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In k-Clustering we are given a multiset of n vectors X ⊂ Zd and a nonnegative number D , 
and we need to decide whether X can be partitioned into k clusters C1, . . . , Ck such that 
the cost

k∑
i=1

min
ci∈Rd

∑
x∈Ci

‖x − ci‖p
p ≤ D,

where ‖ · ‖p is the Lp-norm. For p = 2, k-Clustering is k-Means. We study k-Clustering

from the perspective of parameterized complexity. The problem is known to be NP-hard for 
k = 2 and also for d = 2. It is a long-standing open question, whether the problem is fixed-
parameter tractable (FPT) for the combined parameter d + k. In this paper, we focus on the 
parameterization by D . We complement the known negative results by showing that for 
p = 0 and p = ∞, k-Clustering is W[1]-hard when parameterized by D . Interestingly, we 
discover a tractability island of k-Clustering: for every p ∈ (0, 1], k-Clustering is solvable 
in time 2O(D log D)(nd)O(1).

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recall that for p > 0, the Minkowski or Lp-norm of a vector x = (x[1], . . . , x[d]) ∈ Rd is defined as

‖x‖p = ( d∑
i=1

|x[i]|p)1/p
.

Respectively, we define the (Lp -norm) distance between two vectors x = (x[1], . . . , x[d]) and y = (y[1], . . . , y[d]) as

distp(x, y) = ‖x − y‖p
p =

d∑
i=1

|x[i] − y[i]|p .

We also consider distp for p = 0 and p = ∞. For p = 0, distp is L0 (or the Hamming) distance, that is the number of 
different coordinates in x and y:
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Fig. 1. Optimal clusterings of the same set of vectors with different distances: dist1 in the left subfigure, dist1/4 in the right subfigure. Shapes denote 
clusters, crosses denote cluster centroids.

dist0(x, y) = |{i ∈ {1, . . . ,d} | x[i] �= y[i]}|.
For p = ∞, distp is L∞-distance, which is defined as

dist∞(x, y) = max
i∈{1,...,d}

|x[i] − y[i]|.

The k-Clustering problem is defined as follows. For a given (multi) dataset of n vectors (points) X ⊂ Zd , the task is to 
find a partition of X into k clusters C1, . . . , Ck minimizing the cost

k∑
i=1

min
ci∈Rd

∑
x∈Ci

distp(x, ci),

intuitively, ci is a centroid of the cluster Ci .
In particular, for p = 1, distp is the L1-distance and the corresponding clustering problem is known as k-Median. (Often 

in the literature, k-Median is also used for clustering minimizing the sums of the Euclidean distances.) For p = 2, distp is 
the L2 (Euclidean) distance, and then the clustering problem becomes k-Means.

Let us note that optimal clusterings for the same set of vectors can be drastically different for various values of p, as 
shown in Fig. 1. As we show in the paper, the complexity of k-Clustering also strongly depends on the choice of p.

k-Clustering, and especially k-Median and k-Means, are among the most prevalent problems occurring in virtually 
every subarea of data science. We refer to the survey of Jain [1] for an extensive overview. While in practice the most 
common approaches to clustering are based on different variations of Lloyd’s heuristic [2], the problem is interesting from 
the theoretical perspective as well. In particular, there is a vast amount of literature on approximation algorithms for k-

Clustering whose behavior can be analyzed rigorously, see e.g. [3–17].
When it comes to exact solutions, we observe the following phenomena. While heuristic algorithms for k-Clustering

work surprisingly well in practice, from the perspective of parameterized complexity, k-Clustering is intractable for all 
previously studied parameterizations, see Table 1. The k-Clustering problem is naturally “multivariate”: in addition to the 
number of points n, there are also parameters like space dimension d, number of clusters k or the cost of clustering D . 
The problem is known to be NP-complete for k = 2 [18,19] and for d = 2 [20,21]. By the classical work of Inaba et al. [22], 
in the case when both d and k are constants, k-Clustering is solvable in polynomial time O(ndk+1). It is a long-standing 
open problem whether k-Clustering is FPT parameterized by d + k. Under ETH, the lower bound of n�(k) , even when d = 4, 
was shown by Cohen-Addad et al. in [23] for the settings where the set of potential candidate centers is explicitly given as 
input. However the lower bound of Cohen-Addad et al. does not generalize to the settings of this paper where any point 
in Euclidean space can serve as a center. For the special case, when the input consists of binary vectors and the distance is 
Hamming, the problem is solvable in time 2O(D log D)(nd)O(1) [24].

Our results and approaches. In this paper we investigate the dependence of the complexity of k-Clustering on the cost of 
clustering D . It appears that adding this new “dimension” makes the complexity landscape of k-Clustering intricate and 
interesting. More precisely, we consider the following problem.

Input: A multiset X of n vectors in Zd , a positive integer k, and a nonnegative number D .
Task: Decide whether there is a partition of X into k clusters {Ci}k

i=1 and k vectors {ci}k
i=1, called centroids, 

in Rd such that

k∑
i=1

∑
x∈Ci

dist(x, ci) ≤ D.

k-Clustering with distance dist
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Let us remark that vector set X (like the column set of a matrix) can contain many equal vectors. Also we consider the 
situation when vectors from X are integer vectors, while centroid vectors are not necessarily from X . Moreover, coordinates 
of centroids can be reals.

Our main algorithmic result is the following theorem.

Theorem 1. k-Clustering with distance distp is solvable in time 2O(D log D)(nd)O(1) for every p ∈ (0, 1].

Thus k-Clustering when parameterized by D is fixed-parameter tractable (FPT) for Minkowski distance distp of order 
0 < p ≤ 1. In the first step of our algorithm we use color coding to reduce the problem to Cluster Selection, which we 
find interesting on its own. In Cluster Selection we have t groups of weighted vectors and the task is to select exactly one 
vector from each group such that the weighted cost of the composite cluster is at most D . More formally,

Input: A set of m vectors X given together with a partition X = X1 ∪ · · · ∪ Xt into t disjoint sets, a weight 
function w : X → Z+, and a nonnegative number D .

Task: Decide whether it is possible to select exactly one vector xi from each set Xi such that the total 
cost of the composite cluster formed by x1, . . . , xt is at most D:

min
c∈Rd

t∑
i=1

w(xi) · dist(xi, c) ≤ D.

Cluster Selection with distance dist

The Cluster Selection problem is closely related to variants of the well-known Consensus Pattern problem. Namely, 
for the Hamming distance, the definition of Cluster Selection nearly coincides with the Colored Consensus Strings with 
Outliers problem studied in [25], only in the latter the alphabet is assumed to be of constant size.

Informally (see Theorem 10 for the precise statement), our reduction shows that if the distance norm satisfies some 
specific properties (which distp satisfies for all p) and if Cluster Selection is FPT parameterized by D , then so is k-

Clustering. Therefore, in order to prove Theorem 1, all we need is to show that Cluster Selection is FPT parameterized 
by D when p ∈ (0, 1]. This is the most difficult part of the proof. Here we invoke the theorem of Marx [26] on the number 
of subhypergraphs in hypergraphs of bounded fractional edge cover.

Superficially, the general idea of the proof of Theorem 1 is similar to the idea behind the algorithm for Binary r-Means

for L0 from [24]. In both cases, the classical color coding technique of Alon et al. [27] is used as a preprocessing step. 
However, the further steps in [24] strongly exploit the fact that the data is binary. As we will see in Theorem 2, the 
existence of an FPT algorithm for k-Clustering in L0 is highly unlikely. Thus the reductions from [24] cannot be applied in 
our case, and we need a new approach.

More precisely, for clustering in L0 we prove the following theorem.

Theorem 2. With distance dist0 , k-Clustering parameterized by d + D and Cluster Selection parameterized by d + t + D are 
W[1]-hard.

In particular, this means that up to a widely-believed assumption in complexity that FPT �= W[1], Theorem 2 rules out 
algorithms solving k-Clustering in time f (d, D) · nO(1) and algorithms solving Cluster Selection in L0 in time g(t, d, D) ·
nO(1) for any functions f (d, D) and g(t, d, D). A similar hardness result holds for L∞ .

Theorem 3. With distance dist∞ , k-Clustering parameterized by D and Cluster Selection parameterized by t + D are W[1]-hard.

This naturally brings us to the question: What happens with k-Clustering for p ∈ (1, ∞), especially for the Euclidean 
distance, that is p = 2. Unfortunately, we are not able to answer this question when the parameter is D only. However, we 
can prove that

Theorem 4. k-Clustering and Cluster Selection with distance dist2 are FPT when parameterized by d + D.

Thus in particular, Theorem 4 implies that k-Clustering with distance dist2 is FPT parameterized by d + D . On the other 
hand, we prove that

Theorem 5. Cluster Selection with distance distp is W[1]-hard for every p ∈ (1, ∞) when parameterized by t + D.
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Table 1
Complexity of k-Clustering and Cluster Selection.

distp k-Clustering Cluster Selection

p = 0
W[1]-hard param. d + D [Theorem 2]
NP-c for k = 2 [19]

W[1]-hard param. d + t + D [Theorem 2]

0 < p ≤ 1
2O(D log D)(nd)O(1) [Theorem 1]
NP-c for k = 2 when p = 1 [19]
NP-c for d = 2 when p = 1 [20]

2O(D log D)(nd)O(1) [Theorem 15]
W[1]-hard param. t + d for p = 1 [Theorem 20]

1 < p < +∞
FPT param. d + D for p = 2 [Theorem 4]
NP-c for k = 2 when p = 2 [18]
NP-c for d = 2 when p = 2 [21]

FPT param. d + D for p = 2 [Theorem 4]
W[1]-hard param. t + D [Theorem 5]

p = ∞ W[1]-hard param. D [Theorem 3]
NP-c for k = 2 [Theorem 30]

W[1]-hard param. t + D [Theorem 3]

In particular, Theorem 5 yields that the approach we used to establish the tractability (with parameter D) of k-

Clustering for p = 1 will not work for p > 1.
We summarize our and previously known algorithmic and hardness results for k-Clustering and Cluster Selection

with different distances in Table 1. Observe that Theorem 10 works also in the setting where possible cluster centers are 
restricted to be from a set given in the input, and so do our algorithmic Theorems 1 and 4 since Cluster Selection is 
trivially solvable in polynomial time in this setting.

Now we discuss the choice of the parameter D . It might be noted that the regime where the cost of clustering D is small 
compared to the number of points n, is quite special. Indeed, if the cost of clustering is at most D , then there are but a few 
points that are not equal to the respective cluster centers. Thus, the problem we study has the spirit of an editing problem: 
check whether a given instance is close to a “structured” one, where in our case a “structured” instance has at most k
distinct points, and closeness is measured via the sum of Lp-distances. Editing problems are extensively studied in the 
parameterized algorithms literature, ranging from the vast area of graph modification (see e.g. a recent survey by Crespelle 
et al. [28]) to studies very close to ours, like the Consensus Patterns algorithm by Marx [26], and the study of Binary 
r-Means by Fomin et al. [24] that is essentially a special case of our k-Clustering problem. And still, even in this highly 
structured regime, our results show a very intricate picture: for instance, for k-Clustering parameterized just by D , we 
provide a highly non-trivial FPT algorithm in the case 0 < p ≤ 1. While on the other hand, conditionally, the same scheme 
could not lead to an analogous algorithm in the case p = 2, and there could not be any FPT algorithm at all in the cases 
p = 0 and p = ∞. Finally we believe that studying k-Clustering with respect to the parameter D is an essential question 
provided the notorious hardness of the problem. Recall that for the combination of the two other natural parameters, the 
dimension d and the number of clusters k, only a O (ndk+1) algorithm of Inaba et al. is known [22], and the hardness result 
by Cohen-Addad et al. in [23] serves as a strong indication that a better algorithm might not exist.

