv by properness. This imposes the total or-
dering ve1, . . . , v

e
p(e) of the vertices of Ve according to the ordering of \ell v for v \in Ve.

In accordance with proper interval graphs, we refer to the first vertex (vertices) in
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the ordering as leftmost vertex (vertices) and similarly define the rightmost vertex
(vertices) as the last in the ordering. We say that a vertex v \in Ve is left-attached
(right-attached, respectively) if there is u \in V (G) such that \{ xe

0, . . . , x
e
\ell v
\} \subseteq Mu

(\{ xe
rv , . . . , x

e
h(e)+1\} \subseteq Mu, respectively). Denote by Le and Re, respectively, the sets

of left- and right-attached vertices of Ve. The useful properties of Ge are summarized
in the following lemma.

Lemma 10. For every e \in E(H), the following hold if Ve \not = \emptyset :
(i) Ge is a connected graph.
(ii) Le and Re are nonempty cliques.
(iii) If Le \cap Re \not = \emptyset , then Ve = Le \cup Re.
(iv) If Le \cap Re = \emptyset , then NG(Le) \setminus Ve and NG(Re) \setminus Ve are cliques.
(v) If u, v \in Le (u, v \in Re, respectively) and \ell u \leq \ell v, then NG(v)\setminus Ve \subseteq NG(u)\setminus Ve

(NG(u) \setminus Ve \subseteq NG(v) \setminus Ve, respectively).

Proof. Suppose that Ge is disconnected. Then there is i \in \{ 2, . . . , h(e)\} such that
for every v \in Ve, either x

e
i - 1 /\in Mv or xe

i /\in Mv and there are two vertices u1, u2 \in Ve

such that Mu1
\subseteq \{ xe

1, . . . , x
e
i - 1\} and Mu2

\subseteq \{ xe
i , . . . , x

e
h(e)\} . Since (H \prime ,\scrM ) is a nice

proper H-representation of G, there is w \in V (G) such that xe
i - 1, x

e
i \in Mw. Clearly,

w /\in Ve. Then either Mu1
\subseteq \{ xe

1, . . . , x
e
i - 1\} \subseteq Mw or Mu2

\subseteq \{ xe
i , . . . , x

e
h(e)\} \subseteq Mw,

contradicting the properness of the representation. This proves (i).
We prove (ii) for Le; the claim for Re is symmetric. Let v be the leftmost vertex

of Ge. Since (H \prime ,\scrM ) is a nice proper H-representation of G, there is w \in V (G) such
that xe

\ell v - 1, x
e
\ell v

\in Mw. Clearly, w /\in Ve. As Mw is connected, we have that either
\{ xe

0, . . . , x
e
\ell v
\} \subseteq Mw or \{ xe

\ell v - 1, . . . , x
e
h(e)+1\} \subseteq Mw. But in the second case, we have

that Mv \subseteq \{ xe
\ell v - 1, . . . , x

e
h(e)+1\} \subseteq Mw by the choice of v contradicting properness.

Therefore, \{ xe
0, . . . , x

e
\ell v
\} \subseteq Mw and v is left-attached. Hence, Le \not = \emptyset . To show that

Le is a clique, assume that u and v are distinct vertices of Le and let \ell u < \ell v. Since v
is left-attached, there is w \in V (G) such that \{ xe

0, . . . , x
e
\ell v
\} \subseteq Mw. If u is not adjacent

to v, then Mu \subseteq \{ xe
1, . . . , x

e
\ell v - 1\} \subseteq Mw, but this contradicts the properness of the

representation. Hence, uv \in E(G).
To show (iii), assume that there is v \in Ve such that v \in Le \cap Re. Then there are

u1, u2 \in V (G) such that \{ xe
0, . . . , x

e
v\ell 
\} \subseteq Mu1

and \{ xe
vr , . . . , x

e
h(e)+1\} \subseteq Mu2

. Suppose

that there is w \in Ve such that w /\in Le \cup Re. Then Mw \subseteq \{ xe
\ell v+1, . . . , xrv - 1\} \subseteq Mv,

which is a contradiction. Hence, Ve = Le \cup Re.
To see that (iv) hold, notice that if Le \cap Re = \emptyset , then for every u \in NG(Le) \setminus Ve,

we have that xe
0 \in Mu, and this immediately implies that NG(Le)\setminus Ve is a clique. For

NG(Le) \setminus Ve, the claim holds by symmetry.
Finally, to prove (v), observe that if v \in Le and w \in V (G) \setminus Ve is adjacent to v,

then \{ xe
0, . . . , x

v
v\ell 
\} \subseteq Mw. Therefore, if \ell u \leq \ell v, then Mv \cap Mw \not = \emptyset and, therefore,

uw \in E(G). Hence, NG(v) \setminus Ve \subseteq NG(u) \setminus Ve. The claim for vertices of Re is again
symmetric.

We say that a vertex u \in Ve is an e-cut-vertex if one of the following holds:
(i) u = ve1 and ve2 is not left-attached or, symmetrically, u = vep(e) and vep(e) - 1 is

not right-attached.
(ii) u is a cut-vertex of Ge.

Observe that if u = vei is an e-cut-vertex, then vei+1 is not left-attached and vei - 1 is
not right-attached. Otherwise, we would get that either Mve

1
\subseteq Mw or Me

p(e) for some

w \in V (G) \setminus Ve. This implies the following observation.
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Observation 5. The e-cut-vertices are exactly the cut-vertices of the intersection
graph G\ast 

e of the family of all inclusion maximal nonempty connected subsets of Mv \cap 
\{ xe

0, . . . , x
e
h(e)+1\} for all v \in V (G).

We say that a (u, v)-path P in Ge is
\bullet straight if u = ve1 and v = vep(e),

\bullet a left U -path if either P = ve1 or \{ u, v\} = \{ ve1, ve2\} \subseteq Le,
\bullet a right U -path if either P = vep(e) or \{ u, v\} = \{ vep(e) - 1, v

e
p(e)\} \subseteq Re.

We also say that a pair of vertex disjoint paths---an (a1, b1)-path and an (a2, b2)-
path---is a straight pair if \{ a1, a2\} = \{ ve1, ve2\} \subseteq Le and \{ b1, b2\} = \{ vep(e) - 1, v

e
p(e)\} \subseteq 

Re.
Let \scrP be a path cover of G. Denote by \scrP e the family of paths of inclusion

maximal subpaths of the paths P \in \scrP with all their vertices in Ve. We say that \scrP e is
the projection of \scrP on Ge. Since \scrP is a path cover of G, \scrP e is a path cover of Ge.

We say that an end-vertex v of a path P \in \scrP e is saturated if P is a proper subpath
of a path Q \in \scrP and v has a neighbor in Q that is outside of P . For the special case
of a trivial single-vertex path, we say that its unique end-vertex is saturated if it has
two distinct neighbors in Q. Let P be a proper subpath of a path Q. We say that the
path Q\prime is obtained from Q by the truncation with respect to P if Q\prime is constructed by
the deletion of the subsequence of the vertices of P from Q. Notice that this operation
can be performed only in the following two cases: either if one of the end-vertices of
P is an end-vertex of Q, that is, Q  - V (P ) is a path, or if all the vertices of P are
internal vertices of Q but both neighbors of the end-vertices of P in Q are adjacent
in G, that is, Q - V (P ) is a disjoint union of two paths that are reconnected via the
neighbors of the end-vertices of P .

Let P be an (u, v)-path and let P \prime be (u\prime , v\prime )-path such that P, P \prime \in \scrP e for some
e \in E(H), u, u\prime \in Le, v, v

\prime \in Re, and P and P \prime are subpaths of the same path Q \in \scrP .
We say that P and P \prime are in the same direction in Q if either v and u\prime are vertices of
the (u, v\prime )-subpath of Q or, symmetrically, v\prime and u are vertices of the (u\prime , v)-subpath
of Q. If P and P \prime are not in the same direction, we say that P and P \prime are in opposite
directions in Q.

We say that a path cover \scrP of G is tamed if the following hold for every e \in E(H)
such that | Ve| \geq 3 and Le \cap Re = \emptyset :

\bullet If Ge is 2-connected, then one of the following is fulfilled:
-- \scrP e consists of a single straight path (see Figure 2(a)).
-- \scrP e consists of a single left U -path or, symmetrically, a single right U -path

and the end-vertices of the path are saturated (see Figure 2(c)).
-- \scrP e is a straight pair of paths, whose end-vertices are saturated, and

these paths are subpaths of the same path Q \in \scrP and are in opposite
directions in Q (see Figure 2(b)).

\bullet If Ge has a cut-vertex, then one of the following is fulfilled:
-- \scrP e contains a single straight path (see Figure 2(a)).
-- \scrP e contains two paths, whose end-vertices are saturated, such that one

is a left U -path and the other is a right U -path whose end-vertices are
saturated (see Figure 2(d)).

The definition of a tamed path cover is rather technical as it is tailored for use in
the proof of our main result about Path Cover on proper H-graphs, but essentially
it says that the paths that cover Ge behave as shown in Figure 2. In particular, the
vertices of Ge are covered by at most two paths.
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(d)

ve1
ve2

Le Ge
Re ReGe

vep(e) - 1

vep(e)

Le

ve1
ve2

vep(e)

ve1

Le ReGe
Le ReGe

vep(e)

vep(e) - 1
ve1
ve2

(a)

(c)

(b)

Fig. 2. The types of covering (up to symmetry) of Ge by a tamed path cover.

Lemma 11. Let G be a proper H-graph such that G has a nice proper H-repre-
sentation. Now if G has a path cover of size at most k, then G has a tamed path cover
of size at most k.

Proof. Let G be a proper H-graph and let (H \prime ,\scrM ) with \scrM = \{ Mv\} v\in V (G) be a
nice proper H-representation of G. Let \scrP be a path cover of G of size at most k such
that

(i) the total number of paths in the projections \scrP e for e \in E(H) is minimum,
and

(ii) subject to (i), the total number of paths in the projections such that their
end-vertices are either the leftmost and the rightmost vertices, or two leftmost
vertices, or two rightmost vertices of Ge for each e, is maximum.

We claim that \scrP is tamed.
Let e \in E(H) such that | Ve| \geq 3 and Le \cap Re = \emptyset . We prove the following series

of claims about \scrP e and show that the structure of paths in \scrP e satisfies the definition
of tamed path cover.

Claim 5.1. If there is a (u, v)-path P \in \scrP e such that u \in Le and v \in Re, then
either \scrP e consists of a single straight path or \scrP e is a straight pair of paths, whose
end-vertices are saturated, and these paths are subpaths of the same path Q \in \scrP and
are in opposite directions in Q.

Proof of Claim 5.1. Suppose that \scrP e = \{ P\} . Then to prove that claim, we have
to show that P is straight.

To obtain a contradiction, assume that this is not the case, that is, \{ u, v\} \not =
\{ ve1, vep(e)\} . Then we can replace P in \scrP e by a Hamiltonian (ve1, v

e
p(e))-path

\^P in Ge

that exists by Lemmas 4 and 10(i). The replacement is possible by Lemma 10(v).
Observe that the replacement is local in the sense that the other projections \scrP e\prime for
e\prime \not = e remain the same. However, by this replacement we increase the number of
paths with leftmost and rightmost end-vertices in the projections, and this leads to a
contradiction of condition (ii) of the choice of \scrP . Therefore, P is straight.

Thus, if \scrP e = \{ P\} , then the claim holds. From here, assume that | \scrP e| \geq 2. We
now prove that \scrP e is a straight pair of paths, whose end-vertices are saturated, and
these paths are subpaths of the same path Q \in \scrP such that the paths of \scrP e are in
opposite directions.

The first step is to show that every path P \prime \in \scrP e is a (u\prime , v\prime )-path for some u\prime \in Le

and v\prime \in Re such that u\prime and v\prime are saturated.
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To obtain a contradiction, assume first that \scrP e contains a (w,w\prime )-path P \prime \not = P
such that w \in Le and either w\prime /\in Re or w\prime \in Re but is not saturated. Then we
modify \scrP as follows. By Lemma 10(iv), if P \prime is a proper subpath of a path Q\prime \in \scrP ,
Q\prime can be truncated with respect to P \prime : if w\prime \in Le and both w and w\prime are saturated,
then the neighbors of w and w\prime in Q\prime that are outside of P \prime are adjacent. Then we
replace Q\prime by the truncated path. If P \prime is a path of \scrP , we simply delete P \prime from \scrP .
Let U = V (P ) \cup V (P \prime ). By Lemma 10(ii), U \subseteq Ve is a connected set. Let a and b
be, respectively, the leftmost and rightmost vertices of U . By Lemma 4, G[U ] has a
Hamiltonian (a, b)-path \^P . By the choice of a and b and Lemma 10(v), we can replace
P by \^P in Q \in \scrP if P is a proper subpath of Q. If P \in \scrP , we replace P by \^P in \scrP .
It is straightforward to see that by these modifications we obtain the path cover \^\scrP of
G such that the number of paths in the projection \^\scrP e has decreased and the paths in
the other projections are staying intact. This contradicts condition (i) of the choice of
\scrP . We conclude that \scrP e has no (w,w\prime )-path such that w \in Le and either w\prime /\in Re or
w\prime \in Re but is not saturated. By symmetry, we also have that \scrP e has no (w,w\prime )-path
such that w \in Re and either w\prime /\in Le or w\prime \in Le but is not saturated.

