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Abstract. We prove the following theorem. Given a planar graph G and an integer k, it is
possible in polynomial time to randomly sample a subset A of vertices of G with the following
properties: A induces a subgraph of G of treewidth \scrO (

\surd 
k log k), and for every connected subgraph

H of G on at most k vertices, the probability that A covers the whole vertex set of H is at least

(2\scrO (
\surd 

k \mathrm{l}\mathrm{o}\mathrm{g}2 k) \cdot n\scrO (1)) - 1, where n is the number of vertices of G. Together with standard dynamic
programming techniques for graphs of bounded treewidth, this result gives a versatile technique
for obtaining (randomized) subexponential-time parameterized algorithms for problems on planar

graphs, usually with running time bound 2\scrO (
\surd 
k \mathrm{l}\mathrm{o}\mathrm{g}2 k)n\scrO (1). The technique can be applied to prob-

lems expressible as searching for a small, connected pattern with a prescribed property in a large host
graph; examples of such problems include Directed k-Path, Weighted k-Path, Vertex Cover
Local Search, and Subgraph Isomorphism, among others. Up to this point, it was open whether
these problems could be solved in subexponential parameterized time on planar graphs, because
they are not amenable to the classic technique of bidimensionality. Furthermore, all our results hold
in fact on any class of graphs that exclude a fixed apex graph as a minor, in particular on graphs
embeddable in any fixed surface.

Key words. parameterized complexity, subexponential algorithms, treewidth, planar graphs,
subgraph isomorphism
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1. Introduction. Most of the natural \sansN \sansP -hard problems on graphs remain \sansN \sansP -
hard even when the input graph is restricted to be planar. However, it was realized
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LOW TREEWIDTH PATTERN COVERING 1867

already in the dawn of algorithm design that the planarity of the input can be exploited
algorithmically. Using the classic planar separator theorem of Lipton and Tarjan [30],
one can design algorithms working in subexponential time, usually of the form 2\scrO (

\surd 
n)

or 2\scrO (
\surd 
n logn), for a wide variety of problems that behave well with respect to sepa-

rators; such running time cannot be achieved on general graph unless the exponential
time hypothesis (ETH) fails [27]. From the modern perspective, the planar separator
theorem implies that a planar graph on n vertices has treewidth \scrO (

\surd 
n), and the

obtained tree decomposition can be used to run a divide-and-conquer algorithm or
a dynamic programming subroutine. The idea of exploiting small separators plays a
crucial role in modern algorithm design on planar graphs and related graph classes,
including polynomial-time, approximation, and parameterized algorithmic paradigms.

Let us take a closer look at the area of parameterized complexity. For most pa-
rameterized \sansN \sansP -hard problems in general graphs the exponential dependence on the
parameter is the best we can hope for, assuming ETH. However, there are plenty of
problems that when restricted to planar graphs admit subexponential parameterized
algorithms, that is, algorithms with running time of the form 2o(k) \cdot n\scrO (1). This was
first observed in 2000 by Alber et al. [1], who obtained an algorithm for deciding
whether a given n-vertex planar graph contains a dominating set of size k in time
2\scrO (

\surd 
k)n\scrO (1). It turned out that the phenomenon is much more general. A robust

framework explaining why various problems like Feedback Vertex Set, Vertex
Cover, Dominating Set, or Longest Path admit subexponential parameterized
algorithms on planar graphs, usually with running times of the form 2\scrO (

\surd 
k) \cdot n\scrO (1)

or 2\scrO (
\surd 
k log k) \cdot n\scrO (1), is provided by the bidimensionality theory of Demaine et al.

[12]. Roughly speaking, the idea is to exploit the relation between the treewidth of
a planar graph and the size of a grid minor that can be found in it. More precisely,
the following win/win approach is implemented. Either the treewidth of the graph is
\scrO (
\surd 
k) and the problem can be solved using dynamic programming on a tree decom-

position, or a c
\surd 
k \times c

\surd 
k grid minor can be found, for some large constant c, which

immediately implies that we are working with a yes- or with a no-instance of the
problem. Furthermore, it turns out that for a large majority of problems the running
time yielded by bidimensionality is essentially optimal under ETH: no 2o(

\surd 
k) \cdot n\scrO (1)-

time algorithm can be expected. We refer the reader to the survey [14], as well as the
textbook [10, Chapter 7] for an overview of bidimensionality and its applications.

While the requirement that the problem can be solved efficiently on bounded
treewidth graphs is usually not restrictive, the assumption that uncovering any large
grid minor provides a meaningful insight into the instance considerably limits the
applicability of the bidimensionality methodology. Therefore, while bidimensionality
can be extended to more general classes, like excluding some fixed graph as a minor
[12, 15], map graphs [11], or unit disk graphs [25], there are many problems that are
``almost"" bidimensional, and yet their parameterized complexity remained open for
years.

One example where such a situation occurs is the Directed Longest Path
problem. While the existence of a

\surd 
k\times 
\surd 
k grid minor in an undirected graph imme-

diately implies the existence of an undirected path on k vertices, the same principle
cannot be applied in the directed setting: even if we uncover a large grid minor in
the underlying undirected graph, there is no guarantee that a long directed path can
be found, because we do not control the orientation of the arcs. Thus, Directed
Longest Path can be solved in time 2\scrO (k)n\scrO (1) on general graphs using color cod-
ing [3], but no subexponential parameterized algorithm on planar graphs was known.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1868 FOMIN ET AL.

On the other hand, a 2o(
\surd 
k)\cdot n\scrO (1)-time algorithm on planar graphs cannot be expected

under ETH, which leaves a large gap between the known upper and lower bounds.
Closing this perplexing gap was mentioned as an open problem in [7, 18, 40, 41].
A similar situation happens for Weighted Longest Path, where we are looking for
a k-path of minimum weight in an edge-weighted planar graph; the question about
the complexity of this problem was raised in [7, 39]. Another example is k-Cycle:
deciding whether a given planar graph contains a cycle of length exactly k. While
the property of admitting a cycle of length at least k is bidimensional, and therefore
admits a 2\scrO (

\surd 
k)n\scrO (1)-time algorithm on planar graphs, the technique fails for the

variant when we ask for length exactly k . This question was asked in [7]. We will
mention more problems with this behavior later on.

The theme of ``subexponential algorithms beyond bidimensionality"" has recently
been intensively investigated, with various success. For a number of specific problems
such algorithms were found; these include planar variants of Steiner Tree parame-
terized by the size of the tree [35, 36], Subset TSP parameterized by the number of
terminals, in both the undirected and the directed variants [28, 32], and Max Leaf
Outbranching [18]. On the other hand, recently a subset of the current authors
proved in [31] that Steiner Tree on planar graphs, parameterized by the number of
terminals, does not admit a subexponential parameterized algorithm unless ETH fails;
this contrasts the existence of such an algorithm for the parameterization by the size
of the tree. In all the abovementioned positive cases, the algorithms are technically
very involved and depend heavily on the combinatorics of the problem at hand.

A more systematic approach is offered by the work of Dorn et al. [18] and Tazari
[40, 41], who obtained ``almost"" subexponential algorithm for Directed Longest
Path on planar and, more generally, apex-minor-free graphs. More precisely, they
proved that for any \varepsilon > 0 there is \delta such that the Directed Longest Path problem
is solvable in time \scrO ((1 + \varepsilon )k \cdot n\delta ) on planar directed graphs and, more generally, on
directed graphs whose underlying undirected graph excludes a fixed apex graph as a
minor. This technique can be extended to other problems that can be characterized as
searching for a small connected pattern in a large host graph, which suggests that some
more robust methodology is hiding just beyond the frontier of our understanding.

Main result. In this paper, we introduce a versatile technique for solving such
problems in subexponential parameterized time, by proving the following theorem.

Theorem 1. Let \scrC be a class of graphs that exclude a fixed apex graph as a
minor. Then there exists a randomized polynomial-time algorithm that, given an n-
vertex graph G from \scrC and an integer k, samples a vertex subset A \subseteq V (G) with the
following properties:

(P1) The induced subgraph G[A] has treewidth \scrO (
\surd 
k log k).

(P2) For every vertex subset X \subseteq V (G) with | X| \leqslant k that induces a connected
subgraph of G, the probability that X is covered by A, that is X \subseteq A, is at
least (2\scrO (

\surd 
k log2 k) \cdot n\scrO (1)) - 1.

Here, by an apex graph we mean a graph that can be made planar by removing
one vertex. Note that Theorem 1 in particular applies to planar graphs, and to graphs
embeddable in a fixed surface.

Applications. Similarly as in the case of bidimensionality, Theorem 1 provides
a simple recipe for obtaining subexponential parameterized algorithms: check how
fast the considered problem can be solved on graphs of bounded treewidth, and
then combine the treewidth-based algorithm with Theorem 1. We now show how
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LOW TREEWIDTH PATTERN COVERING 1869

Theorem 1 can be used to obtain randomized subexponential parameterized algo-
rithms for a variety of problems on apex-minor-free classes; for these problems, the
existence of such algorithms so far was open even for planar graphs. We only list the
most interesting examples to showcase possible applications.

Directed and weighted paths and cycles. As mentioned earlier, the question about
the existence of subexponential parameterized algorithms for Directed Longest
Path and Weighted Longest Path on planar graphs was asked in [7, 18, 40, 41].
Let us observe that on a graph of treewidth1 t, both Directed Longest Path and
Weighted Longest Path, as well as their different combinations, like finding a
maximum or minimum weight directed path or cycle on k vertices, are solvable in
time 2\scrO (t log t)n\scrO (1) by the standard dynamic programming; see, e.g., [10, Chapter 7].
This running time can be improved to single-exponential time 2\scrO (t)n\scrO (1) [5, 19, 24].

In order to obtain a subexponential parameterized algorithm for, say, Directed
Longest Path on planar directed graphs, we do the following. Let G be the given
planar directed graph, and let U(G) be its underlying undirected graph. Apply the
algorithm of Theorem 1 to U(G), which in polynomial time samples a subset A \subseteq 
V (U(G)) such that G[A] has treewidth at most \scrO (

\surd 
k log k), and the probability

that A covers some directed k-path in G, provided it exists, is at least (2\scrO (
\surd 
k log2 k)\cdot 

n\scrO (1)) - 1. Then, we verify whether G[A] admits a directed k-path using standard

dynamic programming in time 2\scrO (
\surd 
k log k) \cdot n\scrO (1). Provided some directed k-path

exists in the graph, this algorithm will find one with probability at least (2\scrO (
\surd 
k log2 k)\cdot 

n\scrO (1)) - 1. Thus, by making 2\scrO (
\surd 
k log2 k)\cdot n\scrO (1) independent runs of the algorithm, we

can reduce the error probability to at most 1/2. All in all, the obtained algorithm

runs in time 2\scrO (
\surd 
k log2 k) \cdot n\scrO (1) and can only report false negatives with probability

at most 1/2.
Note that in order to apply the dynamic programming algorithm, we need to

construct a suitable tree decomposition of G[A]. However, a variety of standard
algorithms, e.g., the classic 4-approximation of Robertson and Seymour [38], can be
used to construct such an approximate tree decomposition within the same asymptotic
running time. Actually, a closer look into the proof of Theorem 1 reveals that the
algorithm can construct, within the same running time a tree decomposition of G[A]
certifying the upper bound on its treewidth.

Observe that the same approach works also for any apex-minor-free class \scrC and
can be applied also to Weighted Longest Path and k-Cycle. We obtain the
following corollary.

Corollary 2. Let \scrC be a class of graphs that exclude some fixed apex graph as a
minor. Then all the following problems are solvable in randomized time 2\scrO (

\surd 
k log2 k) \cdot 

n\scrO (1) on graphs from \scrC : Weighted Longest Path, k-Cycle, and Directed
Longest Path. In case of Directed Longest Path, we mean that the under-
lying undirected graph of the input graph belongs to \scrC .

Note here that the approach presented above works in the same way for vari-
ous combinations and extensions of problems in Corollary 2, like weighted, colored,
or directed variants, possibly with some constraints on in- and out-degrees, etc. In
essence, the only properties that we need is that the sought pattern persists in the
subgraph induced by the covering set A and that it can be efficiently found using

1For Directed Longest Path we speak about the treewidth of the underlying undirected graph.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1870 FOMIN ET AL.

dynamic programming on a tree decomposition. To give one more concrete example,
Sau and Thilikos in [39] studied the problem of finding a connected k-edge subgraph
with all vertices of degree at most some integer \Delta ; for \Delta = 2 this corresponds to
finding a k-path or a k-cycle. For fixed \Delta they gave a subexponential algorithm on
(unweighted) graphs excluding some fixed graph as a minor and asked if the weighted
version of this problem can be solved in subexponential parameterized time. Theo-
rem 1 immediately implies that for fixed \Delta the weighted variant of the problem is
solvable in randomized time 2\scrO (

\surd 
k log2 k) \cdot n\scrO (1) on apex-minor-free graphs.

Subgraph Isomorphism. Subgraph Isomorphism is a fundamental problem,
where we are given two graphs: an n-vertex host graph G and a k-vertex pattern graph
P . The task is to decide whether P is isomorphic to a subgraph of G. Eppstein [20]
gave an algorithm solving Subgraph Isomorphism on planar graphs in time k\scrO (k)n,
which was subsequently improved by Dorn [17] to 2\scrO (k)n. The first implication of
our main result for Subgraph Isomorphism concerns the case when the maximum
degree of P is bounded by a constant. Matou\v sek and Thomas [33] proved that if a
tree decomposition of the host graph G of width t is given, and the pattern graph P is
connected and of maximum degree at most some constant \Delta , then deciding whether
P is isomorphic to a subgraph of G can be done in time \scrO (kt+1n). By combining this
with Theorem 1 as before, we obtain the following.

Corollary 3. Let \scrC be a class of graphs that exclude some fixed apex graph as a
minor, and let \Delta be a fixed constant. Then, given a connected graph P with at most
k vertices and maximum degree not exceeding \Delta , and a graph G \in \scrC on n vertices, it
is possible to decide whether P is isomorphic to a subgraph of G in randomized time
2\scrO (

\surd 
k log2 k) \cdot n\scrO (1).

In a very recent work, Bodlaender, Nederlof, and van der Zanden [6] proved that
Subgraph Isomorphism on planar graphs cannot be solved in time 2o(n/ logn) un-
less ETH fails. The lower bound of Bodlaender et al. holds for two very special
cases. The first case is when the pattern graph P is a tree and has only one ver-
tex of super-constant degree. The second case is when P is not connected, but its
maximum degree is a constant. Thus, the results of Bodlaender et al. show that
both the connectivity and the bounded degree constraints on pattern P in Corol-
lary 3 are necessary to keep the square root dependence on k in the exponent. How-
ever, a possibility of solving Subgraph Isomorphism in time 2\scrO (k/ log k) \cdot n\scrO (1),
which is still parameterized subexponential, is not ruled out by the work of Bod-
laender et al. Interestingly enough, Bodlaender, Nederlof, and van der Zanden [6]
also give a matching dynamic programming algorithm that can be combined with
our theorem.

Theorem 4 (Theorem 7 of [6]). Let H be a fixed graph, and let us fix any \varepsilon > 0.
Given a pattern graph P on at most k vertices and an H-minor-free host graph G
of treewidth at most \scrO (k1 - \varepsilon ), it is possible to decide whether P is isomorphic to a
subgraph of G in time 2\scrO (k/ log k) \cdot n\scrO (1).

By combining Theorem 4 with Theorem 1 in the same way as before, we obtain
the following.

Corollary 5. Let \scrC be a class of graphs that exclude some fixed apex graph as a
minor. Then, given a connected graph P with at most k vertices, and a graph G \in \scrC 
on n vertices, it is possible to decide whether P is isomorphic to a subgraph of G in
randomized time 2\scrO (k/ log k) \cdot n\scrO (1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LOW TREEWIDTH PATTERN COVERING 1871

Let us stress here that the lower bounds of Bodlaender, Nederlof, and van der
Zanden [6] show that the running time given by Corollary 5 is tight: no 2o(k/ log k)\cdot 
n\scrO (1)-time algorithm can be expected under ETH.

Local search. Fellows et al. [23] studied the following parameterized local search
problem on apex-minor-free graphs. In the LS Vertex Cover problem we are given
an n-vertex graph G, a vertex cover S in G, and an integer k. The task is to decide
whether G contains a vertex cover S\prime , such that | S\prime | < | S| and the Hamming distance
| S\bigtriangleup S\prime | between sets S and S\prime is at most k. In other words, for a given vertex cover,
we ask if there is a smaller vertex cover which is k-close to the given one in terms of
Hamming (edit) distance. Fellows et al. [23] gave an algorithm solving LS Vertex
Cover in time 2\scrO (k) \cdot n\scrO (1) on planar graphs. The question whether this can be
improved to subexponential parameterized time was raised in [13, 23].

The crux of the approach of Fellows et al. [23] is the following observation. If
there is a solution to LS Vertex Cover, then there is a solution S\prime , such that S\bigtriangleup S\prime 

induces a connected subgraph in G. Since S\bigtriangleup S\prime contains at most k vertices and is
connected, our Theorem 1 can be used to sample a vertex subset A that induces a
subgraph of treewidth \scrO (

\surd 
k log k) and covers S\bigtriangleup S\prime with high probability. Thus, by

applying the same principle of independent repetition of the algorithm, we basically
have to search for suitable sets S\setminus S\prime and S\prime \setminus S in the subgraph of G induced by A. We
should, however, be careful here: there can be edges between A and its complement,
and these edges also need to be covered by S\prime , so we cannot just restrict our attention
to G[A]. To handle this, we apply the following preprocessing. For every vertex v \in A,
if v is adjacent to some vertex outside of A that is not included in S, then v must
be in S and needs also to remain in S\prime . Hence, we delete all such vertices from G[A],
and it is easy to see that now the problem boils down to looking for feasible S \setminus S\prime 

and S\prime \setminus S within the obtained induced subgraph. This can be easily done in time
2\scrO (t) \cdot n\scrO (1), where t \leqslant \scrO (

\surd 
k log k) is the treewidth of this subgraph; hence we obtain

the following:

Corollary 6. Let \scrC be a class of graphs that exclude some fixed apex graph as
a minor. Then LS Vertex Cover on graphs from \scrC can be solved in randomized
time 2\scrO (

\surd 
k log2 k) \cdot n\scrO (1).

Steiner tree. Steiner Tree is a fundamental network design problem: for a
graph G with a prescribed set of terminal vertices S and an integer k, we ask whether
there is a tree on at most k edges that spans all terminal vertices. Pilipczuk et al. [35]

gave an algorithm for this problem with running time 2\scrO ((k log k)2/3)\cdot n on planar graphs
and on graphs of bounded genus. With much more additional work, the running time
was improved to 2\scrO (

\surd 
k log k) \cdot n in [36].

Again, by combining the standard dynamic programming solving Steiner Tree
on graphs of treewidth t in time 2\scrO (t log t)n\scrO (1) (see e.g. [9]) with Theorem 1, we
immediately obtain the following.

Corollary 7. Let \scrC be a class of graphs that exclude some fixed apex graph as
a minor. Then Steiner Tree on graphs from \scrC can be solved in randomized time
2\scrO (

\surd 
k log2 k) \cdot n\scrO (1).

Contrary to the much more involved algorithm of Pilipczuk et al. [36], the algo-
rithm above can equally easily handle various variants of the problem. For instance,
we can look for a Steiner tree on k edges that minimizes the total weight of the edges,
or we can ask for a Steiner out-branching in a directed graph, or we can put additional
constraints on vertex degrees in the tree, and so on.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1872 FOMIN ET AL.

Outline. In section 2 we give an informal overview of the proof of Theorem
1 for the case of planar graphs. We try to focus on main intuitions and concepts,
rather than to describe technical details necessary for a formal reasoning. Then, in
sections 3 and 4 we recall the standard concepts and introduce auxiliary technical
results. The full proof of Theorem 1 is contained in section 5. In section 6 we explain
how to generalize the proof of Theorem 1 to the cases when the pattern has multiple
connected components and when we consider an arbitrary proper minor-closed class
of graphs. We conclude in section 7 by listing open problems raised by our work.

2. Overview of the proof of Theorem 1. We now give an informal overview
of the proof of Theorem 1 in the case of planar graphs. In fact, the only two properties
of planar graphs that are essential to the proof are (a) planar graphs are minor-closed,
and (b) they have locally bounded treewidth by a linear function; that is, there exists
a constant \=\alpha (\scrC ) such that every planar graph of radius k has treewidth at most
\=\alpha (\scrC ) \cdot k. In fact, for planar graphs one can take \=\alpha (\scrC ) = 3 [37], and as shown in
[16], the graph classes satisfying both (a) and (b) are exactly graph classes excluding
a fixed apex graph as a minor. However, in a planar graph we can rely on some
topological intuition, making the presentation more intuitive. In the description we
assume familiarity with tree decompositions; see section 3 for a formal definition.

Locally bounded treewidth of planar graphs. As a warm-up, let us revisit a
proof that planar graphs have locally bounded treewidth. The considered proof yields
a worse constant than \=\alpha (\scrC ) = 3, but one of the main ideas---to find a separator in a
planar graph by finding many disjoint paths, present already in [2]---it is insightful for
our argumentation. Let G0 be a graph of radius k; that is, there exists a root vertex
r0 such that every vertex of G0 is within distance at most k from r0.

As with most proofs showing that a graph in question has bounded treewidth,
we will recursively construct a tree decomposition of bounded width. To this end,
we need to carefully define the state of the recursion. We do it as follows: the
recursive step aims at decomposing a subgraph G of the input graph G0, with some
chosen set of terminals T \subseteq V (G) on the outer face of G. The terminals T represent
connections betweenG and the rest ofG0. In order to be able to glue back the obtained
decompositions from the recursive step, our goal is to provide a tree decomposition
of G with T contained in the root bag of the decomposition, so that later we can
connect this bag to decompositions of other pieces of the graph that also contain the
vertices of T . During the process, we keep the invariant that | T | \leqslant 8(k+ 2), allowing
us to bound the width of the decomposition. Furthermore, the assumption that G0 is
of bounded radius projects onto the recursive subinstances by the following invariant:
every vertex of G is within distance at most k from some terminal.

In the recursive step, if T = V (G), | T | < 8(k+2), or G is not connected, then it is
easy to proceed: in the first case we may produce a single bag consisting of the whole
vertex set, in the second case we may include an arbitrary nonterminal to T , and in
the third case we may treat each connected component separately. The interesting
case is when none of these corner cases happen, in particular | T | = 8(k + 2).

We partition T along the outer face into four parts of size 2(k + 2) each, called
north, east, south, and west terminals. We compute minimum separators (i.e., vertex
cuts) between the north and the south terminals, and between the east and the west
terminals. If, in any of these directions, a cut W of size strictly smaller than 2(k+2) is
found, then we can make a divide-and-conquer step: for every connected component
D of G - (T \cup W ) we recurse on the graph G[N [D]] with terminals N(D), obtaining a
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LOW TREEWIDTH PATTERN COVERING 1873
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Fig. 1. Illustrations for section 2. (a) The proof that planarity implies locally bounded treewidth.
The vertices in the gray area are too far from the terminals. (b) Partitioning using a separator
consisting of a few vertices of the margin and a few islands. The margin is gray and the islands are
separated by dashed lines. The blue separator consists of \widetilde \scrO (

\surd 
k) islands and vertices of the margin.

If the blue islands are disjoint from the solution, we delete them and obtain a balanced separator of
size \widetilde \scrO (

\surd 
k). (c) The situation if the partitioning strategy (b) cannot be applied, because the islands in

the separator intersect the pattern. We have a component of the pattern (green) stretched between a
light terminal and a vertex z outside of the margin. (d) Chain of z-T \sansl \sansi separators: a sparse separator
that partitions the pattern in a balanced fashion is highlighted. (e) Contraction of a path Pi (blue)
onto its public vertices (blue circles). A significant number of the vertices of the pattern become
much closer to the light terminals.

tree decomposition \scrT D. Finally, we attach all the obtained tree decompositions below
a fresh root node with bag T \cup W , which is of size less than 10(k + 2).

The crux is that such a separator W is always present in the graph. Indeed,
otherwise there would exist 2(k + 2) disjoint paths between the north and the south
terminals and 2(k+2) disjoint paths between the east and the west terminals. Consider
the region bounded by the two middle north-south and the two middle east-west paths:
the vertices contained in this region are within distance larger than k from the outer
face, on which all terminals lie (see Figure 1(a)). This contradicts our invariant.

Our recursion. In our case, we use a similar, but much more involved recursion
scheme. In the recursive step, we are given aminor G of the input graphG0, with some
light terminals T \sansl \sansi \subseteq V (G) on the outer face and some heavy terminals T \sansh \sanse \subseteq V (G)\setminus T \sansl \sansi 

lying anywhere in the graph. As before, the terminals represent connections to the
other parts of the graph. The names light and heavy correspond to the amount of
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1874 FOMIN ET AL.

potential these terminals bear in the final amortized analysis that is used to bound
the error probability; this will become clear later on. We require that the terminals
T := T \sansl \sansi \cup T \sansh \sanse have to be contained in the root bag of the tree decomposition that
is going to be constructed in this recursion step. Moreover, we maintain an invariant
that | T | = \widetilde \scrO (\surd k), in order to bound the width of the decomposition. The graph G is
a minor of the input graph G0, since we often prefer to contract some edges instead
of deleting them; thus we maintain some distance properties of G.

In our recursion, the light terminals originate from cutting the graph in a similar
fashion as in the proof that planar graphs have locally bounded treewidth, presented
above. Hence, we keep the invariant that light terminals lie on the outer face. We
sometimes need to cut deeply inside G. The produced terminals are heavy, but every
such step corresponds to a significant progress in detecting the pattern, and hence
such steps will be rare. In every such step, we artificially provide connectivity of
the subinstances through the heavy terminals; this is technical and omitted in this
overview.

Recall that our goal is to preserve a connected k-vertex pattern from the input
graph. Here, the pattern can become disconnected by recursing on subsequent sepa-
rations, but such cuttings will always be along light terminals. Therefore, we define
a pattern in a subinstance (G,T \sansl \sansi , T \sansh \sanse ) solved in the recursion as a set X \subseteq V (G) of
size at most k such that every connected component of G[X] contains a light termi-
nal. Hence, compared to the presented proof of planarity implying locally bounded
treewidth, we aim at more restricted width of the decomposition, namely \widetilde \scrO (\surd k), but
we can contract or delete parts of G, as long as the probability of spoiling a fixed, but
unknown k-vertex pattern X remains inverse subexponential in k.

Clustering. Upon deleting a vertex or an edge, some distance properties that
we rely on can be broken. We need the following sampling procedure that partitions
the graph into connected components of bounded radii, such that the probability of
spoiling a particular pattern is small. The proof of the following theorem is similar
to the metric decomposition tool of [29] and to the recursive decomposition used in
the construction of Bartal's HSTs [4].

Theorem 8. There exists a randomized polynomial-time algorithm that, given a
graph G on n > 1 vertices and a positive integer k, returns a vertex subset B \subseteq V (G)
with the following properties:

(a) The radius of each connected component of G[B] is less than 9k2 lg n.
(b) For each vertex subset X \subseteq V (G) of size at most k, the probability that

X \subseteq B is at least 1 - 1
k .

Proof sketch. Start with H := G and iteratively, as long as V (H) \not = \emptyset , perform
the following procedure. Pick arbitrary v \in V (H), and choose a radius r as follows.
Start with r = 1 and iteratively, given current radius r, with probability p := (2k2) - 1

accept r, and with probability 1  - p increase it by one and continue (i.e., choose r
according to the geometric distribution with success probability p). Given an accepted
radius r, put all vertices within distance less than r from v into B, and delete from
H all vertices within distance at most r from v.

Since the procedure performs at most n steps, by the union bound the probability
of some radius exceeding 9k2 lg n is at most 1

2k . Fix a vertex x \in V (G). We have
x /\in B only if at some point x \in V (H) and the distance between v and x in H is
exactly r when the radius r gets accepted. However, in this case, if the radius r is
increased, x is put into B regardless of subsequent random choices. Consequently,
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LOW TREEWIDTH PATTERN COVERING 1875

for a fixed vertex x \in V (G), the probability that x /\in B is at most p. By the
union bound, the probability that X \not \subseteq B is at most | X| p, which is at most 1

2k
for | X| \leqslant k.

Splitting along a separator. We would like to apply a similar divide-and-
conquer step as in the presented proof that planar graphs have locally bounded
treewidth. The problem is that we can only afford a separator W of size \widetilde \scrO (\surd k);
however, the radius of the graph can be much larger.

Let us define the margin M to be the set of vertices within distance at most
2000

\surd 
k lg k = \widetilde \scrO (\surd k) from any light terminal. Intuitively, our case should be easy

if every vertex of the pattern X is in the margin: we could then just throw away all
vertices of G - M and use the fact that planar graphs have locally bounded treewidth,
as the light terminals lie on the outer face (precisely, we may add a special vertex
embedded in the outer face, connect it to the light terminals, and apply the argument
about locally bounded treewidth to this vertex; this is how we do it in the formal
reasoning). However, we cannot just branch (guess) whether this is the case: the
information that G - M contains a vertex of the pattern is not directly useful.

