
Information and Computation 293 (2023) 105049
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Can Romeo and Juliet meet? Or rendezvous games with

adversaries on graphs ✩

Fedor V. Fomin a, Petr A. Golovach a,∗, Dimitrios M. Thilikos b

a Department of Informatics, University of Bergen, Norway
b LIRMM, Université Montpellier, CNRS, Montpellier, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 November 2021
Received in revised form 4 May 2023
Accepted 7 May 2023
Available online 18 May 2023

Keywords:
Rendezvous games
Dynamic separators
Complexity

We introduce the rendezvous game with adversaries. In this game, two players, Facilitator
and Divider, play against each other on a graph. Facilitator has two agents and Divider
has a team of k agents located in some vertices. They take turns in moving their agents to
adjacent vertices (or staying put). Facilitator wins if his agents meet in some vertex. Divider
aims to prevent the rendezvous of Facilitator’s agents. We show that deciding whether
Facilitator can win is PSPACE-hard and, when parameterized by k, co-W[2]-hard. Moreover,
even deciding whether Facilitator can win within τ steps is co-NP-complete already for
τ = 2. On the other hand, for chordal and P5-free graphs, we prove that the problem is
solvable in polynomial time. Finally, we show that the problem is fixed-parameter tractable
parameterized by both the graph’s neighborhood diversity and the number of steps τ .

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

For never was a story of more woe than this of Juliet
and her Romeo.

—William Shakespeare, Romeo and Juliet

1. Introduction

We introduce the Rendezvous Game with Adversaries on graphs. In our game, a team of dividers tries to prevent two
passionate lovers, say Romeo and Juliet, from meeting each other. We are interested in the minimum size of the team of
dividers sufficient to obstruct their romantic encounter. In the static setting, when dividers do not move, this is just the
problem of computing the minimum vertex cut between the pair of vertices occupied by Romeo and Juliet. But in the
dynamic variant, when dividers are allowed to change their position, the team’s size can be significantly smaller than the
size of the minimum cut. In fact, this gives rise to a new interactive form of connectivity that is much more challenging
both from the combinatorial and the algorithmic point of view.

✩ An extended abstract of this paper appeared in the proceedings of WG 2021. The two first authors have been supported by the Research Council of
Norway via the project BWCA (grant no. 314528). The last author was supported by the ANR projects DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-
17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).

* Corresponding author at: University of Bergen, PB 7803, N-5020, Bergen, Norway.
E-mail addresses: fedor.fomin@uib.no (F.V. Fomin), petr.golovach@uib.no (P.A. Golovach), sedthilk@thilikos.info (D.M. Thilikos).
https://doi.org/10.1016/j.ic.2023.105049
0890-5401/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.ic.2023.105049
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2023.105049&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:fedor.fomin@uib.no
mailto:petr.golovach@uib.no
mailto:sedthilk@thilikos.info
https://doi.org/10.1016/j.ic.2023.105049
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Our rendezvous game rules are very similar to the rules of the classical Cops-and-Robber game of Nowakowski-Winkler
and Quillioit [31,32], see also the book of Bonato and Nowakowski [4]. The difference is that in the Cops-and-Robber game,
a team of k cops tries to capture a robber in a graph, while in our game, the group of k dividers tries to keep the two lovers
separated.

A bit more formal. The game is played on a finite undirected connected graph G by two players: Facilitator and Divider.
Facilitator has two agents R and J that are initially placed in designated vertices s and t of G . Divider has a team of k ≥ 1
agents D1, . . . , Dk that are initially placed in some vertices of V (G) \ {s, t} selected by Divider. Several Divider’s agents can
occupy the same vertex. Then the players make their moves by turn, starting with Facilitator. At every move, each player
moves some of his agents to adjacent vertices or keeps them in their old positions. No agent can be moved to a vertex
that is currently occupied by adversary agents. Both players have complete information about G and the positions of all the
agents. Facilitator aims to ensure that R and J meet; that is, they are in the same vertex. The task of Divider is to prevent
the rendezvous of R and J by maintaining D1, . . . , Dk in positions that block the possibility to meet. Facilitator wins if R
and J meet, and Divider wins if he succeeds in preventing the meeting of R and J forever.

We define the following problem:

Input: A graph G with two given vertices s and t, and a positive integer k.
Task: Decide whether Facilitator can win on G starting from s and t against Divider with k agents.

Rendezvous

Another variant of the game is when the number of moves of the players is at most some parameter τ . Then Facilitator
wins if R and J meet within the first τ moves, and Divider wins otherwise. Thus the problem is.

Input: A graph G with two given vertices s and t, and positive integers k and τ .
Task: Decide whether Facilitator can win on G starting from s and t in at most τ steps against Divider with

k agents.

Rendezvous in Time

Notice that, in the above problem, τ is part of the input. We also consider the version of the problem where τ is a
fixed constant. This generates a family of problems, one for each different value of τ , and we refer to each of them as the
τ -Rendezvous in Time problem.

Our results. We start with combinatorial results. If s = t or if s and t are adjacent, then Facilitator wins by a trivial strategy.
However, if s and t are distinct nonadjacent vertices, then Divider wins provided that he has sufficiently many agents. For
example, the agents can be placed in the vertices of an (s, t)-separator and stay there. Then R and J never meet. We call
the minimum number k of the agents of Divider that is sufficient for his winning, the (s, t)-dynamic separation number and
denote it by dG (s, t). We put dG(s, t) = +∞ for s = t or when s and t are adjacent. The dynamic separation number can be
seen as a dynamic analog of the minimum size λG (s, t) of a vertex (s, t)-separator in G . (The minimum number of vertices
whose removal leaves s and t in different connected components.) Then Rendezvous can be restated as the problem of
deciding whether dG (s, t) > k.

The first natural question is: What is the relation between dG (s, t) and λG(s, t)? Clearly, dG(s, t) ≤ λG(s, t). We show
that dG (s, t) = 1 if and only if λG (s, t) = 1. If dG (s, t) ≥ 2, then we construct examples demonstrating that the difference
λG(s, t) − dG(s, t) can be arbitrary even for sparse graphs. Interestingly, there are graph classes where both parameters
are equal. In particular, we show that λG (s, t) = dG (s, t) holds for P5-free graphs and chordal graphs. This also yields a
polynomial time algorithm computing dG (s, t) on these classes of graphs.

Then we turn to the computational complexity of Rendezvous and Rendezvous in Time on general graphs. Both problems
can be solved in nO(k) time by using the backtracking technique. We show that this running time is asymptotically tight
by proving that they are both co-W[2]-hard when parameterized by k (we prove that it is W[2]-hard to decide whether
dG (s, t) ≤ k) and cannot be solved in f (k) · no(k) time for any function f of k, unless ETH fails. Moreover, τ -Rendezvous in
Time is W[2]-hard, for every τ ≥ 2. If τ is a constant, then τ -Rendezvous in Time is in co-NP and our co-W[2]-hardness
proof implies that τ -Rendezvous in Time is co-NP-complete for every τ ≥ 2. For the general case, the problems are even
harder as we prove that Rendezvous and Rendezvous in Time are both PSPACE-hard.

Finally, we initiate the study of the complexity of the problems under structural parameterization of the input graphs.
We show that Rendezvous in Time is FPT when parameterized by the neighborhood diversity of the input graph and τ .

Related work. The classical rendezvous game introduced by Alpern [2] is played by two agents that are placed in some
unfamiliar area and whose task is to develop strategies that maximize the probability that they meet. We refer to the book
of Alpern and Gal [3] for detailed study of the subject. The deterministic rendezvous problem was studied by Ta-Shma and
Zwick [34]. See also [9,15] for other variants of rendezvous problems on graphs.

Rendezvous is closely related to the Cops-and-Robber game. The game was defined (for one cop) by Winkler and
Nowakowski [31] and Quilliot [32] who also characterized graphs for which one cop can catch the robber. Aigner and
2

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Fromme [1] initiated the study of the problem with several cops. The minimum number of cops that are required to capture
the robber is called the cop number of a graph. This problem was studied intensively and we refer to the book of Bonato
and Nowakowski [4] for further references. Kinnersley [24] established that the problem is EXPTIME-complete. The Cops-

and-Robber game can be seen as a special case of search games played on graphs, surveys [5,12] provide further references
on search and pursuit-evasion games on graphs. A related variant of Cops-and-Robber game is the guarding game studied
in [13,14,30,33]. Here the set of cops is trying to prevent the robber from entering a specified subgraph in a graph.

Organization of the paper. In Section 2, we give the basic definitions and introduce the notation used throughout the
paper. We also show that Rendezvous and Rendezvous in Time can be solved in nO(k) time. In Section 3, we investigate
relations between dG (s, t) and λG(s, t). In Section 4, we give algorithmic lower bounds for Rendezvous and Rendezvous in
Time. In Section 5, we show that Rendezvous in Time is fixed-parameter tractable (FPT) when parameterized by τ and the
neighborhood diversity of the input graph. We conclude in Section 6 by stating some open problems.

2. Preliminaries

Graphs. All graphs considered in this paper are finite undirected graphs without loops or multiple edges unless it is said
explicitly that we consider directed graphs. We follow the standard graph-theoretic notation and terminology (see, e.g.,
[10]). For each of the graph problems considered in this paper, we let n = |V (G)| and m = |E(G)| denote the number of
vertices and edges, respectively, of the input graph G if it does not create confusion. For a graph G and a subset X ⊆ V (G) of
vertices, we write G[X] to denote the subgraph of G induced by X . For a set of vertices S , G − S denotes the graph obtained
by deleting the vertices of S , that is, G − S = G[V (G) \ S]; for a vertex v , we write G − v instead of G − {v}. For a vertex
v , we denote by NG(v) the (open) neighborhood of v , i.e., the set of vertices that are adjacent to v in G . We use NG [v] to
denote the closed neighborhood, that is NG(v) ∪{v}. For two nonadjacent vertices s and t , a set of vertices S ⊆ V (G) \ {s, t} is
an (s, t)-separator if s and t are in distinct connected components of G − S . We use λG(s, t) to denote the minimum size of
an (s, t)-separator of G; λG(s, t) = +∞ if s = t or s and t are adjacent. A path is a connected graph with at least one and at
most two vertices (called end-vertices) of degree at most one whose remaining vertices (called internal) have degrees two.
We say that a path with end-vertices u and v is an (u,v)-path. The length of a path P , denoted by �(P), is the number of its
edges. The distance distG(u, v) between two vertices u and v of G is the length of a shortest (u, v)-path. We use v1 · · · vk
to denote the path with the vertices v1, . . . , vk and the edges vi−1 vi for i ∈ {2, . . . , k}. A cycle is a connected graph with all
the vertices of degree two. The length �(C) of a cycle C is the number of edges of C .

Let X and Y be multisets of vertices of a graph G (i.e., X and Y can contain several copies of the same vertex). We say
that X and Y of the same size are adjacent if there is a bijective mapping α : X → Y such that for x ∈ X , either x = α(x) or
x and α(x) are adjacent in G . It is useful to observe the following.

Observation 1. For multisets X and Y of vertices of G, it can be decided in polynomial time whether X and Y are adjacent.

Proof. It is trivial to check whether X and Y have the same size. If this holds, we construct the bipartite graph H with the
vertex set V 1 ∪ V 2, where |V 1| = |V 2| = |X | = |Y |, and the nodes of V 1 correspond to the elements of X and the nodes of
V 2 correspond to the elements of Y . A node of V 1 is adjacent to a node of V 2 if and only if the corresponding vertices of
G are either the same or adjacent. Then X and Y are adjacent if and only if H has a perfect matching. The existence of a
perfect matching in a bipartite graph can be verified in polynomial time (see, e.g., [27]) and the claim follows. �
Parameterized Complexity. We obtain a number of results about the parameterized complexity of Rendezvous and Ren-

dezvous in Time. We refer to the recent book of Cygan et al. [8] for the introduction to the area. Here we just remind
that an instance of the parameterized version �p of a decision problem � is a pair (I, k), where I is an instance of �
and k is an integer parameter associated with I . It is said that �p is fixed-parameter tractable (FPT) if it can be solved in
time f (k)|I|O(1) for a computable function f (k) of the parameter k. The Parameterized Complexity theory also provides
tools that allow showing that a parameterized problem cannot be solved in FPT time (up to some reasonable complexity
assumptions). For this, Downey and Fellows (see [11]) introduced a hierarchy of parameterized complexity classes, namely
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP, and the basic conjecture is that all inclusions in the hierarchy are proper. The usual way
to show that it is unlikely that a parameterized problem admits an FPT algorithm is to show that it is W[1] or W[2]-hard
using a parameterized reduction from a known hard problem in the corresponding class. The most common tool for estab-
lishing fine-grained complexity lower bound for parameterized problems is the Exponential Time Hypothesis (ETH) proposed
by Impagliazzo, Paturi, and Zane [21,22]. This is the conjecture stating that there is ε > 0 such that 3-Satisfiability cannot
be solved in O∗(2εn) time on formulas with n variables.

Rendezvous Games with Adversaries. Suppose that the game is played on a connected graph G , and s and t are initial
positions of the agents of Facilitator. Let also k be the number of agents of Divider.

Notice that placement of the agents of Facilitator is defined by a multiset of two vertices, as R and J can occupy the
same vertex. We denote by FG the family of all multisets of two vertices. Similarly, a placement of k agents of Divider is
defined by a multiset of k vertices, because several agents can occupy the same vertex. Let Dk be the family of all multisets
G

3

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
of k vertices. We say that F ∈ FG and D ∈ Dk
G are compatible if F ∩ D = ∅. Notice that the number of pairs of compatible

F ∈FG and D ∈Dk
G is n

(n+k−2
k

) + (n
2

)(n+k−3
k

)
. We denote by

Pk
G = {(F , D) | F ∈ FG , D ∈ Dk

G s.t. F and D are compatible}
the set of positions in the game.