Suppose now that \scrP e contains a (w,w\prime )-path P \prime \not = P such that w,w\prime /\in Le \cup Re.
We use similar arguments to modify \scrP . As w,w\prime /\in Le \cup Re, P

\prime \in \scrP and we simply
delete this path. Let U = V (P )\cup V (P \prime ). It is easy to see that U \subseteq Ve is a connected
set. Let a and b be, respectively, the leftmost and rightmost vertices of U . Then we
have a Hamiltonian (a, b)-path in G[U ] that is used to modify the path of \scrP that either
contains P as a proper subpath or coincides with P . This leads to a contradiction
with the choice of \scrP . We conclude that \scrP has no such paths.

We obtain that if \scrP e contains P \prime \not = P , then P \prime is a (u\prime , v\prime )-path for some u\prime \in Le

and v\prime \in Re and the end-vertices of P \prime are saturated. Since P \prime is a (u\prime , v\prime )-path
for some u\prime \in Le and v\prime \in Re, we have, by symmetry between P and P \prime , that the
end-vertices of P are saturated as well.

Now we have that every path in \scrP e joins a vertex in Le with a vertex of Re and
the end-vertices of every path are saturated. Further, we will show that the paths of
\scrP e are subpaths of the same path of \scrP .

Suppose, for the sake of contradiction, that there are distinct P \prime , P \prime \prime \in \scrP e such
that P \prime and P \prime \prime are proper subpaths of distinct paths Q and Q\prime of \scrP , respectively.
Assume that P \prime is a (u\prime , v\prime )-path and P \prime \prime is a (u\prime \prime , v\prime \prime )-path, respectively, for u\prime , u\prime \prime \in 
Le and v\prime , v\prime \prime \in Re. Then we can write that Q = a1 \cdot \cdot \cdot ai - 1P

\prime ai \cdot \cdot \cdot ar and Q\prime =
b1 \cdot \cdot \cdot bj - 1P

\prime \prime bj \cdot \cdot \cdot bt for some vertices a1, . . . , ar and b1, . . . , bt such that ai - 1, bj - 1 \in 
NG(Le)\setminus Ve. Note that ai - 1, bj - 1 are adjacent by Lemma 10(iv) and u\prime , u\prime \prime are adjacent
by Lemma 10(ii). Then we can replace Q and Q\prime by the path a1 \cdot \cdot \cdot ai - 1bj - 1 \cdot \cdot \cdot b1
and ar \cdot \cdot \cdot ai(P \prime ) - 1P \prime \prime bj \cdot \cdot \cdot bt, where (P \prime ) - 1 is the path P \prime traversed in the opposite

direction. Then the projection of the obtained path cover \^\scrP of G contains the path
(P \prime ) - 1P \prime \prime instead of P \prime and P \prime \prime . Again, we obtain the path cover such that the number
of paths in the projection \^\scrP e has decreased and the paths in the other projections are
staying intact---a contradiction of the choice of \scrP . Hence, P \prime and P \prime \prime are subpaths
of the same path of \scrP . This proves that the paths of \scrP e are subpaths of the same Q
path of \scrP .

The next step is to prove that the paths of \scrP e are in opposite directions in Q.
Again, the proof is by contradiction. Suppose that there are distinct P \prime , P \prime \prime \in \scrP e

that are in the same direction. By symmetry, we can assume thatQ = a1 \cdot \cdot \cdot ai - 1P
\prime ai+1

\cdot \cdot \cdot aj - 1P
\prime \prime aj+1 \cdot \cdot \cdot at for some vertices a1, . . . , at \in V (G). Assume that P \prime is a (u\prime , v\prime )-

path and P \prime \prime is a (u\prime \prime , v\prime \prime )-path, respectively, for u\prime , u\prime \prime \in Le and v\prime , v\prime \prime \in Re. By Lem-
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mas 10(ii) and 10(iv), we have that u\prime , u\prime \prime are adjacent and ai - 1, aj - 1 are adjacent.
We reroute Q and replace it by Q\prime = a1 \cdot \cdot \cdot ai - 1aj - 1 \cdot \cdot \cdot ai+1(P

\prime ) - 1P \prime \prime aj+1 \cdot \cdot \cdot at. As
before, the replacement decreases the number of paths in the projections, leading to
a contradiction.

Observing that since every two paths are in opposite directions in Q, then | \scrP e| =
2. Indeed, if | \scrP e| \geq 3, then there are two paths that are in the same direction,
contradicting the proved property.

Summarizing, we conclude that if | \scrP e| \geq 2, then | \scrP e| = 2 and \scrP e is a straight pair
of paths, whose end-vertices are saturated, and these paths are subpaths of the same
path Q \in \scrP and are in opposite directions in Q. Let \scrP e = \{ P, P \prime \} and assume that
P \prime is a (u\prime , v\prime )-path for u \in Le and v\prime \in Re. Recall that u, u

\prime and v, v\prime are adjacent by
Lemma 10(ii). This implies that Ge is 2-connected. Therefore, to complete the proof
of Claim 5.1, it remains to show that \{ u, u\prime \} = \{ ve1, ve2\} or \{ v, v\prime \} = \{ vep(e) - 1, v

e
p(e\} .

To get a contradiction, assume that \{ u, u\prime \} \not = \{ ve1, ve2\} or \{ v, v\prime \} \not = \{ vep(e) - 1, v
e
p(e)\} .

Recall that Ge is 2-connected. We also have that | Ve| \geq 4 as u, u\prime , v, v\prime are distinct.
Then by Lemma 4 Ge has a path cover of size two formed by (a1, b1)- and (a2, b2)-
paths \^P and \^P \prime such that \{ a1, a2\} = \{ ve1, ve2\} and \{ b1, b2\} = \{ vep(e) - 1, v

e
p(e)\} . The

paths P and P \prime are subpaths of the same path Q \in \scrP . Moreover, P and P \prime are in
opposite directions in Q. This means that either (u, u\prime )- or (v, v\prime )-subpath Q\prime of Q
has no inner vertices in Ve. By symmetry, assume without loss of generality that Q\prime 

is such a path with the end-vertices v and v\prime and denote by Q\prime \prime the path obtained
from Q\prime by the deletion of v and v\prime . Assume also that u is before u\prime in the ordering
of the vertices of Ge. We replace P and P \prime by \^P and \^P \prime in Q as follows. We replace
P by the path with its leftmost end-vertex v1 and P \prime by the path with its leftmost
end-vertex v\prime 2. By Lemma 10(v), we have that one end-vertex of Q\prime \prime is adjacent to
the rightmost vertex of the first path and the second end-vertex of Q\prime \prime is adjacent to
the rightmost vertex of the second path. This implies that replacing P and P \prime by \^P
and \^P \prime creates a path with the same vertices as Q. It remains to observe that this
replacement increases the number of pairs of leftmost and rightmost end-vertices in
the projections. This contradicts condition (ii) of the choice of \scrP . We conclude that
\{ u, u\prime \} = \{ ve1, ve2\} or \{ v, v\prime \} = \{ vep(e) - 1, v

e
p(e)\} .

By Claim 5.1, we have that if there is a (u, v)-path P \in \scrP e such that u \in Le

and v \in Re, then the paths of \scrP e satisfy the conditions of the definition of a tamed
path cover. Assume from now on that there is no (u, v)-path in \scrP e with u \in Le and
v \in Re.

Claim 5.2. For every (u, v)-path P \in \scrP e, u and v are saturated.

Proof of Claim 5.2. The proof is by contradiction. Suppose that there is a (u, v)-
path P \in \scrP e such that u or v is not saturated. We assume that \ell u \leq \ell v.

Suppose that \scrP e contains some other (w,w\prime )-path P \prime . Observe that if P \prime is a
proper subpath of a path Q\prime \in \scrP , then Q\prime can be truncated with respect to P \prime . If
w or w\prime is not saturated, then this claim is trivial. If both w and w\prime are saturated,
then we have that either w,w\prime \in Le or w,w\prime \in Re and the truncation is possible
by Lemma 10(iv). We use this observation and modify \scrP as follows. We truncate
all the paths of \scrP that have proper subpaths in \scrP e except the path containing P
(if it exists) and delete the paths of \scrP e \setminus \{ P\} that are in \scrP . Then we replace P
by a Hamiltonian (ve1, v

e
p(e))-path

\^P of Ge that exists by Lemmas 4 and 10(i). The

replacement is possible by Lemma 10(v). This replacement leads to a decrease in the
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number of paths in the projection and contradicts the choice of \scrP . Therefore, P is
the unique path of \scrP e.

Notice that P cannot be a (ve1, v
e
p(e))-path by the assumption that there is no

(u, v)-path in \scrP e with u \in Le and v \in Re. However, if P is not a (ve1, v
e
p(e))-path, we

can replace P by a Hamiltonian (ve1, v
e
p(e))-path

\^P of Ge and increase the number of

leftmost and rightmost end-vertices. This contradicts condition (ii) of the choice of
\scrP and completes the proof of the claim.

By Claim 5.2, the end-vertices of every path of \scrP e are saturated. Recall also that
we assume that the end-vertices are either in Le or in Re.

Claim 5.3. If | \scrP e| = 1, then Ge is 2-connected and \scrP e consists of a single left
U -path or, symmetrically, a single right U -path with saturated end-vertices.

Proof of Claim 5.3. Let P \in \scrP e, and let u and v be the end-vertices of P . By
Claim 5.2, u and v are saturated. By symmetry, assume without loss of generality
that u, v \in Le. Notice that because Re \not = \emptyset by Lemma 10(ii), u \not = v. By Lemma 10(ii),
u and v are adjacent. Recall that | Ve| \geq 3. Then Ge is a 2-connected graph with at
least 3 vertices.

Assume that \{ u, v\} \not = \{ ve1, ve2\} . By Lemma 10(ii), u and v are adjacent. Since
| Ve| \geq 3 as Le \not = \emptyset , Ge is a 2-connected graph with at least 3 vertices. By Lemma 4, Ge

has a Hamiltonian (ve1, v
e
2)-path

\^P . Then by Lemma 10(v) we can replace P by \^P and
increase the number of pairs of leftmost end-vertices in the paths of the projections,
contradicting the choice of \scrP . Therefore, we have that P is a (ve1, v

e
2)-path, and the

claim holds.

Claim 5.4. If | \scrP e| \geq 2, then Ge has a cut-vertex and \scrP e contains two paths with
saturated end-vertices such that one is a left U -path and the other is a right U -path.

Proof of Claim 5.4. By symmetry, assume without loss of generality that P \in \scrP e

is a (u, v)-paths with u, v \in Le. Let P \prime \in \scrP e be a (u\prime , v\prime )-path distinct from P . By
Claim 5.2, the end-vertices of both paths are saturated.

We show that u\prime , v\prime \in Re.
To obtain a contradiction, suppose that u\prime , v\prime \in Le. Assume without loss of

generality that \ell u\prime < \ell u, as otherwise we can exchange P and P \prime . Then we modify
\scrP as follows. We truncate the path of \scrP containing P \prime as a proper subpath using
Lemma 10(iv). Let U = V (P ) \cup V (P \prime ). By Lemma 10(ii), U \subseteq Ve is a connected
set. Moreover, G[U ] is 2-connected. Let a and b be the leftmost vertices of U . Notice
that G[U ] has a Hamiltonian (a, b)-path \^P by Lemma 4. By the choice of a, b and
the assumption that \ell u\prime < \ell u, we can use Lemma 10(v) and replace P by \^P in
Q \in \scrP containing P as a proper subpath. These modifications decrease the number
of paths in the projections and therefore contradict the choice of \scrP . We conclude that
u\prime , v\prime \in Re.

By symmetry, this means that \scrP e = \{ P, P \prime \} , because every path in \scrP e distinct
from P \prime should have its end-vertices in Le.

Because | Ve| \geq 3, either P or P \prime has at least two vertices. By symmetry, we
assume without loss of generality that P has this property. In particular, this means
that u \not = v.

Assume that Ge is 2-connected. Then we can modify \scrP as follows. First, we trun-
cate the path of \scrP containing P \prime . By Lemma 4, we have that Ge has a Hamiltonian
(ve1, v

e
2)-path

\^P . Because u, v are distinct vertices of P , we can replace the subpath
P is the path Q \in \scrP containing P by Lemma 10(v). As before, these modifications
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decrease the number of paths in the projections and lead to a contradiction. Hence,
Ge has a cut-vertex.

By Lemma 5(ii), we have that ve1 and ve2 are vertices of P and vep(e) is a vertex

of P \prime . Suppose that \{ u, v\} \not = \{ ve1, ve2\} . Then we can modify P . By Lemma 10(ii), u
and v are adjacent. Hence, G[V (P )] is a 2-connected graph. By Lemma 4, there is
a (ve1, v

e
2)-path

\^P with the same vertices as P . Using Lemma 10(v) we can replace
P in the path Q \in \scrP that contains P by \^P . This increases the number of pairs of
leftmost vertices in the projections and contradicts the choice of \scrP . Using symmetry,
we conclude that P is a (ve1, v

e
2)-path and for P \prime it holds that it is either the trivial

(vep(e), v
e
p(e))-path or a (vep(e) - 1, v

e
p(e))-path. This concludes the proof.

Combining Claim 5.1 with Claims 5.3 and 5.4, we conclude that all the conditions
of the definition of a tamed path cover are fulfilled for the paths of \scrP e. We obtain
that \scrP is a tamed path cover.