Instead, we make a localized analogue of this guess: we identify a relatively
compact set of vertices of G  - M that prohibit us from making a single step of
the recursion sketched above. First, we apply the clustering procedure (Theorem 8)
to the graph G  - M , so that we can assume that every connected component of
G  - M , henceforth called an island , is of radius bounded polynomially in k and
lg n. Second, we construct an auxiliary graph H by contracting every island C into
a single vertex uC . Note that now in H every vertex is within distance at most
2000

\surd 
k lg k + 1 = \widetilde \scrO (\surd k) from a light terminal. Thus H has treewidth \widetilde \scrO (\surd k). By

standard arguments, we can find a balanced separator WH in H, that is, a separator
of size \widetilde \scrO (\surd k) such that every connected component of H  - WH , after lifting it back
to G by reversing contractions, contains (a) at most | T | /2 terminals from G and (b)
at most | V (G) \setminus T | /2 nonterminal vertices of G.

The separator WH can be similarly lifted to a separator W in G that corresponds
to \widetilde \scrO (\surd k) vertices of M and \widetilde \scrO (\surd k) islands. Now it is useful to make a guess if
some vertex of an island in W (i.e., a vertex of W \setminus M) belongs to the solution. If
this is not the case, we can delete the whole W \setminus M from the graph and apply the
procedure recursively to connected components of G  - W . If this is the case, we
know that there is a vertex of the solution outside of M , which moreover lies within
one of \widetilde \scrO (\surd k) components of radius polynomial in k and lg n; we will later localize
such a vertex more closely, as its knowledge will be pivotal for our further analysis.
Therefore, with some probability q we decide to assume that W \setminus M contains a vertex
of the pattern, and with the remaining probability 1 - q we decide that this is not the
case. In the latter case, we remove W \setminus M from the graph and recurse using W \cap M ,
which has size \widetilde \scrO (\surd k), as a separator; see Figure 1(b). The fact that every connected
component of G - W contains at most | T | /2 terminals allows us to keep the invariant
that | T | = \widetilde \scrO (\surd k).

Let us now analyze what probability q we can afford. Observe that in every
subinstance solved recursively the number of nonterminal vertices is halved. Thus,
every vertex x of the pattern X is contained in G only in \scrO (lg n) subinstances in the
whole recursion tree; here we exclude the subinstances where x is a light terminal,
because then its treatment is determined by the output specification of the recursive
procedure. Consequently, we care about correct choices only in \scrO (k lg n) steps of the
recursion. In these steps, we do not want to make a mistake during the clustering

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 1

29
.1

77
.1

47
.2

22
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1876 FOMIN ET AL.

procedure (1/k failure probability) and we want to correctly guess that W \setminus M is
disjoint with the pattern, provided this is actually the case (q failure probability).
Thus, if we put q = 1/k, then the probability that we succeed in all \scrO (k lg n) steps
we care about is inverse-polynomial in n; this is sufficient for our needs.

Island with a vertex of the pattern. We are left with the second case, where
some island C \subseteq W intersects the pattern. We have q = 1/k probability of guessing
correctly that this is the case, and independently we have (1 - 1/k) probability of not
making a mistake in the clustering step.

The bound on the radii of the islands, as well as the fact that only \widetilde \scrO (\surd k) islands
are contained in W , allow us to localize this vertex of the pattern even closer. Recall
that the radius of each island is bounded by 9k2 lg n. For the rest of this overview
we assume that lg n is bounded polynomially in k, and hence the radius of each
island is polynomial in k. Intuitively, this is because if, say, we had lg n > 100 \cdot k100,
then n > 2100k

100

and having allowed factor 2100k
100

in the running time bound we
may apply a variety of other algorithmic techniques. More formally, we observe that
(lg n)

\widetilde \scrO (
\surd 
k) is bounded by 2

\widetilde \scrO (
\surd 
k) \cdot no(1), which is sufficient to make sure that all the

experiments whose success probability depend on lg n succeed simultaneously with
probability at least (2

\widetilde \scrO (
\surd 
k) \cdot no(1)) - 1.

We first guess (by sampling at random) an island C \subseteq W that contains a vertex
of the pattern. Then, we pick an arbitrary vertex z \in C and guess (by sampling at
random) the distance d in C between z and the closest vertex of the pattern in C. By
contracting all vertices within distance less than d from z, with success probability
inverse-polynomial in k, we arrive at the following situation: (see Figure 1(c))

we have a vertex z /\in M such that

either z or a neighbor of z belongs to the pattern X.

Chain of separators. Hence, one of the components of G[X] is stretched across
the margin M , between a light terminal on the outer face and the vertex z inside the
margin. Our idea now is to use this information to cut X in a balanced fashion. Note
that we have already introduced an inverse-polynomial in k multiplicative factor in the
success probability. Hence, to maintain the overall inverse-subexponential dependency
on k in the success probability, we should aim at a progress that will allow us to bound
the number of such steps by \widetilde \scrO (\surd k).

Unfortunately, it is not obvious how to find such a separation. It is naive to
hope for a z-T \sansl \sansi separator of size \widetilde \scrO (\surd k), and a larger separator seems useless, if there
is only one. However, we can aim at a Baker-style argument: if we find a chain
of p pairwise disjoint z-T \sansl \sansi separators C1, C2, . . . , Cp (see Figure 1(d)), each of size
polynomial in k, then we may guess a ``sparse one"" and separate along it. Since the
separators are pairwise disjoint, there exists a ``sparse"" separator Ci containing at
most k/p vertices of the pattern X. On the other hand, since the pattern contains a
component stretched from z to a light terminal, every Ci intersects X. If we ignore
the first and the last p/4 separators, there is a sparse separator in between containing
at most 2k/p vertices of X. We can then guess the at most 2k/p vertices of X in this
separator and break the instance into two along it; in each of the resulting instances,
at least p/4 vertices of X remain. Assuming separators C1, C2, . . . , Cp are of size
bounded polynomially in k, the optimal choice is p \sim k2/3, which leads to success
probability inverse in 2

\widetilde \scrO (k2/3).
However, we can apply a bit smarter counting argument. Take p = 120

\surd 
k lg k.

Look at Cp/2 and assume that at most half of the vertices of X lie on the side of Cp/2
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LOW TREEWIDTH PATTERN COVERING 1877

with separators Ci for i < p/2; the other case is symmetric. The crucial observation
is the following: there exists an index i \leqslant p/2 such that if | Ci \cap X| = \alpha , then Ci

partitions X into two parts of size at least \alpha 
\surd 
k/10 each. Indeed, otherwise we have

that for every i \leqslant p/2 it holds that

| X \cap Ci| \geqslant 
10\surd 
k
\cdot 
\sum 
j<i

| X \cap Cj | .

This implies | X \cap 
\bigcup 

j\leqslant i Cj | \geqslant (1 + 10/
\surd 
k)i, and | X \cap 

\bigcup 
j\leqslant p/2 Cj | > k for p =

120
\surd 
k lg k.

Hence, we guess (by sampling at random) such an index i, the value of \alpha =
| X \cap Ci| , and the set X \cap Ci. If the size of Ci is bounded polynomially in k, with
success probability k - \scrO (\alpha ) we partition the pattern into two parts of size at least
\alpha 
\surd 
k/10 each. A simple amortization argument shows that all these guessings incur

only the promised 2 - 
\widetilde \scrO (

\surd 
k) multiplicative factor in the overall success probability.

Furthermore, as such a step creates \alpha heavy terminals, it can be easily seen that the
total number of heavy terminals will never grow beyond \widetilde \scrO (\surd k).

However, the above argumentation assumes we are given such a chain of separators
Ci: they are not only pairwise disjoint, but also of size polynomial in k. Let us now
inspect how to find them.

Duality. In the warm-up proof of planar graphs having locally bounded
treewidth, the separator W is obtained from the classic Menger maximum flow/ min-
imum cut duality. Here, we aim at a chain of disjoint separators, but we require
that their sizes are polynomial in k. It turns out that we can find such a chain by
formulating a maximum flow of minimum cost problem and extracting the separator
chain in question from the optimum solution to its (LP) dual. Thus we obtain the
following result, which can be considered a variant of the classic max-flow-min-cut
duality, where we allow paths to be only ``almost"" disjoint, but in the dual we extract
many disjoint small separators.

Theorem 9. There is a polynomial-time algorithm that given a connected graph
G, a pair s, t \in V (G) of different vertices, and positive integers p, q, outputs one of
the following structures in G:

(a) A chain (C1, . . . , Cp) of (s, t)-separators with | Cj | \leqslant 2q for each j \in [p].
(b) A sequence (P1, . . . , Pq) of (s, t)-paths with | (V (Pi)\cap 

\bigcup 
i
\prime \not =i

V (P
i
\prime )) \setminus \{ s, t\} | \leqslant 

4p for each i \in [q].

Proof sketch. We formulate the second outcome as a maximum flow of minimum
cost problem in an auxiliary graph, where every vertex v \in V (G)\setminus \{ s, t\} is duplicated
into two copies: one of cost 0 and capacity 1, and one of cost 1 and infinite capacity.
We ask for a minimum-cost flow of size 2q from s to t. If the cost of such flow is
at most 2pq, the projection onto G of the cheapest q flow paths gives the second
output. Otherwise, we read the desired chain of separators (C1, . . . , Cp) as distance
layers from s in the graph with distances imposed by the solution to the dual linear
program.

Since all light terminals lie on the outer face, we can attach an auxiliary root
vertex r0 adjacent to all light terminals and apply Theorem 9 to (s, t) := (r0, z),
p := 120

\surd 
k lg k, and q := poly(k). If the algorithm of Theorem 9 returns a chain of

separators, we proceed as described before. Thus, we are left with the second output:
q = poly(k) nearly-disjoint paths from T \sansl \sansi to z.
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1878 FOMIN ET AL.

Nearly disjoint paths. The vertex set of every path Pi can be partitioned into
public vertices \sansP \sansu \sansb (Pi), the ones used also by other paths, and the remaining private
vertices \sansP \sansr \sansv (Pi). We have | \sansP \sansu \sansb (Pi)| \leqslant 4p = 480

\surd 
k lg k, and the sets \sansP \sansr \sansv (Pi) are

pairwise disjoint. We can assume q > k, so there exists a path Pi such that \sansP \sansr \sansv (Pi)
is disjoint with the pattern X. By incurring an additional 1/k multiplicative factor
in the success probability, we can guess, by sampling at random, such index i.

How can we use such a path Pi? Clearly, we can delete the private vertices of Pi,
because they can be assumed not to be used by the pattern X. However, we choose a
different way: we contract them onto neighboring public vertices along Pi, reducing Pi

to a path with vertex set \sansP \sansu \sansb (Pi). Observe that by this operation the vertex z changes
its location in G: from a vertex deeply inside G; namely, not within the margin M , it
is moved to a place within distance | \sansP \sansu \sansb (Pi)| \leqslant 480

\surd 
k lg k from the light terminals,

which is less than a quarter of the width of the margin; see Figure 1(e). This provides
crucial progress for the algorithm, as explained next.

By the connectivity assumptions on the pattern X, the vertex z drags along a
number of vertices of X that are close to it. More precisely, if Q is a path in G[X]
connecting z or a neighbor of z with a light terminal, then the first 500

\surd 
k lg k vertices

onQ are moved from being within distance at least 1500
\surd 
k lg k from all light terminals

to being within distance at most 1000
\surd 
k lg k from some light terminal. Hence, if we

define that a vertex x \in X is far if it is within distance larger than 1000
\surd 
k lg k (i.e.,

half of the width of the margin) from all light terminals, and close otherwise, then by
contracting the private vertices of Pi as described above, at least 500

\surd 
k lg k vertices

of k change their status from far to close.
By a careful implementation of all separation steps, we can ensure that no close

vertex of X becomes far again. Consequently, we ensure that the above step can
happen only \widetilde \scrO (\surd k) times. Since the probability of succeeding in all guessings within

this step is inverse-polynomial in k, this incurs only a 2 - 
\widetilde \scrO (

\surd 
k) multiplicative factor

in the overall success probability.
This finishes the overview of the proof of Theorem 1. We invite the reader to the

next sections for a fully formal proof, which is moreover conducted for an arbitrary
apex-minor-free class.

3. Preliminaries. In this section we introduce notation and recall well-known
concepts underlying our work.

Notation. We use standard graph notation; see, e.g., [10] for a reference. All
graphs considered in this paper are undirected and simple (without loops or multiple
edges), unless explicitly stated. For a vertex u of a graph G, by NG(u) := \{ v : uv \in 
E(G)\} and NG[u] := \{ u\} \cup NG(u) we denote the open and closed neighborhoods of u,
respectively. Similarly, for a vertex subset X \subseteq V (G), by NG[X] :=

\bigcup 
u\in X NG[u] and

NG(X) := NG[X]\setminus X we denote the closed and open neighborhoods ofX, respectively.
The subscript is dropped whenever it is clear from the context. For a graph G, \sansc \sansc (G)
denotes the set of connected components of G.

For an undirected graph G and an edge uv \in E(G), by contracting uv we mean
the following operation: remove u and v from the graph, and replace them with a
new vertex that is adjacent to exactly those vertices that were neighbors of u or v in
G. Note that this definition preserves the simplicity of the graph. By contracting v
onto u we mean the operation of contracting the edge uv and renaming the obtained
vertex as u. More generally, if X is a subset of vertices with G[X] being connected,
and u /\in X is such that u has a neighbor in X, then by contracting X onto u we mean
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LOW TREEWIDTH PATTERN COVERING 1879

the operation of exhaustively contracting a neighbor of u in X onto u up to the point
when X becomes empty. Note that due to the connectivity of G[X] such an outcome
will always be achieved.

We say that H is a minor of G if H can be obtained from G by means of vertex
deletions, edge deletions, and edge contractions. An apex graph is a graph that can
be made planar by removing one of its vertices.

For a positive integer k, we denote [k] := \{ 1, . . . , k\} . We denote lg x := log2 x.
Notation log is used only under the \scrO (\cdot )-notation, where multiplicative constants
are hidden anyway. We also denote exp[t] := et, where e is the base of the natural
logarithm.

Tree decompositions. Let G be an undirected graph. A tree decomposition \scrT 
of G is a rooted tree T with a bag \beta (x) \subseteq V (G) associated with every node x, which
satisfies the following conditions:

(T1) For each u \in V (G) there is some x \in V (T ) with u \in \beta (x).
(T2) For each uv \in E(G) there is some x \in V (T ) with \{ u, v\} \subseteq \beta (x).
(T3) For each u \in V (G) the node subset \{ x \in V (T ) : u \in \beta (x)\} induces a connected

subtree of T .
The width of a tree decomposition \scrT is maxx\in V (T ) | \beta (x)|  - 1, and the treewidth of

G is equal to the minimum possible width of a tree decomposition of G. We assume
the reader's familiarity with basic combinatorics of tree decompositions, and hence
we often omit a formal verification that some constructed object is indeed a tree
decomposition of some graph.

Balanced separator. Let G be a graph, and let w : V (G)\rightarrow \BbbR \geqslant 0 be a nonneg-
ative weight function on vertices of G. A 1

2 -balanced separator of w in G is any subset
X of vertices of G such that for every connected component C of G - X it holds that

w(V (C)) \leqslant w(V (G))/2,

where we denote w(A) :=
\sum 

u\in A w(u) for a vertex subset A. The following fact about
the existence of balanced separators in graphs of bounded treewidth is well-known;
see, e.g., [10, Lemma 7.19].

Lemma 10. For any graph G, tree decomposition \scrT of G, and a weight function
w : V (G)\rightarrow \BbbR \geqslant 0, one of the bags of \scrT is a 1

2 -balanced separator for w.

Note that in Lemma 10, if the given decomposition \scrT has width t, then the
obtained 1

2 -balanced separator has size at most t + 1. Also, given \scrT , any its bag
satisfying the asserted properties can be found in polynomial time.

Locally bounded treewidth and apex-minor-freeness. For the whole proof
we fix a class \scrC of graphs that satisfies the following properties:

(C1) \scrC is closed under taking minors.
(C2) \scrC has locally bounded treewidth. That is, there exists a function f : \BbbN \rightarrow \BbbN 

such that any connected graph G from \scrC of radius at most r has treewidth
bounded by f(r).

Eppstein [21] proved that among minor-closed classes, that is, classes satisfying
property (C1), property (C2) is equivalent to excluding some apex graph as a minor.
Later, Demaine and Hajiaghayi [16] showed that actually for every apex-minor-free
class the function f witnessing locally bounded treewidth can be chosen to be linear
in the radius. As observed in [16], these facts combined yield the following.
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1880 FOMIN ET AL.

Theorem 11 ([16, 21]). If a class of graphs \scrC satisfies properties (C1) and (C2),
then there is a constant \alpha (\scrC ) such that for every connected graph G from \scrC of radius
r the treewidth of G is bounded by \alpha (\scrC ) \cdot r.

The results of [16, 21] in particular show that if \scrC is a class of graphs that exclude
a fixed apex graph as a minor, then the closure of \scrC under taking minors satisfies
properties (C1) and (C2), and hence also the property implied by Theorem 11. Hence,
it suffices to prove Theorem 1 for any graph class \scrC that satisfies properties (C1) and
(C2); we will assume this from now on.

We will need an algorithmic variant of Theorem 11, which requires approximating
treewidth. For this, we use the following result of Feige, Hajiaghayi, and Lee [22].

Theorem 12 (Theorem 6.4 of [22]). For every fixed graph H there is a poly-
nomial time algorithm that, given an H-minor-free graph G of treewidth at most t,
computes a tree decomposition of G of width at most \gamma \cdot | V (H)| 2 \cdot t for some universal
constant \gamma .

Theorems 11 and 12, together with Lemma 10, yield the following.

Corollary 13. For every class of graphs \scrC satisfying properties (C1) and (C2)
there exists a constant \=\alpha (\scrC ) and polynomial-time algorithm that, given a graph G \in \scrC 
of radius at most r together with a weight function w : V (G) \rightarrow \BbbR \geqslant 0, finds a 1

2 -
balanced separator for w : V (G)\rightarrow \BbbR \geqslant 0 of size at most \=\alpha (\scrC ) \cdot r.

Proof. Observe that, by Theorem 11, \scrC excludes the clique on \alpha (\scrC )+2 vertices as
a minor, for this clique has radius 1 and treewidth \alpha (\scrC )+1. Let G be the input graph.
By Theorem 11, the treewidth of G is at most \alpha (\scrC ) \cdot r, so running the algorithm of
Theorem 12 onG yields a tree decomposition ofG of width at most \gamma (\alpha (\scrC )+2)2\alpha (\scrC )\cdot r.
By Lemma 10, one of the bags of this tree decomposition is a 1

2 -balanced separator
for w of size at most \=\alpha (\scrC ) := 1 + \gamma (\alpha (\scrC ) + 2)2\alpha (\scrC ) \cdot r.

We remark that the degree of the polynomial in the running time of the algorithm
of Theorem 12 is a universal constant, independent of the excluded minor H. More
precisely, the algorithm runs in time f(H)\cdot | V (G)| c, where f is some function and c is a
constant independent of H. Consequently, the same also holds for the algorithm given
by Corollary 13: the degree of the polynomial is a universal constant independent of
the class \scrC .

4. Auxiliary tools. In this section we introduce auxiliary technical tools that
will be needed in the proof: a clustering procedure that reduces the radius of the
graph, and a duality result concerning almost disjoint paths and chains of separators
between a pair of vertices.

4.1. Clustering procedure. Let us recall Theorem 8 from section 2.

Theorem 8. There exists a randomized polynomial-time algorithm that, given a
graph G on n > 1 vertices and a positive integer k, returns a vertex subset B \subseteq V (G)
with the following properties:

(a) The radius of each connected component of G[B] is less than 9k2 lg n.
(b) For each vertex subset X \subseteq V (G) of size at most k, the probability that X \subseteq B

is at least 1 - 1
k .

Proof. Consider the following iterative procedure which constructs a set B0. We
start with V0 = V (G). In step i, given a set Vi - 1 \subseteq V (G), we terminate the procedure
if Vi - 1 = \emptyset . Otherwise we pick an arbitrary vertex vi \in Vi - 1 and we randomly
select a radius ri according to the geometric distribution with success probability
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LOW TREEWIDTH PATTERN COVERING 1881

p := 1
2k2 . Given vi and ri, we insert BallG[Vi - 1](vi, ri  - 1) into B0 and define Vi :=

Vi - 1 \setminus BallG[Vi - 1](vi, ri). That is, we delete from the graph vertices within distance
at most ri from vi in G[Vi - 1] and put the vertices within distance less than ri into
B0. Finally, at the end of the procedure, if any of the selected radii ri is larger than
9k2 lg n, we return B = \emptyset , and otherwise we return B = B0.

Clearly, the procedure runs in polynomial time, as at every step at least the vertex
vi is removed from Vi - 1, and hence at most n iterations are executed. For the radii of
the connected components of G[B0], note that the fact that we insert into B0 vertices
within distance less than ri from vi, but delete from Vi vertices within distance at
most ri from vi, ensures that at every step i of the iteration we have NG[B0]\cap Vi = \emptyset .
Consequently, BallG[Vi - 1](vi, ri  - 1) induces a connected component of G[B0] and is
of radius less than ri. Since we return B = \emptyset instead of B = B0 if any of the selected
radii ri exceeds 9k2 lg n, the upper bound on the radii of the connected components
of G[B] follows.

It remains to argue that any fixed k-vertex subset X \subseteq V (G) survives in B with
high probability. First, note that for fixed i we have that

\BbbP (ri > 9k2 lg n) \leqslant (1 - p)
9k2 lgn \leqslant e - 4.5 lgn < n - 3 <

1

2kn
;

here, we use the fact that p = 1
2k2 and the inequality 1  - x \leqslant e - x. Thus, as there

are at most n iterations with probability less than 1
2k the algorithm returns B = \emptyset 

because of some ri exceeding the limit of 9k2 lg n.
Second, we analyze the probability that X \subseteq B0. Let us fix some x \in X. The

only moment where the vertex x could be deleted from the graph, but not put into
B0, is when x is within distance exactly ri from the vertex vi in an iteration i. It
is now useful to think of the choice of ri in the iteration i as follows: we start with
ri := 1 and then, iteratively, with probability p accept the current radius, and with
probability 1 - p increase the radius ri by one and repeat. However, in the aforemen-
tioned interpretation of the geometric distribution, when ri = distG[Vi - 1](vi, x), with
probability p the radius ri is accepted (and x is deleted but not put in B0), but with
probability (1 - p) the radius ri is increased, and the vertex x is included in the ball
BallG[Vi - 1](vi, ri - 1) \subseteq B0. Consequently, the probability that a fixed vertex x \in X is
not put into B0 is at most p. By the union bound, we infer that the probability that
X \not \subseteq B0 is at most kp = 1

2k . Together with the 1
2k upper bound on the probability

that the maximum radius among ri exceeds 9k
2 lg n, which results in putting B = \emptyset 

instead of B = B0, we have that the probability that X \not \subseteq B is at most 1
k . This

concludes the proof.

4.2. Duality. We start with a few standard definitions.

Definition 14. For a graph H and its vertex u, by \sansr \sanse \sansa \sansc \sansh (u,H) we denote the
set of vertices of H reachable from u in H. Suppose G is a connected graph and s, t
are its different vertices. An (s, t)-separator is a subset C of vertices of G such that
s, t /\in C and t /\in \sansr \sanse \sansa \sansc \sansh (s,G - C). An (s, t)-separator is minimal if none of its proper
subsets is also an (s, t)-separator.

Definition 15. A sequence (C1, C2, . . . , Ck) of minimal (s, t)-separators is called
an (s, t)-separator chain if all of them are pairwise disjoint and for each 1 \leqslant j < j\prime \leqslant k
the following holds:

Cj \subseteq \sansr \sanse \sansa \sansc \sansh (s,G - C
j
\prime ) and C

j
\prime \subseteq \sansr \sanse \sansa \sansc \sansh (t, G - Cj).
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1882 FOMIN ET AL.

We now state and prove the main duality result, that is, Theorem 9 from section 2.

Theorem 9. There is a polynomial-time algorithm that given a connected graph
G, a pair s, t \in V (G) of different vertices, and positive integers p, q, outputs one of
the following structures in G:

(a) A chain (C1, . . . , Cp) of (s, t)-separators with | Cj | \leqslant 2q for each j \in [p].
(b) A sequence (P1, . . . , Pq) of (s, t)-paths with | (V (Pi)\cap 

\bigcup 
i
\prime \not =i

V (P
i
\prime ))\setminus \{ s, t\} | \leqslant 4p

for each i \in [q].

Proof. Our approach is as follows: we formulate searching for the second output
as a min-cost max-flow problem in an auxiliary graph H. If the cost of the computed
flow is not too large, a simple averaging argument yields the desired paths Pi from
the flow paths. If the cost is large, we look at the dual of the min-cost max-flow
problem, expressed as a linear program, which is in fact a distance LP. Then we read
the separators Ci as layers of distance from the vertex s. Let us now proceed with
formal argumentation.

We define a graph H as follows. Starting with H := G, we replace every vertex
v \in V (G) \setminus \{ s, t\} with two copies v0 and v1: the copy v0 has capacity 1 and cost 0,
while the copy v1 has infinite capacity and cost 1. The vertex s is a source of capacity
2q and cost 0, and the vertex t is a sink of capacity 2q and cost 0. The edges of H
are defined naturally: every edge uv of G gives rise to up to four edges in H, between
the copies of u and the copies of v.

In the graph H, we ask for a minimum-cost vertex-capacitated flow from s to
t of size 2q. Clearly, such a flow exists for connected graphs G, as every vertex v1
is of infinite capacity. Since all the costs and capacities are integral or infinite, in
polynomial time we can find a minimum-cost solution that decomposes into 2q flow
paths P \prime 

1, P
\prime 
2, . . . , P

\prime 
2q, each carrying a unit flow. Let C be the total cost of this flow.

Every path P \prime 
i induces a walk Pi in G: whenever P \prime 

i traverses a vertex v0 or v1, the
path Pi traverses the corresponding vertex v. By shortcutting if necessary, we may
assume that each Pi is a path.

In this proof, we consider every path P from s to t (either in G or in H) as
oriented from s towards t; thus, the notions of a predecessor/successor on P or the
relation of lying before/after on P are well-defined.

Let us define the cost of a path Pi, denoted by c(Pi), as the number of internal
vertices that Pi shares with other paths. That is,

c(Pi) :=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| (V (Pi) \cap 
\bigcup 
j \not =i

V (Pj)) \setminus \{ s, t\} 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Observe that, due to the capacity constraints, if a vertex v /\in \{ s, t\} lies on h > 1

paths Pi1 , Pi2 , . . . , Pih , then all but one of the paths P \prime 
ij

have to use the vertex v1,
inducing total cost h - 1 for the minimum-cost flow. Since h - 1 \geqslant h/2 for h > 1, it
follows that

2q\sum 
i=1

c(Pi) \leqslant 2C.

We infer that if C \leqslant 2pq, then
\sum 2q

i=1 c(Pi) \leqslant 4pq. Therefore, for at least q paths
Pi we have c(Pi) \leqslant 4p. This yields the second desired output.

Thus we are left with the case when C > 2pq. Our goal is to find a separator
chain suitable as the first desired output. To this end, we formulate the discussed
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LOW TREEWIDTH PATTERN COVERING 1883

min
\sum 

v\in V (G)\setminus \{ s,t\} 

\sum 
a\in NH(v1)

f(v1, a)

s.t.
\sum 

b\in NH(a)

f(a, b) - f(b, a) = 0 \forall a \in V (H) \setminus \{ s, t\} 

\sum 
a\in NH(s)

f(s, a) - f(a, s) = 2q

\sum 
a\in NH(t)

f(t, a) - f(a, t) =  - 2q

\sum 
a\in NH(v0)

f(v0, a) \leqslant 1 \forall v \in V (G) \setminus \{ s, t\} 

f(a, b) \geqslant 0 \forall ab \in E(H)

Fig. 2. The minimum-cost flow problem used in the proof of Theorem 9. In the flow problem,
the variables f(a, b) correspond to the amount of flow pushed from a to b along an edge ab.

max 2q(yt  - ys) - 
\sum 

v\in V (G)\setminus \{ s,t\} 

zv

s.t. yv0 \leqslant ya + zv \forall v \in V (G) \setminus \{ s, t\} , a \in NH(v0)

yv1 \leqslant ya + 1 \forall v \in V (G) \setminus \{ s, t\} , a \in NH(v1)

ys \leqslant ya \forall a \in NH(s)

yt \leqslant ya \forall a \in NH(t)

zv \geqslant 0 \forall v \in V (G) \setminus \{ s, t\} 

Fig. 3. The dual of the minimum-cost flow problem from Figure 2, used in the proof of
Theorem 9.

minimum-cost flow problem as a linear program, and we analyze its dual. The precise
formulations can be found in Figures 2 and 3.

In the dual formulation, the value ya  - ys can be interpreted as a distance of a
from s, where traveling through a vertex v1 costs 1 and traveling through a vertex
v0 costs zv. The goal is to maximize the distance from s to t with weight 2q, while
paying as little as possible in the sum

\sum 
v\in V (G)\setminus \{ s,t\} zv.

