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In the Categorical Clustering problem, we are given a set of vectors (matrix) A =
{a1, . . . , an} over �m , where � is a finite alphabet, and integers k and B . The task is to 
partition A into k clusters such that the median objective of the clustering in the Hamming 
norm is at most B . Fomin, Golovach, and Panolan [ICALP 2018] proved that the problem is 
fixed-parameter tractable for the binary case � = {0, 1}. We extend this algorithmic result 
to a popular capacitated clustering model, where in addition the sizes of the clusters are 
lower and upper bounded by integer parameters p and q, respectively. Our main theorem 
is that the problem is solvable in time 2O(B log B)|�|B · (mn)O(1) .
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

While many problems in machine learning concern numerical data, there is a large class of problems about learning 
from categorical data. The term categorical data refers to the type of data whose values are discrete and belong to a specific 
finite set of categories. It could be text, some numeric values, or even unstructured data like images. The most popular 
clustering objectives for numerical data are k-means and k-median, which are based on distances in the �1 and �2-norm. 
For categorical data, other metrics, like Hamming distance, could be much more useful.

We study the parameterized complexity of clustering problems with constraints on the sizes of the clusters. The need for 
clustering with constraints comes from various applications. The survey of Banerjee and Ghosh [5] contains various examples 
of clustering with balancing constraints in Direct Marketing [39], Category Management [33], Clustering of Documents [3,28], 
and Energy Aware Sensor Networks [22,23] among others. However, introducing constraints on the sizes of clusters usually 
makes clustering tasks much more computationally challenging.

In this paper, we focus on categorical data clustering, where data features admit a fixed number of possible values. We 
work with vectors from �m , where � is a finite alphabet. The most commonly used similarity measure for categorical data 
is the Hamming distance. For two vectors a, b ∈ �m or, equivalently, for two strings of length m over �, we use dH (a, b), to 
denote the Hamming distance between a and b, that is, the number of indices i ∈ {1, . . . , m} where the i-th elements of a
and b differ. The task of the vanilla Categorical Clustering problem is, given an m × n matrix A with columns (a1, . . . , an)

over a finite alphabet �, a positive integer k, and a nonnegative integer B , decide whether there is a partition {I1, . . . , Ik}
of {1, . . . , n} and vectors c1, . . . , ck ∈ �m such that
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k∑
i=1

∑
j∈Ii

dH (ci,a j) ≤ B.

The sets I1, . . . , Ik are called clusters and the vectors c1, . . . , ck are medians (or centers).1 We consider the generalization of 
the problem, where the size of each cluster should be within a given interval:

Input: An m × n matrix A with columns (a1, . . . , an) over a finite alphabet �, a positive integer k, a 
nonnegative integer B , and positive integers p and q such that p ≤ q.

Task: Decide whether there is a partition {I1, . . . , Ik} of {1, . . . , n}, where p ≤ |Ii | ≤ q, and vectors 
c1, . . . , ck ∈ �m such that

k∑
i=1

∑
j∈Ii

dH (ci,a j) ≤ B.

Capacitated Clustering

Parameterized algorithms for the vanilla variant of Capacitated Clustering (without constraints on the sizes of clusters) 
were given by Fomin, Golovach, and Panolan in [19]. One of the main results of their paper is the theorem providing an 
algorithm of running time 2O(B log B) · (nm)O(1) for vanilla clustering over the binary field. In other words, the problem is 
fixed-parameter tractable (FPT) parameterized by B . The main question that we address in this paper is whether clustering 
constraints impact the problem’s parameterized complexity.

Our results Our main result is that Capacitated Clustering is fixed-parameter tractable when parameterized by the budget 
B and the alphabet size. More precisely, we show the following:

Theorem 1. Capacitated Clustering can be solved in 2O(B log B)|�|B · (mn)O(1) time.

Fomin, Golovach, and Panolan [19, Theorem 1] proved that Categorical Clustering for binary matrices is FPT when 
parameterized by the budget B . Theorem 1 generalizes this result. Interestingly, for approximation algorithms, introducing 
clustering constraints makes the problem much more computationally challenging. However, from the parameterized com-
plexity perspective, adding constraints on the sizes of clusters does not change the complexity of the problem. We note 
that Theorem 1 is tight in the sense that it is unlikely that the dependence on the alphabet size could be made poly-
nomial because the results of Fomin, Golovach, and Simonov [20] imply that Capacitated Clustering is W[1]-hard when 
parameterized by B and m.

We also observe that Capacitated Clustering is NP-complete even for binary matrices, k = 2 and p = q = n
k . Theo-

rem 1 can be used to establish fixed-parameter tractability of several other variants of constrained clustering discussed 
in the literature. In some applications, it is natural to require that the sizes of clusters be approximately equal, see e.g. 
[37]. We consider variants of Categorical Clustering, where the input contains additional parameters besides a matrix 
A = (a1, . . . , an) and integers k and B , and the task is to find clusters I1, . . . , Ik and medians c1, . . . , cr ∈ �m such that ∑k

i=1
∑

j∈Ii
dH (ci, a j) ≤ B and the sizes of the clusters satisfy special balance properties.

• In Balanced Clustering, we are additionally given a nonnegative integer δ and it should hold that ||Ii | − |I j|| ≤ δ for all 
i, j ∈ {1, . . . , k}, that is, the sizes of clusters can differ by at most δ.

• In Factor-Balanced Clustering, we are given a real α ≥ 1 and it is required that |Ii | ≤ α|I j | for all i, j ∈ {1, . . . , k}, that 
is, the ratio of the sizes of the clusters is upper bounded by α.

By making use of Theorem 1, we prove that Balanced Clustering and Factor-Balanced Clustering are solvable in time 
2O(B log B)|�|B · (mn)O(1) .

Finally, we discuss kernelization for these problems. In particular, we show that Balanced Clustering admits a polyno-
mial kernel under the combined parameterization by k, B , and δ. We also observe that neither of the considered problems 
has a polynomial kernel when parameterized by B only, unless coNP ⊆ NP/poly, even for the binary case.

High-level overview of the proof of Theorem 1 The algorithm for the vanilla problem of Fomin et al. [19], as well as the algo-
rithm of Fomin, Golovach and Simonov for clustering in �p -norm [20], uses the result of Marx [30] about the enumeration 
of subhypergraphs with certain properties of a given hypergraph of a special type. Basically, these algorithms can be seen 
as an intricate reduction of a clustering instance to a hypergraph of a special type and then calling the result of Marx as a 

1 Some authors call c1, . . . , ck means in the case of Hamming distances.
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black box. In the context of the categorical clustering problems, a similar reduction implies that all potential medians can 
be listed in 2O(B log B)|�|B · (mn)O(1) time (see Lemma 4).

However, this strategy does not work to prove Theorem 1. Here the difficulties are due to the constraints on the sizes 
of clusters. The algorithm for Categorical Clustering in [19] uses an observation that identical columns ai and a j of A can 
be clustered together. That is, i, j ∈ Ih for a cluster Ih of an optimal solution. Hence, a solution can be seen as a partition 
of the family of initial clusters, i.e., inclusion maximal sets of indices J ⊆ {1, . . . , n} such that the columns ai for i ∈ J are 
the same. Since the number of initial clusters that are part of composite clusters of a solution, that is, clusters including at 
least two initial clusters, is at most 2B in any yes-instance, the color coding technique of Alon, Yuster, and Zwick [2] allows 
to highlight initial clusters that may be included in a single composite cluster of a solution. This way, the initial problem 
is reduced to selecting a single composite cluster of the minimum cost that contains a given number of initial clusters. To 
solve this problem, the result of Marx [30] about the enumeration of subhypergraphs becomes handy.

This scheme does not work for Capacitated Clustering because splitting of an initial cluster between clusters of a 
solution may be inevitable due to size constraints. This makes it impossible to select composite clusters independently from 
each other and destroys the approach used in [19,20].

The main insight that allows overcoming the above issues is the very specific structure of possible splitting of initial 
clusters (Lemma 3). For a clustering I = {I1, . . . , Ik} and the partition J of the column indices into initial clusters, we look 
at the structure of the intersection graph G(I, J ) defined by the partitions I and J of {1, . . . , n}. The crucial fact we prove 
here is that there is an optimal solution such that this intersection graph is a forest. It can be seen that G(I, J ) has at most 
3B vertices in connected components with at least three vertices for such a solution. This allows us to guess the structure 
of G(I, J ), that is, guess a forest F isomorphic to G(I, J ), by using brute force. Then for a given F , we find a solution I
with G(I, J ) isomorphic to F by combining dynamic programming with color coding and enumeration of subhypergraphs 
of Marx.

Related work Clustering is one of the most common procedures in unsupervised machine learning. Capacitated Clustering

is the variant of the popular k-median clustering with the Hamming norm. In many applications of clustering, constraints 
come naturally. For example, the lower bound on the size of a cluster ensures certain anonymity of data and is often 
required for data privacy [36]. There is a rich literature on approximation algorithms for various versions of capacitated 
clustering [1,7,6,8,10,14,26,12,9,29,37]. However, to the best of our knowledge, no parameterized algorithms for categorical 
clustering with constraints on the sizes of clusters were known prior to our work.

Several approximations and parameterized algorithms are known for the vanilla case of Categorical Clustering with-
out constraints can be found in the literature. For the binary field, Categorical Clustering was introduced by Kleinberg, 
Papadimitriou, and Raghavan [24] as one of the examples of segmentation problems. The problem appears under differ-
ent names in the literature [11,31]. Feige proved in [16] that the problem is NP-complete for every k ≥ 2. We use several 
ideas from Feige’s construction for our lower bounds. Ostrovsky and Rabani [34] gave a randomized PTAS for the binary
Categorical Clustering problem which was recently improved to EPTAS in [18] and [4]. Fomin, Golovach and Simonov 
in [20] studied k-clusterings with various distance norms in Categorical Clustering. One of their results is that cluster-
ing with Hamming-distance (�0-distance) (but unbounded size of the alphabet �) is W[1]-hard parameterized by m + B . 
The following paper about the binary variant of Categorical Clustering is highly relevant to this paper. Fomin, Golovach, 
and Panolan [19] gave two parameterized algorithms for the binary case of Categorical Clustering with the running time 
2O(B log B) · (nm)O(1) and 2O(

√
kB log (k+B) log k) · (nm)O(1) .

Organization of the paper In Section 2, we introduce basic notions and notation used throughout the paper. We also show 
some auxiliary claims. In particular, we show that Capacitated Clustering is NP-complete for k = 2 and binary matrices 
even if the clusters are required to be of the same size. In Section 3, we show our main result by constructing an FPT
algorithm for Capacitated Clustering parameterized by B + |�|. In Section 4, we discuss Balanced Clustering and Factor-

Balanced Clustering. Further, in Section 5, we discuss kernelization for clustering problems with size constraints. We 
conclude in Section 6, by stating some open problems.

2. Preliminaries

In this section, we introduce the terminology used throughout the paper and obtain some auxiliary results.

2.1. Basic notions

Matrices and vectors All matrices and vectors considered in this paper are assumed to be over a finite alphabet � and we 
say that a matrix (vector) is binary if � = {0, 1}. Therefore, to simplify notation, we omit � in the notation whenever it 
does not create confusion. We use m and n to denote the number of rows and columns, respectively, of input matrices if it 
does not create confusion. We write A = (a1, . . . , an) to denote that A is a matrix with n columns a1, . . . , an . For a partition 
I = {I1, . . . , Ik} of {1, . . . , n}, we say that {I1, . . . , Ik} is a k-clustering for A. For an inclusion maximal J ⊆ {1, . . . , n} such 
that the columns ai are identical for all i ∈ J , we say that J is an initial cluster. We say that a cluster Ii of I is simple if 
Ii ⊆ J for some initial cluster J and Ii is composite, otherwise, that is, if Ii contains some h, j ∈ {1, . . . , n} such that ah and 
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a j are distinct. For a vector a ∈ �m , we use a[i] to denote the i-th element of the vector for i ∈ {1, . . . , m}. Thus, for two 
vectors a, b ∈ �m , dH (a, b) = |{i ∈ {1, . . . , m} | a[i] �= b[i]}|. Let aij for i ∈ {1, . . . , m} and j ∈ {1, . . . , n} be the elements of A. 
For I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n}, we denote by A[I, J ] the |I| × | J |-submatrix of A with the elements aij where i ∈ I
and j ∈ J .

Parameterized complexity We refer to the books of Cygan et al. [13] and Downey and Fellows [15] for a detailed introduction 
to the field, see also the recent book of Fomin et al. on kernelization [17]. Here, we just informally sketch basic notions.

The input of a parameterized problem contains an integer value k that is referred to as a parameter. A parameterized 
problem is fixed-parameter tractable (FPT) if there is an algorithm solving it in f (k) · |I|O(1) time, where I is an input, k is a 
parameter, and f (·) is a computable function; the parameterized complexity class FPT consists of fixed-parameter tractable 
problems.

A kernelization algorithm, or simply a kernel, for a parameterized problem P is an algorithm that, given an instance (I, k)

of P , in polynomial in |I| and k time returns an instance (I ′, k′) of P such that (i) (I, k) and (I,′ k′) are equivalent, that is, 
(I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance, and (ii) |I ′| + k′ ≤ g(k) for some computable function g(k). It 
is said that g(·) is the size of a kernel; if g(·) is a polynomial, then the kernel is polynomial. It is well-known that every 
FPT problem admits a kernel but, up to some reasonable complexity assumptions, there are FPT problems that have no 
polynomial kernels. The typical assumption is that NP � coNP/poly (see [17] for details).

2.2. Solutions, clusters, and medians

Formally, for Categorical Clustering and its variants, a solution is formed by clusters I1, . . . , Ik together with the cor-
responding medians c1, . . . , ck . However, given clusters I1, . . . , Ik , optimal medians c1, . . . , ck can be computed by the easy 
majority rule. Let A = (a1, . . . , an) and let {I1, . . . , Ik} be a k-clustering. For every i ∈ {1, . . . , k}, we compute ci ∈ �m as fol-
lows. For each j ∈ {1, . . . , m}, we consider the multiset Rij = {ah[ j] | h ∈ Ii} of elements of �. For each s ∈ Rij , we compute 
the number of its occurrences in the multiset and find an element s∗ that occurs most often (ties are broken arbitrarily). 
Then we set ci[ j] = s∗ . It is straightforward to verify that for every c ∈ �m , 

∑
h∈Ii

dH (ci, ah) ≤ ∑
h∈Ii

dH (c, ah). Therefore, the 
choice of ci is optimal. This gives the following observation.

Observation 1. Given a matrix A = (a1, . . . , an) and a k-clustering {I1, . . . , Ik}, a family of vectors c1, . . . , ck ∈ �m such that

k∑
i=1

∑
j∈Ii

dH (ci,a j)

is minimum can be computed in polynomial time by the majority rule.

For a k-clustering {I1, . . . , Ik}, we define the cost cost(I1, . . . , Ik) as the minimum value of 
∑k

i=1
∑

j∈Ii
dH (ci, a j) over all 

k-tuples of vectors c1, . . . , ck ∈ �m . By Observation 1, we have that cost(I1, . . . , Ik) can be computed in polynomial time. 
Then the task of Categorical Clustering and its variants is reduced to finding a k-clustering of cost at most B (with the 
respective constraints of the cluster sizes). Thus, we may refer to a k-clustering as a solution without specifying medians.