Our next aim is to introduce tamed cycle covers.
Let \scrC be a cycle cover. We denote by \scrC e the family of subgraphs of Ge that

contains the cycles of \scrC that are cycles of Ge and the inclusion-maximal segments
with their vertices in Ve of the cycles of \scrC that have vertices in both Ve and V (G)\setminus Ve.
In the same way as with path covers, we say that \scrC e is the projection of \scrC on Ge.
Notice that \scrC e may contain both cycles and paths. Clearly, the paths and cycles of
\scrC e cover the vertices of Ge.

Let C be a cycle and let P be a (u, v)-segment of C such that | V (C) \setminus V (P )| \geq 3.
We say that the cycle C \prime is obtained from C by the truncation with respect to P if C \prime 

is constructed by the deletion of the vertices of P and making the neighbors of u and
v in C that are outside P adjacent. Note that the truncation is only possible if the
neighbors of u and v are adjacent in G.

Let P be a (u, v)-path and let P \prime be a (u\prime , v\prime )-path such that P, P \prime \in \scrC e for some
e \in E(H), u, u\prime \in Le, v, v

\prime \in Re, and P and P \prime are subpaths of the same cycle C \in \scrC .
We say that P and P \prime are in the same direction in C if either v and u\prime are vertices
of the (u, v\prime )-segment of C containing both P and P \prime or, symmetrically, v\prime and u are
vertices of the (u\prime , v)-segment of Q containing both P and P \prime . If P and P \prime are not in
the same direction, we say that P and P \prime are in opposite directions in C.

Recall that by Lemma 5 the block-cutpoint decomposition graph of each Ge is a
path and the blocks of Ge could be ordered according to the ordering of its vertices.
We say that a block B is the leftmost block if it contains ve1 and B is the rightmost
block if it contains vep(e).

We say that a cycle cover \scrC of G is tamed if the following hold for every e \in E(H)
such that | Ve| \geq 3 and Le \cap Re = \emptyset :

\bullet If Ge is 2-connected, then one of the following is fulfilled:
-- \scrC e consists of a single straight path (see Figure 3(a)).
-- \scrC e is a straight pair of paths such that these paths are segments of the

same cycle C of \scrC and are in opposite directions (see Figure 3(b)).
-- \scrC e consists of a single left U -path or, symmetrically, a single right U -path

(see Figure 3(c)).
-- \scrC e consists of a left U -path and the trivial right U -path or, symmetrically,

a right U -path and the trivial left U -path (see Figure 3(d)).
-- \scrC e consists of a single cycle and, possibly, the trivial left and/or trivial

right U -path (see Figures 3(e)--(g)).
\bullet If Ge has a cut-vertex, then either \scrC e consists of a single straight path or the
following hold (see Figures 3(h) and 3(i)):
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(i)

ve1

Le Re
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Le ReLe Re
Ge

vep(e)

ve1
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Le ReGe

vep(e) - 1

ReGe
ReLe Ge

Le Ge

ve1

ve2

ve1

vep(e)
ve2

vep(e)
ve2

ve1
vep(e)

Ge
Le Re Ge

Le ReGe
Le Re

ve1

vep(e) vep(e)

(a) (b) (c) (d)

(e) (f) (g)

(h)

Fig. 3. The types of covering (up to symmetry) of Ge by a tamed cycle cover.

-- The paths in \scrC e are left and right U -paths, \scrC e contains at most one left
U -path and at most one right U -path, and these paths are paths in the
leftmost and the rightmost blocks, respectively.

-- Each block contains at most one cycle of \scrC e.
-- If the leftmost block contains a nontrivial left U -path, then it does not

contain a cycle of \scrC e, and, symmetrically, if the rightmost block contains
a nontrivial right U -path, then it does not contain a cycle of \scrC e.

The definition is overloaded by technical details to make it easier to use tamed
cycle covers in the proof of our compression result, but the structure of paths and
cycles in \scrC e for a tamed cycle cover \scrC can be seen in Figure 3.

Lemma 12. Let G be a proper H-graph such that G has a nice proper H-repre-
sentation. Then if G has a cycle cover of size at most k, then G has a tamed cycle
cover of size at most k. Moreover, given a cycle cover \scrC , one can find a tamed cycle
cover \^\scrC of size at most | \scrC | such that for every e \in E(H) with | Ve| \geq 3 and Le\cap Re = \emptyset 
if Ge has a cut-vertex and \scrC e contains a (u, v)-path with u \in Le and v \in Re, then \^\scrC e
consists of a single straight path.

Proof. The proof uses the same approach as the proof of Lemma 11. Let G
be a proper H-graph and let (H \prime ,\scrM ) with \scrM = \{ Mv\} v\in V (G) be a nice proper H-
representation of G. Let \scrC be a cycle cover of G of size at most k. Denote by S the
set of edges of H such that the following conditions (\ast ) hold for every e \in S:

\bullet | Ve| \geq 3.
\bullet Le \cap Re = \emptyset .
\bullet Ge has a cut-vertex.
\bullet \scrC e contains a (u, v)-path with u \in Le and v \in Re.

Assume that \scrC is a cycle cover of G such that (\ast ) are fulfilled for the edges of S and
(i) the total number of paths and cycles in the projections \scrC e for e \in E(H) is

minimum,
(ii) subject to (i), the number of paths with one end-vertex in Le and the second

in Re is maximum, and
(iii) subject to (i) and (ii), the total number of paths in the projections such that

their end-vertices are either the leftmost and the rightmost vertices, or two
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leftmost vertices or two rightmost vertices of Ge for each e, is maximum.
We claim that \scrC is a tamed cycle cover such that for every e \in S, Ge is covered by a
straight path.

Let e \in E(H) such that | Ve| \geq 3 and Le \cap Re = \emptyset . Notice that every path in \scrC e
has its end-vertices in Le \cup Re as they are segments of cycles. Similarly to the proof
of Lemma 11, we prove a series of claims showing that the required conditions hold
for \scrC e.

Claim 5.5. If there is a (u, v)-path P \in \scrC e such that u \in Le and v \in Re, then
either \scrC e consists of a single straight path or \scrC e is a straight pair of paths such that
these paths are segments of the same cycle C of \scrC and are in opposite directions in
C. Moreover, in the second case, Ge is 2-connected and e /\in S.

Proof of Claim 5.5. Suppose that \scrC e = \{ P\} . We claim that P is straight in this
case.

Suppose that this is not the case, that is, \{ u, v\} \not = \{ ve1, vep(e)\} . Then exactly as in

the proof of Claim 5.1, we can replace P by a Hamiltonian (ve1, v
e
p(e))-path

\^P in Ge that

exists by Lemmas 4 and 10(i). The replacement is possible by Lemma 10(v). Note
that by this replacement we increase the number of paths with leftmost and rightmost
end-vertices in the projections, and this leads to a contradiction of condition (ii) of
the choice of \scrC .

This proves the claim if \scrC e = \{ P\} . Notice, in particular, that if Ge has a cut-
vertex, that is, Ge satisfies (\ast ), we have that Ge is covered by a straight path.

Assume from now on that | \scrC e| \geq 2. We will show that \scrC e consists of paths with
one end-vertex in Le and the other in Re.

Suppose that \scrP e contains a (w,w\prime )-path P \prime distinct from P . Since P \prime is a segment
of a cycle of \scrC , w,w\prime \in Le \cup Re. We show that one end-vertex of P \prime is in Le and the
other in Re.

To obtain a contradiction, assume by symmetry that w,w\prime \in Le. If P \prime is a
segment of a cycle C \prime \in \scrC that has at least 3 vertices outside P \prime , then we modify \scrC as
follows. By Lemma 10(iv), C \prime can be truncated with respect to P \prime as the neighbors
of the end-vertices of P \prime in C \prime that are outside P \prime are adjacent. We replace C \prime by the
truncated cycle. Let U = V (P )\cup V (P \prime ). By Lemma 10(ii), U \subseteq Ve is a connected set.
Let a and b be, respectively, the leftmost and rightmost vertices of U . By Lemma 4,
G[U ] has a Hamiltonian (a, b)-path \^P . By the choice of a and b and Lemma 10(v),
we can replace P by \^P in the cycle containing P . Clearly, we obtain the cycle cover \^\scrC 
of G satisfying (\ast ) such that the number of paths in the projection \^\scrC e has decreased
and the paths and cycles in the other projections are staying intact. This contradicts
condition (i) of the choice of \scrC . Assume that P \prime is a segment of a cycle C \prime \in \scrC that
has at most 2 vertices outside P \prime and denote the neighbors of w and w\prime in C \prime that are
outside P \prime by t and t\prime , respectively. Notice that it may happen that t = t\prime . Observe
also that C \prime = tP \prime t if t = t\prime and C \prime = t\prime tP \prime t\prime otherwise. Also, let s be the neighbor
of u in the cycle C \in \scrC containing P that is outside P . Clearly, C \not = C \prime . We also
have that s, t, t\prime \in NG(Le) \setminus Ve, and therefore these vertices are pairwise adjacent
by Lemma 10(iv). Let U = V (P ) \cup V (P \prime ). In the same way as above, G[U ] has a
Hamiltonian (a, b)-path \^P . By the choice of a and b and Lemma 10(v), we can now
delete C \prime from \scrC and replace P by t\prime t \^P or by t \^P , depending on whether t = t\prime . Again,
we obtain the cycle cover \^\scrC of G satisfying (\ast ) such that the number of paths in the
projection \^\scrC e has decreased and the paths and cycles in the other projections are
staying intact, contradicting the choice of \scrC . We conclude that \scrC e has no (w,w\prime )-path
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with w,w\prime \in Le and, by symmetry, \scrC e has no (w,w\prime )-path with w,w\prime \in Re.

Now we prove that \scrC e does not contain cycles. For the sake of contradiction,
suppose that \scrC e contains a cycle C \prime . Then we can modify \scrC as follows. First, we
delete C \prime from \scrC . Let U = V (P ) \cup V (C \prime ). Clearly, U \subseteq Ve is a connected set. Let a
and b be, respectively, the leftmost and rightmost vertices of U . By Lemma 4, G[U ]
has a Hamiltonian (a, b)-path \^P . By the choice of a and b and Lemma 10(v), we can
replace P by \^P in the cycle containing P . Using the same arguments as before, we
obtain a contradiction with the choice of \scrC .

We conclude that \scrC e consists of paths with one end-vertex in Le and the other in
Re. Since | \scrC 2| \geq 2, we have that Ge is 2-connected and, in particular, e /\in S.

Further, we show that all the paths in \scrC e are segments of the same cycle of \scrC .
As before, the proof is by contradiction. Assume that \scrC e contains a (u\prime , v\prime )-path

P \prime that is a segment of a cycle C \prime \in \scrC that is distinct from the cycle C containing P .
Then we can ``glue"" C and C \prime together. We have that u and u\prime are in the clique Le

by Lemma 10(ii) and the neighbors w and w\prime of u and u\prime in C and C \prime that are outside
P and P \prime , respectively, are adjacent by Lemma 10(iv). We delete the edges wu and
w\prime u\prime in C and C \prime and replace them by ww\prime and uu\prime . This way we reduce the number
of paths in the projections in the obtained cycle cover, contradicting the choice of \scrC .

Hence, all the paths in \scrC e are segments of the same cycle C \in \scrC .

Next, we prove that every two paths of \scrC e are in opposite directions in C.
To get a contradiction, suppose that there are distinct P \prime , P \prime \prime \in \scrC e that are in the

same direction in C, that is, by symmetry, C can be written as a0a1 \cdot \cdot \cdot ai - 1P
\prime ai \cdot \cdot \cdot 

aj - 1P
\prime \prime aj \cdot \cdot \cdot as, where a0, . . . , as are vertices of G and a0 = as. Assume that P \prime and

P \prime \prime are (u\prime , v\prime )- and (u\prime \prime , v\prime \prime )-paths, respectively, for u\prime , u\prime \prime \in Le and v\prime , v\prime \prime \in Re. Note
that ai - 1aj - 1, u

\prime u\prime \prime \in E(G) by Lemmas 10(ii) and 10(iv). Then C can be replaced by
C \prime = a0 \cdot \cdot \cdot ai - 1aj - 1 \cdot \cdot \cdot ai(P \prime ) - 1P \prime \prime aj \cdot \cdot \cdot as in the cycle cover. Clearly, C \prime is a cycle
and V (C \prime ) = V (C). Then the obtained cycle cover has fewer paths in the projections,
contradicting the choice of \scrC . Hence, P \prime and P \prime \prime are in opposite directions in C, that
is, C has (u\prime , u\prime \prime )- and (v\prime , v\prime \prime )-segments with the inner vertices outside V (P )\cup V (P \prime ).

Observe that, in particular, this implies that | \scrC e| = 2. Otherwise, if \scrC e contains
three paths, then we have that at least two of them are in the same direction in a
cycle of \scrC , and this is impossible, as was shown above.

We obtain that \scrC e consists of P and some (u\prime , v\prime )-path P \prime such that P, P \prime are
segments of the same cycle C \in \scrC . Moreover, P and P \prime are in opposite directions
in C. To show that \{ P, P \prime \} is a straight pair, we prove that \{ u, u\prime \} = \{ ve1, ve2\} and
\{ v, v\prime \} = \{ vep(e) - 1, v

e
p(e)\} 

Suppose that \{ u, u\prime \} \not = \{ ve1, ve2\} or \{ v, v\prime \} \not = \{ vep(e) - 1, v
e
p(e\} , that is, P and P \prime do

not compose a straight pair. Recall that u, u\prime and v, v\prime are adjacent by Lemma 10(ii).
This implies that Ge is 2-connected. We also have that | Ve| \geq 4 as u, u\prime , v, v\prime are
distinct. Then by Lemma 4 Ge has a path cover of size two formed by (a1, b1)- and
(a2, b2)-paths \^P and \^P \prime such that \{ a1, a2\} = \{ ve1, ve2\} and \{ b1, b2\} = \{ vep(e) - 1, v

e
p(e)\} .

