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Parameterization above a guarantee is a successful paradigm in Parameterized Complexity. To the best of our

knowledge, all fixed-parameter tractable problems in this paradigm share an additive form defined as follows.

Given an instance (I ,k ) of some (parameterized) problem Π with a guarantee д(I ), decide whether I admits

a solution of size at least (or at most) k + д(I ). Here, д(I ) is usually a lower bound on the minimum size of a

solution. Since its introduction in 1999 for Max SAT and Max Cut (withд(I ) being half the number of clauses

and half the number of edges, respectively, in the input), analysis of parameterization above a guarantee has

become a very active and fruitful topic of research.

We highlight a multiplicative form of parameterization above (or, rather, times) a guarantee: Given an in-

stance (I ,k ) of some (parameterized) problem Π with a guarantee д(I ), decide whether I admits a solution

of size at least (or at most) k · д(I ). In particular, we study the Long Cycle problem with a multiplicative

parameterization above the girth д(I ) of the input graph, which is the most natural guarantee for this prob-

lem, and provide a fixed-parameter algorithm. Apart from being of independent interest, this exemplifies

how parameterization above a multiplicative guarantee can arise naturally. We also show that, for any fixed

constant ε > 0, multiplicative parameterization above д(I )1+ε of Long Cycle yields para-NP-hardness, thus

our parameterization is tight in this sense. We complement our main result with the design (or refutation

of the existence) of fixed-parameter algorithms as well as kernelization algorithms for additional problems

parameterized multiplicatively above girth.
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1 INTRODUCTION

The goal of parameterized complexity is to find ways of solving NP-hard problems more efficiently
than brute force: our aim is to restrict the combinatorial explosion to a parameter that is hopefully
much smaller than the input size. Formally, a parameterization of a problem is the assignment of
an integer k to each input instance, and we say that a parameterized problem is fixed-parameter

tractable (FPT) if there is an algorithm (called a fixed-parameter algorithm) that solves the prob-

lem in time f (k ) ·nO (1) , where n is the size of the input and f is an arbitrary computable function
depending on the parameter k only. Further, we say that a parameterized problem admits a poly-
nomial kernel if there exists a polynomial-time algorithm that, given an instance of the problem,
outputs an equivalent instance of the problem whose size is bounded by a polynomial in k . There
is a long list of NP-hard problems that are in FPT under various parameterizations: finding a ver-
tex cover of size k , finding a cycle of length k , finding a maximum independent set in a graph of
treewidth at most k , and so on (see, e.g., [15, 18, 24]).

Choosing a suitable parameter plays an important role in the field of parameterized complexity.
Traditionally, the solution size has been the most sought after parameter. However, in various cir-
cumstances this is not a good parameter. To illustrate this, consider the following problems: Max
Sat and Max Cut. Observe that there always exists a truth assignment that satisfies half of the
clauses, and there is always a max-cut containing at least half the edges. Thus, if we choose solu-
tion size as the parameter, then we get the following trivial algorithm: if k ≤ m/2, then return yes;
else m ≤ 2k , so now any brute-force algorithm is a fixed-parameter algorithm. Thus, if we want
to design a non-trivial fixed-parameter algorithm, then solution size is not a suitable parameter. In
particular, a general message here is as follows.

The natural parameterization of a maximization/minimization problem by the
solution size is not satisfactory if there is a lower bound for the solution size that
is sufficiently large.

Thus, for such cases, it is more natural to parameterize the problem by the difference between the

solution size and the bound. This perspective is known as “above guarantee” parameterization. This
approach was introduced by Mahajan and Raman [42] for the Max Sat and Max Cut problem.
This approach was successfully applied to various problems (see, e.g., [1, 13, 14, 19, 23, 31–33, 43]
for a few illustrative examples).

In some of the above examples (such as the lower bound of m/2 for Max Sat and Max Cut),
there is an explicit lower bound on the solution size, given in terms of the input size. However,
in many cases, we do not have explicit lower bounds. We substantiate this with the example of
the classic Vertex Cover problem. In this problem, we are given a graph G and a positive in-
teger k , and the goal is to test whether there exists a set of vertices C of size at most k that
is a vertex cover (i.e., every edge has at least one endpoint in C). Clearly, the size of a maxi-

mum matching of G or the value of the linear programming relaxation of an integer linear pro-
gram for Vertex Cover is a lower bound on the size of a vertex cover of G. Observe that these
lower bounds are graph-dependent and not a direct function of the input size. This is what we
mean by implicit lower bounds. Coming back to Vertex Cover, we note that the aforementioned
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bounds have led to the study of the problem Vertex Cover Above LP (or Vertex Cover Above
Matching), which has played a central role in the development of the field of parameterized
complexity [15].

In this article, we take the philosophy of above guarantee parameterization a significant con-
ceptual step forward. In particular,

The goal of this article is to study another classical problem—namely, Long
Cycle—from the viewpoint of a new implicit parameterization, that is neither
standard nor an additive above guarantee parameterization, and which is natural
for that problem.

The Long Path problem is to decide, given a directed or undirected n-vertex graph G and an
integer k , whether G contains a path on at least k vertices, that is, a self-avoiding walk with at
leastk vertices. Similarly, the Long Cycle problem is to decide whetherG contains a cycle of length
at least k , that is, a closed self-avoiding walk with at least k vertices. These problems are natural
generalizations of the classical Hamiltonian Path and Hamiltonian Cycle problems and have
been actively studied. In particular, there is a plethora of results about parameterized complexity
of Long Path and Long Cycle (see, e.g., [6, 7, 11, 12, 26, 29, 37, 39, 40, 47]) since the early work
of Monien [44]. Let us just mention here that the fastest known randomized algorithm for Long

Path is due to Björklund et al. [6] and runs in time 1.657k · nO (1) , whereas the fastest known
deterministic algorithm is due to Tsur [46] and runs in time 2.554k · nO (1) . For Long Cycle, the

randomized algorithm with the currently best running time of 4k ·nO (1) was given by Zehavi [49],

and the best deterministic algorithm was given by Fomin et al. [28] and runs in time 4.884k ·nO (1) .
For Long Path, the investigation of above guarantee parameterizations was initiated by

Bezáková et al. [3]. Let s and t be two vertices of a graph G. Clearly, the length of any (s, t )-path
in G is lower-bounded by the distance (being the length of a shortest path), d (s, t ), between these
vertices. Based on this straightforward observation, Bezáková et al. [3] introduced the Longest
Detour problem that asks, given a graph G, two vertices s, t , and a positive integer k , whether G
has an (s, t )-path with at least d (s, t ) + k vertices. They proved that for undirected graphs, this

problem can be solved in time 2O (k ) · nO (1) . That is, it is fixed-parameter tractable parameterized
by k . For the variant of the problem where the question is whether G has an (s, t )-path with

exactly d (s, t ) + k vertices, a randomized algorithm with running time 2.746k · nO (1) and a deter-

ministic algorithm with running time 6.745k · nO (1) were obtained. In a recent work, Fomin et
al. [25] studied the parameterization of Long Path and Long Cycle above the degeneracy d of
the input graphG. Formally, a graphG has degeneracy at most d if every subgraph ofG has a ver-
tex of degree at most d . A classic result by Erdős and Gallai [21] from 1959 states that any graph
of degeneracy d > 1 has a cycle (and hence, also a path) on at least d vertices. If the graph G is
not guaranteed to be 2-connected, then deciding whether G contains a cycle of length d + 2 is al-
ready NP-hard, and therefore parameterization above degeneracy does not make sense. However,
when we add the requirement that G is 2-connected, then deciding whether G contains a cycle of

length d + k parameterized by k can be done in time 2O (k ) · nO (1) , and hence is fixed-parameter
tractable parameterized by k . A similar situation holds for Long Path where connectivity replaces
2-connectivity.