Formally, a strategy of Facilitator for Rendezvous is a function f : Pk
G → FG that maps (F , D) ∈ Pk

G to F ′ ∈FG such that
F and F ′ are adjacent and F ′ is compatible with D . In words, given a position (F , D), Facilitator moves R and J from F to F ′
if this is his turn to move. Similarly, a strategy of Divider is a function d : Pk

G →Dk
G that maps (F , D) ∈ Pk

G to D ′ ∈Fk
G such

that D and D ′ are adjacent and D ′ is compatible with F , that is, Divider moves his agents from D to D ′ if this is his turn to
move. To accommodate the initial placement, we extend the definition of d for the pair ({s, t}, ∅) and let d(({s, t}, ∅) = D ′ ,
where D ′ ∈Dk

G is compatible with {s, t}.
The definitions of strategies for Rendezvous in Time are more complicated because the decisions of the players also

depend on the number of the current step. A strategy of Facilitator for Rendezvous in Time is a family of functions f i : Pk
G →

FG for i ∈ {1, . . . , τ } such that f i maps (F , D) ∈ Pk
G to F ′ ∈ FG , where F and F ′ are adjacent and F ′ is compatible with D .

Facilitator uses f i for the move in the i-th step of the game. A strategy of Divider is a family of functions di : Pk
G → Dk

G for
i ∈ {0, . . . , τ − 1} such that for i ∈ {1, . . . , τ − 1}, di maps (F , D) ∈ Pk

G to D ′ ∈ Fk
G , where D and D ′ are adjacent and D ′ is

compatible with F , and d0 maps ({s, t}, ∅) to D ′ ∈ Dk
G compatible with {s, t} (slightly abusing notation we do not define d0

for the elements of Pk
G).

In the majority of the proofs in our paper, we rather explain the strategies of the players in an informal way, to avoid
defining functions for all elements of Pk

G , because the majority of positions never occur in the game. However, the above
notation is useful in some cases.

As it is common for various games on graphs (see, e.g., the book of Bonato and Nowakowski [4] about Cops-and-Robber

games), our Rendezvous Game with Adversaries can be resolved by backtracking. As the approach is standard, we only
briefly sketch the proof of the following theorem.

Theorem 1. Rendezvous and Rendezvous in Time can be solved in nO(k) time.

Proof. Let G be a connected graph on which the game is played and let s, t ∈ V (G). Let also k be a positive integer denoting
the number of agents of Divider.

We define the game graph G (also the name arena could be found in the literature) as the directed graph, whose nodes
correspond to positions and turns to move. We denote the nodes of G by v(h)

F ,D for (F , D) ∈Pk
G , and h ∈ {1, 2}; if h = 1, then

Facilitator makes a move, and if h = 2, then this is Divider’s turn. For h ∈ {1, 2}, we set Vh = {v(h)
F ,D | (F , D) ∈ Pk

G }. For every
two nodes v(1)

F ,D ∈ V1 and v(2)

F ′,D ′ ∈ V2, we construct arcs as follows. We construct the arc (v(1)
F ,D , v(2)

F ′,D ′) if D = D ′ , and F and
F ′ are adjacent. Symmetrically, we construct (v(2)

F ′,D ′ , v(1)
F ,D) if F = F ′ , and D ′ and D are adjacent. We denote by A the set of

arcs of G .
Observe, that G can be constructed in nO(k) time. The number of nodes is 2 · (n(n+k−2

k

) + (n
2

)(n+k−3
k

)
) = nO(k) . Given two

nodes v(1)
F ,D and v(2)

F ′,D ′ , the arcs between these nodes can be constructed in polynomial time by Observation 1. Hence, the
construction of the arc set can be done in time kO(k) · nO(k) · nO(k) = nO(k) .

Let � ≥ 0 be an integer. We define the set W� ⊆ V1 of winning positions for Facilitator in at most � moves. A node v(1)
F ,D

is in W� if Facilitator can win on G in at most � moves provided that R and J are placed in F and the agents of Divider
are occupying D . We explain how to construct W� for � = 0, 1, . . . by dynamic programming.

It is straightforward to verify that v(1)
F ,D ∈W0 if and only if F = {x, x} for x ∈ V (G).

For � ≥ 1,

W� = W�−1 ∪ U, (1)

where

U = {v(1)
F ,D | there is (v(1)

F ,D , v(2)

F ′,D) ∈ A s.t. for every (v(2)

F ′,D , v(1)

F ′,D ′) ∈ A, v(1)

F ′,D ′ ∈ W�−1}. (2)

Informally, v(1)
F ,D ∈ U if there is a move of Facilitator such that for every response of Divider, the obtained position is in

W�−1, that is, Facilitator can win in at most � − 1 steps from this position.
The correctness of computing W� using (1) and (2) is proved by completely standard arguments and we leave this to

the reader. Notice that given W�−1, (1) and (2) allow to compute W� in nO(k) time.
We compute the sets W� consecutively starting from � = 0 until we obtain W� = W�−1 for some � ≥ 1. Observe that if

W� = W�−1, then W�′ = W� for every �′ ≥ �. Notice also that we stop after at most |V1| iterations, because W� ⊆ V1. This
implies that all the sets W� can be constructed in nO(k) time. Let W�∗ be the last constructed set.
4

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
To solve Rendezvous for an instance (G, s, t, k), it is sufficient to observe that (G, s, t, k) is a yes-instance if and only if
v(1)

F ,D ∈ W�∗ for F = {s, t} and every D ∈ Dk
G that is compatible with F , that is, Facilitator can win starting from s and t for

every choice the initial placement of the k agents of Divider.
Solving Rendezvous in Time is slightly more complicated because the parameter τ is expected to be encoded in binary.

Let (G, s, t, k, τ) be an instance of Rendezvous in Time. If τ ≥ �∗ , we observe that (G, s, t, k, τ) is a yes-instance of Ren-

dezvous in Time if and only if (G, s, t, k) is a yes-instance of Rendezvous. If τ < �∗ , then recall that we already constructed
the set Wτ . Then (G, s, t, k, τ) is a yes-instance if and only if v(1)

F ,D ∈Wτ for F = {s, t} and every D ∈Dk
G that is compatible

with F .
Summarizing the running time of all the steps, we obtain that Rendezvous and Rendezvous in Time can be solved in

nO(k) time. �
We conclude this section by the observation that a strategy of Divider in the Rendezvous Games with Adversaries for τ

steps, that is, for Rendezvous in Time, can be represented as a rooted tree of height τ . Suppose that the game is played on a
graph G , and s and t are initial positions of the agents of Facilitator. Let also k be the number of agents of Divider. Suppose
that Divider has a strategy defined by the family of functions di : Pk

G → Dk
G for i ∈ {0, . . . , τ − 1}. We define the tree T k

G (τ)

such that every node v of T k
G (τ) is associated with a position P v ∈Pk

G inductively starting from the root:

• Pr = ({s, t}, d0({s, t}, ∅)) is associated with the root r of T k
G (τ).

• for every node v ∈ V (T k
G (τ)) with P v = (F , D) at distance i ≤ τ − 1 from the root, we construct a child u of v for every

(F ′, D ′) ∈ Pk
G such that (i) F ′ is adjacent to F and compatible with D , and (ii) D ′ = di(F ′, D), and associate u with

Pu = (F ′, D ′).

In words, the children of every node correspond to all possible moves of Facilitator from the position (D, F) and are the
positions obtained by the responses of Divider. Observe that every node has at most |F | = (n+1

2

)
children. Therefore, the

total number of nodes of T k
G (τ) is at most

(n+1
2

)τ+1
. We use the following observation.

Observation 2. A strategy {di | 0 ≤ i ≤ τ −1} is a winning strategy for Divider with k agents in the Rendezvous Game with Adversaries
for τ steps on G against Facilitator starting from s and t if and only if F is a set of two distinct vertices for every P v = (F , D) for
v ∈ V (T k

G (τ)).

In particular, this allows us to observe the following.

Observation 3. For every fixed constant τ , the problem τ -Rendezvous in Time is in co-NP.

Proof. If (G, s, t, k) is a no-instance of τ -Rendezvous in Time, then Divider has a winning strategy that allows preventing R
and J from meeting in at most τ steps. Then the tree T k

G (τ) can be used as a certificate. Since the tree has nO(τ) nodes,
we can check whether a given tree encodes a winning strategy in polynomial time, using Observations 2 and 1. �
3. Dynamic separation vs. separators

In this section, we investigate relations between dG (s, t) and λG(s, t). Given a connected graph G and two vertices s and
t , it is straightforward to see that dG (s, t) ≤ λG(s, t). Indeed, if S ⊆ V (G) \ {s, t} is an (s, t)-separator of size k = λG(s, t), then
Divider with k agents can put them in the vertices of S in the beginning of the game. Then he can use the trivial strategy
that keeps the agents D1, . . . , Dk in their positions. However, dG (s, t) and λG(s, t) can be far apart. Still, dG (s, t) = 1 if and
only if λG(s, t) = 1, and this is the first result of the section.

Theorem 2. Let G be a connected graph and let s, t ∈ V (G). Then dG(s, t) = 1 if and only if λG(s, t) = 1.

Proof. As we already observed, dG (s, t) ≤ λG(s, t). Hence, if λG(s, t) = 1, then dG(s, t) = 1. This means that it is sufficient
to show that if dG (s, t) = 1, then λG(s, t) = 1. We prove this by contradiction. Assume that λG (s, t) ≥ 2. We show that
Facilitator has a winning strategy when starting from s and t on G against Divider with one agent.

Let C be a cycle in G . For every two distinct vertices u and v of C , C has two internally vertex disjoint (u, v)-paths P1
and P2 in C . We say that C has a (u, v)-shortcut if there is a (u, v)-path P in G − (V (C) \ {u, v}) that is shorter than P1
and P2. That is, �(P) < �(P1) and �(P) < �(P2). We say that C has a shortcut if there are distinct u, v ∈ V (C) that have a
(u, v)-shortcut.

We claim the following.

Claim 1. If R and J occupy vertices of a cycle C of G that has a shortcut, then Facilitator has a strategy such that in at most �(C) steps
R and J are moved into vertices of a cycle C ′ with �(C ′) < �(C).
5

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Fig. 1. The position placement after h steps (up to symmetry).

Proof of Claim 1. Suppose that R and J occupy vertices x and y of C , respectively. Assume that a path P is a (u, v)-shortcut
for some distinct u, v ∈ V (C). Denote by P1 and P2, respectively, the internally vertex disjoint (u, v)-paths in C . Let C1 be
the cycle of G composed by P1 and P , and let C2 be the cycle composed by P2 and P . Because P is a shortcut for C , we
have that �(C1) < �(C) and �(C2) < �(C). If x, y ∈ V (P1), then x, y ∈ V (C1) and the claim holds trivially, since R and J are
already on cycle C1 with �(C1) < �(C). Symmetrically, if x, y ∈ V (P2), then the claim holds. Assume that this is not the case.
Then x and y are internal vertices of P1 and P2 belonging to distinct paths. We assume without loss of generality that x is
an internal vertex of P1 and y is an internal vertex of P2.

Facilitator uses the following strategy. In each step, R is moved along P1 toward u, unless the next vertex is occupied by
D1. In the last case, R stays in the current position. Similarly, J moves toward v in P2 whenever this is possible and stays
in the current position if the way is blocked. Notice that, since the unique agent D1 of Divider occupies a unique vertex in
each step, at least one of the agents R or J moves to an adjacent vertex. Therefore, either R reaches u or J reaches v in at
most �(C) steps. If R is in u, then R and J are in the vertices of C2 and �(C2) < �(C). Symmetrically, if J reaches v , then R
and J reach C1 with �(C1) < �(C). �

Next, we show that Facilitator can win if R and J are in a cycle without shortcuts and D1 is in the same cycle.

Claim 2. If R and J occupy vertices of a cycle C of G without a shortcut, and the unique agent D1 of Divider is in a vertex of C as well,
then Facilitator has a winning strategy with at most �(C)/2 steps.

Proof of Claim 2. Suppose that R and J occupy vertices x and y of C , respectively, and that D1 occupies z ∈ V (C). Denote
by P the unique (x, y)-path in C − z. Facilitator uses the following strategy. In every step, R and J move towards each other
along P except if they appear to occupy adjacent vertices. In the last case, R stays and J moves to the vertex occupied by
R . We show that this strategy is a feasible winning strategy.

The proof is by induction on the length of P . The claim is trivial when �(P) ≤ 2. Assume that �(P) ≥ 3 and the claim
holds for all positions x′ , y′ and z′ of R , J and D1, respectively, if the length of the (x′, y′)-path in C − z′ is at most �(P) −1.

In the first step, R and J move to the neighbors x′ and y′ of x and y, respectively, in P . If D1 moves to a vertex z′ ∈ V (C),
then we apply the inductive assumption and, since the length of the (x′, y′)-subpath P ′ is �(P) − 2 and z′ /∈ V (P ′), obtain
that the strategy of Facilitator is winning. Assume that by the first move Divider removes D1 from C . If D1 does not return
to a vertex of C in �(P)/2 steps, Facilitator wins. Hence for some h ≤ �(P)/2, at the h-th move, D1 steps back on a vertex
z′ ∈ V (C).