Observe that given vectors c1, . . . , ck , we can find a k-clustering {I1, . . . , Ik} that minimizes 
∑k

i=1
∑

j∈Ii
dH (ci, a j) by the 

greedy procedure. For each i ∈ {1, . . . , n}, we find j ∈ {1, . . . , k} such that dH (c j, ai) is minimum (ties are broken arbitrarily) 
and place i in the cluster I j . Since

n∑
i=1

min{dH (c j,ai) | 1 ≤ j ≤ k} ≤
k∑

i=1

∑
j∈Ii

dH (ci,a j),

for every k-clustering {I1, . . . , Ik}, the described greedy procedure produces optimal partition of {1, . . .n} (some sets may 
be empty). However, the constructed k-clustering does not respect the size constraints of our problems. Still, given vectors 
c1, . . . , ck , we can decide in polynomial time whether an instance of Capacitated Clustering has a solution with the me-
dians c1, . . . , ck using a reduction to the classical Minimum Weight Perfect Matching problem on bipartite graphs that is 
well-known to be solvable in polynomial time by the Hungarian method of Kuhn [25] (see also [27]).

Recall that a matching M of a graph G is a set of edges without common vertices. It is said that a matching M saturates
a vertex v if M has an edge incident to v . A matching M is perfect if every vertex of G is saturated. The task of Minimum 
Weight Perfect Matching is, given a bipartite graph G and a weight function w : E(G) → Z≥0, to find a perfect matching 
M (if it exists) such that its weight w(M) = ∑

e∈M w(e) is minimum.

Lemma 1. There is a polynomial time algorithm that, given an instance (A, �, k, B, p, q) of Capacitated Clustering and c1, . . . , ck ∈
�m, decides whether the instance has a solution with the family of medians {c1, . . . , ck}.
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Proof. Let (A, �, k, B, p, q) be an instance of Capacitated Clustering, A = (a1, . . . , an). Clearly, we can assume that the 
parameter k in the instance equals the number of vectors ci as, otherwise, c1, . . . , ck cannot be the medians. We also 
assume without loss of generality that p ≤ n

k ≤ q; otherwise, (A, �, k, B, p, q) is a no-instance.
We construct the bipartite graph G as follows.

• For each i ∈ {1, . . . , k}, construct a set of p vertices W i = {vi
1, . . . , v

i
p} and a set of q − p vertices W ′

i = {vi
p+1, . . . , v

i
q}; 

note that W ′
i = ∅ if p = q. Let V i = W i ∪ W ′

i for i ∈ {1, . . . , k} and denote V = ⋃k
i=1 V i ; the block of vertices V i

corresponds to the median ci .
• For each i ∈ {1, . . . , n}, construct a vertex ui corresponding to the column ai of A and make ui adjacent to the vertices 

of V . Denote U = {u1, . . . , un}.
• Construct a set of s = kq − n vertices U ′ = {u′

1, . . . , u
′
s} that we call fillers and make the vertices of U ′ adjacent to the 

vertices of W ′
j for all j ∈ {1, . . . , k}; note that U ′ = ∅ if n = qk and observe that qk ≥ n by our assumption about the 

instance of Capacitated Clustering.

Observe that G is a bipartite graph, where U ∪ U ′ and V form the bipartition. Note also that |U ∪ U ′| = |V | = qk.
We define the edge weights as follows.

• For every i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, set w(ui v j
h) = dH (c j, ai) for h ∈ {1, . . . , q}, that is, the weights of all edges 

joining ui corresponding to ai with the vertices of V j corresponding to the median c j are the same and coincide with 
the Hamming distance between ai and c j .

• For every i ∈ {1, . . . , s} and j ∈ {1, . . . , k}, set w(u′
i v j

h) = 0 for h ∈ {p + 1, . . . , q}, that is, the edges incident to the fillers 
have zero weights.

We now show that G has a perfect matching of weight at most B if and only if there is a k-clustering {I1, . . . , Ik} for A
such that p ≤ |Ii | ≤ q for all i ∈ {1, . . . , k} and 

∑k
i=1

∑
j∈Ii

dH (ci, a j) ≤ B .
In the forward direction, assume G has a perfect matching M ⊆ E(G) of weight at most B . We construct the clustering 

{I1, . . . , Ik} as follows. For every h ∈ {1, . . . , n}, uh is saturated by M and, therefore, there are ih ∈ {1, . . . , k} and jh ∈ {1, . . .q}
such that edge uh vih

jh
∈ M . Consider M ′ = {uh vih

jh
| 1 ≤ h ≤ n} ⊆ M . We cluster the columns of A according to M ′ . Formally, 

we place h in Iih for each h ∈ {1, . . . , n}. Clearly, {I1, . . . , Ik} is a partition of {1, . . . , n}. Observe that for each i ∈ {1, . . . , k}, 
the vertices of W i are adjacent only to the vertices of U . Since these vertices are saturated by M , we obtain that |Ii | ≥ p for 
every i ∈ {1, . . . , k}. Since |V i| = q, |Ii | ≤ q for all i ∈ {1, . . . , k}. Now we upper bound the cost of the obtained k-clustering:

k∑
i=1

∑
j∈Ii

dH (ci,a j) =
n∑

h=1

dH (cih ,ah) = w(M ′) ≤ w(M) ≤ B.

For the reverse direction, consider a k-clustering {I1, . . . , Ik} for A such that p ≤ |Ii | ≤ q for all i ∈ {1, . . . , k} and ∑k
i=1

∑
j∈Ii

dH (ci, a j) ≤ B . Let i ∈ {1, . . . , k}. Consider the cluster Ii and assume that Ii = { j1, . . . , jhi }. Recall that every 
vertex of V i is adjacent to every vertex of U . Let Mi = {u j1 vi

1, . . . , u jhi
vi

hi
}. Clearly, Mi is a matching saturating the first 

p ≤ hi ≤ q vertices of V i . In particular, the vertices of W i are saturated. We construct Mi for every i ∈ {1, . . . , k} and set 
M ′ = ⋃k

i=1 Mi . Since {I1, . . . , Ik} is a partition of {1, . . . , n}, M ′ is a matching saturating every vertex of U . Denote by V ′ the 
set of vertices of V that are not saturated by M ′ . Notice that V ′ ⊆ ⋃k

i=1 W ′
i because the vertices of each W i are saturated 

by Mi . Observe that every vertex of U ′ is adjacent to every vertex of W ′
i for i ∈ {1, . . . , k}, that is, G[U ′ ∪ V ′] is a complete 

bipartite graph. Because |U ′| = |V ′| = s, G[U ′ ∪ V ′] has a perfect matching M ′′ . We set M = M ′ ∪ M ′′ . It is easy to see that 
M is a matching and, since M saturates every vertex of G , M is a perfect matching. To evaluate the weight of M , recall that 
the edges of G incident to the fillers have zero weights, that is, w(M ′′) = 0. Then

w(M) =w(M ′) = w(

k⋃
i=1

Mi) =
k∑

i=1

∑
e∈Mi

w(e) =
k∑

i=1

(
w(u j1 vi

1) + · · · + w(u jhi
vi

hi
)
)

=
k∑

i=1

∑
j∈Ii

dH(ci,a j) ≤ B,

and we conclude that M is a perfect matching of weight at most B .
It is straightforward to see that the construction of the graph G from an instance (A, �, k, B, p, q) of Capacitated Cluster-

ing can be done in polynomial time. Then, because a perfect matching of minimum weight in G can be found in polynomial 
time [25,27], Capacitated Clustering can be solved in polynomial time. This completes the proof of the lemma. �
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By Lemma 1, we have that solving our problems can be reduced to finding a family of medians {c1, . . . , ck} (notice that 
some medians may be the same).

2.3. Hardness of clustering

Since we are interested in the parameterized complexity of clustering problems, in the last part of this section, we 
argue that Balanced Clustering, Factor-Balanced Clustering, and Capacitated Clustering are NP-hard for very restricted 
instances.

In [16], Feige proved that Categorical Clustering is NP-complete for k = 2 and binary matrices, that is, for the case 
� = {0, 1}. This result immediately implies that Capacitated Clustering is also NP-complete for k = 2 and binary matrices. 
To see it, note that an instance (A, �, k, B) of Categorical Clustering is equivalent to the instance (A, �, k, B, p, q) of
Capacitated Clustering for p = 1 and q = n. However, we would like to underline that Capacitated Clustering is NP-hard 
even if p = q. For this, we use some details of the hardness proof of Feige [16].

Feige proved that Categorical Clustering is NP-hard by showing a reduction from the Max-Cut problem [16]. In Max-

Cut, we are given a graph G and a nonnegative integer �, and the task is to find a cut (S, S), that is, a partition of the 
vertex set into a set S and its complement S = V (G) \ S such that the size of the cut, i.e., the number of edges between S
and S is at least �. The reduction constructed by Feige has the property given in the following lemma.

Lemma 2 ([16]). There is a polynomial time reduction from Max-Cut to Categorical Clustering that computes from an instance 
(G, �) of Max-Cut an instance (A, �, 2, B) of Categorical Clustering, where � = {0, 1}, such that the following holds: if (G, �) is 
a yes-instance of Max-Cut with a cut (S, ̄S) of size at least �, then (A, �, 2, B) is a yes-instance of Categorical Clustering that has 
a solution {I1, I2} with the property that |I1|/|I2| = |S|/|S|.

Theorem 2. For every fixed integer constant c ≥ 0, Capacitated Clustering is NP-complete for k = 2, binary matrices and q − p ≤ c.

Proof. We show the theorem by a reduction from Max-Cut that is well-known to be NP-complete [21]. Given an instance 
(G, �) of Max-Cut, we construct an auxiliary instance (G ′, 2�) of Max-Cut, where G ′ is the union of two disjoint copies 
G1 and G2 of G . Then for the constructed instance (G ′, 2�) we can use as a black box the algorithm of Fiege [16] from 
Lemma 2 to produce the instance (A, �, 2, B) of Categorical Clustering with � = {0, 1}. We further set p = q = |V (G)| and 
consider the instance (A, �, 2, B, p, q) of Capacitated Clustering. Clearly, q − p ≤ c. We show that (G, �) is a yes-instance 
of Max-Cut if and only if (A, �, 2, B, p, q) is a yes-instance of Capacitated Clustering.

In the forward direction, assume that (G, �) is a yes-instance of Max-Cut and let (S, ̄S) be a cut of size at least �. Let 
S1 and S2 be the copies of S in G1 and G2, respectively. We now consider S ′ ⊆ V (G ′) such that S ′ = S1 ∪ (V (G2) \ S2). 
Clearly, S ′ = (V (G1) \ S1) ∪ S2 and (S ′, S ′) is a cut of G ′ of size at least 2�. Moreover, |S ′| = |S1| + |V (G2) \ S2| = |S2| +
|V (G1) \ S1| = |S ′|. Hence, (G ′, 2�) is a yes-instance of Max-Cut with a solution (S ′, S ′) that has the property that |S ′| = |S ′|. 
By Lemma 2, (A, �, 2, B) is a yes-instance of Categorical Clustering that has a solution {I1, I2} such that |I1| = |I2|. This 
implies that p ≤ |I1|, |I2| ≤ q. Therefore, {I1, I2} is also solution for the instance (A, �, 2, B, p, q) of Capacitated Clustering. 
Thus, (A, �, 2, B, p, q) is a yes-instance of Capacitated Clustering.

In the reverse direction, suppose that (A, �, 2, B, p, q) is a yes-instance of Capacitated Clustering. Then there is a 2-
clustering {I1, I2} for A of cost at most B . This means that (A, �, 2, B) is a yes-instance of Categorical Clustering. Because 
(A, �, 2, B) is obtained from (G ′, 2�) by a polynomial reduction from Lemma 2, (G ′, 2�) is a yes-instance of Max-Cut, that 
is, G ′ has a cut of size at least 2�. Since G ′ is a disjoint union of two identical copies of G , each copy has a cut of size at 
least l. Therefore, (G, �) is a yes-instance of Max-Cut. This completes the hardness proof. �
3. FPT algorithm for parameterization by B and the alphabet size

In this section, we show that Capacitated Clustering is FPT when parameterized by B and |�|. Our main result is 
Theorem 1 that we restate here.

Theorem 1. Capacitated Clustering can be solved in 2O(B log B)|�|B · (mn)O(1) time.

Note that this result is tight in the sense that it is unlikely that the dependence on the alphabet size could be made 
polynomial. It was shown in [20], that Categorical Clustering is W[1]-hard when parameterized by B and the number of 
rows m of the input matrix if � =Z, i.e., for an infinite alphabet. However, it is straightforward to see that this result holds 
for � = {0, . . . , n − 1} because our measure is the Hamming distance. For each row of the input matrix, we can replace the 
original symbols by the symbols of � = {0, . . . , n − 1} in such a way that the original symbols in the row are the same if 
and only if the new symbols are the same. Clearly, this replacement gives an equivalent instance. This immediately leads to 
the following proposition.

Proposition 1. Capacitated Clustering is W[1]-hard when parameterized by B and m.
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The remaining part of the section contains the proof of Theorem 1. The proof is constructive. In Subsection 3.1, we in-
troduce some notation and show technical claims that are used by the algorithm, and Subsection 3.2 contains the algorithm 
and its analysis.

3.1. Technical lemmata

Let A = (a1, . . . , an) be a matrix. Recall that an inclusion maximal J ⊆ {1, . . . , n} such that the columns ai are identical 
for all i ∈ J is called an initial cluster. Suppose that {I1, . . . , Ik} is a k-clustering for A. Recall that a cluster Ii is simple if 
Ii ⊆ J for some initial cluster J and Ii is composite, otherwise, that is, if Ii contains some h, j ∈ {1, . . . , n} such that ah and 
a j are distinct.

We start by making the following observation about medians of sufficiently big (in B) clusters.

Observation 2. Let {I1, . . . , Ik} be a k-clustering for a matrix A = (a1, . . . , an) of cost at most B, and let |Ii| ≥ B + 1 for some 
i ∈ {1, . . . , k}. Then for all vectors c1, . . . , ck ∈ �m such that 

∑k
h=1

∑
j∈Ih

dH (ch, a j) ≤ B, ci = a j for at least |Ii| − B indices j ∈ Ii . 
Moreover, if |Ii| ≥ 2B + 1, then ci is unique.

Proof. To show the first part of the claim, assume that ci ∈ �m is distinct from at least B + 1 columns a j for j ∈ Ii . Then

B ≥
k∑

h=1

∑
j∈Ih

dH (ch,a j) ≥
∑
j∈Ii

dH (ci,a j) ≥ B + 1;

a contradiction. For the second part of the claim, note that if |Ii | ≥ 2B + 1, then ci should coincide with more than half of 
the columns a j with j ∈ Ii and, therefore, the choice of ci is unique. �

We use the following simple observation about the number of composite clusters and the number of initial clusters 
having elements in the composite clusters of a solution.

Observation 3. Let A = (a1, . . . , an) be a matrix with the partition J = { J1, . . . , J s} of {1, . . . , n} into initial clusters. Let also I =
{I1, . . . , Ik} be a k-clustering for A of cost at most B. Then I contains at most B composite clusters and J has at most 2B initial clusters 
with nonempty intersections with the composite clusters of I .

