
17

Parameterized Complexity of Elimination Distance to

First-Order Logic Properties

FEDOR V. FOMIN and PETR A. GOLOVACH, Department of Informatics, University

of Bergen, Norway

DIMITRIOS M. THILIKOS, LIRMM, Univ Montpellier, CNRS, Montpellier, France

The elimination distance to some target graph property P is a general graph modification parameter intro-

duced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible

in first-order logic. We delimit the problem’s fixed-parameter tractability by identifying sufficient and nec-

essary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following

meta-theorem: For every graph property P expressible by a first order-logic formula φ ∈ Σ3, that is, of the

form

φ = ∃x1∃x2 · · · ∃xr ∀y1∀y2 · · · ∀ys ∃z1∃z2 · · · ∃zt ψ ,

where ψ is a quantifier-free first-order formula, checking whether the elimination distance of a graph to

P does not exceed k , is fixed-parameter tractable parameterized by k . Properties of graphs expressible by

formulas from Σ3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded

dominating set. We complement this theorem by showing that such a general statement does not hold for

formulas with even slightly more expressive prefix structure: There are formulasφ ∈ Π3, for which computing

elimination distance is W[2]-hard.

CCS Concepts: • Theory of computation→ Complexity theory and logic; Parameterized complexity

and exact algorithms;

Additional Key Words and Phrases: First-order logic, elimination distance, parameterized complexity, descrip-

tive complexity

ACM Reference format:

Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. 2022. Parameterized Complexity of Elimination

Distance to First-Order Logic Properties. ACM Trans. Comput. Logic 23, 3, Article 17 (April 2022), 35 pages.

https://doi.org/10.1145/3517129

An extended abstract of this article appeared in the proceedings of LICS 2021. The two first authors have been sup-

ported by the Research Council of Norway via the project BWCA (314528). The third author has been supported by the

ANR projects DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), and the French-German Collaboration

ANR/DFG Project UTMA (ANR-20-CE92-0027).

Authors’ addresses: F. V. Fomin and P. A. Golovach, Department of Informatics, University of Bergen, PB 7803, Bergen,

5020, Norway; emails: {fedor.fomin, petr.golovach}@uib.no; D. M. Thilikos, LIRMM, Univ Montpellier, CNRS, Montpellier,

France, 161 rue Ada, Montpellier Cedex 5, 34095, France; email: sedthilk@thilikos.info.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1529-3785/2022/04-ART17 $15.00

https://doi.org/10.1145/3517129

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

https://orcid.org/0000-0002-2619-2990
https://doi.org/10.1145/3517129
mailto:permissions@acm.org
https://doi.org/10.1145/3517129
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3517129&domain=pdf&date_stamp=2022-04-06

17:2 F. V. Fomin et al.

1 INTRODUCTION

One of the successful concepts in parameterized complexity is the “distance from triviality” [20].
Roughly speaking, a parameter can measure the “distance” of the given instance from an instance
that is solvable efficiently and then exploit such a distance algorithmically. In graph problems, a
standard measure of distance from triviality is the vertex deletion distance to some specific graph
property P. That is, the minimum number of vertices whose deletion results in a graph in P. An
interesting alternative to vertex deletion distance, called elimination distance was introduced by
Bulian and Dawar [5] in their study of the parameterized complexity of the graph isomorphism
problem. The elimination distance of a graph G to graph property P is

edP (G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

0, if G ∈ P,
1 +minv ∈V (G) edP (G −v), if G � P and G is connected,

max{edP (C) | C is a component of G}, otherwise.

Arguably, elimination distance can be seen as a non-deterministic version of vertex deletion dis-
tance, where the source of non-determinism is connectivity: Each vertex removal creates con-
nected components and the elimination should be applied to each one of them as an independent
vertex deletion scenario. In the most simple case where P is the property of being edgeless, ver-
tex deletion distance to P generates vertex cover, while the elimination distance to P generates
tree-depth [28].

In their follow-up work, Bulian and Dawar [6] proved that deciding whether a given n-vertex
graph has elimination distance at most k to any minor-closed property of graphs can be done by

an algorithm running in time f (k) · nO (1) (that is an FPT-algorithm), and thus is fixed-parameter
tractable parameterized by k . In the same paper, Bulian and Dawar [6] asked whether computing
the elimination distance to graphs of bounded degree is fixed-parameter tractable.

The problem. The question of Bulian and Dawar is the departure point of our study. Every graph
property characterized by a finite set of forbidden induced subgraphs (and thus the bounded degree
property as well) is first-order logic definable (FOL-definable), i.e., there is an FOL formula φ
where P = {G | G |= φ}. It is well-known that Model Checking for an FOL formula φ, that

is deciding whether G |= φ, can be done in time nO (|φ |) . It is also easy to design a backtracking

algorithm following the definition of the elimination distance that, in time nO (k) · nO (|φ |) , decides
whether the elimination distance to a property expressible by an FOL formula φ is at most k . Thus,
for every FOL formula φ, the problem asking, given as input a graphG and a non-negative integer
k , whether the elimination distance from G to Pφ � {G | G |= φ} is k is in the parameterized
complexity class XP (when parameterized by k). This brings us to the following question: What is
the parameterized complexity of computing the elimination distance to FOL-definable properties?

Notice that the above general question could also be made for higher order logic-definable prop-
erties. In this direction, one may observe that there are formulas φ in existential second-order

logic (ESOL) for which Model Checking for φ is already intractable: Such ESOL-definable prob-
lems are Hamiltonian Cycle or 3-Coloring that are NP-complete. This means that for the cor-
responding ESOL formulas φ the problem of checking whether edPφ

(G) ≤ k , parameterized by
k , is para-NP-complete. Motivated by this, we delimit our study to the framework of first-order
logic where our parameterized problem is in XP for every FOL-formula. This permits us to set
up the problem that we consider in this article, that is to completely determine the prefix classes

of FOL that demark the parametric-tractability borders of elimination distance to FOL-definable
properties (that is, FPT versus W-hardness).

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:3

The above question has been inspired by the study of Gottlob, Kolaitis, Schwentick in [19] who
provided an analogous dichotomy result (P versus NP-complete) for ESOL-formulas, in several
graph-theoretic contexts. They identified the set F of prefix classes of ESOL such that, if φ ∈ F,
then Model Checking for φ is polynomially solvable, while every prefix class not in F contains
some ESOL formula φ where Model Checking for φ is NP-complete.

Our results. We identify sufficient and necessary conditions on the structure of prefixes of first-
order logic formulas demarcating tractability borders for computing the elimination distance.

Our main algorithmic contribution is the proof that computing the elimination distance to any
graph property defined by a formula from Σ3 is fixed-parameter tractable. We formally define
prefix classes Πi and Σi in the next section. For the purpose of this introduction, it is sufficient to
know that every formula in φ ∈ Σ3 can be written in the form

φ = ∃x1∃x2 · · · ∃xr ∀y1∀y2 · · · ∀ys ∃z1∃z2 · · · ∃zt ψ ,

whereψ is a quantifier-free FOL-formula and r , s, t are non-negative integers.
Every graph property characterized by a finite set of forbidden subgraphs can be expressed

by φ ∈ Σ3. Actually, for this particular purpose, we can consider even more restricted formulas
φ ∈ Π1 ⊂ Σ3 with only ∀ quantifications over variables. The property that the diameter of a graph
is at most two cannot be expressed by using forbidden subgraphs but can easily be written as an
FOL formula from Π2 ⊂ Σ3: ∀u∀v∃w[(u = v)∨ (u ∼ v)∨ ((u ∼ w)∧ (v ∼ w))]. Another interesting
example of a property expressible in Σ3 is the property of containing a universal vertex, and, more
generally, having an r -dominating set of size at most d for constants r and d . Having a twin-pair,
that is, a pair of vertices with equal neighborhoods, is also a property expressible in Σ3.

Theorem 1 (Informal). For every φ ∈ Σ3, n-vertex graph G, and k ≥ 0, deciding whether the

elimination distance from G to property Pφ , is at most k , can be done in time f (k) · nO (|φ |) for some

function f of k only.

Our second theorem shows that the assumptions on the prefix of the formula are necessary. Let
Π3 be the class of first-order logic formulas of the form

φ = ∀x1∀x2 · · · ∀xr ∃y1∃y2 · · · ∃ys ∀z1∀z2 · · · ∀zt ψ ,

whereψ is an FOL-formula without quantifiers and s, t ,q are non-negative integers. We show that

Theorem 2 (Informal). There is φ ∈ Π3 such that deciding whether the elimination distance to

Pφ is at most k , is W[2]-hard parameterized by k .

Variants of elimination distance. The main reason why we give informal statements of our the-
orems in the introduction is due to the following issue: The definition of elimination distance is
tailored to the graph properties P with the condition that G ∈ P if and only if C ∈ P for every
component C of G. Graph properties defined by FOL do not necessarily satisfy such a condition.
This leads to ambiguities. As an example, consider graph property P = {G | G |= ∀x∀y x = y}.
Thus, G ∈ P if and only if G is a single-vertex graph. Let G be an edgeless graph with n ≥ 2
vertices. Since G � P it would be a natural assumption that the elimination distance from G to P
is positive. However, it is not: Every connected component of G is in P and, therefore,

edP (G) = max{edP (C) | C is a component of G} = 0.

To avoid such ambiguities, we refine the definition of the elimination distance.
Since we consider graph properties Pφ = {G | G |= φ} for formulas φ, we define the distances

with respect to formulas. Notice that the notion of elimination distance combines “connectivity”
and “inclusion” in a graph class. Depending on which of these two properties we want to prioritize,

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:4 F. V. Fomin et al.

we give different definitions. Let φ be an FOL formula. The first definition prioritizes connectivity
and the second prioritizes the graph property.

Definition 1 (Elimination Distances edconn
φ and ed

prop
φ). For a graph G, we set

edconn
φ (G) =

⎧⎪⎨
⎪
⎩

0, if G |= φ or G = (∅, ∅),
1 +minv ∈V (G) edconn

φ (G −v), otherwise,

if G is connected. We set

edconn
φ (G) = max{edconn

φ (C) | C is a component of G}

when G is not connected.

ed
prop
φ (G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

0, if G |= φ or G = (∅, ∅),
1 +minv ∈V (G) ed

prop
φ (G −v), if G
 |= φ and G is connected,

max{1,max{ed
prop
φ (C) | C is a component of G}}, otherwise.

We underline that, by our definition, edconn
φ (G) = ed

prop
φ (G) = 0 if G = (∅, ∅) for any for-

mula φ. If φ is such that G ∈ Pφ if and only if C ∈ Pφ for every component C of G, then

edPφ
(G) = edconn

φ (G) = ed
prop
φ (G). However, in general edconn

φ (G) and ed
prop
φ (G) may differ sig-

nificantly. Consider φ = ∃u∃v ¬(u = v) ∧ ¬(u ∼ v) that defines the property that a graph has
two nonadjacent vertices. Let G be the disjoint union of the complete n-vertex graph Kn and an
isolated vertex. Then G |= φ and, therefore, ed

prop
φ (G) = 0. However, G is not connected and it is

easy to see that edconn
φ (Kn) = n.

To analyze edconn
φ (G) and ed

prop
φ (G), we use equivalent definitions of these parameters via sets

of vertices X ⊆ V (G) of bounded “depth.” We define this notion in Section 3 but informally the
depth of X is the tree-depth of the torso of X (the torso of X is the graph obtained from G[X] by
making every two vertices u,v ∈ X adjacent if there is a connected componentC of G −X whose

neighborhood contains bothu andv). This leads to another type of elimination distance ed
depth
φ (G),

which is defined as the minimum tree-depth of the torso of a modulator X ⊆ V (G) such that
G−X |= φ. The distances to graph properties, where the distance is measured as minimum “width”
parameter of a modulator, recently got attention (see, e.g., [14, 22]) in Parameterized Complexity
in the context of hybrid structural parameterizations.

Given the above, a more precise statement of Theorems 1 and 2 is that they hold for the dis-

tances edconn
φ , ed

prop
φ , and ed

depth
φ . Precise statements of both theorems and their proofs are given

in Sections 4 and 5.

Related work. Results of this work fit into two popular trends in logic and parameterized com-
plexity. A significant amount of research in descriptive complexity is devoted to the study of pre-
fix classes of certain logics. We refer to the book of Börger, Grädel, and Gurevich [4], as well as
the aforementioned work of Gottlob, Kolaitis, and Schwentick [19] for further references. The
study of graph modification problems is a well-established trend in parameterized complexity.
The books cited in [10, 13, 15, 29] provide a comprehensive overview of the area. In particu-
lar, Fomin, Golovach, and Thilikos [16] studied parameterized complexity of computing vertex
deletion distance and edge editing to graph properties defined by first-order logic formulas; [16,
Theorem 1] establishes fixed-parameter tractability for vertex removal to a graph property Pφ

for φ ∈ Σ3 and shows that the problem is W[2]-hard for some φ ∈ Π3. While our Theorem 1
reaches the same tractability border for the elimination distance, the proof is significantly more
complicated.

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:5

The general question on the parameterized complexity of elimination distance to graph proper-
ties was stated by Bulian and Dawar [5, 6]. Properties that have been considered so far are minor-

free graph classes [6], cluster graphs [1, 2], bounded degree graphs [5, 24], and H -free graphs [1].
Moreover, Hols et al. [21] studied the existence of polynomial kernels for the Vertex Cover prob-
lem parameterized by the size of a deletion set to graphs of bounded elimination distance to cer-
tain graph classes. Lindermayr, Siebertz, and Vigny [24] proved that computing the elimination
distance to graphs of bounded degree is fixed-parameter tractable when the input does not contain
K5 as a minor. While preparing our article, we have learned about the very recent work of Agrawal
et al. [1]. Agrawal et al. established fixed-parameter tractability of computing an elimination dis-
tance to any graph property characterized by a finite set of graphs as forbidden induced subgraphs.
Since graphs of bounded vertex degree can be characterized by a finite set of forbidden induced
subgraphs, the work of Agrawal et al. answers the question of Bulian and Dawar [6] about the
elimination distance to graphs of bounded degree.

Comparing with the result of Agrawal et al. [1], our Theorem 1 is more general. First, it pro-
vides the tractability of the elimination ordering to a strictly larger family of graph properties.
Every graph property described by a finite set of forbidden induced subgraphs is also definable by
a formula from Σ3. However, properties like having a universal vertex or bounded diameter, which
are expressible in Σ3, cannot be described by forbidden subgraphs. Second, Theorem 1 holds for

three variants of the elimination distance: edconn
φ , ed

prop
φ , and ed

depth
φ . With this terminology, the

result of Agrawal et al. is only about computing edconn
φ . When it comes to the proof techniques,

both Theorem 1 and the result of Agrawal et al. use recursive understanding, which seems to be a
very natural technique for approaching problems about elimination distances. However, the details
are quite different. To deal with various types of elimination distances and FOL formulas in a uni-
form way, we need different combinatorial characterizations of the distances via sets of bounded
elimination depths. Furthermore, while solving our problems on unbreakable graphs is done by
recursive branching algorithms, similarly to Agrawal et al., we do it in a different way that exploits
the random separation technique to deal with our more general FOL framework. Moreover, the
analysis of components of the graph obtained by the deletion of an elimination set for computing

ed
depth
φ (G), and especially, ed

prop
φ (G), is a great deal more challenging. In particular, this is the rea-

son why we apply the random separation technique contrary to the more straightforward tools
used by Agrawal et al.

Overview of the approach. The first two variants of the elimination distance that we examine
are defined recursively using the containment in the graph class Pφ as the base case. We start
by providing equivalent formulations that are more suitable from the algorithmic perspective. For
this, we introduce the notion of elimination set of depth at most d that is a set X ⊆ V (G) that can
be bijectively mapped to a rooted tree T of depth d expressing selection of elimination vertices
in recursive calls. We next prove that edconn

φ (G) ≤ k if and only if G has an elimination set X of
depth at most k − 1 such that C |= φ for every component C of G − X . Similar, however more
technical, equivalent formulations is given for ed

prop
φ . All alternative definitions and the proofs of

their equivalences to the recursive ones are gathered in Section 3.
The new definitions allow to certify a solution by a set X of bounded elimination depth. How-

ever, the size of X could be unbounded. Moreover, there could be many connected components of
G − X and the sizes of these components could be immense. We use the recursive understanding

technique, introduced by Chitnis et al. in [8], to reduce the solution of the initial problem to a much
more structured problem. In the reduced problem, we can safely assume that each yes-instance is
certified by an elimination set X whose size, as well as the size of the union of all but one of the
components of G − X , is also bounded by a function of k .

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:6 F. V. Fomin et al.

More precisely, by making use of recursive understanding, we can consider only instances
that are (p (k),k)-unbreakable for some suitably chosen function p. Roughly speaking, a graph
is (p (k),k)-unbreakable when it has no separator of size at most k that partitions the graph in
two parts of size at least p (k) + 1 each. The application of recursive understanding uses the meta-
algorithmic result of Lokshtanov et al. [26] and the fact that all variants of the elimination dis-
tance to Pφ are expressible in monadic-second order logic (MSOL) when ϕ is a formula in FOL
(Lemma 5).

The (p (k),k)-unbreakability permits us to assume that |X | ≤ p (k) + k . Moreover, exactly one
connected componentCX ofG−X , is big, that is, of size at leastp (k)+1, and the size ofG−V (CX) is
bounded by some function of k (see Lemma 6). Given thatCX is the big component corresponding
to a solution X , we also consider the set SX of the neighbors of the vertices ofCX in G and we set
UX = V (G)\(V (CX) ∪ SX). We show that |SX | ≤ k and |UX | ≤ p (k).

Our next step is to use the random separation technique, introduced by Cai, Chan, and Chan in
[8]. We construct in FPT-time a family F of at most f (k) · logn partitions (R,B) of V (G) to “red”
and “blue” vertices such that for every elimination set X corresponding to a potential solution, F
contains some (R,B) where UX ⊆ R and SX ⊆ B. In our algorithm, we go over all these blue-red
partitions and, for each one of them, we check whether there exists an elimination set X (called
colorful elimination set) where all vertices in SX are blue and all vertices in UX are red.