Let \{ zv : v \in V (G); ya : a \in V (H)\} be an optimum solution to the dual LP.
Since the primal program is a minimum-cost flow problem with integral coefficients,
in polynomial time we can find such values zv and ya that are additionally integral.
Observe that the dual is invariant under adding a constant to every variable ya; hence,
we can assume ys = 0. Since traveling through a vertex v1 incurs distance 1 and v0
is a twin of v1, the optimum solution never uses values zv greater than 1; hence,
zv \in \{ 0, 1\} for every v \in V (G) \setminus \{ s, t\} .

On one hand, C, as the optimum value of both the primal and the dual LPs, is
assumed to be larger than 2pq. On the other hand, we have that zv \geqslant 0 for every
v \in V (G) \setminus \{ s, t\} . We infer that

2q(yt  - ys) \geqslant C > 2pq,

and hence yt > p. We define for every 1 \leqslant j \leqslant p the set

Cj := \{ v \in V (G) : zv = 1 \wedge yv0 = j\} .
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1884 FOMIN ET AL.

We claim that C1, C2, . . . , Cp is the desired separator chain. Clearly, the sets are
pairwise disjoint and do not contain either s or t. We now show that they form a
separator chain.

Claim 16. For each 1 \leqslant j \leqslant p, the set Cj is an (s, t)-separator.

Proof. Consider a path P from s to t. Let P \prime be the corresponding path in H that
traverses a vertex v0 whenever v \in V (G) \setminus \{ s, t\} lies on P . Since zv \in \{ 0, 1\} for every
v \in V (G) \setminus \{ s, t\} , we have yb \leqslant ya + 1 for every ab \in E(H). As yt > p, there exists a
vertex b on P \prime with yb = j; let b be the first such vertex and let a be its predecessor
on P \prime . Note that b \not = s as ys = 0 and b \not = t as yt > p, and hence b = v0 for some
v \in V (G) \setminus \{ s, t\} . Since b is the first vertex on P \prime with yb = j, we have ya = j  - 1,
and, consequently, zv = 1. Thus v \in Cj . Since the choice of P is arbitrary, Cj is an
(s, t)-separator, as desired.

Consider a path P \prime 
i . By complementary slackness conditions, whenever the path

P \prime 
i traverses an edge ab \in E(H) from a to b, the corresponding distance inequality of

the dual LP is tight: yb = ya + 1 if b = v1 for some v, yb = ya + zv if b = v0, and
yb = ya if b = s or b = t. Thus, P \prime 

i is a shortest path from s to t in the graph H
with vertex weights 0 for s, t, zv for every v0, and 1 for every v1. In particular, always
ya \leqslant yb \leqslant ya + 1 for b being a successor of a on P \prime 

i .

Claim 17. For all 1 \leqslant j \leqslant p and 1 \leqslant i \leqslant 2q, we have that | V (Pi)\cap V (Cj)| = 1.

Proof. We first prove that the cardinality of this intersection is at most 1. Assume
b \in P \prime 

i such that b = v0 or b = v1 for some v \in Cj , and let a be the predecessor of b
on P \prime 

i . Since zv = 1, we have yb = ya + 1 = j, that is, b must be the first vertex on
P \prime 
i with yb = j. Consequently, there exists at most one vertex b on P \prime 

i that projects
to a vertex of Cj in G, which proves that | V (Pi) \cap V (Cj)| \leqslant 1.

To prove the converse inequality, we show that the projection onto G of the first
vertex b on P \prime 

i such that yb = j belongs to Cj . First, observe that such a vertex b
exists since ys = 0, yt > p, and yb \leqslant ya + 1 for every ab \in E(H). Let b = v0 or
b = v1 for some v \in V (G) \setminus \{ s, t\} ; we claim that zv = 1, yv0

= j, and hence v \in Cj .
If b = v0, the claim is immediate, as yb = ya + 1 for the predecessor a of b on P \prime 

i . By
contradiction, let us assume b = v1 but zv = 0. Then by replacing b = v1 with v0
on P \prime 

i we obtain a shorter path from s to t in H, contradicting the fact that P \prime 
i is a

shortest path from s to t. Thus zv = 1 and, consequently, yv0 = yv1 = ya + 1, so v
belongs to Cj , as claimed.

Let us denote the unique vertex of V (Pi)\cap V (Cj) as wi,j . Note that wi,j and w
i
\prime 
,j

may coincide for different indices i, i\prime . By the complementary slackness conditions
again, if zv = 1 for a vertex v \in V (G) \setminus \{ s, t\} , then there exists a flow path P \prime 

i

that passes through v0. Consequently, for every 1 \leqslant j \leqslant p and every v \in Cj , there
exists a flow path P \prime 

i that passes through v0. It follows that v = wi,j , and thus
Cj = \{ wi,j : 1 \leqslant i \leqslant 2q\} . In particular, we have | Cj | \leqslant 2q for every 1 \leqslant j \leqslant p.
Moreover, since each vertex of Cj lies on some path Pi, and is the unique vertex of
V (Pi) \cap V (Cj), we infer the Cj is a minimal separator.

We are left with verifying the inclusion of reachability sets. Since P \prime 
i is a shortest

path from s to t in H, we have that the vertex wi,j lies before the vertex wi,j\prime on
the path Pi, whenever j < j\prime . As the separators Cj and C

j
\prime respectively consist

only of vertices wi,j and w
i,j

\prime , already the reachability within paths Pi certifies that

that Cj \subseteq \sansr \sanse \sansa \sansc \sansh (s,G  - C
j
\prime ) and C

j
\prime \subseteq \sansr \sanse \sansa \sansc \sansh (t, G  - Cj) for every 1 \leqslant j < j\prime \leqslant p, as

requested. This concludes the proof of the theorem.
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5. Proof of the main result. In this section we give a formal proof of our main
result, that is, Theorem 1. Recall that we have fixed a graph class \scrC from which the
input graph is drawn, and we assumed that it satisfies properties (C1) and (C2): it
is minor-closed, and it has locally bounded treewidth with a linear dependence of the
treewidth on the radius; we argued in section 3 that these assumptions can be made.
In the proof we will use the constant \=\alpha (\scrC ) yielded by Corollary 13 for \scrC .

Let G0 \in \scrC be the input graph, and let k be the requested upper bound on the
sizes of patterns X that we need to cover. Throughout the proof we assume that
k \geqslant max(10, 2\=\alpha (\scrC )), because otherwise the result is trivial: as k is bounded by a
constant, we can just sample k vertices of the graph uniformly and independently at
random and return them as A. Hence, we may assume that k \geqslant 10 and lg k \geqslant \=\alpha (\scrC ).

The initial value of k is fixed throughout the whole proof; in particular, it will
not change in recursive calls. Therefore, we will use it as a fixed parameter in various
formulas in what follows.

5.1. Recursive scheme and potentials. Our algorithm will construct the set
A by means of a recursive procedure that roughly partitions the graph into smaller
and smaller pieces, at each point making some random decisions. For the analysis, we
fix some pattern X, that is, a subset X of vertices such that G[X] is connected and
| X| \leqslant k. Recall that our goal is to construct A in such a manner that the probability

that X is covered by A is at least the inverse of 2\scrO (
\surd 
k log2 k) \cdot n\scrO (1). The steps taken

by the algorithm obviously will not depend on X, but at each random step we argue
about the success probability : the probability that the taken decision is compliant
with the target pattern X, that is, leads to its coverage.

The general problem: Definitions. As usual with recursive algorithms, we
need to consider a more general problem, which will be supplied with a few potential
measures. Formally, an instance \scrI of the general problem is a 6-tuple consisting of
the following:

(i) A connected graph G that is a minor of the original graph G0; hence in
particular G \in \scrC .

(ii) A specified vertex r \in V (G) called the root .
(iii) Two disjoint vertex subsets T \sansl \sansi , T \sansh \sanse \subseteq V (G), called light terminals and heavy

terminals, respectively. We require that the root vertex is a light terminal,
that is, r \in T \sansl \sansi . By T := T \sansl \sansi \cup T \sansh \sanse we will denote the set of terminals.

(iv) A subset of nonterminals R \subseteq V (G) \setminus T , called relay vertices.
(v) A nonnegative integer \lambda , called the credit .
Terminals represent the boundary via which the currently considered piece com-

municates with the rest of the original graph, whereas relay vertices represent maximal
connected parts of the original graph lying outside of the currently considered piece,
each contracted to one vertex. Intuitively, whenever we forget some connected part of
the graph from the currently considered piece, we cannot just remove it, because we
need to preserve the information about connectivity provided by it. A natural thing
would be to apply the so-called torso operation, namely to turn the neighborhood
of the forgotten part into a clique. However, this might not result in a minor of the
original graph, so the graph could cease to belong to the class \scrC . Therefore, we instead
contract the forgotten part into one vertex which we declare a relay vertex; its sole
purpose is to remember the connectivity information.

For a graph G equipped with relay vertices R, by G\langle R\rangle we define the graph
obtained from G by eliminating each relay vertex, that is, removing it and turning
its neighborhood into a clique; it is easy to see that the order of elimination does
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1886 FOMIN ET AL.

not matter for the final result. Note that G\langle R\rangle does not necessarily belong to \scrC .
For two vertices x, y in G, we define the nonrelay-distance measure nr-distG(x, y)
(called for brevity nr-distance) as the minimum possible number of nonrelay vertices
on a path connecting x and y (including x and y), minus 1. In other words, when a
graph is equipped with relay vertices, nonrelay vertices have cost 1 of traversing them,
whereas relay vertices have cost 0. Note that if x and y are nonrelay vertices, then
nr-distG(x, y) is equal to the (normal) distance between x and y in G\langle R\rangle . Whenever
we talk about just distances, we mean standard distances in the graph, and we use
the term nr-distance for the nonrelay-distance measure defined above; the latter will
be our main notion of distance in what follows.

In the course of the algorithm, we shall maintain the following invariants; that is,
they are satisfied in each considered instance \scrI = (G, r, T \sansl \sansi , T \sansh \sanse , R, \lambda ).

(Inv.a) Every light terminal is at nr-distance at most 3 from the root r.
(Inv.b) It holds that \lambda \leqslant 

\surd 
k/5.

(Inv.C) It holds that | T | \leqslant 16014\=\alpha (\scrC )
\surd 
k lg k + \lambda .

We say that a subset X \subseteq V (G) \setminus R is a pattern in instance \scrI if the following
conditions are satisfied:

(i) The root r is contained in X.
(ii) Every vertex of X can be reached from r by a path that traverses only vertices

of X \cup R.
(iii) | X| \leqslant k  - 10

\surd 
k \cdot \lambda .

In particular, every pattern has at most k vertices, but we may consider only
smaller patterns if the credit is positive. The intuition behind the credit is that it
measures how much of the pattern is assumed to reside outside of the currently con-
sidered part of the whole graph. Note that the relay vertices provide free connectivity
for the pattern.

Potentials. In order to measure the advancement of the algorithm, we introduce
three auxiliary potentials that are intended to measure three different types of possible
progress. First, for an instance \scrI = (G, r, T \sansl \sansi , T \sansh \sanse , R, \lambda ), we define the subset \sansF \sansa \sansr \scrI (X)
of far vertices as follows:

\sansF \sansa \sansr \scrI (X) := \{ u \in X : nr-distG(u, r) > 1000
\surd 
k lg k\} .

If a vertex of X is not far, it is said to be close. Obviously, by invariant (Inv.a)
we have that no far vertex is a light terminal, that is, \sansF \sansa \sansr \scrI (X)\cap T \sansl \sansi = \emptyset . For a pattern
X in \scrI , we define the following potentials.

Pattern potential \Pi \scrI (X) := | X \setminus T \sansl \sansi | 
Graph potential \Gamma \scrI := | V (G) \setminus (T \sansl \sansi \cup R)| 
Distance potential \Phi \scrI (X) := | \sansF \sansa \sansr \scrI (X)| 

We drop the subscript \scrI whenever the instance \scrI is clear from the context.

The general problem: Statement of the result. With all definitions in place,
we may state formally what our goal is in the general problem. This is encapsulated
in the following theorem, whose proof will span the remainder of this section.

Theorem 18. There is a polynomial-time randomized algorithm that, given an
instance \scrI = (G, r, T \sansl \sansi , T \sansh \sanse , R, \lambda ) of the general problem with G \in \scrC and satisfying
invariants (Inv.a)--(Inv.c), samples a subset A \subseteq V (G) \setminus R of nonrelay vertices with
the following properties:
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LOW TREEWIDTH PATTERN COVERING 1887

(P1) It holds that T \sansl \sansi \subseteq A, and the graph G[A] admits a tree decomposition of
width at most 24022

\surd 
k lg k, where T \cap A is contained in the root bag.

(P2) For every pattern X in instance \scrI , we have that

\BbbP (X \subseteq A) \geqslant exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\surd 
k

\cdot (\Pi (X) lg \Pi (X) + \Phi (X))

\biggr] 
\cdot 
\biggl( 
1 - 1

k

\biggr) c2\Pi (X) lg \Gamma 

(1)

for some positive constants c1, c2, where n := | V (G)| .
The constants c1, c2 will be fixed while explaining the proof. Actually, we will

fix c1 = c2 = 2, but we find it more instructive to treat them symbolically instead
of putting actual values in order to show how different parameters depend on each
other. For convenience, in the following we denote the right-hand side of (1) by

\sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X)),

and we regard it as a function of the potentials and the number of vertices n. Recall
here that k is the initial bound on the size of the pattern, which is considered fixed
throughout the whole proof.

Note that in the context of Theorem 18 both X and A reside in the graph with
the relay vertices removed. The intuition is that relay vertices do not belong to the
piece of the graph that we are currently decomposing, but we cannot forget about
them completely, because they may provide connectivity for the pattern.

Applying Theorem 18. Before we proceed to the proof of Theorem 18, we
show that it implies our main result, Theorem 1. For this, we need the following
simple claim.

Claim 19. The following holds:

2
\surd 
k lg k lg lgn \leqslant 2

\surd 
k lg2 k \cdot no(1).

Proof. The left-hand side is equal to (lg n)
\surd 
k lg k. Suppose first that n \leqslant 2k. Then

(lg n)
\surd 
k lg k \leqslant k

\surd 
k lg k = 2

\surd 
k lg2 k.

Suppose second that n > 2k. Then

(lg n)
\surd 
k lg k \leqslant (lg n)

\surd 
lgn lg lgn = 2

\surd 
lgn\cdot (lg lgn)2 = no(1).

Hence in both cases we are done.

Proof of Theorem 1 assuming Theorem 18. Let G be the input graph, and let
n := | V (G)| . We first sample uniformly at random one vertex r of G. Let G\prime be
the connected component of G that contains r. Next, we apply the algorithm for the
general problem to the instance \scrI 0 := (G\prime , r, \{ r\} , \emptyset , \emptyset , 0). Fix some subset X \subseteq V (G)
with G[X] being connected and | X| \leqslant k. Conditioned on the event that r \in X,
which happens with probability at least 1/n, the algorithm for the general problem
returns a suitable vertex subset A that covers X with probability lower bounded by
\sansL \sansB (n\prime ,\Pi \scrI 0

(X),\Gamma \scrI 0
,\Phi \scrI 0

(X)), where n\prime := | V (G\prime )| \leqslant n. Observe that \Pi \scrI 0
(X) \leqslant k,
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1888 FOMIN ET AL.

\Phi \scrI 0(X) \leqslant k and \Gamma \scrI 0 \leqslant n\prime . Therefore, using the fact that 1 - x \geqslant e - 2x for x \in [0, 1/2]
and Claim 19, we infer that

\BbbP (X \subseteq A| r \in X) \geqslant exp
\Bigl[ 
 - c1
\surd 
k lg k(lg k + lg lg n\prime )

\Bigr] 
\cdot 
\biggl( 
1 - 1

k

\biggr) c2\cdot k lgn
\prime 

\geqslant exp

\biggl[ 
 - c1
\surd 
k lg2 k  - c1

\surd 
k lg k lg lg n\prime  - 2

k
\cdot c2k lg n\prime 

\biggr] 
\geqslant exp

\Bigl[ 
 - 2c1

\surd 
k lg2 k  - o(lg n\prime ) - 2c2 lg n

\prime 
\Bigr] 

=
\Bigl[ 
2\scrO (

\surd 
k log2 k) \cdot (n\prime )\scrO (1)

\Bigr]  - 1

\leqslant 
\Bigl[ 
2\scrO (

\surd 
k log2 k) \cdot n\scrO (1)

\Bigr]  - 1

.

By multiplying this by the 1/n probability that indeed r \in X, we obtain the
success probability as required in Theorem 1.

5.2. Solving the general problem: Opening moves. We now proceed to
the proof of Theorem 18. The goal is to provide a suitable recursive procedure for
the general problem. This procedure is roughly summarized using pseudocode as
Algorithm 1, but the reader should regard this pseudocode just as a roadmap to the
detailed description that follows.

Throughout the description we fix the considered instance \scrI = (G, r, T \sansl \sansi , T \sansh \sanse , R, \lambda )
and denote n := | V (G)| . In this subsection we will explain the opening steps of the
algorithm, which more or less boil down to finding a separator that splits the instance
in a balanced way. At this moment a crucial decision should be (randomly) made:
whether the pattern contains some ``very deep"" vertex of the separator or not. The
treatment of those two cases will be given in the subsequent two subsections.

Additional assumptions on the instance. We shall assume that \scrI satisfies
invariants (Inv.a)--(Inv.c). Moreover, we will make the following assumptions about
\scrI = (G, r, T \sansl \sansi , T \sansh \sanse , R, \lambda ) and the sought pattern X in \scrI :

(Inv.d) Relay vertices in \scrI are pairwise nonadjacent, and no relay vertex is adja-
cent to the root.

(Inv.e) It holds that \lambda \leqslant 
\surd 
k/10; this strengthens invariant (Inv.b).

(Inv.f) There is at least one vertex that is neither a terminal nor a relay vertex.
(Inv.g) We restrict our attention only to patterns X in \scrI for which T \sansl \sansi \subsetneq X, or

equivalently \Pi \scrI (X) > 0.
Note that (Inv.c) and (Inv.e) together imply that | T | \leqslant 16015\=\alpha (\scrC )

\surd 
k lg k. We

now explain how the assumptions above can be guaranteed, as is formalized in the
following lemma.

Lemma 20. Let \scrI = (G, r, T \sansl \sansi , T \sansh \sanse , R, \lambda ) be the input instance. Then:
(i) If \scrI does not satisfy assumption (Inv.d), that is, in G there is an edge con-

necting two relay vertices or a relay vertex with the root, then contracting
this edge in G does not increase any of the potentials of \scrI and preserves the
family of patterns in \scrI .

(ii) If \scrI does not satisfy assumption (Inv.e) or (Inv.f), then A := T is a valid
outcome of the algorithm that covers every pattern X in \scrI with probability 1.

(iii) If pattern X in \scrI is such that \Pi \scrI (X) = 0, then every set A output by
the algorithm, provided it satisfies A \supseteq T \sansl \sansi (condition (P1) of Theorem 18),
covers X.
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LOW TREEWIDTH PATTERN COVERING 1889

Algorithm 1 Procedure Solve.

Input: An instance (G, r, T \sansl \sansi , T \sansh \sanse , R, \lambda ) satisfying invariants (Inv.a)--(Inv.c)
Output: A subset A \subseteq V (G) \setminus R with T \sansl \sansi \subseteq A
1: Apply cleaning steps of Lemma 20 so that invariants (Inv.d)--(Inv.g) are satisfied

2: M \leftarrow \{ u \in V (G) : nr-distG(r, u) \leqslant 2000
\surd 
k lg k\} 

3: Apply the algorithm of Theorem 8 to G - M , yielding B\prime as described in Step 1
4: G\sansc \sansl \leftarrow connected component of G[M \cup B\prime ] containing r
5: T \sansl \sansi 

\sansc \sansl \leftarrow T \sansl \sansi \cap V (G\sansc \sansl ); T
\sansh \sanse 
\sansc \sansl \leftarrow T \sansh \sanse \cap V (G\sansc \sansl ); R\sansc \sansl \leftarrow R \cap V (G\sansc \sansl )

6: \scrI \sansc \sansl \leftarrow (G\sansc \sansl , r, T
\sansl \sansi 
\sansc \sansl , T

\sansh \sanse 
\sansc \sansl , R\sansc \sansl , \lambda )

7: Apply the algorithm of Lemma 23 to the instance \scrI \sansc \sansl , yielding sets W\sansi \sanss \sansl and W\sansn \sansr \sansm 

8: \sansi \sanss \sansl \sansa \sansn \sansd \sanss \sansD \sansi \sanss \sansj \sanso \sansi \sansn \sanst \sansW \sansi \sanst \sansh \sansP \sansa \sanst \sanst \sanse \sansr \sansn \leftarrow true with probability 1 - 1/k and false otherwise
9: if \sansi \sanss \sansl \sansa \sansn \sansd \sanss \sansD \sansi \sanss \sansj \sanso \sansi \sansn \sanst \sansW \sansi \sanst \sansh \sansP \sansa \sanst \sanst \sanse \sansr \sansn then
10: G\prime \leftarrow G\sansc \sansl  - W\sansi \sanss \sansl 

11: Construct instances \scrI D for D \in \sansc \sansc (G\prime  - W\sansn \sansr \sansm ) as described in section 5.3
12: for all D \in \sansc \sansc (G\prime  - W\sansn \sansr \sansm ) do
13: AD \leftarrow Solve(\scrI D)
14: end for
15: Merge sets \{ AD : D \in \sansc \sansc (G\prime  - W\sansn \sansr \sansm )\} into A as described before Step 3
16: return A
17: else
18: Select an island C satisfying C \subseteq W\sansi \sanss \sansl uniformly at random
19: Select a vertex z in C that is at nr-distance \leqslant 9k2 lg n from every vertex of C
20: Select d \in \{ 0, 1, . . . , \lfloor 9k2 lg n\rfloor \} uniformly at random
21: S \leftarrow w \in C with nr-dist(z, w) < max(d, 1) (max(d, 1) - 1 if w \in R)
22: G\prime \prime \leftarrow G\sansc \sansl with S contracted onto z

23: Apply the algorithm of Theorem 9 to s = r, t = z, p = \lceil 120
\surd 
k lg k\rceil and

q = k
24: if obtained a sequence of (r, z)-paths P1, P2, . . . , Pk then
25: Select i \in \{ 1, . . . , k\} uniformly at random
26: H \leftarrow G\prime \prime with parts of Pi contracted as described before Claim 31
27: \scrI \prime \leftarrow (H, r, T \sansl \sansi , T \sansh \sanse \cap V (H), RH , \lambda )
28: A\leftarrow Solve(\scrI \prime )
29: return A
30: end if
31: if obtained an (r, z)-separator chain C1, C2, . . . , Cp then
32: C1, . . . , C

\prime 
p \leftarrow C1, . . . , Cp with the first three separators removed

33: Select i \in \{ 1, . . . , p\prime \} uniformly at random
34: Select \alpha \in \{ 1, . . . , | Ci| \} uniformly at random
35: Select a subset Q \subseteq Ci with | Q| = \alpha uniformly at random
36: Construct \scrI \sanso \sansu \sanst as described after Claim 34
37: Construct \scrI \sansi \sansn as described after Claim 34
38: A\sanso \sansu \sanst \leftarrow Solve(\scrI \sanso \sansu \sanst )
39: A\sansi \sansn \leftarrow Solve(\scrI \sansi \sansn )
40: A\leftarrow (A\sanso \sansu \sanst \setminus Q) \cup A\sansi \sansn 

41: return A
42: end if
43: end if
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1890 FOMIN ET AL.

Proof. Point (i) is obvious.
For point (ii), if assumption (Inv.e) is not satisfied, that is, the credit \lambda exceeds\surd 

k/10, then the upper bound k - 10\lambda 
\surd 
k on the sizes of considered patterns is negative,

so the family of patterns in \scrI is empty. Similarly, if assumption (Inv.f) is not satisfied,
that is, every vertex of G is either a terminal or a relay, then every pattern X in G
is contained in T . Therefore, in both cases we may return A := T with a trivial tree
decomposition consisting of one root node with bag equal to A, thus making sure that
A covers every possible pattern X in \scrI . This decomposition has width at most | T | \leqslant 
16014\=\alpha (\scrC )

\surd 
k lg k+\lambda , which is at most 16014\=\alpha (\scrC )

\surd 
k lg k+

\surd 
k/5 < 24022\=\alpha (\scrC )

\surd 
k lg k

by invariant (Inv.b).
Finally, for point (iii), observe that if X \subseteq T \sansl \sansi , then any output set A satisfying

A \supseteq T \sansl \sansi will cover X for sure.

Thus, the message of Lemma 20 is the following. For assumption (Inv.d) we may
exhaustively contract any edges contradicting this assumption, and we may only de-
crease the potentials while not losing any pattern. For assumptions (Inv.e) and (Inv.f),
if any of them is not satisfied, then we may immediately terminate the algorithm by
returning A := T . For assumption (Inv.g), any pattern X with \Pi \scrI (X) = 0 will be
automatically covered, provided we return a set A that contains all light terminals,
which we require anyway. This means that from now on we may assume that the
considered instance \scrI and pattern X in \scrI satisfy all the assumptions (Inv.a)--(Inv.g).

Margin, islands, and clustering. As outlined in the proof overview, the fol-
lowing definitions are pivotal for the structural analysis of the instance.

Definition 21. We define the margin M of the instance \scrI as follows:

M := \{ u \in V (G) : nr-distG(r, u) \leqslant 2000
\surd 
k lg k\} .

Every connected component of G - M will be called an island.

Obviously, the margin M can be computed in linear time using a breadth-first
search from r (here we need a trivial modification to traverse relay vertices at
cost 0). Note that, by the definition of M , every vertex of an island that neigh-
bors some vertex of M cannot be a relay vertex. Hence, in particular every island
contains some nonrelay vertex. Observe also that every close vertex, in particular
every light terminal, is within the margin M .

The first step of the algorithm is to apply the clustering procedure of Theorem 8
for parameter k to all the islands. More precisely, we apply the algorithm of Theorem
8 to the graph K := (G - M)\langle R \setminus M\rangle , that is, to G  - M with all the relay vertices
eliminated. This algorithm works in randomized polynomial time and returns a subset
B\prime \subseteq V (K) with the following properties:

\bullet each connected component of K[B\prime ] has radius at most 9k2 lg n, and
\bullet with probability at least 1 - 1/k we have that X \setminus M is contained in B\prime .

Now define B to be B\prime extended by adding all relay vertices of R\setminus M that have at
least one neighbor in B\prime . Then each connected component of G[B] has radius at most
9k2 lg n, computed according to the nr-distance measure nr-distG that treats relay
vertices as traversed for free. Moreover, with probability at least 1 - 1/k we have that
X \setminus M \subseteq B. We henceforth assume that this event happens, i.e., indeed X \subseteq M \cup B,
keeping in mind the multiplicative factor of 1  - 1/k in the success probability. The
operations described above are summarized in the following step, which corresponds
to line 3 of the pseudocode of Algorithm 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 1

29
.1

77
.1

47
.2

22
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



LOW TREEWIDTH PATTERN COVERING 1891

Step 1. Apply the clustering algorithm of Theorem 8 to the graph K := (G - M)
\langle R \setminus M\rangle and parameter k, yielding a set B\prime . Extend B\prime to B by including all relay
vertices outside of M that are adjacent to B\prime . From now on assume that X \subseteq M \cup B;
this assumption is correct with probability at least 1 - 1/k.

By the assumption made in Step 1, we can restrict our attention to the graph G\sansc \sansl 

defined as the connected component of G[M \cup B] that contains r. More precisely, we
define a new instance \scrI \sansc \sansl as

\scrI \sansc \sansl := (G\sansc \sansl , r, T
\sansl \sansi 
\sansc \sansl , T

\sansh \sanse 
\sansc \sansl , R\sansc \sansl , \lambda ),

where

T \sansl \sansi 
\sansc \sansl := T \sansl \sansi \cap V (G\sansc \sansl ), T \sansh \sanse 

\sansc \sansl := T \sansh \sanse \cap V (G\sansc \sansl ), R\sansc \sansl := R \cap V (G\sansc \sansl ).

The following simple claim summarizes the properties of \scrI \sansc \sansl .
Claim 22. It holds that M \subseteq V (G\sansc \sansl ) and T \sansl \sansi 

\sansc \sansl = T \sansl \sansi . Moreover, X remains a
pattern in \scrI \sansc \sansl and \sansF \sansa \sansr \scrI \sansc \sansl 

(X) = \sansF \sansa \sansr \scrI (X).

Proof. For the first claim, observe that G[M ] contains r and is connected by
definition, and hence M \subseteq V (G\sansc \sansl ). Since T \sansl \sansi \subseteq M , it follows that T \sansl \sansi 

\sansc \sansl = T \sansl \sansi . For the
latter claim, recall that we assumed that X \subseteq M \cup B. Further, by the definitions of
M and B it follows that R \cap NG(M \cup B) = \emptyset ; that is, no relay vertex lies outside of
M \cup B and has neighbors in M \cup B. Since in G every vertex of X can be reached
from r using only vertices of X \cup R, it follows that X is entirely contained in the
connected component of r in G[M \cup B], which is G\sansc \sansl by definition. Thus X remains
a pattern in \scrI \sansc \sansl . Finally, note that when constructing G\sansc \sansl from G we remove only
vertices at nr-distance larger than 2000

\surd 
k lg k from r in G, and hence every vertex of

X that was close or far remains close or far, respectively; this implies that \sansF \sansa \sansr \scrI \sansc \sansl 
(X) =

\sansF \sansa \sansr \scrI (X).