Recall that P and P \prime are subpaths of the same cycle C \in \scrC . Moreover, C has (u, u\prime )-
and (v, v\prime )-segments with the inner vertices outside Ve = V (P )\cup V (P \prime ). Denote these
segments by Q and Q\prime . Let \^Q and \^Q\prime be the paths obtained from Q and Q\prime by the
deletion of their end-vertices. By Lemma 10(v), we have that one end-vertex of \^Q is
adjacent to a1 and the other to a2. Similarly, we can order the end-vertices of \^Q\prime in
such a way that the first end-vertex is adjacent to b1 and the second to b2. It follows
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that we can combine P , P \prime , \^Q, and \^Q\prime into a cycle with the same vertices as C. It
remains to observe that this replacement increases the number of pairs of leftmost
and rightmost end-vertices in the projections---a contradiction.

We conclude that \scrC e is a straight pair of paths such that these paths are segments
of the same cycle C of \scrC and are in opposite directions in C. Moreover, Ge is 2-
connected and e /\in S.

Claim 5.5 proves the desired properties for \scrC e if the projection has a (u, v)-path
with u \in Le and v \in Re. Assume from now on that there is no (u, v)-path in \scrC e with
u \in Le and v \in Re.

We need the following auxiliary observation.

Claim 5.6. The projection \scrC e contains at most one path with the end-vertices in
Le and at most one path with the end-vertices in Re.

Proof of Claim 5.6. To obtain a contradiction, assume that there are P, P \prime \in \scrC e
such that P is a (u, v)-path and P \prime is a (u\prime , v\prime )-path for u, v, u\prime , v\prime \in Le; it may happen
that u = v or u\prime = v\prime as the paths may be trivial. Denote by C and C \prime the cycles
of \scrC that contain P and P \prime , respectively; it may happen that C = C \prime . Denote by s
and t the neighbors of u and v in C that are outside P . Similarly, let s\prime and t\prime be
the neighbors of u\prime and v\prime in C \prime that are outside P \prime . Some of these vertices s, t, s\prime , t\prime 

could be the same. Note that s, t, s\prime , t\prime \in NG(Le) \setminus Ve and, by Lemma 10(iv), every
two vertices are either the same or adjacent. Observe also that by Lemma 10(ii),
u, v, u\prime , v\prime are pairwise adjacent.

Suppose that C and C \prime are distinct. Then we can ``glue"" them together into one
cycle: delete the edges su and s\prime u\prime and replace them by ss\prime and uu\prime . This way we
obtain a cycle cover with fewer paths in the projections, contradicting the choice of
\scrC . Hence, C = C \prime . In particular, it means that C has at least 3 vertices outside P \prime .
We reroute C as follows. We truncate C with respect to P \prime . Let U = V (P ) \cup V (P \prime ).
Notice that G[U ] is 2-connected. Let a and b be the pair of leftmost vertices of U .
By Lemma 4, G[U ] has a Hamiltonian (a, b)-path \^P . By the choice of a and b and
Lemma 10(v), we can replace P by \^P in C. We decrease the number of paths in
the projections by modifying \scrC , and this contradicts the choice of \scrC . This means
that \scrC e contains at most one path with its end-vertices in Le. The claim for Re is
symmetric.

Our next aim is to show the lemma for the case when Ge is 2-connected but \scrC e
has no path with one end-vertex in Le and the other in Re.

Claim 5.7. If Ge is 2-connected, then one of the following holds:
\bullet \scrC e consists of a single left U -path or, symmetrically, a single right U -path.
\bullet \scrC e consists of a left U -path and the trivial right U -path or, symmetrically, a
right U -path and the trivial left U -path.

\bullet \scrC e consists of a single cycle and, possibly, the trivial left and/or right U -path.

Proof of Claim 5.7. Suppose that \scrC e contains two nontrivial paths: a (u, v)-path
P and a (u\prime , v\prime )-path P \prime . By Claim 5.6, we can assume that u, v \in Le and u\prime , v\prime \in Re.
Let C,C \prime \in \scrC be the cycles containing P and P \prime , respectively; it can happen that
C = C \prime .

Assume that C \not = C \prime . Then we modify \scrC as follows. First, we delete every cycle
in \scrC e. Recall that Ge is 2-connected and has at least 3 vertices. By Lemma 4, it
has a path cover formed by an (a1, b1)-path Q and an (a2, b2)-path Q\prime such that
\{ a1, a2\} = \{ ve1, ve2\} and \{ b1, b2\} = \{ vep(e) - 1, v

e
p(e)\} . We delete P and P \prime from C and
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C \prime and replace them by Q and Q\prime . Lemma 10(v) guarantees that this way we can
construct a new cycle \^C by traversing the segments of C and C \prime that are outside P
and P \prime , respectively, in an appropriate direction. This way we either decrease the
number of cycles in the projections or increase the number of paths in the projection
having one end-vertex on Le and the second in Re, contradicting the choice of \scrC .

Suppose that C = C \prime . In particular, this means that C has at least 3 vertices
outside P \prime . By Lemma 10(iv), C can be truncated with respect to P \prime . We modify \scrC 
as follows. First, we delete every cycle in \scrC e. Recall that Ge is 2-connected and has
at least 3 vertices. By Lemma 4, it has a Hamiltonian (ve1, v

e
2)-path Q. We truncate

C with respect to P \prime and replace P by Q using Lemma 10(v). Again, we either
decrease the number of cycles in the projections or decrease the number of paths in
the projections, and this gives a contradiction of the choice of \scrC .

We conclude that if \scrC e contains two paths, then one of them is trivial.

Suppose that \scrC e includes a nontrivial (u, v)-path P and a trivial path P \prime = w.
By Claim 5.6, we let u, v \in Le and w \in Re using symmetry. If \scrC e contains some other
elements, or \{ u, v\} \not = \{ ve1, v22\} , or w \not = vep(e), we modify \scrC . First, we delete all cycles
of \scrC that are in \scrC e. If w \not = vep(e), we replace w by vep(e) in the corresponding cycle of

\scrC using Lemma 10(v). Note that by Lemmas 6 and 4, Ge  - vep(e) has a Hamiltonian

(ve1, v
e
2)-path Q and we use it to replace P by making use of Lemma 10(v). It remains

to observe that these modifications contradict the choice of \scrC . We use the same
arguments for the case when \scrC e contains a nontrivial path and the other elements are
cycles. We conclude that if \scrC e contains a nontrivial path, then either (a) \scrC e consists
of a single left U -path or, symmetrically, a single right U -path, or (b) \scrC e consists of
a left U -path and the trivial right U -path or, symmetrically, a right U -path and the
trivial left U -path, as required by the claim.

From now on we assume that the paths in \scrC e are trivial (if they exist). Since
| Ve| \geq 3, \scrC e contains a cycle C.

Suppose that \scrC e contains two trivial paths P = u and P \prime = v. Assume by
Claim 5.6 that u \in Le and v \in Re. If \scrC e contains some other cycles except C, or
u \not = ve1, or v \not = vep(e), we modify \scrC . First, we delete all cycles of \scrC that are in \scrC e. If

u \not = ve1, we replace u by ve1 in the corresponding cycle of \scrC using Lemma 10(v) and do
the same for v \not = vep(e). Since | Ve \setminus \{ u, v\} | \geq | V (C)| \geq 3, we have that Ge  - \{ ve1, vep(e)\} 
has a Hamiltonian cycle. We use it to replace C. Again, the modifications lead
to a contradiction of the choice of \scrC . We use basically the same (in fact, simplified)
arguments for the case when \scrC contains at most one trivial path and the other elements
are cycles.

We conclude that if Ge is 2-connected and \scrC e contains a cycle, then the cycle
is unique and, besides, the cycle \scrC e can contain only the trivial left U -path or the
trivial right U -path or both. This concludes the analysis of the structure of \scrC e if Ge

is 2-connected.

Finally, we consider the case when Ge contains a cut-vertex. Recall that we
assume that \scrC e has no path with one end-vertex in Le and the other in Re.

Claim 5.8. If Ge has a cut-vertex, then the following hold:
\bullet The paths in \scrC e are left and right U -paths, \scrC e contains at most one left U -path

and at most one right U -path, and these paths are paths in the leftmost and
the rightmost blocks, respectively.

\bullet Each block contains at most one cycle of \scrC e.
\bullet If the leftmost block contains a nontrivial left U -path, then it does not contain
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a cycle of \scrC e, and, symmetrically, if the rightmost block contains a nontrivial
right U -path, then it does not contain a cycle of \scrC e.

Proof of Claim 5.8. By Claim 5.6, \scrC e contains at most one path with its end-
vertices in Le and at most one path with its end-vertices in Re. Clearly, such paths
are paths in the leftmost block B\ell and the rightmost block Br of Ge, respectively, by
Lemma 5 and Observation 5. Observe also that every cycle in \scrC e has all its vertices
in some block of Ge.

Suppose that \scrC e contains a nontrivial (u, v)-path P such that u, v \in Le. Clearly,
P is a path in B\ell . Assume that \{ u, v\} \not = \{ ve1, ve2\} or there is a cycle of \scrC that has all
its vertices in B\ell . In this case we modify \scrC as follows. First, we delete every cycle
of \scrC that has all its vertices in B\ell . Let vei be the unique cut-vertex of Ge in B\ell (see
Lemma 5). If vei is included in an element of \scrC e that has all its vertices in the block
of Ge that is next after B\ell , we have that B\ell  - vi has at least 2 vertices. Since B\ell  - vei
is 2-connected by Lemma 6, B\ell  - vei has a Hamiltonian (ve1, v

e
2)-path

\^P by Lemma 4.

We replace P by \^P using Lemma 10(v). Similarly, if vei is a vertex of an element
of \scrC e that has all its vertices in B\ell , we replace P by a Hamiltonian (ve1, v

e
2)-path in

B\ell . By these modifications we either reduce the number of paths and cycles in the
projections or increase the number of paths with the leftmost pairs of end-vertices.
In both cases, we obtain a contradiction of the choice of \scrC . Hence, if \scrC e contains a
nontrivial path that is either a left U -path or a right U -path that is, respectively,
in the leftmost block or the rightmost block, then this block does not contain cycles
of \scrC .

Suppose that \scrC e contains a trivial path P = u with u \in Le. Clearly, u \in V (B\ell ).
Assume that u \not = ve1. Since ve1 should be covered, there is a cycle C \in \scrC that has
all its vertices in B\ell . Let vei be the unique cut-vertex of Ge in B\ell (see Lemma 5).
If vei is included in an element of \scrC e that has all its vertices in the block of Ge that
is next after B\ell , we have that B\ell  - vei has at least 2 vertices. Since B\ell  - \{ ve1, vei \} 
is 2-connected by Lemma 6 and has at least 3 vertices as B\ell  - \{ u, vei \} contains a

cycle, B\ell  - \{ ve1, vei \} has a Hamiltonian cycle \^C (see [2]). We modify \scrC as follows.
First, we replace u by ve1 in the cycle of \scrC containing u using Lemma 10(v), then
we replace the cycles that have all their vertices in B\ell by \^C. If vei is a vertex of an
element of \scrC e that has all its vertices in B\ell , we use a Hamiltonian cycle in B\ell  - ve1 for
the replacement. In both cases we obtain a contradiction of the choice of \scrC . Using
symmetry, we conclude that if \scrC contains a trivial path, then this is either the trivial
left or right U -path.

Suppose that \scrC e contains a cycle C that has all its vertices in a block B =
G[vei , . . . , v

e
j ] of Ge. Assume that there is a cycle C \prime \in \scrC distinct from C that has

all its vertices in B. Let F be the induced subgraph of Ge whose vertices are cov-
ered by the cycles of \scrC with all their vertices in B. Notice that either F = B, or
F = B  - vei , or F = B  - vej , or F = B  - \{ vei , vej\} . In all cases F is 2-connected by
Lemma 6 and has at least 3 vertices as F contains a cycle. Hence, F has a Hamil-
tonian cycle \^C. We modify \scrC by removing the cycles with their vertices in B and
replacing them by \^C. This contradicts the choice of \scrC as we decrease the number of
cycles in the projections. We conclude that each block contains at most one cycle
of \scrC .

Combining Claims 5.5, 5.7, and 5.8, we conclude that the conditions required by
the definition of a tamed cycle cover are fulfilled for \scrC e. This immediately implies the
claim of the lemma.
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6. Kernelization for PATH and CYCLE COVER. In this section we con-
struct a kernel for Path Cover and a compression for Cycle Cover on proper
H-graphs.

6.1. Kernel for PATH COVER. In this section we prove the first main result of
the paper, namely, Theorem 1, about kernelization of Path Cover. For the reader's
convenience, we repeat the statement of the theorem here.

Theorem 1. Path Cover admits a kernel of size \scrO (h8), where h is the size of
the graph H in a proper H-representation of the input graph G.

Our kernelization algorithm for Path Cover is based on the following crucial
lemma.

Lemma 13. There is a polynomial-time algorithm that, given an instance (G, k) of
Path Cover for a proper H-graph G with its nice proper H-representation (H \prime ,\scrM ),
constructs an equivalent instance ( \^G, k) of Path Cover and a clique cover \scrQ of \^G
with | \scrQ | \leq | V (H)| + 2| E(H)| .