By the assumption, cycle C has no shortcuts. In particular, there is no (z, z′)-shortcut. This implies, that the length of one
of the two (z, z′)-paths in C is at most h. Observe that in h steps, R and J reach vertices x′′ and y′′ that are at distance h
in P from x and y, respectively. Therefore (see Fig. 1), the (x′′, y′′)-subpath P ′′ of P does not contain z′ . Since �(P ′′) < �(P),
we can apply the inductive assumption. This proves that the Facilitator’s strategy is a feasible winning strategy and the
claim holds.

Notice that the total number of steps is
�(P)/2� ≤ �(C)/2. This completes the proof. �
Now we are ready to complete the proof of the theorem. If s = t or s and t are adjacent, then Facilitator has a straight-

forward winning strategy. Assume that s and t are distinct and nonadjacent. Since λG (s, t) ≥ 2, by Menger’s theorem (see,
e.g., [10]), there are two internally vertex disjoint (s, t)-paths P1 and P2. The union of these two paths forms cycle C . If
the agent D1 of Divider occupies a vertex of C ′ , then Facilitator has a winning strategy by Claim 2. If D1 is outside C ′ , then
Facilitator moves R and J along C ′ towards each other. Then either R and J meet or D1 steps on C ′ at some moment. In
this case, Facilitator switches to the strategy from Claim 2 that guarantees him to win. �

We observed that dG (s, t) ≤ λG(s, t) and, by Theorem 2, dG(s, t) = 1 if and only if λG(s, t) = 1. However, if dG(s, t) ≥ 2,
then the difference between λG(s, t) and dG (s, t) may be arbitrary. To see this, consider the following example.
6

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Fig. 2. The construction of G and H for p = 4.

Let p ≥ 2.

• Construct a set U = {u1, . . . , up} of pairwise adjacent vertices.
• Add a vertex s and join s with each vertex ui ∈ U by a path sxiui .
• Add a vertex t and join t with each vertex ui ∈ U by a path tyiui .

Denote the obtained graph by G (see the left part of Fig. 2). Observe that λG (s, t) = p. We show that dG (s, t) = 2 by
demonstrating a winning strategy for Divider with two agents D1 and D2. Initially, D1 and D2 are placed in arbitrary
vertices of the clique U . Then D1 “shadows” R and D2 “shadows” J in U in the following sense. If R moves to xi for some
i ∈ {1, . . . , p}, Divider responds by moving D1 to ui . Symmetrically, if R moves to y j for some j ∈ {1, . . . , p}, then D2 is
moved to u j . It is easy to verify that if Divider follows this strategy, then neither R nor J can enter U . Therefore, Divider
wins. Since p can be arbitrarily, we have that λG (s, t) − dG (s, t) = p − 2 can be arbitrary large.

The family of graphs G for p ≥ 2 in the above example is a family of dense graphs because G contains a clique with p
vertices. However, exploiting the same idea as for G , we can show that there are sparse graphs with the same property. For
this, we considered the following more complicated example.

Let p ≥ 2.

• Construct a path P = u1 · · · up on p vertices.
• Add a vertex s and join s with each vertex ui ∈ V (P) by an (s, ui)-path Pi of length h = �p/2� + 1.
• Add a vertex t and join t with each vertex ui ∈ V (P) by an (t, ui)-path P ′

j of length h = �p/2� + 1.

Denote the obtained graph by H (see the right part of Fig. 2). Clearly, λH (s, t) = p. We claim that dH (s, t) = 2. The idea
behind the winning strategy for Divider with two agents D1 and D2 is similar to the one from the first example: D1
“shadows” R and D2 “shadows” J on P . Let w = u�p/2�. Initially, D1 and D2 are placed in w . Then D1 is moved as follows.
If R moves to/stays in s, then D1 moves to/stays in w . If R is moved into an internal vertex x of Pi for some i ∈ {1, . . . , p},
then Divider responds by moving D1 toward ui or keeping D1 in the current position maintaining the following condition:
D1 is in a vertex u j at minimum distance from w such that the distance between x and ui in Pi is more than the distance
between u j and ui in P . The construction of the strategy for D2 is symmetric. It is easy to see that the described strategy
for Divider is feasible and the strategy allows neither R nor J to enter a vertex of P . Therefore, dH (s, t) = 2.

Notice that the graph H for each p ≥ 2 is planar and it can be seen that the treewidth of H is at most 3 (we refer to
[8,10] for the formal treewidth definition), that is, graphs H are, indeed, sparse.

Our examples indicate that λG (s, t) may differ from dG (s, t) if G has sufficiently long induced paths and cycles. We
observe that λG(s, t) = dG (s, t) if G belongs to graph classes that have no graphs of this type.

A graph G is P5-free if G has no induced subgraph isomorphic to the path with 5 vertices.

Proposition 1. If G is a connected P5-free graph, then for every s, t ∈ V (G), dG(s, t) = λG(s, t).

Proof. Let G be a P5-free graph and let s, t ∈ V (G). The statement is trivial if s = t or s and t are adjacent. Assume that
s and t are distinct nonadjacent vertices. Since dG (s, t) ≤ λG(s, t), it is sufficient to show the opposite inequality. We prove
that if Divider with k agents has a winning strategy on G against Facilitator starting from s and t , then λG(s, t) ≤ k. Let S be
the set of vertices containing the agents of Divider at the beginning of the game. Clearly, k ≥ |S|. Consider an induced (s, t)-
path P . Since G is P5-free, �(P) ≤ 3. Suppose that �(P) = 2, that is P = sxt for some x ∈ V (G). Then Divider has to place an
agent in x in the beginning of the game. Otherwise, R and J move to x in the first step and Facilitator wins. Suppose that
�(P) = 3, that is, P = sxyt for some x, y ∈ V (G). Observe that Divider has to place an agent in x or y at the beginning of
the game. Otherwise, R moves to x, J moves to y, and Facilitator wins in the next step, as x and y are adjacent. We obtain
that in both cases, an agent of Divider is placed in an internal vertex of P . Because P is an arbitrary induced (s, t)-path, we
have that any induced (s, t)-path has an internal vertex occupied by an agent of Divider. Thus, every induced (s, t)-path P
contains a vertex of S . This means that S is an (s, t)-separator. Therefore, k ≥ |S| ≥ λG(s, t) and the claim follows. �
7

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
A graph G is chordal if G does not contain induced cycles on at least 4 vertices, that is, if C is a cycle in G of length
at least 4, then there is a chord, i.e., an edge of G with end-vertices in two nonconsecutive vertices of C . We need some
properties of chordal graphs (we refer to [6,20] for the detailed introduction).

It follows from the results of Gavril [19] that a graph G is chordal if and only if it has a tree decomposition with every
bag being a clique. Formally, G is a chordal graph if and only if there is a pair T = (T , {Xi}i∈V (T)), where T is a tree whose
every node i is assigned a vertex subset Xi ⊆ V (G), called a bag, such that Xi is a clique and the following holds:

(i)
⋃

i∈V (T) Xi = V (G),
(ii) for every uv ∈ E(G), there exists a node i of T such that u, v ∈ Xi , and

(iii) for every u ∈ V (G), the set Tu = {i ∈ V (T)|u ∈ Xi}, i.e., the set of nodes whose corresponding bags contain u, induces a
connected subtree of T .

We use the following well-known property of tree decomposition (see, e.g., [8,10]). Assume that G is connected. Let x, y ∈
V (T) be adjacent nodes of T with S = Xx ∩ X y , and let T1 and T2 be the connected components of T − xy. Then for every
u ∈ (⋃

i∈V (T1) Xi
) \ S and every v ∈ (⋃

i∈V (T2) Xi
) \ S , S is a (u, v)-separator.

Proposition 2. If G is a connected chordal graph, then for every s, t ∈ V (G), dG(s, t) = λG(s, t).

Proof. Let G be a chordal graph and let s, t ∈ V (G). As before, let us notice that the proposition is trivial if s = t or s and
t are adjacent, and we assume that s and t are distinct nonadjacent vertices. Recall also that it is sufficient to show that
λG(k) ≤ dG (s, t). We prove that Facilitator has a winning strategy against Divider with k agents if k < λG(s, t). For this, we
show that R can reach t occupied by J .

Since G is a chordal graph, there is a tree decomposition T = (T , {Xi}t∈V (T)) of G such that every bag Xi is a clique.
Let i, j ∈ V (T) be nodes of T such that s ∈ Xi , t ∈ X j and the (i, j)-path P in T has minimum length. Since s and t are
nonadjacent, i �= j. Let P = i1 · · · ir , where i = i1 and j = ir , and let Sh = Xih−1 ∩ Xih for h ∈ {2, . . . , r}. By the choice of P ,
s ∈ Xi \ Xih for h ∈ {2, . . . , r} and t ∈ X j \ Xih for h ∈ {1, . . . , r − 1}. By the properties of tree decompositions, we obtain that
S2, . . . , Sr are (s, t)-separators. Since λG(s, t) > k, we have that |Sh| > k for every h ∈ {2, . . . , r}.

We describe the strategy of Facilitator, where R is moved from s to t via vertices of S2, . . . , Sr . Since |S2| > k, there is a
vertex v ∈ S2 that is not occupied by the agents of Divider. By the first move, Facilitator moves R from s to v . Assume now
that R is in a vertex v ∈ Sh for some h ∈ {2, . . . , r}. If h = r, then R is moved to t . Otherwise, if h < r, then since |Sh+1| > k,
there is v ′ ∈ Sh+1 that is not occupied by the agents of Divider. Then Facilitator either keeps R in v if v ′ = v or moves R
from v to v ′ otherwise. Note that v and v ′ that are adjacent in the last case, because Sh, Sh+1 ⊆ Xih+1 . Then we proceed
from v ′ . It follows that R reaches t in r steps. This completes the proof. �

The chordality of a graph is the largest length of an induced cycle in it. Clearly, chordal graphs are the graphs of chordality
three. It is natural to ask whether for graphs of bigger chordality, the difference between λG (s, t) and dG (s, t) may be
arbitrary. In the example we gave after the Proof of Claim 2, we have seen that, for the graph G (depicted in the left part
of Fig. 2), it holds that λG (s, t) − dG(s, t) = p − 2 and is easy to see that any such G has chordality five. Notice that this
graph G can be further enhanced so as to obtain chordality four: just add a clique between the vertices in {x1, . . . , xp} and
a clique between the vertices in {y1, . . . , yp}. This indicates a sharp transition of dG away from λG when graphs are not
chordal anymore.

Since λG(s, t) can be computed in polynomial time by the standard maximum flow algorithms (see, e.g., the recent
textbook [35]), we obtain the following corollary.

Corollary 1. Rendezvous can be solved in polynomial time on the classes of P5-free and chordal graphs.

4. Hardness of rendezvous game with adversaries

In this section, we discuss algorithmic lower bounds for Rendezvous and Rendezvous in Time.
We proved in Theorem 1 that Rendezvous and Rendezvous in Time can be solved in nO(k) time. We show that it is

unlikely that the dependence on k can be improved. For this, we show that both problems are co-W[2]-hard (i.e., it is W[2]-
hard to decide whether the input is a no-instance; in fact, we show that it is W[2]-hard to decide whether dG(s, t) ≤ k)
and, therefore, cannot be solved in time f (k) · nO(1) for any computable function f (k), unless FPT = W[2]; the result for
Rendezvous in Time holds also for τ -Rendezvous in Time when τ ≥ 2. Our proof also implies that neither Rendezvous nor
τ -Rendezvous in Time, for τ ≥ 2, cannot be solved in time f (k) · no(k) unless ETH fails.

Observe that Rendezvous in Time can be solved in polynomial time if τ = 1, because of the following straightforward
observation.

Observation 4. Facilitator can win in the Rendezvous Game with Adversaries in one step on G starting from s and t against Divider
with k agents if and only if one of the following holds: (i) s = t, (ii) s and t are adjacent, or (iii) |NG(s) ∩ NG(t)| > k.
8

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Fig. 3. The construction of G .

However, if τ ≥ 2, τ -Rendezvous in Time becomes hard.

Theorem 3. Rendezvous and τ -Rendezvous in Time for every constant τ ≥ 2 are co-W[2]-hard when parameterized by k. Moreover,
these problems cannot be solved in time f (k) · no(k) unless ETH fails.

Proof. We show the theorem by reducing the Set Cover problem. Given a universe U , a family S of subsets of U , and a
positive integer k, the task of Set Cover is to decide whether there is a subfamily S ′ ⊆ S of size at most k that covers U ,
that is, every element of U is in at least one set of S ′ . This problem is well-known to be W[2]-complete when parameterized
by k (see, e.g., [8]).

Let (U , S, k) be an instance of Set Cover. Let U = {u1, . . . , un} and S = {S1, . . . , Sm}. We construct the graph G as follows
(see Fig. 3).

• Construct a set of n vertices U = {u1, . . . , un} corresponding to the universe.
• For every i ∈ {1, . . . , k}, construct a set of m vertices S(i) = {s(i)

1 , . . . , s(i)
m }; each S(i) corresponds to a copy of S .

• For every i ∈ {1, . . . , k}, j ∈ {1, . . . , m} and h ∈ {1, . . . , n}, make s(i)
j and uh adjacent if the element uh of the universe is

in S j ∈ S .

• For every i ∈ {1, . . . , k}, construct a vertex wi and make it adjacent to s(i)
1 , . . . , s(i)

m .
• Construct two vertices s and t .
• For every h ∈ {1, . . . , n}, join s and uh by a path sxhuh and join uh and t by a path uhx′

ht .
• For every i ∈ {1, . . . , k}, join s and wi by a path syi wi and join wi and t by a path wi y′

it .
• Construct a vertex z and make it adjacent to s and t .