Observe that we always consider integer-valued instances. We believe this is the most natural model for studying com-
plexity of k-Clustering with respect to the parameter D . Here it is important to note that considering D as a parameter 
only makes sense if the input values are suitably discretized. Imagine input vectors could have arbitrary real-valued (or 
rational-valued) entries, then for a given instance it is always possible to scale the values down by the same factor such 
that the cost of an optimal clustering is arbitrarily small, but the structure of the instance is completely preserved. Thus the 
restriction to integer values in our study is a natural discretization of the problem. It allows the parameter D to bear deep 
structural significance, as our results demonstrate.

The remaining part of this paper is organized as follows. Section 2 contains preliminaries. In Section 3 we prove Theo-
rem 10 which provides us with FPT Turing reduction from k-Clustering to Cluster Selection. Theorem 10 appears to be 
a handy tool to establish tractability of k-Clustering. In Section 4 we collect the results on clustering with Lp -norm for 
p ∈ (0, 1]. In particular, in Subsection 4.1, we prove Theorem 1, the main algorithmic result of this work, stating that when 
p ∈ (0, 1], k-Clustering and Cluster Selection admit FPT algorithms with parameter D . In Subsection 4.2 we complement 
the algorithmic upper bounds with lower bounds by proving that Cluster Selection is W[1]-hard when p = 1 and param-
eter is t + d (Theorem 20). In Section 5, we consider the case p = 0 and prove Theorem 2 establishing W[1]-hardness of
k-Clustering and Cluster Selection. Section 6 is devoted to the case p = ∞. Here we establish two hardness results about
k-Clustering: W[1]-hardness when parameterized by D and NP-hardness in the case k = 2. In Section 7, we look at the 
case p ∈ (1, ∞), with the particular emphasis on the most commonly used case p = 2. We show that when d + D is the 
parameter, then Cluster Selection and k-Clustering in the L2 distance are FPT. We also show that Cluster Selection is 
W[1]-hard when parameterized by t + D for all p ∈ (1, ∞). We conclude with open problems in Section 8.

2. Preliminaries and notation

Cluster notation. By a cluster we always mean a multiset of vectors in Zd . For distance dist, the cost of a given cluster 
C is the total distance from all vectors in the cluster to the optimally selected cluster centroid, minc∈Rd

∑
x∈C dist(x, c). 

An optimal cluster centroid for a given cluster C is any c ∈ Rd minimizing 
∑

x∈C dist(x, c). For most of the considered 
distances, we argue that an optimal cluster centroid could always be chosen among a specific family of vectors (e.g. integral). 
Whenever we show this, we only consider optimal cluster centroids of the stated form afterwards.
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Complexity. A parameterized problem is a language Q ⊆ �∗ × N where �∗ is the set of strings over a finite alphabet �. 
Respectively, an input of Q is a pair (I, k) where I ⊆ �∗ and k ∈ N; k is the parameter of the problem. A parameterized 
problem Q is fixed-parameter tractable (FPT) if it can be decided whether (I, k) ∈ Q in time f (k) · |I|O(1) for some function f
that depends of the parameter k only. Respectively, the parameterized complexity class FPT is composed by fixed-parameter 
tractable problems. The W-hierarchy is a collection of computational complexity classes: we omit the technical definitions 
here. The following relation is known amongst the classes in the W-hierarchy: FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P ]. It 
is widely believed that FPT �= W[1], and hence if a problem is hard for the class W[i] (for any i ≥ 1) then it is considered to 
be fixed-parameter intractable. We refer to books [29,30] for the detailed introduction to parameterized complexity.

We also provide conditional lower bounds by making use of the following complexity hypothesis formulated by Impagli-
azzo, Paturi, and Zane [31].

Exponential Time Hypothesis (ETH): There is a positive real s such that 3-CNF-SAT with n variables and m clauses cannot 
be solved in time 2sn(n + m)O(1) .

Graphs. In our W[1]-hardness proofs, we heavily employ graph-theoretical notation. Whenever we work with a graph G , 
we always fix some ordering on the vertices πV : V (G) → {1, . . . , |V (G)|} and on the edges πE : E(G) → {1, . . . , |E(G)|}. We 
drop πV and πE to simplify notation, so when we consider a vertex v ∈ V (G) or an edge e ∈ E(G), v and e also denote 
integers—numbers of v and e according to the orderings πV and πE correspondingly.

Real computations. Since we deal with the problem concerning real-valued matrices, we express the running time of 
algorithms in terms of number of operations over the reals. This is natural since to compute L p -distances we have to deal 
with numbers of form xp where x is an integer and p is any real number. However, in special cases the bounds hold even 
for more restrictive models, e.g. when p = 1 or p = 2 the algorithms operate only on integers of polynomially bounded 
length.

3. From k-CLUSTERING to CLUSTER SELECTION

In this section we present a general scheme for obtaining an FPT algorithm parameterized by D , which is later applied 
to various distances.

First, we formalize the following intuition: there is no reason to assign equal vectors to different clusters.

Definition 6 (Initial cluster and regular partition). For a multiset of vectors X , an inclusion-wise maximal multiset I ⊂ X such 
that all vectors in I are equal is called an initial cluster.

We say that a clustering {C1, . . . , Ck} of X is regular if for every initial cluster I there is a i ∈ {1, . . . , k} such that I ⊂ Ci .

Now we prove that it suffices to look only for regular solutions.

Proposition 7. Let (X, k, D) be a yes-instance to k-Clustering. Then there exists a solution of (X, k, D) which is a regular clustering.

Proof. Let us assume that the instance (X, k, D) has a solution. There are k clusters {Ci}k
i=1 and k vectors {ci}k

i=1 in Rd

such that 
∑k

i=1
∑

x∈Ci
dist(x, ci) ≤ D . Note that for every x ∈ C j , dist(x, c j) ≥ min1≤i≤k dist(x, ci). So if we consider a new 

clustering {C ′
1, . . . , C

′
k} with the same centroids, where C ′

j are all vectors from X for which c j is the closest centroid, the 
total distance does not increase. If we also break ties in favor of the lower index, then for any initial cluster I the same 
centroid ci will be the closest, and all vectors from I will end up in C ′

i , so {C ′
1, . . . , C

′
k} is a regular clustering. �

From now on, we consider only regular solutions.

Definition 8 (Simple and composite clusters). We say that a cluster C is simple if it is an initial cluster. Otherwise, the cluster 
is composite.

Next we state a property of k-Clustering with a particular distance, which is required for the algorithm. Intuitively, each 
unique vector adds at least some constant to the cluster cost.

Definition 9 (α-property). We say that a distance has the α-property for some α > 0 if for any s the cost of any composite 
cluster which consists of s initial clusters is at least α(s − 1).

In the subsequent sections we show that the α-property holds for all the distance measures for which we present 
algorithms. Namely, the Lp -distance has the α-property with a certain constant α, for each p ∈ [0, 1] ∪ {2, ∞}. Analogously 
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Fig. 2. An illustration of the algorithm in Theorem 10. We start with a particular random coloring and a particular partition of colors P = {P1, P2}, where 
P1 = { , } and P2 = { , , }. We make two calls to Cluster Selection with respect to P1 and P2 and construct the resulting clustering. In the example, 
all input vectors are distinct.

to the case p = 2, one can show that it holds for all other values of p between 1 and ∞ as well, although we do not need 
this fact.

The Cluster Selection problem defined in the introduction is a key subroutine in our algorithm. In some cases the 
problem is solvable trivially, but it presents the main challenge for our main algorithmic result with the L1 distance. The 
intuition to the weight function in the definition of Cluster Selection is that it represents sizes of initial clusters, that is, 
how many equal vectors are there.

We also need a procedure to enumerate all values of the cost of each possible cluster, with respect to an optimally 
selected cluster centroid, that are at most D . It may not be straightforward since not all distances in our consideration 
are integer. So for the purpose of stating Theorem 10 for general metrics, we assume that the set of all possible optimal 
cluster costs which are less than D is also given in the input. For the L p -distances we consider, in the respective algorithmic 
theorems we show how to provide this set without raising any additional assumptions or increasing the running time. Now 
we are ready to state the result formally.

Theorem 10. Assume that the α-property holds, Cluster Selection is solvable in time �(m, d, t, D), where � is a non-decreasing 
function of its arguments, and we are given the set D of all possible optimal cluster costs which are at most D. Then k-Clustering is 
solvable in time

2O(D log D)(nd)O(1)|D|�(n,d,2D/α, D).

Proof. By the α-property, in any solution there are at most D/α composite clusters, since each contains at least two initial 
clusters. Moreover, there are at most 2D/α initial clusters in all composite clusters.

Thus by Proposition 7, solving k-Clustering is equivalent to selecting at most T := �2D/α� initial clusters and grouping 
them into composite clusters such that the total cost of these clusters is at most D . We design an algorithm which, taking 
as a subroutine an algorithm for Cluster Selection, solves k-Clustering. The algorithm is sketched in Fig. 3, an example is 
shown in Fig. 2.

To perform the selection and grouping, our algorithm uses the color coding technique of Alon, Yuster, and Zwick from 
[27]. Consider the input as a family of initial clusters I . We color initial clusters from I independently and uniformly 
at random by T colors 1, 2, . . . , T . Consider any solution, and the particular set of at most T initial clusters which are 
included into composite clusters in this solution. These initial clusters are colored by distinct colors with probability at least 
T !
T T ≥ e−T . Now we construct an algorithm for finding a colorful solution.

We consider all possible ways to split colors between clusters (some colors may be unused). Hence we consider all pos-
sible families P = {P1, . . . , Ph} of pairwise disjoint non-empty subsets of {c ∈ {1, . . . , T } : there exists J ∈ I colored by c}. 
Each family P corresponds to a partition of the set of colors {1, . . . , T } if we add one fictitious subset for colors which are 
not used in the composite clusters. The total number of partitions does not exceed T T = 2O(D log D) .
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k-Clustering (X , k, D , α, D)

Input : A multiset X ⊂ Zd , a positive integer k, real nonnegative values D and α, a set D, an algorithm A for Cluster Selection

Output : Yes or No

1 T ← �2D/α�
2 I ← initial clusters of X

3 for �eT � iterations do
4 Fix a random coloring c of I with colors {1, . . . , T }
5 for valid partitions P of {1, . . . , T } do
6 for i = 1 to |P| do
7 Pi = {i1, . . . , it }
8 for j = 1 to t do
9 X j ← ∅

10 for J ∈ I : c( J ) = i j do
11 x ← a point from J
12 X j ← X j ∪ {x}
13 w(x) ← | J |
14 di ← D + 1
15 foreach d ∈ D do
16 if A(X1 , . . . , Xt , w, d) then
17 di ← d
18 BREAK

19 if
∑t

i=1 di ≤ D then
20 Yes, STOP
21 No, STOP

Fig. 3. k-Clustering algorithm from Theorem 10.

When partition P is fixed, we form clusters by solving instances of Cluster Selection: For each i ∈ {1, . . . , h}, we take 
initial clusters colored by elements of Pi , bundle together those with the same color, and pass the resulting family to
Cluster Selection. First note that there cannot be P ∈ P of size at most one, since then Cluster Selection has to make a 
simple cluster while we assume that all clusters obtained from P are composite. Second, the total number of clusters has 
to be k, the number of clusters is |I| − ∑

P∈P |P | + |P|. For each P we check that both conditions hold, and if not, we 
discard the choice of P and move to the next one, before calling the Cluster Selection subroutine.

Next, we formalize how we call the Cluster Selection subroutine. We fix the set of colors Pi = {c1, . . . , ct}, then take the 
sets I j = { J ∈ I : J is colored by c j} for j ∈ {1, . . . , t}. We turn each set of initial clusters I j into a set of weighted vectors 
X j naturally: For each J ∈ I j , we put one vector x ∈ J into X j , and w(x) := | J |. The family of sets of vectors X1, . . . , Xt
and the weight function w are the input for Cluster Selection. Then we search for the minimum cluster cost bound di ≤ D
from D, for which the instance (X1, . . . , Xt , di) of Cluster Selection is a yes-instance, running each time the algorithm for
Cluster Selection.

If for some i setting di to D leads to a no-instance, or if 
∑h

i=1 di > D , then we discard the choice of the partition P and 
move to the next one. Otherwise, we report that k-Clustering has a solution and stop. Next, we prove that in this case the 
solution indeed exists.