The correct “guess” of the above red-blue partition permits us to design a recursive procedure
that solves the latter problem, i.e., finds a colorful elimination set X . This procedure is different
for each of the three versions of the problem and its variants are presented in Section 4.2. The key
task here is to identify the big component CX . It runs in FPT-time and its correctness is based on
the prefix structure of the formula ϕ.

Organization of the article. In Section 2, we provide the basic definitions of the concepts that we
use in this article: complexity classes graphs and formulas. In Section 3, we prove some properties
and relations between the elimination ordering variants that we consider. We also provide alter-
native definitions and we prove their equivalencies with the original ones. The main algorithmic
result is in Section 4 where we explain how we apply the recursive understanding technique, the
random separation technique, and we present the branching procedure for the “colorful version”
of each variant. Section 5 gives the lower bound of the article. This uses a parameterized reduction
from the Set Cover problem. Finally, in Section 6, we provide some discussion on the kerneliza-
tion complexity of our problems as well as some directions on further research on elimination
distance problems.

2 PRELIMINARIES

Sets. We use N to denote the set of all non-negative numbers. We denote by a = 〈a1, . . . ,ar 〉 a
sequence of elements of a set A and call a an r -tuple of simply a tuple. Note that the elements of a

are not necessarily distinct. We denote by ab = 〈a1, . . . ,ar ,b1, . . . ,bs 〉 the concatenation of tuples
a = 〈a1, . . . ,ar 〉 and b = 〈b1 . . . ,bs 〉.

Parameterized Complexity. We refer to the recent books of Cygan et al. [10] and Downey and
Fellows [13] for a detailed introduction to the field. Formally, a parameterized problem is a language
L ⊆ Σ∗ × N, where Σ∗ is a set of strings over a finite alphabet Σ. This means that an input of a
parameterized problem is a pair (x ,k), where x is a string over Σ and k ∈ N is a parameter. A

parameterized problem is fixed-parameter tractable (FPT) if it can be solved in time f (k) · |x |O (1)

for some computable function f . Also, we say that a parameterized problem belongs to the class

XP if it can be solved in time |x |f (k) for some computable function f . The complexity class FPT

contains all fixed-parameter tractable problems. Parameterized complexity theory also provides

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:7

tools to disprove the existence of an FPT-algorithm for a problem under plausible complexity-
theoretic assumptions. The standard way is to show that the problem is W[1] or W[2]-hard using
a parameterized reduction from a known W[1] or W[2]-hard problem; we refer to [10, 13] for the
formal definitions of the classes W[1] and W[2] and parameterized reductions.

Graphs. We consider only undirected simple graphs and use the standard graph theoretic ter-
minology (see, e.g., [12]). Throughout the article, we use n to denote |V (G) | if it does not create
confusion. For a set of vertices S ⊆ V (G), we denote byG[S] the subgraph ofG induced by the ver-
tices from S . We also defineG−S = G[V (G)\S]; we writeG−v instead ofG−{v} for a single vertex
set. For a vertex v , NG (v) denotes the open neighborhood of v , that is, the set of vertices adjacent
tov , and NG [v] = {v}∪NG (v) is the closed neighborhood. For S ⊆ V (G), NG (S) = (

⋃
v ∈S NG (v))\S

and NG [S] =
⋃

v ∈S NG [v]. For a vertex v , dG (v) = |NG (v) | denotes the degree of v . For a path P
with end-vertices u and v , we say that P is a (u,v)-path; the vertices ofV (P)\{u,v} are internal. A
graph G is connected if for every two vertices u and v , G contains a path whose end-vertices are
u and v . For a positive integer k , G is k-connected if |V (G) | ≥ k and G − S is connected for every
S ⊆ V (G) of size at most k − 1. A connected component (or simply a component) is an inclusion
maximal induced connected subgraph of G. For two distinct vertices u and v of a graph G, a set
S ⊆ V (G) is a (u,v)-separator if G − S has no (u,v)-path.

A rooted tree is a tree T with a selected node r (we use the term “node” instead of “vertex” for
such a tree) called a root. The selection of r defines the standard parent–child relation on V (T).
Nodes without children are called leaves and we use L(T) to denote the set of leaves ofT ; note that
a root is a leaf if |V (T) | = 1. The depth depthT (v) of a node v is the distance between r and v , and
the depth (or height) depth(T) of T is the maximum depth of a node. The nodes of the (r ,v)-path
are called ancestors of v . We use AT (v) to denote the set of ancestors of v in T . Note that v is
its own ancestor; we say that an ancestor is proper if it is distinct from v . Two nodes u and v of
T are comparable if either v is an ancestor of u or u is an ancestor of v . Otherwise, u and v are
incomparable. A node w of T is the lowest common ancestor of nodes u and v if w is the ancestor
of maximum depth of both u and v . Note that the lowest common ancestor is unique and if u
and v are incomparable then the lowest common ancestor is distinct from u and v . A node v is a
descendant of u if u is an ancestor of v . By DT (u), we denote the set of descendants of u in T . As
with ancestors, a node is its own descendant and we say that a descendantv of u is proper if u � v .
For a node v , the subtree induced by the descendants of v is the subtree rooted in v .

Logic. In this article, we deal with first-order and monadic second-order logic formulas on graphs.

The syntax of the first-order logic (FOL) formulas on graphs includes the logical connectives
∨, ∧, ¬, variables for vertices, the quantifiers ∀, ∃ that are applied to these variables, the predicate
u ∼ v , where u and v are vertex variables and the interpretation is that u and v are adjacent,
and the equality of variables representing vertices. It is also convenient to assume that we have
the logical connectives → and ↔. An FOL formula φ is in prenex normal form if it is written as
φ = Q1x1Q2x2 · · · Qtxt χ where each Qi ∈ {∀,∃} is a quantifier, xi is a variable, and χ is a quantifier-
free part that may depend on the variables x1, . . . ,xt . Then Q1x1Q2x2 · · · Qtxt is referred to as the
prefix of φ. From now on, when we write “FOL formula,” we mean an FOL formula on graphs that
is in prenex normal form. We assume that there is no nested requantification of a variable, that is,
x1, . . . ,xt are distinct. Also, we assume that a formula has no free, that is, non-quantified variables
unless we explicitly say that free variables are permitted. For an FOL formula φ and a graphG, we
write G |= φ to denote that φ evaluates to true on G.

We use the arithmetic hierarchy (also known as Kleene-Mostowski hierarchy) for the classifi-
cation of formulas in the first-order arithmetic language (see, e.g., [30]). For this, we define prefix

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:8 F. V. Fomin et al.

classes according to alternations of quantifiers, that is, switchings from ∀ to ∃ or vice versa in the
prefix string of the formula. Here, we allow a formula to have free variables. Let Σ0 = Π0 be the
classes of FOL-formulas without quantifiers. For a positive integer �, the class Σ� contains formulas
that may be written in the form

φ = ∃x1∃x2 · · · ∃xs ψ ,

where ψ is a Π�−1-formula, s is some integer, and x1, . . . ,xs are free variables of ψ . Respectively,
Π� consists of formulas

φ = ∀x1∀x2 · · · ∀xs ψ ,

where ψ is a Σ�−1-formula and x1, . . . ,xs are free variables of ψ . Note that for �′ > �, Σ� ∪ Π� ⊆
Σ�′ ∩ Π�′ , that is, every Σ� or Π� formula is both a Σ�′ and Π�′-formula.

For technical reasons, we extend FOL formulas on graphs to structures of a special type. We say
that a pair (G, v), where v = 〈v1, . . . ,vr 〉 is an r -tuple of vertices of G, is an r -structure. Let φ be
an FOL formula without free variables and let x = 〈x1, . . . ,xr 〉 be an r -tuple of distinct variables
of φ. We denote by φ[x] the formula obtained from φ by the deletion of the quantification over
x1, . . . ,xr , that is, these variables become the free variables of φ[x]. For an r -structure (G, v) with
v = 〈v1, . . . ,vr 〉 and φ[x], we write (G, v) |= φ[x] to denote that φ[x] evaluates to true onG if xi is
assigned vi for i ∈ {1, . . . , r }. If r = 0, that is, v and x are empty, then (G, v) |= φ[x] is equivalent
to G |= φ.

As a subroutine in our algorithms, we have to evaluate FOL formulas on graph, that is, solve
the Model Checking problem. Let φ be an FOL formula. The task of Model Checking is, given
a graph G, decide whether G |= φ. It was shown by Vardi [31] that Model Checking is PSPACE-
complete. The problem is also hard from the parameterized complexity viewpoint when parame-
terized by the size of the formula. It was proved by Frick and Grohe in [18] that the problem is
AW[∗]-complete for this parametrization (see, e.g., the book [15] for the definition of the class).
Moreover, it can be noted that the problem is already W[1]-hard for formulas having only exis-
tential quantifiers, that is, for φ ∈ Σ1, by observing that the existence of an independent set of
size k can be easily expressed by such a formula and Independent Set is well-known to be W[1]-
complete [13]. This implies that we cannot expect an FPT algorithm for the problem. However,
it is easy to see that Model Checking is in XP when parameterized by the number of variables,
because the problem for a formula with s variables can be solved in O (ns) time by the exhaustive
search (the currently best algorithm is given by Williams in [32]). This explains the exponential
dependence of the polynomials in running times in our algorithm on the number of variables. For
referencing, we state the following observation:

Observation 1. Model Checking for an FOL formula φ can be solved in nO (|φ |) time.

In monadic second-oder logic (MSOL), we additionally can quantify over sets of vertices and
edges. Formally, we can use variables for sets of vertices and edges and have the predicate x ∈ X ,
where x is a vertex (an edge, respectively) variable and X a vertex set (an edge set, respectively)
variable, denoting that x is an element of X . As with FOL formulas, we writeG |= φ to denote that
an MSOL formula φ evaluates true on G. We refer to the book of Courcelle and Engelfriet [9] for
the details of MSOL on graphs.

3 PROPERTIES OF ELIMINATION DISTANCE

In this section, we derive the properties of the elimination distances, edconn
φ and ed

prop
φ , that will

be used in the proof of the main theorem. We also define ed
depth
φ .

Observation 2. For every FOL formula φ and every graph G, ed
prop
φ (G) ≤ edconn

φ (G) + 1.

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:9

Proof. The proof is by induction on the value of edconn
φ (G).

Suppose that edconn
φ (G) = 0 for a graph G. If G is connected, then G |= φ and ed

prop
φ (G) = 0.

Hence, the inequality holds. IfG is disconnected, thenC |= φ for every componentC ofG. IfG |= φ,
then ed

prop
φ (G) = 0. If G
 |= φ, then ed

prop
φ (G) = max{1,max{ed

prop
φ (C) | C is a component of G}} =

1. In both cases, ed
prop
φ (G) ≤ edconn

φ (G) + 1.

Assume that edconn
φ (G) > 0 and ed

prop
φ (G ′) ≤ edconn

φ (G ′) + 1 for all G ′ with edconn
φ (G ′) <

edconn
φ (G). The claim is trivial if ed

prop
φ (G) = 0. Suppose that ed

prop
φ (G) > 0. We have two cases.

Case 1. G is connected. By definition, there is u ∈ V (G) such that edconn
φ (G) = 1 + edconn

φ (G − u).

Because ed
prop
φ (G) > 0,

ed
prop
φ (G) = 1 + min

v ∈V (G)
ed

prop
φ (G −v) ≤ 1 + ed

prop
φ (G − u).

Then, by induction,

ed
prop
φ (G) ≤ 1 + ed

prop
φ (G − u) ≤ 2 + edconn

φ (G − u) = 1 + edconn
φ (G).

Case 2. G is disconnected. Let C1, . . . ,Cs be the components of G. By definition, edconn
φ (G) =

max1≤i≤s edconn
φ (Ci). In particular, we have that edconn

φ (Ci) ≤ edconn
φ (G) for every i ∈ {1, . . . , s}.

Notice that by the already proved claim for connected graphs in Case 1, ed
prop
φ (Ci) ≤ edconn

φ (Ci)+1

for every i ∈ {1, . . . , s}. Because edconn
φ (G) > 0, G
 |= φ. Then

ed
prop
φ (G) = max

{
1, max

1≤i≤s
ed

prop
φ (Ci)

}
≤ max

{
1, max

1≤i≤s
(edconn

φ (Ci) + 1)
}

= max
1≤i≤s

edconn
φ (Ci) + 1 = edconn

φ (G) + 1,

as required. This completes the proof. �

The example of φ = ∀x∀y x = y and an edgeless graph G with at least two vertices shows that
the inequality in Observation 2 is tight. However, recall that the difference between edconn

φ (G) and

ed
prop
φ (G) can be arbitrarily large, as demonstrated by the example given in the introduction with

φ = ∃u∃v ¬(u = v) ∧ ¬(u ∼ v) defining the property that a graph has two nonadjacent vertices.
For algorithmic purposes, it is convenient for us to define edconn

φ (G) and ed
prop
φ (G) via deletions

of sets of vertices of G with a special structure. Similar approaches were exploited by Agrawal
et al. [1] and Bulian and Dawar [5, 6] but we do it in a different way, because we consider two
variants of elimination distances.

Let G be a graph and let d ≥ 0 be an integer. We say that a set of vertices X ⊆ V (G) is an
elimination set of depth at most d if there is a rooted tree T of depth at most d and a bijective
mapping α : V (T) → X such that for every two distinct incomparable nodes x andy ofT , α (AT (v))
is an (α (x),α (y))-separator in G, where v is the lowest common ancestor of x and y (recall that
AT (v) denotes the set of ancestors of v). We also say that the pair (T ,α) is a representation of X
(or represents X). The depth of X ⊆ V (G), denoted depth(X), is the minimum d such that X is an
elimination set of depth at most d . We assume that the empty set is an elimination set of depth −1.

We call a representation (T ,α) of an elimination set X ⊆ V (G) nice if for every nonleaf node
v ∈ V (T) and its child x , the vertices of α (DT (x)) are in the same component of G − AT (v). The
following property is useful for us:

Lemma 1. LetG be a connected graph and letd ≥ 0 be an integer. Then a nonemptyX ⊆ V (G) is an

elimination set of depth at most d if and only ifX has a nice representation (T ,α) with depth(T) ≤ d .

Moreover, if (T ,α) is a representation ofX , then there is a nice representation (T ′,α) ofX withV (T ′) =
V (T) such that (i) α (L(T)) ⊆ α (L(T ′)) and (ii) for each v ∈ X , depthT (α−1 (v)) ≥ depthT ′ (α

−1 (v)).

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:10 F. V. Fomin et al.

Proof. Clearly, if X ⊆ V (G) has a nice representation (T ,α) with depth(T) ≤ d , then X is an
elimination set of depth at most d . For the opposite direction, it is sufficient to show the second
claim. Let (T ,α) be a representation of X and depth(T) ≤ d . We show the existence of (T ′,α)
satisfying (i) and (ii) by induction on d .

The claim is trivial if |X | = 1 as T ′ = T in this case. Assume that |X | ≥ 2 and d ≥ 1. Denote
by r the root of T and let u = α (r). Consider the components C1, . . . ,Cs of G − u containing at
least one vertex of X . For every i ∈ {1, . . . , s}, let Xi = V (Ci) ∩ X and Ui = α−1 (Xi). For every
i ∈ {1, . . . , s}, we construct the treeTi with the set of verticesUi ∪ {r } as follows: For every x ∈ Ui

such that x � r , we find a proper ancestor y ∈ Ui with respect toT of maximum depth and make y
the parent of x , and if x has no ancestors inUi , then we make r the parent of x . Because the choice
of the parent is unique, Ti has no cycles, and because we assign the parent to every node distinct

from r , we conclude thatTi is a tree. Denote by T̃ the union ofT1, . . . ,Ts and set r be the root of T̃ .
Because every node of T̃ distinct from r got a parent from the set of its proper ancestors in T , (i)

α (L(T)) ⊆ α (L(T̃)) and (ii) for each v ∈ X , depthT (α−1 (v)) ≥ depthT̃ (α−1 (v)).

We prove that (T̃ ,α) represents X . Consider incomparable nodes x and y of T̃ and denote by
v their lowest common ancestor. We have to show that α (AT̃ (v)) is an (α (x),α (y))-separator in
G. This is trivial if α (x) and α (y) are in distinct components of G − u. Assume that α (x) and
α (y) are in the same component Ci for some i ∈ {1, . . . , s}, that is, x ,y ∈ Ui . Note that by the

construction of T̃ , x and y are incomparable in T . Let v ′ be their lowest common ancestor in T .

Clearly, v is an ancestor of v in T . By the construction of T̃ , AT̃ (v) ∩ V (Ci) = AT (v ′) ∩ V (Ci).
Because AT (v) separates α (x) and α (y), we have that AT (v) ∩V (Ci) is an (α (x),α (y))-separator.

Therefore, α (AT̃ (v)) is also an (α (x),α (y))-separator. This proves that (T̃ ,α) represents X .

Consider i ∈ {1, . . . , s}. Observe that r has a unique child in Ui in T̃ . Otherwise, if x and y are
distinct children of r , then we have that x and y have no ancestors in Ui with respect to T . Let v
be the lowest common ancestor of x and y inT . Note thatv � x ,y and α (AT (v)) does not separate

α (x) and α (y) contradicting that (T ,α) represents X . Hence, r has the unique child ri inUi . Let T̃i

be the subtree of T̃ rooted in ri . We set αi (x) = α (x) for x ∈ Ui . Because (T̃ ,α) represents X , it is

straightforward to verify that (T̃i ,αi) representsX j in the graphCi . Because depth(T̃i) ≤ d −1, we
can apply the inductive assumption. We obtain that there is a nice representation (T ′i ,αi) of Xi in

Ci withV (T ′i) = V (T̃i) such that (i) α (L(T̃i)) ⊆ α (L(T ′i)) and (ii) for eachv ∈ Xi , depthT̃i
(α−1

i (v)) ≥
depthT ′i

(α−1
i (v)). Notice that by the second condition, T ′i is rooted in ri .

We construct the trees T ′i for all i ∈ {1, . . . , s} and then construct T ′ from their union by mak-
ing r1, . . . , rs the children of r . Clearly, depth(T ′) ≤ d and (T ′,α) is a nice representation of X
satisfying conditions (i) and (ii) of the lemma. �

It is also useful to characterize the depths of an elimination set in a disconnected graph.