1.1 Multiplicative Above Guarantee Parameterization

To the best of our knowledge, all successful above guarantee parameterizations are additive.
Roughly speaking, this means that if we have a lower bound τ on the optimal solution size, then
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we ask whether we can find a solution of size (at least or at most) τ + k in time f (k ) · nO (1) . Our
main message of this article is the following.

The goal of this article is to introduce the notion of multiplicative above guaran-
tee parameterization. In multiplicative above guarantee parameterization, we ask

whether we can find a solution of size (at least or at most) τ ·k in time д(k ) ·nO (1) .
We illustrate our new definition by designing several fixed-parameter algorithms
parameterized multiplicatively above a guarantee.

We remark that Serna and Thilikos [45] stated a few problems in a way fitting parameterization
above a multiplicative guarantee. However, these were shown to be para-NP-hard [34, 35].

Recall that the girth of a graphG, denoted by γ (G ), is the length of the shortest cycle inG. First,
consider the problem where we are given a graph G and an integer k and the objective is to test
whether there is a cycle of length at least γ (G ) +k inG. If γ (G ) ≤ 2k + 6, then clearly we can solve

the problem in time 2O (k ) · nO (1) by using, for example, the algorithm of Zehavi [48] (adapted to find
a cycle, rather than a path, of specific length). We now show that when 2k +6 < γ (G ), the problem
is solvable in polynomial time. To this end, let (G,k ) be a Yes-instance, and letC be a hypothetical
solution. That is,C is a cycle of length at least γ (G ) +k . Let д = γ (G ). Let u,v,w,x ∈ V (C ) be such
that when we traverseC in some order from u, we encounterv at distance � д

2 � −1 from u, next we

encounterw at additional distance � д

2 � −1 fromv , and lastly we encounter x at additional distance

k ′ = (д+k )−
(
2� д

2 � − 2
)

fromw . Notice thatk ′ ∈ {k+2,k+3}. Since the girth ofG isд andk+3 <
д

2 ,

we have that shortest paths betweenu andv ,v andw , andw and x are unique and they are part of
the cycleC . Therefore, we may compute the shortest paths between the pairs above, and later check
whetheru is reachable from x after deleting these shortest paths. Going over every possible choice
of u,v,w,x ∈ V (C ), this leads to a polynomial time algorithm when 2k + 6 < γ (G ). This implies

that it can be decided in time 2O (k ) · nO (1) whether a graph has a cycle with at leastγ (G )+k vertices.
The informal argument above shows that Long Cycle parameterized additively above girth is

not more “interesting” than just normal Long Cycle, where the input lower bound on solution
size is the parameter. In a sense, it hints that the guarantee may be strengthened. In light of this,
we introduce a new above guarantee version of Long Cycle (and Long Path), termed Long Cy-
cle (Long Path, respectively) parameterized multiplicatively above girth, as follows. The input
consists of a graphG and an integer k , and the objective is to decide whether there is a cycle (path,
respectively) on at least k · γ (G ) vertices.

We note that the choice of girth as a guarantee for Long Cycle is very natural. Indeed, being
the smallest length of a cycle in the graph and thereby the first guarantee that one could think of
for Long Cycle, and also being computable in polynomial time, makes girth the perfect choice.1

Moreover, graphs of large girth have been of interest since the pioneering result in probabilistic
graph theory of Erdős [20] in the late 1950s [20]. They find applications in practice and have been
extensively studied since then (see, e.g., [2, 4, 36]).

1.2 Our Contribution

We first prove our main result, which states that Long Cycle (and Long Path) parameterized
multiplicatively above girth is in FPT. Specifically, we prove the following theorem.

1In fact, our initial goal was to study Long Cycle parameterized additively above girth. After we discovered the simple

argument above, we were motivated to introduce a new, more appropriate, form of parameterization, which was the starting

point of our work.
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Theorem 1.1. Long Cycle (and Long Path) parameterized multiplicatively above girth is solv-

able in time 2O (k2 )n. However, Long Cycle (and Long Path) parameterized multiplicatively above

girth does not admit a polynomial kernel unless NP ⊆ coNP/poly.

As a complementary result to the above theorem, we assert that our parameterization is tight
in the following sense.

Theorem 1.2. For any fixed constant ε > 0, Long Cycle (and Long Path) parameterized multi-

plicatively above д1+ε is para-NP-hard, where д is the girth of the input graph.

Next, we further extend the scope of the applicability of our parameterization by showing that
also Vertex Cover and Connected Vertex Cover parameterized multiplicatively above girth
are in FPT. Given a graph G and an integer k , the objectives of these problems are to decide
whether G has a vertex cover of size at most k · γ (G ), or a connected vertex cover (i.e., a ver-
tex cover that induces a connected subgraph) of size at most k ·γ (G ), respectively. Here, 	γ (G )/2

is a lower bound on the size of an optimal solution. Notably, for Vertex Cover we further derive
a polynomial kernel.

Theorem 1.3. Vertex Cover and Connected Vertex Cover parameterized multiplicatively

above girth are solvable in time 2O (k log k )n. Moreover, Vertex Cover parameterized multiplicatively

above girth admits a polynomial kernel, while Connected Vertex Cover parameterized multiplica-

tively above girth does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Additionally, we show that Max Internal Spanning Tree parameterized multiplicatively
above girth is in FPT. Given a graph G and an integer k , the objective of this problem is to de-
cide whetherG has a spanning tree with at least k ·γ (G ) internal vertices. Here, γ (G )−1 is a lower
bound on the size of an optimal solution.

Theorem 1.4. Max Internal Spanning Tree parameterized multiplicatively above girth is solv-

able in time 2O (k log k )n.

Taking into consideration only graphs whose girth is at least 4, we show that Independent Set
parameterized multiplicatively above girth is also in FPT. Given a graph G and an integer k , the
objective of this problem is to decide whether G has an independent set of size at least k · γ (G ).
Here, �γ (G )/2� is a lower bound on the size of an optimal solution. We remark that the requirement
of having girth at least 4 is mandatory, because on general graphs (and, in particular, on graphs of
girth 3), Independent Set is W[1]-hard parameterized by the sought solution size [15].

Theorem 1.5. Independent Set on graphs of girth at least 4 parameterized multiplicatively above

girth is solvable in time 2O (k2 log k )n.

Lastly, we observe that parameterization above girth (even additively) can often yield NP-
hardness when k is a fixed constant. Specifically, we give Feedback Vertex Set and Cycle Pack-
ing as illustrative simple examples.