Proof. Let c1, . . . , ck be medians such that 
∑k

i=1
∑

j∈Ii
dH (ci, a j) ≤ B . Note that if Ii is a composite cluster for some i ∈

{1, . . . , k}, then ci is distinct from a j for at least one j ∈ Ii and 
∑

j∈Ii
dH (ci, a j) ≥ 1. Therefore, I contains at most B

composite clusters. For the second claim, notice that if J has t ≥ B initial clusters with nonempty intersections with 
composite clusters, then because I has at most B composite clusters, for at least t − B of these initial clusters J j , ah �= ci
for h ∈ J j and all the medians ci of composite clusters. Hence, t ≤ 2B . �

Let J ⊆ {1, . . . , n} be an initial cluster. Due to size constraints, it may happen that a k-clustering {I1, . . . , Ik} with several 
simple clusters Ii ⊆ J provides a solution. This means, that we should partition a subset of J into blocks of bounded size. 
To verify whether we are able to create such a partition, we use the following observation.

Observation 4. Let p and q be positive integers, p ≤ q. A finite set X can be partitioned into h subsets such that each of them has size 
at least p and at most q if and only if 

⌈ |X |
q

⌉
≤ h ≤

⌊ |X |
p

⌋
.

Proof. If X can be partitioned into h subsets of size at least p and at most q, then, trivially, ph ≤ |X | and qh ≥ |X |, i.e., ⌈ |X |
q

⌉
≤ h ≤

⌊ |X |
p

⌋
. If 

⌈ |X |
q

⌉
≤ h ≤

⌊ |X |
p

⌋
, then X has h disjoint subsets X1, . . . , Xh of size p. Then the remaining |X | − ph

elements can be greedily added to these subsets without exceeding the upper bound q on the size. �
Let J = { J1, . . . , J s} be the partition of {1, . . . , n} into initial clusters. For a k-clustering I = {I1, . . . , Ik}, we define the 

graph G(I, J ) as the intersection graph of the sets of I and J , that is, G(I, J ) is the bipartite graph with the set of 
vertices I ∪J such that for every i ∈ {1, . . . , k} and j ∈ {1, . . . , s}, Ii and J j are adjacent if and only if Ii ∩ J j �= ∅. We show 
that we can assume G(I, J ) to be a forest. This can be proved using an ILP or flow formulation of the clustering problem 
with given medians. For simplicity, we provide a direct proof.

Lemma 3. Let A = (a1, . . . , an) be a matrix with the partition J = { J1, . . . , J s} of {1, . . . , n} into initial clusters. Also, let I =
{I1, . . . , Ik} be a k-clustering for A. Then there is a k-clustering I ′ = {I ′1, . . . , I ′k} such that (i) |Ii| = |I ′i | for all i ∈ {1, . . . , k}, (ii) 
cost(I ′ , . . . , I ′ ) ≤ cost(I1, . . . , Ik), and (iii) G(I ′, J ) is a forest.
1 k
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Fig. 1. A cycle in G(I ′,J ) and the cluster rearrangement scheme.

Proof. Assume that I ′ = {I ′1, . . . , I ′k} is a k-clustering for A satisfying conditions (i) and (ii) such that the number of edges 
of G(I ′, J ) is minimum. Denote by c1, . . . , ck optimal medians for I ′1, . . . , I ′k . We claim that G(I ′, J ) is a forest.

The proof is by contradiction. Assume that G(I ′, J ) has a cycle. This means that there are distinct i1, . . . , it ∈ {1, . . .k}
and distinct j1, . . . , jt ∈ {1, . . . , s} such that I ′ih

∩ J jh �= ∅ and I ′ih
∩ J jh+1 �= ∅ for all h ∈ {1, . . . , t}; here and further in the 

proof, we assume that jt+1 = j1 and it+1 = i1 (see Fig. 1(a)).
For h ∈ {1, . . . , s}, denote by bh the vector coinciding with ah′ for h′ ∈ Jh . We observe that either

t∑
h=1

(dH (cih ,b jh ) + dH (cih ,b jh+1)) ≥ 2
t∑

h=1

dH (cih ,b jh ) (1)

or
t∑

h=1

(dH (cih ,b jh ) + dH (cih ,b jh+1)) ≥ 2
t∑

h=1

dH (cih ,b jh+1) (2)

because the sums of the left and right parts of inequalities (1) and (2) are the same.
We assume without loss of generality that (1) holds, as the second case is symmetric. This means that

t∑
h=1

dH (cih ,b jh+1) ≥
t∑

h=1

dH (cih ,b jh ). (3)

We iteratively modify I ′ by moving a representative of J jh in Iih−1 to Iih for h ∈ {2, . . . , t + 1}, that is, representatives 
are moved cyclically without changing the cluster sizes (see Fig. 1(b)). We show that this procedure does not increase the 
clustering cost with respect to the medians c1, . . . , ck .

Formally, we construct the k-clusterings I(0), I(1), . . ., where I(p) = {I(p)
1 , . . . , I(p)

k } for p = 0, 1, . . ., starting from I(0) =
I ′ while J jh+1 ∩ I(p)

ih
�= ∅ for all h ∈ {1, . . . , t}.

Assume that I(p) = {I(p)
1 , . . . , I(p)

k } is constructed and J jh+1 ∩ I(p)

ih
�= ∅ for all h ∈ {1, . . . , t}. For every h ∈ {1, . . . , t}, let 

i′h ∈ J jh+1 ∩ I(p)

ih
. We define I(p+1) = {I(p+1)

1 , . . . , I(p+1)

k } by setting

I(p+1)

ih
= (I(p)

ih
\ {i′h}) ∪ {i′h−1}

for all h ∈ {1, . . . , t} assuming that i′0 = i′t , and we set I(p+1)
q = I(p)

q for q ∈ {1, . . . , k} \ {i1, . . . , it}. Clearly, |I(p+1)

i | = |I(p)
q | for 

all i ∈ {1, . . . , r}. We have that

( k∑
i=1

∑
j∈I(p)

i

dH (ci,a j)
) − ( k∑

i=1

∑
j∈I(p+1)

i

dH (ci,a j)
) =

t∑
h=1

(dH (cih ,ai′h ) − dH (cih ,ai′h−1
))

=
t∑

h=1

(dH (cih ,b jh+1) − dH (cih ,b jh ))

=( t∑
h=1

(dH (cih ,b jh+1)
) − ( t∑

h=1

dH (cih ,b jh )
) ≥ 0,
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where the last inequality follows from (3). This means that the cost of the k-clustering I(p+1) with respect to the medians 
c1, . . . , ck is at most the cost of I(p) with respect to the same medians.

The next k-clustering I(p+1) is constructed from I(p) if J jh+1 ∩ I(p)

ih
�= ∅ for all h ∈ {1, . . . , t}. Thus, the sequence is finite, 

and for the last k-clustering I(q) , there is h ∈ {1, . . . , t} such that J jh+1 ∩ I(q)

ih
= ∅, that is, I(q)

ih
and J jh+1 are not adjacent 

in G(I(q), J ). Note that the rearrangement of elements of clusters does not create new adjacencies in G(I(q), J ) because 
no cluster gets representatives of an initial cluster that had no representatives in it. We conclude that G(I(q), J ) has less 
edges than G(I ′, J ) but this contradicts the choice of I ′ . Therefore, G(I ′, J ) is a forest and I ′ satisfies conditions (i)–(iii) 
as required. �

Next, we show that, given a matrix A, we can list all potential medians for a k-clustering of cost at most B in FPT when 
B and |�| are parameters. We show this by making use of the nontrivial result of Marx [30] about the enumeration of 
subhypergraphs with bounded partial edge cover. This result already proved to be very useful for designing FPT algorithms 
for clustering problems [19,20].

Recall that a hypergraph H is a pair (V , E), where V is a set of vertices and E is a family of subsets of V called 
hyperedges. Similarly to graphs, we denote by V (H) the set of vertices and by E(H) the set of hyperedges. For a vertex v , 
we denote by EH(v) the set of hyperedges containing v , that is, EH(v) = {E ∈ E(H) | v ∈ E}.

Let G be a hypergraph and let U ⊆ V (G). We say that a hypergraph H appears at U as a subhypergraph if there is a 
bijection π : V (H) → U with the property that for every E ∈ E(H), there is E ′ ∈ E(G) such that π(E) = E ′ ∩ U .

A fractional hyperedge cover of a hypergraph H is a function ϕ : E(H) → [0, 1] such that for every vertex v ∈ V (H), ∑
E∈EH(v) ϕ(E) ≥ 1, that is, the sum of the values assigned by f of the hyperedges containing v is at least one. The 

fractional cover number ρ∗(H) of H is the minimum value 
∑

E∈E(H) ϕ(E) taken over all fractional hyperedge covers ϕ of H .

Proposition 2 ([30]). Let H be a hypergraph with fractional cover number ρ∗(H), and let G be a hypergraph whose hyperedges 
have size at most �. There is an algorithm that enumerates, in |V (H)|O(|V (H)|) · �|V (H)|ρ∗(H)+1 · |E(G)|ρ∗(H)+1 · |V (G)|2 time, every 
U ⊆ V (G) where H appears at U as subhypergraph in G .

We apply this result similarly to [20] and, therefore, only briefly sketch the proof of the following lemma.

Lemma 4. There is an algorithm that, given a matrix A = (a1, . . . , an) and a nonnegative integer B, in 2O(B log B) · |�|B · (mn)O(1)

time outputs a set M(A, B) ⊆ �m of size 2O(B log B) · |�|B · (mn)O(1) such that for every k-clustering {I1, . . . , Ik} for A of cost at most 
B, there are c1, . . . , ck ∈M(A, B) such that 

∑k
i=1

∑
j∈Ii

dH (ci, a j) ≤ B.

Proof. Let S be the set of distinct columns of A. Initially, we set M(A, B) := S .
For every s ∈ S , we construct the hypergraph Gs with the vertex set {1, . . . , m} with hyperedges corresponding to the 

columns of A at Hamming distance at most B from s: for every i ∈ {1, . . . , n} such that dH (s, ai) ≤ B , we introduce the 
hyperedge

Ei = { j | 1 ≤ j ≤ m and ai[ j] �= s[ j]},
that is, the hyperedge contains indices, where s differs from ai . Note that |Ei | ≤ B .

Consider an arbitrary k-clustering {I1, . . . , Ik} for A of cost at most B . Let i ∈ {1, . . . , k} and let s ∈ S be such that s = a j

for some j ∈ Ii . Let also ci ∈ �m be an optimal median for Ii , that is, 
∑

j∈Ii
dH (ci, a j) is minimum. Notice that if |Ii | ≥ B + 1, 

then by Observation 2, every feasible median for Ii is a column of A and these columns are already placed in M(A, B). Also, 
if ci = s, then ci ∈ M(A, B). Assume that |Ii | ≤ B and ci �= s. Clearly, dH (ci, s) ≤ B . Moreover, for any j ∈ Ii , dH (s, a j) ≤ B . 
This holds trivially if s = a j . Otherwise, if s �= a j , we have that dH (s, a j) ≤ dH (ci, s) + dH (ci, a j) ≤ ∑

j∈Ii
dH (ci, a j) ≤ B . Let

D = { j | 1 ≤ j ≤ m and ci[ j] �= s[ j]},
that is, D is the set of indices where s differs from the median ci .

We consider the hypergraph Hi with the vertex set D whose edges correspond to the columns a j for j ∈ Ii . For each 
j ∈ Ii , we construct the hyperedge

F j = {h | h ∈ D and a j[h] �= s[h]},
that is, each hyperedge contains indices from D , where s differs from a j . We claim that the fractional cover number 
ρ∗(Hi) ≤ 2.

To show this, we define the function ϕ(F ) = 2
|E(Hi)| for every hyperedge F of Hi . We prove that ϕ is a fractional 

hyperedge cover of Hi . Thus, we have to show that for every j ∈ D , 
∑

F∈EHi ( j) ϕ(F ) ≥ 1. This is equivalent to proving that 
for every j ∈ D , at least half of the hyperedges of Hi contain j. Assume that this is not the case, i.e., there is j ∈ D such that 
more than half of hyperedges do not contain j. This mean that for more than half of columns ah for h ∈ Ii , s[ j] = ah[ j] = s. 
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However, by the definition of D , s[ j] �= ci[ j] and, therefore, ci[ j] �= s. This contradicts the assumption that ci is an optimal 
median for Ii because replacing the current value ci[ j] by s decreases the cost. Hence, ϕ is a fractional hyperedge cover. 
Then

ρ∗(Hi) ≤
∑

F∈E(Hi)

ϕ(F ) =
∑

F∈E(Hi)

2

|E(Hi)| = 2.

Observe that Hi appears in Gs at D because for each j ∈ Ii , dH (s, a j) ≤ B , that is, for every j ∈ Ii , Gs contains the 
hyperedge E j corresponding to a j ; the mapping π : V (Hi) → D is the identity function.

We obtain that Hi is a hypergraph with the fractional cover number at most 2 that appears in Gs at D . Notice that, 
given s and D , we can list the vectors over �m that differ from s in the indices from D and the total number of such 
vectors is at most |�|B because |D| ≤ B . Then ci appears in this list. This leads to the following algorithm. We consider all 
hypergraphs H on at most B vertices with at most B hyperedges. Then for each H and every s ∈ S , we use the algorithm 
of Marx from Proposition 2 to enumerate every D ⊆ V (Gs) where H appears in GD as subhypergraph. Then for every D , we 
list the vectors that differ from s in the indices from D by brute force. Then these vectors are included in M(A, B).

For given H and s, the sets D can be enumerated in time 2O(B log B) · B2B+1 · n3 · m2 by Proposition 2. Then generating 
the vectors that differ from s in D can be done in |�|B · nO(1) time as we can assume that |�| ≤ n. However, we need 
2O(B2) time to generate all hypergraphs with at most B vertices and at most B hyperedges. This gives the total running 
time 2O(B2) · |�|B · (mn)O(1) and the same bound on the size of M(A, B).

The running time can be improved by proving that there is a subhypergraph H′
i of H with V (H′

i) = V (Hi) and E(H′
i) ⊆

E(Hi) of size O(log B) (more precisely, of size at most 160 ln B) such that ρ∗(H′
i) ≤ 4. The proof is identical to the proof of 

Claim 18 of [20] (see also Proposition 6.3 of [30]) and we omit it here.
Then we consider all hypergraphs H with at most B vertices and at most 160 ln B hyperedges. The total number of 

these hypergraphs is 2O(B log B) . Then, in the same way as above, for each H and every s ∈ S , we use the algorithm of 
Marx from Proposition 2 to enumerate every D ⊆ V (Gs) where H appears in GD as subhypergraph. For every D , the vectors 
that differ from s in the indices from D are enumerated by brute force and each vector is added to M(A, B) unless it is 
already included in the set. The total running time is 2O(B log B) · |�|B · (mn)O(1) and the number of vectors in M(A, B) is 
2O(B log B) · |�|B · (mn)O(1) . �
3.2. Algorithm

Let (A, �, k, B, p, q) be an instance of Capacitated Clustering with A = (a1, . . . , an). First, we compute the partition 
J = { J1, . . . , J s} of {1, . . . , n} into initial clusters.