We reconstruct the solution to k-Clustering as follows: For each i ∈ {1, . . . , h} the corresponding to Pi = {c1, . . . , ct}
instance of Cluster Selection has a solution {x1, . . . , xt}. For each j ∈ {1, . . . , t}, consider the corresponding initial cluster 
J j consisting of w(x j) vectors equal to x j . For each i ∈ {1, . . . , h} we obtain a composite cluster ∪t

j=1 J j , all other clusters 
are simple. So the total cost is 

∑h
i=1 di , which is at most D . Thus, if the algorithm finds a solution, then (X, d, D) is a 

yes-instance.
In the opposite direction. If there is a solution to k-Clustering, then there is a regular solution, and with probability at 

least e−T initial clusters which are parts of composite clusters in this solution are colored by distinct colors. Then, there is a 
partition P = {P1, . . . , Ph} which corresponds to this solution. This partition is obtained as follows: put into P1 colors from 
the first composite cluster, into P2 from the second and so on. At some point our algorithm checks the partition P , and as 
it finds the optimal cost value for each cluster, then it is at most the cost of the corresponding cluster of the solution from 
which we started.

To analyze the running time, we consider 2O(D log D) partitions P , for each P we |P| = O(D) times search for optimal 
di . And for each of |D| possible values1 of di we make one call to the Cluster Selection algorithm, which takes time at 
most �(n, d, T , D).

To amplify the error probability to be at most 1/e, we do N = �eT � iterations of the algorithm, each time with a new 
random coloring. As each iteration succeeds with probability at least e−T , the probability of not finding a colorful solution 
after N iterations is at most (1 − e−T )eT ≤ e−1 < 1. So the total running time is 2O(D log D) · (nd)O(1)|D|�(n, d, 2D/α, D).

1 We could also binary search for the optimal di ∈ D instead, thus replacing |D| by log |D| in the running time. However, for all choices of D we 
consider this does not make a difference.
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(a) cost(z) = |z − 2| + |z − 3| + |z − 6| + |z − 8| (b) cost(z) = |z − 2|1/2 + |z − 3|1/2 + |z − 6|1/2 + |z − 8|1/2

Fig. 4. Graphs of cluster cost over different values of z: dist1 in the left plot, dist1/2 in the right plot. The set of coordinate values is given as y1 = 2, y2 = 3, 
y3 = 6, y4 = 8.

The algorithm could be derandomized by the standard derandomization technique using perfect hash families [27,32]. 
So k-Clustering is solvable in the same deterministic time. �
4. Algorithms and complexity for distances with p ∈ (0, 1]

The main motivation for the results in this section is the study of k-Clustering with the L1 distance, the case widely 
known as k-Medians. However, our main algorithmic result also extends to distances of order p ∈ (0, 1) since in some sense 
they behave similarly to the L1 distance.

4.1. FPT algorithm when parameterized by D

In this subsection, we prove Theorem 1: when p ∈ (0, 1], k-Clustering admits an FPT algorithm with parameter D . First 
we state basic geometrical observations for cases p = 1 and p ∈ (0, 1). Then we propose a general algorithm for Cluster 
Selection which relies only on these properties. Finally, we show how Theorem 10 could be applied.

The next two claims deal with the structure of optimal cluster centroids. We state and prove them in the case of 
weighted vectors where each vector has a positive integer weight given by a weight function w . The unweighted case is 
just a special case when the weight of each vector is one.

First, we show that coordinates of cluster centroids could always be selected among the values present in the input, 
which helps greatly in enumerating cluster centroids that may be optimal.

Claim 11. Assume p ∈ (0, 1], let C = {x1, . . . , xt} be a cluster and w : {x1, · · · , xt} → Z+ be a weight function. There is an optimal 
(subject to the weighted distance w(xi) · distp(xi, c)) centroid c of C such that for each i ∈ {1, . . . , d}, the i-th coordinate c[i] of the 
centroid is from the values present in the input in this coordinate, that is c[i] ∈ {x1[i], . . . , xt[i]}. Moreover, for p = 1 we may assume 
that the optimal value is a weighted median of the values present in the i-th coordinate.

Proof. For cluster C , consider the corresponding multiset of unweighted vectors C ′ = {x1, . . . , xt}, where each vector x ∈ C
is repeated w(x) times. We define y j = x j[i] for j ∈ {1, . . . , t}. Assume that y1 ≤ y2 ≤ · · · ≤ yt . Let us consider an optimal 
cluster centroid c for C and denote z = c[i]. Fig. 4 shows how the cluster cost behaves with respect to z on a concrete set 
of values {yi} for p = 1 and p = 1/2.

For the formal proof, we start with the case p = 1. The total cost of C contributed by the i-the coordinate is

|y1 − z| + |y2 − z| + · · · + |yt − z|.
If z ∈ (yi, yi+1) for i ∈ {1, . . . , t − 1}, then the derivative with respect to z is

((z − y1) + · · · + (z − yi) + (yi+1 − z) + · · · + (yt − z))′ = i − (t − i).

Analogously, when z = yi for i ∈ {1, . . . , t}, the derivative is i − 1 − (t − i). When z < y1 the derivative is −t , and when 
z > yt the derivative is t . So if t is odd, then the derivative is zero at y�t/2� , strictly negative before and strictly positive 
after, so y�t/2� , which is the only median, is the optimal value for z. If t is even, then the derivative is zero on [yt/2, yt/2+1], 
strictly negative before and strictly positive after. So any value from [yt/2, yt/2+1] is optimal, and we may assume that it is 
one of the two medians yt/2, yt/2+1.
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Now to the case p ∈ (0, 1), the contribution of the coordinate i is

|y1 − z|p + |y2 − z|p + · · · + |yt − z|p .

When z is between yi and yi+1, then the derivative of the above with respect to z is equal to

p · ((z − y1)
p−1 + · · · + (z − yi)

p−1 − (yi+1 − z)p−1 − · · · − (yt − z)p−1) .

It is monotone on (yi, yi+1): when z increases, the sum decreases, as terms of the form (z − y j)
p−1 decrease and terms of 

the form (y j − z)p−1 increase, because p − 1 < 0. Thus, the optimal value on this interval is achieved at one of its ends. 
Doing the same for all intervals, we conclude that the optimal value for z must be in {y1, . . . , yt}. �

In particular, by Claim 11 we may assume that the coordinates of optimal cluster centroids are integers. Then, the α-
property holds with α = 1 since at most one of the initial clusters could have distance zero to the cluster centroid, and all 
others have distance at least one since the cluster centroid is integral. Namely, let x be a vector in the cluster, and c be the 
cluster centroid, if x �= c, then there is a coordinate j where x and c differ, and since they are both integral, |x[ j] − c[ j]| ≥ 1, 
and

distp(x, c) =
d∑

i=1

|x[i] − c[i]|p ≥ |x[ j] − c[ j]|p ≥ 1p = 1.

In what follows, the expression half of vectors by weight means that the total weight of the corresponding set of vectors 
is at least half of the total weight of C .

Claim 12. If at least half of the vectors by weight in the cluster C have the same value z in some coordinate i, then the optimal cluster 
centroid is also equal to z in this coordinate.

Proof. Let S be the weight-respecting multiset of values which vectors from C have in the i-th coordinate: S = {x[i] : x ∈
C, w(x) times}. Consider the difference between selecting z and some other value z′ as the i-th coordinate of the centroid:∑

y∈S

|y − z|p −
∑
y∈S

|y − z′|p ≤
∑

y∈S,y �=z

(|y − z|p − |y − z′|p − |z − z′|p).

The inequality holds since at least half of the elements of S are equal to z, and so for any value y �= z there is a term 
|z − z′|p in 

∑
y∈S |y − z′|p corresponding to one of the values from S equal to z. The last sum is non-positive because in 

every term

|y − z|p ≤ |y − z′|p + |z − z′|p,

as p ∈ (0, 1]. This concludes the proof. �
In order to apply Theorem 10, we need an FPT algorithm for Cluster Selection. Before obtaining it, we state some 

properties of hypergraphs, which we need for the algorithm. Intuitively, our algorithm reduces selecting a centroid in a
k-Clustering instance to finding a subhypergraph with certain properties.

A hypergraph G is a set of vertices V (G) and a collection of hyperedges E(G), each hyperedge is a subset of V (G). If G
and H are hypergraphs, we say that H appears at V ′ ⊂ V (G) as a subhypergraph if there is a bijection π : V (H) → V ′ with 
a property that for any E ∈ E(H) there is E ′ ∈ E(G) such that π(E) = E ′ ∩ V ′ . Here we consider that the action of π is 
extended to subsets of V (H) in a natural way, π(E) = {π(v)}v∈E for E ⊂ V (H).

A fractional edge cover of a hypergraph H is an assignment ψ : E(H) → [0, 1] such that for every v ∈ V (H), ∑
E∈E(H):v∈E ψ(E) ≥ 1. The fractional cover number ρ∗(H) is the minimum of 

∑
E∈E(H) ψ(E) taken over all fractional edge 

covers ψ .
We need the following result of Marx [26] about finding occurrences of one hypergraph in another.

Lemma 13 ([26]). Let H be a hypergraph with fractional cover number ρ∗(H), and let G be a hypergraph where each hyperedge has 
size at most 	. There is an algorithm that enumerates in time |V (H)|O(|V (H)|) · 	|V (H)|ρ∗(H)+1 · |E(G)|ρ∗(H)+1 · |V (G)|2 every subset 
V ′ ⊂ V (G) where H appears in G as a subhypergraph.

Also, the following version of the Chernoff Bound will be of use.

Proposition 14 ([33]). Let X1 , X2 , . . . , Xn be independent 0-1 random variables. Denote X = ∑n
i=1 Xi and μ = E[X]. Then for 0 <

β ≤ 1,
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D = 2

v 1 2 3 4 5
x1 0 2 1 3 2
x2 0 1 1 3 1
x3 1 2 1 3 1
x4 0 2 2 3 2
x5 0 2 2 3 1
c 0 2 2 3 2

1

2

3

45

x2

x3
x5

x4

Fig. 5. An illustration of the hypergraph construction in Claim 16. On the left, the vector x1 and other input vectors x2, . . . , x5 are given. On the right, 
the corresponding hypergraph G . The solution is marked in red on both sides: on the left, the resulting cluster {x1, x4, x5} of cost 2; on the right, the 
corresponding to {x1, x4, x5} subhypergraph H . Note that in H the hyperedge x5 is restricted to the only vertex 3, so its size is one. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

P [X ≤ (1 − β)μ] ≤ exp(−β2μ/2),

P [X ≥ (1 + β)μ] ≤ exp(−β2μ/3).

We are ready to proceed with the proof that Cluster Selection with p ∈ (0, 1] is FPT when parameterized by D .

Theorem 15. For every p ∈ (0, 1], Cluster Selection with distance distp is solvable in time 2O(D log D)(md)O(1) .

Proof. First we check if any of the given vectors could be the centroid of the resulting composite cluster. When the centroid 
is fixed, we find the optimal solution in polynomial time by just selecting the cheapest vector with respect to this centroid 
from each set. If at some point we find a suitable centroid, then we return that the solution exists. If not, we may assume 
that the centroid is not equal to any of the given vectors. As a consequence, any vector x selected into the solution cluster 
contributes at least w(x) to the total distance, since the centroid must be integral by Claim 11. So we may now consider 
only vectors of weight at most D and, moreover, the total weight of the resulting cluster is at most D .