Theorem 1.6. Feedback Vertex Set and Cycle Packing parameterized additively above girth

are para-NP-hard.

We remark that we further discuss our results, as well as questions left open, in Section 8.

2 PRELIMINARIES

For graph-theoretic terminology not explicitly defined here, we refer to the book of Diestel [16].
Throughout the article, we consider finite undirected graphs. For a graph G, let V (G ) and E (G )
denote its vertex set and edge set, respectively. When G is clear from context, let n = |V (G ) |
andm = |E (G ) |. The maximum degree of a vertex in G is denoted by Δ(G ). For a vertex v ∈ V (G ),
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let NG (v ) denote the neighborhood of v in G. Given a subsetU ⊆ V (G ), let G[U ] be the subgraph
of G induced byU . The girth of G is the length of the shortest cycle in G,2 and is denoted by γ (G ).
A vertex cover of G is a set of vertices in G whose removal from G yields an edgeless graph. The
vertex cover number of G is the smallest size of a vertex cover of G. A feedback vertex set of G is a
set of vertices in G whose removal from G yields a forest. The feedback vertex set number of G is
the smallest size of a feedback vertex set of G. For any t ∈ N, let Ct denote the cycle on t vertices
and Kt denote the complete graph on t vertices.

A subdivision of an edge e = {u,v} ∈ E (G ) is its replacement by a new degree-2 vertex whose
neighbors are u and v . A subdivision of G is any graph that can be obtained by subdividing some
of the edges of G (where a single edge can be subdivided multiple times). Let Paths(G ) be the set
of all (simple) paths in G. Given two (simple) paths P1 and P2 that share one or two endpoints and
are internally vertex-disjoint, let P1 + P2 denote the (simple) path or cycle (if both endpoints are
shared) obtained by concatenating P1 and P2. The size of a cycle or path is its number of vertices,
and its length is its number of edges. A graph H is a topological minor ofG ifG contains a subgraph
that is isomorphic to some subdivision of H . More explicitly, this notion is defined as follows.

Definition 2.1 (Topological Minor). A graph H is a topological minor of a graph G if there exist
injective functions ϕ : V (H ) → V (G ) and φ : E (H ) → Paths(G ) such that for all e = {h,h′} ∈ E (H ),
the endpoints of φ (e ) are ϕ (h) and ϕ (h′), for all distinct e, e ′ ∈ E (H ), the paths φ (e ) and φ (e ′) are
internally vertex-disjoint, and there do not exist a vertexv in the image of ϕ and an edge e ∈ E (H )
such that v is an internal vertex on φ (e ).

The Cartesian product of two graphs is defined as follows.

Definition 2.2 (Cartesian Product of Graphs). The Cartesian productG×H of two graphsG and H
is the graph whose vertex set is the Cartesian productV (G )×V (H ), where any two vertices (u,u ′)
and (v,v ′) are adjacent if and only if one of the following holds: (i) u = v and {u ′,v ′} ∈ E (H ); or
(ii) u ′ = v ′ and {u,v} ∈ E (G ).

Treewidth is a measure of how “treelike” is a graph, formally defined as follows.

Definition 2.3 (Treewidth). A tree decomposition of a graph G is a pair (T , β ) of a tree T and β :

V (T ) → 2V (G ) , such that

(1) for any edge {x ,y} ∈ E (G ) there exists a node v ∈ V (T ) such that x ,y ∈ β (v ), and
(2) for any vertex x ∈ V (G ), the subgraph ofT induced by the setTx = {v ∈ V (T ) : x ∈ β (v )} is

a non-empty tree.

The width of (T , β ) is maxv ∈V (T ) {|β (v ) |} −1. The treewidth ofG is the minimum width over all tree
decompositions of G.

The treewidth of a graph can be efficiently approximated up to a constant factor as follows.

Proposition 2.1 ([10]). There exists an algorithm that, given a graph G and an integer t , in

time 2O (t )n either determines that the treewidth of G is larger than t , or outputs a tree decomposi-

tion of G of width at most 5t + 4.

The following relation between treewidth and feedback vertex set number is folklore.

Proposition 2.2 ([15]). There exists an algorithm that, given a graph G with a feedback vertex

set U , in time O ( |U |n) outputs a tree decomposition of G of width |U |.

2If G does not contain any cycle, then its girth is defined as∞.
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Parameterized Complexity. Let Π be a decision problem. In the framework of Parameterized
Complexity, each instance of Π is associated with a parameter k . Here, the goal is to confine the
combinatorial explosion in the running time of an algorithm for Π to depend only on k . Formally,

we say that Π is FPT if any instance (I ,k ) of Π is solvable in time f (k ) · |I |O (1) , where f is an
arbitrary function of k . Nowadays, Parameterized Complexity supplies a rich toolkit to design
fixed-parameter algorithms [15]. Parameterized Complexity also provides methods to show that
a problem is unlikely to be in FPT. The main technique is the one of parameterized reductions
analogous to those employed in classical complexity. Here, the concept of W[1]-hardness replaces
the one of NP-hardness, and for reductions we need not only construct an equivalent instance
solvable by a fixed-parameter algorithm, but also ensure that the size of the parameter in the new
instance depends only on the size of the parameter in the original one. If there exists such a reduc-
tion transforming a problem known to be W[1]-hard to another problem Π, then the problem Π is
W[1]-hard as well. Central W[1]-hard-problems include, for example, deciding whether a nonde-
terministic single-tape Turing machine accepts within k steps, Cliqe parameterized by solution
size, and Independent Set parameterized by solution size. If there exists a fixed k such that Π is
NP-hard, then the problem is said to be para-NP-hard, and in particular, it is not in FPT unless
P=NP.

A companion notion to that of fixed-parameter tractability is the one of a polynomial kernel.
Formally, a parameterized problem Π is said to admit a compression if there exists a not necessarily
parameterized problem Π′ and a polynomial-time algorithm that given an instance (I ,k ) of Π, out-
puts an equivalent3 instance I ′ of Π′ such that |I ′ | ≤ p (k ) where p is some function that depends
only on k . If the function p is a polynomial, then the compression is said to be a polynomial com-

pression. In case Π′ = Π, we further say that Π admits a kernel or a polynomial kernel, depending
on whether or not p is a polynomial. For more information on Parameterized Complexity in gen-
eral and kernelization in particular, we refer the reader to recent books, such as those by Cygan et
al. [15], Downey and Fellows [18], and Fomin et al. [24].

3 FIXED-PARAMETER ALGORITHM FOR LONG CYCLE

In this section, we consider the parameterized complexity of Long Cycle parameterized multiplica-
tively above girth, and prove Theorems 1.1 and 1.2. For our positive result, we require the following
definition and propositions. First, we give the definition of a graph called a t-prism, which has 2t
vertices and 3t edges (see Figure 1).

Definition 3.1 (Prism). For any t ∈ N, the t-prism is the Cartesian product Ct × K2.

The following proposition asserts that a graph of sufficiently large treewidth necessarily con-
tains a large prism as a topological minor.