Proof. Let G be a proper H-graph and let (H \prime ,\scrM ) with \scrM = \{ Mv\} v\in V (G) be a
nice properH-representation ofG. We apply the notation introduced in subsection 5.3
for G and its representation.

For every e \in E(H) with | Ve| \geq 4 and Le \cap Re = \emptyset , we apply the following
reduction rule using the first condition that could be applied. The general idea is
to replace the proper interval graph Ge by a small gadget (consequently, the gadget
admits a small clique cover).

Reduction Rule 6.1.
(i) If Ge has no e-cut-vertex, then delete the vertices ve3, . . . , v

e
p(e) - 2 and make

ve1, v
e
2, v

e
p(e) - 1, v

e
p(e) pairwise adjacent.

(ii) If there are i, j \in \{ 1, . . . , p(e)\} such that i < j  - 1 and vi and vj are e-cut-
vertices, that is, Ge contains two nonconsecutive e-cut-vertices, then delete
ve2, . . . , v

e
p(e) - 1, construct a new vertex ue, and make it adjacent to ve1 and

vep(e).

(iii) If ve2 and vep - 1 are e-cut-vertices or there is i \in \{ 3, . . . , p(e) - 2\} such that vei
is an e-cut-vertex, then delete ve3, . . . , v

e
p(e) - 2, construct a new vertex ue, and

make it adjacent to ve1, v
e
2, v

e
p(e) - 1, v

e
p(e).

(iv) If ve2 is an e-cut-vertex, then delete ve3, . . . , v
e
p(e) - 2 and make ve2 adjacent to

vep(e) - 1 and vep(e).

(v) If vep(e) - 1 is an e-cut-vertex, then delete ve3, . . . , v
e
p(e) - 2 and make ve1 and ve2

adjacent to vep(e) - 1.

(vi) If ve1 is an e-cut-vertex, then delete ve2, . . . , v
e
p(e) - 2 and make ve1 adjacent to

vep(e) - 1 and vep(e).

(vii) If vep(e) is an e-cut-vertex, then delete ve3, . . . , v
e
p(e) - 1 and make vep(e) adjacent

to ve1 and ve2.

The application of the rule is shown in Figure 4. Notice that the list of conditions
in (i)--(vii) is exhaustive and one of them is always applied. Observe also that the
modifications result in a proper H-graph that has a nice H-representation. The con-
struction of such a representation is shown in Figure 4. Now we prove that Reduction
Rule 6.1 is safe. By symmetry, it is sufficient to prove safeness for (i)--(iv) and (vi).
Denote by G\prime the graph obtained from G by the application of Reduction Rule 6.1 for
an edge e \in E(H) with | Ve| \geq 4 and Le \cap Re = \emptyset . Let also G\prime 

e be the graph obtained
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vep(e) - 1

e

(ii)

ve1 vep(e)ue

e

ve1 vep(e)ue

ve2 vep(e) - 1

ve1

ve2 vep(e) - 1

vep(e)

e

(i) (iii)

(iv)

e

(vi)

ve1

vep(e)

vep(e)

e

ve1 ve2 vep(e) - 1

Fig. 4. The application of Reduction Rule 6.1 and the construction of the H-representation;
cases (v) and (vii) are omitted as they are symmetric to cases (iv) and (vi), respectively.

from Ge by the rule. We show that (G, k) is a yes-instance of Path Cover if and
only if (G\prime , k) is a yes-instance.

Suppose that (G, k) is a yes-instance. By Lemma 11, G has a tamed path cover
\scrP of size at most k. We consider 5 cases corresponding to the cases of Reduction
Rule 6.1. To show that (G\prime , k) is a yes-instance, we consider the projection \scrP e of the
tamed path cover \scrP and replace each path in \scrP e by a path with the same end-vertices
in such a way that the obtained paths form a path cover of G\prime 

e. Observe that if \scrP e

consist of a straight path, that is, a (ve1, v
e
p(e))-path, then we always can replace it by

a Hamiltonian (ve1, v
e
p(e))-path in G\prime 

e (see Figure 4). Hence, we exclude this case from
the analysis and assume that \scrP e does not contain a straight path. Observe that if \scrP e

contains a (ve1, v
e
2)-path or a (vep(e) - 1, v

e
p(e))-path, then the vertices of such a path are

in the same block of Ge, because ve1v
e
2, v

e
p(e) - 1v

e
p(e) \in E(G). We use this observation

in our case analysis.

Case (i). If Ge has no e-cut-vertex, then Ge is 2-connected. Clearly, we have the
following path covers ofG\prime 

e: \{ ve1vep(e) - 1v
e
p(e)v

e
2\} , \{ ve2vep(e) - 1v

e
p(e)v

e
1\} , \{ ve1vep(e) - 1, v

e
2v

e
p(e)\} ,

and \{ ve2vep(e) - 1, v
e
1v

e
p(e)\} , whose paths could trivially be used for the replacement of

the paths in \scrP e with the same end-vertices.

Case (ii). Suppose first that Ge is 2-connected. Then ve1 and vep(e) are the e-cut-
vertices of Ge. Then ve2 is not left-attached and vep(e) - 1 is not right-attached. This
implies that these vertices cannot be saturated, but this contradicts the saturation
condition for the paths in \scrP e. Hence, Ge has a cut-vertex vei for i \in \{ 2, . . . , p(e) - 1\} .
Suppose that ve1 is an e-cut-vertex and i \geq 3. Then \scrP e does not contain a left U -path
as ve2 is not left-attached and, therefore, cannot be saturated. Hence, \scrP e contains
the trivial path ve1. It follows that ve2 is in the right U -path of \scrP e, but the vertices
of this path should be in the block of Ge that contains vep(e) - 1 and vep(e) but v

e
2 does

not belong to this block. This leads to a contradiction, and therefore ve1 is not an
e-cut-vertex. By symmetry, we have that vep(e) is not an e-cut-vertex. Then there
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are i, j \in \{ 2, . . . , p(e)  - 1\} such that i < j  - 1 and vei , v
e
j are cut-vertices of Ge. But

then vej - 1 belongs neither to the block of Ge containing ve1 nor the block containing
vep(e). Hence, vej - 1 cannot be in any left or right U -path. This means that (ii) does
not occur.

Case (iii). If ve2 and vep - 1 are e-cut-vertices or there is i \in \{ 3, . . . , p(e)  - 2\} such
that vei is an e-cut-vertex, then these vertices are cut-vertices of Ge and we have that
ve2 and vep(e) - 1 are in distinct blocks of Ge. If \scrP e contains the trivial path ve1, then ve2
cannot be in a (vep(e) - 1, v

e
p(e))-path. Therefore this is impossible. By symmetry, \scrP e

cannot contain vep(e). Hence, \scrP e consists of a nontrivial left U -path and a nontrivial
right U -path. We replace them by ve1v

e
2 and vep(e) - 1u

evep(e), respectively.

Case (iv). Since | Ve| \geq 4, ve3 \not = vep(e). Suppose that \scrP e contains the trivial right
U -path vep(e). Then ve3 cannot be in any left U -path, because ve2 is a cut-vertex of Ge.
This means that \scrP e consists of either the trivial left U -path and a nontrivial right
U -path or a nontrivial left U -path and a nontrivial right U -path. We replace them
by ve1 and vep(e) - 1v

e
2v

e
p(e) or by ve1v

e
2 and vep(e) - 1v

e
p(e), respectively.

Case (vi). Note that since the conditions of (i)--(v) could not be applied, Ge is
2-connected and ve1 is the unique e-cut-vertex of Ge. Since v

e
2 /\in Le, \scrP e cannot contain

a nontrivial left U -path. Hence \scrP e contains a unique nontrivial right U -path that can
be replaced by vep(e) - 1v

e
2v

e
p(e).

This completes the case analysis, and we conclude that G\prime has a path cover of
size at most k, that is, (G\prime , k) is a yes-instance of Path Cover.

Suppose now that (G\prime , k) is a yes-instance of Path Cover. We show that (G, k)
is a yes-instance as well. Recall that G\prime is a proper H-graph that has a nice H-
representation. By Lemma 11, G\prime has a tamed path cover \scrP \prime of size at most k. We
show that we can construct a path cover of G by modifying the paths of \scrP \prime . The idea
is the same as above: we replace the paths in the projection \scrP \prime 

e by the paths in Ge

in such a way that these paths cover Ge. Note that since Ge is connected, Ge has a
Hamiltonian (ve1, v

e
p(e))-path P by Lemma 4. Hence, if \scrP \prime 

e contains a unique straight
path, then this path can be replaced by P . Assume that this is not the case. Again,
we consider 5 cases corresponding to (i)--(iv) and (vi).

Case (i). Recall that Ge is 2-connected. Since | Ve| \geq 4, by Lemma 4 we have that
Ge has the path covers formed by a single (ve1, v

e
2)-path or a single (vep(e) - 1, v

e
p(e))-path

or two (a1, b1)- and (a2, b2)-paths for \{ a1, a2\} = \{ ve1, ve2\} and \{ b1, b2\} = \{ vep(e) - 1, v
e
p(e)\} .

Clearly, we can use these paths to replace the paths of \scrP \prime 
e of the same structure. In

particular, if \scrP \prime 
e contains two paths, say, ve1v

e
p(e) - 1 and ve2v

e
p(e), we use the property

that they are subpaths of the same path Q of \scrP \prime and are in opposite directions in Q.
This implies that the corresponding replacement creates a path.

Case (ii). Note that \scrP \prime 
e = \{ ve1uevep(e)\} is the only possibility in this case, and

therefore (ii) does not occur.

Case (iii). Clearly, we have that either \scrP \prime 
e = \{ ve1ve2, vep(e) - 1u

evep(e)\} or, symmetri-

cally, \scrP \prime 
e = \{ ve1ueve2, v

e
p(e) - 1v

e
p(e)\} , that is, \scrP 

\prime 
e consists of a single left and single right

U -path. Recall that (ii) could not be applied. Hence, Ge has at most two e-cut-
vertices, and if it has exactly two such vertices, they are consecutive. Assume that
vei - 1, v

e
i are the e-cut-vertices. By the conditions of (iii), i \in \{ 3, . . . , p(e)  - 1\} . It

follows that Ge[v
e
1, . . . , v

e
i - 1] and Ge[v

e
i , . . . , v

e
p(e)] are blocks of Ge containing the ver-

tices ve1, v
e
2 and vep(e) - 1, v

e
p(e), respectively. By Lemma 4, these blocks can be covered
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by a (ve1, v
e
2)-path and a (vp(e) - 1, v

e
p(e))-path, respectively. Then we use these paths

to replace the paths of \scrP \prime 
e. Assume now that Ge has a unique e-cut-vertex vi. Then

by the conditions of (iii), i \in \{ 3, . . . , p(e) - 2\} , and Ge[v
e
1, . . . , v

e
i ] and Ge[v

e
i , . . . , v

e
p(e)]

are the blocks of Ge containing the vertices ve1, v
e
2, v

e
i and vei , v

e
p(e) - 1, v

e
p(e), respec-

tively. By Lemma 6, Ge[v
e
1, . . . , v

e
i - 1] = Ge[v

e
1, . . . , v

e
i ] - vei is 2-connected. Hence, by

Lemma 4, Ge[v
e
1, . . . , v

e
i - 1] has a Hamiltonian (ve1, v

e
2)-path. Similarly, Ge[v

e
i , . . . , v

e
p(e)]

has a Hamiltonian (vep(e) - 1, v
e
p(e))-path. We uses these paths to replace the paths of

\scrP \prime 
e.

Case (iv). Observe that either \scrP \prime 
e = \{ ve1, vep(e) - 1v

e
2v

e
p(e)\} or \scrP 

\prime 
e = \{ ve1ve2, vep(e) - 1v

e
p(e)\} .

Suppose that \scrP \prime 
e = \{ ve1, vep(e) - 1v

e
2v

e
p(e)\} . Since (ii) and (iii) could not be applied, we

have that Ge[v
e
2, . . . , v

e
p(e)] is a block of Ge. By Lemma 4, Ge[v

e
2, . . . , v

e
p(e)] has a

Hamiltonian (vep(e) - 1, v
e
p(e))-path that is used to replace vep(e) - 1v

e
2v

e
p(e). Assume that

\scrP \prime 
e = \{ ve1ve2, vep(e) - 1v

e
p(e)\} . Since Ge[v

e
2, . . . , v

e
p(e)] is 2-connected and | Ve| \geq 4, we have

that Ge[v
e
3, . . . , v

e
p(e)] is a 2-connected graph by Lemma 4 that has a Hamiltonian

(vep(e) - 1, vp(e))-path. We use this path to replace vep(e) - 1v
e
p(e).

Case (vi). Notice that G\prime 
e is 2-connected. Observe also that vep(e) - 1 is not

left-attached in the proper H-representation of G\prime . Hence, \scrP \prime 
e cannot contain a

(ve1, v
e
p(e) - 1)-path. We obtain that \scrP \prime 

e = \{ vep(e) - 1v
e
1v

e
p(e)\} . Since Ge is 2-connected

and | Ve| \geq 4, Ge has a Hamiltonian (vep(e) - 1, v
e
p(e))-path that is used to replace

vep(e) - 1v
e
1v

e
p(e).