We show that if (U , S, k) is a yes-instance of Set Cover, then Divider with k + 1 agents can win in the Rendezvous
Game with Adversaries against Facilitator with the agents placed in s and t . Let S ′ = {Si1 , . . . , Sik } be a set cover; we
assume without loss of generality that S ′ has size exactly k. We describe a winning strategy for Divider with the agents
D1, . . . , Dk+1. Initially, Divider puts D j in the vertex s(j)

i j
for each j ∈ {1, . . . , k}, and Dk+1 is placed in z. Then the following

strategy is used. The agents D1, . . . , Dk+1 are keeping their position until either R or J are moved from s or t , respectively.
Assume by symmetry that R is moved by Facilitator from s (J can either move or stay in t). If R is moved from s to y j for
some j ∈ {1, . . . , k}, then Divider moves D j from s(j)

i j
to w j and Dk+1 is moved from z to s. Notice that R is in the vertex y j

of degree two and both neighbors of y j are occupied by the agents of Divider. Hence, R cannot move and J cannot reach
y j . This implies that Divider wins by keeping the agents in their current positions. Assume that R is moved from s to xh for
some h ∈ {1, . . . , n}. Since S ′ is a set cover, there is j ∈ {1, . . . , k} such that the element of the universe uh ∈ Si j . Then D j is
in the vertex s(j)

i j
that is adjacent to the vertex uh . Divider responds by moving D j from s(j)

i j
to uh and Dk+1 is moved from

z to s. Now we have that R is blocked in xh by the agents in s and uh . This means that Divider wins.
9

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Next, we claim that if (U , S, k) is a no-instance of Set Cover, then Facilitator wins in at most two steps against Divider
with k + 1 agents. Assume that Divider completed the initial placement of the agents. If z is not occupied, then Facilitator
moves R and J to z and wins in one step. Assume that z is occupied by Dk+1. If there is i ∈ {1, . . . , k} such that there is
no agent of Divider in a vertex of NG [wi], then Facilitator moves R to yi and J to y′

i by the first move. Since Divider has
no agents in NG [wi], for any of his possible moves, wi remains unoccupied by his agents. Therefore, Facilitator can move
R and J to wi and win in two steps. Suppose from now that for every i ∈ {1, . . . , k}, Di is in NG [wi]. Because Divider has
k + 1 agents, this means that for every h ∈ {1, . . . , n}, xh , uh and x′

h are not occupied by the agents of Divider and for every
i ∈ {1, . . . , k}, at most one agent is in S(i) . Let X be the set of vertices of

⋃k
i=1 S(i) occupied by the agents of Divider in

the beginning of the game. Since |X | ≤ k and (U , S, k) is a no-instance of Set Cover, there is h ∈ {1, . . . , n} such that the
vertices NH [uh] are not occupied by the agents of Divider. Therefore, Facilitator can move R from s to xh and then to uh
and, symmetrically, move J from t to x′

h and then to uh . We obtain that R and J meet in uh in two steps, that is, Facilitator
wins in two steps.

These arguments imply that (U , S, k) is a yes-instance of Set Cover if and only if (G, s, t, k + 1) is a no-instance of
Rendezvous. This means that Rendezvous is co-W[2]-hard. For τ -Rendezvous in Time for τ ≥ 2, notice that if (U , S, k) is
a no-instance of Set Cover, then Facilitator can win in at most two steps against Divider with k + 1 agents and if (U , S, k)

is a yes-instance, then Divider has a strategy that prevents Facilitator from winning in any number of steps. It follows that
τ -Rendezvous in Time is co-W[2]-hard for any fixed τ ≥ 2.

For the second part of the claim of Theorem 3, we use the results of Chen et al. [7], see also [8, Corollary 14.23].
In particular, they proved that Set Cover cannot be solved in time f (k) · (n + m)o(k) unless ETH fails. To show co-W[2]-
hardness of Rendezvous and τ -Rendezvous in Time, for τ ≥ 2, we constructed a polynomial reduction and the obtained
parameter for Rendezvous and τ -Rendezvous in Time is k + 1, i.e., is linear in the input parameter for Set Cover. Thus, any
algorithm for Rendezvous or τ -Rendezvous in Time, for τ ≥ 2, with running time f (k) · no(k) would imply an algorithm for
Set Cover with running time f (k) · (n + m)o(k) . �

We proved Theorem 3 by giving a polynomial reduction from Set Cover. Since Set Cover is NP-complete (see [18]), we
obtain the following corollary using Observation 3.

Corollary 2. τ -Rendezvous in Time is co-NP-complete for every fixed constant τ ≥ 2.

Using the reduction from the proof of Theorem 3, we can conclude that Rendezvous and τ -Rendezvous in Time, for
τ ≥ 2, are co-NP-hard. However, the general problems are harder.

Theorem 4. Rendezvous and Rendezvous in Time are PSPACE-hard.

Proof. We show that Rendezvous in Time is PSPACE-hard and then explain how to modify our reduction for Rendezvous.
We prove that it is PSPACE-hard to decide whether Divider can win in at most τ steps in the Rendezvous Game with
Adversaries.

The reduction is from the Quantified Boolean Formula in Conjunctive Normal Form (QBF) problem with alternating
quantifiers that is well-known to be PSPACE-complete (see, e.g., [18]). The task of QBF is, given 2n Boolean variables
x1, . . . , x2n and m clauses C1, . . . , Cm , where every Ci is a disjunction of literals over the variables, to decide whether the
formula

ϕ = ∀x1∃x2 . . .∀x2n−1∃x2n[C1 ∧ . . . ∧ Cm]
evaluates true.

Given a formula ϕ = ∀x1∃x2 . . .∀x2n−1∃x2n[C1 ∧ . . . ∧ Cm], we construct the graph G as follows (see Fig. 4).

• Construct m vertices c1, . . . , cm corresponding to the clauses of ϕ .
• Construct vertices s, u0, . . . , un , and x′

2i−1, x
′
2i−1 for i ∈ {1, . . . , n}, and for each i ∈ {1, . . . , n}, make x′

2i−1, x
′
2i−1 adjacent

to ui−1 and ui .
• Make s and u0 adjacent and join un with c1, . . . , cm by paths un w jc j for j ∈ {1, . . . , m}.
• Construct t and 2n + 1 vertices v0, . . . , v2n and construct the path tv0 · · · v2n . Then join v2n with c1, . . . , cm by paths

v2n w ′
jc j for j ∈ {1, . . . , m}.

• Construct two vertices z and z′ , and make them adjacent to s and t .
• For every i ∈ {1, . . . , 2n}, construct vertices xi, xi, x′′

i , x′′
i and yi, y′

i , and then make yi adjacent to xi, xi and make y′
i

adjacent to s and t .
• For every i ∈ {1, . . . , 2n} and every j ∈ {1, . . . , m}, make x′′

i adjacent to c j if the clause C j contains the literal xi and
make x′′

i adjacent to c j if the clause C j contains the literal xi .
• For every i ∈ {1, . . . , n},

– construct (x2i−1, x′′) and (x2i−1, x′′
2i−1)-paths P2i−1 and P 2i−1, respectively, of length 2(n − i) + 1,
2i−1

10

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Fig. 4. The construction of G for ϕ = ∀x1∃x2∀x3∃x4[(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)].

– construct (x2i−1, v2i−1) and (x2i−1, v2i−1)-paths Q 2i−1 and Q 2i−1, respectively, of length 4(n − i) + 5,
– construct a (y2i−1, y′

2i−1)-path R2i−1 of length 2i − 1,
– make x2i−1 adjacent to x′

2i−1 and make x2i−1 adjacent to x′
2i−1.

• For every i ∈ {1, . . . , n},
– construct (x2i, x′′

2i) and (x2i, x′′
2i)-paths P2i and P 2i , respectively, of length 2(n − i) + 1,

– construct a (y2i, y′
2i)-path R2i of length 2i − 1.

This completes the construction of G . We define τ = 2n + 3 and k = 2n + 2.
We claim that ϕ evaluates true if and only if Divider with k agents has a winning strategy that prevents R and J from

meeting in at most τ steps.
Assume that ϕ = true. We describe a winning strategy for Divider.
Assume that after the i-th move of Facilitator R and J are occupying some vertices a and b and the agents of Divider

are in the vertices of a set X . If distG−X (a, b) > 2τ − 2i, then Divider wins by keeping the agents in their current positions
because R and J are unable to meet in the remaining τ − i moves. In this case, we say that Divider has a trivial winning
strategy.

Divider has k = 2n + 2 agents. We place Di in y′
i for i ∈ {1, . . . , 2n}. The remaining two agents D2n+1 and D2n+2 are

placed in z and z′ , respectively. For i ≥ 1, we use Xi to denote the set of vertices occupied by the agents of Divider after
the i-th step of the game; X0 = {y′

1, . . . , y
′
2n} ∪ {z, z′}.

Observe that distG−X0(s, t) = 2τ . This means that if either R or J is not moved, then Divider wins by the trivial winning
strategy. We assume that this is not the case and R is moved to u0 and J is moved to v0. Divider responds by moving
D2n+1 and D2n from z and z′ to s and t , respectively; these agents remain in s and t until the end of the game and the
only role of them is to prevent R and J from entering these vertices. The agents D1, . . . , D2n are moved to the neighbors
of y′

1, . . . , y
′
2n in the paths R1, . . . , R2n , respectively.

The general idea of the reduction is that by the further 2n steps, the players define the values of the Boolean variables
x1, . . . , x2n , and the values of the variables x1, x3, . . . , x2n−1 are chosen by Facilitator and Divider chooses the values of
x2, x4, . . . , x2n . Divider chooses the value of his variables to achieve ψ = C1 ∧ . . . ∧ Cm = true. To describe this process, we
show inductively for i = 0, . . . , n that after the 2i + 1-th step of the game, either Divider wins by the trivial strategy or the
following configuration is maintained.
11

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
• The values of the variables x j for j ≤ 2i are chosen and the values of the variables x j for j > 2i are unassigned.
Moreover, the values of x1, . . . , x2i are chosen in such a way that ϕ evaluates true if the values of x1, . . . , x2i are
constrained by the choice.

• R is in ui and J is in v2i .
• For j ∈ {i + 1, . . . , n}, D2 j−1 and D2 j are on the paths R2 j−1 and R2 j , respectively, at distance �(R2 j−1) − 2i − 1 =

�(R2 j) − 2i − 1 = 2(j − i) − 2 from y2 j−1 and y2 j , respectively; in particular, D2i+1 and D2i+2 are in y2i+1 and y2i+2,
respectively, if i < n.

• For j ∈ {1, . . . , i},
– if the variable x2 j−1 = true, then D2 j−1 is on the path P2 j−1 at distance �(P2 j−1) + �(R2 j−1) − 2i = 2(n − i) from

x′′
2 j−1,

– if the variable x2 j−1 = false, then D2 j−1 is on the path P 2 j−1 at distance �(P 2 j−1) + �(R2 j−1) − 2i = 2(n − i) from
x′′

2 j−1,
– if the variable x2 j = true, then D2 j is on the path P2 j at distance �(P2 j) + �(R2 j) − 2i = 2(n − i) from x′′

2 j ,

– if the variable x2 j = false, then D2 j is on the path P 2 j at distance �(P 2 j) + �(R2 j) − 2i = 2(n − i) from x′′
2 j .

It is straightforward to verify that the claim holds for i = 0. Assume inductively that the claim holds for 0 ≤ i < 2n.
We show that either Divider wins by the trivial strategy applied from the steps 2i + 2 or 2i + 3, or the configuration is
maintained for i′ = i + 1.

Observe that distG−X2i+1 (ui, v2i) = 2(τ − 2i − 1). Therefore, if either of the agents of Facilitator remains in their old
position, then Divider wins by the trivial strategy. Therefore, both R and J have to move. Moreover, they have to move
along a shortest (ui, v2i)-path in G − X2i+1. Hence, Facilitator moves J from v2i to v2v+1 and R is moved either to x′

2i+1
or to x′

2i+1. If R is moved to x′
2i+1, then we assign the variable x2i+1 = true, and x2i+1 = false otherwise. Divider responds

by moving D2i+1 from y2i+1 to x2i+1 if R is in x′
2i+1, and D2i+1 is moved to x2i+1 if R is in x′

2i+1. For D2i+2, Divider
chooses one of the vertices x2i+2 and x2i+2 and moves the agent there. By this move, Divider selects the value of the
Boolean variable x2i+2, and x2i+2 = true if D2i+2 in x2i+2, and x2i+2 = false otherwise. Note that Divider knows the values
of x1, . . . , x2i+1 and selects the move for D2i+1 to ensure that the final value of ψ = true. The agents Dh for h ∈ {1, . . . , 2n}
such that h �= 2i + 1, 2i + 2 are moved to adjacent vertices in the corresponding paths. For j ∈ {i + 2, . . . , n}, D2 j−1 and
D2 j are moved along R2 j−1 and R2 j toward y2 j−1 and y2 j , respectively. For j ∈ {1, . . . , i}, D2 j−1 and D2 j are moved along
P2 j−1 (P 2 j−1) and P2 j (P 2 j) toward x′′

2 j−1 (x′′
2 j−1) and x′′

2 j (x′′
2 j), respectively.