3.2.1. Choosing potential medians
By the next step, we restrict the set of considered medians. For this, we apply Lemma 4 and construct the set M =

M(A, B) of potential medians. Recall that this set has size 2O(B log B)|�|B · (mn)O(1) and can be computed in 2O(B log B)|�|B ·
(mn)O(1) time. For a k-clustering I = {I1, . . . , Ik}, we define the minimum cost (with respect to M), as

min{
k∑

i=1

∑
j∈Ii

dH (ci,a j) | c1, . . . , ck ∈ M}.

If (A, �, k, B, p, q) is a yes-instance, then it has a solution such that the medians are in M by Lemma 4. Therefore, solving 
the problem is equivalent to finding a clustering of minimum cost at most B with respect to M. Throughout this section, 
whenever we say that I is a clustering of minimum cost, we mean that the cost is minimum with respect to M.

3.2.2. Structure of solutions
Further, we argue that we can consider solutions of a special structure whose nontrivial part involves bounded number 

of initial clusters.
By Lemma 3, if (A, �, k, B, p, q) is a yes-instance, then there is a solution I = {I1, . . . , Ik} to the instance such that the 

intersection graph G(I, J ) of the initial clusters and the clusters of the solution is a forest. We call such a solution (or 
k-clustering) acyclic. To solve the problem, we check whether the considered instance has an acyclic solution. To simplify 
notation, we assume that all solutions considered further on are acyclic.

By Observation 3, any k-clustering for A of cost at most B has at most B composite clusters. We consecutively consider 
t = 0, . . . , min{B, k}, and for each t , we verify whether there is a solution I = {I1, . . . , Ik} with exactly t composite clusters. 
If we find such a solution, then we return the yes-answer and stop. Otherwise, if we have no solution for all the values of 
t , we report that (A, �, k, B, p, q) is a no-instance. From now on, we assume that nonnegative t ≤ min{B, k} is fixed.

It is convenient to consider the special case t = 0 separately. If t = 0, then a solution I has no composite cluster, that is, 
the clusters of the solution form partitions of the initial clusters. Observe that cost(I) = 0 ≤ B in this case. By Observation 4, 
the initial clusters can be partitioned into k blocks of size at least p and at most q, if and only if there are positive integers 
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h1, . . . , hs such that k = h1 + · · · + hs and 
⌈ | J i |

q

⌉
≤ hi ≤

⌊ | J i |
p

⌋
for every i ∈ {1, . . . , s}. For every i ∈ {1, . . . , s}, we verify 

whether 
⌈ | J i |

q

⌉
≤

⌊ | J i |
p

⌋
. If at least one of the inequalities does not hold, the required h1, . . . , hs do not exist. Otherwise, we 

observe that positive integers h1, . . . , hs such that k = h1 + · · · + hs and 
⌈ | J i |

q

⌉
≤ hi ≤

⌊ | J i |
p

⌋
for every i ∈ {1, . . . , s} exist if 

and only if 
∑s

i=1

⌈ | J i |
q

⌉
≤ k ≤ ∑s

i=1

⌊ | J i |
p

⌋
. Then we verify the last inequality.

From now, we assume that t ≥ 1. Note that we also can assume that B ≥ 1 because for B = 0, no cluster of a solution 
can be composite.

By Observation 3, there are at most 2B initial clusters with nonempty intersections with the composite clusters of a 
solution I . Since G(I, J ) is a forest, it is easy to observe that at least t + 1 initial clusters have nonempty intersections 
with the composite clusters. We consider � = t + 1, . . . , 2B , and for each �, we check whether there is a solution I =
{I1, . . . , Ik} such that exactly � initial clusters have nonempty intersections with the composite clusters of I . If we find such 
a solution, then we return the yes-answer and stop. Otherwise, if we have no solution for all the values of �, we report that 
(A, �, k, B, p, q) is a no-instance. From now, we assume that positive t + 1 ≤ � ≤ 2B is given.

Recall that we are looking for an acyclic solution I = {I1, . . . , Ik}, that is, G(I, J ) is required to be a forest. Let I be such 
a k-clustering. Let I ′ ⊆ I be the set of composite clusters and let J ′ ⊆ J be the set of initial clusters having nonempty 
intersections with the composite clusters. Recall that |I ′| = t and |J ′| = � by our assumptions. Note also that the leaves of 
G(I ′, J ′) are initial clusters and every connected component of this forest contains at least three vertices.

We consider all forests F on t + � vertices such that (i) each connected component of F has at least three vertices, and 
(ii) F admits a bipartition (U , W ) of its vertex set with |U | = t and |W | = � such that the leaves of F are in W . Since t ≤ B
and � ≤ 2B , the number of such forests is 2O(B) [35] and they can be listed in 2O(B) time (see, e.g., [38]). Note that since 
the leaves are required to be in W , the bipartition (U , W ) is unique. From now on, we assume that F together with the 
bipartition (U , W ) is given.

3.2.3. Colorful solutions
Recall that we are looking for a solution such that exactly � initial clusters have nonempty intersections with composite 

clusters of the solution. We use the color coding technique of Alon, Yuster, and Zwick [2] (see [13, Chapter 5] for the detailed 
introduction) to highlight the initial clusters with nonempty intersections with clusters of a potential solution. We first give 
a Monte Carlo algorithm with false negatives and then explain how to derandomize it. We color the initial clusters by �
colors uniformly at random. We say that a k-clustering I = {I1, . . . , Ik} of cost at most B is a colorful solution if the initial 
clusters with nonempty intersections with the clusters of I have distinct colors. As it is standard for color coding, the 
algorithm exploits the property that if there is a solution such that exactly � initial clusters have nonempty intersections 
with the composite clusters of the solution, then the probability that these � clusters get distinct colors in a random coloring 
is at least �!

�� ≥ e−� ≥ e−2B . Therefore, with probability at least e−2B , a yes-instance admits a colorful solution.

3.2.4. Finding colorful solutions
Our next task is to explain how to check whether there is a colorful solution for a given random coloring ψ : J →

{1, . . . , �} such that G(I ′, J ′), where I ′ is the set of composite clusters in the solution and J ′ ⊆J is the set of initial clus-
ters having nonempty intersections with the composite clusters, is isomorphic to F . For this, we use dynamic programming 
over F . Recall that F is given together with the bipartition (U , W ) of its vertex set, where the leaves are in W . To construct 
our dynamic programming algorithm, we formally define k-clusterings forming solutions as follows.

Definition 1 (Feasible k-clustering). For a given forest F with the bipartition (U , W ) of its vertex set, we say that an acyclic 
k-clustering {I1, . . . , Ik} for A is a feasible (with respect to F and the parameters t and �) if the following holds:

(i) p ≤ |Ii | ≤ q for i ∈ {1, . . . , k},
(ii) the set I ′ ⊆ I of composite clusters has size t and the set J ′ ⊆ J of initial clusters having nonempty intersections 

with the composite clusters has size �,
(iii) the initial clusters in J ′ are colored by distinct colors by ψ , and
(iv) G(I ′, J ′) is isomorphic to F with an isomorphism that bijectively maps I ′ to U and J ′ to W .

Then the problem of finding a colorful solution boils down to checking whether there is a feasible k-clustering of cost at 
most B .

To proceed with the algorithm, we need some auxiliary notation. For a set of colors X ⊆ {1, . . . , �}, we use J (X) ⊆J to 
denote the subset of initial clusters with the colors from X and C(X) ⊆ {1, . . . , n} is used to denote the set of indices in the 
initial clusters with their colors in X , that is, C(X) = ∪ J∈J (X) J . We also denote A(X) = A[{1, . . . , m}, C(X)], that is, A(X) is 
the submatrix of A with the columns ai such that i ∈ C(X).

It is common to do bottom-up dynamic programming over rooted trees. However, F may be disconnected. We argue 
that, given partial solutions for the connected components of F , we can combine them and solve the problem for F . Denote 
by F1, . . . , F f the connected components of F . Let Ui = V (Fi) ∩ U and W i = V (Fi) ∩ W for i ∈ {1, . . . , f }. Let also ti = |Ui |
and �i = |W i | for i ∈ {1, . . . , f }.
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For i ∈ {1, . . . , f }, X ⊆ {1, . . . �} and a positive integer h ≤ k, denote by ωi(X, h) the minimum cost of an h-clustering for 
A(X) that is feasible with respect to Fi and the parameters ti and �i if |X | = �i . We assume that ωi(X, h) = +∞ if |X | �= �i
or no h-clustering is feasible. Thus, the functions ωi(X, h) represent partial solutions for F1, . . . , F f .

We show that if we are given the tables of values of ωi(X, h), then we can verify whether there is a feasible k-clustering 
of cost at most B .

Lemma 5. Given the values ωi(X, h) for all i ∈ {1, . . . , f }, X ⊆ {1, . . . �} and positive integers h ≤ k, it can be decided in time 2O(B) ·n2

whether there is a feasible k-clustering for A of cost at most B with respect to F , t and �.

Proof. To give the intuition behind the proof, observe that a feasible k-clustering of cost at most B with respect to F , t
and � exists if and only if there are positive integers h1, . . . , h f such that h1 + · · · + h f = k and a partition {X1, . . . , X f } of 
{1, . . . , �} such that

ω1(X1,h1) + · · · + ω f (X f ,h f ) ≤ B

because in a feasible clustering the initial clusters in J ′ are colored by distinct colors. This leads to the following dynamic 
programming algorithm

For j ∈ {1, . . . , f }, X ⊆ {1, . . . , �}, let F ( j) be the disjoint union of F1, . . . , F j , t( j) = t1 + · · · + t j and �( j) = �1 + · · · + � j . 
For j ∈ {1, . . . , f }, X ⊆ {1, . . . , �} and positive integer h, denote by w( j)(X, h) the minimum cost of an h-clustering for A(X)

that is feasible with respect to F ( j) , t( j) and �( j) if |X | = �( j); we also assume that w( j)(X, h) = +∞ if |X | �= �( j) or there is 
no feasible h-clustering. Notice that ω1(X, h) = w(1)(X, h) and w( f )(X, h) is the minimum cost of an h-clustering for A(X)

that is feasible with respect to F , t and �. Thus, w( f )({1, . . . , �}, r) ≤ B if and only if there is a feasible k-clustering for A of 
cost at most B with respect to F , t and �.

We compute the values of w( j)(X, h) for j = 1, 2, . . . , f . As we observed, w(1)(X, h) = ω1(X, h). To compute w( j)(X, h)

for j ≥ 2, we use the following recurrence:

w( j)(X,h) = min{ω j(Y ,h′) + w( j−1)(X \ Y ,h − h′) | 1 ≤ h′ < h and ∅ �= Y ⊂ X}; (4)

we also assume that w( j)(X, h) = +∞ if the set in the right part of (4) is empty.
The correctness of (4) is proved in the standard way by showing the two opposite inequalities. Let X ⊆ {1, . . . , �}. To 

simplify notation, assume that { J1, . . . , J s′ } are initial clusters with colors from X . Let also h ≤ k be a positive integer.
Suppose that |X | = �( j) and {I1, . . . , Ih} is an h-clustering for A(X) that is feasible with respect to F ( j) , t( j) and �( j) of 

minimum cost. Let I ′ ⊆ {I1, . . . , Ih} be the set of composite clusters and let J ′ ⊆ { J1, . . . , J s′ } be the set of initial clusters 
having nonempty intersections with the composite clusters. Recall that |I ′ | = t( j) , |J ′| = �( j) , and the initial clusters in J ′
are colored by distinct colors. Consider an isomorphism α that bijectively maps the vertices of G(I ′, J ′) to the vertices of 
F with the property that the vertices of I ′ are mapped to 

⋃( j)
i=1 Ui and J ′ are mapped to 

⋃( j)
i=1 W i . Then � j clusters of J ′

are mapped to W j . Denote by Y ⊂ X the set of their colors. Clearly, |Y | = � j and |X \ Y | = �( j) − � j = � j−1. Notice that the 
clusters of I ′ that are mapped to U j are composed of elements of initial clusters with colors from Y and no other composite 
cluster contains an element of an initial cluster with a color from Y . To simplify notation, assume that the clusters I1, . . . , Ih′
contain elements of the initial clusters with the colors from Y and Ih′+1, . . . , Ih are the clusters containing elements of the 
initial clusters with the colors from X ⊆ Y . Then we have that {I1, . . . , Ih′ } is a feasible h′-clustering for A(Y ) with respect 
to F j , t j and � j . Similarly, we obtain that {Ih′+1, . . . , Ih} is a feasible (h − h′)-clustering for A(X \ Y ) with respect to F ( j−1) , 
t( j−1) and �( j−1) . Thus, w( j)(X, h) ≥ ω j(Y , h′) + w( j−1)(X \ Y , h − h′) and, therefore,

w( j)(X,h) ≥ min{ω j(Y ,h′) + w( j−1)(X \ Y ,h − h′) | 1 ≤ h′ < h and ∅ �= Y ⊂ X}. (5)

If either |X | �= �( j) or there is no an h-clustering for A(X) that is feasible with respect to F ( j) , t( j) and �( j) , then w( j)(X, h) =
+∞ and (5) is trivial.

To show the opposite inequality, let nonempty Y ⊆ X and positive h′ < h be such that the right part of (4) is minimum. 
If ω j(Y , h′) + w( j−1)(X \ Y , h − h′) = +∞, then the required inequality holds trivially. Assume that this is not the case. Then 
|Y | = � j , |X \ Y | = �( j−1) , there is an h′-clustering I(1) for A(Y ) of cost ω j(Y , h′) that is feasible with respect to F j , t j and 
� j , and there is an (h − h′)-clustering I(2) for A(X \ Y ) of cost w( j−1)(X \ Y , h − h′) that is feasible with respect to F ( j−1) , 
t( j−1) and �( j−1) . Consider I = I(1) ∪ I(2) and observe that this is an h-clustering for A(X) that is feasible with respect to 
F ( j) , t( j) and �( j) . This means that w( j)(X, h) ≤ ω j(Y , h′) + w( j−1)(X \ Y , h − h′). By the choice of Y and h′ ,

w( j)(X,h) ≤ min{ω j(Y ,h′) + w( j−1)(X \ Y ,h − h′) | 1 ≤ h′ < h and ∅ �= Y ⊂ X}. (6)

Combining (5) and (6), we obtain that the recurrence (4) holds.
Finally, we compute w( f )(X, h) for all X ⊆ {1, . . . , �} and all positive h ≤ r. In particular, we find w( f )({1, . . . , �}, k) and 

verify whether this value is at most B .
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Fig. 2. The general scheme of dynamic programming over T . The vertices of U corresponding to composite clusters are shown by black bullets and the 
vertices of W corresponding to initial clusters are white. The arrows show which initial clusters are contributing to composite clusters. Note that J is a 
(part of) initial cluster of color c and the remaining initial clusters of color c (including the rest of the cluster containing J ) are split into simple clusters.