Lemma 2. Let G be a graph with components C1, . . . ,Cs and let X ⊆ V (G) such that X � ∅. Then

depth(X) = min
1≤i≤s

max{depth(Xi),max{depth(X j) | 1 ≤ j ≤ s, j � i} + 1}, (1)

where Xi = X ∩V (Ci) for i ∈ {1, . . . , s}.

Proof. Recall that depth(∅) = −1 by definition. This allows us to assume without loss of gen-
erality that Xi � ∅ for all i ∈ {1, . . . , s}. Otherwise, we can delete each component Ci such that
Xi = ∅ without violating the value of depth(X) and the right part of (1).

To show that

depth(X) ≤ min
1≤i≤s

max{depth(Xi),max{depth(X j) | 1 ≤ j ≤ s, j � i} + 1},

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:11

assume that the minimum value of the right part of (1) is achieved for i ∈ {1, . . . , s}. For every
j ∈ {1, . . . , s}, let (Tj ,α j) be a representation of X j in Cj , where Tj is rooted in r j and depth(Tj) =
depth(X j). We construct the tree T with the root r = ri from T1, . . . ,Ts by making each r j for
j ∈ {1, . . . , s}\{i} a child of r . Clearly, depth(T) = max{depth(Ti),max{depth(Tj) | 1 ≤ j ≤ s, j �
i} + 1} = max{depth(Xi),max{depth(X j) | 1 ≤ j ≤ s, j � i} + 1}. We define α : V (T) → X by
setting α (x) = αi (x) whenever x ∈ Xi for some i ∈ {1, . . . , s}. It is straightforward to verify that
(T ,α) represents X .

To show the opposite inequality

depth(X) ≥ min
1≤i≤s

max{depth(Xi),max{depth(X j) | 1 ≤ j ≤ s, j � i} + 1},

let (T ,α) be a representation of X , whereT is rooted in r and depth(T) = depth(X). By symmetry,
we assume without loss of generality that r ∈ V (C1). For every j ∈ {1, . . . , s}, let Ui = α−1 (X j).

The rest of the proof is done similarly to the proof of Lemma 1. For every j ∈ {1, . . . , s}, we
construct the tree Tj with the set of vertices Uj ∪ {r } as follows: For every x ∈ Uj such that
x � r , we find a proper ancestor y ∈ Uj of x with respect to T of maximum depth and make y the
parent of x , and if x has no ancestors in Uj , then we make r the parent of x . Because the choice
of the parent is unique, Tj has no cycles, and because we assign the parent to every node distinct
from r , we conclude that Tj is a tree. Denote by T ′ the union of T1, . . . ,Ts and set r be the root.
Because every node of T ′ distinct from r got a parent from the set of its proper ancestors in T ,
depth(T ′) ≤ depth(T) = depth(X).

We claim that (T ′,α) represents X . To show this, let x and y be incomparable nodes of T ′ and
let v be their lowest common ancestor. We show that α (AT ′ (v)) is an (α (x),α (y))-separator in G.
This is trivial if α (x) and α (y) are in distinct components of G. Assume that α (x) and α (y) are in
the same component Cj for some j ∈ {1, . . . , s}, that is, x ,y ∈ Uj . Notice that by the construction
ofT ′, AT ′ (v) ∩Cj = AT (v ′) ∩Cj , wherev ′ is the lowest common ancestor of x and y inT . Because
AT (v ′) separates α (x) and α (y), we have that AT (v ′) ∩Cj is an (α (x),α (y))-separator. Therefore,
α (AT ′ (v)) is an (α (x),α (y))-separator as well, as required.

Let j ∈ {2, . . . , s}. Observe that r has a unique child in Uj in T ′. Otherwise, if x and y are
distinct children of r , then we have that x and y have no ancestors in Uj . Let v be the lowest
common ancestor of x and y in T . Note that v � x ,y and α (AT (v)) does not separate α (x) and
α (y) contradicting that (T ,α) represents X . Hence, r has the unique child r j in Ui . Let T ′j be the

subtree of T ′ rooted in r j . Define α j (x) = α (x) for x ∈ Uj . Since (T ′,α) represents X , we obtain
that (T ′j ,α j) represents X j . Then depth(X j) ≤ depth(T ′j) ≤ depth(T) − 1 = depth(X) − 1.

It is straightforward to verify that (T1,α1) represents X1, where α1 (x) = α (x) for x ∈ U1. This
means that depth(X1) ≤ depth(T1) ≤ depth(X). Because depth(X j) + 1 ≤ depth(X) for j ∈
{2, . . . , s},

depth(X) ≥max{depth(X1), depth(X2) + 1, . . . , depth(Xs) + 1}
≥ min

1≤i≤s
max{depth(Xi),max{depth(X j) | 1 ≤ j ≤ s, j � i} + 1}.

This completes the proof. �

It is sufficient for our purposes to characterize edconn
φ (G) for connected graphs and we do it in

the following lemma:

Lemma 3. Let φ be an FOL formula and let G be a connected graph. Let also d ≥ 0 be an integer.

Then edconn
φ (G) ≤ d if and only if G contains an elimination set X of depth at most d − 1 such that

C |= φ for every component C of G − X .

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:12 F. V. Fomin et al.

Proof. First, we show that if edconn
φ (G) ≤ d , then G has an elimination set X of depth at most

d − 1 such thatC |= φ for every componentC of G −X . The proof is by induction on d . The claim
is trivial if edconn

φ (G) = 0 as depth(∅) = −1 by definition. Let d ≥ edconn
φ (G) ≥ 1.

BecauseG is connected and edconn
φ (G) > 0, there isv ∈ V (G) such that edconn

φ (G) = 1+edconn
φ (G−

v). We construct a node r ofT and set it be the root. IfC |= φ for every componentC ofG −v , then
the construction of X andT is completed and we define α (r) = v . Otherwise, letC1, . . . ,Cs be the
components ofG−v such thatCi
 |= φ for i ∈ {1, . . . , s}. Clearly, edconn

φ (Ci) ≤ d−1 for i ∈ {1, . . . , s}.
Let i ∈ {1, . . . , s}. By induction, there is an elimination set Xi ⊆ V (Ci) of depth at most d − 2 such
thatH |= φ for every componentH ofCi −Xi . Then there is a corresponding representation (Ti ,αi)
of Xi in Ci . Let ri be the root of Ti . We define X = {v} ∪⋃s

i=1 Xi , and construct T from T1, . . . ,Ts

by making r1, . . . , rs the children of r . Finally, we define

α (x) =
⎧⎪⎨
⎪
⎩

v, if x = r ,

αi (x), if x ∈ V (Ci) for some i ∈ {1, . . . , s}.
It is straightforward to verify that X is an elimination set of depth at most d − 1 with respect to
(T ,α).

For the opposite direction, we assume that X is an elimination set of minimum depth such that
C |= φ for every component C of G − X . We assume that the depth of X is d − 1 and prove that
edconn

φ G ≤ d . The proof is by induction on d .
The claim is trivial if d = 0, that is, if X = ∅. Suppose that d = 1, that is, the depth of an

elimination set X is zero and, therefore, X = {u} for some u ∈ V (G). We have that C |= φ for
every componentC ofG −u. This means that edconn

φ (C) = 0 for every componentC and, therefore,

edconn
φ (G − u) = 0. Then because edconn

φ (G) > 0, edconn
φ (G) = 1 + minv ∈V (G) edconn

φ (G − v) =
1 + edconn

φ (G − u) = 1 ≤ d .
Suppose that d ≥ 2 and the claim holds for the lesser values of d . Because G is connected, by

Lemma 1, there is a nice representation (T ,α) ofX with depth(T) = d−1. Let r be the root ofT and
u = α (r). Because edconn

φ (G) > 0, edconn
φ (G) = 1+minv ∈V (G) edconn

φ (G −v) ≤ 1+ edconn
φ (G −u) and

it is sufficient to show that edconn
φ (G −u) ≤ d − 1. For this, we have to prove that edconn

φ (C) ≤ d − 2
for every component C of G − u.

If V (C) ∩ X = ∅ for a component C , then C is a component of G − X and we have that C |= φ.
Then edconn

φ (C) = 0 ≤ d − 2. Consider the componentsC1, . . . ,Cs ofG −u such thatV (Ci) ∩X � ∅.
Because (T ,α) is nice, r has s children x1, . . . ,xs such that for every i ∈ {1, . . . , s}, α (V (Ti)) ⊆
V (Ci), where Ti is the subtree of T rooted in xi . Let αi : V (Ti) → V (Ci) be the restriction of
α on V (Ti) for i ∈ {1, . . . , s}. Consider i ∈ {1, . . . , s}. We have that (Ti ,αi) is a representation of
Xi = X ∩V (Ci). Notice that for each componentC ofCi −Xi ,C |= φ. Clearly, depth(Ti) < depth(T).
This implies that we can use the inductive assumption and conclude that edconn

φ (Ci) ≤ d − 1.

Therefore, edconn
φ (G − u) ≤ d − 1 and this concludes the proof. �

To characterize ed
prop
φ (G), we need additional definitions.

Let G be a connected graph and let X ⊆ V (G) be an elimination set represented by (T ,α). We
say that a node x ∈ V (T) is an anchor of a componentC ofG−X if x is the node of maximum depth
in T such that α (x) ∈ NG (V (C)). We also say that C is anchored in x . Notice that the definition of
an elimination set immediately implies the following property:

Observation 3. Let G be a connected graph and let X ⊆ V (G) be an elimination set represented

by (T ,α). Then for every component C of G − X , NG (V (C)) ⊆ α (AT (x)), where x is an anchor of C .

In particular, Observation 3 implies that an anchor of each component of G − X is unique. For
a node x ∈ V (T), we denote by Px the set of components of G −X anchored in x , and Gx denotes

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:13

the subgraph of G induced by the vertices of the graphs of Px , that is, Gx is the union of the
components of G − X anchored in x . Clearly, Px and Gx may be empty. Note that the anchors of
the components of G − X depend on the choice of a representation. Therefore, we use the above
notation only when (T ,α) is fixed and clear from the context.

Lemma 4. Let φ be an FOL formula and let G be a connected graph with ed
prop
φ (G) > 0. Let also d

be a positive integer. Then ed
prop
φ (G) ≤ d if and only if G contains an elimination set X of depth at

most d − 1 with a representation (T ,α) such that the following is fulfilled:

(i) for every nonleaf node x ∈ V (T), C |= φ for every C ∈ Px ,

(ii) for every leaf x of T with depthT (x) ≤ d − 2, either Gx |= φ or C |= φ for every C ∈ Px ,

(iii) for every leaf x of T with depthT (x) = d − 1, Gx |= φ.

Proof. The lemma is proved similarly to Lemma 3. We begin by showing that if ed
prop
φ (G) ≤ d ,

then G has an elimination set X of depth at most d − 1 with a representation (T ,α) such that
conditions (i)–(iii) are fulfilled. For this, we inductively construct X and (T ,α) with depth(T) ≤
d − 1 using the definition of ed

prop
φ (G).

SinceG is connected and ed
prop
φ (G) > 0, there isv ∈ V (G) such that ed

prop
φ (G) = 1+edconn

φ (G−v).
We construct a node r ofT and set it be the root. If eitherG −v |= φ orC |= φ for every component
C of G − v , then the construction of X and T is completed and we define α (r) = v . Note that
ed

prop
φ (G) = 1 in the first case and ed

prop
φ (G) = 2 in the second. This implies that (i)–(iii) are

fulfilled. Assume from now on that this is not the case.
Denote byC1, . . . ,Cs the components ofG −v such thatCi
 |= φ for i ∈ {1, . . . , s}. By definition,

ed
prop
φ (Ci) ≤ d − 1 for i ∈ {1, . . . , s}. Notice that for each component C of G − v distinct from

C1, . . . ,Cs , C |= φ. Then, we can assume inductively that for every i ∈ {1, . . . , s}, there is an
elimination set Xi ⊆ V (Ci) of depth at most d − 2 with respect toCi with a representation (Ti ,αi)
such that conditions (i)–(iii) are fulfilled (for d � d − 1). Let ri be the root of Ti for i ∈ {1, . . . , s}.
We define X = {v} ∪⋃s

i=1 Xi , and constructT fromT1, . . . ,Ts by making r1, . . . , rs the children of
r . Then, we set

α (x) =
⎧⎪⎨
⎪
⎩

v, if x = r ,

αi (x), if x ∈ V (Ci) for some i ∈ {1, . . . , s}.

Using the inductive assumptions that (i)–(iii) are fulfilled forXi with (Ti ,αi) for every i ∈ {1, . . . , s}
and the observation that Pr consists of the components ofG −v distinct fromC1, . . . ,Cs , we show
that (i)–(iii) are fulfilled for X and the representation (T ,α).

For x = r , (i) holds, becauseC |= φ for everyC ∈ Pr by the construction ofT . If x � r is a nonleaf
vertex of T , then x is a nonleaf vertex of Ti for some i ∈ {1, . . . , s}. By the inductive assumption,
C |= φ for every component of Gi − Xi anchored in x with respect to Ti . By the construction of
T , every C ∈ Px is a component of Gi − Xi anchored in x implying that (i) is fulfilled. To see (ii),
let x be a leaf of T with depthT (x) ≤ d − 2. Then x is a leaf of Ti for some i ∈ {1, . . . , s} and
depthTi

(x) ≤ d − 3. By induction, either (Gi)x |= φ or C |= φ for every component C of Gi − Xi

anchored in x with respect to Ti . Note that (Gi)x = Gx and every C ∈ Px is a component of
Gi − Xi anchored in x with respect to Ti . Therefore, (ii) holds. For (iii), the arguments are almost
the same. If x is a leaf ofT with depthT (x) ≤ d − 1, then x is a leaf ofTi for some i ∈ {1, . . . , s} and
depthTi

(x) ≤ d − 2. By the assumption, (Gi)x |= φ with respect to Ti . Since (Gi)x = Gx , we have
that (iii) holds.

To show the implication in the opposite direction, assume that X is an elimination set of depth
at most d − 1 with a representation (T ,α) satisfying (i)–(iii). By the second claim of Lemma 1, we
can assume that T is nice. We show that ed

prop
φ (G) ≤ d by induction on depth(T).

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:14 F. V. Fomin et al.

Suppose that depth(T) = 0, that is, the depth of an elimination set X is zero and, therefore,
X = {u} for some u ∈ V (G). If d = 1, then Gu |= φ and ed

prop
φ (G) = 1. If d ≥ 2, then either

Gu |= φ or C |= φ for every component C of G − u. In both cases, ed
prop
φ (G) ≤ 2 by the definition

of ed
prop
φ (G).

Assume that depth(T) ≥ 1. In particular, d ≥ 2. Since G is connected and ed
prop
φ (G) > 0,

ed
prop
φ (G) = 1 + minv ∈V (G) ed

prop
φ (G − v) ≤ 1 + ed

prop
φ (G − u) and it is sufficient to show that

ed
prop
φ (G −u) ≤ d − 1. If G −u |= φ, then ed

prop
φ (G) = 1 ≤ d . Assume from now on that G −u
 |= φ.

Then, by the definition of edconn
φ (G), it is sufficient to show that ed

prop
φ (C) ≤ d − 2 for every

component C of G − u.
IfV (C)∩X = ∅ for a componentC ofG −u, thenC ∈ Pr andC |= φ. Then ed

prop
φ (C) = 0 ≤ d −2.

Consider the components C1, . . . ,Cs of G − u such that V (Ci) ∩ X � ∅. Because (T ,α) is nice,
r has s children x1, . . . ,xs such that for every i ∈ {1, . . . , s}, α (V (Ti)) ⊆ V (Ci), where Ti is the
subtree of T rooted in xi . Let αi : V (Ti) → V (Ci) be the restriction of α on V (Ti) for i ∈ {1, . . . , s}.
Consider i ∈ {1, . . . , s}. We have that (Ti ,αi) is a representation of Xi = X ∩ V (Ci) satisfying
(i)–(iii). Notice that depth(Ti) < depth(T). Then by the inductive assumption ed

prop
φ (Ci) ≤ d − 1.

Therefore, ed
prop
φ (G − u) ≤ d − 1 and this concludes the proof. �

Lemmas 3 and 4 demonstrate that edconn
φ (G) and ed

prop
φ (G), respectively, can be defined via the

deletion of an elimination set. We also use these results to define a third variant of the elimination
distance.

Definition 2 (Elimination Distance ed
depth
φ). Let φ be an FOL formula. For a graph G, ed

depth
φ (G)

is the minimum d such thatG has an elimination set X ⊆ V (G) of depth d − 1 such thatG −X |= φ.

Notice that if the trees in the considered representations of elimination sets are constrained to
be paths, then we obtain the classical deletion distance, that is, the minimum size of a setX ⊆ V (G)

such that G − X |= φ. Thus, ed
depth
φ is a direct generalization of this classical distance, where the

measure of the distance is not the size of X but the depth of X . We defined the depth of a set
X ⊆ V (G) using a representation. However, there is an equivalent definition that uses the notion
of tree-depth (see, e.g., [28] for the definition); in fact, the tree-depth of G equals edP (G), where
P is the class of empty graphs. Let G be a graph and let X ⊆ V (G). Recall that the torso of X
is the graph H obtained from G[X] by making every two vertices u,v ∈ X adjacent if three is
a component C of G − X such that u,v ∈ NG (V (C)). Then the following property can be seen
from [5, 6] and also can be easily shown by the definitions of tree-depth and the depth of an
elimination set.

Observation 4. For a set X ⊆ V (G) and an integer k , depth(X) ≤ k − 1 if and only if the

tree-depth of the torso of X is at most k .

Thus, ed
depth
φ is minimum k such that there is X ⊆ V (G) whose torso has the tree-depth at most

k and G − X |= φ.

Observe that ed
depth
φ (G) is incomparable with edconn

φ (G) and ed
prop
φ (G). To see this, consider

first φ = ∀x∀y [(x = y) ∨ (x ∼ y))] defining the property that a graph is complete. Consider the
graphGn constructed from two disjoint copies H1 and H2 of Kn for n ≥ 1 by adding a vertexw and
making it adjacent to every vertex ofH1 andH2. Notice that to obtain a complete graph fromG, we

have to delete either the vertices of H1 or H2. Because these graphs are complete, ed
depth
φ (Gn) = n.