Consider a resulting cluster C with the centroid c. There is some x1 in C from X1, and distp(x1, c) ≤ D . So if we try all 
possible x1 from X1 (there are at most m of them), any feasible centroid is at distance at most D from at least one of them. 
Since x1 and c are integral, they could be different in at most D coordinates, as distp(x1, c) = ∑d

i=1 |x1[i] − c[i]|p ≤ D .
We try all possible x1 ∈ X1. After x1 is fixed, we enumerate all subsets P of coordinates {1, . . . , d} where x1 and c

could differ, we show how to do it efficiently afterwards. When the subset of coordinates P is fixed, we consider all 
possible centroids, which are integral, equal to x1 in all coordinates except P , and differ from x1 by at most D1/p in each 
of coordinates from P . If |x1[i∗] − c[i∗]| > D1/p for some coordinate i∗ , then distp(x1, c) = ∑d

i=1 |x1[i] − c[i]|p ≥ |x1[i∗] −
c[i∗]|p > D , so c can not be a centroid. With restrictions stated above, there are at most 2O(D log D) possible centroids.

It remains to show that we could enumerate all possible coordinate subsets efficiently. We reduce this task to the task 
of finding a specific subhypergraph and then apply Lemma 13.

Claim 16. There are 2O(D log D) coordinate subsets where x1 and an optimal cluster centroid c could differ. There exists an algorithm 
which enumerates all of them in time 2O(D log D)(md)O(1) .

Proof. Let G be a hypergraph with V (G) = {1, . . . , d}, one vertex for each coordinate, and for each vector x in ∪t
j=1 X j we 

take w(x) multiple hyperedges Ex which contains exactly the coordinates where x and x1 differ. We add an edge only if 
there are at most D such coordinates, otherwise x can not be in the same cluster as x1. So hyperedges in G are of size at 
most D . Since we consider only vectors of weight at most D , |E(G)| ≤ Dm.

For a solution, let x j be the vector selected from the corresponding X j , for j ∈ {1, . . . , t}, C = {x1, . . . , xt} be the solution 
cluster and c be the centroid. All vectors in C are identical in all coordinates except at most D , since if there are different 
values in at least D + 1 coordinates, the cost is at least D + 1. Denote this subset of coordinates as Q , c could also differ 
from x1 only at Q . Denote the subset of coordinates where c differs from x1 as P , P ⊂ Q and so |P | ≤ D . The solution 
(C, c) induces a subhypergraph H of G in the following way. Leave only hyperedges corresponding to the vectors in C , and 
restrict them to vertices in P . There are at most D vertices and at most D hyperedges in H , since the total weight is at 
most D . An example of the correspondence between input vectors and hypergraphs is given in Fig. 5.

The next claim shows that the fractional cover number of H is bounded by a constant.

Claim 17. Each vertex in H is covered by at least half of the hyperedges of H, and ρ∗(H) ≤ 2.
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Cluster Selection (X1, . . . , Xt , w , D)
Input : Sets of vectors X1, . . . , Xt , a weight function w , a nonnegative integer D
Output : Yes or No

1 for vector c in the input do
2 if

∑t
i=1 minxi∈Xi w(xi) distp(xi , c) ≤ D then

3 Yes, STOP
4 for x1 ∈ X1 do
5 G ← hypergraph with V (G) = {1, . . . , d}, E(G) = {positions where x1 and x differ : x ∈ ∪t

j=1 X j , w(x) times}
6 for hypergraph H with at most D vertices and at most 160 ln D hyperedges do
7 if each vertex of H is covered by at least 1/4 of its hyperedges then
8 for place P where H appears in G as subhypergraph do
9 for integer vector c which differs from x1 only at P by at most D1/p do

10 if
∑t

i=1 minxi∈Xi w(xi) distp(xi , c) ≤ D then
11 Yes, STOP
12 No, STOP

Fig. 6. Cluster Selection algorithm from Theorem 15.

Proof. Consider a vertex p ∈ P , and assume that less than half of the hyperedges cover p. It means that in the p-th 
coordinate the centroid c differs from x1, but less than half of the vectors in C by weight differ from x1 in this coordinate. 
This contradicts Claim 12.

So each vertex is covered by at least half of the hyperedges, and setting ψ ≡ 2
|E(H)| leads to ρ∗(H) ≤ 2. �

In order to enumerate all possible subsets of coordinates P , we try all hypergraphs H with at most D vertices and at 
most D hyperedges, and if each vertex is covered by at least half of the hyperedges, we find all places where H appears 
in G by Lemma 13. The last step is done in 2O(D log D) · (md)O(1) time. However, the number of possible H could be up to 
2�(D2) . The following claim, which is analogous to Proposition 6.3 in [26], shows that we could consider only hypergraphs 
with a logarithmic number of hyperedges.

Claim 18. If D ≥ 2, it is possible to delete all except at most 160 ln D hyperedges from H so that in the resulting hypergraph H∗ each 
vertex is covered by at least 1/4 of the hyperedges, and ρ∗(H∗) ≤ 4.

Proof. Denote s = |E(H)|, construct a new hypergraph H∗ on the same vertex set V (H) by independently selecting each 
hyperedge of H with probability (120 ln D)/s. Applying Proposition 14 with β = 1/3, probability of selecting more than 
160 ln D hyperedges is at most exp((−120 ln D)/27) < 1/D2. By Claim 17, each vertex v of H is covered by at least s/2
hyperedges, and the expected number of hyperedges covering v in H∗ is at least 60 ln D . By Proposition 14 with β = 1/3, 
the probability that v is covered by less than 40 ln D hyperedges in H∗ is at most exp(−60 ln D/18) ≤ 1/D3. By the union 
bound, with probability at least 1 − 1/D2 − D · 1/D3 > 0 we select at most 160 ln D hyperedges and each vertex is covered 
by at least 40 ln D hyperedges. So the claim holds, and ρ∗(H∗) ≤ 4 by setting ψ ≡ 4

|E(H∗)| . �
Thus, if there is a subhypergraph H in G corresponding to a solution, then there is also a subhypergraph H∗ in G

appearing at the same subset of V (G) with at most 160 ln D hyperedges and where each vertex is covered by at least 1/4
of the hyperedges. Since we only need to enumerate possible coordinate subsets, in our algorithm we try all hypergraphs 
of this form and apply Lemma 13 for each of them. Since there are at most 2O(D log D) hypergraphs with at most 160 ln D
hyperedges and since the fractional cover number is still bounded by a constant, the total running time is 2O(D log D) ·
(md)O(1) , as desired. �

With Claim 16 proven, the proof of the theorem is complete. The pseudocode given in Fig. 6 summarizes the main steps 
of the algorithm. �

Combining Theorem 10 and Theorem 15, we obtain an FPT algorithm for k-Clustering. This proves Theorem 1, which 
we recall here.

Theorem 1. k-Clustering with distance distp is solvable in time 2O(D log D)(nd)O(1) for every p ∈ (0, 1].

Proof. We have an algorithm for Cluster Selection whose running time is specified by Theorem 15. By Claim 11, the α-
property holds. The only missing part is to describe the way of producing the set D of all possible cluster costs which are 
at most D .

In the case p = 1 all distances are integral since optimal centroids have integral coordinates by Claim 11, and we can 
take D = {0, . . . , D}.
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X1,2
1 2 0
1 3 0

X2,3 0 2 4
X1,3 1 0 4

Y1,2
1 2 5
1 3 5

Y2,3 5 2 4
Y1,3 1 5 4

x12 1 2 0
x24 0 2 4
x14 1 0 4
y12 1 2 5
y24 5 2 4
y14 1 5 4
c 1 2 4

Fig. 7. An example illustrating the reduction in Theorem 20: an input graph G with vertices colored in three colors, the sets of vectors produced by the 
reduction, and the resulting optimal cluster, corresponding to the clique on {1, 2, 4}.

For the general case, let B = {ap : a ∈ {1, . . . , �D1/p�}}. Consider a cluster C = {x1, . . . , xt} and the corresponding optimal 
cluster centroid c. For any x j ∈ C , distp(x j, c) = ∑d

i=1 |x j[i] − c[i]|p is a combination of elements of B with nonnegative 
integer coefficients. This is because x j and c are integral and the cluster cost is at most D , hence |x j[i] − c[i]| ≤ D1/p

for each i ∈ {1, . . . , d}. Since weights are also integral, the whole cluster cost is a combination of distances between cluster 
vectors and the centroid with nonnegative integer coefficients, and so also a combination of elements of B with nonnegative 
integer coefficients. This means that we can take

D =
{∑

b∈B
ab · b : ab ∈ Z,ab ≥ 0,

∑
b∈B

ab ≤ D

}
,

the sum of coefficients ab is at most D since all elements of B are at least 1. The size of D is at most |B|D = 2O(D log D) . �
Another widely studied version of k-Clustering is where centroids ci could be selected only among the set of given 

vectors. Naturally, Theorem 1 also holds in this setting since Cluster Selection is then trivially solvable in polynomial time. 
As was observed in the proof of Theorem 15, if the cluster center is fixed, we can pick the cheapest vector from each of the 
sets given to a Cluster Selection algorithm, and there are now only polynomially many candidates for the cluster center.

Note that Claim 11 and Claim 12 do not hold in the case 1 < p < ∞, and our algorithm relies heavily on the structure 
provided by them. Therefore, it does not seem that the algorithm could be extended to the case 1 < p < ∞. Moreover, in 
Theorem 5 we formally prove that Cluster Selection parameterized by D is W[1]-hard for 1 < p < ∞.

In the cases p = 0 and p = ∞ there are different obstacles for the algorithm above. In Cluster Selection for p = 0, even 
knowing the center that differs in at most k positions from an optimal one, is not enough, as any distinct value in the 
coordinate would incur the same cost of one. For p = ∞, it simply does not hold that the number of coordinates where 
points and the center can differ is small: any number of coordinates might differ as long as the absolute difference is at 
most D . To formalize this intuition we later prove Theorem 2 and Theorem 3, showing that k-Clustering parameterized by 
D is W[1]-hard for p = 0 and p = ∞, respectively.

4.2. W[1]-hardness of Cluster Selection parameterized by t + d for p = 1

In this subsection, we restrict our attention to the p = 1 case. What happens when D is not bounded, but the dimension 
d and the number of clusters k are parameters? There is a trivial XP-algorithm in time nO(kd) , as by Claim 11 it suffices to 
try all possible combinations of the values present in coordinates as possible cluster centroids. There are at most n distinct 
values in each coordinate, so at most nd candidates for a cluster centroid. After the cluster centroids are fixed, each vector 
goes to the cluster with the closest centroid. The next observation is the result of this discussion.

Observation 19. k-Clustering for the distance dist1 is solvable in time nO(kd) .

We do not know of a lower bound for k-Clustering complementing Observation 19. However, we are able to show the 
hardness of Cluster Selection with respect to the dimension.

Theorem 20. Cluster Selection with distance dist1 is W[1]-hard when parameterized by t + d.

Proof. We construct a reduction from Multicolored Clique with the input G and k. We set d to k, for each pair of colors 
1 ≤ i < j ≤ k and each e = {u, v} between a vertex u of color i and a vertex v of color j we add a vector xe to the set Xi, j , 
such that xe[i] = u, xe[ j] = v and all other coordinates are set to zero, and a vector ye to the set Yi, j which is the same as 
xe , only coordinates other that i and j are set to |V (G)| + 1. We will refer to 0 and |V (G)| + 1 as boundary values. The sets 
Xi, j and Yi, j are the input to Cluster Selection, so t is 2

(k
2

)
, and we set D to k(|V (G)| + 1)

(k−1
2

)
. Intuitively, the set Xi, j

corresponds to the choice of the clique edge between i-th and j-th color, and Yi, j mirrors it. All vectors have weight one. 
An example is given in Fig. 7.

Note that in any feasible cluster, each coordinate i has exactly 2(k − 1) values in [1, |V (G)|], one from each of the sets 
Xi, j and Yi, j for j �= i. Out of all 2(

(k) − k + 1) = 2
(k−1) other values, exactly half are zero and half are |V (G)| + 1. So the 
2 2
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median is always in [1, |V (G)|], and the boundary values in each column contribute exactly (|V (G)| + 1)
(k−1

2

)
to the total 

distance.
Assume there is a colorful k-clique in G , with vertices v1, v2, . . . , vk . We form the resulting cluster by choosing the vector 

corresponding to the clique’s edge between its i-th and j-th vertices from Xi, j , and also from Yi, j , for all 1 ≤ i < j ≤ k. For 
this cluster, in the i-th coordinate we have all non-boundary values equal to vi . So the median is also vi , and the total 
distance is D , since non-boundary values do not contribute anything.