To evaluate the running time, note that to compute the table of values of w( j)(X, h) by (4), we consider all nonempty X
of size at most � and the nonempty subsets Y ⊂ X . This means that we consider at most 3� pairs of sets. Also, we consider 
all positive h ≤ k and h′ ≤ h, that is, at most k2 pairs of integers. Since � ≤ 2B and k ≤ n, the computations can be done in 
2O(B) · n2 time. Since f ≤ t ≤ B , the total running time is 2O(B) · n2. �

The final step is to compute the partial solutions for F1, . . . , F f . By Lemma 5, we have to compute the tables of values 
of ωi(X, h) for all i ∈ {1, . . . , f }, nonempty X ⊆ {1, . . . , �} and positive h ≤ k. For this, we use the fact that F1, . . . , F f are 
trees and this allows us to use dynamic programming over these trees.

Lemma 6. Let T be a tree with a bipartition (U , W ) of its vertex set such that t′ = |U | ≤ t, �′ = |W | ≤ � and the leaves of T are in W . 
For a given X ⊆ {1, . . . , �} with |X | = �′ and positive h ≤ k, the minimum cost of a feasible h-clustering for A(X) with respect to T , t′
and �′ can be found in 2O(B log B)|�|B · (mn)O(1) time.

Proof. We select a vertex z ∈ U as a root of T . This selection defines a parent-child relation on the set of vertices. For 
a vertex x ∈ V (T ), we denote by Tx the subtree of T induced by the descendants of x (including the vertex itself). For 
x ∈ V (T ), let tx = V (Tx) ∩ U and �x = V (Tx) ∩ W . For every x ∈ V (T ), we compute the tables of auxiliary values depending 
on whether x ∈ U or x ∈ W .

For a set of colors Z ⊆ X , J ∈ J (Z) and J ′ ⊆ J , we use J (Z)/ J ′ to denote the set of clusters obtained from the initial 
clusters of J (Z) by the replacement of J by J ′′ = J \ J ′ if J ′ ⊂ J and J (Z)/ J ′ = J (Z) \ { J } if J ′ = J . We assume that 
the clusters of J (Z)/ J ′ have the inherited colors. We also write A(Z)/ J ′ to denote the submatrix of A(Z) obtained by the 
deletion of the columns with the indices from J ′ . Note that J (Z)/ J ′ is the set of initial clusters for A(Z)/ J ′ .

Suppose that x ∈ W . For every positive integer h′ ≤ h, every Y ⊆ X , every c ∈ Y , every J ∈ J (Y ) and every nonnega-
tive integer j ≤ | J |, we define ω(1)

x (h′, Y , c, J , j). For technical reasons, it is convenient to define this function for leaves 
separately.

Definition 2 (Partial solution for a leaf x ∈ W ). Let x be a leaf. We define ω(1)
x (h′, {c}, c, J , j) as the minimum cost of an h′-

clustering for A(Y )/ J ′ , where J ′ ⊆ J of size j, such that all the clusters are simple, and ω(1)
x (h′, Y , c, J , j) = +∞ if Y �= {c}.

Definition 3 (Partial solution for an internal x ∈ W ). If x is an internal vertex of T , then ω(1)
x (h′, Y , c, J , j) is the minimum cost 

of an h′-clustering I = {I1, . . . , Ih′ } for A(Y )/ J ′ , where J ′ ⊂ J of size j, such that

(i) p ≤ |Ii | ≤ q for i ∈ {1, . . . , h′},
(ii) the set I ′ ⊆ I of composite clusters has size tx , and the set J ′ ⊆J (Y )/ J ′ of initial clusters having nonempty intersec-

tions with the composite clusters has size �x ,
(iii) |Y | = �x and the initial clusters in J ′ are colored by distinct colors by ψ ,
(iv) G(I ′, J ′) is isomorphic to Tx with an isomorphism α that bijectively maps I ′ to Ux , J ′ to W x , and
(v) J \ J ′ ∈J ′ , α( J \ J ′) = x and ψ( J \ J ′) = c.

In both cases, we assume that ω(1)
x (h, Y , c, J , j) = +∞ if there is no such an h′-clustering.

Informally, ω(1)
x (h′, Y , c, J , j) is the minimum cost of an h′-clustering for A(Y )/ J ′ that is feasible with respect to Tx , tx

and �x with the additional assumption that we take j elements of J colored by c to include to the composite cluster that 
corresponds to the parent of x (see Fig. 2). Observe that the value of ω(1)

x (h′, Y , c, J , j) does not depend on the choice of J ′ . 
Notice also that we have the special case when Ux = ∅, i.e. when x is a leaf because we have no composite clusters in this 
case. Then we form h′ simple clusters from the initial clusters J (Y )/ J ′ .
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Now we define the function ω
(2)
x (h′, Y , j, s) for x ∈ U for every positive integer h′ ≤ h, every Y ⊆ X , every nonnegative 

integer j ≤ q, and every s ∈M.

Definition 4 (Partial solution for x ∈ U ). ω(2)
x (h′, Y , j, s) is the minimum cost of an h′-clustering I = {I1, . . . , Ih′ } for A(Y ) such 

that

(i) the cost of I1 is computed with respect to the median s, that is, the cost equals 
∑

i∈I1
dH (s, ai),

(ii) p − j ≤ |I1| ≤ q − j and p ≤ |Ii | ≤ q for i ∈ {2, . . . , h′},
(iii) for the set of composite clusters I ′ ⊆ I , I ′′ = I ′ ∪ {I1} has size tx , and the set J ′ ⊆ J (Y ) of initial clusters having 

nonempty intersections with the clusters from I ′′ has size �x ,
(iv) |Y | = �x and the initial clusters in J ′ are colored by distinct colors by ψ ,
(v) G(I ′′, J ′) is isomorphic to Tx with an isomorphism α that bijectively maps I ′′ to Ux , J ′ to W x , and α(I1) = x.

In the same way as above for other functions, it is assumed that ω(2)
x (h′, Y , j, s) = +∞ if there is no such an h′-clustering.

Informally, ω(2)
x (h′, Y , j, s) is the minimum cost of an h′-clustering for A(Y ) that is feasible with respect to Tx , tx and 

�x , where the specific cluster I1 associated with x is required to have s as its median and “misses” j elements (see Fig. 2). 
Notice that it is not required that s is optimal for I1. However, in the future, I1 is going to be complemented by j elements 
of an initial cluster corresponding to the parent of x, unless x is a root. Note also that I1 is not a composite cluster if x has 
a unique child, but because I1 is expected to be complemented by other elements, I1 is counted as a composite cluster in 
the definition of ω(2)

x (h′, Y , j, s).
Now we explain how to compute the table of values of ω

(1)
x (h′, Y , c, J , j) and ω

(2)
x (h′, Y , j, s). First, we compute 

ω
(1)
x (h′, Y , c, J , j) for leaves.

Claim 3.1. For every leaf x of T , ω(1)
x (h′, Y , c, J , j) can be computed in O(n) time.

Proof. If Y �= {c}, ω(1)
x (h′, Y , c, J , j) = +∞ by the definition. Assume that Y = {c}. Let J ′ ⊆ J be a set of size j. We compute 

Ĵ = J (Y )/ J ′ in O(n) time. Then ω(1)
x (h′, Y , c, J , j) = 0 if every set in Ĵ can be partitioned into clusters of size at least 

p and at most q in such a way that the total number of clusters is h′ , and ω(1)
x (h′, Y , c, J , j) = +∞ otherwise. We apply 

Observation 4. First, we verify whether every Ĵ ∈ Ĵ can be partitioned into clusters of size at least p and at most q by 
checking whether 

⌈ | Ĵ |
q

⌉
≤

⌊ | Ĵ |
p

⌋
. If this holds, then we observe that we can obtain exactly h′ clusters in total if and only 

if 
∑

Ĵ∈Ĵ
⌈ | Ĵ |

q

⌉
≤ h′ ≤ ∑

Ĵ∈Ĵ
⌊ | Ĵ |

p

⌋
. Since checking of these conditions can be done in O(n) time, the total running time is 

O(n). �
Next, we explain how to compute ω(1)

x (h′, Y , c, J , j) for internal vertices if the tables of values of ω(2)
y (·, ·, ·, ·) are given 

for all children y of x. This is done by an auxiliary dynamic programming algorithm.

Claim 3.2. Let x ∈ W be an internal vertex of T and assume that the table of values of ω(2)
y (·, ·, ·, ·) is computed for every child y of x. 

Then ω(1)
x (h′, Y , c, J , j) can be computed in 2O(B log B)|�|B · (mn)O(1) time.

Proof. Let h′ ≤ h, Y ⊆ X , c ∈ Y , J ∈ J (Y ) and j ≤ | J |. If j = | J |, then we immediately set ω(1)
x (h′, Y , c, J , j) = +∞ because 

we have no proper J ′ ⊂ J of size j. Also, if |Y | �= �x or ψ( J ) �= c, then ω(1)
x (h′, Y , c, J , j) = +∞ by definition. Assume that 

j < | J |, J ′ ⊂ J of size j, ψ( J ) = c and |Y | = �x . Let Ĵ = J \ J ′ . We denote by y1, . . . , y f the children of x in T .

Consider the initial clusters of color c. By the definition of ω(1)
x (h′, Y , c, J , j), we are interested in an h′-clustering, where 

the initial clusters of color c distinct from J are split into simple clusters and, possibly, some parts of J also form simple 
clusters. For nonnegative integers ĥ ≤ h′ and ĵ ≤ | Ĵ |, we define w(ĥ, ̂j) to be 0 if the initial clusters of Ĵ =J ({c})/( J \ J ′′), 
where J ′′ ⊆ Ĵ of size ĵ can be partitioned into ĥ simple clusters of size at least p and at most q, and we set w(ĥ, ̂j) = +∞
otherwise. To compute w(ĥ, ̂j), we use Observation 4 similarly to the proof of Claim 3.1. Namely, we verify whether every 
J̃ ∈ Ĵ can be partitioned into clusters of size at least p and at most q by checking whether 

⌈ | J̃ |
q

⌉
≤

⌊ | J̃ |
p

⌋
, and then we 

check whether 
∑

J̃∈Ĵ
⌈ | J̃ |

q

⌉
≤ ĥ ≤ ∑

J̃∈Ĵ
⌊ | J̃ |

p

⌋
. Since ĥ ≤ h′ ≤ h, the values of w(ĥ) can be computed in O(n2) time.

Observe that by the definition of ω
(1)
x (h′, Y , c, J , j), the elements of Ĵ should be included in f composite clus-

ters associated with the children of x in an h′-clustering for A(Y )/ J ′ . In particular, if | Ĵ | < f , it cannot be done and 
ω

(1)
x (h′, Y , c, J , j) = +∞ by the definition. From now, we assume that | Ĵ | ≥ f .

For i ∈ {1, . . . , f }, denote by T (i) the subtree of T induced by {x} ∪ ⋃i
i′=1 V (T yi′ ), set U (i) = U ∩ V (T (i)) and W (i) =

W ∩ V (T (i)). Let also t(i) = |U (i)| and �(i) = |W (i)| for i ∈ {1, . . . , f }. For each i ∈ {1, . . . , f }, each nonnegative ĥ ≤ h′ , each 
positive ĵ ≤ | J | − j, and every c ∈ Z ⊆ Y , define the auxiliary values w(i)(ĥ, ̂j, Z).
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Definition 5 (Auxiliary partial solution). w(i)(ĥ, ̂j, Z) is the minimum cost of ĥ-clustering I = {I1, . . . , Iĥ} for A(Z)/( J \ J ′′), 
where J ′′ ⊆ Ĵ of size ĵ, such that

(i) p ≤ |Ii′ | ≤ q for i′ ∈ {1, . . . , ̂h},
(ii) the set I ′ ⊆ I of composite clusters has size t(i) , and the set J ′ ⊆ J (Y )/( J \ J ′′) of initial clusters having nonempty 

intersections with the composite clusters has size �(i) ,
(iii) |Z | = �(i) and the initial clusters in J ′ are colored by distinct colors by ψ ,
(iv) G(I ′, J ′) is isomorphic to T (i) with an isomorphism α that bijectively maps I ′ to U (i) , J ′ to W (i) , and
(v) J ′′ ∈J ′ , α( J ′′) = x and ψ( J ′′) = c.

We also follow the same convention as above that w(i)(ĥ, ̂j, Z) = +∞ if either there is no ĥ-clustering satisfying (i)–(v). 
Observe that, by the definition, ω(1)

x (h′, Y , c, J , j) = w( f )(h′, | J | − j, Y ). Therefore, we compute the tables of values of 
w(i)(·, ·, ·) for i = 1, . . . , f .

To initiate the computation of w(i)(·, ·, ·), it is convenient to formally define this function for i = 0. We set

w(0)(ĥ, ĵ, Z) =
{

w(ĥ, ĵ) if Z = {c},
+∞ otherwise.

For s ∈ M , denote d(s) = dH (s, a j) for j ∈ J . Then to compute w(i)(ĥ, ̂j, Z) for i ≥ 1, we use the following recurrence:

w(i)(ĥ, ĵ, Z) = min{ω(2)
yi

(ĥ′, Ẑ , ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ)}, (7)

where the minimum in the right part is taken over all integers 1 ≤ ĥ′ ≤ ĥ and 0 < ĵ′ ≤ ĵ, all sets Ẑ such that c /∈ Ẑ ⊂ Z , and 
all s ∈M. We assume that w(i)(ĥ, ̂j, Z) = +∞ if the set in the right part is empty.

We prove the correctness of (7) by showing the opposite inequalities between the left and the right part.
If w(i)(ĥ, ̂j, Z) = +∞, then

w(i)(ĥ, ĵ, Z) ≥ min{ω(2)(ĥ′, Ẑ , ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ)}.
Suppose that w(i)(ĥ, ̂j, Z) < +∞. Consider ĥ-clustering I for A(Z)/( J \ J ′′) of cost w(i)(ĥ, ̂j, Z) satisfying (i)–(v). Let I ∈ I
be the composite cluster such that α(I) = yi . Since α( J ′′) = x, I contains elements of J ′′ . Let Ĵ ′′ = I ∩ J ′′ and ĵ′ = Ĵ ′′ . 
Denote by s ∈ M the median of I1. Consider Ĵ ′′ = α−1(V (T yi )) ∩ J ′ , that is, the set of initial clusters having nonempty 
intersections with the composite clusters that are mapped by α to the nodes of T yi . The coloring ψ colors these clusters 
by distinct colors and we define Ẑ to be the set of colors of the clusters of Ĵ ′′; note that c /∈ Ẑ . Denote by ĥ′ the number 
of clusters in I containing elements of the initial clusters with colors in Ẑ and let I1 be the set of these clusters; observe 
that I ∈ I1. Let I2 = I \ I1.

By the definition of the values of w(i−1)(·, ·, ·), we obtain that the cost of clustering for I2 is at least w(i−1)(ĥ − ĥ′, ̂j −
ĵ′, Z \ Ẑ). The cluster I contains ĵ′ elements of J . Since s is its median, these ĵ′ elements contribute ĵ′d(s) to its cost. Then, 
by the definition of ω(2)

yi
(·, ·, ·, ·), we have that the cost of clustering for I1 is at least ω(2)

yi
(ĥ′, Ẑ , ̂j′, s) + ĵ′d(s). This means 

that w(i)(ĥ, ̂j, Z) ≥ ω(2)(ĥ′, Ẑ , ̂j′, s) + w(i−1)(ĥ − ĥ′, ̂j − ĵ′, (Z \ Ẑ) ∪ {c}) and

w(i)(ĥ, ĵ, Z) ≥ min{ω(2)
yi

(ĥ′, Ẑ , ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ)}. (8)

For the opposite direction, assume that integers ĥ′ , ĵ′ , a set Ẑ , and a median s are chosen in such a way that the value of 
ω

(2)
yi

(ĥ′, Ẑ , ̂j′, s) + ĵ′d(s) + w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ) is minimum. If the value is +∞, then w(i)(ĥ, ̂j, Z) ≤ ω(2)(ĥ′, Ẑ , ̂j′, s) +
ĵ′d(s) + w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ) as required. Assume that ω(2)

yi
(ĥ′, Ẑ , ̂j′, s) < +∞ and w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ) < +∞.