However, the deletion of w results in the graph whose components are complete graphs. Hence,
edconn

φ (Gn) = 1 and it can be seen that ed
prop
φ (Gn) = 2. For the opposite direction, consider

φ = ∀x∀y∀z∃u∃v [((x ∼ y) ∧ (y ∼ z)) → ((x = z) ∨ (x ∼ z))] ∧ ¬(u = v) ∧ ¬(u ∼ v)].

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:15

Fig. 1. Conditions for components C1, . . . ,C6 of G − X ; d = 3.

This formula defines the property that a graph does not contain an induced path on three vertices
and has at least two nonadjacent vertices, that is, a graph is disjoint union of at least two complete
graphs. Let Gn be the graph obtained from two copies H1 and H2 of Kn by joining a vertex w1 of
H1 with a vertex w4 of H2 by a path w1w2w3w4. SinceGn − {w2,w3} |= φ and for every w ∈ V (Gn),

Gn −w
 |= φ, we have that ed
depth
φ (Gn) = 2. We claim that edconn

φ (Gn), ed
prop
φ (Gn) ≥ n. The claim

is trivial for n = 1. Assume that n ≥ 2 and consider w ∈ V (Gn). If w � {w1, . . . ,w4}, then
edconn

φ (Gn − w) ≥ edconn
φ (Gn−1) ≥ n − 1. Similarly, ed

prop
φ (Gn − w) ≥ ed

prop
φ (Gn−1) ≥ n − 1. If

w ∈ {w1, . . . ,w4}, then neither (Gn −w) |= φ norC |= φ for every componentC of Gn −w . Notice
that Gn − w has a component that is a complete graph with either n − 1 or n vertices. For this
componentC , we have that edconn

φ (C) = ed
prop
φ (C) ≥ n−1. We conclude that edconn

φ (Gn−w) ≥ n−1

and ed
prop
φ (Gn −w) ≥ n − 1 for every choicew ∈ V (Gn). Therefore, edconn

φ (Gn), ed
prop
φ (Gn) ≥ n (in

fact, edconn
φ (Gn) = ed

prop
φ (Gn) = n).

Summarizing, now we have three definitions of eliminations distances via elimination sets. We
use Figure 1 to illustrate the differences for the requirements for G − X for a given elimination
set X . For edconn

φ , it should hold that Ci |= φ for every i ∈ {1, . . . , 6}. For ed
prop
φ , we require that

(i) C1 |= φ, (ii) C5 |= φ and C6 |= φ or Gz |= φ and (ii) Gx |= φ and Gy |= φ. For ed
depth
φ , H |= φ,

where H = G − X is the union of C1 . . . ,C6.
Given an FOL formula φ, we define the following three variants of the Elimination Distance

problems for � ∈ {conn, prop, depth}:

Input: A graph G and a nonnegative integer k .
Task: Decide whether ed�

φ (G) ≤ k .

Elimination Distance–(�) to φ parameterized by k

These problems are closely connected to the Deletion to φ problem for a formula φ that asks,
given a graph G and a nonnegative integer k , whether there is a set S of size at most k such that
G − S |= φ. In particular, Observation 3 implies the following:

Observation 5. Deletion toφ and Elimination Distance–(�) toφ for� ∈ {conn, prop, depth}
are equivalent on instances (G,k), where G is a (k + 1)-connected graph.

4 AN FPT ALGORITHM FOR Σ3-FORMULAS

In this section, we show the main algorithmic result, Theorem 1, that Elimination Distance–(�)
to φ is FPT for formulas from Σ3. Now, we state this theorem formally.

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:16 F. V. Fomin et al.

Theorem 1. For every FOL formula φ ∈ Σ3, Elimination Distance–(�) to φ can be solved in

f (k) · nO (|φ |) time for each � ∈ {conn, prop, depth}.

We prove the theorem using the recursive understanding technique introduced by Chitnis
et al. [8]. It was recently demonstrated by Agrawal et al. [1] that this approach is useful for elimina-
tion problems. As we are interested in the quality result, we apply the meta theorem of Lokshtanov
et al. [26] (see the arXiv version [27] for more details). This considerably simplifies the arguments,
but makes the proof nonconstructive. Moreover, we only show the existence of nonuniform FPT

algorithms. However, we conjecture that it may be possible (however, very technical) to show the
theorem in a constructive way by giving uniform algorithm by either using the original approach
of Chitnis et al. [8] or the dynamic programming scheme proposed by Cygan et al. [11].

The remaining part of the section contains the proof of Theorem 1. In Section 4.1, we introduce
the notation and provide auxiliary results needed to apply the recursive understanding technique,
and in Section 4.2, we prove that the Elimination Distance–(�) toφ is FPT for the key case when
the input graphs cannot be partitioned in big parts by separators of bounded size.

4.1 Recursive Understanding

Let G be a graph. A pair (A,B), where A,B ⊆ V (G) and A ∪ B = V (G), is called a separation of G
if there is no edge uv with u ∈ A\B and v ∈ B\A. In other words, A ∩ B is a (u,v)-separator for
every u ∈ A\B and v ∈ B\A. The order of (A,B) is |A ∩ B |.

Let p,q be positive integers. A graph G is said to be (p,q)-unbreakable if for every separation
(A,B) of G of order at most q, either |A\B | ≤ p or |B\A| ≤ p, that is, G has no separator of size at
most q that partitions the graph into two parts of size at least p + 1 each.

We state the restricted variant of the meta theorem of Lokshtanov et al. [26]. Lokshtanov et al.
proved the theorem for structures and counting monadic second-order logic. For us, it is sufficient
to state the theorem for graphs and MSOL.

Theorem 3 ([26, Theorem 1]). Letψ be an MSOL formula. For all q ∈ N, there exists p ∈ N such

that if there exists an algorithm that solves Model Checking for ψ on (p,q)-unbreakable graphs in

O (nd) time for some d ≥ 4, then Model Checking for ψ can be solved on general graphs in O (nd)
time.

It is crucial that the considered problems may be expressed in MSOL. The fact that the property
that edconn

φ (G) ≤ k can be expressed in MSOL was already used by Lindermayr et al. [25]. We

provide a short unifying proof for edconn
φ (G) ≤ k and ed

prop
φ (G) ≤ k in our terms. For ed

depth
φ (G) ≤

k , the arguments are different.

Lemma 5. For every FOL formula φ, every� ∈ {conn, prop, depth}, and every integer k ≥ 0, there

is an MSOL formulaψ�
k

such that for each graph G, G |= ψ�
k

if and only if ed�
φ (G) ≤ k .

Proof. We use capital letters to denote vertex set variables and small letters are used for vertex
variables. To simplify notation, we introduce some auxiliary formulas. Notice that we can express
that Z = X ∩ Y in MSOL and we write X ∩ Y for such an expression. Similarly, we write X − Y to

express that Z = X\Y , and we write X − y for X\{y}. Also X is used for the complement of X . It
is well-known that the connectivity property can be expressed in MSOL, because of the following
observation: A set X ⊆ V (G) induces a connected subgraph of G if and only if for every partition
(U ,W) of X , there is an edge uw ∈ E (G) such that u ∈ U and w ∈W . Then, we can observe that
for every X ⊆ V (G), G[X] is a component of G if and only if X induces a connected subgraph
but for every v ∈ V (G)\X , G[X ∪ {v}] is not a connected graph. This allows us to use the MSOL
formula comp(X) with a free variable X expressing the property that X induces a component.

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

https://arxiv.org/abs/1802.01453

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:17

Clearly, every FOL formula is an MSOL formula. In particular, this means that we can construct
the MSOL formula φ (X) for a free variable X expressing the property that the subgraph induced
by X models φ.

First, we show the lemma for � ∈ {conn, prop} using the definitions. For this, we inductively
constructψ conn

k
andψ

prop

k
.

It is easy to see that for k = 0,ψ conn
0 = ∀X comp(X) → φ (X).

Now let k ≥ 1 and assume that ψ conn
k−1

is constructed. Then, we can define the MSOL formula
ψ conn

k−1
(X) for a free variable X expressing the property that the subgraph induced by X models

ψ conn
k−1

. Then it is straightforward to verify that

ψ conn
k = ψ conn

k−1 ∨ (∀X comp(X) → (∃x (x ∈ X) ∧ψ conn
k−1 (X − x))).

Next, we constructψ
prop

k
for k ≥ 0. It is straightforward to see thatψ

prop
0 = φ and

ψ
prop
1 = ψ

prop
0 ∨

(
∀X comp(X) → (ψ

prop
0 (X) ∨ (∃x (x ∈ X) ∧ψ prop

0 (X − x)))
)
.

Then for k ≥ 2,

ψ
prop

k
= ψ

prop

k−1
∨
(
∀X comp(X) → (∃x (x ∈ X) ∧ψ prop

k−1
(X − x))

)
,

whereψ
prop

k−1
(X) for a free variableX expresses the property that the subgraph induced byX models

ψ
prop

k−1
.

Finally, we prove the claim for ψ
depth

k
. Here, the proof is more complicated and uses Lemmas 1

and 2. We express the property that X is an elimination set of set at most d .
By Lemma 1, if G is a connected graph and d ≥ 0, then depth(X) ≤ d if and only if X has a

nice representation of depth at most d . For a free variable X and an integer d ≥ −1, we define the
formula ξd (X) expressing that X has a nice representation (T ,α) of depth at most d . For d = −1,
ξd (X) = (X = ∅), and for d = 0, ξd (X) = (|X | = 1) by the definition (clearly, the property |X | = 1
can be expressed in MSOL). Assume that d ≥ 1 and ξd−1 (X) is already constructed. Additionally,
we assume that we are given the formula ξd−1 (X ,Y) that expresses the property that X has a nice
representation of depth at most d − 1 in the subgraph induced by Y . For this, we observe that
ξd−1 (X ,Y) can be constructed from ξd−1 (X) in a straightforward way. Also, we use comp(Y ,x)
to denote the formula expressing that Y induces a component of the subgraph obtained by the
deletion of x . Then

ξd (X) = ξd−1 (X) ∨
(
∃x (x ∈ X) ∧ (∀Y (comp(Y ,x) ∧ (X ∩ Y � ∅)) → ξd−1 (X ∩ Y ,Y))

)
.

To see this, it is sufficient to observe that ∃x (x ∈ X) ∧ (∀Y (comp(Y ,x) ∧ (X ∩ Y � ∅)) →
ξd−1 (X ∩ Y ,Y)) expresses that G has a vertex x ∈ X such that for the root r of T , x = α (r), and in
each componentC ofG − x containing some vertices of X , there is a subtree ofT of depth at most
d − 1 that can be used to represent V (C) ∩ X in C .

Now, we construct the formula ξ̃d that expresses that X is an elimination set of depth at most d

using Lemma 2. It is easy to see that ξ̃−1 (X) = (X = ∅) and ξ̃d (X) = (|X | = 1). Assume that d ≥ 1,

ξ̃d−1 (X) is already constructed, and we have a formula ξ̃d−1 (X ,Y) expressing that the depth of X
is at most d − 1 in the subgraph induced by Y . Then by Lemma 2,

ξ̃d (X) = ξ̃d−1 (X)

∨(∃Y comp(Y) ∧ ξ̃d (X ∩ Y ,Y) ∧ (∀Z (comp(Z) ∧ (Z � Y)) → ξ̃d−1 (X ∩ Z ,Z))).

Using ξ̃d for d ≥ −1, we can writeψ
depth

k
for k ≥ 0 as follows:

ψ
depth

k
= ∃X ξ̃k−1 ∧ φ (X).

This completes the proof. �

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:18 F. V. Fomin et al.

Theorem 3 and Lemma 5 allow us to reduce the proof of Theorem 1 to solving Elimination
Distance–(�) to φ for� ∈ {conn, prop, depth} on unbreakable graphs. For this, we show that any
elimination set in an unbreakable graph has bounded size.

Lemma 6. Let G be a (p,q)-unbreakable graph for positive integers p and q with |V (G) | >
(3p + 2q) (p + 1). Let also X ⊆ V (G) be an elimination set of depth at most d ≤ q − 1. Then

|X | ≤ p + q. Furthermore, there is a unique component C of G − X with at least p + 1 vertices

and |V (G)\NG [V (C)]| ≤ p.

Proof. Let (T ,α) be a representation of X with depth(T) ≤ d . Denote by r the root of T .
First, we show the weaker bound |X | ≤ 3p + 2q.
For the sake of contradiction, assume that |X | ≥ 3p + 2q + 1. BecauseT is a tree, it has a node x

such that every component of T − x has at most 1
2 |V (T) | nodes. Let S = AT (x) and S ′ = α (AT (x)).

Since depth(T) ≤ d ≤ q − 1, |S | = |S ′ | ≤ q. By the definition of a representation, for every
two distinct components C and C ′ of T − S , and every x ∈ α (V (C)) and y ∈ α (V (C ′)), S ′ is an
(x ,y)-separator in G.

We now claim that every componentC ofT −S has at mostp nodes. Suppose to the contrary that
there is a component C of T − S with at least p + 1 nodes. Consider the components C1, . . . ,Cs of
G −S ′ such thatV (Ci)∩α (V (C)) � ∅. DefineA = S ∪⋃s

i=1V (Ci). Note that |A\S | ≥ |V (C) | ≥ p+1.

Let Y = V (T)\(S ∪ V (C)). By the choice of x , |V (C) | ≤ 1
2 |V (T) |. Then |Y | ≥ 1

2 |V (T) | − q ≥
(3

2p + q + 1
2) − q = 3

2p +
1
2 ≥ p + 1. Observe that for every node y ∈ Y , α (y) � V (Ci) for

i ∈ {1, . . . , s}. Then α (Y) ⊆ V (G)\A and |V (G)\A| ≥ p + 1. For B = (V (G)\A) ∪ S ′, we have that
(A,B) is a separation of G with S ′ = A ∩ B. In particular, (A,B) is a separation of order at most
q. However, |A\B | ≥ p + 1 and |B\A|. This contradicts the unbreakability condition and the claim
follows.

Denote byC1, . . . ,Cs the components ofT − S . Consider a set of indices I ⊆ {1, . . . , s} such that
|⋃i ∈I V (Ci) | ≥ p + 1 and for every proper I ′ ⊂ I , |⋃i ∈I ′ V (Ci) | ≤ p. Such a set I exists, because
|⋃s

i=1V (Ci) | ≥ |V (T) | − q ≥ 3p + q + 1. Since each component has at most p nodes, we have that
|⋃i ∈I V (Ci) | ≤ 2p. Then, because |V (T)\S | ≥ 3p + 1, |⋃i ∈{1, ...,s }\I V (Ci) | ≥ p + 1.

Consider the components C ′1, . . . ,C
′
t of G − S ′ that contain at least one vertex of α (V (Ci)) for

some i ∈ I . Define A = S ′ ∪⋃t
i=1V (C ′i). Note that |A\S ′ | ≥ p + 1, because |⋃i ∈I V (Ci) | ≥ p + 1. Let

B = (V (G)\A) ∪ S ′. Since
⋃

i ∈{1, ...,s }\I α (V (Ci)) ⊆ B\S , |B\S | ≥ p + 1. Then, we obtain that (A,B)
is a separation of G of order at most q with |A\B | ≥ p + 1 and |B\A| ≥ p + 1; a contradiction. This
concludes the proof of our claim that |X | ≤ 3p + 2q.

Now, we improve the obtained upper bound. Because |X | ≤ 3p+2q and |V (G) | > (3p+2q) (p+1),
|V (G)\X | > (3p + 2q)p. Observe that for the set of leaves L(T), we have that |L(T) | ≤ 3p + 2q. By
Observation 3, it holds that for every componentC ofG−X , NG (V (C)) ⊆ AT (x) for some x ∈ L(T).
By the pigeonhole principle, we conclude that there is x ∈ L(T) such that for the components
C1, . . . ,Cs of G − X with NG (V (Ci)) ⊆ AT (x) for i ∈ {1, . . . , s}, it holds that |⋃s

i=1V (Ci) | ≥ p + 1.
Let S = α (AT (x)). Note that |S | ≤ d + 1 ≤ q. Consider A = S ∪⋃s

i=1V (Ci) and B = (V (G)\A) ∪ S .
We obtain that (A,B) is a separation of G of order at most q and |A\B | ≥ p + 1. Since G is (p,q)-
unbreakable, we have that |B | ≤ p + q. Notice that X ⊆ B. Thus, |X | ≤ p + q.

To show the second claim, note that |L(T) | ≥ p +q. In the same way as above, there is x ∈ L(T)
such that for the components C1, . . . ,Cs of G − X with NG (V (Ci)) ⊆ AT (x) for i ∈ {1, . . . , s}, it
holds that |⋃s

i=1V (Ci) | ≥ p + 1. We show that there is i ∈ {1, . . . , s} such that |V (Ci) | ≥ p + 1. For
the sake of contradiction, assume that |V (Ci) | ≤ p + 1 for all i ∈ {1, . . . , s}. Then there is a set of
indices I ⊆ {1, . . . , s} such that |⋃i ∈I V (Ci) | ≥ p+1 and for every proper I ′ ⊂ I , |⋃i ∈I ′ V (Ci) | ≤ p.
Because each component has at most p vertices, |⋃i ∈I V (Ci) | ≤ 2p. Consider A = S ∪⋃s

i=1V (Ci),

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:19

where S = α (AT (x)) and B = (V (G)\A) ∪S . Note that |B\S | ≥ |V (G) | − 2p −q ≥ p + 1. Then (A,B)
is a separation of G of order at most q with |A\B | ≥ p + 1 and |B\A| ≥ p + 1; a contradiction with
the condition that G is (p,q)-unbreakable. This implies that there is a componentC of G −X with
|V (C) | ≥ p + 1.

BecauseG is a (p,q)-unbreakable graph and |NG (V (C)) | ≤ q, we have that |V (G)\NG [V (C)]| ≤
p. To see it, it is sufficient to consider the separation (A,B) of G with A = NG [V (C)] and
B = V (G)\V (C). Clearly, |B\A| ≤ p and, therefore, |V (G)\NG [V (C)]| ≤ p. This also implies the
uniqueness of a component ofG − S with at least p + 1, because for every other componentC ′, we
have that V (C ′) ⊆ B\A. This concludes the proof. �

Using the notation in Lemma 6, we say that a componentC ofG −X with at least p + 1 vertices
is big and the other components are small.