In the other direction, if we are able to select a cluster of cost exactly D , then all non-boundary values in each coordinate 
must be equal, denote this common value in the i-th coordinate as vi . We claim that vertices v1, v2, . . . , vk form a colorful 
clique in G . Indeed, since we have 2(k − 1) times vi in the i-th column, then we have (k − 1) of them from the sets Xi, j , 
one from each, and in the j-th column the only non-boundary value is v j . So vi must have an edge to each v j for j �= i. By 
construction, vertices in the i-th coordinate are of color i. �
5. The L0 distance

In this section, we consider the case p = 0. It is a natural measure of difference to consider since observation parameters 
are often incomparable, and we very well may be interested in counting only the number of different entries. From another 
point of view, the L0 distance gives the k-Clustering problem a more combinatorial flavor, since the input vectors could 
be viewed as strings and we are interested about how close they are according to the Hamming distance. However, in 
comparison to a number of problems on strings, the size of the alphabet is unbounded.

First, note that there is a simple rule for finding the optimal cluster centroid for a given cluster.

Observation 21. For a given cluster C , the coordinates of the optimal cluster centroid c could be set as

c[i] = the most frequent element of the multiset {x[i]}x∈C , 1 ≤ i ≤ d,

breaking ties in favor of the lowest values.

By Observation 21, we may assume that optimal cluster centroids could never have values not present in the input, and 
in particular that they are integral.

We prove W[1]-hardness of k-Clustering with the L0 distance by showing a reduction from Clique. The reduction also 
shows hardness of Cluster Selection.

Note that when d is fixed, we could apply Theorem 10 to obtain an FPT algorithm: Cluster Selection solves trivially by 
trying every present value in each coordinate as a value for the centroid, there are only nd variants. The α-property holds 
for L0 distance with α = 1 since at most one initial cluster could coincide with the cluster centroid, and all others have 
distance at least one. We state this formally in the next observation.

Observation 22. For the distance dist0, Cluster Selection is solvable in time nO(d) , and k-Clustering is solvable in time 
2O(D log D)nO(d) .

Next we restate and prove Theorem 2. Note that Theorem 2 essentially complements the trivial algorithms given by 
Observation 22.

Theorem 2. With distance dist0 , k-Clustering parameterized by d + D and Cluster Selection parameterized by d + t + D are 
W[1]-hard.

Proof. First we show how to obtain an FPT reduction from Clique parameterized by the clique size to k-Clustering.
Given an instance (G , k) of Clique, for each pair of indices {i, j}, 1 ≤ i < j ≤ k, we make |E(G)| vectors in Zk , assume 

k ≥ 3. For each e = {u, v} ∈ E(G), we add a vector xi, j,e: two coordinates are set to vertex values, xi, j,e[i] = u, xi, j,e[ j] = v , 
and in all other coordinates xi, j,e is set to the special padding value ci, j,e = |V (G)| + (k · i + j) · |E(G)| + e. In total, there are 
n = (k

2

)|E(G)| vectors and |V (G)| + (k
2

)|E(G)| different values, since there are |V (G)| vertex values, all padding values are 
distinct from vertex values and from each other.

Finally, we set k′ = n − (k
2

) + 1 and D = (k
2

)
(k − 2). An example of the reduction is shown in Fig. 8.

Now we prove that the original instance has a k-clique iff the transformed instance has a k′-clustering of cost at most 
D .

If there is a k-clique, there is a clustering with cost D: we take one nontrivial cluster of size 
(k

2

)
and all other clusters 

are of size 1. Let v1, ..., vk be the vertices of the clique, for each {i, j}, 1 ≤ i < j ≤ k we take xi, j,{vi ,v j} into the cluster. The 
cluster centroid is (v1, ..., vk), each vector in the cluster has distance to the centroid of exactly (k − 2).

Now to the opposite direction. Assume that there is a clustering of cost at most D , and there are t composite clusters: 
C1, ..., Ct . In each cluster and each coordinate, by Observation 21 we may assume that we select the most frequent vertex 
there as the value of the centroid, since all padding values are distinct. If there are no vertex values in this cluster in this 
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x1,2,·

1 2 ·
1 3 ·
1 4 ·
2 4 ·

x1,3,·

1 · 2
1 · 3
1 · 4
2 · 4

x2,3,·

· 1 2
· 1 3
· 1 4
· 2 4

x1,2,12 1 2 ·
x1,3,14 1 · 4
x2,3,24 · 2 4

c 1 2 4

Fig. 8. An example illustrating the reduction in Theorem 2: an input graph G , the vectors produced by the reduction (for clarity, they are separated 
over corresponding pairs {i, j}, and padding values are replaced by dots), and the only composite cluster in the resulting optimal clustering of cost 3, 
corresponding to the clique on {1, 2, 4}.

coordinate, we may assume that we select any of the occurring padding values. For a cluster C , denote the number of 
vertex-containing coordinates as β(C), and the total number of vertex-valued entries which do not match with the centroid 
value in the corresponding coordinate as γ (C). We could write the total cost of the clustering as

t∑
i=1

(|Ci |(k − 2) − (k − β(Ci)) + γ (Ci)) .

That holds since in each cluster Ci each of the |Ci |(k − 2) padding values is not matched with the cluster centroid and 
increases the total distance by one, except for the (k − β(Ci)) vertex-free coordinates, where exactly one of the padding 
values is selected as the value of the centroid. Also each vertex-valued entry which is not matched with the centroid 
increases the total distance by one, there are γ (Ci) of them.

There are n − (k
2

) + 1 clusters in total, n − (k
2

) + 1 − t of them are simple. We may assume that in the optimal clustering 
there are no empty clusters, since we could always move a vector from a composite cluster to an empty one without 
increasing the cost. So there are n − (n − (k

2

) + 1 − t) = t + (k
2

) − 1 vectors in the composite clusters, which is equal to ∑t
i=1 |Ci |. We could rewrite the total cost as

(t +
(

k

2

)
− 1)(k − 2) − tk +

t∑
i=1

(β(Ci) + γ (Ci)) =
(

k

2

)
(k − 2) − (k − 2) +

t∑
i=1

(β(Ci) − 2 + γ (Ci)).

Now we show that for any clustering the value 
∑t

i=1(β(Ci) − 2 +γ (Ci)) is at least (k − 2), and it is equal to (k − 2) only 
in the k-clique clustering. It suffices to prove the following lemma.

Lemma 23. For any cluster C such that 2 ≤ |C | ≤ (k
2

)
, β(C)−2+γ (C)

|C |−1 ≥ κ , where κ = k−2
(k

2)−1
= 2

k+1 , and the equality holds only when C

is a k-clique.

The lemma implies

t∑
i=1

(β(Ci) − 2 + γ (Ci)) =
t∑

i=1

β(Ci) − 2 + γ (Ci)

|Ci| − 1
(|Ci | − 1) ≥ κ

t∑
i=1

(|Ci | − 1) = κ

((
k

2

)
− 1

)
= k − 2,

and also that the equality holds only when each term is equal to κ , so each Ci is a k-clique, but then t = 1 since 
∑t

i=1(|Ci | −
1) = (k

2

) − 1. So G must contain a k-clique if there is a clustering of cost at most D , and the reduction is correct. Note that 
none of the Ci could have size larger than 

(k
2

)
since there are n − (k

2

) + 1 clusters in total.

Proof of Lemma 23. First, we consider the case γ (C) = 0, so in each coordinate all vertex values are equal.

Claim 24. If C is a cluster of vectors obtained by applying the reduction described in the proof of Theorem 2 to any graph H, γ (C) = 0, 
and 

( l
2

)
< |C |, then β(C) ≥ l + 1.

Proof. The proof is by induction on l. The base is l = 1, and each non-empty cluster contains at least one vector and so at 
least 2 coordinates with vertices, we assume 

(1
2

) = 0.
For the general case, if there are at least l occurrences of a vertex v in a coordinate i, then there are at least (l + 1)

coordinates with vertices. Each vector with v in the i-th coordinate has also some other vertex in some other coordinate. As 
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in each coordinate all vertex values are equal, it could not be that two of the vectors with the value v in the i-th coordinate 
share the second vertex-valued coordinate, since then they would represent the same edge.

So each coordinate has at most (l −1) vertex occurrences, otherwise the claim holds. Select a coordinate j which contains 
some vertex value u and remove the j-th coordinate and all vectors which have the value u in the j-th coordinate. That 
corresponds to the natural restriction C ′ of the cluster C to a subgraph H − u. The size of C ′ is at least 

( l
2

) + 1 − (l − 1) =(l−1
2

) + 1, and by induction there are at least l coordinates which contain vertex values, so the original cluster C has at least 
l + 1 such coordinates, since there is also the j-th coordinate with the vertex value u. �

Now consider a cluster C with γ (C) = 0. Let l be the largest value with 
( l

2

) + 1 ≤ |C |, so |C | ≤ (l+1
2

)
. Since |C | ≤ (k

2

)
, 

l + 1 ≤ k. By Claim 24, β(C) ≥ l + 1, then

β(C) − 2

|C | − 1
≥ l − 1(l+1

2

) − 1
= 2

l + 2
≥ 2

k + 1
= κ,

and so if l + 1 < k, the inequality is strict. It is also strict if l + 1 = k and |C | < (k
2

)
, as the denominator becomes larger in 

the first step. Thus the only possibility of getting exactly κ is when |C | = (k
2

)
.

But then we have exactly k · (k − 1) vertex values across k coordinates, and each coordinate has at most (k − 1) vertex 
values by the argument in Claim 24, so each coordinate must have exactly (k − 1) vertex values. Since γ (C) = 0, they must 
be all equal. Denote the common vertex value in the i-th coordinate as vi . Since each occurrence of vi in the i-th coordinate 
corresponds to an edge to a different v j , vertices v1, . . . , vk form a clique in G .

In the case γ (C) > 0, consider a new cluster C ′ which is obtained from C by removing all vectors which have a vertex-

valued entry not equal to the centroid value. Assume for now that |C ′| ≥ 2. By the proof above, β(C ′)−2
|C ′|−1 ≥ κ , since γ (C ′) = 0. 

The value β(C)−2+γ (C)
|C |−1 could be obtained from β(C ′)−2

|C ′|−1 by adding γ (C) + (β(C) −β(C ′) to the numerator and |C | −|C ′| to the 
denominator. Removing vectors could not increase β , so β(C) − β(C ′) ≥ 0, and γ (C) ≥ |C | − |C ′| since each of the removed 
vectors has at least one vertex value not equal to the centroid value. If β(C ′)−2

|C ′|−1 ≥ 1, then the new fraction is also at least 1 

and so strictly greater than κ . If |C ′| ≤ 1, then β(C)−2+γ (C)
|C |−1 ≥ 1 since β(C) ≥ 2 and γ (C) ≥ |C | − |C ′|. If β(C ′)−2

|C ′|−1 < 1, then the 
new fraction became strictly larger, and so strictly larger than κ . In all cases, the inequality is strict when γ (C) > 0. �

Now to Cluster Selection: the reduction is almost the same, only we start from Multicolored Clique, and for each pair 
of indices {i, j}, 1 ≤ i < j ≤ k we obtain the set of vectors Xi, j from edges in G starting in color i and ending in color j. 
The vectors are constructed in the same way as in the previous reduction. All weights are set to one. The value of D is the 
same, D = (k

2

)
(k − 2).

Since vectors are constructed in the same way, all statements about the cost of grouping them remain valid, in particular 
Lemma 23. Only now the statement of Cluster Selection already guarantees that we select exactly one cluster and exactly 
one vector from each Xi, j , so exactly one edge between each pair of colors. And by Lemma 23 only the proper k-clique has 
the optimal cost. �

Note that Cluster Selection with the L0 distance is very similar to the known problem Consensus String With Outliers, 
studied e.g. in [34]. The only difference of Cluster Selection is that we have to select one point from each of the given 
sets, whereas in Consensus String With Outliers the goal is to select the arbitrary subset of size (n − k). The construction 
from Theorem 2 also shows W[1]-hardness of Consensus String With Outliers with respect to (d + D + n − k) in the case 
of unbounded alphabet.