This completes the proof that G has a path cover of size at most k, and therefore
(G, k) is a yes-instance of Path Cover. We conclude that (G, k) is a yes-instance
of Path Cover if and only if (G\prime , k) is a yes-instance. Hence, Reduction Rule 6.1 is
safe.

Denote by \^G the graph obtained from G by the application of Reduction Rule 6.1
for all e \in E(H) with | Ve| \geq 4 and Le \cap Re = \emptyset .

We construct a clique cover of \^G as follows. For each e \in E(H), we construct
a set \scrK e of at most two cliques such that every vertex of \^Ge is included in at least
one of the cliques. If | Ve| \leq 3, then it can be done since \^Ge = Ge is connected. If
Le\cap Re \not = \emptyset , then by Lemmas 10(ii) and 10(iii), we have that Le and Re are nonempty
cliques and Ve = Le \cup Re. Otherwise, if | Ve| \geq 3 and Le \cap Re \not = \emptyset , Reduction Rule 6.1
was applied for e. It is straightforward to observe (see Figure 4) that every gadget
used to replace Ge can be covered by at most two cliques. For every node x \in V (H),
let Kx = \{ v \in V (G) | x \in Mv\} . Clearly, each Kx is a clique and we have that
\scrK = \{ Kx | x \in V (H)\} \cup 

\bigcup 
e\in E(H) \scrK e is a family of cliques of \^G such that every vertex

of \^G is included in at least one clique of \scrK . Observe that | \scrK | \leq | V (H)| + 2| E(H)| .
It may happen that \scrK is not a clique cover as the cliques can have common vertices.
We construct the clique cover \scrQ from \scrK by the following greedy procedure: we select
an arbitrary nonempty clique Q in \scrK , include it in \scrQ , and update the cliques of \scrK by
deleting the vertices of Q from them. It is straightforward to verify that \scrQ is a clique
cover of \^G and | \scrQ | \leq | V (G)| + 2| E(H)| .

Finally, we observe that Reduction Rule 6.1 can be applied in polynomial time
and the construction of \scrQ is also polynomial.

Finally, putting it all together, we are ready to prove the main result of this
section, Theorem 1.
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Proof of Theorem 1. Let (G, k) be an instance of Path Cover where G is a
proper H-graph given together with its proper H-representation (H \prime ,\scrM ). We use the
algorithm from Lemma 9 that either solves the problem or constructs an equivalent
instance (G\prime , k\prime ) of Path Cover and a nice proper \^H-representation ( \^H \prime , \^\scrM ) of
G\prime such that | V ( \^H)| \leq 3| E(H)| and | E( \^H)| \leq 2| E(H)| . If the algorithm solves the
problem, our kernelization algorithm returns a trivial yes- or no-instance, respectively.
Otherwise, we apply the algorithm from Lemma 13 for (G\prime , k\prime ) and ( \^H \prime , \^\scrM ). This way
we obtain an equivalent instance (G\prime \prime , k\prime ) of Path Cover together with a clique cover
\scrQ of G\prime \prime such that | \scrQ | \leq | V ( \^H)| + 2| E( \^H)| \leq 7| E(H)| . Finally, we use the algorithm

from Theorem 3 for (G\prime \prime , k\prime ) and \scrQ that produces an equivalent instance ( \^G, \^k) of
size \scrO (| \scrQ | 8) = \scrO ((| E(H)| )8). Observe that the used algorithms are polynomial. This
gives us a polynomial compression of Path Cover parameterized by the size ofH into
the nonparameterized Path Cover problem. Formally, to claim that we get a kernel,
we have to specify the value of the parameter. We do this by using Observation 1
and obtain that \^G is a proper \^G-graph, that is, the value of the parameter can be set
equal to the size of \^G.

6.2. Kernel for CYCLE COVER. In this subsection we prove Theorem 2 by
constructing a compression of Cycle Cover to Prize Collecting Cycle Cover
and a polynomial kernel for Hamiltonian Cycle.

First, we state the variant of Theorem 2 that includes the claim for Hamiltonian
Cycle.

Theorem 2. Cycle Cover on proper H-graphs admits a compression into
Prize Collecting Cycle Cover of size \scrO (h10) and Hamiltonian Cycle has a
kernel of size \scrO (h8) when parameterized by the size h of H if a proper H-representation
is given.

We start the proof from the following lemma.

Lemma 14. There is a polynomial-time algorithm that, given an instance (G, k) of
Cycle Cover for a proper H-graph G with its nice proper H-representation (H \prime ,\scrM ),
constructs an equivalent instance ( \^G,\omega , \alpha , r) of Prize Collecting Cycle Cover
such that at most 3| E(H)| edges of \^G have nonzero weights and a clique cover \scrQ 
of \^G with | \scrQ | \leq | V (H)| + 6| E(H)| . Moreover, \alpha (x) = x for x \in N, r \geq  - k, and
\omega (e) \leq k  - 1 for each e \in E( \^G).

Proof. Let G be a proper H-graph and let (H \prime ,\scrM ) with \scrM = \{ Mv\} v\in V (G) be a
nice properH-representation ofG. We apply the notation introduced in subsection 5.3
for G and its representation. Denote additionally by Be

\ell and Be
r , respectively, the

leftmost and the rightmost blocks of Ge for e \in E(H). We denote the cut-vertices of
Ge in these blocks by ve\ell (e) and ver(e), respectively, that are unique by Lemma 5. Also

let F e = G[ve\ell (e), . . . , v
e
r(e)]. In the same way as in the kernelization for Path Cover,

we replace the sufficiently big graphs Ge by gadgets.
For every e \in E(H) with Le \cap Re = \emptyset , we apply a series of reduction rules.

Reduction Rule 6.2. If | Ve| \geq 6 and Ge is 2-connected, then delete ve3, . . . ,
vep(e) - 2, make ve1, v

e
2, v

e
p(e) - 1, v

e
p(e) pairwise adjacent, create a new vertex ue, and make

it adjacent to ve1, v
e
2, v

e
p(e) - 1, v

e
p(e).

The application of the rule is shown in Figure 5. Observe also that the modifica-
tions result in a proper H-graph that has a nice H-representation shown in Figure 5.

Denote by G\prime the graph obtained from G by the application of Reduction Rule 6.2
for an edge e \in E(H) with | Ve| \geq 6 and Le\cap Re = \emptyset . Also let G\prime 

e be the graph obtained
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vep(e) - 1

ve1 vep(e)ve2

ue ue

ve1
ve2

vep(e) - 1

vep(e)

Fig. 5. The application of Reduction Rule 6.2 and the construction of the H-representation.

from Ge by the rule. We show that (G, k) is a yes-instance of Cycle Cover if and
only if (G\prime , k) is a yes-instance.

Suppose that (G, k) is a yes-instance. By Lemma 12, G has a tamed cycle cover
\scrC of size at most k. We consider the projection \scrC e and replace its elements by the
elements of the same structure. If the projection \scrC e consists of a straight path P ,
we replace it by ve1v

e
2u

evep(e) - 1v
e
p(e). If \scrC e contains a straight pair, we replace it by

\{ ve1vep(e) - 1, v
e
2u

evep(e)\} or \{ ve1vep(e), v
e
2u

evep(e) - 1\} to obtain a pair of paths with the same
end-vertices as in \scrC e. If \scrC e consists of a left U -path and a right U -path, then because
| Ve| \geq 6, one of them is nontrivial. We replace a nontrivial left U -path either by
ve1v

e
p(e) - 1v

e
p(e)u

eve2 or by ve1v
e
p(e) - 1u

eve2 depending on whether \scrC e contains the trivial
right U -path or not. The replacement for the case when \scrC e contains a nontrivial
right U -path is symmetric. The trivial paths are not replaced. Finally, if \scrC e con-
tains a cycle, it is replaced by one of the cycles ueve1v

e
2v

e
p(e) - 1v

e
p(e)u

e, ueve1v
e
2v

e
p(e) - 1u

e,
ueve2v

e
p(e) - 1v

e
p(e)u

e, or ueve2v
e
p(e) - 1u

e depending on whether \scrC e has trivial left or right
U -paths that are not replaced. It is straightforward to verify that the replacement of
the cycles and the replacement of the segments of the cycles of \scrC that form paths in
\scrC e gives a cycle cover of the same size. Therefore, (G\prime , k) is a yes-instance.

Suppose now that (G\prime , k) is a yes-instance. We essentially repeat the same argu-
ments: by Lemma 12, G\prime has a tamed cycle cover \scrC \prime of size at most k and we replace
the elements of the projection \scrC \prime 

e by the elements of the same structure. Note that
since | Ve| \geq 6 and Ge is 2-connected, Ge - ve1, Ge - vep(e), Ge - \{ ve1, ve2\} are 2-connected

by Lemma 6 and have at least 3 vertices. Therefore, by [2] and Lemma 4, Ge has
a Hamiltonian (ve1, vp(e))-path, Ge  - ve1, Ge  - vep(e), Ge  - \{ ve1, ve2\} have Hamiltonian

cycles, Ge and Ge - vep(e) have Hamiltonian (ve1, v
e
2)-paths, Ge and Ge - ve1 have Hamil-

tonian (vep(e) - 1, v
e
p(e))-paths. We use these paths and cycles to replace the paths and

cycles of \scrC \prime 
e. We also have that by Lemma 4, Ge has a path cover composed of a

pair of paths with one of the end-vertices in \{ ve1, ve2\} and the other in \{ vep(e) - 1, v
e
p(e)\} .

We use these paths to replace a straight pair of paths in \scrC \prime 
e, and we use additionally

that the paths of the pair are segments of the same cycle of \scrC \prime and are in opposite
directions in the cycle. Applying Lemma 10(v), we can do a replacement that results
in a cycle of G. This completes the safeness proof for the rule.

For simplicity, we use the same notation (G, k) for the instance obtained from
the original instance of Cycle Cover by the exhaustive application of Reduction
Rule 6.2. Our next reduction rule deals with the leftmost and rightmost blocks of Ge

with cut-vertices.

Reduction Rule 6.3. If Ge has a cut-vertex, then
(i) if | V (Be

\ell )| \geq 6, then delete ve3, . . . , v
e
\ell (e) - 1, make ve1, v

e
2, v

e
\ell (e) pairwise adja-

cent, create two new adjacent vertices ue
1 and ue

2, and make them adjacent to
ve1, v

e
2, v

e
\ell (e);
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ve2

ve1 ve2 ve\ell (e)

ue
1 ue

2 ue
1

ue
2

ve\ell (e)
ve1

Fig. 6. The application of Reduction Rule 6.3 for Be
\ell and the construction of the H-repre-

sentation.

(ii) if | V (Be
r)| \geq 6, then delete ver(e)+1, . . . , v

e
p(e) - 2, make ver(e), v

e
p(e) - 1, v

e
p(e) pair-

wise adjacent, create two new adjacent vertices ue
1 and ue

2, and make them
adjacent to ver(e), v

e
p(e) - 1, v

e
p(e).

The application of the rule is shown in Figure 6. Observe also that the modi-
fications result in a proper H-graph that has a nice H-representation, as shown in
Figure 6.

Denote by G\prime the graph obtained from G by applying Reduction Rule 6.3(i) for an
edge e \in E(H) such that | V (Be

\ell )| \geq 6. Let also G\prime 
e be the graph obtained from Ge by

the rule. We show that (G, k) is a yes-instance of Cycle Cover if and only if (G\prime , k)
is a yes-instance. The proof uses the same arguments as the proof for Reduction
Rule 6.2.

Suppose that (G, k) is a yes-instance. By Lemma 12, G has a tamed cycle cover
\scrC of size at most k. We consider the projection \scrC e and replace its elements by the
elements of the same structure. If the projection \scrC e consists of a straight path, we
replace its (ve1, v

e
\ell (e))-subpath by ve1v

e
2u

e
1u

e
2v

e
\ell (e). If \scrC e contains a nontrivial left U -path,

this path covers the vertices of Be
\ell or Be

\ell  - ve\ell (e) and we replace it by ve1u
e
1u

e
2v

e
\ell (e)v

e
2

or ve1u
e
1u

e
2v

e
2. If \scrC e does not contain a nontrivial left U -path, then \scrC e contains a cycle

that covers the vertices of Be
\ell or Be

\ell  - ve\ell (e) or Be
\ell  - ve1 or Be

\ell  - \{ ve1, ve\ell (e)\} and we
replace it by similar cycles in the constructed gadget in a straightforward way.

Suppose now that (G\prime , k) is a yes-instance. By Lemma 12, G\prime has a tamed cycle
cover \scrC \prime of size at most k and we replace the elements of the projection \scrC \prime 

e by the
elements of the same structure. It is sufficient to observe that since | V (Be

\ell )| \geq 6, the
graphs Be

\ell  - ve1, B
e
\ell  - ve\ell (e), and Be

\ell  - \{ ve1, ve\ell (e)\} are 2-connected by Lemma 6 and

have at least 3 vertices. Therefore, by [2] and Lemma 4, these graphs and Be
\ell have

Hamiltonian cycles, Be
\ell has a Hamiltonian (ve1, v

e
\ell (e))-path, and Be

\ell and Be
\ell  - ve\ell (e) have

Hamiltonian (ve1, v
e
2)-paths. Clearly, these cycles and paths can be used to replace the

corresponding elements of \scrC \prime 
e. This completes the safeness proof for the rule.

As before, assume for simplicity that (G, k) is the instance of Cycle Cover
obtained by the exhaustive application of Reduction Rule 6.3. Our next aim is to
deal with F e. It is convenient to consider first the case when F e is 2-connected, that
is, it is a block of Ge.