By the definition of ω(2)
yi

(ĥ′, Ẑ , ̂j′, s), there is an ĥ′-clustering I1 for A( Ẑ) of cost ω(2)
yi

(ĥ′, Ẑ , ̂j′, s) satisfying conditions 
(i)–(v) of the definition. In particular, I1 contains a special cluster I with the median s such that p − ĵ′ ≤ |I| ≤ q − ĵ′ and I
is mapped to the root yi of T yi by the isomorphism α.

Let J ′′ ⊆ Ĵ of size ĵ and let Ĵ ′′ ⊆ J ′′ of size ĵ′ . By the definition of w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ), there is an (ĥ − ĥ′)-
clustering I2 for A(Z \ Ẑ)/(( J \ J ′′) ∪ Ĵ ′′) of cost w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ) satisfying conditions (i)–(v) of the definition of 
w(i−1)(·, ·, ·).

Observe that the clusters of I1 and I are pairwise disjoint and include all elements of the initial clusters with their 
colors in Z except ĵ′ + j elements of J . We construct the ĥ-clustering I for A(Z)/( J \ J ′′) as follows. First, we modify the 
cluster I ∈ I1 by setting I := I ∪ Ĵ ′′ . Note that we increase the cost of the cluster by at most ĵ′d(s). Then we take the union 
of I1 and I2. The definitions of the values ω(2)

yi
(ĥ′, Ẑ , ̂j′, s) and w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ) imply that I satisfies conditions 

(i)–(v) for w(i)(ĥ, ̂j, Z). Therefore, w(i)(ĥ, ̂j, Z) ≤ ω(2)(ĥ′, Ẑ , ̂j′, s) + ĵ′d(s) + w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ).
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By the choice of ĥ′ , ĵ′ , Ẑ , and s,

w(i)(ĥ, ĵ, Z) ≤ min{ω(2)
yi

(ĥ′, Ẑ , ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ)}. (9)

Then (8) and (9) imply (7).
We use (7) to compute the table of values of w( f )(·, ·, ·). Then ω(1)

x (h′, Y , c, J , j) = w( f )(h′, | J | − j, Y ) by the definition.
To evaluate the running time, notice that the initial table w( f )(·, ·, ·) can be computed in 2O(B) · n2, since w(ĥ) can be 

computed in O(n2) time and then the table is constructed for at most n values of ĵ and at most 2� sets Z . To compute 
the table w(i)(·, ·, ·) from w(i−1)(·, ·, ·) by (7) for i ∈ {1, . . . , f }, we consider all pairs of integers ĥ′ ≤ ĥ, all pairs of sets Z
and Ẑ ⊂ Z and all s ∈ M. Since ĥ ≤ n, Z ⊆ {1, . . . , �} and � ≤ 2B , and |M| = 2O(B log B)|�|B · (mn)O(1) , w(i)(·, ·, ·) can be 
computed in 2O(B log B)|�|B · (mn)O(1) . Then the total running time is 2O(B log B)|�|B · (mn)O(1) . �

Further, we show how to compute ω(2)
x (h′, Y , j, s) if the tables of values of ω(1)

y (·, ·, ·, ·, ·) are already computed. Similarly 
to the proof of Claim 3.2, we also use an auxiliary dynamic programming algorithm.

Claim 3.3. Let x ∈ U be an internal vertex of T and assume that the table of values of ω(1)
y (·, ·, ·, ·, ·) is computed for every child y of 

x. Then ω(2)
x (h′, Y , j, s) can be computed in 2O(B) · nO(1) time.

Proof. Let h′ ≤ h, Y ⊆ X , j ≤ q, and let s ∈ M. If |Y | �= �x , then ω(2)
x (h′, Y , j, s) = +∞ by definition. Assume that |Y | = �x . 

In the same way as in the proof of Claim 3.2, denote by y1, . . . , y f the children of x in T . For i ∈ {1, . . . , f }, let T (i) be 
the subtree of T induced by {x} ∪ ⋃i

i′=1 V (T yi′ ), set U (i) = U ∩ V (T (i)) and W (i) = W ∩ V (T (i)). Let also t(i) = |U (i)| and 
�(i) = |W (i)| for i ∈ {1, . . . , f }. For an initial cluster J , we denote by d( J ) = dH (s, ai) for i ∈ J . Similarly to the proof of 
Claim 3.2, we compute some auxiliary values.

For each i ∈ {1, . . . , f }, every positive integer ĥ ≤ h′ , every nonnegative integer ĵ ≤ q, and every nonempty Z ⊆ X , we 
define the auxiliary value as follows.

Definition 6 (Auxiliary partial solution). w(i)(ĥ, ̂j, Z) is the minimum cost of an ĥ-clustering I = {I1, . . . , Iĥ} for A(Z) such 
that

(i) the cost of I1 is computed with respect to the median s, that is, the cost equals 
∑

i∈I1
dH (s, ai),

(ii) |I1| = ĵ and p ≤ |Ii′ | ≤ q for i′ ∈ {2, . . . , ̂h},
(iii) for the set of composite clusters I ′ ⊆ I , I ′′ = I ′ ∪ {I1} has size t(i) , and the set J ′ ⊆ J (Z) of initial clusters having 

nonempty intersections with the clusters from I ′′ has size �(i) ,
(iv) |Z | = �(i) and the initial clusters in J ′ are colored by distinct colors by ψ ,
(v) G(I ′′, J ′) is isomorphic to T (i) with an isomorphism α that bijectively maps I ′′ to U (i) , J ′ to W (i) , and α(I1) = x.

We assume that w(i)(ĥ, ̂j, Z) = +∞ if there is no such a ĥ-clustering.
Notice that the parameter ĵ defines the size of a selected cluster I1. Then, by the definition, we have that

ω
(2)
x (h′, Y , j, s) = min{w( f )(h′, ĵ, Y ) | p − j ≤ ĵ ≤ q − j} (10)

assuming that ω(2)
x (h′, Y , j, s) = +∞ if the set in the right part is empty.

We compute the tables of values of w(i)(·, ·, ·) for i = 1, . . . , f .
First, we observe that

w(1)(ĥ, ĵ, Z) = min{ω(1)
y1 (ĥ − 1, Z , c, J , ĵ) + ĵd( J ) | c ∈ Z , J ∈ J (Z)}; (11)

as before, w(1)(ĥ, ̂j, Z) = +∞ if the set in the right part is empty.
To see that w(1)(ĥ, ̂j, Z) ≥ min{ω(1)

y1 (ĥ − 1, Z , c, J , ̂j) + ĵd( J ) | c ∈ Z , J ∈ J (Z)}, assume that w(1)(ĥ, ̂j, Z) < +∞; other-

wise, the inequality is trivial. Let I = {I1, . . . , Iĥ} be an ĥ-clustering for A(Z) satisfying conditions (i)–(v). Since y1 is the 
unique child of x in T (1) , I1 consists of ĵ elements of some initial cluster J . Let c be the color assigned to J by ψ . Then, by 
the definition of ω(1)

y1 (ĥ −1, Z , c, J , ̂j), {I2, . . . , Iĥ} is an (ĥ −1)-clustering for A(Z)/ J ′ for J ′ ⊆ J of size ĵ that satisfies all the 
condition of the definition of ω(1)

y1 (·, ·, ·, · · · , ·). Therefore, the cost of {I2, . . . , Iĥ} is an (ĥ −1) is at least ω(1)
y1 (ĥ −1, Z , c, J , ̂j). 

The median of I1 is s and I1 contains ĵ elements of J . Therefore, the cost of I1 is ĵd( J ). We conclude that w(1)(ĥ, ̂j, Z) ≥
ω

(1)
y1 (ĥ − 1, Z , c, J , ̂j) + ĵd( J ). Therefore, w(1)(ĥ, ̂j, Z) ≥ min{ω(1)

y1 (ĥ − 1, Z , c, J , ̂j) + ĵd( J ) | c ∈ Z , J ∈J (Z)}.

Now we prove that w(1)(ĥ, ̂j, Z) ≤ min{ω(1)
y1 (ĥ − 1, Z , c, J , ̂j) + ĵd( J ) | c ∈ Z , J ∈ J (Z)}. If the right part of (11) is +∞, 

then the inequality is trivial. Assume that this is not the case and let c ∈ Z and J ∈ J (Z) be such that the right part of 
(11) achieves the minimum value for them. Then there is an (ĥ − 1)-clustering I for A(Z)/ J ′ , where J ′ ⊆ J has size ĵ, 
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with the cost ω(1)
y1 (ĥ − 1, Z , c, J , ̂j) that satisfies all the condition of the definition of ω(1)

y1 (·, ·, ·, · · · , ·). Then we construct 
a new cluster I = J ′ with the median s. Clearly, the cost is ĵd( J ). It is straightforward to verify that I ∪ {I} satisfies 
(i)–(v). Therefore, w(1)(ĥ, ̂j, Z) ≤ ω

(1)
y1 (ĥ − 1, Z , c, J , ̂j) + ĵd( J ) and w(1)(ĥ, ̂j, Z) ≤ min{ω(1)

y1 (ĥ − 1, Z , c, J , ̂j) + ĵd( J ) | c ∈
Z , J ∈J (Z)}.

Combining the two inequalities, we conclude that (11) holds.
To compute w(1)(ĥ, ̂j, Z) for i ≥ 2, we show that

w(i)(ĥ, ĵ, Z) = min{ω(1)
yi

(ĥ′, Ẑ , c, J , ĵ′) + ĵ′d( J ) + w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ)}, (12)

where the minimum is taken over all positive integers ĥ′ < ĥ, ĵ′ < ĵ, all nonempty sets Ẑ ⊂ Z , all c ∈ Z , and J ∈J (Z). As it 
is standard in our paper, w(i)(ĥ, ̂j, Z) = +∞ if the set in the right part of (12) is empty.

We prove (12) by demonstrating the opposite inequalities between the left and the right part.
If w(i)(ĥ, ̂j, Z) = +∞, then w(i)(ĥ, ̂j, Z) ≥ min{ω(1)

yi
(ĥ′, Ẑ , c, J , ̂j′) + ĵ′d( J ) + w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ)}. Assume that 

this is not the case. Then there is an ĥ-clustering I for A(Z) of cost w(i)(ĥ, ̂j, Z) satisfying (i)–(v). In particular, there is 
I ∈ I such that |I| = ĵ, α(I) = x and s is its median. Let J ∈ J (Z) be the initial cluster such that α( J ) = yi . Denote by 
c its color. By definition, J ∩ I �= ∅. Let J ′ = I ∩ J and ĵ′ = | J ′|. Consider Ĵ ′ = α−1(V (T yi )) ∩ J ′ , that is, the set of initial 
clusters intersecting composite clusters that are mapped by α to the vertices of T yi . Note that J ∈ Ĵ ′ . By definition, these 
clusters are colored by distinct colors by ψ . Denote by Ẑ the set of their colors. Clearly, c ∈ Ẑ . Let I1 ⊆ I \ {I} be the set of 
clusters in I having nonempty intersections with the initial clusters from Ĵ ′; note that I /∈ I1 by definition. Set ĥ′ = |I1|. 
Let I2 = I \ I1.

Observe that I1 is an ĥ′-clustering for A( Ẑ)/ J ′ . Moreover, I1 satisfies all the conditions of the definition of 
ω

(1)
yi

(ĥ′, Ẑ , c, J , ̂j′). This implies that the cost of I1 is at least ω(1)
yi

(ĥ′, Ẑ , c, J , ̂j′). Consider the clustering Î2 obtained from 
I2 by the replacement of I by Î = I \ J ′ . Notice that the clusters of Î2 contain only elements of initial clusters with col-
ors from Z \ Ẑ . Also, we have that | Î| = ĵ − ĵ′ and |Î2| = ĥ − ĥ′ because i ≥ 2 and I �= J ′ . Then it is straightforward to 
verify that Î2 is (ĥ − ĥ′)-clustering for A(Z \ Ẑ) satisfying (i)–(v) for w(i−1)(·, ·, ·). Therefore, the cost of Î2 is at least 
w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ). Finally, recall that J ′ ⊂ I . Since s is the median of I , the contribution of J ′ to the cost is ĵ′d( J ). 
We conclude that w(i)(ĥ, ̂j, Z) ≥ ω

(1)
yi

(ĥ′, Ẑ , c, J , ̂j′) + ĵ′d( J ) + w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ). Hence,

w(i)(ĥ, ĵ, Z) ≥ min{ω(1)
yi

(ĥ′, Ẑ , c, J , ĵ′) + ĵ′d( J ) + w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ)}. (13)

The opposite inequality is trivial if the right part of (12) equals +∞. Assume that this is not the case and suppose that 
positive integers ĥ′ < ĥ, ĵ′ < ĵ, a set Ẑ ⊂ Z , c ∈ Z , and J ∈ J (Z) are chosen in such a way that the right part of (12)
achieves the minimum value for them.