We can use backtracking to verify, given a set X , whether depth(X) ≤ d . For this, we combine
Lemmas 1 and 2 with backtracking and obtain the following straightforward lemma:

Lemma 7. Given a graph G, a set of vertices X ⊆ V (G), and an integer d ≥ −1, it can be decided

in |X |O (d) · nO (1) time whether depth(X) ≤ d .

We have to solve Elimination Distance–(�) to φ for� ∈ {conn, prop} on instances where the
number of vertices ofG is bounded by a polynomial of k . In this case, it is sufficient to have an XP
algorithm. It is straightforward to see that such an algorithm can be constructed by backtracking
following the definitions of edconn

φ and ed
prop
φ .

Lemma 8. Let φ be an FOL formula. Then Elimination Distance–(�) to φ can be solved in

nO (k+ |φ |) time for � ∈ {conn, prop}.
We also need the following technical lemma that will allow us to consider inclusion-minimal

elimination sets.

Lemma 9. LetG be a connected graph and letX be a nonempty elimination set with a nice represen-

tation (T ,α). Let alsoC be a component ofG−X anchored in x∗ ∈ V (T). Suppose that S ⊆ NG (V (C))
and C ′ is a component of G − S with V (C) ⊆ V (C ′). Then there is an elimination set X ′ ⊆ X with a

nice representation (T ′,α ′) such that V (T ′) ⊆ V (T) and the following is fulfilled:

(a) S ⊆ X ′ and (NG (V (C))\S) ∩ X ′ = ∅,
(b) for every component H of G − X ′, either V (H) ⊆ V (C ′) or H is a component of G − X ,

(c) for every node y ∈ V (T ′), depthT ′ (y) ≤ depthT (y),
(d) if a component H of G −X ′ distinct from C ′ is anchored in a leaf z of T , then H is anchored in

z in T ′ and z is a leaf of T ′,
(e) if x∗ is a leaf of T and x∗ ∈ S , then C ′ is anchored in x∗ in T ′.

Proof. Let R = NG (V (C)). The claim is trivial if S = ∅, becauseC ′ = G and we can take X ′ = ∅.
We assume that this is not the case. The proof is by induction on |R\S |. The claim is straightforward
if R = S as we can take X ′ = X and consider the same representation (T ,α). The crucial case is the
case |R\S | = 1. Let u be the unique vertex of R\S . We consider two possibilities for u. Let v = α (r),
where r is the root of T .

Case 1.u = v . LetW = V (C ′). Notice that a vertexw ∈ V (G) is inW if and only if eitherw ∈ V (C)
or w � S ∪ V (C) and G − S has a (u,w)-path. Define X ′ = X\W . Clearly, (a) holds for this X ′.
Observe that for a component H ofG −X , we have thatV (H) ⊆W if NG (V (H)) contains a vertex
ofW and V (H) ∩W = ∅ otherwise. In particular, this implies (b).

Next, we construct T ′ and α ′. We set V (T ′) = α−1 (X ′) and define α ′(x) = α (x) for every
x ∈ V (T ′). Because S � ∅, there is a descendant r ′ of r of minimum depth such that α (r ′) ∈ S . For

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:20 F. V. Fomin et al.

every w ∈ X ′ distinct from α (r ′), we consider x = α−1 (w) and find a proper ancestor y of x in T
of maximum depth such that α (y) ∈ X ′. Then, we define y be the parent of x .

We argue that T ′ is a tree rooted in r ′. We have to show that for every w ∈ X ′ distinct from
α (r ′), we have an ancestor y of x = α−1 (w) inT such that α (y) ∈ X ′. For the sake of contradiction,
assume that there is w ∈ X ′ such that for every proper ancestors y of x = α−1 (w) in T , α (y) � X ′.
Clearly, x is not a descendant of r ′ in T . In particular, r ′ and x are incomparable. Let z be the
lowest proper ancestor of r ′ and y inT . We have that α (AT (z)) is an (α (r ′),w)-separator ofG and,
moreover, S has no vertices in the component G − α (AT (z)) containing α (x). Since (T ,α) is nice,
this component has an (α (z),w)-path. Because α (z) � S , G − S has a (u,α (z))-path. We conclude
that G − S has a (u,w)-path and w � X ′; a contradiction. This proves that T ′ is a tree rooted in r ′.

We prove that (T ′,α ′) represents X ′. Towards a contradiction, assume that this is not the case,
that is, there are distinct incomparable x ,y ∈ V (T ′) whose lowest common ancestor z � x ,y
and α ′(x) and α ′(y) are in the same component of G − AT ′ (z). By the definition of T ′, z has a
descendant z ′ in T such that z ′ � x ,y is the lowest common ancestor of x and y in T . Clearly,
either x � NG (V (C)) or y � NG (V (C)). By symmetry, assume that y � NG (V (C)). Because (T ,α) is
a representation ofX , α (AT (z ′)) is an (α (x),α (y))-separator. This means that every (α ′(x),α ′(y))-
path in G contains a vertex of (α (x),α (y)). In particular, this implies that there is a vertex z ′′ ∈
AT (z ′) such thatG has an (α (z ′′),α ′(y))-path P inG such that the internal vertices of the path are
in the component G − α (AT (z ′)) containing α ′(y). Because y � NG (V (C)), we have that P avoids
the vertices of S . Since z ′ � X ′, G − S has a (u,α (z ′′))-path P ′. Concatenating P ′ and P , we obtain
thatG −S has a (u,α (y ′))-path. However this contradicts that α ′(y) ∈ X ′. This proves that (T ′,α ′)
represents X ′.

By the construction ofT ′, it is easy to see thatT ′ is nice, becauseT is nice. Also the construction
of T ′ immediately implies (c)–(e). This concludes the analysis of the first case.

Case 2.u � v . We show the claim by induction ond = depth(T). Notice that depth(T) ≥ 1, because
X\{v} � ∅. LetC1, . . . ,Cs be the components ofG−v such thatXi = X∩V (Ci) � ∅ for i ∈ {1, . . . , s}.
Because T is nice, T has children r1, . . . , rs such that for every i ∈ {1, . . . , s}, the subtree Ti of T
rooted in ri together with αi (x) = α (x) for x ∈ V (Ti) represent Xi in Ci . By Observation 3, we
can assume without loss of generality that V (C) ⊆ V (C1) and NG (V (C)) ⊆ V (C1) ∪ {v}. Because
depth(T1) < depth(T), we can apply the inductive assumption and construct an elimination set
X ′1 ⊂ X1 with a nice representation (T ′1 ,α

′
1) satisfying (a)–(e). Then, we constructX ′ = X ′1∪

⋃s
i=1 Xi .

Then, we construct T ′ from T ′1 and T2, . . . ,Ts by making r ′1 and r2, . . . , rs the children of r , where
r ′1 is the root of T ′1 . We set

α ′(x) =
⎧⎪⎨
⎪
⎩

αi (x), if x ∈ Xi for some i ∈ {2, . . . , s},
α ′1 (x), if x ∈ X ′1.

It is straightforward to verify that X ′ and (T ′,α ′) satisfy (a)–(e).

This concludes the proof for the base case |R\S | = 1. To show the claim for |R\S | > 1, consider a
vertexw ∈ R\S and apply the claim for S ′ = S ∪ {w } using the inductive assumption. We have that
there is an elimination set X ′ ⊆ X with a nice representation (T ′,α ′) such that V (T ′) ⊆ V (T) and
(a)–(e) are fulfilled with respect to S ′. Then, we apply the claim for X ′ and (T ′,α ′) with respect to
the componentC ′ and S . Clearly, we obtain an elimination set X ′′ ⊆ X ′ ⊆ X with a nice represen-
tation (T ′′,α ′′) such that V (T ′′) ⊆ V (T ′) ⊆ V (T) satisfying (a)–(e). This completes the proof. �

In our algorithms, we use the random separation technique introduced by Cai, Chan, and Chan
in [7]. To avoid dealing with randomized algorithms, we use the following lemma stated by
Chitnis et al. in [8]:

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:21

Lemma 10 ([8]). Given a set U of size n and integers 0 ≤ a,b ≤ n, one can construct in time

2O (min{a,b } log(a+b)) · n logn a family F of at most 2O (min{a,b } log(a+b)) · logn subsets of U such that

the following holds: For any sets A,B ⊆ U , A ∩ B = ∅, |A| ≤ a, |B | ≤ b, there exists a set R ∈ F with

A ⊆ R and B ∩ R = ∅.

4.2 Algorithm for Unbreakable Graphs

In this subsection, we give FPT-algorithms for Elimination Distance–(�) to φ for every
� ∈ {conn, prop, depth} for FOL formulas φ ∈ Σ3 on unbreakable graphs. Throughout the sub-
section, we assume without loss of generality that

φ = ∃x1 · · · ∃xr∀y1 · · · ∀ys∃z1 · · · ∃zt χ ,

where χ is quantifier-free and r , s, t are positive integers, because we always can write an FOL for-
mula from Σ3 in this form by adding dummy variables if necessary. We also write x = 〈x1, . . . ,xr 〉,
y = 〈y1, . . . ,ys 〉, and z = 〈z1, . . . , zt 〉.

Notice that edconn
φ (G) = 0 if and only if for every component C of G, C |= φ. Also ed

prop
φ (G) = 0

(ed
depth
φ (G) = 0, respectively) if and only if G |= φ. This implies that Elimination Distance–(�)

to φ for � ∈ {conn, prop, depth} can be solved in time nO (|φ |) if k = 0 by Observation 1, that
is, Theorem 1 trivially holds for k = 0. Hence, throughout this subsection, we assume that the
parameter k in the considered instances is positive.

By Theorem 3 and Lemma 5, to prove Theorem 1, it is sufficient to demonstrate an FPT algorithm
for the considered problems on (p (k),k)-unbreakable graphs for a computable function p : N→ N.
Slightly abusing notation, we write p instead of p (k).

The algorithms for Elimination Distance–(�) to φ for � ∈ {conn, prop, depth} exploit the
same ideas and have similar structures. However, there are differences that make it hard to give a
unified description. In particular, for Elimination Distance–(prop) toφ, we have to deal with the
properties of elimination sets and their representations given in Lemma 4, and this makes various
details of our algorithm for this problem different from the algorithm for Elimination Distance–
(conn) to φ. Furthermore, our algorithm for Elimination Distance–(depth) to φ is sufficiently
different form the other two, because in this case, we aim for quite different properties of the graph
obtained by deleting an elimination set and this rules out a common description. Hence, we first
give the details of the algorithm for Elimination Distance–(conn) to φ and then more briefly
explain our algorithm for Elimination Distance–(prop) to φ. Further, we present our algorithm
for Elimination Distance–(depth) to φ. Then, we derive Theorem 1 from Lemmas 12, 15, and 17
in which we summarize the properties of the algorithms for the considered problems.

Algorithm for Elimination Distance–(conn) to φ. Let (G,k) be an instance of Elimination
Distance–(conn) to φ, whereG is a (p,k)-unbreakable graph. We assume without loss of general-
ity thatG is connected. Otherwise, because edconn

φ (G) = max{edconn
φ (C) | C a component of G}, we

can solve the problem for each component separately. If |V (G) | ≤ (3p+2k) (p+1), then we solve the

problem in (p+k)O (k+ |φ |) time by Lemma 8. From now on, we assume that |V (G) | > (3p+2k) (p+1).
By Lemma 3, (G,k) is a yes-instance of Elimination Distance–(conn) to φ if and only if G

contains an elimination set X of depth at most k − 1 such that C |= φ for every component C of

G − X . Our algorithm finds such a set X , called a solution, if it exists. We verify in nO (|φ |) time
whether X = ∅ has the required property and return yes if this holds. Assume that this is not the
case, that is, we have to find a nonempty solution.

Suppose that (G,k) is a yes-instance and let X be a solution with a representation (T ,α). By
Lemma 6, |X | ≤ p+k and there is a unique big componentC ofG−X with at least p+1 vertices, the
other components are small, and |V (G)\NG [V (C)]| ≤ p. By Observation 3, NG (V (C)) ⊆ α (AT (x)),

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:22 F. V. Fomin et al.

Fig. 2. A visualization of the set X , the componentC , the sets S , andU , and the way the red and blue colors

are distributed among them.

where x is an anchor of C . In particular, this means that |NG (V (C)) | ≤ k . We use these properties
to identify C . This is done by combining the random separation technique [7] with a recursive
branching algorithm.

We use random separation to highlight the hypothetical sets S = NG (V (C)) and U =

V (G)\NG [V (C)] (if they exist). To avoid randomized algorithms, we directly use the derandom-

ization tool from Lemma 10. By this lemma, we can construct in 2O (min{p,k } log(p+k)) ·n logn time a

family F of at most 2O (min{p,k } log(p+k)) · logn subsets of V (G) such that there is R ∈ F such that
U ⊆ R and S ∩ R = ∅. In our algorithm, we go over all sets R ∈ F and for each set R, we check
whether there is a solution X such that U ⊆ R and S ∩ R = ∅ for the sets S and U corresponding
to X (recall that S = NG (V (C)) andU = V (G)\NG [V (C)],whereC is the unique big component of
G−X with at leastp+1 vertices). Clearly, (G,k) is a yes-instance of Elimination Distance–(conn)
to φ if and only if there is R ⊆ F and a solution X with the required property.

From now on, we assume that R ∈ F is given. We set B = V (G)\R. We say that the vertices of
R are red and the vertices of B are blue. We also call the components of G[R] red components of G
and we use the same convention for induced subgraphs ofG. A solutionX is colorful if the vertices
ofU are red and the vertices of S are blue (see Figure 2). The crucial property of colorful solutions
is that

if a red vertex v is in U , then the set of vertices of the red component H containing v
is a subset of U .

IfG−X has a big componentC andC |= φ, then there is an r -tuple v = 〈v1, . . . ,vr 〉 of vertices ofC
such that (C, v) |= φ[x] (recall that φ[x] is the formula with the free variables x1, . . . ,xr obtained
from φ by the removal of the quantification over x1, . . . ,xr , and (C, v) |= φ[x] means that φ[x]
evaluates true onG when xi is assigned vi for all i ∈ {1, . . . , r }). Using brute force, we consider all
r -tuples v = 〈v1, . . . ,vr 〉 of vertices ofG, and for each v, we explain how to check whether there is
a colorful solutionX with the big componentC such thatvi ∈ V (C) for all i ∈ {1, . . . , r }. Note that

at most nr r -tuples v can be listed in nO (|φ |) time. The algorithm returns yes if we find a colorful
solution for some choice of v, and it concludes that there is no colorful solution for the considered
selection of R otherwise.

From now on, we assume that v = 〈v1, . . . ,vr 〉 is fixed. Because these vertices should be in C ,
we temporarily (i.e., only for the current choice of v) recolor them red to simplify further notation.
We apply a recursive branching algorithm to find C and S .

We exploit the property that because φ ∈ Σ3, the formula contains exactly one alternation from
the existential quantifiers to universal. By definition, we have that (C, v) |= φ[x] if and only if
for every s-tuple u = 〈u1, . . . ,us 〉 of vertices of C , (C, vu) |= φ[xy]. Suppose that (C, v)
 |= φ[x].
Then there is an s-tuple u = 〈u1, . . . ,us 〉 of vertices such that (C, vu)
 |= φ[xy]. Notice now that,
because φ ∈ Σ3, we have that for any induced subgraph C ′ of C such that vi ∈ V (C ′) for every
i ∈ {1, . . . , r }, if (C ′, v) |= φ[x], then there is j ∈ {1, . . . , s} such that uj � V (C ′). This implies that

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:23

if (C, vu)
 |= φ[xy], then there is j ∈ {1, . . . , s} such that either uj ∈ S and should be deleted or uj

is in a component ofG − S distinct fromC and this component should be deleted together with its
neighborhood. Note that uj is blue in the first case, and uj is red in the second. Moreover, in the
second case, we should delete the red component containing uj together with its blue neighbor-
hood. We branch on all possible deletions of vi ’s, using the following subroutine FindC(C, S,h),
where we initially set C � G, S � ∅, and h � k :

Subroutine FindC(C, S,h).

• If (C, v) |= φ[x] and h ≥ 0, then return C , S , and stop.
• If (C, v)
 |= φ[x] and h ≤ 0, then stop.
• If h ≥ 1 and there is an s-tuple u = 〈u1, . . . ,us 〉 of vertices of C such that (C, vu)
 |= φ[xy],

then do the following for every j ∈ {1, . . . , s}.
– If uj ∈ B and there is a component C ′ of C − uj such that vi ∈ V (C ′) for all i ∈ {1, . . . , r },

then call FindC(C ′, S ∪ {uj },h − 1).
– If uj ∈ R and there is a red component H of C with the set of verticesW and S ′ = NC (W)

such that (a) uj ∈ W , (b) |S ′ | ≤ h, and (c) there is a component C ′ of C − NC [W] with
vi ∈ V (C ′) for all i ∈ {1, . . . , r }, then call FindC(C ′, S ∪ S ′,h − |S ′ |).

We show the following lemma:

Lemma 11. If X is an inclusion-minimal colorful solution to (G,k) with the big componentC such

thatvi ∈ V (C) for all i ∈ {1, . . . , s} and (C, v) |= φ[x], then there is a leaf of the search tree produced

by FindC(G, ∅,k) for which the subroutine outputs C and S = NG (V (C)).

Proof. To prove the lemma, we show the following claim: If the subroutine FindC is called for

(C̃, S̃, h̃) such that (a) V (C) ⊆ V (C̃), (b) S̃ = NG (V (C̃)), (c) S̃ ⊆ S , and (d) h̃ = k − |S̃ |, then either

the subroutine outputs C̃ and S̃ or it recursively calls FindC(C̃ ′, S̃ ′, h̃′), where (a′) V (C) ⊆ V (C̃ ′),
(b′) S̃ = NG (V (C̃ ′)), (c′) S̃ ′ ⊆ S , and (d′) h̃′ = k − |S̃ ′ |.