6. The L∞ distance

In this section, we consider the case p = ∞. We prove two hardness results of k-Clustering: W[1]-hardness when 
parameterized by D and NP-hardness in the case k = 2.

First, we prove some useful facts about the structure of optimal cluster centroids. The one thing, in which the L∞
distance is harder than all other distances in our consideration, is that even when the cluster is given, we can not just find 
the optimal cluster centroid by optimizing the value in each coordinate independently. So there seems to be no simple rule 
of finding the optimal cluster centroid of a given cluster. However, one could still do that in polynomial time by solving a 
linear program.

Claim 25. Given a multiset C of vectors in Zd, there is a polynomial time algorithm to find c ∈ Rd minimizing∑
dist∞(x, c).
x∈C
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Proof. We reduce to solving a linear program, which we define next. Denote C = {x1, . . . , xn}, introduce variables c1, . . . , cd

corresponding to coordinates of the cluster centroid and variables d1, . . . , dn , where di corresponds to the value dist∞(xi, c). 
Consider the following linear program.

n∑
i=1

di → min

xi[ j] − c j ≤ di ∀ i, j : 1 ≤ i ≤ n,1 ≤ j ≤ d

c j − xi[ j] ≤ di ∀ i, j : 1 ≤ i ≤ n,1 ≤ j ≤ d

Clearly, solving this linear program provides an optimal cluster centroid by the values c1, . . . , cd . �
The next claim shows that we could only consider half-integral cluster centroids.

Claim 26. For any multiset C of vectors in Zd, the vector c ∈ Rd which minimizes

∑
x∈C

dist∞(x, c)

could always be chosen from 1
2Zd (coordinates are either integer or half-integer).

Proof. Assume that we have an optimal solution c which has at least one coordinate not of the form z/2, z ∈ Z. For a ∈ R
we denote frac(a) = a − �a�, and

rem(a) =
{

frac(a), if frac(a) < 1/2

1 − frac(a), otherwise
,

calling this value the remainder of a.
We could partition all coordinates into equivalence classes by remainder of c. One could also define a partition of all 

vectors by the remainder of the distance to c. These two partitions are related in the following sense: if dist∞(x, c) has 
remainder ξ then each coordinate j where |x[ j] − c[ j]| = dist∞(x, c) also has remainder ξ , and vice versa. Now we take one 
particular remainder and show that we can shift it without losing optimality.

There are two kinds of vectors with the particular remainder ξ : call bottom those vectors x for which frac(dist∞(x, c)) =
ξ , and call top those vectors x for which frac(dist∞(x, c)) = 1 − ξ . Similarly, there are also two kinds of coordinates of c, 
which we also call bottom and top depending of the value of frac(c[ j]).

Consider a bottom coordinate j. Increasing c[ j] increases |x[ j] − c[ j]| for all bottom vectors x, and decreases |x[ j] − c[ j]|
for all top vectors x. Decreasing c[ j] does the opposite, as well as increasing a top coordinate. So if we take some sufficiently 
small value β and simultaneously increase all bottom coordinates and decrease all top coordinates by β then for all bottom 
vectors their distance will become larger by β , and for all top vectors — smaller by β . An if we do the opposite, the bottom 
vectors will cost less and the top vectors will cost more. Then, we could just take the group which has more vectors (bottom 
or top) and choose that action which decreases the distance for these vectors. The larger group has at least as many vectors 
as the smaller group, so the total distance does not increase.

It remains to see which value of β we could take. We could safely shift until we either reach a value in 1
2 Z or another 

remainder. In any case, we reduce the number of distinct remainders by one, and so we conclude the proof by doing this 
inductively over the number of distinct remainders. �

By Claim 26, the α-property holds with α = 1/2, since at most one vector could be equal to the cluster centroid, and all 
others have distance at least 1/2 due to half-integrality. We can also see that when the problem is parameterized by d + D , 
it is FPT.

Claim 27. k-Clustering with the L∞ distance is FPT when parameterized by d + D.

Proof. We use Theorem 10. We have the α-property, and for the set D of all possible cluster costs not exceeding D we 
could take all half-integral values not exceeding D by Claim 26. All that remains is to solve Cluster Selection in FPT time.

For that, we try all possible x1 ∈ X1, and then try each possible resulting cluster centroid c. Since dist∞(x1, c) ≤ D and c
is half-integral by Claim 26, we can try only vectors c of this form, and that is done in time (2D + 1)d . �
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1 2 3 4 5 23 34 15 25
x1 2 0 0 0 0 0 0 2 0
x2 0 2 0 0 0 2 0 0 2
x3 0 0 2 0 0 −2 2 0 0
x4 0 0 0 2 0 0 −2 0 0
x5 0 0 0 0 2 0 0 −2 −2

x1 2 0 0 0 0 0 0 2 0
x2 0 2 0 0 0 2 0 0 2
x4 0 0 0 2 0 0 −2 0 0
c 1 1 0 1 0 1 −1 1 1

Fig. 9. An example illustrating the reduction in Theorem 3: an input graph G , the vectors produced by the reduction (for clarity, the coordinates corre-
sponding to vertices and to non-edges are separated), and the only composite cluster in the resulting optimal clustering of cost 3, corresponding to the 
clique on {1, 2, 4}. Note that dist∞(x1, c) = dist∞(x2, c) = dist∞(x4, c) = 1.

6.1. W[1]-hardness when parameterized by D

Knowing that k-Clustering with the L∞ distance is FPT when parameterized by d + D , the next natural question is, is 
the problem FPT or W[1]-hard when parameterized only by D? We show that W[1]-hardness is the case, proving Theorem 3, 
which we recall here for convenience.

Theorem 3. With distance dist∞ , k-Clustering parameterized by D and Cluster Selection parameterized by t + D are W[1]-hard.

Proof. First, we show a reduction from Clique to k-Clustering. Given a graph G and a clique size k, we construct the 
following instance of the clustering problem.

We set the dimension to |V (G)| + (|V (G)|
2

) − |E(G)|. We take |V (G)| vectors {xi}|V (G)|
i=1 corresponding to vertices. For the 

vertex v , first |V (G)| coordinates are set to zero, except v-th coordinate, which is set to 2.
The last 

(|V (G)|
2

)−|E(G)| coordinates correspond to non-edges, vertex pairs which are not connected by an edge. For each 
vertex pair {u, v} /∈ E(G) in the coordinate {u, v} we set xu to 2, xv to −2, the order on u, v is chosen arbitrarily, and all 
other vectors to zero.

Finally, we set the number of clusters to |V (G)| − k + 1 and the total distance to k. We show an example on how the 
reduction works in Fig. 9.

If there is a clique of size k in G , then we have a solution of cost k: take k vectors corresponding to the clique vertices in 
one cluster, and make all other clusters trivial. For the only nontrivial cluster C , we can always choose c so that |x[ j] −c[ j]| ≤
1 for any x ∈ C and for any coordinate j. Each vertex coordinate has only 0 and 2, so setting c to 1 there suffices. As in C
we have an edge between any two vertices, in any non-edge coordinate j there are either all zeros, or zeros and 2, or zeros 
and −2. In each of the cases there is a suitable value for c j : 0, 1 or −1 correspondingly.

Next, we prove that any solution has cost at least k, and any solution which is not a k-clique has strictly larger cost. For 
that, we prove the following claim.

Claim 28. In the instance above, the cost of any cluster C containing at least two vectors is at least |C |. If there is at least one non-edge 
in C , then the cost is at least |C | + 1.

Proof. Denote the cluster centroid as c. If each vector x in C has dist∞(x, c) ≥ 1, the first statement is trivial. So assume that 
there is a vector x∗ in C such that dist∞(x∗, c) = ξ < 1. Consider the coordinate j∗ which corresponds to the same vertex as 
the vector x∗ , x∗[ j∗] = 2, and all other vectors are zero in the coordinate j∗. As dist∞(x∗, c) = ξ , c[ j∗] ≥ 2 − ξ . Then, for any 
other x ∈ C , dist∞(x, c) ≥ 2 − ξ > 1. The total cost of the cluster is at least ξ + (|C | − 1)(2 − ξ) = 2 + (|C | − 2)(2 − ξ) ≥ |C |, 
as 2 − ξ > 1.

Now to the second part of the claim. Assume there are only two vectors in C and they do not have an edge, there is a 
coordinate j∗ where one is 2 and the other is −2. No matter what we choose for c[ j∗], the cost is at least |2 − c[ j∗]| + | −
2 − c[ j∗]| ≥ 4, and the statement follows. So assume that |C | ≥ 3 and there is a coordinate j∗ corresponding to a non-edge 
in C . One vector from C has 2 in the coordinate j∗ , another −2, and all others have 0. Then there is a vector in C with 
distance to c of at least 2, as either c[ j∗] ≥ 0 and | − 2 − c[ j∗]| ≥ 2 or c[ j∗] < 0 and |2 − c[ j∗]| > 2. Let us just forget about 
this vector and consider all other vectors in C . There are |C | − 1 ≥ 2 of them, and by the reasoning in the proof of the first 
statement, their cost is at least |C | − 1. In this proof we considered only vertex coordinates, so the vector we forgot and the 
j∗-th coordinate (which is a non-edge coordinate) does not affect it. So, the total cost is at least |C | − 1 + 2 = |C | + 1. �

Assume that we have l ≥ 1 nontrivial clusters of sizes {ti}l
i=1, nontrivial means that the size is at least two, ti ≥ 2 for 

i ∈ {1, . . . , l}. By Claim 28, the total cost is at least
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(a) A graph G . (b) An optimal assignment δ of cost 3. The 
set S , i.e. “deleted” edges, is in dashed.

(c) A different choice of δ. This assignment 
models the optimal solution for Odd Cycle 
Transversal on the same graph, and has 
the cost of 4.

Fig. 10. An illustration of Half-Integral Odd Cycle Transversal.

l∑
i=1

ti = k + l − 1 ≥ k,

as there are |V (G)| − k + 1 clusters in total, |V (G)| − k + 1 − l trivial clusters, and the total number of vectors is |V (G)| =∑l
i=1 ti + |V (G)| − k + 1 − l, from which it follows that 

∑l
i=1 ti = k + l − 1. So no solution has cost less than k.

Also, if there are at least two nontrivial clusters, then k + l − 1 ≥ k + 1. So if a solution has cost k, it must have only one 
nontrivial cluster, and its size must be k.

Finally, assume that the solution indeed has only one nontrivial cluster, but there is a non-edge in it. Then, as the size is 
k, by Claim 28 its cost is at least k + 1. So only a k-clique has cost k, which proves the correctness of the reduction.

Now, to Cluster Selection. We consider essentially the same reduction, only we start from Multicolored Clique. We 
obtain sets of vectors X1, . . . , Xk in the same way as X in the reduction above, only vectors obtained from vertices of color 
j are put into X j . The total distance parameter is also set to k. So parameters t and D of the obtained instance have the 
same value as the starting parameter k.

Since vectors are constructed in the same way, Claim 28 still works. And now the statement of Cluster Selection

enforces that exactly one cluster of k vectors is selected. By Claim 28 it could be done with the cost k if and only if there is 
a colorful k-clique in the original graph. �
6.2. NP-hardness when k = 2

In this subsection we prove NP-hardness of k-Clustering with the L∞ distance when k = 2. Intuitively, if we consider 
the previous reduction, partitioning the vectors optimally into two clusters loosely corresponds to partitioning the vertices 
into two sets such that there are as many as possible vertices having no edges inside their set. Which, in turn, is Odd 
Cycle Transversal: the problem of removing the smallest number of vertices so that the remaining graph is bipartite. 
However, to make everything really work, we need to consider a modified version of Odd Cycle Transversal which we call
Half-Integral Odd Cycle Transversal.