Proposition 3.1 ([5]). For any k ∈ N, any graph G of treewidth at least 60k2 contains a k-prism

as a topological minor.4

In case the treewidth of the graph is small, we will be able to solve the problem by making use
of the following proposition.

Proposition 3.2 ([8]). There exists an algorithm that, given a graph G and a tree decomposition

of G of width t , in time 2O (t )n outputs a cycle (if one exists) and a path in G of maximum sizes.

The main combinatorial lemma we need for our positive result is as follows. This lemma handles
the case where the treewidth of the graph is large.

3That is, (I, k ) is a Yes-instance of Π if and only if I ′ is a Yes-instance of Π′.
4Although the result is mentioned in terms of minors, the proof given in Birmilé et al. [5] yields the result stated here.

ACM Transactions on Computation Theory, Vol. 13, No. 3, Article 18. Publication date: August 2021.



18:8 F. V. Fomin et al.

Fig. 1. A 4k-prism.

Lemma 3.1. For any k ∈ N, any graph G that contains the 4k-prism as a topological minor also

has a cycle on at least γ (G ) · k vertices.

Proof. Let H be the 4k-prism. Notice that the vertex set of H can be denoted by V (H ) =
{a1,a2, . . . ,a4k ,b1,b2, . . . ,b4k } so that H [{a1,a2, . . . ,a4k }] and H [{b1,b2, . . . ,b4k }] are cycles
and {{ai ,bi } : i ∈ {1, 2, . . . , 4k }} ⊆ E (H ) (see Figure 1). Let ϕ : V (H ) → V (G ) and φ : E (H ) →
Paths(G ) be some two functions that witness that H is a topological minor ofG. Let S1, . . . , S2k be
a set of 2k vertex-disjoint cycles of length 4 in H defined as follows: For each i ∈ {0, 1, . . . , 2k −
1}, Si = H [{a2i+1,a2i+2,b2i+2,b2i+1}] (see Figure 1). Additionally, we define two (not vertex-
disjoint) cycles C and C ′ in H as follows: C = H [{a1,a2,b2,b3,a3,a4, . . . ,a4k−1,a4k ,b4k}] and C ′=
H [{a1,b1,b2,a2,a3,b3, . . . ,b4k ,a4k ,a1}] (see Figure 1).

Now, for each i ∈ {0, 1, . . . , 2k−1}, letAi = φ ({a2i+1,a2i+2})+φ ({a2i+2,b2i+2})+φ ({b2i+2,b2i+1})+
φ ({b2i+1,a2i+1}). This notation is well-defined as required to concatenate paths—specifically, here
we concatenated internally vertex-disjoint paths sharing exactly one endpoint except for the last
concatenation where both endpoints are shared (by the paths φ ({a2i+1,a2i+2}) +φ ({a2i+2,b2i+2}) +
φ ({b2i+2,b2i+1}) and φ ({b2i+1,a2i+1})). Roughly speaking,Ai is the cycle to which φ maps Si . Notice
that {Ai }2k−1

i=0 is a collection of 2k vertex-disjoint cycles in G. Therefore, together they contain at
least 2γ (G ) · k edges.

Additionally, let B = φ ({a1,a2}) + φ ({a2,b2}) + φ ({b2,b3}) + φ ({b3,a3} + · · · + φ ({a4k ,b4k }+
φ ({b4k ,a1}). Again, this notation is well-defined as required to concatenate paths. Similarly, letB′ =
φ ({a1,b1})+φ ({b1,b2})+φ ({b2,a2})+φ ({a2,a3}+· · ·+φ ({b4k ,a4k }+φ ({a4k ,a1}). Roughly speaking,B
and B′ are the cycles to which φ maps C and C ′, respectively. Notice that E (H ) = E (C ) ∪ E (C ′).
Thus, we deduce that

⋃2k−1
i=0 E (Ai ) ⊆ E (C ) ∪ E (C ′). From this, we further deduce that at least one

among the cycles B and B′ must contain at least half the edges in
⋃2k−1

i=0 E (Ai ). Because we already
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showed that |⋃2k−1
i=0 E (Ai ) | ≥ 2γ (G ) ·k , this means that at least one among the cycles B and B′ has

length (and therefore also size) at least γ (G ) · k . �

By Proposition 3.1, any graph G of treewidth at least 60 · (4k )2 = 960k2 contains a 4k-prism as
a topological minor. Thus, we derive the following corollary to Lemma 3.1.

Corollary 3.1. For anyk ∈ N, any graphG of treewidth at least 960k2 has a cycle on at leastγ (G ) ·
k vertices.

We are now ready to prove our main theorem, restated below.

Theorem 1.1. Long Cycle (and Long Path) parameterized multiplicatively above girth is solv-

able in time 2O (k2 )n. However, Long Cycle (and Long Path) parameterized multiplicatively above

girth does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We first consider the fixed-parameter tractability of the problem. Given an in-
stance (G,k ) of Long Cycle (Long Path), the algorithm is executed as follows. First, it calls the

algorithm in Proposition 2.1 with t = 960k2 in time 2O (t )n = 2O (k2 )n to either determine that the
treewidth of G is larger than t , or output a tree decomposition of G of width at most 5t + 4. In
the first case, it concludes that (G,k ) is a Yes-instance of Long Cycle (Long Path, respectively),
which is correct by Corollary 3.1. In the second case, it calls the algorithm in Proposition 3.2 to

obtain a cycle (path, respectively) of maximum size in G in time 2O (5t+4)n = 2O (k2 )n, and con-
cludes that (G,k ) is a Yes-instance of Long Cycle (Long Path, respectively) if and only if the size
of this cycle (path, respectively) is at least γ (G ) ·k . This completes the proof of the first part of the
theorem.

For the second part of the theorem, we note that Long Cycle (Long Path, respectively) is
known not to admit a polynomial kernel parameterized by the sought solution size unless NP ⊆
coNP/poly [9, 15]. This is clearly also the case when parameterized by a parameter upper-bounded
by the sought solution size, and in particular when parameterized multiplicatively above girth. �

Theorem 1.2. For any fixed constant ε > 0, Long Cycle (and Long Path) parameterized multi-

plicatively above д1+ε is para-NP-hard, where д is the girth of the input graph.

Proof. Consider some fixed constant ε > 0. Our proof is based on a reduction from the Hamil-
tonian Cycle (Hamiltonian Path, respectively) problem, which is known to be NP-hard [30], to
Long Cycle (Long Path, respectively) parameterized multiplicatively above д1+ε . In the Hamil-
tonian Cycle (Hamiltonian Path, respectively) problem, we are given a graph G and the ob-
jective is to decide whether G contains a (simple) cycle (path, respectively) on n vertices. In what
follows, we only describe the proof for Long Cycle (since the proof for Long Path is similar).

We now describe the reduction. To this end, let G be an instance of Hamiltonian Cycle. Let b
be the smallest positive integer such that b (1 + ε ) ∈ N. (Note that b depends only on ε .) Let a =
b (1+ε )−1. Notice that b ≤ a (since b ·ε is a positive integer). Now, subdivide each edge inG na −1
times, and letG ′ be the resulting graph. Let H be the disjoint union ofG ′ andC , whereC is a cycle
of length nb . Finally, set k = 1, and let (H ,k ) be the output instance of Long Cycle parameterized
multiplicatively above д1+ε . Notice that here, д is the girth of H , i.e., д = γ (H ).