Notice that h̃ = k − |S̃ | ≥ 0, because |S | ≤ k . Hence, if (C̃, v) |= φ[x], then FindC(C̃, S̃, h̃) outputs

C̃ and S̃ in the first step, and the claim holds. Assume that (C̃, v)
 |= φ[x]. Because the subroutine is

called only for connected induced subgraphs of G, we have that S̃ ⊂ S and, therefore, h̃ > 0. This
implies that the subroutine does not stop in the second step. Then it proceeds to the third step and

finds an s-tuple u = 〈u1, . . . ,us 〉 of vertices of C̃ such that (C̃, vu)
 |= φ[xy]. Because (C, v) |= φ[x],
there is a j ∈ {1, . . . , s} such that uj � V (C). We consider the following two cases.

Case 1.uj ∈ S . Notice that becauseX is a colorful solution,uj is blue in this case. Observe also that

C̃ − uj has a component C̃ ′ such that V (C) ⊆ V (C̃ ′). Then the subroutine calls FindC(C̃ ′, S̃ ′, h̃′),

where S̃ ′ = S̃ ∪ {uj } and h̃′ = h̃ − 1. It is easy to see that (a′)–(d′) are fulfilled for C̃ ′, S̃ ′, and h̃′.

Case 2. uj ∈ U . As X is colorful, uj is red in this case. Let H be the red component of C̃ containing
uj and letW = V (H). Because X is a colorful solution, we have thatW ⊆ U and NC̃ (W) ⊆ S . Then

G−NG [W] has a component C̃ ′ such thatV (C) ⊆ V (C̃ ′). Then the subroutine calls FindC(C̃ ′, S̃ ′, h̃′),
where S̃ ′ = S̃ ∪ NC̃ (W) and h̃′ = h̃ − |NC̃ (W) |. We obtain that (a′)–(d′) are fulfilled for C̃ ′, S̃ ′, and

h̃′. This concludes the case analysis and the proof of the claim.

Observe that conditions (a)–(d) of the claim are fulfilled if C = G, S = ∅, and h = k . Then the
inductive application of the claim proves that there is a leaf of the search tree for which it outputs

C̃ and S̃ such that (a) V (C) ⊆ V (C̃), (b) S̃ = NG (V (C̃)), and (c) S̃ ⊆ S . Recall that X is an inclusion-
minimal colorful solution. Then Lemma 9 immediately implies that C = C̃ and S = S̃ and this
concludes the proof. �

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:24 F. V. Fomin et al.

Note that the number of branches of every node of the search tree produced by FindC(G, ∅,k)
is at most s and the depth of the search tree is at most k . This implies that the search tree has
at most sk leaves. By Lemma 11, if (G,k) has an inclusion-minimal colorful solution X , then the
subroutine outputs the corresponding big component C containing v1, . . . ,vr and S . We consider
all pairs (C, S) produced by FindC(G, ∅,k) and for each of these pairs, we verify whether there is a
colorful solution corresponding to it. If we find such a solution, then we return yes (or return the
solution), and we return no if we fail to find a colorful solution for each C and S . In the last case,
we conclude that we have no colorful solution and discard the current choice of R ∈ F .

Assume that C and S are given. Recall that vi ∈ V (C) for i ∈ {1, . . . , r }, S = NG (V (C)), and
(G, v) |= φ[x]. First, we check whetherC is a big component ofG−S by verifying whether |V (C) | ≥
p + 1. Clearly, if |V (C) | ≤ p, then C cannot be a big component of G − X for a solution X and
we discard the considered choice of C and S . Assume that this is not the case, that is, |V (C) | ≥
p + 1. Then because G is a (p,k)-unbreakable graph, we have that |V (G)\NG [V (C)]| ≤ p. We
use brute force and consider every subset Y ⊆ V (G)\NG [V (C)] and then verify whether (i) X =
S ∪ Y is an elimination set of depth at most k − 1 and (ii) for every component C ′ � C of G − X ,

C ′ |= φ. Note that checking (i) can be done by Lemma 7 in (k + p)O (k) · nO (1) time and (ii) can

be verified in nO (|φ |) time by Observation 1. If we find X = S ∪ Y satisfying (i) and (ii), then we
conclude thatX is a solution and return yes. Otherwise, if we fail to find such a set, then we return
no.

This concludes the description of the algorithm for Elimination Distance–(conn) to φ and its
correctness proof. We summarize in the following lemma:

Lemma 12. Elimination Distance–(conn) to φ on (p,k)-unbreakable graphs for φ ∈ Σ3 can be

solved in 2O ((p+k) log(p+k)) · nO (|φ |) time.

Proof. Since the correctness of the algorithm was already established, it remains to evalu-
ate the total running time. Recall that if |V (G) | ≤ (3p + 2k) (p + 1), then the problem is solved

in (p + k)O (k+ |φ |) time. Otherwise, we construct F of size at most 2O (min{p,k } log(p+k)) · logn in

2O (min{p,k } log(p+k)) · n logn time. Then for every R ∈ F , we try to find a colorful solution. For

this, we first guess v. Clearly, we have nO (|φ |) possibilities for the choice of v. Then, we run the
subroutine FindC(C, S,h). Note that the search tree produced by the subroutine has at most |φ |k
leaves and each call (without recursive calls) requires nO (|φ |) time. Then the running time of the

subroutine is |φ |k ·nO (|φ |) . We consider the pairs (C, S) produced by the subroutine, and for eachC
and S , we verify whether we have a corresponding colorful solution X . The brute force selection

of X can be done in 2O (p) time. Then checking whether X is a solution requires (k + p)O (k) · nO (1) .

Then, we conclude that the total running time is 2O ((p+k) log(p+k)) · nO (|φ |) . �

Algorithm for Elimination Distance–(prop) to φ. Let (G,k) be an instance of Elimination
Distance–(prop) toφ, whereG is a (p,k)-unbreakable graph. We check whetherG |= φ and imme-
diately return yes if this is fulfilled. Assume that this is not the case and that ed

prop
φ (G) ≥ 1. Then,

we can assume without loss of generality that G is connected. Otherwise, because ed
prop
φ (G) =

max{1,max{ed
prop
φ (C) | C a component of G}}, we can solve the problem for each component sep-

arately. In the same way as with Elimination Distance–(conn) to φ, we solve the problem in

(p + k)O (k+ |φ |) time by Lemma 8 if |V (G) | ≤ (3p + 2k) (p + 1). Therefore, from now on, we may
assume that |V (G) | > (3p + 2k) (p + 1).

Let (T ,α) be a representation of an elimination set X . Recall that Px denotes the set of compo-
nents of G −X anchored in x , where x is a node of T . Also Gx denotes the subgraph of G induced
by the vertices of the graphs of Px , that is, Gx is the union of the components of G − X anchored

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:25

in x . By Lemma 4, (G,k) is a yes-instance of Elimination Distance–(prop) to φ if and only if G
contains an elimination set X of depth at most k − 1 with a representation (T ,α) such that

(i) for every nonleaf node x ∈ V (T), C |= φ for every C ∈ Px ,
(ii) for every leaf x of T with depthT (x) ≤ k − 2, either Gx |= φ orC |= φ for everyC ∈ Px , and

(iii) for every leaf x of T with depthT (x) = k − 1, Gx |= φ.

We call such a set X a solution. We observe that, given a set X , we can decide whether X is a
solution.

Lemma 13. Let X ⊆ V (G) be nonempty. It can be decided in |X |k · nO (|φ |) time whether X has a

representation (T ,α) satisfying (i)–(iii).

Proof. Because G is connected and k ≥ 1, it is sufficient to verify the existence of a nice rep-
resentation. We do it by a recursive algorithm that for a given x ∈ X finds a nice representation
(T ,α) such that α (r) = x , where r is the root of T . More precisely, given a graph G, a nonempty
X ⊆ V (H), a vertex x ∈ X , and a positive integer k , the algorithm finds a nice representation (T ,α)
of X satisfying (i)–(iii) such that α (r) = x if such a representation exists.

Suppose that |X | = 1, that is, X = {x }. If G − x |= φ, then the algorithm returns a single-vertex
tree rooted in r with α (r) = x . If G − x
 |= φ and k ≥ 2, then we check whether C |= φ for every
component C − x . If this holds, then again, the algorithm returns a single-vertex tree rooted in r
with α (r) = x . In all other cases, the algorithm returns no.

Suppose from now on that |X | ≥ 2. If k = 1, then we immediately return no and stop. Also, if
there is a componentC ofG − x such thatV (C) ∩X = ∅ andC
 |= φ, then the algorithm returns no

and stops. Assume that these are not cases. Let C1, . . . ,Cs be the components of G − x such that
Xi = X ∩V (Ci) � ∅.

For every i ∈ {1, . . . , s}, we call the algorithm recursively for Ci , Xi , every y ∈ Xi , and k − 1. If
there is i ∈ {1, . . . , s} such that the algorithm failed to produce a representation for every choice
of y ∈ Xi , then the algorithm returns no and stops. Otherwise, the algorithm finds for every
i ∈ {1, . . . , s} a vertex xi ∈ Xi and a nice representation (Ti ,αi) of Xi inCi satisfying (i)–(iii) (with
respect to the new parameters) such that the root ri is mapped to xi by αi . We construct T from
T1, . . . ,Ts by creating a root r and making it the parent of r1, . . . , rs . Then

α (z) =
⎧⎪⎨
⎪
⎩

x , if z = r ,

αi (z), if z ∈ V (Ti) for some i ∈ {1, . . . , s}.

This completes the description of the algorithm. It is straightforward to verify its correctness
using the definition of a nice representation of an elimination set. To decide whether X has a rep-
resentation (T ,α) satisfying (i)–(iii), we run the algorithm for all x ∈ X . Clearly, a representation
exists if and only if the algorithm produces a representation for some choice of x . Since in each
call of the algorithm, we make at most |X | recursive calls and the depth of the recursion is at most

k , the total running time is |X |k · nO (|φ |) . �

Suppose that (G,k) is a yes-instance and letX be a solution with a nice representation (T ,α). By
Lemma 6, |X | ≤ p+k and there is a unique big componentC ofG−X with at least p+1 vertices, the
other components are small, and |V (G)\NG [V (C)]| ≤ p. By Observation 3, NG (V (C)) ⊆ α (AT (x)),
where x is an anchor ofC . In particular, this means that |NG (V (C)) | ≤ k . As with the algorithm for
Elimination Distance–(conn) to φ, our aim is to identify C . We consider two possibilities for C .

First, we try to find C assuming that one of the following holds: either (a) the anchor of C is
not a leaf of T or (b) the anchor x is leaf but depthT (x) < k − 1 and C ′ |= φ for every C ′ ∈ Px ,

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:26 F. V. Fomin et al.

or (c) Gx = C . In this case, the algorithm is essentially identical to the algorithm for Elimination
Distance–(conn) to φ. We use Lemma 10 to highlight S and U = V (G)\NG [V (C)]. Then, we
guess v in C and call the subroutine FindC(G, ∅,k) to enumerate all candidate big components C
and S = NG (V (S)). The difference occurs only in the last step of the algorithm, where we find
a solution X . We use brute force and consider every subset Y ⊆ V (G)\NG [V (C)] and then verify
whetherX = S∪Y is an elimination set of depth at most k−1 satisfying (i)–(iii) using Lemma 13. If
we find a required X , then we conclude that X is a solution and return yes. Otherwise, if we fail to
find such a set for every candidateC , then we return no for the considered set R and discard it. The
correctness is proved and the running time is analyzed in exactly the same way as for Elimination
Distance–(conn) to φ.

Next, if we failed to find a solution so far, then we consider the remaining possibility that the
anchor x of C is a leaf of T and Gx |= φ, where Gx is a disconnected graph. Our algorithm for
this case uses the same approach as the algorithm for Elimination Distance–(conn) to φ but the
arguments are more involved, as we aim to identify C together with the other components of Gx .
In other words, we find Gx .

Let S = NG (V (Gx)). Note that S ⊆ α (AT (x)) and, therefore, |S | ≤ k . Observe that NG (V (C)) ⊆ S .
Let alsoU = V (G)\(V (C) ∪ S). BecauseC is a big component and G is (p,k)-unbreakable, |U | ≤ p.

Similarly to the algorithm for Elimination Distance–(conn) to φ, we use Lemma 10 to high-

light hypothetical S and U . By this lemma, we can construct in 2O (min{p,k } log(p+k)) · n logn time a

family F of at most 2O (min{p,k } log(p+k)) · logn subsets of V (G) such that there is R ∈ F such that
U ⊆ R and S ∩ R = ∅. In our algorithm, we go over all sets R ⊆ F and for each set R, we check
whether there is a solution X such that U ⊆ R and S ∩ R = ∅ for the sets S and U corresponding
to X . Clearly, (G,k) is a yes-instance of Elimination Distance–(prop) to φ if and only if there is
R ⊆ F and a solution X with the required property.

From now on, we assume that R ⊆ F is given. We set B = V (G)\R. In the same way as before,
we say that the vertices of R are red and the vertices of B are blue. The components of G[R]
are called red components of G and the same convention is used for induced subgraphs of G. A
solution X is called colorful if the vertivces of U are red and the vertices of S are blue. We aim to
find a colorful solution.

Assume that a colorful solution X exists. Suppose that w = α (x) for the leaf x of T that is the
anchor ofGx . Notice thatw ∈ B. Then for every componentC ′ ofGx distinct fromC , we have that
C ′ is a red component and z ∈ NG (V (C ′)). We also observe that by the assumption for R, ifC ′ is a
red component of G such that w ∈ NG (V (H)), then either V (C ′) ⊆ V (C) or C ′ is a component of
Gx distinct fromC . Using these observations, we consider all possible choices ofw in B, and decide
whether there is a colorful solution X such that for the required Gx , the leaf x of T is mapped to
w . We say that X is a colorful solution attached to w .

From now on, we assume thatw is given. LetW =
⋃
V (H), where the union is taken over all red

components H ofG such thatw ∈ NG (V (H)). Notice that if there is a colorful solution X attached
to w for the considered choice of w , thenW ⊆ V (Gx) for the corresponding graph Gx .

Since we require that Gx |= φ, then there is an r -tuple v = 〈v1, . . . ,vr 〉 of vertices of Gx such
that (Gx , v) |= φ[x]. Using brute force, we consider all r -tuples v = 〈v1, . . . ,vr 〉 of vertices of G
distinct from w , and for each v, we check whether there is a colorful solution X with Gx such
that vi ∈ V (Gx) for all i ∈ {1, . . . , r }. Note that at most nr r -tuples v can be listed in nO (|φ |) time.
The algorithm returns yes if we find a colorful solution attached to w for some choice of v, and it
concludes that there is no colorful solution for the considered selection of R otherwise.

From this point, we assume that v = 〈v1, . . . ,vr 〉 is fixed. Because these vertices should be inGx ,
we temporarily (i.e., only for the current choice of v) recolor them red to simplify further notation
and recompute W if necessary. We apply a recursive branching algorithm to find F = Gx and

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:27

S . Similarly to the subroutine FindC, we construct the subroutine FindF(F , S,h), where initially
F = G −w , S = {w }, and h = k − 1.

Subroutine FindF(F , S,h).

• If (F , v) |= φ[x] and h ≥ 0, then return F , S , and stop.
• If (F , v)
 |= φ[x] and h ≤ 0, then stop.
• If h ≥ 1 and there is an s-tuple u = 〈u1, . . . ,us 〉 of vertices of F such that (F , vu)
 |= φ[xy],

then do the following for every j ∈ {1, . . . , s}:
– If uj ∈ B and there is an induced subgraph F ′ of F that is the disjoint union of the com-

ponents of F − uj containing vertices of W and vertices vi for i ∈ {1, . . . , r }, then call
FindF(F ′, S ∪ {uj },h − 1).

– If uj ∈ R and there is a red component H of C with the set of vertices Z and S ′ = NF [Z]
such that (a) uj ∈ Z , (b) Z ∩W = ∅ and vi � Z for all i ∈ {1, . . . , r }, (c) |S ′ | ≤ h, and
(d) there is an induced subgraph F ′ of F that is a disjoint union of the components of
F − NF [W] containing vertices of W and vertices vi for some i ∈ {1, . . . , r }, then call
FindF(F ′, S ∪ S ′,h − |S ′ |).

In the same way as with Lemma 11, we show the following:

Lemma 14. If X is an inclusion-minimal colorful solution attached to w for (G,k) such that (a) X
has a representation (T ,α) with α (x) = w , (b)W ⊆ V (Gx), (c) vi ∈ V (Gx) for all i ∈ {1, . . . , s} and

(Gx , v) |= φ[x], then there is a leaf of the search tree produced by FindC(G, {w },k − 1) for which the

subroutine outputs F and S = NG (V (F)).

Since the number of branches of every node of the search tree produced by FindF(G, {w },k − 1)
is at most s and the depth of the search tree is at most k , the search tree has at most rk leaves.
By Lemma 14, if (G,k) has an inclusion-minimal colorful solution X attached to w with respect
to some representation (T ,α) of X , then the subroutine outputs the corresponding graph F = Gx

containing v1, . . . ,vr and S . We consider all pairs (F , S) produced by FindF(G, {w },k − 1) and for
each of these pairs, we verify whether there is a colorful solution corresponding to it. If we find
such a solution, then we return yes (or return the solution), and we return no if we fail to find a
colorful solution for each F and S . In the last case, we conclude that we have no colorful solution
and discard the current choice of R ∈ F .

Assume that F and S are given. Recall that vi ∈ V (C) for i ∈ {1, . . . , r }, S = NG (V (C)), and
(G, v) |= φ[x]. First, we check whether F has a big components of G − S by verifying whether F
has a component with at least p + 1 vertices. If we have no such a component, then we discard
the considered choice of F and S . Assume that this is not the case. Then because G is a (p,k)-
unbreakable graph, we have that |V (F)\NG [V (F)]| ≤ p. We use brute force and consider every
subset Y ⊆ V (G)\NG [V (F)] and then verify whether X = S ∪ Y is a solution using Lemma 13. If
we find a solution, then we return yes. Otherwise, if we fail to find Y with the required properties,
then we return no.