Reduction Rule 6.4. If F e is 2-connected and | V (F e)| \geq 6, then delete
ve\ell (e)+1, . . . , v

e
r(e) - 1, construct 3 new vertices ue

1, u
e
2, u

e
3, and make ve\ell (e), v

e
r(e), u

e
1, u

e
2, u

e
3

pairwise adjacent.

The application of the rule is shown in Figure 7 and, again, the modifications give
a proper H-graph that has a nice H-representation, as shown in the figure.

To prove safeness, we use the same arguments as before and only briefly sketch
them here. Denote by G\prime the graph obtained from G by the application of Reduction
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ver(e)

ue
1

ue
2

ue
3

ve\ell (e) ver(e)

ue
1

ue
2

ue
3

ve\ell (e)

Fig. 7. The application of Reduction Rule 6.3 and the construction of the H-representation.

Rule 6.4 for an edge e \in E(H) such that | V (F e)| \geq 6. Suppose that (G, k) is a yes-
instance. By Lemma 12, G has a tamed cycle cover \scrC of size at most k. We consider
the projection \scrC e and replace its elements by the elements of the same structure. If
the projection \scrC e consists of a straight path P , we replace its (ve\ell (e), v

e
r(e))-subpath

by ve\ell (e)u
e
1u

e
2u

e
3v

e
r(e). Otherwise, \scrC e contains a cycle that covers the vertices of F e or

F e - ve\ell (e) or F
e - ver(e) or F

e - \{ ve\ell (e), v
e
r(e)\} and we replace it by a similar cycle in the

constructed gadget. For the opposite direction, the graphs F e, F e  - ve\ell (e), F
e  - ver(e),

and F e  - \{ ve\ell (e), v
e
r(e)\} are 2-connected by Lemma 6. Hence, they have Hamiltonian

cycles by the results of [2]. Furthermore, F e has a Hamiltonian (ve\ell (e), v
e
r(e))-path.

We use this observation and replace the elements of the projection \scrC \prime 
e for the tamed

cycle cover of G\prime .

Let (G, k) be the instance of Cycle Cover obtained by Reduction Rules 6.2--6.4.
Notice that up to now we are reducing an instance of Cycle Cover to an instance
of the same problem. To deal with the case when F e contains at least two blocks, we
reduce (G, k) to the instance of Prize Collecting Cycle Cover.

We consider the graphs F1--F11 shown in Figure 8. Observe that these graphs have
proper interval representations that define the ordering of their vertices. Notice that
each graph has two vertices denoted by s and t, respectively, that are the first and the
last vertices of the vertex ordering defined by the given interval representations. The
graphs F1--F10 have edges that are shown by thick lines. The graphs F1 and F3--F10

have one such edge each and F2 has three such edges. We call them marked. It is
straightforward to verify that the graphs F1--F11 have the signatures given in Table 1.
Observe that the signatures are pairwise distinct and the list of signatures contains
all feasible signatures by Lemma 8. It is also easy to verify that Table 1 gives the
correct values of \sansc \sanso \sansv \sanse \sansr (Fi). The general idea of our final reduction rule is to replace
F e by one of the gadgets Fi with the same signature. Then we define the weights of
the marked edges to encode \sansc \sanso \sansv \sanse \sansr (F ).

We construct the initial instance (G,\omega , \alpha , r) of Prize Collecting Cycle Cover
from (G, k) by setting \omega (e) = 0 for every e \in E(G), defining \alpha (x) = x for x \in N,
and setting r =  - k. Recall that (G, k) is a yes-instance of Cycle Cover if and
only if (G,\omega , \alpha , r) is a yes-instance of Prize Collecting Cycle Cover. Note
that our reduction rule also uses the parameter k from the constructed by Reduction
Rules 6.2--6.4 instance (G, k) of Cycle Cover.

Reduction Rule 6.5. If | Ve| \geq 6 and F e has a cut-vertex, then do the following:
(i) If \sansc \sanso \sansv \sanse \sansr (F ) \geq k, then

-- delete ve\ell (e)+1, . . . , v
e
r(e) - 1,

-- construct a copy of F11 identifying s and t with ve\ell (e) and ver(e), respec-
tively,

-- set the weights of the edges of the copy of F11 to be 0.
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F3

s

s

t

t

F4

s t

s
t

s t

s t

F5 F6

s

ts

F7

t

s t

s

F8

s t

tst s

s t

t

s t

s t

F9 F10 F11

s t

F1

s ts t

s t

F2

s t

s t

Fig. 8. The construction of F1--F11 and their proper interval representations; the marked edges
are shown by thick lines.

Table 1
The signatures of the graphs F1--F11 and the values of coverFi.

Fi \sigma (Fi) cover(Fi) Fi \sigma (Fi) cover(Fi)
F1 \langle yes, yes, yes, yes\rangle 2 F7 \langle yes, no, no, no\rangle 2
F2 \langle yes, yes, yes, no\rangle 1 F8 \langle no, yes, no, no\rangle 1
F3 \langle yes, yes, no, no\rangle 2 F9 \langle no, no, yes, no\rangle 1
F4 \langle yes, no, yes, no\rangle 2 F10 \langle no, no, no, yes\rangle 1
F5 \langle no, yes, no, yes\rangle 1 F11 \langle no, no, no, no\rangle +\infty 
F6 \langle no, no, yes, yes\rangle 1

(ii) Else, find Fi with i \in \{ 1, . . . , 10\} such that \sigma (Fi) = \sigma (F e) and do the follow-
ing:

-- delete ve\ell (e)+1, . . . , v
e
r(e) - 1,

-- construct a copy of Fi identifying s and t with ve\ell (e) and ver(e), respec-
tively,

-- set the weights of the marked edges of the copy of Fi to be \sansc \sanso \sansv \sanse \sansr (F e)  - 
\sansc \sanso \sansv \sanse \sansr (Fi) and set the weight of the other edges of the copy of Fi to be 0,

-- set r = r+ \sansc \sanso \sansv \sanse \sansr (F e) - \sansc \sanso \sansv \sanse \sansr (Fi) if i \not = 2 and set r = r+ 3(\sansc \sanso \sansv \sanse \sansr (F e) - 
\sansc \sanso \sansv \sanse \sansr (Fi)) if i = 2.

Observe that Reduction Rule 6.5 produces a feasible instance of Prize Col-
lecting Cycle Cover as it assigns nonnegative weights. To see it, observe that
\sansc \sanso \sansv \sanse \sansr (F e) - \sansc \sanso \sansv \sanse \sansr (Fi) \geq 0 if Reduction Rule 6.5(ii) is applied, because \sansc \sanso \sansv \sanse \sansr (F e) \geq 1
and, moreover, \sansc \sanso \sansv \sanse \sansr (F e) \geq 2 if F e has a cycle cover since F e has at least two blocks.
Notice also that the rule does not decrease the value of r.

Before we show that the rule is safe, we need the following claim.

Claim 6.1. Suppose that the instance (G\prime , \omega \prime , \alpha , r\prime ) of Prize Collecting Cy-
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cle Cover is obtained from the initial instance by applying Reduction Rule 6.5. Then
for any cycle cover \scrC of G\prime , there is a tamed cycle cover \scrC \prime such that | \scrC | \geq | \scrC \prime | and
c\alpha ,\omega \prime (\scrC ) \leq c\alpha ,\omega \prime (\scrC \prime ).

Proof of Claim 6.1. Assume that | \scrC | = k and let S be the set of edges of H such
that for every e \in S, it holds that | Ve| \geq 3, Le \cap Re = \emptyset , Ge has a cut-vertex, and \scrC e
contains a (u, v)-path with u \in Le and v \in Re. By Lemma 12, G\prime has a tamed cycle
cover \scrC \prime of size at most k such that for every e \in S, \scrC \prime 

e consists of a straight path. Let
\scrC \prime be such a cycle cover that has maximum weight. We show that \omega \prime (\scrC \prime ) \geq \omega \prime (\scrC ).

Let A be the set of edges of H such that for each e \in A, Ge was modified by
Reduction Rule 6.5 to one of the gadgets F1--F10. Clearly, only edges of G\prime 

e for e \in A
can have nonzero weights. Let e \in A and assume that Fi was used to construct
G\prime 

e. Denote by \omega \prime (\scrC e) and \omega \prime (\scrC \prime 
e) the total weight of the edges of the elements of the

corresponding projections. If e \in S, then the projection \scrC \prime 
e contains a straight path

P \prime . Note that since ve\ell (e) and ver(e) are cut-vertices of G
\prime 
e, P

\prime has a (ve\ell (e), v
e
r(e))-subpath

of P \prime that is an (s, t)-path in the corresponding gadget Fi. As \scrC \prime has maximum weight,
this subpath should contain the marked edges of the copy of Fi (see Figure 8). Then
\omega \prime (E(G\prime 

e)) = \omega \prime (E(P \prime )) and \omega \prime (\scrC e) \leq \omega \prime (\scrC \prime 
e). Assume that e \in A \setminus S. Because ve\ell (e)

and ver(e) are cut-vertices of G
\prime 
e, the marked edges of Fi cannot be included in any path

of \scrC e. It follows that the edges of the copy of Fi could only be in cycles of \scrC e. If i \not = 2,
then the marked edges are bridges of Fi, and therefore no cycle of Ge can contain
them, and we have that \omega \prime (\scrC e) = 0. Then \omega \prime (\scrC e) \leq \omega \prime (\scrC \prime 

e). Suppose that i = 2. Then
cycles of \scrC e can contain only two marked edges of the copy of F2 (see Figure 8). If \scrC \prime 

e

has a straight path, then this path contains three marked edges. If \scrC \prime 
e does not contain

a straight path, then the marked edges could only be in cycles of \scrC e and these cycles
always contain at least two marked edges. In both cases, we have that \omega \prime (\scrC e) \leq \omega \prime (\scrC \prime 

e).
Since this inequality holds for every e \in A, we have that \omega \prime (\scrC ) \leq \omega \prime (\scrC \prime ).

It remains to observe that because | \scrC | \prime \leq k = | \scrC | , c\alpha ,\omega \prime (\scrC \prime ) = \omega \prime (\scrC \prime )  - \alpha (| \scrC \prime | ) \geq 
\omega \prime (\scrC ) - \alpha (| \scrC | ) = c\alpha ,\omega \prime (\scrC ).

Now we prove that Reduction Rule 6.5 is safe. Let (G,\omega , \alpha , r) be the current
instance of Prize Collecting Cycle Cover and denote by (G\prime , \omega \prime , \alpha , r\prime ) the in-
stance obtained by application of Reduction Rule 6.5 for an edge e \in E(H) such
that F e has a cut-vertex. Assume that the gadget Fi for i \in \{ 1, . . . , 11\} was used
for the construction. We show that if G has a cycle cover \scrC of size at most k with
c\alpha ,\omega (\scrC ) \geq r, then G\prime has a cycle cover \scrC \prime of size at most k with c\alpha ,\omega \prime (\scrC \prime ) \geq r\prime . For
the opposite direction, we show a slightly different claim: if G\prime has a cycle cover \scrC \prime 

with c\alpha ,\omega \prime (\scrC \prime ) \geq r\prime , then G has a cycle cover \scrC with c\alpha ,\omega (\scrC ) \geq r. By asymmetry,
applying the rule we never increase the size of a cycle cover that provides a solution
if the instance (G, k) of Cycle Cover obtained by Reduction Rules 6.2--6.4 is a
yes-instance. Then it is safe to apply the special case (i) of Reduction Rule 6.5.

Let \scrC be a cycle cover of G of size at most k such that c\alpha ,\omega (\scrC ) \geq r. We assume
that \scrC is tamed using Claim 6.1. The general idea of the proof is the same as for the
previous rules: we consider \scrC e and modify the elements of the projection to obtain a
cycle cover \scrC \prime . We also use the observation that, since \scrC is tamed and F e contains at
least two blocks, either the vertices of F e are covered by a straight path or \scrC e contains
\sansc \sanso \sansv \sanse \sansr (F e) cycles that cover the vertices of one of the graphs F e, F e - ve\ell (e), F

e - ver(e),

F e  - \{ ve\ell (e), v
e
r(e)\} .

Assume first that Reduction Rule 6.5(i) was used, that is, \sigma (F e) = \langle no, no, no, no\rangle 
or \sansc \sanso \sansv \sanse \sansr (F e) \geq k. If \scrC e contains a straight path P , we modify P using the observation
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that P contains a (ve\ell (e), v
e
r(e))-subpath that contains the vertices of F e. We replace

this subpath by the unique (s, t)-path in the copy of F11. Clearly, this way we obtain
a cycle cover \scrC \prime of the same size as \scrC such that c\alpha ,\omega \prime (\scrC \prime ) = c\alpha ,\omega (\scrC ) \geq r = r\prime . Suppose
that \scrC e has no straight path. Then \scrC e contains \sansc \sanso \sansv \sanse \sansr (F e) cycles that cover the vertices
of one of the graphs F e, F e - ve\ell (e), F

e - ver(e), F
e - \{ ve\ell (e), v

e
r(e)\} . Clearly, it is possible

only if \sigma (F e) \not = \langle no, no, no, no\rangle . But then the minimum number of cycles is at least
k. Since we need at least one more cycle to cover the vertices of G outside F e, we
conclude that we use at least k + 1 cycles, contradicting the condition that | \scrC | \leq k.
Hence, \scrC e consists of a straight path.