Note that Claim 22 implies the following relation between potentials in \scrI and \scrI \sansc \sansl :

\Pi \scrI (X) = \Pi \scrI \sansc \sansl 
(X), \Gamma \scrI \geqslant \Gamma \scrI \sansc \sansl 

, \Phi \scrI (X) = \Phi \scrI \sansc \sansl 
(X).(2)

Hence, restricting our attention to \scrI \sansc \sansl can only decrease the potentials, resulting
in obtaining a better lower bound on the success probability. A straightforward check
verifies that assumptions (Inv.a)--(Inv.g) still hold for \scrI \sansc \sansl and X, with a possible
exception of (Inv.f). However, if in \scrI \sansc \sansl there is no nonrelay, nonterminal vertex, then
we may conclude by outputting A = T , as in the proof of Lemma 20. Hence from now
on we assume that \scrI \sansc \sansl and X also satisfy assumptions (Inv.a)--(Inv.g), in particular
\Gamma \scrI \sansc \sansl 

> 0 by (Inv.f).
By slightly abusing the notation, when analyzing the instance \scrI \sansc \sansl , we redefine the

islands to be the connected components of G\sansc \sansl  - M .

Finding a balanced separator. The next step of the algorithm is to construct
a separator that splits both the graph and the terminal set T\sansc \sansl := T \sansl \sansi 

\sansc \sansl \cup T \sansh \sanse 
\sansc \sansl in a

balanced way. The existence of such a separator would follow from a bound on the
treewidth of the current graph, which in turn would follow from a bound on its
radius. Unfortunately, so far we do not have any good bound on the radius of the
graph. However, the idea is to contract the islands outside of the margin M to single
vertices, thus obtaining a graph of radius \widetilde \scrO (\surd k), hence also of treewidth \widetilde \scrO (\surd k),
find a balanced separator in this graph, and then uncontract the islands. Thus, the
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1892 FOMIN ET AL.

obtained balanced separator will consist of \widetilde \scrO (\surd k) vertices of the margin M and\widetilde \scrO (\surd k) islands. We will not have any guarantee about its size, but we will be able to
proceed nonetheless. This plan is formalized as follows.

Lemma 23. Given the instance \scrI \sansc \sansl , we can in polynomial time find sets W\sansn \sansr \sansm 

and W\sansi \sanss \sansl satisfying the following conditions.

(i) The set W\sansn \sansr \sansm consists of at most 8007\=\alpha (\scrC )
\surd 
k lg k vertices of M , and r \in 

W\sansn \sansr \sansm .
(ii) The set W\sansi \sanss \sansl consists of the union of vertex sets of at most 8007\=\alpha (\scrC )

\surd 
k lg k

islands (i.e., connected components of G\sansc \sansl  - M).
(iii) For every connected component D of G\sansc \sansl  - (W\sansn \sansr \sansm \cup W\sansi \sanss \sansl ), we have that

| V (D) \setminus (T \sansl \sansi 
\sansc \sansl \cup R\sansc \sansl )| \leqslant | V (G\sansc \sansl ) \setminus (T \sansl \sansi 

\sansc \sansl \cup R\sansc \sansl )| /2 and | V (D) \cap T\sansc \sansl | \leqslant | T\sansc \sansl | /2.

Proof. Construct an auxiliary graph H from G\sansc \sansl by contracting each island C \in 
\sansc \sansc (G\sansc \sansl  - M) into a single (nonrelay) vertex uC ; let I = \{ uC : C \in \sansc \sansc (G\sansc \sansl  - M)\} . By
\iota : V (G\sansc \sansl )\rightarrow V (H) we denote the function that assigns to each vertex of G\sansc \sansl its image
under the contraction; i.e., \iota is identity on M and \iota (V (C)) = \{ uC\} for each island C.
Obviously H is a minor of G\sansc \sansl , which in turn is a subgraph of G, and hence H \in \scrC .
Moreover, each vertex of H is at nr-distance at most 2000

\surd 
k lg k + 1 \leqslant 2001

\surd 
k lg k

from r. Hence, if we measure the distance in H normally, without eliminating the
relay vertices, then each vertex is at distance at most 4002

\surd 
k lg k from r; this follows

from assumption (Inv.d) that no two relay vertices are adjacent. This means that the
radius of H, measured normally, is at most 4002

\surd 
k lg k.

Define two weight functions w1(u) and w2(u) on V (H) as follows. For a vertex
u /\in I, we put w1(u) = 1 if u \in T\sansc \sansl and w1(u) = 0 otherwise. However, if u = uC

for some island C, then we put w1(uC) = | V (C) \cap T\sansc \sansl | . Similarly, for u /\in I, we put
w2(u) = 1 if u \in V (G) \setminus (T \sansl \sansi 

\sansc \sansl \cup R\sansc \sansl ) and w2(u) = 0 otherwise, whereas for u = uC ,
we put w2(u) = | V (C) \setminus (T \sansl \sansi 

\sansc \sansl \cup R\sansc \sansl )| . In other words, w1 and w2 are characteristic
functions of T\sansc \sansl and of V (G\sansc \sansl ) \setminus (T \sansl \sansi 

\sansc \sansl \cup R\sansc \sansl ), where all vertices contained in one island
C contribute to the weight of the collapsed vertex uC .

By applying Corollary 13 to these weight functions, we infer that in polynomial
time we can compute sets Z1 and Z2, each of size at most 4002\=\alpha (\scrC ) \cdot 

\surd 
k lg k + 1 \leqslant 

4003\=\alpha (\scrC ) \cdot 
\surd 
k lg k, such that every connected component of H  - Z1 has w1-weight

at most | T\sansc \sansl | /2, and every connected component of H  - Z2 has w2-weight at most
| V (G\sansc \sansl ) \setminus (T \sansl \sansi 

\sansc \sansl \cup R\sansc \sansl )| /2. We define

Z := Z1 \cup Z2 \cup \{ r\} ;
W\sansi \sanss \sansl := \iota  - 1(Z \cap I);

W\sansn \sansr \sansm := \iota  - 1(Z \setminus I).

Clearly, we have

| Z| \leqslant | Z1| + | Z2| + 1 \leqslant 8006\=\alpha (\scrC )
\surd 
k lg k + 1 \leqslant 8007\=\alpha (\scrC )

\surd 
k lg k.

Hence, W\sansn \sansr \sansm consists of at most 8007\=\alpha (\scrC )
\surd 
k lg k vertices of M , and it contains r

due to adding it explicitly to Z, whereas W\sansi \sanss \sansl is the union of the vertex sets of at most
8007\=\alpha (\scrC )

\surd 
k lg k islands. This proves conditions (i) and (ii). Condition (iii) follows

immediately from the definition of w1 and w2, and the properties of Z1 and Z2 as
1
2 -balanced separators for w1 and w2, respectively.
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LOW TREEWIDTH PATTERN COVERING 1893

The algorithm now branches into two cases based on a random decision as follows.
With probability 1 - 1/k the algorithm assumes that W\sansi \sanss \sansl is disjoint with the sought
pattern X; that is, no island contained in W\sansi \sanss \sansl intersects X. In the remaining event,
which happens with probability 1/k, the algorithm assumes that X intersects some
island contained in W\sansi \sanss \sansl . The operations described above are summarized in the
following step, which corresponds to lines 7--8 of the pseudocode of Algorithm 1.

Step 2. Compute sets W\sansn \sansr \sansm and W\sansi \sanss \sansl using the algorithm of Lemma 23. Randomly
branch into one of two cases as follows. With probability 1 - 1/k assume that W\sansi \sanss \sansl is
disjoint with X, and otherwise assume that X intersects W\sansi \sanss \sansl .

We now describe steps taken by the algorithm in each of the cases, supposing the
assumption made is correct. The success probability analysis will be explained at the
end of each case.

5.3. Solving the general problem: When islands are disjoint with the
pattern. In this subsection we present the steps made by the algorithm, provided
that in Step 2 it chose to assume that W\sansi \sanss \sansl \cap X = \emptyset . We proceed under the assumption
that this choice is correct, i.e., indeed X does not contain any vertex of W\sansi \sanss \sansl .

The intuition is that the assumption W\sansi \sanss \sansl \cap X = \emptyset implies that it is safe for the
algorithm to restrict our attention to the graph

G\prime := G\sansc \sansl  - W\sansi \sanss \sansl .

This graph admits a small balanced separator in the form of W\sansn \sansr \sansm ; by Lemma 23
this separator breaks the graph into components, each containing at most half of the
terminals and at most half of the (nonrelay, nonlight-terminal) vertices. Therefore,
the strategy is as follows: inspect the connected components of G\prime  - W\sansn \sansr \sansm = G\sansc \sansl  - 
(W\sansi \sanss \sansl \cup W\sansn \sansr \sansm ); for each such connected component D define a simpler instance \scrI D;
apply the algorithm to instances \scrI D recursively, yielding sets AD; and combine all
sets AD into one output set A. In the remainder of this section we implement this
plan formally. Unfortunately, we need to be very careful when defining and analyzing
the instances \scrI D, so that the amortized analysis using the potentials goes through.

Before we proceed, let us observe the following properties of G\prime and X.

Claim 24. The graph G\prime is connected, X is contained in G\prime , and every vertex
of X can be reached from r in G\prime by a path traversing only the vertices of X and
R\sansc \sansl \cap V (G\prime ).

Proof. For the first claim, observe that G\prime is obtained from G\sansc \sansl ---which is con-
nected by definition---by removing some connected components of G\sansc \sansl  - M . Since
G\sansc \sansl [M ] is connected, it follows that G\prime is connected. The second claim follows di-
rectly from the assumption that W\sansi \sanss \sansl \cap X = \emptyset . Finally, for the third claim, observe
that by the way we defined M we have that R\sansc \sansl \cap NG\sansc \sansl 

(M) = \emptyset ; that is, there is no
relay vertex outside of M that has neighbors in M . In G\sansc \sansl , each vertex x \in X can
be reached from r by a path Px traversing only vertices of X \cup R\sansc \sansl . In G\prime we remove
from G\sansc \sansl only some connected components of G\sansc \sansl  - M , which are disjoint from X and
do not contain any relay vertices having neighbors in M . Hence, it follows that Px in
fact traverses only vertices of X \cup (R\sansc \sansl \cap V (G\prime )).

Defining subinstances. Our first goal is to define, for each connected com-
ponent D of G\prime  - W\sansn \sansr \sansm , a new instance \scrI D to which the algorithm will be applied
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1894 FOMIN ET AL.

r

D

r

GD

\rightsquigarrow 

Fig. 4. Construction of the graph GD from a connected component D \in \sansC \sansC . The blue vertices
are the vertices of ND \setminus \{ r\} , and the gray rhombi are the new relay vertices gQ constructed in the
process.

recursively. Let \sansC \sansC be the set of connected components of the graph G\prime  - W\sansn \sansr \sansm . Let
us fix a component D \in \sansC \sansC . We shall now construct an instance

\scrI D := (GD, r, T \sansl \sansi 
D, T \sansh \sanse 

D , RD, \lambda )

corresponding to this component.
We begin by defining the graph GD, which will be constructed from G\prime by a series

of contractions. Define

ND := N
G
\prime [V (D)] \cup \{ r\} .

We now consider the connected components of the graph G\prime  - ND. For each
component Q \in \sansc \sansc (G\prime  - ND) that contains a neighbor of the root vertex r, contract
the whole Q onto r. For each component Q \in \sansc \sansc (G\prime  - ND) that does not contain any
neighbor of r, contract the whole Q into a new vertex gQ, and declare it a relay vertex.
We define GD to be the graph obtained from G\prime by applying the contractions specified
above for each connected component Q of G\prime  - ND; see Figure 4. In particular, the
set RD of relay vertices in GD is defined as

RD := (R\sansc \sansl \cap ND) \cup \{ gQ : Q \in \sansc \sansc (G\prime  - ND) and no vertex of Q is adjacent to r\} .

In other words, RD consists of R\sansc \sansl \cap ND, plus we add gQ to RD for each Q \in 
\sansc \sansc (G\prime  - ND) that is not adjacent to r. Obviously, GD is still connected and contains
the root vertex r.

Next, we need to define terminals in the instance \scrI D. For this, construct an
auxiliary graph L from G\prime by contracting every connected component D \in \sansC \sansC into
a single vertex wD. Observe that, thus, each vertex of L is of one of two kinds: it
is either an original vertex of G\prime that belongs to W\sansn \sansr \sansm (these include the root r), or
it is of the form wD for some D \in \sansC \sansC . Note that the vertices of the second kind
are pairwise nonadjacent in L, as they originate from the connected components of
G\prime  - W\sansn \sansr \sansm . Obviously L is connected, as G\prime was, and r persists in L. We treat L as
a graph without any relay vertices, so all distances are computed normally.

Run a breadth-first search (BFS) in L starting from r. Let S be the tree of this
BFS, rooted at r. For every vertex v \in W\sansn \sansr \sansm \setminus \{ r\} , inspect the parent of v in S. If
this parent is equal to wD for some component D \in \sansC \sansC , then we shall say that v is
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LOW TREEWIDTH PATTERN COVERING 1895

charged to D. Note that a vertex v \in W\sansn \sansr \sansm is not charged to any component D \in \sansC \sansC 
if and only if v = r or the parent of v in S is not of the form wD for some D \in \sansC \sansC .

The intuition is that once vertices of W\sansn \sansr \sansm \setminus \{ r\} are turned into terminals in
instances \scrI D for D \in \sansC \sansC , we want that for every vertex v \in W\sansn \sansr \sansm \setminus \{ r\} only at most
instance is responsible for handling v as a heavy terminal; this is the instance \scrI D
constructed for D \in \sansC \sansC to which v is charged. This is necessary for ensuring a correct
split of the pattern potential among the instances \scrI D.

With this charging scheme, we are ready to define terminals in instance \scrI D, for
each D \in \sansC \sansC . We put the following:

T \sansl \sansi 
D := (T \sansl \sansi 

\sansc \sansl \cap ND) \cup \{ v \in N
G
\prime (V (D)) \setminus (T \sansl \sansi 

\sansc \sansl \cup R\sansc \sansl ) : v is not charged to D\} ;
T \sansh \sanse 
D := (T \sansh \sanse 

\sansc \sansl \cap V (D)) \cup \{ v \in N
G
\prime (V (D)) \setminus (T \sansl \sansi 

\sansc \sansl \cup R\sansc \sansl ) : v is charged to D\} .

In other words, the terminals in the instance \scrI D comprise terminals that were
originally in component D, plus we add also all nonrelay vertices from the boundary
N

G
\prime (V (D)) as terminals. These new terminals are partitioned into light and heavy

depending on whether they are charged to D. However, any vertex that was originally
a light terminal in \scrI \sansc \sansl remains a light terminal; this is in order to force the subinstances
to cover them in recursive calls. From the definition it directly follows that T \sansl \sansi 

D and
T \sansh \sanse 
D are disjoint, as required. Note that each vertex v \in W\sansn \sansr \sansm is charged to at most one

component D \in \sansC \sansC , so it can be declared a heavy terminal in at most one instance
\scrI D.

Analyzing the subinstances. To be able to apply the algorithm recursively on
instances \{ \scrI D\} D\in \sansC \sansC , we need to make sure that they all satisfy invariants (Inv.a)--
(Inv.c). Since each instance \scrI D has the same credit \lambda as \scrI \sansc \sansl , invariant (Inv.b) holds
for each instance \scrI D. The satisfaction of invariants (Inv.c) and (Inv.a) is respectively
verified in the following two claims.

Claim 25. For each D \in \sansC \sansC , we have | TD| \leqslant 16014\=\alpha (\scrC )
\surd 
k lg k + \lambda .

Proof. From Lemma 23, assertions (i) and (iii), the satisfaction of invariant (Inv.c)
in \scrI \sansc \sansl , and the fact that N

G
\prime (V (D)) \subseteq W\sansn \sansr \sansm , we have that

| TD| \leqslant | T\sansc \sansl \cap V (D)| + | W\sansn \sansr \sansm | \leqslant | T\sansc \sansl | /2 + 8007\=\alpha (\scrC )
\surd 
k lg k \leqslant 16014\=\alpha (\scrC )

\surd 
k lg k + \lambda ,

as claimed.

Claim 26. For each D \in \sansC \sansC , in graph GD every vertex of T \sansl \sansi 
D is at nr-distance

at most 3 from r.

Proof. Fix some v \in T \sansl \sansi 
D. Suppose first that v \in T \sansl \sansi 

\sansc \sansl \cap ND. As we observed earlier,
the invariant (Inv.a) still holds in the instance \scrI \sansc \sansl , so v was already at nr-distance at
most 3 from r in the graph G\sansc \sansl . During the construction of G\prime from G\sansc \sansl we removed
only vertices at nr-distance more than 2000\=\alpha (\scrC )

\surd 
k lg k from r, and hence v is still at

nr-distance at most 3 from r in G\prime . Graph GD was obtained from G\prime by means of edge
contractions, which can only decrease the nr-distances. Hence, v is at nr-distance at
most 3 from r also in GD.

Consider now the remaining case when v \in N
G
\prime (V (D)) \setminus (T \sansl \sansi 

\sansc \sansl \cup R\sansc \sansl ) and v is not
charged to D. If v = r, then we are done, so assume otherwise. Let P be the path
from r to v in S; recall that S was the tree of a BFS from r in the graph L that was
used to define charging. Since v is not charged to D, the parent of v in S tree is not
equal to wD. As wD is a neighbor of v in L, due to v \in N

G
\prime (V (D)), this implies that
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1896 FOMIN ET AL.

wD cannot lie on path P . Indeed, otherwise we could shortcut P by using the edge
wDv, which contradicts the fact that P is a shortest path from r to v in L.

Let P \prime be the path P lifted to the graph G\prime in the following manner: for every
vertex of the form w

D
\prime \in V (L) for some D\prime \in \sansC \sansC visited on P , we replace the visit

of this vertex by the traversal of any path within the connected component D\prime . Then
P \prime is a path from r to v in G\prime that does not traverse any vertex of D. Let v\prime be the
first vertex on P \prime that belongs to N

G
\prime (V (D)); clearly, such a vertex exists, because

v \in N
G
\prime (V (D)). Observe that in the construction of GD the prefix of P from r to v\prime ,

excluding v\prime , gets entirely contracted onto r. Hence, v\prime is a neighbor of r in GD.
Finally, consider the suffix of P from v\prime to v. Observe that both v and v\prime are

neighbors of wD in the graph L, so since P is a shortest path, we infer that the distance
between v\prime and v on P is at most 2. This implies that the suffix of P \prime between v and
v\prime gets contracted to a path of length at most 2 in GD. In this manner we have
uncovered a walk of length at most 3 from r to v in GD, which concludes the proof.

Partitioning the pattern. To apply recursion, we also need to partition the
pattern X among the instances \{ \scrI D\} D\in \sansC \sansC . More precisely, for each instance \scrI D we
would like to define the projection XD of X onto \scrI D so that, intuitively, the following
conditions are satisfied:

\bullet each XD should be a pattern in \scrI D;
\bullet if applying the algorithm to each instance \scrI D yields a set AD covering XD,

then the combination of AD-s (to be defined later) should cover X; and
\bullet the pattern and distance potentials are split between subinstances, so that the

lower bounds on the probabilities of covering the pattern multiply correctly.
Formally, for the pattern X in \scrI \sansc \sansl , we define its projection XD onto instance \scrI D

by simply putting

XD := X \cap ND.

Let us verify that XD is indeed a pattern in \scrI D.

Claim 27. Each vertex of XD can be reached from r in GD by a path that
traverses only vertices from XD \cup RD. Consequently, XD is a pattern in \scrI D.

Proof. By Claim 24, every vertex x \in X can be reached from r in G\prime by a path Px

traversing only vertices of X\cup (R\sansc \sansl \cap V (G\prime )). In the construction of GD from G\prime , every
connected component of G\prime  - ND has been either contracted onto r or contracted into
a single relay vertex. By applying these contractions to P , we obtain a walk in GD

from r to x that uses only vertices of XD \cup RD. This, together with the observation
that | XD| \leqslant | X| \leqslant k  - 10

\surd 
k \cdot \lambda , certifies that XD is a pattern in \scrI D.

Analyzing the split of potentials. It is crucial for our amortized analysis
that the potentials of the original instance \scrI \sansc \sansl and pattern X are split among the
potentials in the defined instances \{ \scrI D\} D\in \sansC \sansC and projections \{ XD\} D\in \sansC \sansC of X onto
them. This is because when we apply the algorithm recursively to each instance \scrI D
we will obtain some lower bound on the probability of covering XD. The product
of these lower bounds should be not smaller than the requested lower bound on the
probability of covering X; for this condition to hold, the potentials need to be split.
The following claim verifies this formally.

Claim 28. The following hold:

\Pi \scrI \sansc \sansl 
(X) \geqslant 

\sum 
D\in \sansC \sansC 

\Pi \scrI D
(XD),(3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 1

29
.1

77
.1

47
.2

22
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



LOW TREEWIDTH PATTERN COVERING 1897

\Gamma \scrI \sansc \sansl 
\geqslant 

\sum 
D\in \sansC \sansC 

\Gamma \scrI D
,(4)

\Gamma \scrI \sansc \sansl 
/2 \geqslant \Gamma \scrI D

for each D \in \sansC \sansC ,(5)

\Phi \scrI \sansc \sansl 
(X) \geqslant 

\sum 
D\in \sansC \sansC 

\Phi \scrI D
(XD).(6)

Proof. Take any vertex u \in V (G\sansc \sansl ) \setminus (T \sansl \sansi 
\sansc \sansl \cup R\sansc \sansl ). By the construction of instances

\scrI D, and in particular the fact that each vertex of W\sansn \sansr \sansm can be declared a heavy
terminal in at most one instance \scrI D, it follows that there is at most one instance \scrI D
for which u \in V (GD) \setminus (T \sansl \sansi 

D \cup RD). From this observation we immediately obtain
statements (3) and (4). Statement (6) follows similarly, but one needs to additionally
observe the following: GD is obtained from G\prime by means of edge contractions that
can only decrease the nr-distances from r, so if a vertex u \in XD is far in the instance
\scrI D, then it was also far in the original instance \scrI \sansc \sansl . Finally, (5) follows directly from
Lemma 23(iii).

Thus, (5) in Claim 28 certifies that the graph potential drops significantly in each
new instance. Intuitively, this drop will be responsible for amortizing the (1 - 1/k)2

multiplicative factor in the success probability incurred by the preliminary clustering
step and by the random choice of the assumption on the considered case.

Recursive application. Note that, by assumption (Inv.f) (there is at least one
nonrelay, nonterminal vertex), we have that \Gamma \scrI \sansc \sansl 

> 0. Hence, by Claim 28, (5) in
particular, each of the instances \scrI D has strictly fewer vertices than \scrI \sansc \sansl .

Therefore, we may apply the algorithm recursively to each instance \scrI D. This
yields subsets of vertices \{ AD\} D\in \sansC \sansC with the following properties satisfied for each
D \in \sansC \sansC :

\bullet It holds that AD \supseteq T \sansl \sansi 
D and GD[AD] admits a tree decomposition \scrT D of width

at most 24022\=\alpha (\scrC )
\surd 
k lg k with TD \cap AD contained in the root bag.

\bullet The probability that XD \subseteq AD is at least \sansL \sansB (nD,\Pi \scrI D
(XD),\Gamma \scrI D

,\Phi \scrI D
(XD)),

where we denote nD := | V (GD)| .
Let us define how sets \{ AD\} D\in \sansC \sansC are combined to yield the final set A.
\bullet First, for every D \in \sansC \sansC , we put V (D) \cap AD into A.
\bullet Second, for every v \in W\sansn \sansr \sansm \setminus R\sansc \sansl , we put v into A if for every D \in \sansC \sansC such

that v \in N
G
\prime (V (D)) we have v \in AD. In particular, if there is no D \in \sansC \sansC 

for which v \in N
G
\prime (V (D)), we also include v in A.

Note that for every D \in \sansC \sansC we have A\cap ND \subseteq AD, but not necessarily A\cap ND =
AD. The above operations are summarized in the following step, which corresponds
to lines 11--16 of the pseudocode of Algorithm 1.

Step 3. Having constructed the instances \{ \scrI D\} D\in \sansC \sansC , apply the algorithm recur-
sively to each of them. Suppose the application in instance \scrI D yields a vertex subset
AD. Combine \{ AD\} D\in \sansC \sansC into A according to the construction above, and output A
as the outcome of the algorithm.

To get more intuition about the construction of A, in particular the universal
quantification in the second point, let us observe the following. Consider a vertex v \in 
W\sansn \sansr \sansm \setminus R\sansc \sansl . This vertex is a terminal in every instance \scrI D for which v \in N

G
\prime (V (D));

it is a heavy terminal in at most one such instance and a light terminal in all other
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1898 FOMIN ET AL.

such instances. If v \in T \sansl \sansi 
D, then we have v \in AD by property (P1) of the algorithm.

Thus, we have v /\in A if and only if the (unique) instance \scrI D where v \in T \sansh \sanse 
D exists and,

furthermore, v /\in AD for this instance. Hence, intuitively, we allow this particular
instance to exclude the vertex v from AD if it is deemed necessary for some reason;
all other instances are required to keep it in the set AD. On the other hand, note that
the vertex v in the instance \scrI D where v \in T \sansh \sanse 

D contributes to the potential \Pi \scrI D
(XD),

and does not contribute to this potential in the other instances to which it belongs.
We now formally verify that A defined in this way has the required properties.

Claim 29. The following assertions hold:

(i) T \sansl \sansi 
\sansc \sansl \subseteq A;

(ii) if XD \subseteq AD for each D \in \sansC \sansC , then X \subseteq A; and
(iii) G\sansc \sansl [A] admits a tree decomposition of width at most 24022\=\alpha (\scrC )

\surd 
k lg k with

T\sansc \sansl \cap A contained in the root bag.

Proof. For condition (i), take any v \in T \sansl \sansi 
\sansc \sansl . Observe that by the construction

of instances \scrI D, in particular the sets T \sansl \sansi 
D of light terminals in them, we have that

whenever v \in N
G
\prime [V (D)] for some D \in \sansC \sansC , then v is automatically included in T \sansl \sansi 

D.
By property (P1) of the algorithm (see Theorem 18) this implies that v \in AD, so in
the second point of the construction of A we include v in A.

For condition (ii), suppose that indeed XD \subseteq AD for each D \in \sansC \sansC . By definition,
we have XD = X \cap ND. Take any x \in X. If x \in V (D) for some D \in \sansC \sansC , then also
x \in XD \cap V (D) \subseteq AD \cap V (D), and hence x is included in A in the first point of
its construction. On the other hand, if x \in W\sansn \sansr \sansm , then x \in ND for all D such that
x \in N

G
\prime (V (D)). Therefore x \in X \cap ND = XD \subseteq AD for all such D, and x is included

in A in the second point of its construction.
Finally, for condition (iii), we construct a suitable tree decomposition of G\sansc \sansl [A]

as follows. Create the root node with bag A \cap (T\sansc \sansl \cup (W\sansn \sansr \sansm \setminus R\sansc \sansl )) associated with it.
Next, for each D \in \sansC \sansC , restrict the decomposition \scrT D to the vertices of A\cap ND; that
is, remove all the vertices of AD \setminus (A \cap ND) from all the bags, thus constructing a
tree decomposition \scrT \prime 

D of GD[A \cap ND]. Then, for each D \in \sansC \sansC , attach \scrT \prime 
D below

the root node by making its root a child of the root node. Let \scrT be the obtained
decomposition.

To verify that \scrT is a tree decomposition of G\sansc \sansl [A], observe that whenever a vertex
v /\in R\sansc \sansl is shared between multiple instances \scrI D we have that v is a vertex of v \in 
W\sansn \sansr \sansm \setminus R\sansc \sansl that is a terminal in all of them (i.e., belongs to TD), and moreover v \in A
only if v \in AD for every instance \scrI D where v is present. Since the root bag of each
\scrT \prime 

D contains A \cap TD, it is now easy to see that \scrT is indeed a tree decomposition of
G\sansc \sansl [A].

We are left with upper bounding the width of \scrT . Observe that

| A \cap (T\sansc \sansl \cup (W\sansn \sansr \sansm \setminus R\sansc \sansl ))| \leqslant | T\sansc \sansl | + | W\sansn \sansr \sansm | 

\leqslant 16014\=\alpha (\scrC )
\surd 
k lg k + \lambda + 8007\=\alpha (\scrC )

\surd 
k lg k

= 24022\=\alpha (\scrC )
\surd 
k lg k;

here, the last inequality follows from assumption (Inv.e) (that \lambda \leqslant 
\surd 
k/10). Since each

\scrT D has width at most 24022\=\alpha (\scrC )
\surd 
k lg k, due to each recursive satisfying property (P1)

(see Theorem 18), it follows that \scrT has width at most 24022\=\alpha (\scrC )
\surd 
k lg k.
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LOW TREEWIDTH PATTERN COVERING 1899

Finally, we are left with analyzing the success probability. For this, we fix c2 := 2.