This concludes the description of the algorithm for Elimination Distance–(conn) to φ and
its correctness proof. We summarize in the following lemma that is proved in the same way as
Lemma 12:

Lemma 15. Elimination Distance–(prop) to φ on (p,k)-unbreakable graphs for φ ∈ Σ3 can be

solved in 2O ((p+k) log(p+k)) · nO (|φ |) time.

Algorithm for Elimination Distance–(depth) to φ. Our final task is to construct an algorithm
for Elimination Distance–(depth) to φ. Let (G,k) be an instance of Elimination Distance–
(depth) to φ, where G is a (p,k)-unbreakable graph. If G |= φ, then we return yes. Assume that

this is not the case and ed
depth
φ (G) ≥ 1.

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:28 F. V. Fomin et al.

Suppose thatG is disconnected. Denote byC1, . . . ,Cs the components ofG. BecauseG is a (p,k)-
unbreakable graph, at most one component can have more p vertices. Then, we can assume that
|V (Ci) | ≤ p for every i ∈ {2, . . . , s}. For each i ∈ {2, . . . , s}, we solve Elimination Distance–

(depth) to φ for (Ci ,k − 1) and (Ci ,k) in 2p ·pO (k+ |φ |) time using brute force. Let i ∈ {2, . . . , s}. For
each setX ⊆ V (Ci), we check whether depth(X) ≤ k−2 (depth(X) ≤ k−1, respectively) applying

Lemma 7, and if this holds, then we verify whetherG−X |= φ. This can be done in 2p ·pO (k) ·pO (|φ |)

time. If we find that either there is i ∈ {2, . . . , s} such that ed
depth
φ (Ci) ≥ k + 1 or there are two

distinct i, j ∈ {2, . . . , s} such that ed
depth
φ (Ci) = ed

depth
φ (Cj) = k , then we return no by Lemma 2.

If there is a unique i ∈ {2, . . . , s} with ed
depth
φ (Ci) = k and ed

depth
φ (Cj) ≤ k − 1 for j ∈ {2, . . . , s}

distinct from i , (G,k) is a yes-instance if and only if (C1,k − 1) is a yes-instance by Lemma 2. If

ed
depth
φ (Ci) ≤ k − 1 for every i ∈ {2, . . . , s}, then by the same lemma, (G,k) is a yes-instance if and

only if (C1,k) is a yes-instance. Thus, we are able to reduce solving the problem onG to solving it
on C1. This implies that we can assume without loss of generality that G is connected.

If |V (G) | ≤ (3p+2k) (p+1), then we again can solve the problem using brute force in 2(3p+2k)(p+1) ·
((3p + 2k) (p + 1))O (k+ |φ |) time in the same way as above. Then, we assume that |V (G) | > (3p +
2k) (p + 1).

Given a subsetX ⊆ V (G), we can verify in |X |O (k) ·nO (1) whether depth(X) ≤ k−1 by Lemma 7
and then can check whether G −X |= φ using Observation 1. Based on this, we aim to find X that
we call a solution in the same way as for the previously considered problems.

For Elimination Distance–(conn) to φ, we used the random separation technique to highlight
a big component of G − X (or rather its complement), and for Elimination Distance–(prop) to
φ, besides a big component, we had to highlight some specific small components composing Gx

together with the big component. Now, we are highlighting the small components, X and the
neighborhood NG (V (C)) ⊆ X of the big component.

Suppose that (G,k) is a yes-instance with a solution X . By Lemma 6, |X | ≤ p + k and
|V (G)\NG [V (C)]| ≤ p, where C is a big component of G − X . By Lemma 10, we can construct

the family F of subsets of V (G) of size at most 2O ((p+k) log(p+k)) · logn in 2O ((p+k) log(p+k)) · n logn
time such that if (G,k) has a solution X , then F has a set R such that V (H) ⊆ R for every small
component and R∩X = ∅. Then for every R ∈ F , we aim to find a solutionX such that the vertices
of the small components of G − X are in R and X ∩ R = ∅.

From this point, we assume that R is given. Consider U = V (G)\R. If C is a big compo-
nent of a (hypothetical) solution X satisfying the above conditions, then NG (V (C)) ⊆ U and
|NG (V (C)) | ≤ k . Recall that |X\NG (V (C)) | ≤ |V (G)\NG [V (C)]| ≤ p. Since |U | ≤ n, applying

Lemma 10 forU , we construct the family F ′ of subsets ofU of size at most 2O (min{p,k } log(p+k)) ·logn
in 2O (min{p,k } log(p+k)) ·n logn time such that F ′ has a setY with the property thatX\NG (V (C)) ⊆ Y
and NG (V (C)) ∩ Y = ∅. We consider all Y ∈ F ′ and try find a solution X such that

(i) the vertices of the small components of G − X are in R,
(ii) for the big component C of G − X , X\NG (V (C)) ⊆ Y ,

(iii) for the big component C of G − X , NG (V (C)) ⊆ B, where B = V (G)\(R ∪ Y).

If a solution X satisfies (i)–(iii), then we say that X is colorful.
We say that the vertices of R are red, the vertices of Y are yellow, and the vertices of B are

blue. The components ofG[R] are called red and the components ofG[R ∪Y] are called red-yellow

components of G, and we use the same term for the induced subgraphs of G.
Assume that X is a colorful solution. Notice that if H is a red component of G, then either H is

a small component of G −X with NG (V (H)) ⊆ X orV (H) ⊆ V (C), whereC is the big component.
Also, we have that if H is a red-yellow component of G, then either V (H) ⊆ V (C) or every red

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:29

component of V (H) is a small component of G − X . These are the crucial properties of colorful
solutions exploited by our algorithm.

BecauseG −X |= φ for a solution X , there should exist an r -tuple v = 〈v1, . . . ,vr 〉 of vertices of
G−X such that (G−X , v) |= φ[x]. In the same way as for the previous problem, we use brute force
to list all r -tuples v = 〈v1, . . . ,vr 〉 of vertices of G. Then for each v, we check whether there is a
colorful solution X such that vi � X for all i ∈ {1, . . . , r } and (G −X , v) |= φ[x]. There are at most

nr r -tuples v can be listed nO (|φ |) time. Our algorithm returns yes if we find a colorful solution for
some choice of v, and it concludes that there is no colorful solution for the considered selection of
R otherwise.

From now on, we assume that v = 〈v1, . . . ,vr 〉 is fixed. Again, we observe that these vertices
should not belong to X and we recolor them red for the considered choice of R. We use a recursive
branching algorithm to find X . The algorithm exploits the subroutine FindX(Z ,h), where initially
Z = ∅ and h = p + k .

Subroutine FindX(Z ,h).

(1) Set F � G − Z .
(2) If (F , v) |= φ[x], depth(Z) ≤ k−1, andh ≥ 0, then returnZ , and stop executing the algorithm.
(3) If (F , v)
 |= φ[x] and h ≤ 0, then stop executing the subroutine.
(4) If h ≥ 1 and there is an s-tuple u = 〈u1, . . . ,us 〉 of vertices of F such that (F , vu)
 |= φ[xy],

then do the following:
• If uj ∈ R for every j ∈ {1, . . . , s}, then stop executing the subroutine.
• Otherwise, for every j ∈ {1, . . . , s} such that uj ∈ Y ∪ B, call FindX(Z ∪ {uj },h − 1).

(5) If depth(Z) ≥ k , then for every x ∈ Z such that there is a red-yellow component H of F with
the properties (i) |NF (V (H)) | ≤ k , (ii) |V (H) | ≤ p, (iii) x ∈ V (H), and (iv) NF [V (H)] ∩ (B ∪
Y) � ∅, set S � NF [V (H)] ∩ (B ∪ Y) and call FindX(Z ∪ S,h − |S |).

Notice that if the subroutine outputs Z , then we stop the algorithm and report that we found a
solution. If we stop in other steps, then we only stop the execution of the subroutine for the current
call. The crucial property of the subroutine is proved in the following lemma. Since FindX(Z ,h)
substantially differs from FindC(C, S,h) and FindF(F , S,h), we provide the proof.

Lemma 16. If (G,k) has a colorful inclusion-minimal solution X with vi ∈ V (G)\X for all i ∈
{1, . . . , s} such that (G − X , v) |= φ[x], then FindX(∅,p + k) returns X .

Proof. The lemma is proved similarly to Lemma 11. Let t = p + k . We show that the algorithm
maintains the following property: If the subroutine FindX is called for (Z ,h) such that (a) Z ⊆ X
and (b) h = t − |Z |, then either the subroutine outputs Z = X or it recursively calls FindX(Z ′,h′),
where (a′) Z ′ ⊆ X and (b′) h′ = t − |Z ′ |.

In the first step, the algorithms sets F = G − Z . If (F , v) |= φ[x], depth(Z) ≤ k − 1, h ≥ 0,
and (F , v) |= φ[x], then Z is a colorful solution and the algorithm returns return Z . Since X is
inclusion-minimal, we have that X = Z . Thus, the claim holds. Assume that this is not the case.
Since Z ⊆ X , we have that h ≥ 1, that is, the subroutine does not stop in step 3. Clearly, we have
that (F , v)
 |= φ[x] and/or depth(Z) ≥ k .

Suppose that (F , v)
 |= φ[x]. Then there is an s-tuple u = 〈u1, . . . ,us 〉 of vertices of F such that
(F , vu)
 |= φ[xy]. This means that the subroutine executes step 4. As (G −X , v) |= φ[x] and Z ⊆ X ,
there is j ∈ {1, . . . , s} such that uj ∈ X\X . Because X is a colorful solution, uj ∈ B. Therefore, the
subroutine calls FindX(Z ′,h′) for Z ′ = Y\{uj } and h′ = h − 1. It is easy to see that (a′) and (b′) are
fulfilled.

Assume that (F , v) |= φ[x]. Then depth(Z) ≥ k . Because depth(X) ≤ k − 1, X has a representa-
tion (T ,α) with depth(T) ≤ k − 1. Because depth(T) ≤ k − 1 and depth(Z) ≥ k , there are vertices

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:30 F. V. Fomin et al.

x ,y ∈ Z such that the nodes x ′ = α−1 (x) and y ′ = α−1 (y) have the lowest common ancestor z in
T such that z � x ,y and it holds that α (AT (s))\Z � ∅ and α (AT (z)) is an (x ,y)-separator in G. In
particular, x and y cannot be both in NG [V (C)]. By symmetry, we can assume that x � NG [V (C)].
This means that there is a red-yellow component H of F such that properties (i)–(iv) of step 5 are
fulfilled. Because X is a colorful solution, we have that S = NF [V (H)] ∩ (B ∪ Y) ⊆ X . Thus, (a′)
and (b′) are fulfilled for Z ′ = Z ∪ S and h′ = h − |S |. As the subroutine calls FindX(Z ′,h′), we
conclude that the claim if fulfilled.

Recall that we call FindX(∅,p + k) and note that conditions (a) and (b) are trivially fulfilled for
Z = ∅ and h = t . Observe also that in each recursive call of the subroutine the parameter h strictly
decreases. Thus, we conclude that we output X is some recursive call of FindX(Z ,h). �

Lemma 16 concludes the description of the algorithm and its correctness proof. We summarize
and evaluate the running time in the following lemma.

Lemma 17. Elimination Distance–(depth) to φ on (p,k)-unbreakable graphs for φ ∈ Σ3 can be

solved in 2O ((p+k)(log(p+k)+p)) · nO (|φ |) time.

Proof. If |V (G) | ≤ (3p + 2k) (p + 1), then the problem is solved by brute force in 2(3p+2k)(p+1) ·
((3p + 2k) (p + 1))O (k+ |φ |) time. Assume that |V (G) | > (3p + 2k) (p + 1). Then, we construct F
in 2O ((p+k) log(p+k)) · n logn time. The size of F is at most 2O ((p+k) log(p+k)) · logn, and for every

R ∈ F , we construct F ′ in 2O (min{p,k } log(p+k)) · n logn time. Recall that the size of F ′ is at most

2O (min{p,k } log(p+k)) · logn. Then, we consider at most nr r -tuples of vertices v that can be listed in

nO (|φ |) time. Finally, for every R ∈ F , Y ∈ F ′, and every v, we call FindX(∅,p + k).
Thus, it remains to evaluate the running time of FindX(∅,p + k). Notice that in each call, |Z | ≤

p + k . Then, we can verify in (p + k)O (k) · nO (1) time whether depth(Z) ≤ k − 1 using Lemma 7.

Also, we can check whether (F , v) |= φ[x] in nO (|φ |) by Observation 1. Simultaneously, we find an
s-tuple u of vertices of F such that (F , vu)
 |= φ[xy] if this is not the case. In step 4, we perform at
most s recursive calls. In step 5, finding H can be done in polynomial time. Notice that we have at
most |Z | ≤ p +k recursive calls in this step. The depth of the recursion is upper bounded by k +p.

This implies that the running time of FindX(∅,p + k) is (p + k)O (p+k) · n |φ | .
Summarizing, we obtain that the total running time is 2O ((p+k)(log(p+k)+p)) · nO (|φ |) . �

5 LOWER BOUND FOR Π3-FORMULAS

In Section 4, we proved that for every FOL formula φ ∈ Σ3, Elimination Distance–(�) to φ can

be solved in f (k) ·nO (|φ |) time for each� ∈ {conn, prop, depth}. Recall that one of the ingredients
of the proof is a recursive algorithm that exploits the following observation: Suppose that φ =
∃x1 · · · ∃xr∀y1 · · · ∀ys∃z1 · · · ∃zt χ and our task is, given a graphG, to obtain a graphG ′ such that
G ′ |= φ by deleting some vertices of G. We guess an r -tuple v = 〈v1, . . . ,vr 〉 of vertices of G ′

such that (G ′, v) |= φ[x]. Then if there is an s-tuple u = 〈u1, . . . ,us 〉 of vertices of G such that
(G, vu)
 |= φ[xy], then at least one of the vertices u1, . . . ,us should be deleted to satisfy φ. This
allows us to branch on the vertices of such s-tuples u. Notice that we cannot apply these arguments
for a formula φ = ∀x1 · · · ∀xr∃y1 · · · ∃ys∀z1 · · · ∀zt χ ∈ Π3. If there is an r -tuple v = 〈v1, . . . ,vr 〉
of vertices of G such that (G, v)
 |= φ[x], then it may happen that neither of the vertices v1, . . . ,vr

should be deleted. In this section, we show that this is crucial and complement Theorem 1 by
proving that there are formulas in Π3 for which Elimination Distance–(�) to φ is W[2]-hard.
We state now Theorem 2 formally.

Theorem 2. For every� ∈ {conn, prop, depth}, there is φ ∈ Π3 such that Elimination Distance–

(�) to φ is W[2]-hard.

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:31

Fig. 3. Construction of G for n = 2 and m = 2 with S1 = {u1,u2,u3} and S2 = {u2,u3,u4}; for simplicity, just

one copy of each u
(p)
i for p ∈ {0, . . . ,k } is shown.

Proof. The proof exploits the same idea as in the W[2]-hardness proof for Deletion to φ for
φ ∈ Π3 in [16]. However, in [16], the hardness was derived from the result about the edge deletion
variant of the problem. Here, we deal only with vertices and consider elimination distances. Thus,
the reduction has to be modified. We show that the problems are W[2]-hard for the formula φ
expressing the property that for every vertexu of a graph, there is a vertexv of degree at most one
that is at distance at most two from u. Notice that the property that a vertex v of a given graph G
has degree at most one can be written as follows: For every z1, z2 ∈ V (G), ifv is adjacent to z1 and
z2, then z1 = z2. Thus, we define the formula

ψ (v, z1, z2) = [((v ∼ z1) ∧ (v ∼ z2)) → (z1 = z2)]

with three free variables and set

φ = ∀x∃y1∃y2∀z1∀z2 [ψ (x , z1, z2) ∨ ((x ∼ y1) ∧ψ (y1, z1, z2))

∨ ((x ∼ y1) ∧ (y1 ∼ y2) ∧ψ (y2, z1, z2))].

Clearly, φ ∈ Π3.
To show W[2]-hardness, we reduce from the Set Cover problem. The problem asks, given a

universe U , a family S of subsets of U , and a positive integer k , whether there is S′ ⊂ S of size
at most k that covers U , that is, for every u ∈ U , there is S ∈ S′ such that u ∈ S . It is well-known
that Set Cover is W[2]-complete when parameterized by k [13].

Let (U ,S,k) be an instance of Set Cover with U = {u1, . . . ,un }, S = {S1, . . . , Sm }. We also
assume that n ≥ 2 and k ≤ m. We construct the following graph G (see Figure 3):

• For every i ∈ {1, . . . ,n}, construct k + 2 vertices u (1)
i , . . . ,u

(k+2)
i , and then for every i, j ∈

{1, . . . ,n} and all p,q ∈ {1, . . . ,k + 2} such that (i,p) � (j,q), make u
(p)
i and u

(q)
j adjacent.

• For every j ∈ {1, . . . ,m}, construct three vertices sj ,vj ,w j and edges sjvj and vjw j .

• For every i ∈ {1, . . . ,n} and every j ∈ {1, . . . ,m}, make sj adjacent to u (1)
i , . . . ,u

(k+2)
i if

ui ∈ S j .

We claim that G has a set cover of size at most k if and only if ed�
φ (G) ≤ k for � ∈

{conn, prop, depth}. Notice that by the definition of φ, H |= φ if and only if C |= φ for every

component C of H . Therefore, edconn
φ (G) = ed

prop
φ (G) = ed

depth
φ (G), and it is sufficient to prove

that G has a set cover of size at most k if and only if there is an elimination set X of G with
depth(G) ≤ k − 1 such that C |= φ for every component C of G − X .

Suppose that sets S j1 , . . . , S jk
∈ S form a set cover. We define X = {w j1 , . . . ,w jk

}. Since |X | = k ,
depth(X) ≤ k − 1. Notice that H = G −X is connected. We claim that H |= φ. Recall that H |= φ if
and only if for every vertex x ∈ V (H) there is a vertex y ∈ V (H) at distance at most two such that
dH (y) ≤ 1. This property trivially holds if x ∈ {sj ,vj ,w j }\X for j ∈ {1, . . . ,m}. Consider a vertex

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:32 F. V. Fomin et al.

u
(p)
i for some i ∈ {1, . . . ,n} and p ∈ {1, . . . ,k + 2}. We have that there is h ∈ {1, . . . ,k } such that

ui ∈ S jh
. Then uisjh

∈ E (H). Because w jh
∈ X , we obtain that dH (vjh

) = 1. Since sjh
vjh
∈ E (H),

vjh
is at distance two from u

(p)
i as required. We conclude that H |= φ.