Notice that for any � ∈ N, for any cycle of size � inG, there is a corresponding cycle of size � ·na

inG ′, and vice versa. This implies that any cycle inG ′ has size at least 3na . Thus, asb ≤ a, there is a
unique shortest cycle inH , which isC . Therefore,γ (H ) = nb . Then, any cycle (path, respectively)C ′

on at least (γ (H ))1+εk = nb (1+ε ) = n1+a vertices in H is fully contained in G ′. From this, we
conclude that for any cycle of sizen inG, there is a corresponding cycle of size (γ (H ))1+εk inH , and
vice versa. This yields the correctness of the reduction. In particular, a fixed-parameter algorithm
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for Long Cycle parameterized multiplicatively above д1+ε would solve (H ,k ) in polynomial time
(because k = 1), and thereby yield a polynomial-time algorithm for Hamiltonian Cycle. �

4 FIXED-PARAMETER ALGORITHMS FOR (CONNECTED) VERTEX COVER

In this section, we consider the parameterized complexity of (Connected) Vertex Cover param-
eterized multiplicatively above girth, and prove Theorem 1.3. The following proposition asserts
that every graph contains either a small feedback vertex set or a large number of vertex-disjoint
cycles (with a logarithmic gap), which can also be computed efficiently.

Proposition 4.1 ([22, 41]). For some fixed constant c ∈ N, there exists an algorithm that, given

any r ∈ N and a graph G, in time r O (1)n outputs either r vertex-disjoint cycles in G or a feedback

vertex set of G of size at most cr log r .

In what follows, we use c to refer to the constant in this proposition. In case the treewidth of the
graph is small, we will be able to solve the problem by making use of the following proposition.

Proposition 4.2 ([15, 27]). There exist algorithms for Vertex Cover and Connected Vertex

Cover that run in time 2O (t )n, where t is the treewidth of the input graph.5

Further, in case the feedback vertex set number is small, we will make use of the following
proposition for kernelization purposes.

Proposition 4.3 ([38]). The Vertex Cover problem admits a polynomial kernel parameterized

by the feedback vertex set number f of the input graph with O ( f 3) vertices.

The main combinatorial lemma required for our algorithms handles the case where the feedback
vertex set number (and hence also treewidth) of the graph is high.

Lemma 4.1. For any r ∈ N, any graph G that contains r vertex-disjoint cycles has vertex cover

number at least
γ (G )

2 · r .

Proof. Let C be a collection of r vertex-disjoint cycles of G. Consider any vertex cover U of G.
Then, U must contain at least half the vertices of each cycle in C in order to contain an end-
point of every edge of that cycle. Since each cycle in C contains at least γ (G ) vertices, the lemma
follows. �

We are now ready to prove our main theorem.

Theorem 1.3. Vertex Cover and Connected Vertex Cover parameterized multiplicatively

above girth are solvable in time 2O (k log k )n. Moreover, Vertex Cover parameterized multiplicatively

above girth admits a polynomial kernel, while Connected Vertex Cover parameterized multiplica-

tively above girth does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We first consider the fixed-parameter tractability of the problems. Given an in-
stance (G,k ) of (Connected) Vertex Cover, the algorithm is executed as follows. First, the al-

gorithm calls the algorithm in Proposition 4.1 with r = 2k + 1 in time r O (1)n = kO (1)n to obtain
either a feedback vertex set of G of size at most cr log r or r > 2k vertex-disjoint cycles in G. In

the second case, by Lemma 4.1 G has vertex cover number strictly larger than
γ (G )

2 · 2k = γ (G ) · k .
Thus, for both Vertex Cover and Connected Vertex Cover the algorithm correctly determines
that the answer is No. In the first case, the algorithm calls the algorithm in Proposition 2.2 in
time O (k logk ·n) to obtain a tree decomposition ofG of width at most cr log r = O (k logk ). Then,

it calls the algorithm in Proposition 4.2 in time 2O (k log k )n to obtain a (connected) vertex cover ofG

5Such an algorithm for Connected Vertex Cover is not given explicitly, but it is easily seen to follow from the approach

of dynamic programming over tree decompositions using representative sets of Fomin et al. [27].
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of minimum size, and concludes that (G,k ) is a Yes-instance of (Connected) Vertex Cover if and
only if the output (connected) vertex cover has size at most γ (G ) · k . This completes the proof of
the first part of the theorem.

For the second part of the theorem, first consider Vertex Cover parameterized multiplicatively
above girth. Then, we proceed similarly to the fixed-parameter algorithm above. More precisely,
given an instance (G,k ) of Vertex Cover, the algorithm is executed as follows. First, the algorithm

calls the algorithm in Proposition 4.1 with r = 2k + 1 in time r O (1)n = kO (1)n to obtain either a
feedback vertex set ofG of size at most cr log r or r > 2k vertex-disjoint cycles inG. In the second
case, the algorithm correctly determines that the answer is No. In the first case, the algorithm
calls the polynomial-time algorithm in Proposition 4.3 to obtain an equivalent instance of Vertex
Cover with O ((cr log r )3) = O ((k logk )3) vertices and in particular of size polynomial in k .6

Lastly, we note that Connected Vertex Cover is known not to admit a polynomial kernel
parameterized by the sought-out solution size unless NP ⊆ coNP/poly [15, 17]. This is clearly also
the case when parameterized by a parameter upper-bounded by the sought solution size, and in
particular when parameterized multiplicatively above girth. �

5 FIXED-PARAMETER ALGORITHM FOR MAX INTERNAL SPANNING TREE

In this section, we consider the parameterized complexity of Max Internal Spanning Tree pa-
rameterized multiplicatively above girth, and prove Theorem 1.4.

In case the treewidth of the graph is small, we will be able to solve the problem by making use
of the following proposition.

Proposition 5.1 ([15, 27]). There exists an algorithm for Max Internal Spanning Tree that

runs in time 2O (t )n, where t is the treewidth of the input graph.7

As before, the main combinatorial lemmas required for our algorithm handle the case where the
feedback vertex set number (and hence also treewidth) of the graph is high.

Lemma 5.1. For any r ∈ N, any connected graph G that contains r vertex-disjoint cycles has a

spanning tree with at least (γ (G ) − 1) · r − 1 internal vertices.

Proof. Let C be a collection of r vertex-disjoint cycles ofG. LetH be the graph obtained fromG
by replacing each cycle C ∈ C by a single new vertex vC (that is made adjacent to all vertices
previously adjacent to at least one vertex inC). LetT be some spanning tree of H (whose existence
follows from the supposition that G, and hence also H , is connected), and root it arbitrarily.