By the definition of ω(1)
yi

(ĥ′, Ẑ , c, J , ̂j′), there is an ĥ′-clustering I1 for A( Ẑ)/ J ′ of cost ω(1)
yi

(ĥ′, Ẑ , c, J , ̂j′) satisfying con-

ditions (i)–(v) of the definition, where J ′ ⊆ J of size ĵ′ = | J ′|. In particular, c is a color of J .
We also have that, by definition of w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ), there is an (ĥ − ĥ′)-clustering for A(Z \ Ẑ) satisfying 

conditions (i)-(v) of the definition. In particular, there is a special cluster I ∈ I2 of size ĵ − ĵ′ with the median s.
We construct the clustering I for A(Z) as follows. First, we modify the cluster I ∈ I2 by replacing it by I ′ = I ∪ J ′ . Then 

we take the union of I1 and the modified I2. It is straightforward to verify that I is a ĥ-clustering for A(Z) satisfying (i)–(v) 
for w(i)(ĥ, ̂j, Z). Since I ′ is obtained by adding ĵ′ elements of J , the cost of I is ω(1)

yi
(ĥ′, Ẑ , c, J , ̂j′) + ĵ′d( J ) + w(i−1)(ĥ −

ĥ′, ̂j − ĵ′, Z \ Ẑ). Therefore, w(i)(ĥ, ̂j, Z) ≤ ω
(1)
yi

(ĥ′, Ẑ , c, J , ̂j′) + ĵ′d( J ) + w(i−1)(ĥ − ĥ′, ̂j − ĵ′, Z \ Ẑ) and, by the choice of ĥ′ , 
ĵ′ , Ẑ , c and J ,

w(i)(ĥ, ĵ, Z) ≤ min{ω(1)
yi

(ĥ′, Ẑ , c, J , ĵ′) + ĵ′d( J ) + w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ)}. (14)

By (13) and (14), we conclude that the recurrence (12) holds. Then we compute the tables of values of w(i)(·, ·, ·) for 
i = 1, . . . , f using (11) and (12). Finally, we apply (10) to compute ω(2)

x (h′, Y , j, s).
Clearly, the table of values of w(1)(·, ·, ·) can be computed in 2O(B) · n3 time because we consider ĥ, ̂j ≤ n and at most 

2� sets Z , and then go through at most � values of c and at most n sets J . To compute the tables of values of w(i)(·, ·, ·)
for i ≥ 2, we consider all pairs of integers ĥ′ < ĥ, all pairs ĵ′ < ĵ, all nonempty sets Ẑ ⊂ Z , all c ∈ Z , and J ∈ J (Z). Since 
ĥ′, ̂h, ̂j′, ̂j ≤ n, the number of pairs of set Ẑ ⊂ Z is at most 3� , the number of the choices of c is at most � and the number 
of the choices of J is at most n, we have that the total running time is 2O(B) · nO(1) because � ≤ 2B . �

Claims 3.1–3.3 allow us to compute the table of values of ω(2)
z (·, ·, ·, ·) for the root z of T bottom-up starting from the 

leaves (recall that z ∈ U ). To make the final step of our algorithm, observe that the minimum cost of a feasible h-clustering 
for A(X) with respect to T , t′ and �′ is

min{ω(2)
x (h, X,0, s) | s ∈ M}
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by the definition of these values.
The tree T has �′ + t′ ≤ 3B vertices. The table of values of either ω(1)

x (·, ·, ·, ·, ·) or ω(2)
x (·, ·, ·, ·) constructed for every node 

x has size 2O(B log B)|�|B · (mn)O(1) and can be constructed in 2O(B log B)|�|B · (mn)O(1) time by Claims 3.1–3.3. Therefore, 
the total running time is 2O(B log B)|�|B · (mn)O(1) . �

Using Lemmas 5 and 6, we are able to check whether the considered instance has a colorful solution.

3.2.5. Putting all together
Now we are ready to put all ingredients of our algorithm together.

Lemma 7. Capacitated Clustering can be solved in 2O(B log B)|�|B · (mn)O(1) time by a Monte Carlo algorithm with false negatives.

Proof. Let (A, �, k, B, p, q) be an instance of Capacitated Clustering with A = (a1, . . . , an). We start with computing the 
partition J = { J1, . . . , J s} of {1, . . . , n} into initial clusters and this step can be done in polynomial time. By the next step, 
we construct the set M = M(A, B) of potential medians of size 2O(B log B)|�|B · (mn)O(1) in 2O(B log B)|�|B · (mn)O(1) time 
using Lemma 4.

Then we consider all nonnegative t ≤ min{B, k} to guess the number of composite clusters. If t = 0, then the problem 
is solved in polynomial time. If t ≥ 1, then we proceed and guess the number � of initial clusters having nonempty inter-
sections with composite clusters, where t + 1 ≤ � ≤ B . For the chosen values of t and �, we consider all forests F on t + �

vertices to guess the structure of G(I ′, J ′). Recall that we have 2O(B) forests (see [35]) that can be listed in 2O(B) time 
(see [38]).

Further, we color the elements of J uniformly at random by � colors and, given t , �, F and a random coloring ψ : J →
{1, . . . , �}, check whether there is a feasible k-clustering of cost at most B . Recall that if there is a solution with t composite 
clusters such that exactly � initial clusters have nonempty intersections with the composite clusters of the solution, then 
the probability that these � clusters are assigned distinct colors in a random coloring ψ is at least e−2k . Then the probability 
that some initial clusters having nonempty intersections with the composite clusters of the solution obtain the same color 
is at most 1 − e−2B . This implies that if we try e2B random colorings, then the probability that for every coloring, some 
initial clusters having nonempty intersections with the composite clusters of the solution are of the same color is at most 
(1 − e−2B)e2B ≤ e−1. This implies that it is sufficient to consider N = �e2B� random coloring ψ . For each coloring, we verify 
the existence of a colorful solution. If a colorful solution exists for ψ , then we report that (A, �, r, k, p, q) admits a required 
solution and stop. Otherwise, if we fail to find a colorful solution for every ψ , we report that there is in solution and the 
probability of an incorrect answer is at most e−1 < 1.

For given t , �, F and a random coloring ψ : J → {1, . . . , �}, we use Lemmas 5 and 6 for verifying whether a feasible 
k-clustering exists. For the connected components F1, . . . , F f of F , we apply Lemma 6 and compute the values ωi(X, h) for 
all i ∈ {1, . . . , f }, X ⊆ {1, . . . �} and positive integers h ≤ k. By Lemma 6, this can be done in 2O(B log B)|�|B · (mn)O(1) time. 
Given these values, we apply Lemma 5 to check in 2O(B) · n2 time whether there is a feasible k-clustering for A of cost at 
most B with respect to F , t and �.

The overall running time of this algorithm is 2O(B log B)|�|B · (mn)O(1) and this concludes the proof. �
3.2.6. Derandomization

Our algorithm can be derandomized by standard tools [2] (see also [13, Chapter 5]). More precisely, we replace random 
colorings by functions from a perfect hash family.

Let s and � be positive integers such that s ≥ �. A set F of functions ξ : {1, . . . , s} → {1, . . . , �} is said to be an (s, �)-
perfect hash family if for every X ⊆ {1, . . . , s} of size �, there is ξ ∈F such that ξ |X is a bijection between X and {1, . . . , �}.

We use the result of Naor, Schulman, and Srinivasan [32] (see also [13, Chapter 5]).

Proposition 3. For every s ≥ � ≥ 1, there is an (s, �)-perfect hash family F of size e��O(log�) · log s that can be constructed in 
e��O(log�) · s log s time.

We consider our set of initial clusters J = { J1, . . . , J s} and construct an (s, �)-perfect hash family F . Since � ≤ 2B and 
s ≤ n, |F | = e2B(2B)O(log B) · logn and F can be constructed in e2B (2B)O(log B) ·n log n time by Proposition 3. For every ξ ∈F , 
we define the coloring ψξ : J → {1, . . . , �} by setting ψξ ( J i) = ξ(i) for i ∈ {1, . . . , s}.

If (A, �, k, B, p, q) admits a solution with t composite clusters such that exactly � initial clusters have nonempty inter-
sections with the composite clusters, then there is ξ ∈ F such that ψξ colors these initial clusters by distinct colors by 
the definition of an (s, �)-perfect hash family. Then our randomized algorithm can be modified as follows: instead of trying 
N = �e2B� random coloring ψ we try all ξ ∈ F , we verify the existence of a colorful solution with respect to ψξ . We ob-
tain that we can solve Capacitated Clustering for (A, �, k, B, p, q) in 2O(B log B)|�|B · (mn)O(1) deterministic time and this 
concludes the proof of Theorem 1.
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4. Clustering with size constraints

In this section, we discuss other variants of Categorical Clustering with cluster size constraints: Balanced Clustering

and Factor-Balanced Clustering. We also discuss the special case of Capacitated Clustering for p = q = n/k that is equiv-
alent to Balanced Clustering for δ = 0 and to Factor-Balanced Clustering for α = 1. We refer to this problem as Equal 
Clustering.

Recall that by Theorem 2, Capacitated Clustering is NP-complete for k = 2 and p = q = n/2, that is, Equal Clustering

is NP-complete for k = 2. Using the same arguments as in the proof of Theorem 2, we can show the following more general 
claim.

Theorem 3. For every fixed α ≥ 1 (δ ≥ 0, respectively), Factor-Balanced Clustering (Balanced Clustering, respectively) is NP-
complete for k = 2 and binary matrices.

From the positive side, we observe that Balanced Clustering and Factor-Balanced Clustering admit Turing reductions 
to Capacitated Clustering, that is, Capacitated Clustering is the most general among the considered problems. For this, 
we make the following straightforward observation.

Observation 5. An instance (A, �, k, B, δ) of Balanced Clustering (an instance (A, �, k, B, α) of Factor-Balanced Clustering, 
respectively) is a yes-instance if and only if there is a nonnegative integer p such that n

k − δ ≤ p ≤ n
k ( n

αk ≤ p ≤ n
k , respectively) and 

for q = p + δ (q = αp, respectively), (A, �, k, B, p, q) is a yes-instance of Capacitated Clustering.

Thus, given an algorithm A for Capacitated Clustering, we can solve Balanced Clustering for (A, �, k, B, δ) as fol-
lows. We consider all p starting from max{1, �n

k � − δ} up to �n
k �, and use A to solve Capacitated Clustering for 

(A, �, k, B, p, min{n, p +δ}). If A returns “yes” for one of the values of p, we conclude that (A, �, k, B, δ) is a yes-instance of
Balanced Clustering and stop. Otherwise, if A always returns “no”, (A, �, k, B, δ) is a no-instance. Clearly, Factor-Balanced 
Clustering can be solved in similar way. This allows to obtain the following corollary of Theorem 1.

Corollary 1. Balanced Clustering and Factor-Balanced Clustering are solvable in time 2O(B log B)|�|B · (mn)O(1) .

5. Kernelization for clustering with size constraints

In this section, we discuss kernelization for clustering problems with size constraints. In [19, Theorem 3], Fomin, Golo-
vach and Panolan proved that Categorical Clustering does not admit a polynomial kernel when parmeterized by B , unless 
NP ⊆ coNP/poly. This immediately implies the following proposition.

Proposition 4. Capacitated Clustering (Balanced Clustering and Factor-Balanced Clustering, respectively) has no polynomial 
kernel when paramterized by B, unless NP ⊆ coNP/poly, even if � = {0, 1}.

Also, by Theorems 2 and 3 the problems are already NP-hard for k = 2. Thus, for kernelization, we have to consider 
more restrictive parameterizations. Up to now, we have only partial results. In particular, we can show Balanced Clustering

admits a polynomial kernel when parameterzied by B , k and δ.
We start with some auxiliary results. First, we observe that if there is an initial cluster J of size at least B + 1, then at 

least one median should be the same as a column of the input matrix with its index in J .

Observation 6. Let {I1, . . . , Ik} be a k-clustering for a matrix A = (a1, . . . , an) of cost at most B and let J ⊆ {1, . . . , n} be an initial 
cluster with | J | ≥ B + 1. Then there is i ∈ {1, . . . , k} such that an optimal median of Ii coincides with s = a j for j ∈ J .

Proof. For the sake of contradiction, assume that medians c1, . . . , ck for the clusters {I1, . . . , Ik}, respectively, are distinct 
from s. Then

k∑
i=1

∑
j∈Ii

dH (ci,a j) ≥
k∑

i=1

∑
j∈ J∩Ii

dH (ci, s) ≥ | J | > B

contradicting that the cost of {I1, . . . , Ik} is at most B . �
Our next lemma shows that if there is a clustering such that a median ci coincides with a column a j , then we can either 

collect all the elements of the initial cluster J containing j in the same cluster of a solution or form a cluster of a solution 
out of its elements.
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Lemma 8. Let {I1, . . . , Ik} be a k-clustering for a matrix A = (a1, . . . , an) with optimal medians c1, . . . , ck, respectively. Let also 
S ⊆ {c1, . . . , ck} be the set of medians coinciding with columns of A. Then there is a k-clustering {I ′1, . . . , I ′k} for A such that

(i) |I ′i | = |Ii | for all i ∈ {1, . . . , k},

(ii)
∑k

i=1
∑

j∈I ′i
dH (ci, a j) ≤ ∑k

i=1
∑

j∈Ii
dH (ci, a j), and

(iii) for every s ∈ S and the initial cluster J such that s = a j for j ∈ J , there is i ∈ {1, . . . , k} such that either J ⊆ I ′i or I ′i ⊂ J .

Proof. Let c1, . . . , ck be optimal medians for I1, . . . , Ik , respectively. Assume without loss of generality that S = {c1, . . . , ct}, 
and denote by J1, . . . , Jt the initial clusters such that for every i ∈ {1, . . . , t}, a j = ci for j ∈ J i . Let I ′ = {I ′1, . . . , I ′k} be 
a k-clustering for A such that (a) |I ′i | = |Ii | for all i ∈ {1, . . . , k}, (b) 

∑k
i=1

∑
j∈I ′i

dH (ci, a j) ≤ ∑k
i=1

∑
j∈Ii

dH (ci, a j), and (c) ∑t
i=1 |I ′i ∩ J i | is maximum. We claim that I ′ satisfies conditions (i)–(iii) of the lemma. Clearly, (i) and (ii) are fulfilled by 

conditions (a) and (b) of the choice of I ′ . To show (iii), we prove that either J i ⊆ I ′i or I ′i ⊂ J i for every i ∈ {1, . . . , t}.
Assume to the contrary that there is i ∈ {1, . . . , t} such that neither J i ⊆ I ′i nor I ′i ⊂ J i . Then there is a cluster I ′j for 

j ∈ {1, . . . , k} such that j �= i, I ′j ∩ J �= ∅, and there is h ∈ I ′i such that h /∈ J i . Let � ∈ I ′j ∩ J i . Consider the k-clustering 
I ′′ = {I ′′1, . . . , I ′′k } such that I ′′i = (I ′i ∪ {�}) \ {h}, I ′′j = (I ′j ∪ {h}) \ {�}, and I ′′h = I ′h for h ∈ {1, . . . , k} such that h �= i, j. In words, 
we exchange the elements h and � between I ′i and I ′j . Then

k∑
p=1

∑
q∈I ′p

dH (cp,aq) −
k∑

p=1

∑
q∈I ′′p

dH (cp,aq) = dH (ci,ah) + dH (c j,a�) − dH (ci,a�) − dH (c j,ah),

and since ci = a� , we obtain that

k∑
p=1

∑
q∈I ′p

dH (cp,aq) −
k∑

p=1

∑
q∈I ′′p

dH (cp,aq) = dH (a�,ah) + dH (c j,a�) − dH (c j,ah) ≥ 0

by the triangle inequality. This means that

k∑
p=1

∑
q∈I ′′p

dH (cp,aq) ≤
k∑

p=1

∑
q∈I ′p

dH (cp,aq) ≤
k∑

p=1

∑
q∈I p

dH (cp,aq). (15)

Since |I ′′i | = |I ′i | for all i ∈ {1, . . . , r}, I ′′ satisfies condition (a) of the choice of I ′ . Condition (b) is satisfied because of (15). 
However, |I ′′i ∩ J | = |(I ′1 ∩ I) ∪ {�}| = |I ′i ∩ J | + 1. Because I ′′ was obtained by the exchange h and � between I ′i and I ′j , 
I ′p ∩ J p ⊆ I ′′p ∩ J p for p ∈ {1, . . . , t}. We obtain that 

∑t
p=1 |I ′p ∩ J p| < ∑t

p=1 |I ′′p ∩ J p| contradicting (c). Therefore, either 
J p ⊆ I ′p or I ′p ⊂ J p for every p ∈ {1, . . . , t} as it claimed. �

The following lemma is used to find medians if the sizes of clusters in a solution are sufficiently big.