Assume without loss of generality that R occupies x′
2i+1, because the case when R is in x′

2i+1 is symmetric. We have
that distG−X2i+2 (x′

2i+1, v2i+1) = 2(τ − 2i − 2). Hence, if R or J are not moved toward each other by the next step, Divider
wins by the trivial strategy. Assume that this is not the case. Recall that D2i+1 is in x2i+1. We conclude that R is moved to
ui+1 and J is moved to v2i+2. Divider responds as follows. For j ∈ {i + 2, . . . , n}, D2 j−1 and D2 j are moved along R2 j−1 and
R2 j toward y2 j−1 and y2 j , respectively. For j ∈ {1, . . . , i + 1}, D2 j−1 and D2 j are moved along P2 j−1 (P 2 j−1) and P2 j (P 2 j)
toward x′′

2 j−1 (x′′
2 j−1) and x′′

2 j (x′′
2 j), respectively. We obtain that for i′ = i + 1, the players are in the required configuration.

By the above claim, we have that after 2n + 1 steps of the game either Divider wins by the trivial strategy applied from
some step or the following configuration is achieved:

• The values of the Boolean variables x1, . . . , x2n are chosen and ψ = true for them.
• R is in un and J is in v2n .
• For i ∈ {1, . . . , 2n}, Di is in x′′

i if xi = true and Di is in x′′
i otherwise.

Since distG−X2n+1(un, v2n) = 4, the only possibility for Facilitator to win in two steps is to move R and J toward each
other along the path un whch w ′

h v2n for some h ∈ {1, . . . , m}. Otherwise, Divider wins by the trivial strategy. Assume that R
is moved to wh for some h ∈ {1, . . . , m} in the next step. Recall that ψ = true. Therefore, the clause C j contains a literal xi

or xi for some i ∈ {1, . . . , 2n} with the value true. Assume that Ch contains xi as the other case is symmetric. We have that
the vertex x′′

i is occupied by Di and x′′
i is adjacent to ch in G . Divider responds to the moving R to wh by moving Di to ch .

This prevents R and J from meeting in the next step. Therefore, Divider wins. This concludes the proof of the claim that if
ϕ evaluates true, then Divider with k agents has a winning strategy in the game with τ steps.

Our next aim is to show that if ϕ evaluates false, then Facilitator can win in τ steps.
It is convenient to define a special strategy for Facilitator that can be applied after a certain step. Assume that after the

i-th move of Facilitator R and J are occupying some vertices a and b and G has an (a, b)-path L whose length is at most
2(τ − i) and the internal vertices of L have degree two in G . If there is no agent of Divider occupying a vertex of L, then
Facilitator wins in at most τ − i remaining steps by moving R and J along L toward each other (except if R and J are in
adjacent vertices; then R moves to the vertex occupied by J). If Facilitator can win this way, we say that Facilitator has a
trivial winning strategy.

As above, for i ∈ {1, . . . , 2n}, we use Xi to denote the set of vertices occupied by the agents of Divider after i-ith step of
the game and X0 is the set of vertices occupied at the beginning of the game.
12

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Initially, R is in s and J is in t . If there is a vertex a ∈ NG(s) ∩ NG(t) such that a /∈ X0, then Facilitator wins in one
step by moving R and J to a. Hence, we assume that NG (s) ∩ NG(t) ⊆ X0. Since |NG(s) ∩ NG(t)| = k, X0 = NG(s) ∩ NG(t) =
{y′

1, . . . , y
′
2n} ∪ {z, z′} and each vertex of X0 is occupied by exactly one agent of Divider. Let Di be in y′

i for i ∈ {1, . . . , 2n}
and let the remaining two agents D2n+1 and D2n+2 be in z and z′ , respectively.

The idea behind the strategy of Facilitator is that R and J are moved towards each other along the paths containing the
vertices u0, . . . , un and v0, . . . , v2n with the aim to meet in some vertex ch . The trajectory of R goes through vertices x′

i
and x′

i and the choice between these vertices defines the value of the variable xi . On the way, Facilitator forces Divider to
behave in a certain way as, otherwise, Facilitator can win by the trivial strategy using paths Q i or Q i .

It is convenient to sort out the agents of Divider whose movements are irrelevant to the strategy of Facilitator. We say
that an agent D j is out of game if D j cannot block any shortest path between the vertices occupied by R and J in G − X0.
Formally, assume that after the i-th step of the game R is in a vertex a and J is in b, and let d be the vertex occupied
by D j . We say that D j is out of game after the i-step of the game if for every shortest (a, b)-path L in G − X0 and every
e ∈ V (L), it holds that

• distL(a, e) ≤ distG(d, e) if distL(a, e) ≤ distL(b, e),
• distL(b, e) ≤ distG(d, e), otherwise.

Note that if D j is out of game after the i-th step, then D j is out of game for all subsequent steps, because R and J are
moving toward each other along some shortest path between the vertices occupied by them. In particular, D2n+1 and D2n

are out of game from the beginning.
By the first step, Facilitator moves R to u0 and J is moved from t to v0. Further, R and J move towards each other. The

moves of the players define the values of the Boolean variables x1, . . . , x2n . By his moves, Facilitator consecutively chooses
the values of x1, x3, . . . , x2n−1 and Divider selects the values of x2, x4, . . . , x2n . Facilitator aims to achieve ψ = C1 ∧ . . .∧ Cm =
false. To describe the strategy, we show inductively for i = 0, . . . , n that after the 2i +1-th step of the game, either Facilitator
wins by the trivial strategy or the following configuration is maintained.

• The values of the variables x j for j ≤ 2i are chosen and the values of the variables x j for j > 2i are unassigned.
Moreover, the values of x1, . . . , x2i are chosen in such a way that ϕ evaluates false if the values of x1, . . . , x2i are
constrained by the choice.

• R is in ui and J is in v2i .
• For j ∈ {i + 1, . . . , n},

– either D2 j−1 is out of game or D2 j−1 is on the path R2 j−1 at distance �(R2 j−1) − 2i − 1 = 2(j − i) − 2 from y2 j−1,
– either D2 j is out of game or D2 j is on the path R2 j at distance �(R2 j) − 2i − 1 = 2(j − i) − 2 from y2 j .

• For j ∈ {1, . . . , i},
– if the variable x2 j−1 = true, then either D2 j−1 is out of game or D2 j−1 is on the path P2 j−1 at distance �(P2 j−1) +

�(R2 j−1) − 2i = 2(n − i) from x′′
2 j−1,

– if the variable x2 j−1 = false, then either D2 j−1 is out of game or D2 j−1 is on the path P 2 j−1 at distance �(P 2 j−1) +
�(R2 j−1) − 2i = 2(n − i) from x′′

2 j−1,
– if the variable x2 j = true, then either D2 j is out of game or D2 j is on the path P2 j at distance �(P2 j) + �(R2 j) − 2i =

2(n − i) from x′′
2 j ,

– if the variable x2 j = false, then either D2 j is out of game or D2 j is on the path P 2 j at distance �(P 2 j) + �(R2 j) − 2i =
2(n − i) from x′′

2 j .

The construction of G immediately implies that the claim holds for i = 0. Assume inductively that the claim holds for
0 ≤ i < 2n. We show that either Facilitator wins by the trivial strategy applied from the steps 2i + 2 or 2i + 3, or the
configuration is maintained for i′ = i + 1.

By the 2i + 2-th move, Facilitator moves J to v2i+1 and R is moved either to x′
2i+1 or to x′

2i+1. Note that Facilitator
cannot prevent these moves, because of our assumption about the configuration of the positions of the players and the
observation that D2n+1 and D2n are out of game. If R is moved to x′

2i+1, then we assign the variable x2i+1 = true, and
x2i+1 = false otherwise. Assume that R is moved to x′

2i+1 (the other case is symmetric). If no agent of Divider is moved to
x2i+1, then by the next moves R is moved to x2i+1 and J is moved along the path Q 2i+1 toward R . Because the vertices
of Q 2i+1 are not occupied by the agents of Divider, Facilitator wins by the trivial strategy. Since only D2i+1 can move into
x2i+1, we assume that D2i+1 is moved to this vertex. Symmetrically, we assume that if R is moved to x′

2i+1, then D2i+1 is
moved to x2i+1.

Observe that if D2i+2 is out of game, then no agent of Divider can be moved to either x2i+2 or x2i+2. Otherwise, D2i+2
is in y2i+2. If the agent is not moved to either x2i+2 or x2i+2, D2i+2 is out of game. In all these cases, the value of the
Boolean variable x2i+2 is defined arbitrarily. Otherwise, if D2i+2 is moved to x2i+2, then we set x2i+2 = true, and if D2i+2 is
moved to x2i+2, then we set x2i+2 = false. Consider the agents Dh for h ∈ {1, . . . , 2n} such that h �= 2i + 1, 2i + 2 are not
out of game. If such an agent D2 j−1 (D2 j , respectively) for j ∈ {i + 2, . . . , n} is not moved along R2 j−1 toward y2 j−1 (along
R2 j toward y2 j , respectively), D2 j−1 (D2 j , respectively) is out of game. Similarly, if such an agent D2 j−1 (D2 j , respectively)
13

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Fig. 5. The construction of G ′ for G shown in Fig. 4.

for j ∈ {1, . . . , i} is not moved along his current path P2 j−1 or P 2 j−1 (P2 j or P 2 j , respectively) toward x′′
2 j−1 or x′′

2 j−1 (x′′
2 j

or x′′
2 j), respectively, this agent is placed out of game.

Now we consider the step 2i + 3. By symmetry, we assume without loss of generality that R is in x′
2i+1 (the case when

R is in x2i+1 is symmetric). Then Facilitator moves R to ui+1 and J to v2i+2. For each agent Dh that is not out of game,
observe that Dh is placed on some path: for j ∈ {i + 2, . . . , n}, D2 j−1 and D2 j are in R2 j−1 and R2 j , respectively, and for
j ∈ {1, . . . , i + 1}, D2 j−1 and D2 j are in P2 j−1 (P 2 j−1) and P2 j (P 2 j), respectively. If they do not move along these paths
toward y2(i+1), . . . , y2n and the vertices x′′

h or x′′
h for h ≤ 2i, then they are out of game. We obtain that for i′ = i + 1, the

players are in the required configuration.
By the above claim, we have that after 2n + 1 steps of the game either Facilitator wins by the trivial strategy applied

from some step or the following configuration is achieved:

• The values of the Boolean variables x1, . . . , x2n are chosen and ψ = false for them.
• R is in un and J is in v2n .
• For each j ∈ {1, . . . , m}, the vertices w j , c j and w ′

j are not occupied by the agents of Divider.
• For i ∈ {1, . . . , 2n}, if x′′

i is occupied by an agent of Divider, then the vertex is occupied by Di and the value of the
variable xi = true, and if x′′

i is occupied by an agent of Divider, then the vertex is occupied by Di and the value of the
variable xi = false.

Since ψ = false, there is j ∈ {1, . . . , m} such that C j = false. Then for c j , we have that the vertices of NG [c j] are not
occupied by the agents of Divider. This means that Facilitator wins by the next two moves: R is moved to w j and then to
c j , and R is moved to w ′

j and then to c j . It follows that Facilitator wins on G in at most τ steps.
This concludes the proof of PSPACE-hardness for Rendezvous in Time.

The proof for Rendezvous is similar but more complicated. Observe that in the winning strategy for Divider for the case
ϕ = true, it is crucial that R and J are forced to move toward each other along a shortest path between their positions,
because of the limit of the number of steps. In Rendezvous, we have no such a limitation and Facilitator can use other
strategies. However, we can modify the construction of the graph to make Facilitator behave exactly in the same way as in
the above proof or lose immediately.

We construct the graph G ′ starting from G as follows (see Fig. 5).

• Construct a copy of G .
• For i ∈ {0, . . . , n}, construct a vertex u′

i , make it adjacent to s and t , and join it with ui by a path Li of length 2i + 1.
• For i ∈ {1, . . . , n},

– construct vertices ai, ai, a′
i, a

′
i and make them adjacent to s and t ,

– join ai with x2i−1 by a path Si and join ai with x2i−1 by a path Si of length 2i + 1,
14

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
– join a′
i with x′

2i−1 by a path S ′
i and join a′

i with x′
2i−1 by a path S

′
i of length 2i.

• For i ∈ {0, . . . , 2n}, construct a vertex v ′
i , make it adjacent to s and t , and join it with vi by a path L′

i of length i + 1.
• For j ∈ {1, . . . , m}, construct a vertex c′

j , make it adjacent to s and t , and join it with c j by a path F j of length 2n + 3.

Let Y = {u0, . . . , un} ∪ (⋃n
i=1{ai, ai, a′

i, a
′
i}
) ∪ {v ′

0, . . . , v
′
2n} ∪ {c′

1, . . . , c
′
m}. Then we define k′ = k + |Y | = 9n + m + 4.

We claim that ϕ evaluates true if and only if Divider with k′ agents has a winning strategy in the Rendezvous Game with
Adversaries.

Assume that ϕ = true. We describe a winning strategy for Divider. The k = 2n + 2 agents D1, . . . , Dk are initially placed
exactly as in the proof for Rendezvous in Time. The remaining |Y | agents are placed in the vertices of the set Y ; we call
these agents auxiliary. The agents D1, . . . , Dk are using essentially the same strategy as in the proof for Rendezvous in Time

(we call this strategy old). We use the same notation Xi to denote the set of vertices occupied by these agents after the i-th
step of the game. The auxiliary agents force Facilitator to move R and J in the same way as in the previous proof. For i ≥ 1,
we denote by X ′

i the set of vertices occupied by the agents of Divider after the i-th step of the game; X ′
0 = X0 ∪ Y .