Now, we traverseT in preorder, and when we encounter a new vertex of the formvC , we perform
the following operations. Let p be the parent of vC in T (if it is not the root), and let u be some
vertex in C that is adjacent to p (if vC is the root, let u be any vertex in C). Then, replace vC in T
by a path P from u to one of its neighbors, x , inC so that this path P contains exactly all the edges
of C except one (between u and the chosen neighbor x ). Here, make u be the child of p in T , and
every child w of vC is handled as follows: if w ∈ V (G ), then let y be some vertex in V (P ) such
that {y,w } ∈ E (G ), and otherwise (if w � V (G )), then let y be some vertex in V (P ) such that there
exists a vertex in the cycle represented by w that is a neighbor of y; then, add the edge {y,w } toT
(this replaces the edge {vC ,w }), and consider y to be the parent of w .8

6Similarly, the question of the kernelization complexity of Max Internal Spanning Tree parameterized multiplicatively

above girth boils down to the question of the kernelization complexity of Max Internal Spanning Tree parameterized

by the feedback vertex set number of the input graph, which is not known.
7As before, such an algorithm for Max Internal Spanning Tree is not given explicitly, but it is easily seen to follow from

the approach of Fomin et al. [27].
8Intuitively, the subtree of w is “hung” from a vertex of the path P such that w (or some vertex in the cycle represented

by w , if w is a new vertex) is adjacent to it in G .
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Notice that at the end of this process, we obtain a spanning tree ofG with the following property.
For each cycle C ∈ C, all vertices except possibly one are internal vertices, with the exception of
possibly one cycle (if there was a cycle represented by the root of T ) where all vertices except
possibly two are internal vertices. Thus, this spanning tree has at least (γ (G ) − 1) · r − 1 internal
vertices. �

We are now ready to prove our main theorem.

Theorem 1.4. Max Internal Spanning Tree parameterized multiplicatively above girth is solv-

able in time 2O (k log k )n.

Proof. Given an instance (G,k ) of Max Internal Spanning Tree, the algorithm is executed as
follows. Without loss of generality, we suppose that G is connected in the case of Max Internal
Spanning Tree, else we clearly have a No-instance of this problem. First, the algorithm calls the

algorithm in Proposition 4.1 with r = 2k + 1 in time r O (1)n = kO (1)n to obtain either a feedback
vertex set of G of size at most cr log r or r > 2k vertex-disjoint cycles in G. In the second case,
by Lemma 5.1 G has a spanning tree with at least (γ (G ) − 1) · 2k − 1 ≥ γ (G ) · k internal vertices
(where the last inequality follows from the facts that γ (G ) ≥ 3 and k ∈ N). Thus, the algorithm
correctly determines that the answer is Yes. In the first case, the algorithm calls the algorithm in
Proposition 2.2 in time O (k logk ·n) to obtain a tree decomposition ofG of width at most cr log r =
O (k logk ). Then, it calls the algorithm in Proposition 5.1 in time 2O (k log k )n to obtain a spanning
tree of G of maximum number of internal vertices, and concludes that (G,k ) is a Yes-instance of
Max Internal Spanning Tree if and only if the output spanning tree has at least γ (G ) ·k internal
vertices. �

6 FIXED-PARAMETER ALGORITHM FOR INDEPENDENT SET ON GRAPHS OF

GIRTH AT LEAST 4

In this section, we consider the parameterized complexity of Independent Set on graphs of girth
at least 4 parameterized multiplicatively above girth, and prove Theorem 1.5.

In case the treewidth of the graph is small, we will be able to solve the problem by making use
of the following proposition.

Proposition 6.1 ([15]). There exists an algorithm for Independent Set that runs in time 2O (t )n,

where t is the treewidth of the input graph.

Unlike before, here we distinguish between the case where Δ(G ′) is “large” and the case where
it is “small,” whereG ′ is the subgraph obtained fromG by iteratively removing vertices of degree 1.
Only in the latter case, we will consider its treewidth. For the first case, we will make use of the
following lemma.

Lemma 6.1. Any graph G of minimum degree 2 contains an independent set of size at

least
�γ (G )/2�−1

2 Δ(G ).

Proof. Let v be a vertex of degree Δ(G ) in G. For every u ∈ NG (v ), construct a path Pu as
follows: initialize Pu to be the path consisting only of v and u; then, if the endpoint of Pu that is
not v has a neighbor that does not belong to Pu , extend Pu using such a neighbor (if there is more
than one choice for the neighbor, then choose one arbitrarily). For every u ∈ NG (v ), because the
minimum degree of G is 2, the path Pu has at least γ (G ) vertices. Now, let P ′u denote the subpath
of Pu that consists of the �γ (G )/2� vertices that are closest to v (including v). Notice that for all
distinct u,w ∈ NG (v ), we have that (i) V (P ′u ) ∩V (P ′w ) = {v} and (ii) there do not exist x ∈ V (P ′u )
and y ∈ V (P ′w ) that are adjacent—indeed, if any of these two conditions was false, then the union
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of P ′u and P ′v would have contained a cycle of length at most |V (P ′u ) |+ |V (P ′w ) |−1 = 2�γ (G )/2�−1 <
γ (G ), which is a contradiction.

Let S ⊆ V (G ) be defined as follows. For every u ∈ NG (v ), insert into S every vertex in V (P ′u )
whose distance from v in P ′u is even (so, we insert the second, fourth, sixth, etc., vertices on P ′u
when the first vertex is supposed to be v). Thus, by condition (i) above, |S | ≥ �γ (G )/2�−1

2 Δ(G ).
Moreover, by condition (ii) and because every path P ′u , u ∈ NG (v ), is an induced path (else we
obtain a cycle of length smaller than γ (G )), we have that S is an independent set. �

For the second case and where the feedback vertex set number (and hence also treewidth) is
large, we will make use of the following lemma.

Lemma 6.2. For any r ∈ N, any graph G that contains r vertex-disjoint cycles has an independent

set of size at least
γ (G ) ·r
Δ(G )+1 .

Proof. BecauseG contains r vertex-disjoint cycles, we have that |V (G ) | ≥ γ (G ) ·r . Observe that
every vertex inG can be adjacent to at most Δ(G ) other vertices. So,G must contain an independent

set of size at least |V (G ) |
Δ(G )+1 ≥

γ (G ) ·r
Δ(G )+1 . �

We are now ready to prove our main theorem.

Theorem 1.5. Independent Set on graphs of girth at least 4 parameterized multiplicatively above

girth is solvable in time 2O (k2 log k )n.

Proof. Given an instance (G,k ) of Independent Set on graphs of girth at least 4, the algorithm
is executed as follows. Let G ′ be the subgraph of G obtained by iteratively removing vertices of
degree at most 1 from G. Observe that γ (G ) = γ (G ′). We distinguish between two cases based
on Δ(G ′). First, suppose that Δ(G ′) ≥ 16k . Then, by Lemma 6.1,G ′ (and hence alsoG) contains an

independent set of size at least
�γ (G′)/2�−1

2 Δ(G ′) ≥ γ (G )−3
4 · 16k = 4γ (G )k − 12k ≥ γ (G )k . Here, the

last inequality followed because γ (G ) ≥ 4. So, the algorithm correctly determines that the answer
is Yes.

