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A k-core of a graph G is the maximal induced subgraph in which every vertex has degree 
at least k. In the Edge k-Core optimization problem, we are given a graph G and integers 
k, b and p. The task is to ensure that the k-core of G has at least p vertices, by adding 
at most b edges. While Edge k-Core is known to be computationally hard in general, we 
show that there are efficient algorithms when the k-core has to be constructed from a 
sparse graph with some structural properties. Our results are as follows.

• When the input graph is a forest, Edge k-Core is solvable in polynomial time.
• Edge k-Core is fixed-parameter tractable (FPT) when parameterized by the minimum 

size of a vertex cover in the input graph.
• Edge k-Core is FPT when parameterized by the treewidth of the graph plus k.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The k-core in an undirected graph G is the maximal induced subgraph of G in which all vertices have degree at least k. 
This concept has been applied in various areas including social networks [2–4], protein function prediction [5], hierarchical 
structure analysis [6], graph visualization [7], and network clustering and connectivity [8,9].

In online social networks users tend to contribute content only when a certain amount of their friends do the same [10], 
or in other words, when the formed community is a k-core for some threshold parameter k. Interestingly, losing even a 
small amount of users or links can bring to the cascade of iterated withdrawals. A classical example of such phenomena is 
the example of Schelling from [11]: Consider a cycle on n vertices, which is a 2-core with n vertices. Missing just one edge 
from this graph turns it into a path and triggers withdrawals that result in dismounting of the whole network. On the other 
hand, adding a small number of extra links can create a large k-core and thus prevent users from withdrawing. We consider 
the following mathematical model for this problem. For a given network, the assumption is that a user leaves the network 
when less than k of his/her friends remain within it. We would like to prevent unraveling of the network, so that at least 
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p users remain engaged in it. To achieve this, we are given a budget to establish at most b new connections between the 
users of the network. More precisely, the problem is stated as follows.

Input: A simple undirected graph G and integers b, k, and p.
Task: Decide whether there exists B ⊆ (V (G)

2

) \ E(G) of size at most b such that the k-core of the 
graph (V (G), E(G) ∪ B) is of size at least p.

Edge k-Core

The Edge k-Core problem was introduced by Chitnis and Talmon in [12] as a model of preventing unraveling in networks. 
For instance, in a P2P network, any user benefiting from the network should be linked to at least k other users exchanging 
resources. In this scenario the Edge k-Core model could be used to find extra connections between users to provide a better 
service for a larger number of users [12,13]. Other potential applications of Edge k-Core in real-life networks include friend 
recommendation in social networks, connection construction in telecom networks, etc. We find the Edge k-Core problem to 
be interesting from the theoretical perspective too: it has strong links to the well-studied family of problems, where one 
seeks a modification of a graph satisfying certain conditions on the degrees of the vertices, see [14] for further references. 
Our interest in the study of the problem is of a theoretical nature.

The k-core in a graph can be found by a simple “shaving” procedure: If a graph contains a vertex of degree less than k, 
then this vertex cannot be in its k-core and thus can be safely removed. Apparently, solving Edge k-Core is more challenging. 
In particular, Chitnis and Talmon in [12] proved that Edge k-Core is NP-complete even for k = 3 and when the input graph 
G is 2-degenerate.1 Moreover, the problem is W[1]-hard being parameterized by k + b + p. On the other hand, they show 
that if the treewidth of the graph G is tw, then the problem is solvable in time (k + tw)O(tw+b) · nO(1) and hence is fixed-
parameter tractable (FPT) parameterized by k + tw + b. These results of Chitnis and Talmon are the departure point for our 
study.

Our results. We study the algorithmic complexity of Edge k-Core on three families of sparse graphs: forests, graphs with 
bounded vertex cover number and graphs of bounded treewidth. Each of our algorithms is based on one of the common 
algorithmic paradigms: dynamic programming for forests and treewidth, and ILP for vertex cover. The interesting part here 
is that in each of the cases, the successful application of an algorithmic paradigm crucially depends on a new combinatorial 
result. We show the following.

Growing from forest. We prove (Theorem 5) that Edge k-Core is solvable in time O(k · |V (G)|2), when the input graph G
is a forest. The algorithm is based on a dynamic programming over subtrees. The crucial part of the work is to make this 
algorithm run in polynomial time. For that we need a new graph-theoretical result, Theorem 4. The theorem states that for 
any integer k, a forest F on at least k + 1 vertices can be completed into a graph of minimum degree k by adding at most⌈1

2

∑
v∈V (F )

max{0,k − deg(v)}
⌉

edges. Moreover, this bound is tight, any forest requires such amount of edge additions to grow into a k-core. The proof of 
Theorem 4 is non-trivial and exploits an interesting connection between the cores in a graph and sufficient conditions on 
the existence of a large matching in a graph. Here the recent combinatorial theorem of Henning and Yeo [15] on matchings 
in graphs of bounded degrees becomes handy.