We can assume that Facilitator moves either R or J to an adjacent vertex by the first move. Suppose that R is moved
to u0 and J keeps the old position in t . Then Divider moves D2n+1 from z to s and the agent from v ′

0 is moved to v0.
Observe that R and J are now in distinct connected components of G − X1 and Divider wins by the trivial strategy, that is,
by keeping all the agents in their current position. Similarly, if J is moved to v0 and R remains in s, then Divider moves
D2n+1 to t and the agent from u′

0 is moved to u0. Again, X1 separates R and J , that is, Divider wins. Assume that both
R and J are moved in the first step of the game. Then Divider responds by moving D1, . . . , D2n+2 using the old strategy.
The auxiliary agents are moved to adjacent vertices along the paths Li for i ∈ {0, . . . , n}, Si, Si, S ′

i, S
′
i for i ∈ {1, . . . , n}, L′

i for
u ∈ {0, . . . , 2n} and F j for j ∈ {1, . . . , m}. By the subsequent moves, these agents are moved further along these paths until
they reach the end-vertices. If an auxiliary agent is unable to enter a vertex, because it is occupied by an agent of Facilitator,
Divider waits until the vertex gets vacated and then moves the agent there.

Assume inductively for i = 0, . . . , n that after the 2i + 1-th step of the game, R is in ui , J is in v2i and the agents
D1, . . . , Dk are occupying the positions according to the old strategy. Notice if i = 0, then s and t are occupied by D2n+1
and D2n+2. If i ≥ 1, then the vertices x′

2i−1, x
′
2i−1 and the vertex v2i−1 are occupied by auxiliary agents of Divider. Moreover,

the vertices that are adjacent to ui in Li and to v2i in L′
2i are also occupied by auxiliary agents. This means that neither R

or J can move “backward” or use Li or L′
2i .

Suppose that i < n. Notice that the vertices of S ′
i+1 and S

′
i+1 that are adjacent to x′

2i+1 and x′
2i+1 are occupied by

auxiliary agents. If Facilitator does not move R to an adjacent vertex, i.e., either to x′
2i+1 or x′

2i+1, then Divider moves the
agents to x′

2i+1 and x′
2i+1 and wins by the trivial strategy. Similarly, the vertex adjacent to v2i+1 in L′

2i+1 is occupied by an
auxiliary agent. Hence, if J is not moved, this agent enters v2i+1 and J gets separated from R .

Assume that R and J are moved to adjacent vertices. Divider responds using the old strategy. Assume that R is moved
to x′

2i+1 as the other case is symmetric. Recall that according to the old strategy, D2i+1 is moved to x2i+1. Notice also that
ui and v2i are occupied by auxiliary agents. Moreover, the neighbors of x2i+1, x2i+1, x′

2i+1, x′
2i+1, ui+1, v2i+1 and v2i+2 in

Si+1, Si+1, S ′
i+1, S

′
i+1, Li+1 and L2i+1, respectively, are occupied by auxiliary agents. If R is not moved, then an agent enters

ui+2 and R gets separated from J . If J is not moved, then agents enter x2i+1, x2i+1 and v2i+2. Again, R and J are in distinct
components of G − X2i+2. Suppose that J is moved to one of the neighbors of v2i+1 in Q 2i+1 or Q 2i+1. Divider responds
by moving agents to v2i+1, x2i+1 and x2i+1 and wins. We conclude that both R and J should be moved “forward” to ui+1
and v2i . Then Divider responds using the old strategy.

Using these arguments, we obtain after 2n + 1 steps of the game either Divider already separated R and J and won or
the following configuration is achieved:

• R is in un and J is in v2n and the vertices of the sets NG ′ (un) \ {w1, . . . , wm} and NG ′ (v2n) \ {w ′
1, . . . , w

′
m} are occupied

by auxiliary agents.
• For every j ∈ {1, . . . , m}, the vertex at distance two from ci in Fi is occupied by auxiliary agents.
• For i ∈ {1, . . . , n}, Di is either in x′′

i or in x′′
i , and for the corresponding choice of the values of the Boolean variables

x1, . . . , x2n , ψ = C1 ∧ . . . ∧ Cm = true.

If Facilitator moves neither R nor J to adjacent vertices, Divider moves auxiliary agents in two steps to c1, . . . , cm and
separates R and J . Assume that R is moved from un to w j . Then the auxiliary agent that is in the vertex adjacent to un

in the path Ln is moved to un and one of the agents D1, . . . , D2n is moved to c j . Recall that such an agent exists, because
C j = true. Then R is separated from J . Similarly, if J is moved to w ′

j , then an auxiliary agent is moved to v2n and one of
the agents D1, . . . , D2n is moved to c j . Then Divider wins.

This completes the proof that if ϕ evaluates true, then Divider with k′ agents has a winning strategy.
To show that if ϕ evaluates false, then Facilitator has a winning strategy, we use the same arguments as in the analogous

proof for Rendezvous in Time. If there is a vertex of NG(s) ∩ NG(t) that is not occupied by the agents of Divider, Facilitator
wins in one step by moving R and J to this vertex. Assume that all the vertices of NG(s) ∩ NG(t) are occupied by the
agents of Divider in the beginning of the game. In particular, we have that every vertex of Y is occupied by one agent.
15

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Now Facilitator uses the same strategy as in the proof for Rendezvous in Time. To see that this is a winning strategy, it is
sufficient to observe that the agents of Divider that are placed in the vertices of Y are out of game and we can ignore them
in the analysis of the strategy of Facilitator.

We obtain that ϕ evaluates true if and only if Divider with k′ agents has a winning strategy in the Rendezvous Game
with Adversaries. Therefore, Rendezvous is PSPACE-hard. �
5. RENDEZVOUS IN TIME for graphs of bounded neighborhood diversity

In this section, we show that Rendezvous in Time is FPT when parameterized by τ and the neighborhood diversity of
the input graph.

The notion of neighborhood diversity was introduced by Lampis in [25]. It is convenient for us to define this notion in
terms of modules. Let G be a graph. A set of vertices U ⊆ V (G) is a module if for every v ∈ V (G) \ U , either NG(v) ∩ U = ∅
or U ⊆ NG(v). It is said that is a module U is a clique module if U is a clique and U is an independent module if U is an
independent set. We say that a partition {U1, . . . , U�} of V (G) into clique and independent modules is a neighborhood de-
composition. The neighborhood diversity of a graph G is the minimum � such that G has a neighborhood decomposition with
� modules; we use nd(G) to denote the neighborhood diversity of G . The value of nd(G) and the corresponding partition
of V (G) into clique and independent modules can be computed in polynomial (linear) time [25]. Given a neighborhood
decomposition U = {U1, . . . , U�}, we define the quotient graph G as the graph with the vertex set {1, . . . , �} such that i is
adjacent to j for distinct i, j ∈ {1, . . . , �} if and only if u ∈ Ui is adjacent to v ∈ U j in G . For a vertex v ∈ V (G), id(v) = i if
v ∈ Ui . For a multiset of vertices X = {x1, . . . , xr}, id(X) denotes the multiset of indices {id(x1), . . . , id(xr)}.

Let U = {U1, . . . , U�} be a neighborhood decomposition of G . Notice that every bijective mapping ϕ : V (G) → V (G) such
that ϕ(Ui) = Ui for i ∈ {1, . . . , �} is an automorphism of G . We say that ϕ is an automorphism that agrees with U .

For an automorphism ϕ , we extend it to multisets of vertices in a natural way. Namely, if X = {x1, . . . , xr} is a multiset
of vertices of G , ϕ(X) = {ϕ(x1), . . . , ϕ(xr)}. Similarly, for a pair (X, Y) of multisets without common elements, ϕ(X, Y) =
(ϕ(X), ϕ(Y)).

Let G be a connected graph and let U = {U1, . . . , U�} be a neighborhood decomposition of G such that � = nd(G).
Suppose that s, t ∈ V (G) such that s and t belong to distinct modules of U . We consider our Rendezvous Game with
Adversaries on G in τ steps.

Consider a strategy of Divider with k agents, that is, a family of functions di : Pk
G → Dk

G for i ∈ {0, . . . , τ − 1}, where
di : Pk

G →Dk
G for i ∈ {0, . . . , τ − 1} such that for i ∈ {1, . . . , τ − 1}. Recall that di maps (F , D) ∈ Pk

G to D ′ ∈Dk
G , where D and

D ′ are adjacent and D ′ is compatible with F , and d0 maps ({s, t}, ∅) to D ′ ∈Dk
G compatible with {s, t}.

Recall that a strategy of Divider can be represented as a rooted tree T k
G (τ) of height τ . Each node v ∈ V (T k

G (τ)) is
associated with a position P v ∈Pk

G , and

• Pr = ({s, t}, d0({s, t}, ∅)) is associated with the root r of T k
G (τ),

• for every node v ∈ V (T k
G (τ)) with P v = (F , D) at distance i ≤ τ − 1 from the root, there is a child u of v for every

(F ′, D ′) ∈ Pk
G such that (i) F ′ is adjacent to F and compatible with D , and (ii) D ′ = di(F ′, D), and u is associated with

Pu = (F ′, D ′).

From now, we consider such a representation.
By Observation 2, T k

G (τ) is a winning strategy for Divider if and only if F is a set of two distinct vertices for every
P v = (F , D) for v ∈ V (T k

G (τ)). By our assumption that s and t are in distinct modules, we can refine the claim.

Observation 5. The tree T k
G (τ) is a winning strategy for Divider if and only if for every v ∈ V (T k

G (τ)) with P v = (F , D) for v ∈
V (T k

G (τ)), F contains at most one vertex of every module Ui for i ∈ {1, . . . , �}.

Proof. To see the observation, it is sufficient to note that if both agents of Facilitator are moved to the same module or
if one of the agents is in a module Ui and the other is moved to Ui , then Facilitator can move the agents into the same
vertex. �

Let P = (F , D) and P ′ = (F ′, D ′) be positions in the Rendezvous Game with Adversaries on G . We say that P and P ′ are
isomorphic, if there an automorphism ϕ of G such that P ′ = ϕ(P). We also say that P and P ′ are isomorphic with respect to
ϕ for such an automorphism ϕ . We use the following straightforward observation about positions in the game.

Observation 6. Let P and P ′ be isomorphic positions in the Rendezvous Game with Adversaries on G. Then Divider can win in at most
r steps if the game starts from P if and only if Divider can win in r steps if the game starts from P ′.

We say that T k
G (τ) is a uniform strategy if for every node v with P v = (F , D) and each of its two children u1 and u2

with Pu1 = (F1, D1) and Pu2 = (F2, D2), the following holds: if (F1, D) and (F2, D) are isomorphic with respect to some
16

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
automorphism ϕ of G that agrees with U , then Pu1 and Pu2 are isomorphic with respect to some automorphism ψ of G
that agrees with U . Informally, if possible moves of the agents of Facilitator to F1 and F2 are the same with respect to
moving them to the same modules, then the response of Divider is also the same (up to an automorphism that agrees with
U). Observation 6 immediately implies the following.

Observation 7. If Divider has a winning strategy in the Rendezvous Game with Adversaries on G, then Divider has a uniform winning
strategy.

From now on, we assume that T k
G (τ) is uniform.

Let u1 and u2 be distinct children of a node v of T k
G (τ). We say that u1 and u2 are equivalent if Pu1 and Pu2 are

isomorphic with respect to some automorphism ϕ of G that agrees with U . We also say that two subtrees T1 and T2 rooted
in u1 and u2 are equivalent if u1 and u2 are equivalent. It is straightforward to see that the introduced relation is indeed
an equivalence relation. Observe that, because the strategy is uniform, for Pu1 = (F1, D1) and Pu2 = (F2, D2), u1 and u2 are
equivalent if and only if |F1 ∩ Ui | = |F2 ∩ Ui | for all i ∈ {1, . . . , �}.

Since T k
G (τ) is uniform, to represent the strategy, it is sufficient to keep one representative from each class of equiva-

lent children. Given T k
G (τ), we construct the reduced strategy T̂ k

G (τ) obtained by the following operation applied top-down
starting from the root: for a node v and a class of equivalent subtrees rooted in the children of v , delete all the elements
of the class except one. Observe that given a reduced strategy T̂ k

G (τ), we can reconstruct T k
G (τ). Notice also that by Obser-

vations 5 and 6, the strategy is a winning strategy for Divider if and only if for every v ∈ V (T̂ k
G (τ)) with P v = (F , D) for

v ∈ V (T k
G (τ)), F contains at most one vertex of every module Ui for i ∈ {1, . . . , �}.

Now we construct the tree that represents all possible moves of Facilitator in τ steps between the modules without the
agents of Divider. We define the rooted tree T ∗

G (τ) of height τ with each node v associated with a pair Xv = {p, q} of not
necessarily distinct elements of {1, . . . , �} such that

• Xr = {id(s), id(t)} is associated with the root r of T ∗
G (τ),

• for every node v ∈ V (T ∗
G (τ)) with Xv = {p, q} at distance at most τ − 1 from the root, there is a child u of v with

Xv = {p′, q′} for every {p′, q′} adjacent to {p, q} in the quotient graph G .

Observe that T ∗
G (τ) has at most

(
�+1

2

)τ+1
nodes.

The tree T̂ k
G (τ) can be seen as a subtree of T ∗

G (τ). Formally, we define an injective mapping α : V (T̂ k
G (τ)) → V (T ∗

G (τ))

inductively top-down:

• for the root r of T̂ k
G (τ), α(r) is the root of T ∗

G (τ),

• if α(v) = u for v ∈ V (T̂ k
G (τ)), then every child v ′ of v in T̂ k

G (τ) with P v ′ = (F , D) is mapped to the child u′ of u in
T ∗

G (τ) with Xu′ = id(F).

In particular, for every v ∈ V (T̂ k
G (τ)) with P v = (F , D), Xα(v) = id(F). We say that the subtree of T ∗

G (τ) induced by
α(V (T̂ k

G (τ))) is a projection of T̂ k
G (τ) to T ∗

G (τ). We use the following property of projections that immediately follows
from the definition.