For the opposite direction, assume that there is an elimination set X ofG with depth(X) ≤ k −1

such that C |= φ for every component C of G − X . Consider Z = {u (p)
i | 1 ≤ i ≤ n, 1 ≤ p ≤ k + 2}.

Because Z is a clique, we have that |Z ∩ X | ≤ k . To see this, consider a representation (T ,α)
of X with depth(T) ≤ k − 1. Then there is a leaf x of T such that α−1 (X ∩ Z) ⊆ AT (x). Since
depth(T) ≤ k − 1, we conclude that |Z ∩ X | ≤ k . Note that the vertices of Z\X are in the same
component H of G − X . Let W = {w1, . . . ,wm }. By Observation 3, |NG (V (H)) ∩ X | ≤ k . Hence,
|NG (V (H)) ∩ (X ∩W) | ≤ k as well. Let {w j1 , . . . ,w j� } = NG (V (H)) ∩ (X ∩W). We claim that the
sets S j1 , . . . , S jk

cover U .
Consider an arbitrary i ∈ {1, . . . ,n}. Because |Z∩W | ≤ k , there are two distinctp,q ∈ {1, . . . ,k+

2} such that u
(p)
i ,u

(q)
i ∈ V (H). Since H |= φ, there is a vertex z ∈ V (H) at distance at most two

from u
(p)
i such that dH (z) ≤ 1. Since n ≥ 2, we have that |Z\X | ≥ 3 and, therefore, dH (u

(p)
i) ≥ 2.

Moreover, for every h ∈ {1, . . . ,n} and r ∈ {1, . . . ,k + 2}, if u (r)
h
∈ V (H), then dH (u (r)

h
) ≥ 2. Then

the construction of G implies that there is h ∈ {1, . . . ,m} such that sh ∈ V (H) and u
(p)
i sh ∈ E (G)

with the property that either dH (sj) ≤ 1 or sj has a neighbor in H of degree at most one. As sh is

adjacent to u
(p)
i , this vertex is adjacent to u

(q)
i . Hence, dH (sh) ≥ 2. We obtain that vh ∈ V (H) and

dH (vh) ≤ 1 by the construction of G. This means that wh � H , that is, wh ∈ NG (V (H)) ∩ (X ∩W).

We conclude that there is t ∈ {1, . . . , �} such that jt = h. Finally, because u
(p)
i is adjacent to sjt

,
ui ∈ S jt

and this concludes the proof. �

6 DISCUSSION

We established a parameterized complexity dichotomy for the elimination problems whose aim
is to satisfy an FOL formula φ with respect to the quantification structure of the prefix. For
this, we considered three variants of the elimination distance to the class of graphs modelling
φ and defined the Elimination Distance–(�) to φ for � ∈ {conn, prop, depth} corresponding
to the considered type of distance. In Theorem 1, we proved that for every FOL formula φ ∈ Σ3,
Elimination Distance–(�) to φ is FPT for � ∈ {conn, prop, depth}. In Theorem 2, we showed
that this result is tight in the sense that there are FOL formulas φ ∈ Π3 such that these problems
are W[2]-hard.

Notice that the above dichotomy is the same for all the considered variants of the elimination
problems. Moreover, it coincides with the structural dichotomy obtained by for Deletion to φ
by Fomin, Golovach, and Thilikos in [16]. This leads to the following natural question: Is there
an FOL formula φ such that the parameterized complexity of Elimination Distance–(�) to
φ for � ∈ {conn, prop, depth} and Deletion to φ differs? In particular, is there a formula φ
such that Deletion to φ is FPT but one of the problem Elimination Distance–(�) to φ for
� ∈ {conn, prop, depth} turns to be, say, W[1] or W[2]-hard? Note that Lemma 5 holds for every
FOL formula φ. Thus, solving Elimination Distance–(�) to φ for � ∈ {conn, prop, depth} can
be reduced to solving these problems on unbreakable graphs by Theorem 3. Since Elimination
Distance–(�) to φ for� ∈ {conn, prop, depth} is somehow similar to Deletion to φ on unbreak-
able graphs, it may happen that Elimination Distance–(�) to φ for � ∈ {conn, prop, depth}
are FPT whenever Deletion to φ is FPT. However proving this would demand applying
different algorithmic tools, as our techniques are tailored for φ ∈ Σ3. Also it would be interest-
ing to know whether there are FOL formulas such that Elimination Distance–(�) to φ for
� ∈ {conn, prop, depth} differ from the parameterized complexity viewpoint.

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:33

In contrast with the same behavior of the elimination and deletion problems with respect to the
inclusion in FPT, we would like to point that they behave differently with respect to kernelization

(we refer to the books cited in [10, 17] for the definition of the notion). It was shown in [16] that
Deletion to φ admits a polynomial kernel for φ ∈ Σ1 ∪ Π1 (in fact, Deletion to φ is polynomial
for φ ∈ Σ1) and there are formulas φ ∈ Π2 and Σ2 such that Deletion to φ has no polynomial
kernel unless NP ⊆ coNP /poly. For the elimination problems, we can show the following lower
bound:

Proposition 1. For every � ∈ {conn, prop, depth}, there is φ ∈ Π1 such that Elimination

Distance–(�) to φ does not admit a polynomial kernel unless NP ⊆ coNP /poly.

Proof. We show the claim for the formula φ expressing the property that a graph has no trian-
gles, that is, cycles of length three:

φ = ∀x∀y∀z [(x = y) ∨ (y = z) ∨ (x = z) ∨ ¬(x ∼ y) ∨ ¬(y ∼ z) ∨ ¬(x ∼ z)].

It is straightforward to see that G |= φ if and only if G has no triangles.
By the classical results of Lewis and Yannakakis [23], Deletion to φ is NP-complete. Then it is

easy to observe that the problem remains NP on instances (G,k), where G is a (k + 1)-connected
graph. For example, we can reduce from Deletion to φ on general graphs. Let G be an n-vertex
graph. We assume that k < n − 1, as otherwise the problem is trivial. We construct the graph G ′

fromG by adding k + 1 copies of the complete bipartite graph Kn,n and making each vertex of one
part of the vertex partition to a unique vertex ofG. Clearly,G ′ is (k +1)-connected and it is easy to
see that G − X is triangle-free if and only if G ′ has no triangles for every X ⊆ V (G ′). This proves
the NP-hardness for Deletion to φ on (k +1)-connected graphs. Then Observation 5 implies that
Elimination Distance–(�) to φ is NP-complete for every � ∈ {conn, prop, depth}.

Let (G1,k), . . . (Gt ,k) be instances of Elimination Distance–(�) to φ for some
� ∈ {conn, prop, depth}. Let G be the disjoint union of G1, . . . ,Gt . Then for � ∈ {conn, prop}, we
have that (G,k) is a yes-instance of Elimination Distance–(�) to φ if and only if (G j ,k) is a
yes-instance of Elimination Distance–(�) to φ for every j ∈ {1, . . . , t }. Then by the result of
Bodlaender, Jansen, and Kratsch [3] (see also [17, Part III] for the introduction to the technique),
Elimination Distance–(�) to φ does not admit a polynomial kernel unless NP ⊆ coNP /poly.
For Elimination Distance–(depth) to φ, consider G ′ that is the disjoint union of G and Kk+3.

Clearly, ed
depth
φ (Kk+2) = k + 1. Then by Lemma 2, (G ′,k + 1) is a yes-instance of Elimination

Distance–(depth) to φ if and only if (G j ,k) is a yes-instance of Elimination Distance–(depth)
to φ for every j ∈ {1, . . . , t }. This implies that Elimination Distance–(depth) to φ has no
polynomial kernel unless NP ⊆ coNP /poly. �

Notice that Proposition 1 does no exclude existence of Turing kernels (we again refer to Refer-
ences [10, 17] for the definition of the notion). This makes it natural to ask whether Elimination
Distance–(�) to φ admit polynomial Turing kernels for φ ∈ Σ3 for � ∈ {conn, prop, depth}.

Recall that Elimination Distance–(depth) to φ can be stated as follows: Given a graph G and
a nonnegative integer k , is there X ⊆ V (G) whose torso has the tree-depth at most k such that
G−X |= φ? In other words, we ask whether there is a set of vertices whose torso has bounded tree-
depth such that the graph obtained by the deletion of this set models our formula. However, we
also can consider different “width-measures.” In particular, Eiben et al. [14] introduced the notion
of P-tree-width of a graph G for a graph propoerty P as the minimum tree-wdith (see, e.g, [10]
for the definition) of the torso of X ⊆ V (G) such that G − X ∈ P. Further results in this direction
were recently obtained by Jensen, de Kroon, and Wlodarczyk [22]. We believe that Theorem 2 can

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

17:34 F. V. Fomin et al.

be extended for the variant of Elimination Distance–(depth) to φ, where the tree-width of the
torso of X should be at most k . Can the same be said about Theorem 1?

Finally, we believe that it could be interesting to consider yet another variant of the elimination
distance. Recall that in the definitions of ed�

φ for� ∈ {conn, prop, depth}, we considered properties
of the components. In particular,

ed
prop
φ (G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

0, if G |= φ or G = (∅, ∅),
1 +minv ∈V (G) ed

prop
φ (G −v), ifG
 |= φandG isconnected,

max{1,max{ed
prop
φ (C) | C is a component of G}}, otherwise.

However, we can consider unions of components instead. We say that graphs G1, . . . ,Gs form a
component-partition ofG if every component ofG is a component ofGi for some i ∈ {1, . . . , s} and
G is the disjoint union of G1, . . . ,Gs . Then, we can define

ed
part
φ (G) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

0, ifG |= φ or G = (∅, ∅),
1 +minv ∈V (G) ed

part
φ (G −v), ifG
 |= φandG isconnected,

min{max{1, ed
part
φ (G1), . . . , ed

part
φ (Gs)} | G1, . . . ,Gs

is a component partition of G} otherwise.

Then, we can define the respective Elimination Distance–(part) to φ and investigate its param-
eterized complexity depending of φ. Note that our approach for solving the elimination problems
fails in this case. In particular, we cannot express the problem using MSOL.

REFERENCES

[1] Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. 2021. An FPT algorithm

for elimination distance to bounded degree graphs. In 38th International Symposium on Theoretical Aspects of Computer

Science, (STACS) (LIPIcs), Vol. 187. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 5:1–5:11. DOI:https://doi.org/

10.4230/LIPIcs.STACS.2021.5

[2] Akanksha Agrawal and M. S. Ramanujan. 2020. On the parameterized complexity of clique elimination distance. In

15th International Symposium on Parameterized and Exact Computation (IPEC) (Leibniz International Proceedings in

Informatics (LIPIcs)), Vol. 180. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1:1–1:13. https:

//doi.org/10.4230/LIPIcs.IPEC.2020.1

[3] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. 2014. Kernelization lower bounds by cross-composition.

SIAM J. Discrete Math. 28, 1 (2014), 277–305. DOI:https://doi.org/10.1137/120880240

[4] Egon Börger, Erich Grädel, and Yuri Gurevich. 2001. The Classical Decision Problem. Springer Science & Business

Media.

[5] Jannis Bulian and Anuj Dawar. 2016. Graph isomorphism parameterized by elimination distance to bounded degree.

Algorithmica 75, 2 (2016), 363–382. DOI:https://doi.org/10.1007/s00453-015-0045-3

[6] Jannis Bulian and Anuj Dawar. 2017. Fixed-parameter tractable distances to sparse graph classes. Algorithmica 79, 1

(2017), 139–158. DOI:https://doi.org/10.1007/s00453-016-0235-7

[7] Leizhen Cai, Siu Man Chan, and Siu On Chan. 2006. Random separation: A new method for solving fixed-cardinality

optimization problems. In 2nd International Workshop Parameterized and Exact Computation (IWPEC) (Lecture Notes

in Computer Science), Vol. 4169. Springer, 239–250. DOI:https://doi.org/10.1007/11847250_22

[8] Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Designing

FPT algorithms for cut problems using randomized contractions. SIAM J. Comput. 45, 4 (2016), 1171–1229. DOI:https:

//doi.org/10.1137/15M1032077

[9] Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-order Logic - A Language-Theoretic

Approach. Encyclopedia of Mathematics and Its Applications, Vol. 138. Cambridge University Press.

[10] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer. DOI:https://doi.org/10.1007/978-3-319-21275-3

[11] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2019. Minimum bisection

is fixed-parameter tractable. SIAM J. Comput. 48, 2 (2019), 417–450. DOI:https://doi.org/10.1137/140988553

[12] Reinhard Diestel. 2012. Graph Theory, 4th Edition. Graduate Texts in Mathematics, Vol. 173. Springer.

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

https://doi.org/10.4230/LIPIcs.STACS.2021.5
https://doi.org/10.4230/LIPIcs.IPEC.2020.1
https://doi.org/10.1137/120880240
https://doi.org/10.1007/s00453-015-0045-3
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.1007/11847250_22
https://doi.org/10.1137/15M1032077
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/140988553

Parameterized Complexity of Elimination Distance to First-Order Logic Properties 17:35

[13] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer. DOI:https:

//doi.org/10.1007/978-1-4471-5559-1

[14] Eduard Eiben, Robert Ganian, Thekla Hamm, and O-Joung Kwon. 2021. Measuring what matters: A hybrid approach

to dynamic programming with treewidth. J. Comput. Syst. Sci. 121 (2021), 57–75. DOI:https://doi.org/10.1016/j.jcss.

2021.04.005

[15] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer. DOI:https://doi.org/10.1007/3-540-

29953-X

[16] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. 2020. On the parameterized complexity of graph modi-

fication to first-order logic properties. Theory Comput. Syst. 64, 2 (2020), 251–271. DOI:https://doi.org/10.1007/s00224-

019-09938-8

[17] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. 2019. Kernelization. Cambridge University

Press, Cambridge.

[18] Markus Frick and Martin Grohe. 2004. The complexity of first-order and monadic second-order logic revisited. Ann.

Pure Appl. Logic 130, 1–3 (2004), 3–31. DOI:https://doi.org/10.1016/j.apal.2004.01.007

[19] Georg Gottlob, Phokion G. Kolaitis, and Thomas Schwentick. 2004. Existential second-order logic over graphs: Chart-

ing the tractability frontier. J. ACM 51, 2 (2004), 312–362. DOI:https://doi.org/10.1145/972639.972646

[20] Jiong Guo, Falk Hüffner, and Rolf Niedermeier. 2004. A structural view on parameterizing problems: Distance from

triviality. In 1st International Workshop Parameterized and Exact Computation (IWPEC) (Lecture Notes in Computer

Science), Vol. 3162. Springer, 162–173. DOI:https://doi.org/10.1007/978-3-540-28639-4_15

[21] Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. 2020. Elimination distances, blocking sets, and kernels for

vertex cover. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS) (Leibniz International

Proceedings in Informatics (LIPIcs)), Vol. 154. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

36:1–36:14. DOI:https://doi.org/10.4230/LIPIcs.STACS.2020.36

[22] Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. 2021. Vertex deletion parameterized by elimination

distance and even less. In 53rd Annual ACM SIGACT Symposium on Theory of Computing. ACM, 1757–1769. DOI:https:

//doi.org/10.1145/3406325.3451068

[23] John M. Lewis and Mihalis Yannakakis. 1980. The node-deletion problem for hereditary properties is NP-Complete. J.

Comput. Syst. Sci. 20, 2 (1980), 219–230. DOI:https://doi.org/10.1016/0022-0000(80)90060-4

[24] Alexander Lindermayr, Sebastian Siebertz, and Alexandre Vigny. 2020. Elimination distance to bounded degree on

planar graphs. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS) (LIPIcs),

Vol. 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 65:1–65:12. DOI:https://doi.org/10.4230/LIPIcs.MFCS.

2020.65

[25] Alexander Lindermayr, Sebastian Siebertz, and Alexandre Vigny. 2020. Elimination distance to bounded degree on

planar graphs. CoRR abs/2007.02413 (2020).

[26] Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. 2018. Reducing CMSO model checking to

highly connected graphs. In 45th International Colloquium on Automata, Languages, and Programming (ICALP) (LIPIcs),

Vol. 107. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 135:1–135:14. DOI:https://doi.org/10.4230/LIPIcs.ICALP.

2018.135

[27] Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. 2018. Reducing CMSO model checking to

highly connected graphs. CoRR abs/1802.01453 (2018).

[28] Jaroslav Nešetřil and Patrice Ossona de Mendez. 2006. Tree-depth, subgraph coloring and homomorphism bounds.

Eur. J. Combin. 27, 6 (2006), 1022–1041.

[29] Rolf Niedermeier. 2006. Invitation to Fixed-parameter Algorithms. Oxford Lecture Series in Mathematics and its Appli-

cations, Vol. 31. Oxford University Press.

[30] C. Smorynski. 1977. The incompleteness theorems. In Handbook of Mathematical Logic. Stud. Logic Found. Math.,

Vol. 90. North-Holland, Amsterdam, 821–865.

[31] Moshe Y. Vardi. 1982. The complexity of relational query languages (Extended Abstract). In 14th Annual ACM Sym-

posium on Theory of Computing. ACM, 137–146. DOI:https://doi.org/10.1145/800070.802186

[32] Ryan Williams. 2014. Faster decision of first-order graph properties. In Joint Meeting of the 23rd EACSL Annual Confer-

ence on Computer Science Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

ACM, 80:1–80:6. DOI:http://doi.acm.org/10.1145/2603088.2603121

Received April 2021; revised October 2021; accepted February 2022

ACM Transactions on Computational Logic, Vol. 23, No. 3, Article 17. Publication date: April 2022.

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/s00224-019-09938-8
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1145/972639.972646
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.4230/LIPIcs.STACS.2020.36
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.4230/LIPIcs.MFCS.2020.65
https://doi.org/10.4230/LIPIcs.ICALP.2018.135
https://doi.org/10.1145/800070.802186
http://doi.acm.org/10.1145/2603088.2603121