Claim 30. Supposing X \cap W\sansi \sanss \sansl = \emptyset , the algorithm outputs a set A satisfying
X \subseteq A with probability at least \sansL \sansB (n\sansc \sansl ,\Pi \scrI \sansc \sansl 

(X),\Gamma \scrI \sansc \sansl 
,\Phi \scrI \sansc \sansl 

(X)), where n\sansc \sansl := | V (G\sansc \sansl )| .
This includes the (1  - 1/k) probability of success of the preliminary clustering step
and the (1 - 1/k) probability that the algorithm correctly assumes that X \cap W\sansi \sanss \sansl = \emptyset .

Proof. The preliminary clustering step is correct (that is, the set of removed
vertices is disjoint with X) with probability at least 1  - 1/k. Then, the algorithm
makes the correct assumption that X \cap W\sansi \sanss \sansl = \emptyset with probability 1 - 1/k. By Claim
29(ii), to have that X \subseteq A it suffices to have XD \subseteq AD for each D \in \sansC \sansC . The
event XD \subseteq AD holds with probability at least \sansL \sansB (nD,\Pi \scrI D

(XD),\Gamma \scrI D
,\Phi \scrI D

(XD)),
where nD \leqslant n\sansc \sansl is the number of vertices in instance \scrI D. Note that these events are
independent. Hence, we have

\BbbP (X \subseteq A) \geqslant 

\biggl( 
1 - 1

k

\biggr) 2

\cdot 
\prod 

D\in \sansC \sansC 

\sansL \sansB (nD,\Pi \scrI D
(XD),\Gamma \scrI D

,\Phi \scrI D
(XD)).(7)

From Claim 28, equation (3), we have that \Pi \scrI \sansc \sansl 
(X) \geqslant 

\sum 
D\in \sansC \sansC \Pi \scrI D

(XD). Hence,
by the convexity of the function t \mapsto \rightarrow t lg t, we obtain

\Pi \scrI \sansc \sansl 
(X) lg \Pi \scrI \sansc \sansl 

(X) \geqslant 
\sum 

D\in \sansC \sansC 

\Pi \scrI D
(XD) lg \Pi \scrI D

(XD).(8)

By (8) and the fact that nD \leqslant n\sansc \sansl for all D \in \sansC \sansC , we infer that

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\sansc \sansl \surd 
k

\cdot \Pi \scrI (X) lg \Pi \scrI (X)

\biggr] 
\leqslant 

\prod 
D\in \sansC \sansC 

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\sansc \sansl \surd 
k

\cdot \Pi \scrI D
(XD) lg \Pi \scrI D

(XD)

\biggr] 
\leqslant 

\prod 
D\in \sansC \sansC 

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg nD\surd 
k

\cdot \Pi \scrI D
(XD) lg \Pi \scrI D

(XD)

\biggr] 
.

(9)

By Claim 28, equation (6), we similarly conclude the following:

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\sansc \sansl \surd 
k

\cdot \Phi (X)

\biggr] 
\leqslant 

\prod 
D\in \sansC \sansC 

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg nD\surd 
k

\cdot \Phi (XD)

\biggr] 
.

(10)

To estimate the last factor in each term \sansL \sansB (nD,\Pi \scrI D
(XD),\Gamma \scrI D

,\Phi \scrI D
(XD)), we

use Claim 28, equations (3) and (5). Recall that for any D \in \sansC \sansC we have

\Gamma \scrI \sansc \sansl 
/2 \geqslant \Gamma \scrI D

.

Hence, if we pick c2 := 2, then we obtain the following:

(1 - 1/k)
c2\Pi \scrI \sansc \sansl 

(X) lg \Gamma \scrI \sansc \sansl = (1 - 1/k)
c2\Pi \scrI \sansc \sansl 

(X) \cdot (1 - 1/k)
c2\Pi \scrI \sansc \sansl 

(X) lg(\Gamma \scrI \sansc \sansl 
/2)

\leqslant (1 - 1/k)
c2\Pi \scrI \sansc \sansl 

(X) \cdot 
\prod 

D\in \sansC \sansC 

(1 - 1/k)
c2\Pi \scrI D

(XD) lg(\Gamma \scrI \sansc \sansl 
/2)

\leqslant (1 - 1/k)
c2\Pi \scrI \sansc \sansl 

(X) \cdot 
\prod 

D\in \sansC \sansC 

(1 - 1/k)
c2\Pi \scrI D

(XD) lg \Gamma \scrI D .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 1

29
.1

77
.1

47
.2

22
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1900 FOMIN ET AL.

Recall that we assumed that \Pi \scrI \sansc \sansl 
(X) > 0 (assumption (Inv.g)). Therefore, this

yields

(1 - 1/k)
c2\Pi \scrI \sansc \sansl 

(X) lg \Gamma \scrI \sansc \sansl \leqslant (1 - 1/k)
2 \cdot 

\prod 
D\in \sansC \sansC 

(1 - 1/k)
c2\Pi \scrI D

(XD) lg \Gamma \scrI D .(11)

Putting (7), (9), (10), and (11) together, we obtain that

\BbbP (X \subseteq A) \geqslant (1 - 1/k)
2 \cdot 

\prod 
D\in \sansC \sansC 

\sansL \sansB (nD,\Pi \scrI D
(XD),\Gamma \scrI D

,\Phi \scrI D
(XD))

\geqslant exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\sansc \sansl \surd 
k

\cdot (\Pi \scrI \sansc \sansl 
(X) lg \Pi \scrI \sansc \sansl 

(X) + \Phi \scrI \sansc \sansl 
(X))

\biggr] 
\cdot (1 - 1/k)

c2\Pi \scrI \sansc \sansl 
(X) lg \Gamma \scrI \sansc \sansl 

= \sansL \sansB (n\sansc \sansl ,\Pi \scrI \sansc \sansl 
(X),\Gamma \scrI \sansc \sansl 

,\Phi \scrI \sansc \sansl 
(X)).

This concludes the proof.

Claim 29, assertions (i) and (iii), and Claim 30 verify that the set A is a correct
output for the instance \scrI \sansc \sansl , provided X \cap W\sansi \sanss \sansl = \emptyset . By equations (2) we have

\sansL \sansB (n\sansc \sansl ,\Pi \scrI \sansc \sansl 
(X),\Gamma \scrI \sansc \sansl 

,\Phi \scrI \sansc \sansl 
(X)) \geqslant \sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X)),

and hence, by Claim 22, A is also a valid output for the instance \scrI . This concludes
the description and the proof of correctness of the algorithm in the case X \cap W\sansi \sanss \sansl = \emptyset .

5.4. Solving the general problem: When islands intersect the pattern.
We are left with describing the steps taken by the algorithm after taking the assump-
tion that W\sansi \sanss \sansl intersects the pattern X; recall that the algorithm takes this decision
with probability 1

k . Henceforth, we assume that this assumption is correct.
First, the algorithm chooses uniformly at random an island C among islands

whose vertex sets are included in W\sansi \sanss \sansl , and from now on it assumes that X intersects
the island C. By Lemma 23, C is sampled from a set of at most 8007\=\alpha (\scrC )

\surd 
k lg k

islands, among which at least one intersects X, and hence the algorithm correctly
fixes an island C intersecting X with probability at least (8007\=\alpha (\scrC )

\surd 
k lg k) - 1 \geqslant k - 7.

Keeping this success probability in mind, from now on we assume that the choice of
C was indeed correct.

Recall that, due to the preliminary clustering step, island C has radius bounded
by 9k2 lg n, where the radius is evaluated w.r.t. the nr-distance measure nr-distC that
regards relay vertices as traversed for free (we write C in the subscript to indicate
that the metric is restricted to the vertices of C). Select a nonrelay vertex z of C such
that nr-distC(u, z) \leqslant 9k2 lg n for each u \in V (C). Let

d := min\{ nr-distC(z, u) : u \in V (C) \cap X\} .

Since V (C) \cap X \not = \emptyset , we have that 0 \leqslant d \leqslant dmax, where dmax =
max\{ nr-distC(z, u) : u \in V (C)\} , which is not larger than 1 + 9k2 lg n. The algo-
rithm now samples an integer value between 0 and dmax and assumes henceforth that
the sampled value is equal to d. This assumption holds with probability at least
1/(1 + dmax) \geqslant (10k2 lg n) - 1. Keeping this success probability in mind, we proceed
with the assumption that the algorithm knows the correct value of d.
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LOW TREEWIDTH PATTERN COVERING 1901

Let

S := \{ u \in V (C) \setminus R : nr-distC(u, z) < max(d, 1)\} 
\cup \{ u \in V (C) \cap R : nr-distC(u, z) < max(d, 1) - 1\} .

That is, S contains all the vertices of C that are at nr-distance less than max(d, 1)
from z, but we exclude relay vertices at nr-distance exactly max(d, 1)  - 1. From
the definition it readily follows that the induced subgraph C[S] contains z and is
connected. Construct graph G\prime \prime from G\sansc \sansl by contracting the whole subgraph G\sansc \sansl [S]
onto z; the contracted vertex of G\prime \prime will be also denoted as z. Note that if d \leqslant 1,
then in fact no contraction has been made and G\prime \prime = G\sansc \sansl . Observe that, provided the
sampled value of d is correct, the set S is disjoint with X (unless d = 0 when S = \{ z\} 
and no contraction is made). Thus X \subseteq V (G\prime \prime ). Moreover, observe that each vertex
of X can be still reached from r in G\prime \prime by a path that uses only relay vertices and
vertices of X. Indeed, by the definition of S, if S is disjoint with X, then S also
does not contain any relay vertex traversed by the aforementioned path. Hence, X
can be still regarded as a pattern in G\prime \prime , where the relay vertices in G\prime \prime are inherited
from G\prime . On the other hand, by the definition of d it follows that some vertex of X
is at nr-distance at most 1 from z in G\prime \prime (so either z, in case d = 0 and z \in X, or
a neighbor of z, or a neighbor via one relay vertex). Also, observe that since C is
disjoint with M , that is, all vertices of C are at nr-distance larger than 2000

\surd 
k lg k

from r in G\prime \prime , we have the following:

nr-dist
G
\prime \prime (r, z) > 2000

\surd 
k lg k.(12)

Now we would like to apply the duality theorem, i.e., Theorem 9. Consider graph
L := G\prime \prime \langle R \cap V (G\prime \prime )\rangle (this is a different graph than L considered in the previous
section), a pair of vertices (s, t) = (r, z) of L, and the following parameters:

p := \lceil 120
\surd 
k lg k\rceil and q := k.

By applying Theorem 9 to these, in polynomial time we can compute one of the
following structures:

(a) An (r, z)-separator chain (C1, . . . , Cp) with | Cj | \leqslant 2k for each j \in [p].
(b) A sequence (Q1, . . . , Qk) of (r, z)-paths with

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\left(  V (Qi) \cap 

\bigcup 
i
\prime \not =i

V (Q
i
\prime )

\right)  \setminus \{ r, z\} 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leqslant 4p for each i \in [k].

The behavior of the algorithm now differs depending on which structure has been
uncovered. We start with the simpler case when the algorithm of Theorem 9 yielded
a sequence of paths.

Subcase: A sequence of paths. Suppose that the algorithm of Theorem 9
returned a sequence (Q1, . . . , Qk) of (r, z)-paths, where each path contains only at
most 4p vertices that also belong to other paths, not including z and r. These are
paths in graph G\prime \prime \langle R \cap V (G\prime \prime )\rangle , but we can lift them to (r, z)-paths P1, . . . , Pk in G\prime \prime 

in a natural manner as follows: whenever some Qi traverses an edge obtained from
eliminating some relay vertex g, we replace the usage of this edge by a path of length
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1902 FOMIN ET AL.

2 traversing g. If we obtain a walk in this manner, i.e., some relay vertex is used more
than once, we shortcut the segment of the walk between the visits of this relay vertex;
thus we obtain again a simple path. All in all, we obtain (r, z)-paths P1, . . . , Pk in
G\prime \prime with the following property: for each i \in [k], there can be at most 4p nonrelay
vertices on Pi that are traversed by other paths P

i
\prime for i\prime \not = i. Note that every relay

vertex can be used by many paths.
By (12), we have that each Pi has length larger than 2000

\surd 
k lg k (measured

according to the nr-distance, i.e., with relay vertices contributing 0 to the length).
For i \in [k], define

\sansP \sansu \sansb (Pi) :=

\biggl( 
V (Pi) \cap 

\bigcup 
i
\prime \not =i

V (P
i
\prime )

\biggr) 
\setminus (R \cup \{ r, z\} ),

and

\sansP \sansr \sansv (Pi) :=

\biggl( 
V (Pi) \setminus 

\bigcup 
i
\prime \not =i

V (P
i
\prime )

\biggr) 
\setminus (R \cup \{ r, z\} ).

We have that | \sansP \sansu \sansb (Pi)| \leqslant 4p for all i \in [k] and, by definition, sets \sansP \sansr \sansv (Pi) are
pairwise disjoint. Pattern X has at most k vertices, out of which one is equal to
r. Hence, there is at least one index i \in [k] for which \sansP \sansr \sansv (Pi) is disjoint with X.
The algorithm samples one index i from [k] and assumes henceforth that the sampled
index has the property stated above. Note that this holds with probability at least
1/k; keeping this success probability in mind, we proceed with the assumption that
the algorithm made a correct choice of i.

Now that \sansP \sansr \sansv (Pi) is assumed to be disjoint with the sought pattern X, we can get
rid of it in the following manner. Consider the consecutive vertices of Pi, traversed
in the direction from r to z. Let v0 be the last light terminal on Pi; vertex v0 is well
defined because r is a light terminal itself. Let P \prime be the suffix of Pi from v0 to z
(both inclusive). Observe that since v0, being a light terminal, is at nr-distance at
most 3 from r, whereas z is at nr-distance more than 2000

\surd 
k lg k from r, we have

that P \prime traverses at least 2000
\surd 
k lg k  - 3 \geqslant 1997

\surd 
k lg k nonrelay vertices.

Let v0, v1, . . . , v\ell = z be the vertices of (\sansP \sansu \sansb (Pi) \cap V (P \prime )) \cup \{ v0, z\} in the order
of their appearance on P \prime . Then clearly \ell \leqslant | \sansP \sansu \sansb (Pi)| + 1 \leqslant 485

\surd 
k lg k. For each

j \in \{ 0, 1, . . . , \ell  - 1\} , inspect the segment of P \prime lying between vj and vj+1 (both
exclusive). If this segment contains some relay vertex gj , then contract it entirely
onto gj ; in case there are multiple relay vertices in the segment, select any of them
as gj . Otherwise, if there are no relay vertices within the segment, contract this
whole segment onto vertex vj ; see Figure 5 for a visualization. Observe that, by the
definition of v0, no light terminal gets contracted in this manner.

Denote the obtained graph by H; this graph is equipped with a set RH := R \cap 
V (H) of relay vertices naturally inherited from G\prime \prime . Since we assume thatX is disjoint
with \sansP \sansr \sansv (Pi), no contracted vertex belonged to X. Hence, it can be easily seen that
X is still a pattern in H.

Observe that H has strictly fewer vertices than G for the following reason: path
P \prime traversed at least 1997

\surd 
k lg k nonrelay vertices at the beginning, but after the

contraction it got shortened to at most 485
\surd 
k lg k nonrelay vertices. Observe also

that, since v0 is at nr-distance at most 3 from r as a light terminal, we have that the
nr-distance between r and z in H is at most 3 + 485

\surd 
k lg k \leqslant 488

\surd 
k lg k.
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LOW TREEWIDTH PATTERN COVERING 1903

r

v0

v1

v2

v3

z

\leqslant 3

r

v0

v1

v2

v3

z

\leqslant 3

\rightsquigarrow 
v0

Fig. 5. The contraction procedure applied on the path Pi. Vertices v1, v2, . . . , v\ell  - 1 are depicted
in yellow, and small gray rhombi depict relay vertices.

Define a new instance \scrI \prime := (H, r, T \sansl \sansi 
H , T \sansh \sanse 

H , RH , \lambda ) by giving it the same credit \lambda 
and taking

T \sansl \sansi 
H := T \sansl \sansi and T \sansh \sanse 

H := T \sansh \sanse \cap V (H).

Observe here that we use the fact that during the construction of H we did not
contract any light terminal, and hence all vertices of T \sansl \sansi persist in H. Clearly T \sansl \sansi 

H and
T \sansh \sanse 
H are disjoint, and observe that invariants (Inv.a) and (Inv.c) trivially hold for \scrI \prime ,

because H was obtained from G\prime \prime by means of edge contractions. Since no contracted
vertex belongs to X, we have that

\Pi \scrI \prime (X) = \Pi \scrI (X).(13)

Observe that during the construction of H we contracted at least 1511
\surd 
k lg k

nonrelay vertices. This means that the total number of vertices that are not relay or
light terminals strictly decreases, so

\Gamma \scrI \prime < \Gamma \scrI .(14)

This also implies that nH < n, where nH is the number of vertices of H.
We are left with analyzing the distance potential, which is factor on which we gain

in this step. More precisely, the crucial observation is that the performed contraction
significantly reduces the number of far vertices.

Claim 31. The following holds:

\sansF \sansa \sansr \scrI \prime (X) \subseteq \sansF \sansa \sansr \scrI (X) and | \sansF \sansa \sansr \scrI (X) \setminus \sansF \sansa \sansr \scrI \prime (X)| \geqslant 511
\surd 
k lg k.

Proof. Observe that each close vertex in \scrI is contained in M , which remains
intact in G\prime \prime . Moreover, H is obtained from G\prime \prime only by means of edge contractions,
which can only decrease the nr-distances. Hence, every vertex of X that is close in \scrI 
remains close in \scrI \prime . It follows that \sansF \sansa \sansr \scrI \prime (X) \subseteq \sansF \sansa \sansr \scrI (X).
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1904 FOMIN ET AL.

For the second claim, recall that in G\prime \prime there is some vertex z\prime that belongs to X
and is at nr-distance at most 1 from z (possibly z\prime = z). On the other hand, by (12) we
have nr-dist

G
\prime \prime (r, z) > 2000

\surd 
k lg k, so nr-dist

G
\prime \prime (r, z\prime ) > 1999

\surd 
k lg k. Let P be a path

from r to z\prime whose vertices belong to X or R. Since nr-dist
G
\prime \prime (r, z\prime ) > 1999

\surd 
k lg k, P

contains at least 1999
\surd 
k lg k vertices of X, among which the last 511

\surd 
k lg k vertices

have to belong to \sansF \sansa \sansr \scrI (X) for the following reason: their nr-distance from r is larger
than 1999

\surd 
k lg k  - 511

\surd 
k lg k > 1000

\surd 
k lg k by the triangle inequality. However, in

\scrI \prime we have that the nr-distance between r and z is shortened to at most 488
\surd 
k lg k,

and hence all of them become close.

It follows that

\Phi \scrI \prime (X) \leqslant \Phi \scrI (X) - 511
\surd 
k lg k.(15)

Having analyzed the decrease in all the potentials, we are ready to finalize the
case.

Apply the algorithm recursively to the instance \scrI \prime = (H, r, T \sansl \sansi 
H , T \sansh \sanse 

H , RH , \lambda ). As
discussed earlier, \scrI \prime satisfies the requested invariants and has strictly fewer vertices,
so this recursive call is correctly defined. The application of the algorithm yields a
subset A\prime of vertices of H with the following properties:

\bullet A\prime \supseteq T \sansl \sansi 
H = T \sansl \sansi and H[A\prime ] admits a tree decomposition \scrT \prime of width at most

24022\=\alpha (\scrC )
\surd 
k lg k with TH \cap A\prime contained in the root bag;

\bullet the probability that X \subseteq A\prime is at least \sansL \sansB (nH ,\Pi \scrI \prime (X),\Gamma \scrI \prime ,\Phi \scrI \prime (X)).
The algorithm returns the set A := A\prime ; we now verify that A has all the required

properties. Clearly we already have that A = A\prime \supseteq T \sansl \sansi 
H = T \sansl \sansi , so let us check that

G[A] admits a suitable tree decomposition.

Claim 32. The subgraph G[A] admits a tree decomposition of width at most
24022\=\alpha (\scrC )

\surd 
k lg k with A \cap T contained in the root bag.

Proof. We observe that decomposition \scrT := \scrT \prime is suitable. First, it can be easily
verified that it is also a tree decomposition of G[A], not only H[A], because G[A] is a
graph on the same vertex set as H[A] and every edge of G[A] is also present in H[A].
Second, from the recursive call we have that the root bag of \scrT \prime contains A\cap TH , but
A\cap TH = A\cap T , because A contains only vertices that are present in H. Consequently,
the root bag of \scrT contains A \cap T . Finally, from the recursive call we obtain that the
width of \scrT = \scrT \prime is at most 24022

\surd 
k lg k.

We are left with analyzing the success probability. For this, we assume c1 \geqslant 1.

Claim 33. Assume c1 \geqslant 1. Supposing that X \cap W\sansi \sanss \sansl \not = \emptyset and the subroutine
of Theorem 9 returned a sequence of paths, the algorithm outputs a set A satisfying
X \subseteq A with probability at least \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X)). This includes the (1  - 1/k)
probability of success of the preliminary clustering step, the 1/k probability that the
algorithm correctly assumes that X\cap W\sansi \sanss \sansl \not = \emptyset , the k - 7 probability of correctly choosing
the island C that intersects the pattern, the (10k2 lg n) - 1 probability of choosing the
right distance d, and the 1/k probability of choosing the right path index i.

Proof. By the bound on the success probability of the recursive call and the
assumption that k \geqslant 10, we have that

\BbbP (X \subseteq A) \geqslant 

\biggl( 
1 - 1

k

\biggr) 
\cdot k - 8 \cdot (10k2 lg n) - 1 \cdot \sansL \sansB (n\prime ,\Pi \scrI \prime (X),\Gamma \scrI \prime ,\Phi \scrI \prime (X))

\geqslant k - 12 \cdot (lg n) - 1 \cdot \sansL \sansB (n\prime ,\Pi \scrI \prime (X),\Gamma \scrI \prime ,\Phi \scrI \prime (X)).(16)
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LOW TREEWIDTH PATTERN COVERING 1905

By (13) and the fact that nH < n, we have

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\surd 
k

\cdot \Pi \scrI (X) lg \Pi \scrI (X)

\biggr] 
\leqslant 

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg nH\surd 
k

\cdot \Pi \scrI \prime (X) lg \Pi \scrI \prime (X)

\biggr] 
.(17)

By (15) and the facts that c1 \geqslant 1 and nH < n, we have

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\surd 
k

\cdot \Phi \scrI (X)

\biggr] 
\leqslant exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg nH\surd 
k

\cdot \Phi \scrI \prime (X)

\biggr] 
\cdot 

(18)

exp [ - c1 \cdot 511 lg k(lg k + lg lg n)]

\leqslant exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg nH\surd 
k

\cdot \Phi \scrI \prime (X)

\biggr] 
\cdot 
\bigl( 
k12 \cdot lg n

\bigr)  - 1
.

Finally, by (13) and (14) we infer that\biggl( 
1 - 1

k

\biggr) c2\Pi \scrI (X) lg \Gamma \scrI 

\leqslant 

\biggl( 
1 - 1

k

\biggr) c2\Pi 
\scrI 
\prime (X) lg \Gamma 

\scrI 
\prime 
.(19)

By multiplying (17), (18), and (19) and applying the obtained bound in (16), we
infer that

\BbbP (X \subseteq A) \geqslant k - 12 \cdot (lg n) - 1 \cdot \sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X)) \cdot k12 \cdot lg n
= \sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X)).

This concludes the proof.

Claim 32 ensures that the output of the algorithm has the required properties,
whereas Claim 33 yields the sought lower bound on the success probability.

Subcase: A separator chain. In this case, the algorithm of Theorem 9 re-
turned an (r, z)-separator chain (C1, . . . , Cp) in L = G\prime \prime \langle R \cap V (G\prime \prime )\rangle , where p =
\lceil 120
\surd 
k lg k\rceil and | Ci| \leqslant 2k for each i \in [p]. Obviously, by the definition of L we have

that (C1, . . . , Cp) is also an (r, z)-separator chain in G\prime \prime , and no vertex of any Ci is a
relay vertex. Recall that this means that all separators Ci are pairwise disjoint and
\sansr \sanse \sansa \sansc \sansh (r,G\prime \prime  - Ci) \subseteq \sansr \sanse \sansa \sansc \sansh (r,G\prime \prime  - Cj) whenever 1 \leqslant i < j \leqslant p. By invariant (Inv.a), at
most 3 first separators may include a light terminal, and hence after excluding them
we are left with at least \lceil 117

\surd 
k lg k\rceil separators without any light terminals. We re-

strict our attention to these separators. Thus, by slightly abusing the notation, from
now on we work with an (r, z)-separation chain (C1, . . . , C

\prime 
p), where p

\prime = \lceil 117
\surd 
k lg k\rceil 

such that each Ci is disjoint with T \sansl \sansi \cup R and, in fact, T \sansl \sansi \subseteq \sansr \sanse \sansa \sansc \sansh (r,G\prime \prime  - C1).
For i \in [p\prime ], we define the following sets:

V \sansi \sansn 
i := \sansr \sanse \sansa \sansc \sansh (r,G\prime \prime  - Ci) and V \sanso \sansu \sanst 

i := V (G\prime \prime ) \setminus (Ci \cup V \sansi \sansn 
i ).

Thus, (V \sansi \sansn 
i , Ci, V

\sanso \sansu \sanst 
i ) is a partition of V (G\prime \prime ). Without loss of generality we can

assume that each separator Ci is inclusion-wise minimal, which implies that each
vertex of Ci has a neighbor in V \sansi \sansn 

i and a neighbor in V \sanso \sansu \sanst 
i .

We now prove that one of the separators Ci has the property that it splits X in
a balanced way, relatively to the number of vertices of X it contains.
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1906 FOMIN ET AL.

Claim 34. There is an index i \in [p\prime ] for which the following holds:

10
\surd 
k \cdot | X \cap Ci| \leqslant min(| (X \cap V \sansi \sansn 

i ) \setminus T \sansl \sansi | , | (X \cap V \sanso \sansu \sanst 
i ) \setminus T \sansl \sansi | ).

Proof. For i \in [p\prime ], let

ai := | (X \cap V \sansi \sansn 
i ) \setminus T \sansl \sansi | , and bi := | (X \cap V \sanso \sansu \sanst 

i ) \setminus T \sansl \sansi | , and ci := | X \cap Ci| .

Observe that since all light terminals are within \sansr \sanse \sansa \sansc \sansh (r,G\prime \prime  - C1), for each i \in [p\prime ]
the following hold:

ai \geqslant 
\sum 
j<i

cj ;(20)

bi \geqslant 
\sum 
j>i

cj .(21)

Observe that each separator Ci has to contain a vertex of X, because X contains
a nonrelay vertex at nr-distance at most 1 from z, and this vertex can be reached
from r by a path that uses only relay vertices and vertices of X. We conclude that
ci \geqslant 1 for each i \in [p\prime ]. Consequently, ai \geqslant 1 for each i \geqslant 2, and bi \geqslant 1 for each
i \leqslant p\prime  - 1.

Supposing that the assertion stated in the claim does not hold, we have

ci >
min(ai, bi)

10
\surd 
k

for all i \in [p\prime ].(22)

Obviously, the sequence (ai)i\in [p
\prime 
]
is nondecreasing and the sequence (bi)i\in [p

\prime 
]
is

nonincreasing, Let i0 be the smallest index such that ai0 > bi0 ; possibly i0 = p\prime + 1 if
the condition ai \leqslant bi is satisfied for all i \in [p\prime ]. We claim that in fact i0 \leqslant 53

\surd 
k lg k;

suppose otherwise. By assumption (22) and the definition of i0, we have that ci >
ai/(10

\surd 
k) for all i < i0. Therefore, by combining this with (20), we obtain that

ai >
1

10
\surd 
k

\sum 
j<i

aj

for all i < i0. Equivalently,\sum 
j\leqslant i

aj >

\biggl( 
1 +

1

10
\surd 
k

\biggr) 
\cdot 
\sum 
j<i

aj .

Since a2 \geqslant 1, we infer by a trivial induction that

\sum 
j<i

aj \geqslant 

\biggl( 
1 +

1

10
\surd 
k

\biggr) i - 2

for all 2 \leqslant i < i0. Therefore, we conclude that

ai0 - 1 >
1

10
\surd 
k
\cdot 
\biggl( 
1 +

1

10
\surd 
k

\biggr) 53
\surd 
k lg k - 3

\geqslant 
1

10
\surd 
k
\cdot 
\biggl( 
1 +

1

10
\surd 
k

\biggr) 50
\surd 
k lg k

\geqslant 
1

10
\surd 
k
\cdot e5 lg k > k.
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LOW TREEWIDTH PATTERN COVERING 1907

This is a contradiction with | X| \leqslant k. Hence, we have that indeed i0 \leqslant 53
\surd 
k lg k.

By applying a symmetric reasoning for the last separators and numbers bi, instead
of the first and numbers ai, we obtain that if i1 is the largest index such that ai1 < bi1 ,
then i1 \geqslant 64

\surd 
k lg k. However, this means that i0 < i1, which is a contradiction with

the fact that sequences (ai)i\in [p
\prime 
]
and (bi)i\in [p

\prime 
]
are nonincreasing and nondecreasing,

respectively.