Observation 8. Let u be a non-leaf node of T ∗
G (τ) with Xu = {p, q}. Let also u = α(v) for some v ∈ V (T̂ k

G (τ)) with P v = (F , D) and
let I v = {i | i ∈ {1, . . . , �} and Ui ⊆ D}. Then a child u′ of u in T ∗

G (τ) with Xu′ = {p, q} is a child of u in the projection of T̂ k
G (τ) if and

only if {p′, q′} ∈ {{i, j} | i ∈ NG [p] \ I v and j ∈ NG [q] \ I v}.

Note, in particular, that each leaf of the projection of T̂ k
G (τ) is a leaf of T ∗

G (τ).
In our algorithm for Rendezvous in Time, we check whether Divider with k agents has a winning strategy on G . For

this, we consider T ∗
G (τ) and guess the projection T of a hypothetical reduced winning strategy tree by trying all subtrees

of T ∗
G (τ) using brute force. For each T , we verify whether Divider indeed has a strategy corresponding to T by checking

whether Divider can respond to the moves of Facilitator in such a way that Divider is able to ensure that T has the required
structure, according to Observation 8.

Checking whether Divider has a strategy corresponding to T is based on the results of Lenstra [26] (see also [16,23]
for further improvements) about parameterized complexity of Integer Linear Programming. The task of the Integer Linear
Programming Feasibility problem is, given a q × p matrix A over Z and a vector b ∈Zq , to decide whether there is a vector
x ∈Zp such that Ax ≤ b; we write Ax ≤ b to denote that for every i ∈ {1, . . . , q}, the i-th element of the vector Ax is at most
the i-th element of b. Lenstra [26] proved that Integer Linear Programming Feasibility is FPT when parameterized by p
and later this result was improved by Kannan [23]. Further, Frank and Tardos [16] proved that Integer Linear Programming
Feasibility can be solved in polynomial space. These results can be summarized in the following statement.
17

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
Proposition 3 ([16,23,26]). Integer Linear Programming Feasibility can be solved in O(p2.5p+o(p) · L) time and polynomial in L
space, where L is the number of bits in the input.

Theorem 5. Rendezvous in Time can be solved in 2�O(τ) · nO(1) time on graphs of neighborhood diversity �.

Proof. Let (G, s, t, k, τ) be an instance of Rendezvous in Time. If s = t or s and t are adjacent, then the problem is trivial.
Assume that s and t are distinct nonadjacent vertices of G . We compute a neighborhood decomposition U = {U1, . . . , U�}
of G with � = nd(G). Recall that this can be done in polynomial time [25]. Denote by ni = |Ui | for i ∈ {1, . . . , �}.

Suppose that s and t are in the same module Ui . Since s and t are distinct and not adjacent, Ui is an independent
module. We have that NG (s) = NG(t) and, therefore, λG(s, t) = |NG(s) ∩ NG(t)|. Notice that Facilitator wins in one step if
k < |NG(s) ∩ NG(t)| by moving R and J into a vertex of NG(s) ∩ NG(t) that is not occupied by an agent of Divider. We
conclude that dG (s, t) = |NG(s) ∩ NG(t)| and, therefore, (G, s, t, k, τ) is a yes-instance if and only if k < |NG(s) ∩ NG(t)|. From
now, we assume that s and t are in distinct modules of U .

We construct the tree T ∗
G (τ) by brute force with the corresponding pairs Xv = {p, q} for v ∈ V (T ∗

G (τ)). Since T ∗
G (τ) has

at most
(
�+1

2

)τ+1
nodes, the construction can be done in �O(τ) time. Denote by r the root of T ∗

G (τ).
We consider all subtrees T of T ∗

G (τ) containing r and rooted in this vertex, whose leaves are leaves of T ∗
G (τ). Observe

that the total number of such trees is at most 2|T ∗
G (τ)| = 2�O(τ)

. For each T , we check whether Divider has a winning
strategy such that the projection of the corresponding reduced strategy is T . If we find such a tree T , we conclude that
Divider wins in the game. Otherwise, we conclude that Facilitator wins.

Assume that T is given. If for some v ∈ V (T), Xv = {p, p} for some p ∈ {1, . . . , �}, we discard the choice of T , because
T cannot be the projection of a winning strategy of Divider by Observation 5. Suppose that for every v ∈ V (T), Xv = {p, q}
with p �= q.

The running time of our algorithm is going to be dominated by checking all the trees T and solving Integer Linear
Programming Feasibility. Therefore, to simplify the arguments, for each node v of T we guess the set I v ⊆ {1, . . . , �} such
that the agents of Divider occupy all the vertices of the modules Ui with i ∈ I v in the position of the game corresponding
to v . As standard, we do it by brute force by checking all possible assignments of sets to the nodes of T . Since the number
of the assignments is at most (2�)|V (T)| , this can be done in 2�O(τ)

time.
For each selection of I v for v ∈ V (T), we check feasibility using Observation 8. Namely, for each non-leaf vertex v ∈

V (T), we consider its set Xv = {p, q} and check whether the children u of v in T ∗
G (τ) with Xu ∈ {{i, j} | i ∈ NG [p] \

I v and j ∈ NG [q] \ I v } are exactly the children of v in T . We discard the assignment if this is not the case and we discard
the current choice of T if we fail to find a feasible assignment of sets I v .

From now on, we assume that the assignment of sets I v for v ∈ V (T) is given.
Our general idea is to express the question about the existence of a winning strategy of Divider in terms of Integer

Linear Programming Feasibility. We start with introducing two families of variables xv
1 , . . . , xv

� and yv
1 , . . . , yv

� for each
node v of T . The intuition behind these variables is the following. For every i ∈ {1, . . . , �}, xv

i is the number of vertices
of Ui occupied by agents of Divider in the position of the game corresponding to the node v . It is more convenient for
us to consider xv

i as the number of the agents of Divider that occupy distinct vertices of Ui ; we call these agents blockers.
Divider may also have other agents in Ui and yv

i is the number of these agents and we call these agents dwellers. It is
also convenient to assume that blockers are active in the current step of the game and dwellers are inactive and do not
prevent R or J from entering the vertices occupied by them. By this convenience, we can allow, say, the situation xv

i = 0
and yv

i > 0, as we do not care where the dwellers are placed in the corresponding module.
We impose the following constraints on these variables for every v ∈ V (T):

�∑

i=1

(xv
i + yv

i) = k, xv
i ≥ 0 and yv

i ≥ 0 for every i ∈ {1, . . . , �}, (3)

xv
i ≤ ni for every i ∈ {1, . . . , �} \ Xv , (4)

xv
i ≤ ni − 1 for every i ∈ Xv , (5)

yv
i = 0 for i ∈ {1, . . . , �} if ni = 1 and i ∈ Xv . (6)

The necessity of constraints (3) and (4) is straightforward. To see the reason behind (5) and (6), notice that if a vertex of
Ui is occupied by an agent of Facilitator, then at most ni blockers can be in Ui and, moreover, if ni = 1, then no agent of
Divider can be in Ui .

Next, we state the constraints coming from the choice of sets I v . For every v ∈ V (T),

xv
i = ni for every i ∈ I v . (7)

The variables xv
i and yv

i are used to express the positions of the players. However, we also have to express transitions
between these positions, that is, the players should be able to make moves from the position corresponding to a node
of T to the positions corresponding to its children. For this, we need additional variables. For every v ∈ V (T) and every
18

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
child u of v in T , and every ordered pair (i, j) of adjacent vertices of the quotient graph G , we introduce four variables
av,u

i, j , bv,u
i, j , cv,u

i, j , dv,u
i, j . The meaning of the variables is following. For the move of Facilitator from the position corresponding

to v to the position corresponding to u, Divider responds by moving av,u
i, j blockers from Xi to make them blockers in X j ,

bv,u
i, j blockers from Xi become dwellers in X j , cv,u

i, j dwellers from Xi become blockers in X j , and dv,u
i, j dwellers from Xi

become dwellers in X j . Notice that if Ui is a clique module, then some dwellers can move to adjacent vertices to become
blockers (it has no sense for Divider to make a blocker a dweller). For this, we introduce a variable zv,u

i for i ∈ {1, . . . , �}.
The constraints for these variables are the following.

For every non-leaf v ∈ V (T) and every child u of v in T ,

av,u
i, j ≥ 0, bv,u

i, j ≥ 0, cv,u
i, j ≥ 0, dv,u

i, j ≥ 0 for each ordered pair (i, j) of adjacent vertices of G, (8)

zv,u
i ≥ 0 and zv,u

i = 0 for every i ∈ {1, . . . , �} s.t. Ui is an independent module, (9)
∑

j∈NG (i)

(av,u
i, j + bv,u

i, j) ≤ xv
i and

∑

j∈NG (i)

(cv,u
i, j + dv,u

i, j) + zv,u
i ≤ yv

i for every i ∈ {1, . . . , �}, (10)

xu
i = xv

i −
∑

j∈NG (i)

(av,u
i, j + bv,u

i, j) +
∑

j∈NG (i)

(av,u
j,i + cv,u

j,i) + zv,u
i for every i ∈ {1, . . . , �}, (11)

yu
i = yv

i −
∑

j∈NG (i)

(cv,u
i, j + dv,u

i, j) − zv,u
i +

∑

j∈NG (i)

(bv,u
j,i + dv,u

j,i) for every i ∈ {1, . . . , �}. (12)

Constraints (8) and (9) are straightforward. Constraint (10) encodes that the number of blockers that leave a module Ui
is upper bounded by the number of blockers in Ui and, symmetrically, the number of dwellers that leave a module Ui or
become blockers in the block is at most the number of dwellers in Ui . Finally, (11) and (12) express that the movements of
agents of Divider from the position associated with v lead to the position corresponding to u.

We have 2|V (T)|� variables xv
i , yv

j , at most 8|E(T)|(�
2

)
variables av,u

i, j , bv,u
i, j , cv,u

i, j , dv,u
i, j , and |E(T)|� variables zu,v

i , that is,
�O(τ) variables. We defined 5|V (T)|� constraints (3)–(6), at most |V (T)|� constraints (7), and |E(T)|(8

(
�
2

) + 5�) constraints
(8)–(12). Hence, in total, we have �O(τ) constraints. Denote the obtained system of integer linear inequalities by (∗). Observe
that the coefficients in (∗) are upper bounded by n. Therefore, the bit-size of (∗) is �O(τ) · log n. We solve (∗) in 2�O(τ) · log n
time by Proposition 3.

We claim that (∗) is feasible, that is, has an integer solution if and only if Divider has a winning strategy such that the
projection of the reduced strategy on T ∗

G (τ) is T .
Suppose that Divider with k agents has a uniform winning strategy T k

G (τ) such that the projection of the reduced
strategy T̂ on T ∗

G (τ) is T . For every two distinct modules Ui and U j , ether every vertex of Ui is adjacent to every vertex
of U j or the vertices of the modules are nonadjacent. This allows us to make some additional assumptions about T k

G (τ).
Namely, we can assume that on each step the agents of Divider are divided into blockers and dwellers and then we can
assume that a blocker (dweller, respectively) agent can become a dweller (blocker, respectively) only if the agent is moved
to an adjacent vertex. Also, we can assume that a blocker is never moved to an adjacent vertex of the same clique module
to become a dweller. Then we define the values of all the variables according to the description given in the construction
of (∗) following the reduced strategy T̂ k

G (τ). Then the construction of the constraints of (∗) immediately implies that these
values of the variables provide a solution of (∗).

For the opposite direction, given a solution of (∗), we construct the strategy T k
G (τ). Initially, we place the agents of

Divider on G according to the values of xr
1, . . . , xr

� and yr
1, . . . , y

r
� for the root r. For each i ∈ {1, . . . , �}, we place xr

i agents
(blockers) into distinct vertices of Ui unoccupied by the agents of Facilitator. Then we put yr

i dwellers into Ui ; as we
pointed out above, it is convenient to assume that these agents are inactive and we can place them arbitrarily. Assume
inductively that we constructed a node v of the future T k

G (τ) with P v = (F , D) that corresponds to the node v ′ of T , that
is, id(F) = Xv ′ and for each i ∈ {1, . . . , �}, Divider has exactly xv ′

i blockers in Ui that occupy distinct vertices and also yv ′
i

dwellers are in Ui . Assume that F ′ ∈ F is compatible with D and adjacent to F . Then because of constraints (7), there is a
child u′ of v ′ in T with id(F ′) = Xu′ . Then Divider responds to moving the agents of Facilitator from F to F ′ by moving his
agents according to the values av ′,u′

i, j , bv ′,u′
i, j , cv ′,u′

i, j , dv ′,u′
i, j for the ordered pairs (i, j) of adjacent vertices of G and according

to the values of zv ′,u′
i for i ∈ {1, . . . , �}. For the obtained node u of T k

G (τ) with Pu = (F ′, D ′), we have that the position
corresponds to the configuration defined by the variables xu′

1 , . . . , xu′
� and yu′

1 , . . . , yu′
� . These inductive arguments imply that

the constructed strategy is a uniform winning strategy for Divider and the projection of the reduced strategy is T .
This completes the construction of the algorithm. To evaluate the running time, observe that we consider 2�O(τ)

trees
T , and for each T , we consider 2�O(τ)

assignments of sets I v for the nodes. Then for each tree T given together with
the assignments of sets I v for v ∈ V (T), we construct a solve the system (∗) in time 2�O(τ) · log n. Taking into account the
preliminary steps where we consider special cases of s and t and construct the neighborhood decomposition U , the total
running time is 2�O(τ) · nO(1) . �
19

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
6. Conclusion

We initiated the study of the Rendezvous Game with Adversaries on graphs. We proved that in several cases, the dynamic
separation number dG (s, t), the minimum number of agents needed for Divider to win against Facilitator, could be equal
to the minimum size λG (s, t) of an (s, t)-separator in G . In particular, this equality holds on P5-free graphs and chordal
graphs. Very recently, Misra et al. [28,29] proved that the same property holds for the series-parallel graphs. However, in
general, the difference λG (s, t) − dG (s, t) could be arbitrarily large. Are there other natural graph classes for which equality
holds? Is it possible to characterize hereditary graph classes with this property?