Input: An undirected graph G , an integer t.
Task: Is there an assignment δ : V (G) → {0, 1, 2}, such that 

∑
v∈V (G) δ(v) ≤ t and G − S is bipartite, where 

S = {{u, v} ∈ E(G) : δ(u) + δ(v) ≥ 2}?

Half-Integral Odd Cycle Transversal

The definition of Half-Integral Odd Cycle Transversal is illustrated in Fig. 10.
First we show that Half-Integral Odd Cycle Transversal is also NP-hard by constructing a reduction from 3-SAT.

Lemma 29. There is a polynomial-time reduction from 3-SAT to Half-Integral Odd Cycle Transversal.

Proof. Given an instance of 3-SAT with n variables and m clauses, make a graph G as follows. The example of the reduction 
is given in Fig. 11. For each variable xi , introduce two vertices xi and x′

i , connect them with an edge. Also introduce 2n + 1
vertices yi, j connect them to both xi and x′

i .
For each clause C j introduce four vertices C j,1,. . . ,C j,4. Consider following seven vertices: C j,1, . . . , C j,4, and three variable 

vertices which are present in C j : if xi ∈ C j then we consider the vertex xi , and if ¬xi ∈ C j then we consider the vertex x′
i . 

Connect all these seven vertices in a cycle such that each variable vertex is adjacent to two clause vertices. Finally, set t to 
2n.

First, assume there is a satisfying assignment. Consider the following δ : V (G) → {0, 1, 2}: if xi is true, δ(xi) = 2, other-
wise δ(x′) = 2, on all other vertices δ ≡ 0. Clearly, 

∑
v∈V (G) δ(v) = 2n.
i
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Fig. 11. A graph obtained from the 3CNF-formula (x1 ∨ ¬x2 ∨ x3) by the reduction from Lemma 29. A 7-cycle corresponding to the only clause of the 
formula is highlighted in blue.

Since δ does not take value 1, deleting edges {u, v} with δ(u) + δ(v) ≥ 2 is equivalent to deleting vertices on which δ
is 2. From each vertex gadget we deleted either xi or x′

i , so the remaining part is a star with leaves yi, j and center xi or 
x′

i . Since the assignment we started from is satisfying, from each clause cycle we deleted at least one vertex. So each cycle 
present in G lost at least one vertex, and what remains is bipartite.

Now assume there is a solution δ to the Half-Integral Odd Cycle Transversal instance. We claim that δ(xi) + δ(x′
i) ≥ 2

for each variable xi . Consider a 2-coloring of G − S: either xi and x′
i have the same color or not. In the former case, 

δ(xi) + δ(x′
i) ≥ 2 since the edge {xi, x′

i} must be removed.
If xi and x′

i have different colors, assume that δ(xi) ≤ 1 and δ(x′
i) ≤ 1. Then, each of the 2n + 1 vertices yi, j takes one of 

the two colors, and so has an incident edge to xi or x′
i which needs to be deleted. But then, δ(yi, j) ≥ 1 for each j, and the 

total cost on these vertices is already 2n + 1. Then either δ(xi) = 2 or δ(x′
i) = 2.

So we have n variables and δ is at least 2 on each pair of variable vertices, and in total δ is at most 2n. Then δ has to be 
exactly 2 on each variable pair, and zero on all other vertices. Now we claim that on each clause cycle there is a variable 
vertex v with δ(v) = 2. If not, then none of the cycle edges gets deleted, as δ is equal to zero on clause vertices. But then 
the remaining graph could not be bipartite, since it contains an odd cycle.

To get a satisfying assignment, set xi to true if δ(xi) = 2, or to false otherwise. In particular, if δ(x′
i) = 2, xi is set to false, 

since δ(x1) + δ(x′
1) = 2. Each clause is satisfied since each clause cycle contains a variable vertex on which δ is equal to 

2. �
Now we prove NP-hardness of k-Clustering with p = ∞ and k = 2 by constructing a reduction from Half-Integral Odd 

Cycle Transversal.

Theorem 30. k-Clustering with distance dist∞ is NP–hard when k = 2.

Proof. Consider an instance (G, t) of Half-Integral Odd Cycle Transversal, if t ≥ |V (G)|, we have a yes-instance since δ ≡ 1
deletes all edges from the graph, so we may assume t < |V (G)|. Remove all isolated vertices in G and add t + 5 isolated 
edges to G , it clearly does not change the type of the instance. The number of clusters k is 2, set the dimension d to |E(G)|, 
each coordinate corresponds to an edge. For each vertex v ∈ V (G) add a vector xv to X with all coordinates set to zero. 
Then, for each edge {u, v} ∈ E(G) set xu[u, v] to 2 and xv [u, v] to −2, the order on u, v is chosen arbitrarily. Finally, set D
to |V (G)| + t . An example is given in Fig. 12, additional isolated edges are dropped out for clarity.

If (G, t) is a yes-instance of Half-Integral Odd Cycle Transversal, consider the solution δ. Split vectors into clusters 
according to any proper 2-coloring of G − S . Now we show the way to select cluster centroids so that each vertex v has 
distance at most 1 + δ(v) to the corresponding centroid. We consider separately each of two clusters and each coordinate, 
indexed by an edge {u, v} ∈ E(G). For a cluster C , there are three cases on how u and v are present in the cluster, for each 
of them we assign a particular value to the cluster centroid c in the coordinate {u, v}.

• If u and v are both not in C , for vectors in C all entries in the coordinate {u, v} are zero, and we set c[u, v] also to 
zero. Each vector is at distance zero to the centroid in this coordinate.

• If only one of u and v are in C , for vectors in C all entries in the corresponding coordinate are zero, except one entry 
corresponding to the edge’s endpoint belonging to C , which is either 2 or −2. Set c[u, v] to 1 or −1, correspondingly, 
then each vector is at distance 1 in this coordinate.

• If both u and v are in C , w.l.o.g xu[u, v] is 2 and xv [u, v] is −2, and all other points are zero. It must hold that 
δ(u) + δ(v) ≥ 2, either δ(u) = δ(v) = 1 or w.l.o.g δ(u) = 2 and δ(v) = 0. In the former case, set c[u, v] to zero, then all 
vectors have distance zero, xu and xv have distance 2 in this coordinate. In the latter case, set c[u, v] to −1, then u is 
at distance 3, and all other vectors, including v , are at distance 1.
68



F.V. Fomin, P.A. Golovach and K. Simonov Journal of Computer and System Sciences 117 (2021) 50–74
(a) A starting graph G , t = 2. (b) The obtained instance: set of vectors 
X = {x1, x2, x3, x4}, D = 6.

edges: 12 13 14 23 24
x1 = ( 2 2 2 0 0 )

x2 = ( −2 0 0 2 2 )

x3 = ( 0 −2 0 −2 0 )

x4 = ( 0 0 −2 0 −2 )

(c) A possible solution: δ(1) = δ(3) = δ(4) = 0, 
δ(2) = 2. Edges from S are dashed, a 2-coloring 
of G − S is in red and blue.

(d) The corresponding clustering of cost 6, 
C1 = {x1, x2}, C2 = {x3, x4}, and optimal centroids 
c1, c2.

c1 = ( 1, 1, 1, 1, 1)

x1 = ( 2, 2, 2, 0, 0), dist∞(x1, c1) = 1
x2 = (−2, 0, 0, 2, 2), dist∞(x2, c1) = 3

c2 = ( 0,−1,−1,−1,−1)

x3 = ( 0,−2, 0,−2, 0), dist∞(x3, c1) = 1
x4 = ( 0, 0,−2, 0,−2), dist∞(x4, c1) = 1

Fig. 12. An illustration of the reduction from Theorem 30.

For any v ∈ V (G), since it holds for all coordinates that distance from xv to the corresponding cluster centroid is at most 
1 + δ(v), then the L∞ distance is also at most 1 + δ(v), and the total cost of the clustering defined above is at most∑

v∈V (G)

1 + δ(v) = |V (G)| + t.

In the other direction, assume there is a clustering C1, C2 with centroids c1, c2 such that the total cost is at most D . 
By Claim 26 we may assume that centroids are integral, and for any vector the distance to the nearest centroid is also 
an integer. We also may assume that centroids are between −2 and 2 in each coordinate since all the input vectors have 
entries in this range, and so we could move the centroids to the same range without increasing distances.

So, each vector has distance in {0, 1, 2, 3, 4} to the closest centroid. We claim that it could not be that a vector xv has 
distance zero: in this case w.l.o.g xv = c1, and so c1 is equal to 2 or −2 in some coordinate, since each vertex has at least 
one incident edge. But then each vector in C1 has distance at least 2 to c1. And since at most two vectors could be equal to 
the centroids, each of the remaining |V (G)| − 2 vectors has distance at least 1. Consider t + 5 isolated edges, at least t + 3 of 
them do not have any endpoint equal to one of c1 and c2. For these edges, the total distance of their endpoints is at least 3: 
either their endpoints are in different clusters, and so the endpoint in C1 costs at least 2, or both endpoints are in the same 
cluster, and in total they cost 4 since there are simultaneously values 2 and −2 in the coordinate corresponding to this edge. 
So each of the t + 3 edges increases the cost by additional 1, and the total cost is at least |V (G)| − 2 + t + 3 > |V (G)| + t .

Since each vector has distance at least 1, we may assume that the centroids are in {−1, 0, 1}d . If we have 2 (or −2) we 
could change it to 1 (or −1), all vectors which could become farther from the centroid have 2 in this coordinate. But then 
the distance for these vectors is still at most 1. We also may assume that distances are in {1, 2, 3}, since distance 4 could 
be only from 2 to −2.

We claim that if we set δ(v) := min2
i=1 dist∞(xv , ci), δ is a solution to Half-Integral Odd Cycle Transversal. Remove 

all edges {u, v} with δ(u) + δ(v) ≥ 2, and consider 2-coloring of G induced by the partition {C1, C2}. Assume that we have 
an edge {u, v} such that δ(u) + δ(v) ≤ 1 and u and v are in the same cluster (w.l.o.g C1). Then we have a coordinate 
{u, v} such that w.l.o.g xu[u, v] = 2 and xv [u, v] = −2, but dist∞(xu, c1) + dist∞(xv , c1) ≤ 3 due to δ(u) + δ(v) ≤ 1 and so 
|xu[u, v] − c1[u, v]| + |xv [u, v] − c1[u, v]| ≤ 3, which is a contradiction. So (G, t) is also a yes-instance. �

Note that the reduction from the proof of Theorem 30 also implements k-Coloring, if we set k to the number of colors 
and D to |V (G)|, since with such a small budget we can not allow any same-colored neighbors in the optimal clustering. 
However, k-Coloring is only known to be NP-hard for k ≥ 3 colors. Thus, in Theorem 30 we show a reduction from Half-

Integral Odd Cycle Transversal to show the hardness of k-Clustering even for two clusters.

7. The case p ∈ (1, ∞)

In this section we consider the case p ∈ (1, ∞), with the particular emphasis on the most commonly used case p = 2. 
With the L2 distance, the k-Clustering problem is widely studied under the name k-Means.

7.1. FPT when parameterized by d + D for p = 2

When we consider both d and D as the parameters, Cluster Selection in the L2 distance becomes FPT, and so k-

Clustering is also FPT by Theorem 10.
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Note that in any composite cluster, each vector except at most one is at distance at least 1/4 from the centroid, so the 
α-property holds with α = 1/4. Consider two different vectors, they have different values in some coordinate, and in this 
coordinate at least one of them is at distance at least (1/2)2 = 1/4 from the centroid.

Now we prove Theorem 4, which we restate here.

Theorem 4. k-Clustering and Cluster Selection with distance dist2 are FPT when parameterized by d + D.

Proof. We start with the proof that Cluster Selection is FPT. Distance dist2 satisfies the α-property. Hence if t > 4D + 1
then any composite cluster costs more than D and the instance is clearly a no-instance. So we may assume that t ≤ 4D + 1.