Second, suppose that Δ(G ′) ≤ 16k . Then, the algorithm calls the algorithm in Proposition 4.1

with r = (16k + 1)k in time r O (1)n = kO (1)n to obtain either a feedback vertex set of G of size
at most cr log r or r vertex-disjoint cycles in G. First, consider the second (sub)case. Then, G ′

has the same r vertex-disjoint cycles. So, by Lemma 6.2 G has an independent set of size at

least
γ (G′) ·r
Δ(G′)+1 ≥

γ (G ) ·(16k+1)k
16k+1 = γ (G ) ·k . Thus, the algorithm correctly determines that the answer is

Yes. Now, consider the second (sub)case. Here, the algorithm calls the algorithm in Proposition 2.2
in time O (k2 logk ·n) to obtain a tree decomposition ofG of width at most cr 2 log r = O (k2 logk ).

Then, it calls the algorithm in Proposition 6.1 in time 2O (k2 log k )n to obtain an independent set ofG
of maximum size, and concludes that (G,k ) is a Yes-instance of Independent Set if and only if
the output set has size at least γ (G ) · k . �

7 HARDNESS FOR FEEDBACK VERTEX SET AND CYCLE PACKING

Lastly, we prove the correctness of Theorem 1.6.

Theorem 1.6. Feedback Vertex Set and Cycle Packing parameterized additively above girth

are para-NP-hard.

Proof. We only prove the lemma for Feedback Vertex Set since the proof for Cycle Packing
follows from symmetric arguments. For this purpose, we give a reduction from Feedback Vertex
Set itself, which is an NP-hard problem [30]. Toward this, let (G,k ) be an instance of Feebdack
Vertex Set. Then, obtain H from G by subdividing each edge of G k times, and adding a new
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cycle of size k . Clearly,G has a feedback vertex set of size at most k if and only if H has a feedback
vertex set of size at most k+1 (the extra 1 is required to hit the new cycle). Moreover, the girth ofH
is exactly k . Thus, an algorithm for Feedback Vertex Set parameterized additively above girth
should solve (H , 1) in polynomial time (since the parameter is 1), thereby determining whether
the feedback vertex set number of H is at most k , and consequently solving (G,k ). �

8 CONCLUSION AND OPEN PROBLEMS

In this article, we highlighted the notion and usefulness of parameterization multiplicatively above
a guarantee, demonstrated using girth as the guarantee. As we have argued, girth is (arguably) the
most natural guarantee for the Long Cycle problem, and indeed this problem was our starting
point. After proving that Long Cycle problem (as well as Long Path) parameterized multiplica-
tively above a girth is in FPT, we turned to consider other problems under this parameterization,
motivated by the extensive body of work existing on graphs of large girth. It turned out that pa-
rameterization multiplicatively above girth is quite fruitful—we were able to show that Vertex
Cover, Connected Vertex Cover, Max Internal Spanning Tree and Independent Set on
graphs of girth at least 4 are in FPT with this parameterization. All of our proofs followed the
same win-win approach (having either small treewidth or a specific topological minor), yet the
details in its application varied. Additionally, we obtained a polynomial kernel for Vertex Cover
parameterized multiplicatively above a girth.

We conclude this article with directions for further research and open questions.

— The main venue for research that we would like to highlight is the exploration of other
guarantees that make sense for multiplicative parameterization.

— Can the time complexities (and kernel size) presented in this article be substantially im-
proved? In particular, for which of the problems considered in this article can we design

a fixed-parameter algorithm of time complexity 2O (k ) · n, and for which can we refute the
existence of such an algorithm (say, under the Exponential Time Hypothesis)?

— We have shown that for Feedback Vertex Set and Cycle Packing parameterization (even
additively) above girth is futile. However, for these problems, girth is not a guarantee. Are
there problems where girth is a guarantee, yet parameterization (additively or multiplica-
tively) above it is futile?

— For problems on directed graphs, parameterization multiplicatively above girth (which is
now the length of a shortest directed cycle) may also make sense. For example, what is the
parameterized complexity of Directed Long Cycle under this parameterization?

REFERENCES

[1] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. 2010. Solving MAX-r -SAT above a tight

lower bound. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). SIAM,

511–517.

[2] Mohsen Bayati, Andrea Montanari, and Amin Saberi. 2009. Generating random graphs with large girth. In Proceedings

of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 566–575.

[3] Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin. 2017. Finding detours is fixed-parameter

tractable. In 44th International Colloquium on Automata, Languages, and Programming (ICALP’17 ) (Leibniz Interna-

tional Proceedings in Informatics (LIPIcs)), Vol. 80. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 54:1–54:14.

[4] Norman Biggs. 1998. Constructions for cubic graphs with large girth. Electron. J. Combin. (1998), A1–A1.

[5] E. Birmelé, J. A. Bondy, and B. A. Reed. 2007. Brambles, prisms and grids. In Graph Theory in Paris: Proceedings of

a Conference in Memory of Claude Berge, Adrian Bondy, Jean Fonlupt, Jean-Luc Fouquet, Jean-Claude Fournier, and

Jorge L. Ramírez Alfonsín (Eds.). Birkhäuser Basel, Basel, 37–44.

[6] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. 2010. Narrow sieves for parameterized paths

and packings. CoRR abs/1007.1161 (2010).

[7] Hans L. Bodlaender. 1993. On linear time minor tests with depth-first search. J. Algorithms 14, 1 (1993), 1–23.

ACM Transactions on Computation Theory, Vol. 13, No. 3, Article 18. Publication date: August 2021.



Multiplicative Parameterization Above a Guarantee 18:15

[8] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. 2015. Deterministic single exponential time

algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243 (2015), 86–111. https://doi.org/10.

1016/j.ic.2014.12.008

[9] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. 2009. On problems without poly-

nomial kernels. J. Comput. Syst. Sci. 75, 8 (2009), 423–434.

[10] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, and Michal Pilipczuk.

2016. A ck n 5-approximation algorithm for treewidth. SIAM J. Comput. 45, 2 (2016), 317–378. https://doi.org/10.1137/

130947374

[11] Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan Richter, Peter Rossmanith, Sing-Hoi Sze, and Fenghui

Zhang. 2009. Randomized divide-and-conquer: Improved path, matching, and packing algorithms. SIAM J. Comput.

38, 6 (2009), 2526–2547. https://doi.org/10.1137/080716475

[12] Jianer Chen, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. 2007. Improved algorithms for path, matching, and

packing problems. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07). SIAM,

298–307.

[13] Robert Crowston, Michael R. Fellows, Gregory Z. Gutin, Mark Jones, Eun Jung Kim, Fran Rosamond, Imre Z. Ruzsa,

Stéphan Thomassé, and Anders Yeo. 2014. Satisfying more than half of a system of linear equations over GF(2): A

multivariate approach. J. Comput. Syst. Sci. 80, 4 (2014), 687–696.

[14] Robert Crowston, Mark Jones, Gabriele Muciaccia, Geevarghese Philip, Ashutosh Rai, and Saket Saurabh. 2013. Poly-

nomial kernels for lambda-extendible properties parameterized above the Poljak-Turzik bound. In IARCS Annual Con-

ference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’13) (Leibniz International

Proceedings in Informatics (LIPIcs)), Vol. 24. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

43–54.