Observe that if an index i satisfies the property given by Claim 34, then | X\cap Ci| \leqslant \surd 
k/10. Indeed, otherwise we would have that min(| X \cap V \sansi \sansn 

i | , | X \cap V \sanso \sansu \sanst 
i | ) > k, which

is a contradiction with | X| \leqslant k.
The algorithm performs random sampling as follows:
\bullet First, it samples an index i \in [p\prime ] uniformly at random and assumes that this

index i satisfies the property given by Claim 34.
\bullet Then, it samples an integer \alpha between 1 and

\surd 
k/10 and assumes that the

sampled number \alpha is equal to | X \cap Ci| .
\bullet Finally, the algorithm samples a subset Q \subseteq Ci of size \alpha uniformly at random

and assumes Q to be equal to X \cap Ci.
As | Ci| \leqslant 2k, we observe that the assumptions stated above are correct with

probability at least

1

p\prime 
\cdot 10\surd 

k
\cdot 1\bigl( | Ci| 

\alpha 

\bigr) \geqslant 

\biggl( 
k5 \cdot 

\biggl( 
2k

\alpha 

\biggr) \biggr)  - 1

\geqslant k - 2\alpha  - 5,

where \alpha = | X \cap Ci| . Keeping this success probability assumption in mind, we proceed
further with the supposition that the sampled objects are indeed as assumed.

The algorithm now defines two subinstances \scrI \sanso \sansu \sanst and \scrI \sansi \sansn as follows.
First, we define \scrI \sanso \sansu \sanst := (G\sanso \sansu \sanst , r, T

\sansl \sansi 
\sanso \sansu \sanst , T

\sansh \sanse 
\sanso \sansu \sanst , R\sanso \sansu \sanst , \lambda + \alpha ); note that the guessed size

of Q is added to the credit. Note that \lambda + \alpha \leqslant 
\surd 
k/10 +

\surd 
k/10, so the instance on

which we shall recurse will have credit at most
\surd 
k/5, meaning that invariant (Inv.b)

will be satisfied. Define G\sanso \sansu \sanst to be the graph constructed as follows: take G\prime \prime , and
contract the whole subgraph induced by V \sansi \sansn 

i \cup (Ci \setminus Q) onto r. Observe that since
G\prime \prime [V \sansi \sansn 

i ] is connected by definition, and each vertex of Ci has a neighbor in V \sansi \sansn 
i , the

contracted subgraph is indeed connected.
The relay vertices are just inherited from the original instance: we put R\sanso \sansu \sanst =

R \cap V (G\sanso \sansu \sanst ). The sets of light and heavy terminals T \sansl \sansi 
\sanso \sansu \sanst and T \sansh \sanse 

\sanso \sansu \sanst are defined as
follows. First, heavy terminals are inherited, but we remove all heavy terminals that
reside in Q: we put T \sansh \sanse 

\sanso \sansu \sanst = T \sansh \sanse \cap (V (G\sanso \sansu \sanst ) \setminus Q). Second, as light terminals we put
r plus the whole set Q: T \sansl \sansi 

\sanso \sansu \sanst = \{ r\} \cup Q. Recall that T \sansl \sansi \subseteq V \sansi \sansn 
1 \subseteq V \sansi \sansn 

i , so all the
light terminals of the original instance, apart from r, got contracted onto r during
the construction of G\sanso \sansu \sanst ; this is why we do not need to inherit any of them in \scrI \sanso \sansu \sanst .
Clearly, T \sansh \sanse 

\sanso \sansu \sanst and T \sansl \sansi 
\sanso \sansu \sanst defined in this manner are disjoint. Note that we have that

| T\sanso \sansu \sanst | \leqslant | T | + | Q| \leqslant 16014\=\alpha (\scrC )
\surd 
k lg k + \lambda + | Q| and | Q| = \alpha , so we indeed have

that | T\sanso \sansu \sanst | \leqslant 16014\=\alpha (\scrC )
\surd 
k lg k + (\lambda + \alpha ); that is, invariant (Inv.c) is satisfied in the

new instance. Invariant (Inv.a) is also satisfied, because all new light terminals are
adjacent to the root r.

Finally, we define X\sanso \sansu \sanst := X \cap V (G\sanso \sansu \sanst ). Since G\sanso \sansu \sanst was obtained from G\prime \prime only
by contracting some vertices onto the root, it still holds that every vertex of X\sanso \sansu \sanst 

can be reached from r by a path traversing only relay vertices and vertices of X\sanso \sansu \sanst .
Observe also that Claim 34 implies that at least 10

\surd 
k \cdot \alpha vertices of X that are

not light terminals are contained in V \sansi \sansn 
i . These vertices do not remain in X\sanso \sansu \sanst ,

and hence
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1908 FOMIN ET AL.

| X\sanso \sansu \sanst | \leqslant | X|  - 10
\surd 
k \cdot \alpha \leqslant k  - 10

\surd 
k \cdot \lambda  - 10

\surd 
k \cdot \alpha = k  - 10

\surd 
k \cdot (\lambda + \alpha ).

Therefore, we conclude that X\sanso \sansu \sanst is a pattern in the instance \scrI \sanso \sansu \sanst .
By applying the algorithm recursively to the instance \scrI \sanso \sansu \sanst , we obtain a subset of

vertices A\sanso \sansu \sanst with the following properties:
\bullet A\sanso \sansu \sanst \supseteq T \sansl \sansi 

\sanso \sansu \sanst and G\sanso \sansu \sanst [A\sanso \sansu \sanst ] admits a tree decomposition \scrT \sanso \sansu \sanst of width at most
24022\=\alpha (\scrC )

\surd 
k lg k with A\sanso \sansu \sanst \cap T\sanso \sansu \sanst contained in the root bag.

\bullet Denoting the number of vertices of G\sanso \sansu \sanst by n\sanso \sansu \sanst , the probability that X\sanso \sansu \sanst \subseteq 
A\sanso \sansu \sanst is at least \sansL \sansB (n\sanso \sansu \sanst ,\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ),\Gamma \scrI \sanso \sansu \sanst ,\Phi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst )).

Second, we define \scrI \sansi \sansn := (G\sansi \sansn , r, T
\sansl \sansi 
\sansi \sansn , T

\sansh \sanse 
\sansi \sansn , R\sansi \sansn , \lambda +\alpha ); again the guessed size of Q

is added to the credit. Note that, again, \lambda + \alpha \leqslant 
\surd 
k/10 +

\surd 
k/10, so the instance on

which we shall recurse will have credit at most
\surd 
k/5, meaning that invariant (Inv.b)

will be satisfied. Graph G\sansi \sansn is constructed from G\prime \prime as follows. Inspect the connected
components of the graph G\prime \prime  - (V \sansi \sansn 

i \cup Q). For each such component D, contract it
onto a new vertex gD that is declared to be a relay vertex. That is, we define R\sansi \sansn to
be (R \cap V \sansi \sansn 

i ) \cup \{ gD : D \in \sansc \sansc (G\prime \prime  - (V \sansi \sansn 
i \cup Q))\} .

Next, we define the terminal sets T \sansl \sansi 
\sansi \sansn , T

\sansh \sanse 
\sansi \sansn . Recall that T \sansl \sansi \subseteq V \sansi \sansn 

i , so all the
original light terminals persist in the graph G\sansi \sansn . Hence, the light terminals are defined
as simply inherited from the original instance: T \sansl \sansi 

\sansi \sansn := T \sansl \sansi . For the heavy terminals,
we take all the ones inherited from the original instance, plus we add all vertices
of Q explicitly: T \sansh \sanse 

\sansi \sansn := (T \sansh \sanse \cap V (G\sansi \sansn )) \cup Q. Note that T \sansl \sansi 
\sansi \sansn and T \sansh \sanse 

\sansi \sansn are disjoint,
because there was no light terminal in Q; that is, Q \cap T \sansl \sansi = \emptyset . Again, we have that
| T\sansi \sansn | \leqslant | T | + | Q| \leqslant 16014\=\alpha (\scrC )

\surd 
k lg k + \lambda + | Q| and | Q| = \alpha , so we indeed have that

| T\sansi \sansn | \leqslant 16014\=\alpha (\scrC )
\surd 
k lg k + (\lambda + \alpha ); that is, invariant (Inv.c) is satisfied in the new

instance. Invariant (Inv.a) is also satisfied, since all light terminals remain at the
same nr-distance from r.

Finally, we take X\sansi \sansn := X \cap V (G\sansi \sansn ). We observe that each vertex of X\sansi \sansn can be
reached from r in G\sansi \sansn by a path that uses only relay vertices and vertices of X\sansi \sansn .
Indeed, there is such a path in G\prime \prime , and its parts that lie outside of V (G\sansi \sansn ) must be
contained in the connected components of G\prime \prime  - (V \sansi \sansn 

i \cup Q), so they can be replaced by
the traversal of the relay vertices into which these connected components are collapsed.
Next, from Claim 34 we infer that

| X \sansi \sansn | \leqslant | X|  - 10
\surd 
k \cdot \alpha \leqslant k  - 10

\surd 
k \cdot \lambda  - 10

\surd 
k \cdot \alpha = k  - 10

\surd 
k \cdot (\lambda + \alpha ).

Hence, we conclude that X \sansi \sansn is a pattern in \scrI \sansi \sansn .
Again, we apply the algorithm recursively to instance \scrI \sansi \sansn , thus obtaining a subset

of vertices A\sansi \sansn with the following properties:
\bullet A\sansi \sansn \supseteq T \sansl \sansi 

\sansi \sansn and G\sansi \sansn [A\sansi \sansn ] admits a tree decomposition \scrT \sansi \sansn of width at most
24022\=\alpha (\scrC )

\surd 
k lg k with A\sansi \sansn \cap T\sansi \sansn contained in the root bag.

\bullet The probability that X\sansi \sansn \subseteq A\sansi \sansn is at least \sansL \sansB (n\sansi \sansn ,\Pi \scrI \sansi \sansn (X\sansi \sansn ),\Gamma \scrI \sansi \sansn ,\Phi \scrI \sansi \sansn (X\sansi \sansn )),
where n\sansi \sansn is the number of vertices in G\sansi \sansn .

Observe that the sets of nonrelay vertices of G\sanso \sansu \sanst and G\sansi \sansn are contained in the
vertex set of G\prime \prime , and hence we can treat A\sanso \sansu \sanst and A\sansi \sansn also as subsets of nonrelay
vertices of G\prime \prime . Hence, let us define A := (A\sanso \sansu \sanst \setminus Q) \cup A\sansi \sansn and declare that the
algorithm returns A as the answer. Note that here, as in section 5.3, we formally
allow the instance \scrI \sansi \sansn to exclude the vertices of Q from A\sansi \sansn , since they are heavy
terminals there.
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LOW TREEWIDTH PATTERN COVERING 1909

We now verify that A has the required properties. First, since we have that
T \sansl \sansi 

\sansi \sansn = T \sansl \sansi , then A \supseteq A\sansi \sansn \supseteq T \sansl \sansi 
\sansi \sansn = T \sansl \sansi , so A indeed covers all light terminals. We now

check that G[A] admits a suitable tree decomposition.

Claim 35. The subgraph G[A] admits a tree decomposition of width at most
24022\=\alpha (\scrC )

\surd 
k lg k with A \cap T contained in the root bag.

Proof. Construct the root node and associate with it the bag (T \cup Q) \cap A.
Since | T | \leqslant 16014\=\alpha (\scrC )

\surd 
k lg k + \lambda and \lambda , | Q| \leqslant 

\surd 
k/10, it follows that this bag has

size at most 16015\=\alpha (\scrC )
\surd 
k lg k. Let us restrict decomposition \scrT \sanso \sansu \sanst to the vertex set

A \cap A\sanso \sansu \sanst ; that is, remove all vertices of A\sanso \sansu \sanst \setminus A from all bags of \scrT \sanso \sansu \sanst , thus obtaining
a tree decomposition \scrT \prime 

\sanso \sansu \sanst of G\sanso \sansu \sanst [A\sanso \sansu \sanst \cap A]. We have that A\sansi \sansn \subseteq A, so there is no
need of restricting decomposition \scrT \sansi \sansn . Finally, attach decompositions \scrT \sansi \sansn and \scrT \prime 

\sanso \sansu \sanst as
children of the root bag. It can be easily verified that in this manner we obtain a tree
decomposition of G[A], and its width is clearly at most 24022\=\alpha (\scrC )

\surd 
k lg k. Finally,

the root bag contains A \cap T by its definition.

We are left with estimating the success probability. Before we proceed with the
final calculation, let us analyze each of the potentials. Note that graphs G\sansi \sansn and G\sanso \sansu \sanst 

intersect only at Q \cup \{ r\} , and each vertex of Q is a heavy terminal in \scrI \sansi \sansn and a light
terminal in \scrI \sanso \sansu \sanst . This observation will be crucial in the forthcoming analysis. Recall
also that Q, as a subset of Ci, contains no original light terminal, i.e., Q \cap T \sansl \sansi = \emptyset .

First, in \scrI \sanso \sansu \sanst we contracted all vertices of V \sansi \sansn 
i \cup (Ci \setminus Q), and in \scrI \sansi \sansn we contracted

all vertices of V \sanso \sansu \sanst 
i \cup (Ci \setminus Q). Among the vertices shared by the instances, being

\{ r\} \cup Q, r is a light terminal in both instances, whereas the vertices of Q are heavy
terminals only in \scrI \sansi \sansn . From this it immediately follows that

\Gamma \scrI \geqslant \Gamma \scrI \sanso \sansu \sanst + \Gamma \scrI \sansi \sansn .(23)

Observe that both G\sanso \sansu \sanst and G\sansi \sansn are constructed from G by means of edge con-
tractions only, which can only decrease the nr-distances from r. Hence, a vertex of X
that was close in the original instance \scrI remains close in the instance \scrI \sansi \sansn or \scrI \sanso \sansu \sanst to
which it belongs. The vertices of Q are adjacent to the root in \scrI \sanso \sansu \sanst , and hence none
of them can be a far vertex of X\sanso \sansu \sanst . Hence it follows that

\Phi \scrI (X) \geqslant \Phi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) + \Phi \scrI \sansi \sansn (X\sansi \sansn ).(24)

Finally, the vertices of Q---shared among the instances---are declared light termi-
nals in \scrI \sansi \sansn , and hence the same analysis yields that

\Pi \scrI (X) \geqslant \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) + \Pi \scrI \sansi \sansn (X\sansi \sansn ).(25)

We now perform a finer analysis of the behavior of potential \Pi . For this, we use
Claim 34 as follows.

Claim 36. The following holds:

\Pi \scrI (X) lg \Pi \scrI (X) \geqslant \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) lg \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst )+\Pi \scrI \sansi \sansn (X\sansi \sansn ) lg \Pi \scrI \sansi \sansn (X\sansi \sansn )+10
\surd 
k \cdot \alpha .(26)

Proof. Observe that

\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) = | (X \cap V \sanso \sansu \sanst 
i ) \setminus T \sansl \sansi | ;

\Pi \scrI \sansi \sansn (X\sansi \sansn ) = | (X \cap V \sansi \sansn 
i ) \setminus T \sansl \sansi | + | X \cap Ci| .
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1910 FOMIN ET AL.

Thus we have

\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) + \Pi \scrI \sansi \sansn (X\sansi \sansn ) = | (X \cap V \sanso \sansu \sanst 
i ) \setminus T \sansl \sansi | + | (X \cap V \sansi \sansn 

i ) \setminus T \sansl \sansi | + | X \cap Ci| 
= | X \setminus T \sansl \sansi | = \Pi \scrI (X).

(27)

Suppose first that \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) \leqslant \Pi \scrI \sansi \sansn (X\sansi \sansn ); the second case is symmetric. Com-
bining this with (27) yields the following:

\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) \leqslant \Pi \scrI (X)/2 and \Pi \scrI \sansi \sansn (X\sansi \sansn ) \leqslant \Pi \scrI (X).

By Claim 34, we infer that

10
\surd 
k \cdot \alpha \leqslant | (X \cap V \sanso \sansu \sanst 

i ) \setminus T \sansl \sansi | \leqslant \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ).

Putting all these together, we observe that

\Pi \scrI (X) lg \Pi \scrI (X) = \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) lg \Pi \scrI (X) + \Pi \scrI \sansi \sansn (X\sansi \sansn ) lg \Pi \scrI (X)

\geqslant \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) \cdot (1 + lg\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst )) + \Pi \scrI \sansi \sansn (X\sansi \sansn ) lg \Pi \scrI \sansi \sansn (X\sansi \sansn )

\geqslant \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) lg \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) + \Pi \scrI \sansi \sansn (X\sansi \sansn ) lg \Pi \scrI \sansi \sansn (X\sansi \sansn ) + \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst )

\geqslant \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) lg \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) + \Pi \scrI \sansi \sansn (X\sansi \sansn ) lg \Pi \scrI \sansi \sansn (X\sansi \sansn ) + 10
\surd 
k \cdot \alpha .

This is exactly the claimed inequality. As mentioned before, the case when
\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) \geqslant \Pi \scrI \sansi \sansn (X\sansi \sansn ) is symmetric.

Finally, we can proceed with the final success probability analysis. For this, we
take any c1 \geqslant 2.

Claim 37. Assume c1 \geqslant 2. Supposing X \cap W\sansi \sanss \sansl \not = \emptyset and the subroutine of
Theorem 9 returned a separator chain, the algorithm outputs a set A with X \subseteq A
with probability at least \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X)). This includes the (1 - 1/k) probability
of success of the preliminary clustering step, the 1/k probability that the algorithm
correctly assumes that X \cap W\sansi \sanss \sansl \not = \emptyset , the k - 7 probability of correctly choosing the
island C that intersects the pattern, the (10k2 lg n) - 1 probability of choosing the right
distance d, and k - 2\alpha  - 5 probability of correctly sampling the i, \alpha , and set Q.

Proof. We denote by n\sansi \sansn and n\sanso \sansu \sanst the numbers of vertices in G\sansi \sansn and G\sanso \sansu \sanst , respec-
tively; note that n\sansi \sansn , n\sanso \sansu \sanst \leqslant n. From the probability of the success of recursive calls,
we infer that

\BbbP (X \subseteq A) \geqslant 

\biggl( 
1 - 1

k

\biggr) 
\cdot k - 8 \cdot (10k2 lg n) - 1 \cdot k - 2\alpha  - 5\cdot 

\sansL \sansB (n\sanso \sansu \sanst ,\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ),\Gamma \scrI \sanso \sansu \sanst ,\Phi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst )) \cdot \sansL \sansB (n\sansi \sansn ,\Pi \scrI \sansi \sansn (X\sansi \sansn ),\Gamma \scrI \sansi \sansn ,\Phi \scrI \sansi \sansn (X\sansi \sansn ))

\geqslant k - 2\alpha  - 17 \cdot (lg n) - 1\cdot 
\sansL \sansB (n\sanso \sansu \sanst ,\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ),\Gamma \scrI \sanso \sansu \sanst ,\Phi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst )) \cdot \sansL \sansB (n\sansi \sansn ,\Pi \scrI \sansi \sansn (X\sansi \sansn ),\Gamma \scrI \sansi \sansn ,\Phi \scrI \sansi \sansn (X\sansi \sansn )).

(28)

From (23) and (25) we infer that

\biggl( 
1 - 1

k

\biggr) c2\Pi \scrI (X) lg \Gamma \scrI 

\leqslant 

\biggl( 
1 - 1

k

\biggr) c2\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) lg \Gamma \scrI \sanso \sansu \sanst 

\cdot 
\biggl( 
1 - 1

k

\biggr) c2\Pi \scrI \sansi \sansn 
(X\sansi \sansn ) lg \Gamma \scrI \sansi \sansn 

.

(29)
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LOW TREEWIDTH PATTERN COVERING 1911

Similarly, from (24) and the fact that n\sansi \sansn , n\sanso \sansu \sanst \leqslant n, we infer that

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\surd 
k

\cdot \Phi \scrI (X)

\biggr] 
\leqslant exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\sanso \sansu \sanst \surd 
k

\cdot \Phi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst )

\biggr] 
.

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\sansi \sansn \surd 
k

\cdot \Phi \scrI \sansi \sansn (X\sansi \sansn )

\biggr] 
.

(30)

Finally, from Claim 36 we have that

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\surd 
k

\cdot \Pi \scrI (X) lg \Pi \scrI (X)

\biggr] 
\leqslant exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\sanso \sansu \sanst \surd 
k

\cdot \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ) lg \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst )

\biggr] 
.

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\sansi \sansn \surd 
k

\cdot \Pi \scrI \sansi \sansn (X\sansi \sansn ) lg \Pi \scrI \sansi \sansn (X\sansi \sansn )

\biggr] 
.

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\surd 
k

\cdot 10\alpha 
\surd 
k

\biggr] 
.(31)

Let us analyze the last factor of the right-hand side of (31), keeping in mind that
c1 \geqslant 2.

exp

\biggl[ 
 - c1 \cdot 

lg k + lg lg n\surd 
k

\cdot 10\alpha 
\surd 
k

\biggr] 
= exp [ - c1 \cdot 10\alpha \cdot lg k  - c1 \cdot 10\alpha \cdot lg lg n]

\leqslant k - 20\alpha \cdot (lg n) - 1 \leqslant k - 2\alpha  - 17 \cdot (lg n) - 1.(32)

Finally, by plugging (29), (30), (31), and (32) into (28) with \sansL \sansB function expanded,
and recognizing the expression \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X)), we obtain

\BbbP (X \subseteq A) \geqslant \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X)),

which is exactly what we needed to prove.

Claim 35 ensures that the output of the algorithm has the required properties,
whereas Claim 37 yields the sought lower bound on the success probability.

6. Extensions. In this section we develop the following extension of
Theorem 1 for graph classes excluding a fixed minor, at the cost of a bound on
the maximum degree of the pattern. By a proper minor-closed graph class we mean
a graph class that is minor-closed and does not contain all graphs.

Theorem 38. Let \scrC be a proper minor-closed graph class, and let \Delta be a fixed
constant. Then there exists a randomized polynomial-time algorithm that, given an
n-vertex graph G from \scrC and an integer k, samples a vertex subset A \subseteq V (G) with
the following properties:

(P1) The induced subgraph G[A] has treewidth \scrO (
\surd 
k log k).

(P2) For every vertex subset X \subseteq V (G) with | X| \leqslant k such that G[X] is connected
and has a spanning tree of maximum degree \Delta , the probability that X is
covered by A, that is X \subseteq A, is at least (2\scrO (

\surd 
k log2 k) \cdot n\scrO (1)) - 1.

To see why the above assumption seems necessary with our techniques, let us
look at the following example. Let G be a graph that contains a universal vertex v0
(i.e., adjacent to all vertices of V (G) \setminus \{ v0\} ) such that G - v0 is planar. It is easy to
see that, since G - v0 is K5-minor-free, we have that G is K6-minor-free. Let H be a
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1912 FOMIN ET AL.

connected pattern in G: a connected subgraph on k vertices. If H contains v0, then
H  - v0 is a not necessarily connected pattern (subgraph) of G  - v0. Hence, finding
a connected k-vertex pattern in G boils down to finding a not necessarily connected
(k  - 1)-vertex pattern in G  - v0. However, if we bound the maximum degree of the
pattern, the (k  - 1)-vertex pattern H  - v0 in the graph G - v0 has bounded number
of connected components, making the situation much more similar to the connected
planar (or apex-minor-free) case.

We do not know how to handle arbitrary disconnected patterns (subgraphs) with
our techniques. As we show in this section, we are able to do it in a limited fashion;
namely, we can handle up to roughly

\surd 
k/ lg k connected components without increas-

ing the asymptotic bound in the exponential factor in the success probability. The
proof of the following generalization of Theorem 1 is described in section 6.1.

Theorem 39. Let \scrC be a class of graphs that exclude a fixed apex graph as a
minor. Then there exists a randomized polynomial-time algorithm that, given an n-
vertex graph G from \scrC and an integer k, samples a vertex subset A \subseteq V (G) with the
following properties:

(P1) The induced subgraph G[A] has treewidth \scrO (
\surd 
k log k).

(P2) For every vertex subset X \subseteq V (G) with | X| \leqslant k such that G[X] has at most
\scrO (
\surd 
k/ log k) connected components, the probability that X is covered by A,

that is X \subseteq A, is at least (2\scrO (
\surd 
k log2 k) \cdot n\scrO (1)) - 1.

After proving Theorem 39, in section 6.2 we show how to use this extension for a
bounded number of connected components in order to handle connected patterns in
graph classes excluding a fixed minor. To this end, we use the Robertson--Seymour
decomposition theorem that provides a tree decomposition for any graph that exclude
a fixed minor. Roughly speaking, in this decomposition every bag corresponds to a
graph almost embeddable into a fixed surface, and every adhesion (intersection of
neighboring bags) has bounded size. By a result of Grohe [26], one can delete a
bounded number of vertices from an almost embeddable graph to get an apex-minor-
free graph. If the pattern we are looking for is connected and has bounded degree,
deleting a bounded number of vertices can split it only into a bounded number of
connected components. Thus, the algorithm for graph classes excluding a fixed minor
boils down to an application of either Theorem 39 or a simple Baker-style argument
to every bag, after turning it into an apex-minor-free graph.

6.1. Extension to bounded number of components. In this section we
prove Theorem 39; that is, we extend Theorem 1 to handle a bounded number of
connected components of the pattern. We describe the reasoning as a series of modi-
fications to the proof of Theorem 1 from section 5.

As in section 5, in a recursive step we are given an instance \scrI consisting of a
minor G of the input graph G0, a root r \in V (G), two disjoint sets of light and heavy
terminals T \sansl \sansi , T \sansh \sanse \subseteq V (G) with r \in T \sansl \sansi (we denote T = T \sansl \sansi \cup T \sansh \sanse a set R \subseteq V (G)\setminus T of
relay vertices representing connectivity in other parts of the input graph), and credit
\lambda . The nonrelay-distance measure nr-distG(\cdot , \cdot ) is defined in the same way: the cost of
traversing a relay vertex is 0. We maintain the same invariants regarding terminals:
every light terminal is within nr-distance at most 3 from the root, and the number of
terminals is bounded by 16014\=\alpha (\scrC )

\surd 
k lg k + \lambda .

The first significant difference concerns the notion of a pattern, as we need to
generalize this concept. We start with the following definition.
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LOW TREEWIDTH PATTERN COVERING 1913

Definition 40. Let X \subseteq V (G)\setminus R be a set of vertices. Two vertices x, y \in X are
connected if they belong to the same connected component of G[X\cup R]. A component
of the set X is an equivalence class in the relation of being connected (i.e., a set of
vertices from X from a connected component of G[X \cup R] that contains at least one
vertex of X). A component Y is rooted if it contains a vertex within nr-distance at
most 3 from the root and free otherwise.

For a set X \subseteq V (G) \setminus R in an instance \scrI , we introduce the following component
potential as the fourth potential:

Component potential \Lambda \scrI (X) := number of free components of X.

We can now formally define a pattern. A set X \subseteq V (G) \setminus R is a pattern in \scrI if
r \in X and

| X| \leqslant k  - 10
\surd 
k \cdot \lambda  - 486

\surd 
k lg k \cdot \Lambda \scrI (X).

That is, we drop the assumption of the connectivity of X (possibly with the help
of some relay vertices), but every free component imposes a penalty on the allowed
size of the pattern. Note that every pattern contains at least one rooted component
(the one containing the root r) and an arbitrary number of free components.

6.1.1. Potentials. Let us now proceed to the description of the potentials.
Apart from introducing the component potential, we extend the set of far vertices:
every vertex in a free component is far, regardless of its nr-distance from the root r.

\sansF \sansa \sansr \scrI (X) := \{ u \in X : nr-distG(u, r) > 1000
\surd 
k lg k or u is in a free component\} .

As before, every vertex of the pattern that is not far is called close.
Intuitively, every free component of the pattern decreases the success probability

of the algorithm by a factor inverse-quasipolynomial in k and lg n. Formally, we define\widehat \sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X),\Lambda \scrI (X)) :=

\sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X)) \cdot exp
\biggl[ 
 - c3 \cdot \Lambda \scrI (X) \cdot 

\biggl( 
lg2 k(lg k + lg lg n) +

lg n lg k\surd 
k

\biggr) \biggr] 
for some positive constant c3 that will be determined later. Here, again, n denotes
the total number of vertices of the graph, and we omit the subscript \scrI whenever the
instance is clear from the context.

Our goal is to sample a subset of nonrelay vertices A \subseteq V (G)\setminus R with the following
properties:

(1) It holds that T \sansl \sansi \subseteq A, and the graph G[A] admits a tree decomposition of
width at most 24022\=\alpha (\scrC )

\surd 
k lg k, where T \cap A is contained in the root bag.

(2) For every pattern X in instance \scrI , we have

\BbbP (X \subseteq A) \geqslant \widehat \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X),\Lambda (X)).(33)

6.1.2. Operations on the instance. One of the crucial properties of the algo-
rithm of section 5 is that it modifies the input graph in a limited fashion. Namely,
every subinstance is created by means of the following operations:

(1) Edge contraction. Furthermore, if one of the contracted vertices is a relay
vertex, the new vertex remains a relay vertex or the contraction is made onto
the root.
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1914 FOMIN ET AL.

(2) Other modifications such as vertex/edge deletion/addition, but only involving
vertices within nr-distance larger than 2000

\surd 
k lg k from r, and not involving

vertices in the pattern X or relay vertices essential for the connectivity rela-
tion within the pattern (assuming that the algorithm made correct random
choices).