The equality between dG (s, t) and λG (s, t) for a graph class implies that Rendezvous can be solved in polynomial time on
this class. Thus, Rendezvous can be solved in polynomial time on P5-free graphs, chordal graphs, and series-parallel graphs.
Also, we demonstrated that Rendezvous and Rendezvous in Time can be solved in nO(k) time. In particular, this means that
the problems can be solved in polynomial time if dG (s, t) is upper bounded by a constant. For example, this holds for grids
by the result of Misra et al. [28,29], who proved that for an (m × n)-grid
, d
(s, t) = 2 for distinct nonadjacent s and t
if m, n ≥ 2. Clearly, we can upper bound dG (s, t) by a constant for graphs of bounded degree if s and t are distinct and
nonadjacent. Are there other natural graph classes, where dG (s, t) admits a constant upper bound? For which graph classes
Rendezvous and Rendezvous in Time can be solved in polynomial time?

We investigated the computational complexity of Rendezvous and Rendezvous in Time. Both problems can be solved in
nO(k) time. However, they are co-W[2]-hard when parameterized by k and cannot be solved in no(k) time unless FPT = W[1].
In fact, τ -Rendezvous in Time is co-W[2]-hard for every τ ≥ 2. We also proved that Rendezvous and Rendezvous in Time

are PSPACE-hard. We conjecture that these two problems are EXPTIME-complete.
Finally, we have studied the parameterized complexity of the problem under structural parameterization of the input

graphs. We proved that Rendezvous in Time is FPT when parameterized by the neighborhood diversity of the input graph
and τ . We leave open the question of whether our result for the parameterization by the neighborhood diversity could be
extended for the parameterization by modular width (see, e.g., [17] for the definition and the discussion of this parameter-
ization) and τ . Is Rendezvous in Time FPT when parameterized by the neighborhood diversity only? The same question is
open for Rendezvous too. We believe that this problem is interesting even for the more restrictive parameterization by the
vertex cover number.

After the appearance of the conference version of this paper, the research on the structural parameterization of Ren-

dezvous was continued by Misra et al. [28,29]. They proved that Rendezvous is co-NP-complete for graphs of constant
treewidth. Furthermore, they showed that the problem is co-W[2]-hard when parameterized by the feedback vertex number
and k and is unlikely to admit a polynomial kernel when parameterized by the vertex cover number and k. Complementing
these hardness results, they proved that Rendezvous is FPT when parameterized by both the vertex cover number and k.
We refer to [8] for the definitions of all mentioned here structural parameters and kernels.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] M. Aigner, M. Fromme, A game of cops and robbers, Discrete Appl. Math. (ISSN 0166-218X) 8 (1) (1984) 1–11.
[2] Steve Alpern, The rendezvous search problem, SIAM J. Control Optim. (ISSN 0363-0129) 33 (3) (1995) 673–683, https://doi .org /10 .1137 /

S0363012993249195.
[3] Steve Alpern, Shmuel Gal, The Theory of Search Games and Rendezvous, International Series in Operations Research & Management Science, vol. 55,

Kluwer Academic Publishers, Boston, MA, ISBN 0-7923-7468-1, 2003.
[4] Anthony Bonato, Richard J. Nowakowski, The Game of Cops and Robbers on Graphs, Student Mathematical Library, vol. 61, American Mathematical

Society, Providence, RI, ISBN 978-0-8218-5347-4, 2011.
[5] Anthony Bonato, Boting Yang, Graph searching and related problems, in: Handbook of Combinatorial Optimization, 2013, pp. 1511–1558.
[6] Andreas Le Brandstädt Van Bang, Jeremy P. Spinrad, Graph Classes: a Survey, SIAM Monographs on Discrete Mathematics and Applications., Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, ISBN 0-89871-432-X, 1999.
[7] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, Ge Xia, Strong computational lower bounds via parameterized complexity, J. Comput. Syst. Sci. 72 (8) (2006)

1346–1367, https://doi .org /10 .1016 /j .jcss .2006 .04 .007.
[8] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh, Parameterized

Algorithms, Springer, ISBN 978-3-319-21274-6, 2015.
[9] Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, Andrzej Pelc, Deterministic rendezvous in graphs, Algorithmica 46 (1) (2006) 69–96, https://

doi .org /10 .1007 /s00453 -006 -0074 -2.
[10] Reinhard Diestel, Graph Theory, 4th edition, Graduate Texts in Mathematics, vol. 173, Springer, ISBN 978-3-642-14278-9, 2012.
[11] Rodney G. Downey, Michael R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science., Springer, ISBN 978-1-4471-5558-4,

2013.
20

http://refhub.elsevier.com/S0890-5401(23)00052-4/bib6B2E35E8ECB16324F05698146080C902s1
https://doi.org/10.1137/S0363012993249195
https://doi.org/10.1137/S0363012993249195
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib502F410B88632FC323951ECE92361B2Cs1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib502F410B88632FC323951ECE92361B2Cs1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib65E7AA1E64B2D86542E37CAE4CF24DA1s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib65E7AA1E64B2D86542E37CAE4CF24DA1s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib438878C403803D41F5BD095F5DBC1785s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib19BF3B5601EEBBD9695F675C2CEECBE0s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib19BF3B5601EEBBD9695F675C2CEECBE0s1
https://doi.org/10.1016/j.jcss.2006.04.007
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib3D93D88A4AB91CB1B59B325D0E54400Bs1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib3D93D88A4AB91CB1B59B325D0E54400Bs1
https://doi.org/10.1007/s00453-006-0074-2
https://doi.org/10.1007/s00453-006-0074-2
http://refhub.elsevier.com/S0890-5401(23)00052-4/bibEFE2D01FC732F8B4BBCA24551C0CF4A9s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib9652337EEAA73BF1D4AA6B27B01B1FC5s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib9652337EEAA73BF1D4AA6B27B01B1FC5s1

F.V. Fomin, P.A. Golovach and D.M. Thilikos Information and Computation 293 (2023) 105049
[12] Fedor V. Fomin, Dimitrios M. Thilikos, An annotated bibliography on guaranteed graph searching, Theor. Comput. Sci. 399 (3) (2008) 236–245, https://
doi .org /10 .1016 /j .tcs .2008 .02 .040.

[13] Fedor V. Fomin, Petr A. Golovach, Alexander Hall, Matús Mihalák, Elias Vicari, Peter Widmayer, How to guard a graph?, Algorithmica 61 (4) (2011)
839–856, https://doi .org /10 .1007 /s00453 -009 -9382 -4.

[14] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Guard games on graphs: keep the intruder out!, Theor. Comput. Sci. 412 (46) (2011) 6484–6497,
https://doi .org /10 .1016 /j .tcs .2011.08 .024.

[15] Pierre Fraigniaud, Andrzej Pelc, Delays induce an exponential memory gap for rendezvous in trees, ACM Trans. Algorithms 9 (2) (2013) 17, https://
doi .org /10 .1145 /2438645 .2438649.

[16] András Frank, Éva Tardos, An application of simultaneous Diophantine approximation in combinatorial optimization, Combinatorica 7 (1) (1987) 49–65,
https://doi .org /10 .1007 /BF02579200.

[17] Jakub Gajarský, Michael Lampis, Sebastian Ordyniak, Parameterized algorithms for modular-width, in: 8th International Symposium on Parameterized
and Exact Computation (IPEC), in: Lecture Notes in Computer Science, vol. 8246, Springer, 2013, pp. 163–176.

[18] M.R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, ISBN 0-7167-1044-7, 1979.
[19] Fănică Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Comb. Theory, Ser. B (ISSN 0095-8956) 16 (1974) 47–56,

https://doi .org /10 .1016 /0095 -8956(74)90094 -x.
[20] Martin Charles Golumbic, Algorithmic Graph Theory and Perfect Graphs, second edition, Annals of Discrete Mathematics, vol. 57, Elsevier Science B.V.,

Amsterdam, ISBN 0-444-51530-5, 2004, with a foreword by Claude Berge.
[21] Russell Impagliazzo, Ramamohan Paturi, On the complexity of k-sat, J. Comput. Syst. Sci. 62 (2) (2001) 367–375, https://doi .org /10 .1006 /jcss .2000 .1727.
[22] Russell Impagliazzo, Ramamohan Paturi, Francis Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci. 63 (4) (2001)

512–530, https://doi .org /10 .1006 /jcss .2001.1774.
[23] Ravi Kannan, Minkowski’s convex body theorem and integer programming, Math. Oper. Res. (ISSN 0364-765X) 12 (3) (1987) 415–440, https://doi .org /

10 .1287 /moor.12 .3 .415.
[24] William B. Kinnersley, Cops and robbers is exptime-complete, J. Comb. Theory, Ser. B 111 (2015) 201–220, https://doi .org /10 .1016 /j .jctb .2014 .11.002.
[25] Michael Lampis, Algorithmic meta-theorems for restrictions of treewidth, Algorithmica 64 (1) (2012) 19–37, https://doi .org /10 .1007 /s00453 -011 -9554 -

x.
[26] Hendrik W. Lenstra, Integer programming with a fixed number of variables, Math. Oper. Res. 8 (4) (1983) 538–548, https://doi .org /10 .1287 /moor.8 .4 .

538.
[27] László Lovász, Michael D. Plummer, Matching Theory, AMS Chelsea Publishing, Providence, RI, ISBN 978-0-8218-4759-6, 2009, corrected reprint of the

1986 original, MR0859549.
[28] Neeldhara Misra, Manas Mulpuri, Prafullkumar Tale, Gaurav Viramgami, Romeo and Juliet meeting in forest like regions, in: 42nd IARCS Annual Con-

ference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, in: LIPIcs, vol. 250,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Chennai, India, 2022, 27.

[29] Neeldhara Misra, Manas Mulpuri, Prafullkumar Tale, Gaurav Viramgami, Romeo and Juliet meeting in forest like regions, CoRR, arXiv:2210 .02582 [abs],
2022, https://doi .org /10 .48550 /arXiv.2210 .02582.

[30] Hiroshi Nagamochi, Cop–robber guarding game with cycle robber-region, Theor. Comput. Sci. 412 (4–5) (2011) 383–390.
[31] Richard Nowakowski, Peter Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math. (ISSN 0012-365X) 43 (2–3) (1983) 235–239.
[32] Alain Quilliot, A short note about pursuit games played on a graph with a given genus, J. Comb. Theory, Ser. B 38 (1) (1985) 89–92.
[33] Robert Sámal, Tomás Valla, The guarding game is E-complete, Theor. Comput. Sci. 521 (2014) 92–106, https://doi .org /10 .1016 /j .tcs .2013 .11.034.
[34] Amnon Ta-Shma, Uri Zwick, Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences, ACM Trans. Algorithms 10 (3)

(2014) 12, https://doi .org /10 .1145 /2601068.
[35] David Williamson, Network Flow Algorithms, Cambridge University Press, 2019.
21

https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1007/s00453-009-9382-4
https://doi.org/10.1016/j.tcs.2011.08.024
https://doi.org/10.1145/2438645.2438649
https://doi.org/10.1145/2438645.2438649
https://doi.org/10.1007/BF02579200
http://refhub.elsevier.com/S0890-5401(23)00052-4/bibC60C72D48DCB4274F808319BB068EA14s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bibC60C72D48DCB4274F808319BB068EA14s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib6B9B907D03FDB7889D2A6E974411DEC4s1
https://doi.org/10.1016/0095-8956(74)90094-x
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib35CEE2A784A5D4E1C39F9FB59478E760s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib35CEE2A784A5D4E1C39F9FB59478E760s1
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1016/j.jctb.2014.11.002
https://doi.org/10.1007/s00453-011-9554-x
https://doi.org/10.1007/s00453-011-9554-x
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.8.4.538
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib6C11CAD681A6CE39A3C5F00F187A8A85s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib6C11CAD681A6CE39A3C5F00F187A8A85s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bibB57BC2C13D8516286B47D7F06DAE441Bs1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bibB57BC2C13D8516286B47D7F06DAE441Bs1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bibB57BC2C13D8516286B47D7F06DAE441Bs1
https://doi.org/10.48550/arXiv.2210.02582
http://refhub.elsevier.com/S0890-5401(23)00052-4/bibFCE9F32BD74CFEBDAD2E81DBB102779Cs1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib92E7AECCC72422264A1106127C018CA1s1
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib2DBAE72386F736851638E85020D19113s1
https://doi.org/10.1016/j.tcs.2013.11.034
https://doi.org/10.1145/2601068
http://refhub.elsevier.com/S0890-5401(23)00052-4/bib036721D8D6EC218D95514D389742A1B5s1

	Can Romeo and Juliet meet? Or rendezvous games with adversaries on graphs
	1 Introduction
	2 Preliminaries
	3 Dynamic separation vs. separators
	4 Hardness of rendezvous game with adversaries
	5 RENDEZVOUS IN TIME for graphs of bounded neighborhood diversity
	6 Conclusion
	Declaration of competing interest
	Data availability
	References