[15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer. https://doi.org/10.1007/978-3-319-21275-3

[16] Reinhard Diestel. 2005. Graph Theory (3rd ed.). Graduate Texts in Mathematics, Vol. 173. Springer-Verlag, Berlin.

xvi+411 pages.

[17] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. 2014. Kernelization lower bounds through colors and IDs. ACM

Trans. Algorithms (TALG) 11, 2 (2014), 13.

[18] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer. https://doi.

org/10.1007/978-1-4471-5559-1

[19] Zdenek Dvorák and Matthias Mnich. 2017. Large independent sets in triangle-free planar graphs. SIAM J. Discr. Math.

31, 2 (2017), 1355–1373.

[20] Paul Erdős. 1959. Graph theory and probability. Can. J. Math. 11 (1959), 34–38.

[21] P. Erdős and T. Gallai. 1959. On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar 10 (1959), 337–356

(unbound insert).

[22] P. Erdős and L. Pósa. 1965. On independent circuits contained in a graph. Can. J. Math. 17 (1965), 347–352.

[23] Michael Etscheid and Matthias Mnich. 2018. Linear kernels and linear-time algorithms for finding large cuts. Algo-

rithmica 80, 9 (2018), 2574–2615.

[24] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. 2018. Kernelization: Theory of Parameterized Preprocessing.

Cambridge University Press.

[25] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. 2019. Going

far from degeneracy. In 27th Annual European Symposium on Algorithms (ESA’19) (Leibniz International Proceedings

in Informatics (LIPIcs)), Michael A. Bender, Ola Svensson, and Grzegorz Herman (Eds.), Vol. 144. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 47:1–47:14. https://doi.org/10.4230/LIPIcs.ESA.2019.47

[26] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2016. Efficient computation of representative

families with applications in parameterized and exact algorithms. J. ACM 63, 4 (2016), 29:1–29:60. https://doi.org/10.

1145/2886094

[27] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2016. Efficient computation of representative

families with applications in parameterized and exact algorithms. J. ACM 63, 4 (2016), 29:1–29:60.

[28] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. 2018. Long directed (s, t)-path:

FPT algorithm. Inf. Process. Lett. 140 (2018), 8–12.

[29] Harold N. Gabow and Shuxin Nie. 2008. Finding a long directed cycle. ACM Trans. Algorithms 4, 1 (2008).

[30] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman.

[31] Gregory Gutin, Eun Jung Kim, Michael Lampis, and Valia Mitsou. 2011. Vertex cover problem parameterized above

and below tight bounds. Theory Comput. Syst. 48, 2 (2011), 402–410.

ACM Transactions on Computation Theory, Vol. 13, No. 3, Article 18. Publication date: August 2021.

https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1137/130947374
https://doi.org/10.1137/080716475
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPIcs.ESA.2019.47
https://doi.org/10.1145/2886094


18:16 F. V. Fomin et al.

[32] Gregory Gutin, Leo van Iersel, Matthias Mnich, and Anders Yeo. 2012. Every ternary permutation constraint satisfac-

tion problem parameterized above average has a kernel with a quadratic number of variables. J. Comput. Syst. Sci. 78,

1 (2012), 151–163.

[33] Gregory Z. Gutin and Viresh Patel. 2016. Parameterized traveling salesman problem: Beating the average. SIAM J.

Discrete Math. 30, 1 (2016), 220–238.

[34] Gregory Z. Gutin, Arash Rafiey, Stefan Szeider, and Anders Yeo. 2007. The linear arrangement problem parameterized

above guaranteed value. Theory Comput. Syst. 41, 3 (2007), 521–538.

[35] Gregory Z. Gutin, Stefan Szeider, and Anders Yeo. 2008. Fixed-parameter complexity of minimum profile problems.

Algorithmica 52, 2 (2008), 133–152.

[36] Carlos Hoppen and Nicholas Wormald. 2018. Local algorithms, regular graphs of large girth, and random regular

graphs. Combinatorica 38, 3 (2018), 619–664.

[37] Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. 2008. Algorithm engineering for color-coding with applica-

tions to signaling pathway detection. Algorithmica 52, 2 (2008), 114–132. https://doi.org/10.1007/s00453-007-9008-7

[38] Bart M. P. Jansen and Hans L. Bodlaender. 2013. Vertex cover kernelization revisited: Upper and lower bounds for a

refined parameter. Theory Comput. Syst. 53, 2 (2013), 263–299.

[39] Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. 2008. Divide-and-color. In Proceedings of the 34th

International Workshop Graph-Theoretic Concepts in Computer Science (WG’08) Lecture Notes in Computer Science,

Vol. 4271. Springer, 58–67.

[40] Ioannis Koutis. 2008. Faster algebraic algorithms for path and packing problems. In Proceedings of the 35th International

Colloquium on Automata, Languages and Programming (ICALP’08) Lecture Notes in Computer Science, Vol. 5125.

Springer, 575–586.

[41] Daniel Lokshtanov, Amer E. Mouawad, Saket Saurabh, and Meirav Zehavi. 2019. Packing cycles faster than Erdős-Pósa.

SIAM J. Discret. Math. 33, 3 (2019), 1194–1215.

[42] Meena Mahajan and Venkatesh Raman. 1999. Parameterizing above guaranteed values: MaxSat and maxcut. J. Algo-

rithms 31, 2 (1999), 335–354.

[43] Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. 2009. Parameterizing above or below guaranteed values. J.

Comput. Syst. Sci. 75, 2 (2009), 137–153.

[44] B. Monien. 1985. How to find long paths efficiently. In Analysis and Design of Algorithms for Combinatorial Problems

(Udine, 1982). North-Holland Mathematics Studies, Vol. 109. North-Holland, Amsterdam, 239–254. https://doi.org/10.

1016/S0304-0208(08)73110-4

[45] Maria J. Serna and Dimitrios M. Thilikos. 2005. Parameterized complexity for graph layout problems. Bull. EATCS 86

(2005), 41–65.

[46] Dekel Tsur. 2018. Faster deterministic parameterized algorithm for k-Path. CoRR abs/1808.04185 (2018).

arXiv:1808.04185. http://arxiv.org/abs/1808.04185

[47] Ryan Williams. 2009. Finding paths of length k in O∗ (2k ) time. Inf. Process. Lett. 109, 6 (2009), 315–318.

[48] Meirav Zehavi. 2015. Mixing color coding-related techniques. In ESA 2015, Lecture Notes in Computer Science,

Vol. 9294. Springer, 1037–1049.

[49] Meirav Zehavi. 2016. A randomized algorithm for long directed cycle. Inf. Process. Lett. 116, 6 (2016), 419–422. https:

//doi.org/10.1016/j.ipl.2016.02.005

Received November 2020; revised January 2021; accepted March 2021

ACM Transactions on Computation Theory, Vol. 13, No. 3, Article 18. Publication date: August 2021.

https://doi.org/10.1007/s00453-007-9008-7
https://doi.org/10.1016/S0304-0208(08)73110-4
http://arxiv.org/abs/1808.04185.
http://arxiv.org/abs/1808.04185
https://doi.org/10.1016/j.ipl.2016.02.005