The analysis of section 5 used the above properties to ensure that the algorithm
never turns a close vertex into a far vertex, assuming that the algorithm makes correct
random choices. Here, we observe that neither of the above modifications can create
a new component. Furthermore, a component that is rooted remains rooted, and
a vertex belonging to a rooted component remains in a rooted component. As a
result, these modifications cannot turn a close vertex into a far vertex under the new
definition of the far vertices, nor can they create a new free component. In particular,
whenever we construct a pattern in a subinstance by projecting the original pattern
in the natural way, the projection remains a pattern in the new instance. This is
because the 486

\surd 
k lg k \cdot \Lambda (X) penalty in the upper bound on the size of the pattern

does not increase.

6.1.3. Solving the general problem. First, note that we can make the same
assumptions (Inv.d)--(Inv.g) as in section 5, as the reasoning of Lemma 20 still applies.

The general structure and the main steps of the algorithm are the same as in
section 5: we define the margin M to be the set of vertices of G within nr-distance
at most 2000

\surd 
k lg k from the root r and apply the clustering procedure to the graph

(G - M)\langle R \setminus M\rangle . Note that the clustering procedure does not use the assumption
of the connectivity of the pattern. Thus, we can assume that every island---every
connected component of G  - M---has radius at most 9k2 lg n (where relay vertices
are traversed for free), at the cost of a (1  - 1/k) multiplicative factor in the success
probability. By slightly abusing the notation, we redefine G to be the graph obtained
from the clustering procedure; this graph was named G\sansc \sansl in section 5. We trim the
sets of terminals and of relay vertices as in section 5, obtaining sets T \sansl \sansi 

\sansc \sansl , T
\sansh \sanse 
\sansc \sansl , R\sansc \sansl ,

respectively.
By the same arguments as in section 5, by locally bounded treewidth we obtain

sets W\sansn \sansr \sansm and W\sansi \sanss \sansl with the following properties:

(1) W\sansn \sansr \sansm consists of at most 8007\=\alpha (\scrC )
\surd 
k lg k vertices of M , and r \in W\sansn \sansr \sansm ;

(2) W\sansi \sanss \sansl consists of the union of vertex sets of at most 8007\=\alpha (\scrC )
\surd 
k lg k islands of

G - M ;
(3) every connected component D of G\sansc \sansl  - (W\sansn \sansr \sansm \cup W\sansi \sanss \sansl ) contains at most | T\sansc \sansl | /2

terminals and at most | V (G\sansc \sansl ) \setminus (T \sansl \sansi 
\sansc \sansl \cup R\sansc \sansl )| /2 vertices that are neither light

terminals nor relay vertices.
As before, we randomly select a branch we pursue: with probability (1 - 1/k) we

assume that the pattern is disjoint with W\sansi \sanss \sansl , and with the remaining probability 1/k
we assume otherwise. Thus, we have two cases: when W\sansi \sanss \sansl is assumed to be disjoint
with the pattern, and when we suppose that W\sansi \sanss \sansl intersects the pattern.

6.1.4. The case when W\sansi \sanss \sansl is disjoint with the pattern. The crux in this
case is to observe that nothing new happens, mostly because the argumentation of
section 5.3 does not rely on the connectivity of the pattern. That is, we argue that
the algorithm as described in section 5 works also in our setting.

Recall that in this case we first delete W\sansi \sanss \sansl from G\sansc \sansl ; let the obtained graph be
named G\prime , as in section 5. Then recurse into instances \scrI D created for every connected
componentD of G\sansc \sansl  - (W\sansi \sanss \sansl \cup W\sansn \sansr \sansm ) = G\prime  - W\sansn \sansr \sansm , defined as in section 5. In the instance
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LOW TREEWIDTH PATTERN COVERING 1915

\scrI D we look for pattern XD := X \cap ND, where ND := N
G
\prime [D] \cup \{ r\} . We denote by

\sansC \sansC the set of connected components of G\prime  - W\sansn \sansr \sansm .
We now need to analyze the behavior of the free components in the recursion.

We start with the following observation that follows directly from the discussion of
section 6.1.2.

Claim 41. Let Y be a component of X in \scrI , and let D \in \sansC \sansC be such that
Y \cap ND \not = \emptyset . Then Y \cap ND is contained in a single component of XD in \scrI D.

Second, we observe that the rooted components cannot give rise to any new free
components.

Claim 42. Let Y be a rooted component of X in \scrI , and let D \in \sansC \sansC be such that
Y \cap ND \not = \emptyset . Then Y \cap ND is contained in a rooted component of XD in \scrI D.

Proof. Let w be a vertex of Y that is within nr-distance at most 3 from the root
r in G\sansc \sansl (equivalently, in G\prime ). If w \in ND, then we are done; hence assume otherwise.
By the definition of a component, there exists a path P in G\prime [Y \cup R] between w and
some vertex v \in Y \cap ND such that no vertex of P  - \{ v\} belongs to ND, except for
possibly a neighbor v\prime of v on P if v\prime is a relay vertex in N

G
\prime (D). Consequently, in

the process of construction of \scrI D, the path P  - \{ v\} is contracted either onto the root
or onto a relay vertex. As the nr-distance between w and r is at most three in G\prime ,
and relay vertices are traversed for free in our nr-distance measure, we have that v is
within nr-distance at most 3 from the root in \scrI D. Consequently, Y \cap ND is contained
in a rooted component of XD in \scrI D.

Third, we observe that a free component cannot split into multiple free compo-
nents.

Claim 43. Let Y be a free component of X in \scrI . Then there exists a component
D0 \in \sansC \sansC such that for every D \in \sansC \sansC such that D \not = D0 and Y \cap ND \not = \emptyset the set
Y \cap ND is contained in a rooted component of XD in \scrI D.

Proof. We say that a component D \in \sansC \sansC is touched if Y \cap ND \not = \emptyset . We consider
all paths in G\prime between the root r and a vertex w \in N

G
\prime [D] for a touched component

D and pick Q0 to be a shortest such path. Let w \in N
G
\prime [D0] be the second endpoint of

Q0, where D0 is a touched component. By the minimality of Q0, no vertex of Q0 - \{ w\} 
belongs to N

G
\prime [D] for a touched component D. Let Q1 be a shortest path between w

and a vertex v \in Y \cap ND0
with all internal vertices in D0; such a path exists by the

connectivity of G\prime [D0], and by the minimality of Q1 no vertex of Q1  - \{ v\} belongs
to Y .

Consider a touched component D \in \sansC \sansC different than D0. By the definition of a
component, there exists a path Q2 in G\prime [Y \cup R] between v and a vertex u \in Y \cap ND

such that no vertex of Q2  - \{ u\} belongs to ND, except for possibly a neighbor u\prime 

of u on Q2 that is a relay vertex in N
G
\prime (D). Observe that from the walk being the

concatenation of the paths Q0, Q1, and Q2 only the root r and the vertices w, u,
and u\prime may potentially belong to ND. Consequently, in \scrI D, the vertex u is within
nr-distance at most 2 from the root (recall that u\prime is a relay vertex if it belongs to
ND). We infer that Y \cap ND is contained in a rooted component of XD in \scrI D.

Claims 41--43 justify the following.

Claim 44. The following holds:

\Lambda \scrI (X) \geqslant 
\sum 

D\in \sansC \sansC 

\Lambda \scrI D
(XD).(34)
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1916 FOMIN ET AL.

Furthermore, Claims 41--43 ensure that a close vertex of X in \scrI cannot become a
far vertex in any of the instances \scrI D. Consequently, the potential analysis of Claim
28 holds also in our case.

Using Claim 44, the following claim follows along the same lines as Claim 30,
finishing the analysis of this subcase.

Claim 45. Supposing X \cap W\sansi \sanss \sansl = \emptyset , the algorithm outputs a set A with X \subseteq A
with probability at least \widehat \sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X),\Lambda \scrI (X)). This includes the (1 - 1/k)
probability of success of the preliminary clustering step and the (1  - 1/k) probability
that the algorithm correctly assumes that X \cap W\sansi \sanss \sansl = \emptyset .

We note that the bound on the treewidth of G[A] follows in exactly the same
manner as in section 5.

6.1.5. The case when W\sansi \sanss \sansl intersects the pattern. Just as in section 5, in
the second case we

(a) guess (by sampling at random) an island C with V (C) \subseteq W\sansi \sanss \sansl such that C
intersects the pattern;

(b) take z to be a nonrelay vertex of C that is at nr-distance at most 9k2 lg n
from all vertices of C within C;

(c) guess (by sampling at random) the distance d from z to the pattern within
the island C; and

(d) contract the vertices of C within nr-distance less than d from z onto z.
In step (d), we perform the same distinction as in section 5 between nonrelay

vertices (for which we use nr-distance less than max(d, 1)) and relay vertices (for
which we use nr-distance less than max(d, 1) - 1).

As a result, by incurring a multiplicative factor

1

k
\cdot | W\sansi \sanss \sansl |  - 1 \cdot (10k2 lg n) - 1 \geqslant k - 11(lg n) - 1

in the success probability we can assume that we have identified a vertex z /\in R
satisfying nr-distG(r, z) > 2000

\surd 
k lg k such that there exists a vertex of the pattern

within distance at most 1 from z. We let G\prime \prime denote the graph after the modifications
explained above. As before, we now apply the duality theorem (Theorem 9) to the
graph G\prime \prime \langle R \cap V (G\prime \prime )\rangle , pair of vertices (s, t) := (r, z), and parameters

p := \lceil 120
\surd 
k lg k\rceil and q := k.

The further behavior of the algorithm, as well as its analysis, depends on the
output of the duality theorem. Thus, we need to consider two subcases: the duality
theorem returns either a family of paths or a separator chain.

Subcase: A sequence of paths. Following the argumentation of section 5, in
this section we are working with the following objects:

\bullet a vertex z \in V (G\prime \prime ) \setminus R with nr-dist
G
\prime \prime (z, r) > 2000

\surd 
k lg k, such that some

vertex of X is within nr-distance at most 1 from z, and
\bullet a sequence P1, P2, . . . , Pk of (r, z)-paths in G\prime \prime , such that for every i \in [k] the

set V (Pi) can be partitioned as

V (Pi) = \{ r, z\} \uplus (V (Pi) \cap R) \uplus \sansP \sansu \sansb (Pi) \uplus \sansP \sansr \sansv (Pi),

where the sets \sansP \sansr \sansv (Pi) are pairwise disjoint and | \sansP \sansu \sansb (Pi)| \leqslant 480
\surd 
k lg k.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 1

29
.1

77
.1

47
.2

22
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



LOW TREEWIDTH PATTERN COVERING 1917

The success probability so far in this case is at least k - 11(lg n) - 1.
As in section 5, we randomly pick an index i \in [k] and assume further that

X\cap \sansP \sansr \sansv (Pi) = \emptyset . Such an index i exists, because | X| \leqslant k, the sets \sansP \sansr \sansv (Pi) are pairwise
disjoint, and r \in X but r /\in \sansP \sansr \sansv (Pi) for every i. Hence, the success probability of this
step is at least 1/k.

We reduce Pi in the same way as in section 5. Let v0 be the last light terminal on
Pi (it exists, as r is a light terminal), let P \prime be the suffix of Pi from v0 to z, and let
v0, v1, . . . , v\ell = z be the vertices of (\sansP \sansu \sansb (Pi) \cap V (P \prime )) \cup \{ v0, z\} in the order of their
appearance on P \prime . For every 0 \leqslant j < \ell , we inspect the segment of P \prime between vj and
vj+1. If this segment contains some relay vertex gj , then contract it entirely onto gj ;
if there is more than one relay vertex, choose an arbitrary one as gj . Otherwise, if
there are no relay vertices on the segment, contract the whole segment onto vertex
vj .

Let H be the resulting graph, and construct the instance \scrI \prime as in section 5.
We have \ell \leqslant | \sansP \sansu \sansb (Pi)| + 1 \leqslant 485

\surd 
k lg k and nr-distG(r, v0) \leqslant 3, and thus

nr-distH(r, z) \leqslant 488
\surd 
k lg k.

However, the proof of Claim 31 (relation between the sets of far vertices in \scrI 
and \scrI \prime ) fails if the vertex of the pattern within distance at most 1 from z belongs to
a free component. Namely, in section 5 we argued that a significant number of far
vertices of the pattern become close after the contraction, but now this argument does
not apply anymore if they all reside in a free component---and thus are considered
far automatically, no matter what is their nr-distance from the root. The crux here
is that if this is the case, then we can turn the free component containing the said
vertices into a rooted one by adding \{ v0, v1, . . . , v\ell \} to the pattern X, thus providing
a gain in the potential \Lambda (X). Let X \prime := X \cup \{ v0, v1, . . . , v\ell \} .

Claim 46. We have \sansF \sansa \sansr \scrI \prime (X) \subseteq \sansF \sansa \sansr \scrI (X) and \Lambda \scrI \prime (X) \leqslant \Lambda \scrI (X). Furthermore,
one of the following holds:

\bullet | \sansF \sansa \sansr \scrI (X) \setminus \sansF \sansa \sansr \scrI \prime (X)| \geqslant 511
\surd 
k lg k, or

\bullet X \prime is a pattern in \scrI \prime and \Lambda \scrI \prime (X
\prime ) < \Lambda \scrI (X).

Proof. The first part of the claim follows directly from the discussion of section
6.1.2 and the fact that H is created from G\prime \prime by means of edge contractions, in the
same manner as in section 5. For the second part, let v \in X be a vertex within
distance at most 1 from z in G\prime \prime (possibly v = z).

If v belongs to a rooted component of X in \scrI , the analysis of Claim 31 remains
valid. That is, G\prime \prime [X \cup R] contains a path P from v to a vertex w that is within
nr-distance at most 3 from the root, and the first 511

\surd 
k lg k vertices of X of this path

belong to \sansF \sansa \sansr \scrI (X). These vertices become close in H, as nr-distH(r, v) \leqslant 488
\surd 
k lg k.

Hence, we are left with the case when v belongs to some free component Y
of X in \scrI . The crucial observation is that in H the vertex v belongs to a rooted
component of X \prime , as v0 \in T \sansl \sansi (and thus is within nr-distance at most 3 from the
root) and v0, v1, . . . , v\ell is a path in H. By the discussion in section 6.1.2, no new free
component is created in \scrI \prime , while Y stops to be free and becomes part of a rooted
component in \scrI \prime . Hence, \Lambda \scrI \prime (X

\prime ) < \Lambda \scrI (X). Furthermore,

| X \prime | \leqslant (\ell + 1) + | X| 

\leqslant 486
\surd 
k lg k +

\Bigl( 
k  - 10

\surd 
k \cdot \lambda  - 486

\surd 
k lg k \cdot \Lambda \scrI (X)

\Bigr) 
\leqslant k  - 10

\surd 
k \cdot \lambda  - 486

\surd 
k lg k \cdot \Lambda \scrI \prime (X

\prime ).

Consequently, X \prime is a pattern in \scrI \prime , and the claim is proven.
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1918 FOMIN ET AL.

The potential gains in Claim 46 allow us to conclude with the analogue of Claim 33.
For its proof, we need the following estimate.

Claim 47. For every x, y > 0 it holds that

(x+ y) lg(x+ y) - x lg x \leqslant y(2 + lg(x+ y)).

Proof. We have

(x+ y) lg(x+ y) - x lg x = y lg(x+ y) + x lg(1 + y/x) \leqslant y lg(x+ y) + 2y,

where in the last inequality we have used the fact that lg(1 + t) \leqslant 2t for every
t > 0.

Claim 48. Assume c1 \geqslant 1 and c3 is sufficiently large. Supposing X\cap W\sansi \sanss \sansl \not = \emptyset and
the subroutine of Theorem 9 returned a sequence of paths, the algorithm outputs a set
A with X \subseteq A with probability at least \widehat \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X),\Lambda (X)). This includes the
(1 - 1/k) probability of success of the preliminary clustering step, the 1/k probability
that the algorithm correctly assumes that X \cap W\sansi \sanss \sansl = \emptyset , the k - 7 probability of correctly
choosing the vertex z, the (10k2 lg n) - 1 probability of choosing the right distance d,
and the 1/k probability of choosing the right path index i.

Proof. The proof follows along the same lines as the proof of Claim 33. Note
that we have \Lambda \scrI \prime (X) \leqslant \Lambda \scrI (X) and \Phi \scrI \prime (X) \leqslant \Phi \scrI (X). If the first option of Claim
46 happens (i.e., the drop in the potential \Phi (X)), then the analysis is the same as in
Claim 33. It remains to analyze the second case. Note that here we need to focus on
all potentials, as we will analyze pattern X \prime in the instance \scrI \prime .

Since | X \prime \setminus X| \leqslant 486
\surd 
k lg k, we have (using Claim 47 and | X \prime | \leqslant k for the first

inequality)

\Pi \scrI \prime (X
\prime ) lg \Pi \scrI \prime (X

\prime ) - \Pi \scrI (X) lg \Pi \scrI (X) \leqslant 486
\surd 
k lg k \cdot (2 + lg k) \leqslant 972

\surd 
k lg2 k,

\Phi \scrI \prime (X
\prime ) - \Phi \scrI (X) \leqslant 486

\surd 
k lg k,

\Pi \scrI \prime (X
\prime ) lg \Gamma \scrI \prime  - \Pi \scrI (X) lg \Gamma \scrI \leqslant 486

\surd 
k lg k lg n,

\Lambda \scrI \prime (X
\prime ) - \Lambda \scrI (X) \leqslant  - 1.

Thus, a straightforward computation shows that

\widehat \sansL \sansB (n\prime ,\Pi \scrI \prime (X
\prime ),\Gamma \scrI \prime ,\Phi \scrI \prime (X

\prime ),\Lambda \scrI \prime (X
\prime ))\widehat \sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X),\Lambda \scrI (X))

\geqslant exp
\bigl[ 
 - 1458 \cdot c1 \cdot lg2 k(lg k + lg lg n)

\bigr] 
\cdot 

\biggl( 
1 - 1

k

\biggr) c2\cdot 486
\surd 
k lg k lgn

\cdot 

exp

\biggl[ 
c3

\biggl( 
lg2 k(lg k + lg lg n) +

lg k lg n\surd 
k

\biggr) \biggr] 
.(35)

Note that since k \geqslant 10, we have 1 - 1/k \geqslant exp( - 2/k), and hence\biggl( 
1 - 1

k

\biggr) c2\cdot 486
\surd 
k lg k lgn

\geqslant exp

\biggl[ 
 - 972c2 \cdot 

lg k lg n\surd 
k

\biggr] 
.
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LOW TREEWIDTH PATTERN COVERING 1919

Therefore, for sufficiently large c3, for instance c3 \geqslant 1458 \cdot c1 + 972 \cdot c2 + 12, the
right-hand side in the inequality (35) is at least k12 lg n, required to offset the success
probability of the random choices, similarly as in the proof of Claim 33. This finishes
the proof of the claim and the analysis of this subcase.

Subcase: A separator chain. Following the argumentation of section 5, in this
section we are working with the following objects:

\bullet a vertex z \in V (G\prime \prime ) \setminus R with nr-dist
G
\prime \prime (z, r) > 2000

\surd 
k lg k, such that some

vertex of X is within nr-distance at most 1 from z, and
\bullet an (r, z)-separator chain (C1, . . . , Cp) in G\langle R\rangle with | Cj | \leqslant 2k for each j \in [p],

where p = \lceil 120
\surd 
k lg k\rceil .

The success probability so far in this case is at least k - 11(lg n) - 1.
As in section 5, we treat (C1, . . . , Cp) as a separator chain in G and drop the first

three separators. In this manner, we can assume p \geqslant \lceil 117
\surd 
k lg k\rceil , every Ci is disjoint

with T \sansl \sansi \cup R, and all vertices within nr-distance at most 3 from the root, including all
light terminals, are in \sansr \sanse \sansa \sansc \sansh (r,G - Ci) for every i.

Recall that in this case the algorithm of section 5 samples an index i \in [p], an
integer \alpha between 1 and

\surd 
k/10, and a set Q \subseteq Ci of size \alpha . The intuition is that

we hope that Q = Ci \cap X and that Ci is a sparse balanced separator in the sense of
Claim 34.

In our case, we additionally allow the value \alpha = 0 in the above sampling. More-
over, whenever there exists an index i \in [p] with Ci \cap X = \emptyset , we consider that the
algorithm made a correct guess if it sampled such an index i together with \alpha = 0,
instead of the index provided by Claim 34.

If no such index exists, the analysis of the algorithm of section 5 remains appli-
cable: Claim 34 still holds, and only the probability of choosing the correct \alpha drops
from (

\surd 
k/10) - 1 to (1 +

\surd 
k/10) - 1; however, in both cases it is at least k - 1, and the

total probability of making correct random choices is at least k - 2\alpha  - 5, as in section 5.
Furthermore, we have the following claim concerning the potential \Lambda (X).

Claim 49. If for every separator Ci we have Ci \cap X \not = \emptyset and the algorithm made
correct random choices, then the following holds:

\Lambda \scrI (X) \geqslant \Lambda \scrI \sansi \sansn (X\sansi \sansn ) + \Lambda \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ).

Proof. Let Y be a component of X in \scrI D. From the discussion in section 6.1.2
and the construction of \scrI \sansi \sansn it follows that Y \cap X\sansi \sansn is either empty or contained in a
single component Y\sansi \sansn of X\sansi \sansn in \scrI \sansi \sansn . Similarly, Y \cap X\sanso \sansu \sanst is empty or contained in a single
connected component Y\sanso \sansu \sanst of X\sanso \sansu \sanst in \scrI \sanso \sansu \sanst . We show that if Y is a rooted component
of X in \scrI , then both Y\sansi \sansn and Y\sanso \sansu \sanst are rooted in their respective instances if they exist,
and if Y is free, then at most one of these components is free.

We first note that if Y \cap Ci \not = \emptyset , then Y\sanso \sansu \sanst exists and is rooted, as all vertices of
X \cap Ci are neighbors of the root in \scrI \sanso \sansu \sanst .

Assume first that Y is a rooted component of \scrI . Then Y\sansi \sansn is a rooted component
of \scrI \sansi \sansn , as \scrI \sansi \sansn is created from \scrI by edge contractions only. Furthermore, if Y \cap Ci = \emptyset ,
then Y \cap X\sanso \sansu \sanst = \emptyset , and otherwise as discussed above Y\sanso \sansu \sanst is a rooted component of
\scrI \sanso \sansu \sanst .

Now assume that Y is a free component of \scrI . If Y \cap Ci = \emptyset , then Y \cap X\sansi \sansn or
Y \cap X\sanso \sansu \sanst is empty. Otherwise, as already discussed, Y\sanso \sansu \sanst is a rooted component of
\scrI \sanso \sansu \sanst . This finishes the proof of the claim.
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1920 FOMIN ET AL.

Thus, we are left with the case when there exists a separator Ci that is disjoint
with X, and we assume that the algorithm correctly guessed such an index i and
guessed \alpha = 0. The probability of making a correct choice is at least

1

p
\cdot (1 +

\surd 
k/10) - 1 \geqslant k - 5 = k - 2\alpha  - 5.

Recall that for i \in [p] we defined the following partition V (G) = V \sansi \sansn 
i \uplus Ci \uplus V \sanso \sansu \sanst 

i :

V \sansi \sansn 
i = \sansr \sanse \sansa \sansc \sansh (r,G - Ci) and V \sanso \sansu \sanst 

i = V (G) \setminus (Ci \cup V \sansi \sansn 
i ).

The intuition is as follows: since Ci \cap X = \emptyset and Ci does not contain any relay
terminal, we can independently recurse on V \sansi \sansn 

i and V \sanso \sansu \sanst 
i . In V \sansi \sansn 

i , we need to replace
the components of G - V \sansi \sansn 

i with relay vertices to keep the potentials bounded. On the
other hand, V \sanso \sansu \sanst 

i does not contain any vertex within nr-distance at most 3 from the
root. Thus every vertex of the pattern X that persists in V \sanso \sansu \sanst 

i is in a free component,
and hence it is far (in \scrI ). Hence, we can freely choose a new root in this subcase: by
proclaiming z the new root, we make the component containing a vertex of X within
nr-distance 1 from z close, thus creating a gain in the \Lambda (X) potential.

Let us now proceed with formal argumentation. The algorithm defines two subin-
stances \scrI \sanso \sansu \sanst and \scrI \sansi \sansn as follows.

The instance \scrI \sansi \sansn is defined in the same way as in section 5 for \alpha = 0 and Q = \emptyset .
That is, we take \scrI \sansi \sansn := (G\sansi \sansn , r, T

\sansl \sansi 
\sansi \sansn , T

\sansh \sanse 
\sansi \sansn , R\sansi \sansn , \lambda ). Graph G\sansi \sansn is constructed from G

as follows. Inspect the connected components of the graph G  - V \sansi \sansn 
i . For each such

component D, contract it onto a new vertex gD that is declared to be a relay vertex.
That is, we define R\sansi \sansn to be (R \cap V \sansi \sansn 

i ) \cup \{ gD : D \in \sansc \sansc (G - V \sansi \sansn 
i )\} .

For the terminal sets T \sansl \sansi 
\sansi \sansn , T

\sansh \sanse 
\sansi \sansn , recall that T \sansl \sansi \subseteq V \sansi \sansn 

i , so all the original light
terminals persist in the graph G\sansi \sansn . Thus we take T

\sansl \sansi 
\sansi \sansn := T \sansl \sansi . For the heavy terminals,

we inherit them: T \sansh \sanse 
\sansi \sansn := T \sansh \sanse \cap V (G\sansi \sansn ). Finally, we take X\sansi \sansn := X \cap V (G\sansi \sansn ). By the

same arguments as in section 5, \scrI \sansi \sansn is a valid instance with pattern X\sansi \sansn .
Second, we define \scrI \sanso \sansu \sanst := (G\sanso \sansu \sanst , z, T

\sansl \sansi 
\sanso \sansu \sanst , T

\sansh \sanse 
\sanso \sansu \sanst , R\sanso \sansu \sanst , \lambda ). That is, we take the vertex

z to be the new root in the instance \scrI \sanso \sansu \sanst ---this is a modification of the algorithm
presented in section 5 that is triggered only when \alpha = 0 is sampled. Recall that
V \sanso \sansu \sanst 
i does not contain any light terminal. We define G\sanso \sansu \sanst := G\prime \prime [V \sanso \sansu \sanst 

i ], T \sansl \sansi 
\sanso \sansu \sanst := \{ z\} ,

T \sansh \sanse 
\sanso \sansu \sanst := T \sansh \sanse \cap V \sanso \sansu \sanst 

i , and R\sanso \sansu \sanst := R \cap V \sanso \sansu \sanst 
i . In other words, we inherit all terminals

and relay vertices from \scrI , and additionally proclaim z the root and a light terminal.
Since r \in T \sansl \sansi , we have | T | \geqslant | T\sanso \sansu \sanst | and, consequently, \scrI \sanso \sansu \sanst is a valid instance.

Finally, we take X\sanso \sansu \sanst := (X \cap V \sanso \sansu \sanst 
i )\cup \{ z\} . Note that | X\sanso \sansu \sanst | \leqslant | X| , as r \in X \setminus X\sanso \sansu \sanst .

Since Ci \cap (X \cup R) = \emptyset , every component of X in \scrI lies either entirely in V \sansi \sansn 
i or

entirely in V \sanso \sansu \sanst 
i . Furthermore, since every vertex within nr-distance at most 3 from

the root is in V \sansi \sansn 
i , every component of X lying in V \sanso \sansu \sanst 

i is free, and, consequently, all
vertices of V \sanso \sansu \sanst 

i \cap X are far. Let x \in X be a vertex within nr-distance at most 1 from
z; clearly, x \in V \sanso \sansu \sanst 

i . The component Y of X in \scrI containing x is free, but Y \cup \{ z\} is
contained in a rooted component of X\sanso \sansu \sanst in \scrI \sanso \sansu \sanst . This, together with the discussion
of section 6.1.2 applied to the instance \scrI \sansi \sansn , proves the following claim.

Claim 50. The following holds:

\Pi \scrI (X) \geqslant \Pi \scrI \sansi \sansn (X\sansi \sansn ) + \Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ),

\Gamma \scrI \geqslant \Gamma \scrI \sansi \sansn + \Gamma \scrI \sanso \sansu \sanst ,

\Phi \scrI (X) \geqslant \Phi \scrI \sansi \sansn (X\sansi \sansn ) + \Phi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ),

\Lambda \scrI (X) \geqslant 1 + \Lambda \scrI \sansi \sansn (X\sansi \sansn ) + \Lambda \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ).
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LOW TREEWIDTH PATTERN COVERING 1921

In particular, the last inequality of Claim 50 shows that X\sanso \sansu \sanst is a pattern in \scrI \sanso \sansu \sanst .
We apply the algorithm recursively to instances \scrI \sansi \sansn and \scrI \sanso \sansu \sanst , obtaining sets A\sansi \sansn 

and A\sanso \sansu \sanst . We have T \sansl \sansi = T \sansl \sansi 
\sansi \sansn \subseteq A\sansi \sansn and z \in A\sanso \sansu \sanst . We take A := A\sansi \sansn \cup A\sanso \sansu \sanst . Clearly,

T \sansl \sansi \subseteq A.
The fact thatG[A] admits a tree decomposition of width at most 24022\=\alpha (\scrC )

\surd 
k lg k

with A\cap T in the root bag is straightforward: since A\sansi \sansn and A\sanso \sansu \sanst are separated by Ci,
there are no edges between these two sets, and we can just take a root bag A\cap T and
attach as children the decompositions of G[A\sansi \sansn ] and G[A\sanso \sansu \sanst ].