Assume now that Reduction Rule 6.5(ii) was used to produce (G\prime , \omega \prime , \alpha , r\prime ). If \scrC e
contains a straight path P , we replace the (ve\ell (e), v

e
r(e))-subpath of P by a Hamiltonian

(s, t)-path in the copy of Fi that contains the marked edges. It is straightforward to
verify (see Figure 8) that such a path always exists. We obtain a cycle cover \scrC \prime of
the same size as \scrC such that \omega \prime (\scrC \prime ) = \omega (\scrC ) + \sansc \sanso \sansv \sanse \sansr (F e)  - \sansc \sanso \sansv \sanse \sansr (Fi) if i \not = 2, and
\omega \prime (\scrC \prime ) = \omega (\scrC )+3(\sansc \sanso \sansv \sanse \sansr (F e) - \sansc \sanso \sansv \sanse \sansr (Fi)) otherwise. This implies that c\alpha ,\omega \prime (\scrC \prime ) - r\prime =
c\alpha ,\omega (\scrC )  - r \geq 0. Suppose that \scrC e has no straight path. Then \scrC e contains a set \scrS of
\sansc \sanso \sansv \sanse \sansr (F e) cycles that cover the vertices of one of the graphs F e, F e - ve\ell (e), F

e - ver(e),

F e  - \{ ve\ell (e), v
e
r(e)\} . Since \sigma (F e) = \sigma (Fi), we can replace the cycles of \scrS by a set \scrS \prime 

of \sansc \sanso \sansv \sanse \sansr (Fi) cycles in the copy of Fi in such a way that \scrS \prime leaves uncovered exactly
the same vertices as \scrS . Thus, we obtain the cycle cover \scrC \prime of size | \scrC |  - (\sansc \sanso \sansv \sanse \sansr (F e) - 
\sansc \sanso \sansv \sanse \sansr (Fi)) \leq k  - (\sansc \sanso \sansv \sanse \sansr (F e)  - \sansc \sanso \sansv \sanse \sansr (Fi)) \leq k. We also have that \omega \prime (\scrC \prime ) = \omega (\scrC ) if
i \not = 2, because the cycles of \scrS \prime cannot contain marked edges that are bridges of Fi.
Then c\alpha ,\omega \prime (\scrC \prime ) - r\prime = c\alpha ,\omega (\scrC ) - r \geq 0. If i = 2, then \scrS \prime contains a unique cycle and, as
can be easily seen from Figure 8, this cycle contains exactly two marked edges. Then
\omega \prime (\scrC \prime ) = \omega (\scrC ) + 2(\sansc \sanso \sansv \sanse \sansr (F e) - \sansc \sanso \sansv \sanse \sansr (Fi)). Therefore, c\alpha ,\omega \prime (\scrC \prime ) - r\prime = c\alpha ,\omega (\scrC ) - r \geq 0.

For the opposite direction, let \scrC \prime be a cycle cover of G\prime such that c\alpha ,\omega \prime (\scrC \prime ) \geq r\prime .
Again, we assume that \scrC \prime is tamed using Claim 6.1. We use the same idea as before,
and the difference is that now we replace the elements of \scrC \prime 

e to produce a cycle cover
\scrC of G.

Again, assume first that Reduction Rule 6.5(i) was used. As F11 has no cycle,
we immediately obtain that \scrC \prime 

e consists of the straight path. We replace the unique
(s, t)-subpath in the copy of F11 by a Hamiltonian (ve\ell (e), v

e
r(e))-path of F e which ex-

ists by Lemma 4. We obtain a cycle cover \scrC of G of the same size as \scrC \prime such that
c\alpha ,\omega (\scrC ) = c\alpha ,\omega \prime (\scrC \prime ) \geq r\prime = r.

Suppose that we used Reduction Rule 6.5(ii). If \scrC \prime 
e consists of a straight path,

we replace its (ve\ell (e), v
e
r(e))-subpath P in the same way as above by a Hamiltonian

(ve\ell (e), v
e
r(e))-path of F e. We get a cycle cover \scrC of G of the same size as \scrC \prime . Note that

\omega \prime (\scrC \prime ) \geq \omega (\scrC )  - (\sansc \sanso \sansv \sanse \sansr (F e)  - \sansc \sanso \sansv \sanse \sansr (Fi)) if i \not = 2 and \omega \prime (\scrC \prime ) \leq \omega (\scrC )  - 3(\sansc \sanso \sansv \sanse \sansr (F e)  - 
\sansc \sanso \sansv \sanse \sansr (Fi)) if i = 2, because P contains at most one and at most three marked edges,
respectively. Then c\alpha ,\omega (\scrC )  - r \geq c\alpha ,\omega \prime (\scrC \prime )  - r\prime \geq 0. Suppose that \scrC \prime 

e has no straight
path. Then \scrC \prime 

e contains a set \scrS \prime of \sansc \sanso \sansv \sanse \sansr (Fi) cycles that cover the vertices of one
of the graphs Fi, Fi  - ve\ell (e), Fi  - ver(e), Fi  - \{ ve\ell (e), v

e
r(e)\} (recall that s and t are

identified with ve\ell (e) and ver(e), respectively). Since \sigma (F e) = \sigma (Fi), we can replace

the cycles of \scrS \prime by a set \scrS of \sansc \sanso \sansv \sanse \sansr (F e) cycles in F e in such a way that \scrS leaves
uncovered exactly the same vertices as \scrS \prime . Thus, we obtain the cycle cover \scrC of size
| \scrC |  - (\sansc \sanso \sansv \sanse \sansr (F e) - \sansc \sanso \sansv \sanse \sansr (Fi)) \leq k - (\sansc \sanso \sansv \sanse \sansr (F e) - \sansc \sanso \sansv \sanse \sansr (Fi)). We also have that \omega \prime (\scrC \prime ) =
\omega (\scrC ) if i \not = 2, because the cycles of \scrS \prime cannot contain marked edges that are bridges of
Fi. Then c\alpha ,\omega (\scrC ) - r = c\alpha ,\omega \prime (\scrC \prime ) - r\prime \geq 0. If i = 2, then \scrS \prime contains a unique cycle and,
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as can be easily seen from Figure 8, this cycle contains exactly two marked edges. Then
\omega \prime (\scrC \prime ) = \omega (\scrC ) + 2(\sansc \sanso \sansv \sanse \sansr (F e) - \sansc \sanso \sansv \sanse \sansr (Fi)). Therefore, c\alpha ,\omega (\scrC ) - r = c\alpha ,\omega \prime (\scrC \prime ) - r\prime \geq 0.

This completes the safeness proof.
Denote by ( \^G, \^\omega , \alpha , \^r) the instance of Prize Collecting Cycle Cover ob-

tained by the application of all the rules. Note that we have that \^\omega (e) \leq k  - 1 and
\^\omega (e) \leq  - r. Observe also that \^r \geq  - k as Reduction Rule 6.5 can only increase the
parameter r. Reduction Rule 6.5 creates at most 3 marked edges for every e \in E(H).
Therefore, the number of edges with nonzero weights is at most 3| E(H)| .

We construct a clique cover of \^G as follows.
For each e \in E(H), we construct a set \scrK e of at most 6 cliques such that every ver-

tex of \^Ge is included in at least one of the cliques. Recall that Reduction Rules 6.2--6.5
are applied only for e \in E(H) only if Le \cap Re = \emptyset . If Le \cap Re \not = \emptyset , then by Lem-
mas 10(ii) and 10(iii), we have that Le and Re are nonempty cliques and Ve = Le\cup Re.
If | Ve| \leq 5, then \scrK e can be trivially constructed. If we apply Reduction Rule 6.2 for
e \in E(H), then Ge is replaced by a complete graph whose vertices can be covered by a
single clique. Suppose that we apply Reduction Rule 6.3. If we do not modify Be

\ell , then
it has at most 5 vertices that could be covered by at most 2 cliques. The same holds
for Be

r . If B
e
\ell (Be

r) is modified, it is replaced by a complete graph that can be covered
by a single clique. If F e is 2-connected and is not modified by Reduction Rule 6.4, it
has at most 5 vertices and can be covered by 2 cliques. Otherwise, again, we can cover
the obtained complete graph by a single clique. If V e has a cut-vertex but is not mod-
ified by Reduction Rule 6.5, we cover its vertices by at most 2 cliques. Assume that
F e is modified. Consider the graphs F1--F11 that are shown in Figure 8. Note that
for each of them, Fi  - \{ s, t\} can be covered by 2 cliques. We conclude that if Ge has
a cut-vertex, then we can cover the graph constructed from Ge by at most 6 cliques.

For every node x \in V (H), let Kx = \{ v \in V (G) | x \in Mv\} . Clearly, each Kx is
a clique and we have that \scrK = \{ Kx | x \in V (H)\} \cup 

\bigcup 
e\in E(H) \scrK e is a family of cliques

of \^G such that every vertex of \^G is included in at least one clique of \scrK . Observe that
| \scrK | \leq | V (H)| + 6| E(H)| . It may happen that \scrK is not a clique cover as the cliques
can have common vertices. We construct the clique cover \scrQ from \scrK by the following
greedy procedure: we select an arbitrary nonempty clique Q in \scrK , include it in \scrQ , and
update the cliques of \scrK by deleting the vertices of Q from them. It is straightforward
to verify that \scrQ is a clique cover of \^G and | \scrQ | \leq | V (G)| + 6| E(H)| .

Finally, we observe that Reduction Rules 6.2--6.5 can be applied in polynomial
time. In particular, we compute \sansc \sanso \sansv \sanse \sansr (F e) in Reduction Rule 6.5 using Theorem 4.
Since the construction of \scrQ is also polynomial, we conclude that the algorithm runs
in polynomial time.

Finally, we are ready to prove Theorem 2.

Proof of Theorem 2. The proof essentially repeats the proof of Theorem 1. Let
(G, k) be an instance of Cycle Cover where G is a proper H-graph given together
with its proper H-representation (H \prime ,\scrM ). We use the algorithm from Lemma 9,
which either solves the problem or constructs an equivalent instance (G\prime , k\prime ) of Cycle
Cover together with a nice proper \^H-representation ( \^H \prime , \^\scrM ) of \^G such that | V ( \^H)| \leq 
3| E(H)| and | E( \^H)| \leq 2| E(H)| . If the algorithm solved the problem, our algorithm
returns a trivial yes- or no-instance, respectively. Otherwise, we apply the algorithm
from Lemma 14 for (G\prime , k\prime ) and ( \^H \prime , \^\scrM ). This way we obtain an equivalent instance
(G\prime \prime , \omega , \alpha , r) of Prize Collecting Cycle Cover such that the number of edges
with nonzero weight \ell \leq 3| E( \^H)| \leq 6| E(H)| . The algorithm also constructs a clique
cover \scrQ of G\prime \prime such that | \scrQ | \leq | V ( \^H)| + 6| E( \^H)| \leq 15| E(H)| . Finally, we use the
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algorithm from Theorem 3 for (G\prime \prime , \omega , \alpha , r) and\scrQ that produces an equivalent instance
( \^G, \^\omega , \^\alpha , \^r) of size \scrO ((| \scrQ | + \ell ))10 = \scrO (| E(H)| )10.

For Hamiltonian Cycle, we write an instance G of the problem as the instance
(G, k) of Cycle Cover for k = 1. Then we combine Lemmas 9 and 14 and obtain
an equivalent instance (G\prime \prime , \omega , \alpha , r) of Prize Collecting Cycle Cover such that
\alpha (x) = x for x \in N, r \geq  - k =  - 1 and \omega (e) \leq k  - 1 = 0 for e \in E( \^G). Then we
have that this instance of Prize Collecting Cycle Cover is equivalent to the
instance (G\prime \prime , - r) of Cycle Cover. If r \geq 0, we obtain a no-instance and return a
trivial no-instance of Hamiltonian Cycle. Otherwise, r =  - 1 and (G\prime \prime , - r) is an
equivalent instance of Hamiltonian Cycle. Then we use Theorem 3 to obtain a
kernel of size \scrO (| V (H)| + | E(H)| )8.

Finally, in both cases, we use Observation 1 to define the value of the parameter
(size of G\prime \prime ) as in the proof of Theorem 1.

7. Conclusion. We obtained compression and kernelization results for Hamil-
tonian Path and Hamiltonian Cycle and their generalizations (Path Cover and
Cycle Cover, respectively) for classes of intersection graphs parameterized by their
distance from proper interval graphs in a nonstandard way. We proved that Hamil-
tonian Cycle and Path Cover on proper H-graphs admit a polynomial kernel
of size \scrO (h8) when parameterized by the size h of H if a proper H-representation
is given in the input. For Cycle Cover, it was shown that it admits a polyno-
mial compression into Prize Collecting Cycle Cover. As a by-product, we also
established that Hamiltonian Cycle, Cycle Cover, Path Cover, and Prize
Collecting Cycle Cover admit polynomial kernels when parameterized by the
clique cover size if a clique cover is given in the input. Here it would be interesting
to investigate whether a ``robust"" approach can be used instead where we would only
be given a graph as the input (with the promise of having either a small clique cover
or a proper H-representation for a fixed H).

It is natural to ask whether our results for proper H-graphs can be generalized
to (not necessarily proper) H-graphs. Since Hamiltonian Cycle is \sansN \sansP -complete
on strongly chordal split graphs [34], this question is interesting even for special
families of graphs H, like trees or stars. It might also be interesting to consider
other covering problems on (proper) H-graphs. For example, what can be said about
Clique Cover? Recall that several other classes of optimization problems have
already been considered on H-graphs [12, 13, 21].
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