Lemma 9. Let I = {I1, . . . , Ik} be a k-clustering for a matrix A = (a1, . . . , an) of cost at most B such that s ≤ |Ii | ≤ s + δ for all 
i ∈ {1, . . . , k}, where δ is a nonnegative integer and an integer s ≥ 2B + 1 + (k − 1)δ. Then for every initial clusters J ⊆ {1, . . . , n}, the 
following is fulfilled for c = a j for j ∈ J :

(i) if | J | mod s ≥ B + 1 + (k − 1)δ, then exactly 
⌈ | J |

s

⌉
clusters of I have optimal medians coinciding with c (the other medians are 

different),

(ii) if | J | mod s ≤ B + (k − 1)δ, then exactly 
⌊ | J |

s

⌋
clusters of I have optimal medians coinciding with c.

Proof. We start with proving (i). Let | J | mod s ≥ B + 1 + (k − 1)δ. We show that (i) holds for J by induction on p =
⌊ | J |

s

⌋
.

The base case is p = 0. Then 
⌈ | J |

s

⌉
= 1. As | J | mod s ≥ B + 1 + (k − 1)δ and 

⌊ | J |
s

⌋
= 0, B + 1 ≤ | J | ≤ s. By Observation 6, 

there is a cluster in I whose optimal median is c. Thus, at least one optimal median coincides with c. Without loss of 
generality, we assume that c is the median of I1. We now show that ci �= c for i ∈ {2, . . . , k}. Assume to the contrary that 
there exists h ∈ {2, . . . , k} such that ch = c. By Lemma 8, there is a k-clustering I = {I ′1, . . . , I ′k} for A such that |I ′i | = |I ′i | for 
all i ∈ {1, . . . , k}, 

∑k
i=1

∑
j∈I ′i

dH (ci, a j) ≤ ∑r
i=1

∑
j∈Ii

dH (ci, a j), and J ⊆ I ′1. Then

k∑
i=1

∑
j∈I ′

dH (ci,a j) ≥
∑
j∈I ′

dH (ch,a j) =
∑
j∈I ′

dH (c,a j) ≥ |I ′h| ≥ s ≥ B + 1,
i h h
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contradicting that cost(I) ≤ B . We conclude that exactly one median coincides with c, that is, (i) holds for p = 0.
Now let p ≥ 1 and assume that the claim holds when p is smaller. Note that k ≥ 2 in this case. We observe that, 

because | J | mod s ≥ B + 1 + (k − 1)δ, | J | ≥ sp + B + 1 + (k − 1)δ. By Observation 6, there is a cluster in I whose optimal 
median is c. Without loss of generality, we assume that c is the median of I1. Then by Lemma 8, there is a k-clustering 
{I ′1, . . . , I ′k} for A such that |I ′i | = |Ii | for all i ∈ {1, . . . , k}, 

∑k
i=1

∑
j∈I ′i

dH (ci, a j) ≤ ∑k
i=1

∑
j∈Ii

dH (ci, a j), and I ′1 ⊂ J . Consider 
A′ = A[{1, . . . , m}, {1, . . . , n} \ I1], that is, A′ is obtained from A by the deletion of the columns with their indices in I1. Notice 
that I ′ = {I ′2, . . . , I ′k} is an (k − 1)-clustering for A′ of cost at most B . Moreover, because |I ′i | = |Ii | ≥ s ≥ 2B + 1, c2, . . . , ck

are unique optimal medians for I ′2, . . . , I ′k , respectively, by Observation 2. Let J ′ = J \ I ′1. Since |I ′1| ≤ s + δ,

| J ′| = | J | − |I ′1| ≥ sp + B + 1 + (k − 1)δ − s − δ = s(p − 1) + B + 1 + (k − 2)δ ≥ B + 1 + (k − 2)δ.

By our inductive hypothesis, exactly 
⌈ | J ′ |

s

⌉
clusters of I ′ have optimal medians coinciding with c. As |I1| ≥ s, 

⌊ | J ′ |
s

⌋
≤ p − 1. 

Because | J ′| ≥ s(p − 1) + B + 1 + (k − 2)δ, 
⌊ | J ′|

s

⌋
≥ p − 1. Hence, 

⌊ | J ′ |
s

⌋
= p − 1 and 

⌈ | J ′|
s

⌉
= p. Since c2, . . . , ck are optimal 

medians, exactly p of them are equal to c. Together with the median c1 = c, exactly p + 1 medians in {c1, . . . , ck} are equal 
to c. Then exactly 

⌈ | J |
s

⌉
= p + 1 clusters of I have optimal medians coinciding with c. This completes the proof of (i).

To show (ii), we first claim that for every initial cluster J , there are at least p =
⌊ | J |

s

⌋
clusters in I , whose optimal 

medians are equal to c, where c = a j for j ∈ J . The proof is by induction on p.
The claim is trivial if p = 0. Let p ≥ 1 and assume that the claim holds when p is smaller. Since p ≥ 1, | J | ≥ s ≥ B + 1. 

By Observation 6, there is a cluster in I whose optimal median is c. Without loss of generality, we assume that c is 
the median of I1. Then by Lemma 8, there is an r-clustering {I ′1, . . . , I ′k} for A such that |I ′i | = |Ii | for all i ∈ {1, . . . , k}, ∑k

i=1
∑

j∈I ′i
dH (ci, a j) ≤ ∑k

i=1
∑

j∈Ii
dH (ci, a j), and either J ⊆ I ′1 or I ′1 ⊂ J .

Suppose that J ⊆ I ′1. Then | J | ≤ |I ′i | ≤ s + δ < 2s. This means that p = 1 and our claim holds, as c = c1.
Assume from now that this is not the case, that is, I ′i ⊂ J . Then we argue similarly to the proof of (i). Consider A′ =

A[{1, . . . , m}, {1, . . . , n} \ I1], that is, A′ is obtained from A by the deletion of the columns with their indices in I1. Notice 
that I ′ = {I ′2, . . . , I ′k} is an (r − 1)-clustering for A′ of cost at most B . Moreover, because |I ′i | = |Ii | ≥ s ≥ 2B + 1, c2, . . . , ck
are unique optimal medians for I ′2, . . . , I ′k , respectively, by Observation 2. Let J ′ = J \ I ′1.

If 
⌊ | J ′ |

s

⌋
≥ p − 1, then by the inductive assumption, there are at least p − 1 clusters in I ′ , whose optimal medians 

coincide with c. Thus, at least p − 1 medians from {c2, . . . , ck} are equal to c. Taking into account c1 = c, we have that at 
least p medians from {c1, . . . , ck} are equal to c, as required.

Let 
⌊ | J ′ |

s

⌋
≤ p − 2. Note that p ≥ 2 in this case. Since |I ′1| ≤ s + δ and | J | ≥ ps, we obtain that | J ′| = | J | − |I ′1| ≥

(p − 2)s + (s − δ). Thus, 
⌊ | J ′ |

s

⌋
= p − 2 and

| J ′| mod s ≥ s − δ ≥ 2B + 1 + (k − 1)δ ≥ B + 1 + (k − 2)δ.

By the already proven (i), we have that there are at least 
⌈ | J ′|

s

⌉
= p − 1 clusters in I ′ , whose optimal medians coincide 

with c. Since c1 = c, we again obtain that at least p medians from {c1, . . . , ck} are equal to c. This concludes the proof of 
our auxiliary claim.

To finish the proof of (ii), assume that | J | mod s ≤ B + (k − 1)δ. We already have that at least p =
⌊ | J |

s

⌋
clusters of I

have optimal medians coinciding with c. It remains to show that there are at most p such clusters. Assume to the contrary 
that at least p + 1 medians are equal to s and assume without loss of generality that c = c1 = . . . = cp+1. Then

k∑
i=1

∑
j∈Ii

dH (ci,a j) ≥
p+1∑
i=1

∑
j∈Ii

dH (ci,a j j) =
∑

j∈I1∪...∪I p+1

dH (c,a j)

≥
∑

j∈(I1∪...∪I p+1)\ J

dH (c,a j) ≥ |(I1 ∪ . . . ∪ I p−1) \ I|.

We know that |Ii | ≥ s for i ∈ {1, . . . , k}. Then |I1 ∪ . . .∪ I p+1| ≥ s(p +1). Since | J | mod s ≤ B +(k −1)δ, | J | � ps + B +(k −1)δ. 
This implies |(I1 ∪ . . .∪ I p+1) \ J | ≥ s − B − (k − 1)δ � B + 1. Hence 

∑
j∈(I1∪...∪I P+1)\ J dH (c, a j) ≥ B + 1 > B contradicting that 

cost(I) ≤ B . This proves that exactly 
⌊ | J |

s

⌋
clusters of I have optimal medians coinciding with c. �

Lemma 9 allows us to compute optimal medians and solve Balanced Clustering if the average size of clusters is suffi-
ciently big.

Lemma 10. Balanced Clustering can be solved in polynomial time for instances (A, �, k, B, δ) with n ≥ 2B + 1 + δk.
k
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Proof. Let (A, �, k, B, δ) be an instance of Balanced Clustering with n
k ≥ 2B +1 + δk. Clearly, we can assume that δ ≤ n −1. 

If (A, �, k, B, δ) is a yes-instance, then there is an integer s such that n
k − δ ≤ s ≤ n

k and s � |Ii | � s + δ for a solution 
{I1, . . . , Ik} to the instance.

Then we consider all integers s such that n
k − δ ≤ s ≤ n

k . For each value of s, we check whether there is a solution 
{I1, . . . , Ik} for the considered instance with s ≤ |Ii | ≤ s + δ, for all i ∈ {1, . . . , k}. If yes, we return the yes-answer, otherwise, 
if we fail to find a solution for every s, then the algorithm returns the no-answer.

Let s be fixed. For each initial cluster J , we compute 
⌊ | J |

s

⌋
and | J | mod s. Using these two values, we find the medians 

coinciding with c such that c = a j for j ∈ J using Lemma 9. Denote by C the obtained collection of medians. If |C| �= k, then 
we discard the current choice of s. Otherwise, C contains exactly k potential medians and we combine Observation 5 and 
Lemma 1 to decide whether (A, �, k, B, δ) admits a solution with these medians.

Since we consider at most δ + 1 ≤ n values of s and the algorithm from Lemma 1 is polynomial, the total running time 
of our algorithm is polynomial. �

In [19], Fomin et al. proved that Categorical Clustering admits a polynomial kernel when parameterized by B and k for 
binary matrices. As one of the steps of their kernelization algorithm (see Theorem 2 of [19]), they show that the number 
of rows in the output matrix can be reduced to O(B(B + r)). Formally, the proof is done for the binary case, that is, for 
� = {0, 1}. However, the reduction rule used in [19] works for arbitrary alphabet � because to apply the rule, we only 
should be able to compute the Hamming distances between pairs of columns of A and check whether two rows of certain 
submatrices are the same. We state this result in the following lemma.

Lemma 11 ([19]). There is a polynomial algorithm that, given an instance (A, �, k, B) of Categorical Clustering with m ×n matrix 
A, produces an equivalent instance (A′, �, k, B) with m′ × n matrix A′ such that the following holds:

• m′ =O(B(B + k)).
• {I1, . . . , Ik} is a solution for (A, �, k, B) if and only if it is also a solution for (A′, �, k, B).

Now we are ready to show a polynomial kernel for Balanced Clustering.

Theorem 4. Balanced Clustering admits a kernel, where the output matrix has O(B(B + k)) rows and O (k(B + δk)) columns, and 
is a matrix over an alphabet of size at most B + k.

Proof. Let (A, �, k, B, δ) be an instance of Balanced Clustering with A = (a1, . . . , an).
Suppose n

k ≥ 2B + 1 + δk. Then, by Lemma 10, the problem can be solved in polynomial time. We do it and return a 
trivial yes or no-instance, respectively. For example, we can return either the matrix (0, 0) or (0, 1), respectively, and set 
k = 1, B = 0 and δ = 0. Assume from now that n

k ≤ 2B + δk, that is, n ≤ 2Bk + δk2.
If A has at least B + k + 1 pairwise distinct columns, then for every k-clustering {I1, . . . , Ik} and every c1, . . . , ck ∈ �m , ∑k

i=1
∑

j∈Ii
dH (ci, a j) ≥ B + 1 because at least B + 1 columns of A are distinct from each median. Thus, (A, �, k, B, δ) is a 

no-instance in this case, and we return a trivial no-instance of Balanced Clustering.
Assume from now that the number of pairwise distinct columns is at most B + k. If |�| > B + k, then we can replace 

every symbol of � by a symbol of �′ = {0, . . . , B + k − 1} maintaining the following property: for each row of A, the same 
symbols of � are replaced by the same symbols of �′ . It is straightforward to verify that this replacement produces an 
equivalent instance because we are using the Hamming distances. From now, we assume that |�| ≤ B + k.

Given (A, �, k, B, δ), we consider the instance (A, �, k, B) of Categorical Clustering. We use the algorithm from 
Lemma 11 and denote by (A′, �, k, B) the output instance. Then we construct the instance (A′, �, k, B, δ) of Balanced 
Clustering and output it.

We show that (A, �, k, B, δ) is a yes-instance of Balanced Clustering if and only if (A′, �, k, B, δ) is a yes-instance.
For the forward direction, suppose (A, �, k, B, δ) is a yes-instance of Balanced Clustering. Let I = {I1, . . . , Ik} be a 

solution to the instance. Clearly, I is a solution for the instance (A, �, k, B) of Categorical Clustering. By Lemma 11, I
is a solution for (A′, �, k, B). Then I is a solution for (A′, �, k, B, δ). For the opposite direction, the arguments are similar. 
Let I = {I1, . . . , Ik} be a solution for (A′, �, k, B, δ). Then this is a solution for the instance (A′, �, k, B) of Categorical 
Clustering and, by Lemma 11, a solution for (A′, �, k, B). Finally, I is a solution of (A, �, k, B, δ).

Recall that n = O(k(B + δk)) and note that A′ has O(B(B + k)) rows by Lemma 11. Since |�| ≤ B + k, we conclude that 
the output matrix has O(B(B + r)) rows and O (k(B + δk)) columns, and is a matrix over an alphabet of size at most B + k.

It is easy to see that our kernelization algorithm is polynomial and this concludes the proof. �
6. Conclusion

We proved that Capacitated Clustering can be solved in 2O(B log B)|�|B · (mn)O(1) time. This also implies that the same 
holds for Balanced Clustering and Factor-Balanced Clustering. The natural question is whether it is possible to improve 
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the dependence on B . We do not know the answer to this question even for the special case of Equal Clustering. Also, 
besides the considered size constraints, it may be interesting to consider other variants. For example, in Capacitated Clus-

tering, the size constraints p and q are universal for all clusters. However, one may consider the case when the cluster 
sizes are given by individual constraints.

Another important direction of research is the investigation of kernelization for clustering problems with size constraints 
and we only initiated this study in Section 5. We list only several possible directions of research. In particular, Theorem 4
leads to the question of whether Factor-Balanced Clustering admits a polynomial kernel when parameterized by k and 
B with the assumption that α is a fixed constant. A more general question is whether there are polynomial kernels for
Capacitated Clustering, Balanced Clustering, and Factor-Balanced Clustering parameterized by k and B . Notice that
Categorical Clustering has a polynomial kernel for this parmeterization [19, Theorem 2]. Another direction of research 
is to investigate kernels of other types. Are there polynomial Turing kernels and do these problems admit polynomial lossy 
kernels, that is, approximative kernels? (We refer to the book [17] for the definition of the notions.)
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