We are left with analyzing the success probability. All the necessary observations
have already been made in Claim 50, so we can conclude with the following claim.

Claim 51. Assume c1 \geqslant 2 and c3 \geqslant 17. Supposing X \cap W\sansi \sanss \sansl \not = \emptyset and the
subroutine of Theorem 9 returned a separator chain, the algorithm outputs a set A
with X \subseteq A with probability at least \widehat \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X),\Lambda (X)). This includes the
(1 - 1/k) probability of success of the preliminary clustering step, the 1/k probability
that the algorithm correctly assumes that X \cap W\sansi \sanss \sansl = \emptyset , the k - 7 probability of cor-
rectly choosing the island C that intersects the pattern, the (10k2 lg n) - 1 probability
of choosing the right distance d, and k - 2\alpha  - 5 probability of correctly sampling the i,
\alpha , and set Q.

Proof. The case \alpha > 0 has been already discussed, and is the same as in section 5,
with the help of Claim 49 to control the split of the potential \Lambda (X). For \alpha = 0, Claim
50 ensures that

\widehat \sansL \sansB (n\sansi \sansn ,\Pi \scrI \sansi \sansn (X\sansi \sansn ),\Gamma \scrI \sansi \sansn ,\Phi \scrI \sansi \sansn (X\sansi \sansn ),\Lambda \scrI \sansi \sansn (X\sansi \sansn ))\cdot \widehat \sansL \sansB (n\sanso \sansu \sanst ,\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ),\Gamma \scrI \sanso \sansu \sanst ,\Phi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ),\Lambda \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ))

\geqslant \widehat \sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X),\Lambda \scrI (X)) \cdot exp
\bigl[ 
c3 lg

2 k(lg k + lg lg n)
\bigr] 
.

Hence,

\BbbP (X \subseteq A) \geqslant 

\biggl( 
1 - 1

k

\biggr) 
\cdot k - 8 \cdot (10k2 lg n) - 1 \cdot k - 5 \cdot 

\widehat \sansL \sansB (n\sanso \sansu \sanst ,\Pi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ),\Gamma \scrI \sanso \sansu \sanst ,\Phi \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst ),\Lambda \scrI \sanso \sansu \sanst (X\sanso \sansu \sanst )) \cdot \widehat \sansL \sansB (n\sansi \sansn ,\Pi \scrI \sansi \sansn (X\sansi \sansn ),\Gamma \scrI \sansi \sansn ,\Phi \scrI \sansi \sansn (X\sansi \sansn ),\Lambda \scrI \sansi \sansn (X\sansi \sansn ))

\geqslant k - 17 \cdot (lg n) - 1 \cdot exp
\bigl[ 
c3 lg

2 k(lg k + lg lg n)
\bigr] 
\cdot \widehat \sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X),\Lambda \scrI (X))

\geqslant \widehat \sansL \sansB (n,\Pi \scrI (X),\Gamma \scrI ,\Phi \scrI (X),\Lambda \scrI (X)).

This finishes the proof of the claim and concludes the description of the third and
last subcase.

6.1.6. Wrap-up: A multiple-component version of Theorem 1. Let us
now take a step back and use the developed recursive algorithm to obtain a multiple-
component version of Theorem 1, namely Theorem 39, following along the lines of the
reasoning of section 5.1.

Assume we are given an n-vertex graph G0 from a minor-closed graph class \scrC that
excludes some apex graph as a minor. We are looking for a pattern X \subseteq V (G0) of
size k such that G0[X] has at most d connected components. Similarly as in section
5.1, we can guess (by sampling at random) one vertex x \in X and create an instance
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1922 FOMIN ET AL.

\scrI of our recursive problem with G := G0, r0 := x, T \sansl \sansi := \{ x\} , and T \sansh \sanse := R := \emptyset .
Since G[X] has d connected components, we have \Lambda \scrI (X) \leqslant d - 1.

However, X may not be a pattern in \scrI due to the size penalty incurred by multiple
connected components. Instead, provided we assume that d \leqslant c \cdot 

\surd 
k/ lg k for some

constant c \geqslant 1, we can invoke the recursive subproblem with the parameter k\prime :=
(105 \cdot c)3k = \scrO (k). Then, as

\surd 
\alpha k lg(\alpha k) \leqslant \alpha 2/3

\surd 
k lg k for every k \geqslant 10 and \alpha \geqslant 105,

we have

k\prime  - d \cdot 486 \cdot 
\surd 
k\prime lg k\prime \geqslant (105 \cdot c)3k  - 486 \cdot 1010c3k > k \geqslant | X| .

Consequently, X is a pattern in \scrI for the parameter k\prime = \scrO (k).
Let us now look at the contribution of the term including the potential \Lambda \scrI (X)

to the success probability. Clearly, we have \Lambda \scrI (X) \leqslant d \leqslant c \cdot 
\surd 
k/ lg k \leqslant c \cdot 

\surd 
k\prime / lg k\prime .

Therefore, using the estimate on \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X)) from section 5.1, we obtain
that\widehat \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X),\Lambda (X))

= \sansL \sansB (n,\Pi (X),\Gamma ,\Phi (X)) \cdot exp
\biggl[ 
 - c3 \cdot \Lambda (X) \cdot 

\biggl( 
lg2 k\prime (lg k\prime + lg lg n) +

lg n lg k\prime \surd 
k\prime 

\biggr) \biggr] 
\geqslant 

\Bigl( 
2\scrO (

\surd 
k lg2 k)n\scrO (1)

\Bigr)  - 1

\cdot exp
\Bigl[ 
 - c3 \cdot c \cdot 

\Bigl( \surd 
k\prime lg k\prime (lg k\prime + lg lg n) + lg n

\Bigr) \Bigr] 
\geqslant 

\Bigl( 
2\scrO (

\surd 
k lg2 k)n\scrO (1)

\Bigr)  - 1

.

Note that we used Claim 19 in the last inequality. This finishes the proof of
Theorem 39.

6.2. The excluded minor case. We now use Theorem 39---the multiple-
components variant from the previous section---to prove Theorem 38---the variant
for arbitrary proper minor-closed classes. Let us fix a graph G and an integer k as in
the theorem statement. Furthermore, let X be a pattern in G such that G[X] admits
a spanning tree S of maximum degree \Delta for a fixed constant \Delta .

Robertson--Seymour decomposition theorem. As announced at the begin-
ning of this section, we use the decomposition theorem of Robertson and Seymour for
graphs excluding a fixed minor. To make use of locally bounded treewidth, we will
use the variant of Grohe [26].

To formulate this decomposition, we need some notation. Recall that we use a
notation \scrT = (T, \beta ) for a tree decomposition, where T is a tree and \beta : V (T )\rightarrow 2V (G)

is the function that assigns bags to nodes of T .
The set \beta (t)\cap \beta (t\prime ) for an edge tt\prime \in E(T ) is called an adhesion of tt\prime . For a node

t \in V (T ), the torso of the node t, denoted by torso(t), is the graph G[\beta (t)] with every
adhesion \beta (t) \cap \beta (t\prime ) for t\prime \in NT (t) turned into a clique.

Recall that we consider rooted tree decompositions; that is, the tree T is rooted
in one node. For a nonroot node t \in V (T ), by parent(t) we denote the parent of t in
T . Furthermore, we denote:

\sigma (t) =

\Biggl\{ 
\emptyset if t is the root of T,

\beta (t) \cap \beta (parent(t)) otherwise.

We are now ready to formulate the variant of the Robertson--Seymour decompo-
sition of Grohe that we use.
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LOW TREEWIDTH PATTERN COVERING 1923

Theorem 52 ([26]). For every proper minor-closed graph class \scrC there exist a
constant h and an apex-minor-free graph class \scrC \prime such that the following holds. Given
a graph G \in \scrC , one can in polynomial time compute a tree decomposition \scrT = (T, \beta )
of G together with a family of sets (Zt)t\in V (T ) such that every adhesion of \scrT has size
at most h, and for every t \in V (T ) the set Zt is a subset of \beta (t) of size at most h,
and the graph torso(t) - Zt belongs to \scrC \prime .

Furthermore, we need the following variant of Baker's shifting technique.

Theorem 53 ([26]). Let \scrC be an apex-minor-free graph class. Given a graph
G \in \scrC and an integer \ell , one can in polynomial time compute a partition of V (G) into
\ell sets L1, L2, . . . , L\ell , such that for every 1 \leqslant i \leqslant \ell the graph G  - Li has treewidth
\scrO (\ell ).

The algorithm. Let us now proceed to the description of the algorithm. Given
a graph G \in \scrC , we compute its tree decomposition \scrT = (T, \beta ) and sets (Zt)t\in V (T )

using Theorem 52. Paying 1/n in the success probability, we guess an arbitrary vertex
r \in X and root the decomposition \scrT in a bag tr such that r \in \beta (tr). By slightly
abusing the notation, we proclaim \sigma (tr) = \{ r\} . By restricting our attention to the
connected component of G that contains r, we may assume that G is connected.
Therefore, we can henceforth assume that every adhesion of \scrT is nonempty.

For every t \in V (T ), we create an instance \scrI t := (Gt, rt, T
\sansl \sansi 
t, T

\sansh \sanse 
t, Rt, \lambda t) of the

recursive problem as follows. We first take Gt := torso(t)  - Zt. If \sigma (t) \not \subseteq Zt, we
define rt to be an arbitrary vertex of \sigma (t) \setminus Zt; otherwise, we create a new vertex rt
and make it adjacent to an arbitrary vertex of Gt. We set T \sansl \sansi 

t := \{ rt\} \cup (\sigma (t) \setminus Zt),
T \sansh \sanse 

t := \emptyset , Rt := \emptyset , and \lambda t := 0.
Furthermore, we define X\circ 

t := X \cap \beta (t) and Xt := (X\circ 
t \setminus Zt) \cup \{ rt\} . Note

that torso(t)[X\circ 
t ] is connected, as G[X] is connected. Furthermore, we claim that

torso(t)[X\circ 
t ] admits a spanning tree of bounded degree.

Claim 54. There exists a spanning tree of torso(t)[X\circ 
t ] of maximum degree 2\Delta .

Proof. We construct a connected spanning subgraph St of torso(t)[X\circ 
t ] of max-

imum degree 2\Delta as follows. First, we take V (St) := X\circ 
t and E(St) := E(S) \cap 

E(torso(t)[X\circ 
t ]). Second, for every t\prime \in NT (t), we perform the following operation.

Let leg(t, t\prime ) be the set of those vertices v \in X\circ 
t \cap \beta (t)\cap \beta (t\prime ) for which v is incident to

an edge uv \in E(S) with u \in \beta (t\prime ) \setminus \beta (t). If | leg(t, t\prime )| \geqslant 2, we add to E(St) edges of
an arbitrary path on vertex set leg(t, t\prime ); such a path exists in torso(t) as the adhesion
\beta (t) \cap \beta (t\prime ) is turned into a clique.

Let us now show that St is connected. To this end, consider a maximal path P
in S between two vertices of X\circ 

t such that no edge or internal vertex of P belongs to
torso(t). Let v1, v2 be the endpoints of P . By the properties of a tree decomposition,
there exists a node t\prime \in NT (t) such that v1, v2 \in \beta (t)\cap \beta (t\prime ) and the first and last edges
of P are v1u1 and v2u2 with u1, u2 \in \beta (t\prime ) \setminus \beta (t) (possibly u1 = u2). However, then
v1, v2 \in leg(t, t\prime ), and they remain connected in St. This shows that St is connected.

To bound the maximum degree of St, note that for every t\prime \in NT (t) and every
v \in leg(t, t\prime ) at most two edges incident to v are added to St when considering t\prime .
These two edges can be charged to the edge vu \in E(S) with u \in \beta (t\prime ) \setminus \beta (t) that
certifies that v \in leg(t, t\prime ). We have vu \in E(S) \setminus E(St), and every edge vu can be
charged at most once. Since S has maximum degree at most \Delta by assumption, the
bound on the maximum degree of St follows.
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1924 FOMIN ET AL.

We define k\prime := (105 \cdot \Delta h)3 \cdot k = \scrO (k). We will use the machinery of section 6.1,
in particular all the potentials, using the parameter k\prime instead of the input parameter
k. The reason for this is that we need to pay the penalty in the size of the pattern
for multiple connected components of Xt in \scrI t. The following claim verifies that it
suffices to inflate k by a constant factor.

Claim 55. The graph Gt[Xt] has at most 2\Delta h + 1 connected components and
\Lambda \scrI t

(Xt) \leqslant 2\Delta h. Furthermore, the set Xt is a pattern in \scrI t with respect to the
parameter k\prime .

Proof. Since the maximum degree of St is at most 2\Delta and | Zt| \leqslant h, there are at
most 2\Delta h connected components of torso(t)[X\circ 

t ]  - Zt. Consequently, Gt[Xt] has at
most 2\Delta h+ 1 connected components and

\Lambda \scrI t
(Xt) \leqslant 2\Delta h.

Then, as
\surd 
\alpha k lg(\alpha k) \leqslant \alpha 2/3k for every k \geqslant 10 and \alpha \geqslant 105, we have

k\prime  - 486
\surd 
k\prime lg k\prime \cdot \Lambda \scrI t

(Xt) \geqslant (105 \cdot \Delta h)3k  - 486 \cdot (105 \cdot \Delta h)2 \cdot 2\Delta h \cdot k > 2k \geqslant | Xt| .

Thus, Xt satisfies the size bound for a pattern in \scrI t.
For every node t \in V (T ), we are going to look for the pattern Xt in the instance

\scrI t, using k\prime as the parameter. Observe that the first three potentials partition well
between the instances.

Claim 56. The following holds if we measure the potentials with respect to the
parameter k\prime :

k \geqslant 
\sum 

t\in V (T )

\Pi \scrI t(Xt) and n \geqslant 
\sum 

t\in V (T )

\Gamma \scrI t and k \geqslant 
\sum 

t\in V (T )

\Phi \scrI t(Xt).

Proof. The crucial observation is that for an edge between t and parent(t) in T
every vertex v \in \sigma (t) = \beta (t) \cap \beta (parent(t)) is either in Zt or a light terminal in \scrI t.
Consequently, every vertex v \in V (G) is present but not a light terminal in at most
one instance \scrI t.

However, the potentials \Lambda \scrI t
(Xt) do not behave as nicely as the other potentials

in Claim 56: they are bounded by 2\Delta h by Claim 55 but may be positive in \Omega (k)
instances. Thus, we cannot afford to apply the algorithm of the previous section to
every instance \scrI t separately.

Instead, for every instance \scrI t, we make a random choice. With probability 1/k,
we proclaim \scrI t interesting and apply the recursive algorithm to \scrI t, obtaining a set
At \subseteq (\beta (t) \setminus Zt) \cup \{ rt\} such that Gt[At] is of treewidth \scrO (

\surd 
k\prime lg k\prime ) = \scrO (

\surd 
k lg k).

Furthermore, note that \sigma (t) \subseteq At \cup Zt. Here, we use the fact that the graph Gt

underlying \scrI t belongs to an apex-minor-free graph class \scrC \prime promised by Theorem 52
(without loss of generality, this class is closed under adding degree-vertices, and thus
the graph persists in \scrC \prime after possibly adding rt as a new vertex).

With the remaining probability, we proclaim \scrI t standard and proceed as follows.
First, we apply the algorithm of Theorem 53 to the graph Gt with \ell := \lceil c3

\surd 
k\prime lg k\prime \rceil 

obtaining a partition Lt
1, L

t
2, . . . , L

t
\ell . Second, we pick a random index 1 \leqslant it \leqslant \ell .

Third, we set At := (V (Gt)\setminus Lt
it
)\cup \{ rt\} \cup (\sigma (t)\setminus Zt). Note that in this case also Gt[At]
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LOW TREEWIDTH PATTERN COVERING 1925

has treewidth \scrO (
\surd 
k lg k) as \ell = \scrO (

\surd 
k lg k) and | \sigma (t)| \leqslant h = \scrO (1). Furthermore, we

have again \sigma (t) \subseteq At \cup Zt.
We define

A := \{ r\} \cup 
\bigcup 

t\in V (T )

(At \cup Zt) \setminus (\sigma (t) \cup \{ rt\} ).

We claim that A satisfies the desired properties. The treewidth bound is easy.

Claim 57. G[A] is of treewidth \scrO (
\surd 
k lg k).

Proof. Since | Zt| \leqslant h = \scrO (1) for every t \in V (T ), we have that torso(t)[At \cup Zt] is
of treewidth \scrO (

\surd 
k lg k). Since \sigma (t) \subseteq At \cup Zt for every t \in V (T ), we have that G[A]

can be constructed from graphs torso(t)[At \cup Zt] for t \in V (T ) using vertex deletions
and clique sums along cliques of size at most h, and the claim follows.

Finally, we check the probability that X \subseteq A. To this end, we need the following
simple estimate.

Claim 58. Let a, b be positive integers, and let a1, a2, . . . , ap be integers such
that 0 \leqslant ai < a for every 1 \leqslant i \leqslant p and

\sum p
i=1 ai \leqslant b. Then

p\prod 
i=1

\Bigl( 
1 - ai

a

\Bigr) 
\geqslant a - 2b/a - 1.

Proof. We use the following local improvement argument: whenever we have two
indices 1 \leqslant i < j \leqslant p such that ai + aj < a, we can replace ai and aj with ai + aj ,
since \Bigl( 

1 - ai
a

\Bigr) \Bigl( 
1 - aj

a

\Bigr) 
\geqslant 1 - ai + aj

a
.

Thus, we can assume that for every 1 \leqslant i < j \leqslant r we have that ai + aj \geqslant a. In
particular, every index i satisfies ai \geqslant a/2, apart from at most one. We infer that
p \leqslant 2b/a + 1. Since 1  - ai

a \geqslant a - 1 for each i due to a, ai being integers, the claim
follows.

Claim 59. The probability that X \subseteq A is at least (2\scrO (
\surd 
k lg2 k) \cdot n\scrO (1)) - 1.

Proof. Note that we have the following partition:

V (G) = \{ r\} \uplus 
\biguplus 

t\in V (T )

\beta (t) \setminus \sigma (t).

By the definition of the set A, we have r \in A, and for every t \in V (T ) and for
every v \in \beta (t) \setminus \sigma (t) it holds that v \in A if and only if v \in At \cup Zt. Consequently,
by the definition of Xt and Gt, if for every t \in V (T ) we have Xt \subseteq At, then we have
X \subseteq A. In what follows we will argue that with sufficient probability it holds that
for every t \in V (T ) we indeed have Xt \subseteq At.

First, observe that this assertion is clearly true for every node t where Xt \subseteq 
\{ rt\} \cup (\sigma (t) \setminus Zt), as both in standard and interesting nodes we have \sigma (t) \subseteq At \cup Zt

and rt \in At.
If this is not the case for a node t (i.e., Xt \not \subseteq \{ rt\} \cup (\sigma (t) \setminus Zt)), we call the node

t touched . Note that we have \Pi \scrI t
(Xt) > 0 for a touched node t. Hence, there are
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1926 FOMIN ET AL.

at most k touched nodes. We require that a touched node t is proclaimed interesting
if \Pi \scrI t(Xt) \geqslant c3

\surd 
k\prime lg k\prime and standard otherwise. Note that Claim 56 implies that

we require at most
\surd 
k\prime /(c3 lg k

\prime ) nodes to be interesting and at most k nodes to be
standard. Consequently, the probability that we proclaim touched nodes as requested
is lower bounded by

\biggl( 
1

k

\biggr) \surd k
\prime 
/(c3 lg k

\prime 
)

\cdot 
\biggl( 
1 - 1

k

\biggr) k

= 2 - \scrO (
\surd 
k).

In every standard touched node t we have Xt \subseteq At if Xt \cap Lt
it
\subseteq T \sansl \sansi 

t, as T \sansl \sansi 
t =

\{ rt\} \cup (\sigma (t) \setminus Zt). We have Xt \cap Lt
it
\subseteq T \sansl \sansi 

t with probability at least 1 - | Xt \setminus T \sansl \sansi 
t| /\ell =

1  - \Pi \scrI t
(Xt)/\ell . Recall that \ell = \lceil c3

\surd 
k\prime lg k\prime \rceil but \Pi \scrI t

(Xt) < \ell in a standard node t.
Consequently, since

\sum 
t\in V (T ) \Pi \scrI t

(Xt) \leqslant k\prime , by Claim 58 we infer that the probability
that in every standard node we have Xt \subseteq At is at most

\ell  - 2k
\prime 
/\ell  - 1 = 2 - \scrO (

\surd 
k).

Let us now consider an interesting node t, that is, a node t with \Pi \scrI t
(Xt) \geqslant 

c3
\surd 
k\prime lg k\prime . Let Z\sansi \sansn \sanst be the set of these nodes; note that | Z\sansi \sansn \sanst | \leqslant 

\surd 
k\prime /(c3 lg k

\prime ). Since
Xt is a pattern in \scrI t, we infer that the probability of the event Xt \subseteq At is at least\widehat \sansL \sansB (n,\Pi \scrI t

(Xt),\Gamma \scrI t
,\Phi \scrI t

(Xt),\Lambda \scrI t
(Xt)) (with respect to the parameter k\prime ). By Claims

55 and 56 we have that\prod 
t\in Z\sansi \sansn \sanst 

\widehat \sansL \sansB (n,\Pi \scrI t
(Xt),\Gamma \scrI t

,\Phi \scrI t
(Xt),\Lambda \scrI t

(Xt))

\leqslant 
\prod 

t\in Z\sansi \sansn \sanst 

\sansL \sansB (n,\Pi \scrI t
(Xt),\Gamma \scrI t

,\Phi \scrI t
(Xt))

\cdot 
\prod 

t\in Z\sansi \sansn \sanst 

exp

\biggl[ 
 - c3 \cdot \Lambda \scrI t(Xt) \cdot 

\biggl( 
lg2 k\prime (lg k\prime + lg lg n) +

lg n lg k\prime \surd 
k\prime 

\biggr) \biggr] 
\leqslant 

\Bigl( 
2\scrO (

\surd 
k lg2 k)n\scrO (1)

\Bigr)  - 1

\cdot exp
\biggl[ 
 - | Z\sansi \sansn \sanst | \cdot c3 \cdot 2\Delta h \cdot 

\biggl( 
lg2 k\prime (lg k\prime + lg lg n) +

lg n lg k\prime \surd 
k\prime 

\biggr) \biggr] 
\leqslant 

\Bigl( 
2\scrO (

\surd 
k lg2 k)n\scrO (1)

\Bigr)  - 1

\cdot exp
\Bigl[ 
 - 2\Delta h

\Bigl( \surd 
k\prime lg k\prime (lg k\prime + lg lg n) + lg n

\Bigr) \Bigr] 
\leqslant 

\Bigl( 
2\scrO (

\surd 
k lg2 k)n\scrO (1)

\Bigr)  - 1

.

Here, we estimated the product of the terms \sansL \sansB (n,\Pi \scrI t(Xt),\Gamma \scrI t ,\Phi \scrI t(Xt)) using
Claim 56 as in section 5, and in the last inequality we used Claim 19.

This concludes the proof of Theorem 38.

7. Conclusions. In this work we have laid foundations for a new tool for ob-
taining subexponential parameterized algorithms for problems on planar graphs and
more generally on graphs that exclude a fixed apex graph as a minor. The technique
is applicable to problems that can be expressed as searching for a small, connected
pattern in a large host graph. Using the new approach, we designed, in a generic man-
ner, a number of subexponential parameterized algorithms for problems for which the
existence of such algorithms was open. We believe, however, that this work provides
only the basics of a new methodology for the design of parameterized algorithms on
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LOW TREEWIDTH PATTERN COVERING 1927

planar and apex-minor-free graphs. This methodology goes beyond the paradigm of
bidimensionality and is yet to be developed.

An immediate question raised by our work is whether the technique can be de-
randomized. Note that our main result, Theorem 1, immediately yields the following
combinatorial statement.

Theorem 60. Let \scrC be a class of graphs that exclude a fixed apex graph as a
minor. Suppose G is an n-vertex graph from \scrC and k is a positive integer. Then there
exists a family \scrF of subsets of vertices G satisfying the following properties:

(P1) For each A \in \scrF , the treewidth of G[A] is at most \scrO (
\surd 
k log k).

(P2) For each vertex subset X \subseteq V (G) such that G[X] is connected and | X| \leqslant k,
there exists some A \in \scrF for which X \subseteq A.

(P3) It holds that | \scrF | \leqslant 2\scrO (
\surd 
k log2 k) \cdot n\scrO (1).

Proof. Let f(n, k) \in 2\scrO (
\surd 
k log2 k) \cdot n\scrO (1) be the inverse of the lower bound on the

success probability of the algorithm of Theorem 1. Repeat the algorithm of Theorem 1
f(n, k) \cdot 2k lnn times, and consider the list of obtained vertex subsets as a candidate
for \scrF . Let us fix some X \subseteq V (G) such that | X| \leqslant k and G[X] is connected, and
consider the probability that there is some A \in \scrF for whichX \subseteq A. For one particular
run of the algorithm of Theorem 1, this holds with probability at least f(n, k) - 1. As
the runs are independent, the probability that no element of \scrF covers X is upper
bounded by \biggl( 

1 - 1

f(n, k)

\biggr) f(n,k)\cdot 2k lnn

\leqslant e - 2k lnn = n - 2k.

As the number of k-vertex subsets of V (G) is upper bounded by nk, we infer
that the expected value of the number of sets X for which there is no element of \scrF 
covering them is upper bounded by n - k < 1. Hence, there is a run of the described
experiment for which this number is zero; this run yields the desired family \scrF .

The above proof of Theorem 60 gives only a randomized algorithm constructing
a family \scrF that indeed covers all small patterns with high probability. We conjecture
that the algorithm can be derandomized; that is, that the family whose existence is as-
serted by Theorem 60 can be computed in time 2\scrO (

\surd 
k log2 k) \cdot n\scrO (1). So far we are able

to derandomize most of the components of the algorithm, primarily using standard
constructions based on splitters and perfect hash families [34]. One part of the rea-
soning with which we still struggle is the clustering step (Theorem 8). Our optimism
with derandomizing this last part stems from its resemblance to the construction of
HSTs of [4], which have been subsequently derandomized [8].

Q1. Is it possible to construct a family with properties described in Theorem 60
in deterministic time 2\scrO (

\surd 
k logc k) \cdot n\scrO (1) for some constant c?

In section 6 we attempted to generalize our technique to the cases when the pat-
tern is disconnected and when the class only excludes some fixed (but arbitrary) graph
H as a minor. In the case of disconnected patterns, we were able to prove a suitable
generalization of Theorem 1; however, the success probability of the algorithm depends
inverse-exponentially on the number of connected components of the pattern (see
Theorem 39). In the case of general H-minor-free classes, we needed to assume that
the pattern admits a spanning tree of constant maximum degree (see Theorem 38).
So far we do not see any reason for any of these constraints to be necessary.
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1928 FOMIN ET AL.

Q2. Is it possible to prove Theorem 1 without the assumption that the subgraph
induced by X has to be connected?

Q3. Is it possible to prove Theorem 1 only under the assumption that all graphs
from \scrC exclude some fixed (but arbitrary) graph H as a minor?

Our next question concerns local search problems in the spirit of the LS Vertex
Cover problem considered in section 1. Apart from this problem, Fellows et al.
[23] designed FPT algorithms also for the local search for a number of other prob-
lems on apex-minor-free classes, including LS Dominating Set and its distance-d
generalization. Here, we are given a dominating set S in a graph G from some apex-
minor-free class \scrC , and we ask whether there exists a strictly smaller dominating set
S\prime that is at Hamming distance at most k from S. Again, the approach of Fellows
et al. [23] is based on the observation that if there is some solution, then there is also
a solution S\prime such that S\bigtriangleup S\prime can be connected using at most k additional vertices.
Thus, we need to search for a connected pattern of size 2k, instead of k, in which
suitable sets S \setminus S\prime and S\prime \setminus S are to be found. Unfortunately, now the preprocessing
step fails: vertices outside A may require being dominated from within A, which poses
additional constraints that are not visible in the graph G[A] only. Hence, we cannot
just focus on the graph G[A]. Observe, however, that the whole reasoning would go
through if A covered not just S\bigtriangleup S\prime but also its neighborhood. More generally, if
the considered problem concerns domination at distance d, then we should cover the
distance-d neighborhood of S\bigtriangleup S\prime . This motivates the following question.

Q4. Fix some positive constant d. Is it possible to prove a stronger version of
Theorem 1, where the sampled set A is required to cover the whole
distance-d neighborhood of the set X with the same asymptotic lower bound
on the success probability?

Finally, so far we do not know whether the connectivity condition in Corollary 5
is necessary.

Q5. Is it possible to solve Subgraph Isomorphism on planar graphs in time
2\scrO (k/ log k) \cdot n\scrO (1), even without the assumption that the pattern graph is
connected?

Note that a positive answer to Q2 implies a positive answer here as well, as the
algorithm of Theorem 4 does not require the pattern graph to be connected.
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