We claim that there are at most 4mt D possible total weights of the resulting composite cluster. First, in the resulting 
cluster there could be at most one vector with weight strictly larger than 4D . Otherwise, let us consider two such vectors 
and the coordinate in which they differ. No matter which value the centroid has there, it is at distance of at least 1/2 from 
at least one of the vectors, so the total cost is larger than 4D(1/2)2 ≥ D . So there are at most m possibilities for the largest 
weight, and all of the other (t − 1) weights are at most 4D .

We fix the total resulting cluster weight W , the vector in the resulting cluster with the largest weight x j∗ ∈ X j∗ , and the 
coordinate i. Since the centroid c is the mean of the vectors in the resulting cluster, c[i] is of form y

W , where y ∈ Z. We 
claim that the distance from y to W · x j∗ [i] is bounded by a function of D , and so each possible y could be enumerated in 
FPT time. Moreover, all possible centroids could also be enumerated in FPT time since d is a parameter.

Let {x1, . . . , xt} be the resulting cluster, x j ∈ X j for all j ∈ {1, . . . , t}. The difference between c[i] and x j∗ [i] could be 
written as

x j∗ [i] − c[i] = x j∗ [i] −
t∑

j=1

w(x j)x j[i]
W

=
∑t

j=1 w(x j)(x j∗ [i] − x j[i])
W

.

The absolute value of the numerator is O(D3) since t = O(D), w(x j∗ ) gets multiplied by zero, and all other weights are at 
most 4D . Also, for any j ∈ {1, . . . , t}, |x j∗ [i] − x j[i]| ≤ 4D , since

4D ≥ 4
(
(x j∗ [i] − c[i])2 + (x j[i] − c[i])2

)
≥ (x j∗ [i] − x j[i])2 ≥ |x j∗ [i] − x j[i]|.

The total running time is at most

4mtd · m ·O(D3)d · m,

since we try all possible cluster weights, all possible x j∗ out of the input vectors, then all possible centroids which differ 
from x j∗ by O(D3) in each coordinate. And then for each centroid we check whether the optimal cluster for it has cost at 
most D by selecting the best x j ∈ X j for each j ∈ {1, . . . , t}. This concludes the proof that Cluster Selection is FPT when 
parameterized by d + D .

Now we proceed with the proof that k-Clustering is FPT parameterized by d + D . For that we employ Theorem 10. We 
already have the α-property and FPT algorithm for Cluster Selection. Hence the only thing left is to enumerate the set D
of all possible optimal cluster costs not exceeding D .

Since there are n vectors in total, each cluster contains from 1 to n vectors. For each possible cluster size s the centroid 
is of the form y

s , where y ∈ Z. Since input vectors have integer coordinates, the cost of any cluster of size s is of form z
s2 , 

where z ∈ Z. And since the cost is at most D , z ∈ {0, . . . , Ds2}. We enumerate all possible cluster sizes in {1, . . . , n}, and for 
each cluster size s all possible cluster costs in {0/s2, . . . , Ds2/s2}. In this way we obtain D, and |D| = O(Dn3). �
7.2. W[1]-hardness when parameterized by t + D

In our setting, k-Clustering for p = 2 seems to be harder than for p = 1, since we do not have the nice property that if 
many vectors have the same value in some coordinate then the centroid must also have this value. On the contrary, even 
if only one vector diverges from the rest, the optimal centroid also diverges. So the approach with enumerating nontrivial 
coordinate sets, which we successfully used in the p ∈ (0, 1] case, is not likely to work.

We are able to prove that Cluster Selection for p ∈ (1, ∞) is W[1]-hard parameterized by t + D . It remains open 
whether k-Clustering for p ∈ (1, ∞) or specifically for p = 2 is W[1]-hard or not, but our result shows that at least the 
approach we used to obtain an FPT algorithm in the p ∈ (0, 1] case would not yield an FPT algorithm for p ∈ (1, ∞).

First we state and prove two technical claims about the geometrical properties of clustering zero-one valued vectors in 
the p ∈ (1, ∞) case.

Claim 31. If we have a cluster of size a + b where a vectors have zero and b vectors have one in the coordinate i, then the optimal 
centroid value in this coordinate is equal to
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b
1

p−1

a
1

p−1 + b
1

p−1

,

and the coordinate i contributes

ab(
a

1
p−1 + b

1
p−1

)p−1 ,

to the total cost.

Proof. Assume that the centroid value in the coordinate i is equal to c, then the cost is

acp + b(1 − c)p .

It is easy to see that c < 0 is worse than c = 0, and similarly c > 1 is worse than c = 1, so we could restrict c to [0, 1]. The 
derivative with respect to c is

p(acp−1 − b(1 − c)p−1),

as p > 1, the derivative is zero if and only if

acp−1 = b(1 − c)p−1

(
c

1 − c

)p−1

= b

a

c

1 − c
=

(
b

a

) 1
p−1

c = 1

1 + ( a
b

) 1
p−1

= b
1

p−1

a
1

p−1 + b
1

p−1

.

The derivative increases monotonically: when we increase c, cp−1 increases and (1 − c)p−1 decreases as p − 1 > 0. So the 
optimal value must be at its unique root defined by the expression above. Thus, the optimal cost is equal to

a
b

p
p−1(

a
1

p−1 + b
1

p−1

)p + b
a

p
p−1(

a
1

p−1 + b
1

p−1

)p = ab(
a

1
p−1 + b

1
p−1

)p−1 ,

finishing the proof. �
Now we prove that it is optimal to have as many ones in the same coordinate as possible. For that, we calculate how 

much each one adds to the total cost depending on how many ones are there in a coordinate.

Claim 32. Consider a cluster of s zero-one valued vectors, denote as f (b) the contribution of a coordinate in which there are b ones 
and s − b zeros. The function f (b)/b is strictly decreasing for 0 < b < s.

Proof. Denote the number of zeros in the coordinate as a := s − b. By Claim 31, the contribution of the coordinate per each 
one is

f (b)

b
= ab(

a
1

p−1 + b
1

p−1

)p−1 · 1

b
= a/s(

(a/s)
1

p−1 + (1 − a/s)
1

p−1

)p−1 .

Let us denote x = a/s, 0 < x < 1, the derivative of the above with respect to x is equal to

d

dx

⎛
⎜⎝ x(

x
1

p−1 + (1 − x)
1

p−1

)p−1

⎞
⎟⎠ =

(
x

1
p−1 + (1 − x)

1
p−1

)−(p−2) ·
(
(1 − x)

1
p−1 + x(1 − x)

1
p−1 −1

)
,

which is strictly positive for 0 < x < 1, hence proving the claim. �
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1 2 3 4

X1,2
1 1 0 0
1 0 1 0

X2,3 0 1 0 1
X1,3 1 0 0 1

{1,2} 1 1 0 0
{2,4} 0 1 0 1
{1,4} 1 0 0 1

c 2
3

2
3 0 2

3

Fig. 13. An example illustrating the reduction in Theorem 5: an input graph G colored in three colors, the vector sets produced by the reduction, and the 
resulting optimal cluster of cost 2, corresponding to the clique on {1, 2, 4}. Note that in the resulting cluster, each non-zero coordinate has the maximal 
number of ones, (k − 1).

Now we are ready to prove the hardness result, which was stated in the introduction as Theorem 5. We recall the 
statement here.

Theorem 5. Cluster Selection with distance distp is W[1]-hard for every p ∈ (1, ∞) when parameterized by t + D.

Proof. We construct a reduction from Multicolored Clique. Given a graph G and a clique size k, we construct the following 
instance of Cluster Selection.

We set t to 
(k

2

)
, each input set of vectors represents a choice of an edge of the clique between two particular colors, so 

we number them by unordered pairs of indices from 1 to k. We set the dimension d to |V (G)|, coordinates are numbered 
by vertices.

The set Xi, j consists of the following vectors: for each edge {u, v} ∈ E(G) between a vertex u of color i and vertex v
of color j, we add a vector with 1 in the coordinate u and 1 in the coordinate v , all other coordinates are set to zero. All 
vectors have weight one. Finally, we set

D = k · (k − 1)
(k−1

2

)
(

(k − 1)
1

p−1 + (k−1
2

) 1
p−1

)p−1 .

In Fig. 13, we show the intuition behind the reduction by considering a simple example.
If there is a colorful k-clique in G then we construct a solution to our instance of Cluster Selection. Assume the 

clique is formed by vertices v1, v2, . . . , vk , for each i ∈ {1, · · · , l} vertex vi is of color i. From each Xi, j choose the vector 
corresponding to the edge {vi, v j} ∈ E(G). Among the chosen vectors, in every coordinate of the form vi there are (k − 1)

ones from edges to vi and 
(k

2

) − (k − 1) = (k−1
2

)
zeros. All other coordinates are zeros in the chosen vectors, so they do not 

contribute anything to the total distance. By Claim 31, the total distance is

k · (k − 1)
(k−1

2

)
(

(k − 1)
1

p−1 + (k−1
2

) 1
p−1

)p−1 = D.

In the other direction, we prove that only the solution described above could have the cost D , all others have strictly 
larger cost. First notice that in any resulting cluster there are at most (k − 1) ones in each coordinate, since for any vertex 
v ∈ V (G), if we denote its color by i, only vectors from (k − 1) sets of the form Xi, j ( j ∈ {1, . . . , k} \ {i}) have ones in the 
coordinate v , and we take one vector from each set by the definition of Cluster Selection.

Each vector has exactly two ones, so in any resulting cluster there are 2 · (k
2

)
ones in total. By Claim 32, any resulting 

cluster which does not have (k − 1) ones in k coordinates has strictly larger cost, since only coordinates with exactly (k − 1)

ones have the optimal cost per each one.
So, if the resulting cluster has the cost D , then there are k coordinates such that in each of them exactly (k − 1) of the 

chosen vectors have one. We show that in this case the original instance of Clique has a k-clique. For any color i ∈ {1, . . . , k}
there are at most (k − 1) ones in all coordinates indexed by vertices of color i in the resulting cluster. So all of these ones 
are in the same coordinate vi for some vi . We claim that the vertices v1, . . . , vk form a clique. Consider vertices vi and 
v j , we have taken some vector from Xi, j , and this vector must have added a one to the coordinates vi and v j , then by 
construction the edge {vi, v j} is in E(G). �
8. Conclusion and open problems

In this paper, we presented an FPT algorithm for k-Clustering with p ∈ (0, 1] parameterized by D . However, for the case 
p ∈ (1, ∞) we were able only to show the W[1]-hardness of Cluster Selection. While intractability of Cluster Selection

does not exclude that k-Clustering could be FPT with p ∈ (1, ∞), it indicates that the proof of this (if it is true at all) 
would require an approach completely different from ours. Thus an interesting and very concrete open question concerns 
the parameterized complexity of k-Clustering with p ∈ (1, ∞) and parameter D .
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Another open question is about the fine-grained complexity of k-Clustering when parameterized by k + d. For several 
distances, we know XP-algorithms: an O(ndk+1) algorithm by Inaba et al. [22] for p = 2, as well as trivial algorithms for 
p ∈ [0, 1]. For the case when the possible cluster centroids are given in the input, the matching lower bound is shown 
in [23]. However, we are not aware of a lower bound complementing the algorithmic results in the case when any point in 
Euclidean space can serve as a centroid.

Finally, let us note that our W[1]-hardness reductions could be easily adapted to obtain ETH-hardness results. Our re-
ductions are from Clique and, assuming ETH, there is no no(k) algorithm for Clique. In most of our results, the ETH lower 
bounds derived from our reductions, can be complemented by matching upper bounds through a trivial algorithm for Clus-

ter Selection in time nO(d) or nO(t) and, consequently, an algorithm for k-Clustering obtained by Theorem 10. However, 
the reduction in Theorem 5 excludes only a (nd)o(t1/2+D1/2) algorithm for Cluster Selection with p ∈ (1, ∞) under ETH. 
Both the trivial algorithm in time nO(t) and the algorithm from Theorem 4 in time DO(d) (which could also be turned 
into a dO(D)-time algorithm) fail to match this lower bound. So, another open question is, whether there exists a better 
reduction or a subexponential algorithm could be obtained in this case.
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