Bounded vertex cover. We prove that the problem is FPT parameterized by the minimum size of a vertex cover in a graph. 
More precisely, in Theorem 14, we give an algorithm of running time 2O(vc ·3vc) ·nO(1) , where vc is the vertex cover number 
of the input graph. Let us note that every graph is vc-degenerate. We solve the problem by reducing it to an integer linear 
program (ILP), whose number of variables is bounded by some function of vc. This allows to apply Lenstra’s algorithm [16], 
see also [17,18], to solve Edge k-Core. Nowadays ILP is a commonly used tool for designing parameterized algorithms, see 
e.g. [19, Chapter 6]. However, just like in the case of forests, the application of an algorithmic paradigm is not direct. In 
order to encode the problem as ILP with the required number of variables, we need a new combinatorial result (Lemma 13) 
about degree sequences of a graph. Lemma 13 is essentially a characterization of graphic sequences, but stated in terms of 
the frequences of the degrees, in contrast to the classical Erdős-Gallai theorem [20] about graphic sequences.

From the viewpoint of parameterized complexity, the next natural question is whether Edge k-Core parameterized by 
vc admits a polynomial kernel, that is, a polynomial-time preprocessing algorithm that compresses a given instance into an 
equivalent one of size (vc)O(1) . While many graph-theoretic problems have polynomial kernels parameterized by vc [21], it 
turns out that Edge k-Core remains hard in this sense. We complement the FPT algorithm with a hardness result excluding 
the existence of a polynomial kernel, under a standard complexity assumption.

Bounded treewidth. Chitnis and Talmon in [12] have shown that Edge k-Core is FPT parameterized by tw + k + b, where 
tw is the treewidth of the input graph. Even in the case when the treewidth and k are constants, this does not mean that 

1 Recall that a graph is d-degenerate if its every induced subgraph contains a vertex of degree at most d. Thus the d-core is the maximum subgraph 
which is not d − 1 degenerate.
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the problem is solvable in polynomial time. We enhance this result by proving that Edge k-Core is FPT parameterized by 
tw + k. As the algorithm of Chitnis and Talmon in [12], our algorithm is a dynamic programming on graphs of bounded 
treewidth, but again, in order to make it work, we need a new combinatorial result (Theorem 20). When the budget b is 
small (of order k3), the algorithm of Chitnis and Talmon suffices. When the budget b is large, we are able to approach the 
problem in an interesting new way. Here Theorem 20 provides us with a criterion of how a subset of vertices can be turned 
into a k-core “optimally”. Specifically, if a graph “lacks” sufficiently many edges (polynomially many in k), then it can be 
completed to a k-core without adding edges that “waste” the degree, i.e., are incident to a vertex that already has a degree 
of at least k. This key insight allows us to show that the problem is FPT parameterized by tw + k, since by Theorem 20 the 
task reduces to finding a subgraph that “lacks” the least amount of edges solely in terms of vertex degrees, and that can be 
done by dynamic programming over the tree decomposition.

Related work. The usability of k-cores in the study of network unraveling phenomena was popularized by the influential 
paper of Bhawalkar et al. [2] who suggested the model of forcing a limited number of users of a network to stay in order 
to maximize the size of the k-core. The same problem was further studied in [22], where new computational results were 
obtained and some results of [2] were strengthened. Also, Chitnis, Fomin and Golovach studied this problem applied to 
networks where the underlying graph is directed [23]. Heuristic algorithms for this problem are discussed in [24].

Edge k-Core was introduced in [12], where also a number of complexity and algorithmic results about the problem were 
established. Zhou et al. [13] provide some non-approximability results for Edge k-Core as well as some heuristics. The work 
by Zhang et al. [25] is devoted to the “dual” problem of disengaging a limited number of users from a network in order to 
minimize its k-core size. Another work in this context is due to Luo, Molter and Suchy [26].

More generally, Edge k-Core fits into a large class of edge modification problems, where one is seeking for an optimum 
modification to some desired graph property [14]. In particular, a significant part of literature in parameterized complexity 
is devoted to related problems of graph modification to graphs with some vertex degree properties like being regular, Euler, 
or to some degree sequence [27–30].

2. Preliminaries

All graphs considered in this paper are simple undirected graphs. We use standard graph notation and terminology, 
following the book of Diestel [31]. We write G + F to denote the simple graph obtained by adding the edges from F ⊆(V (G)

2

) \ E(G) to a graph G . If not specified otherwise, we use n to denote the number of vertices of the graph G in an 
input instance of Edge k-Core. For two sets A and B we write A � B to denote the disjoint union of A and B . That is, 
A � B = A ∪ B , and A and B are required to be disjoint.

Throughout this paper, we use the following terms. In the following definitions, we assume that k is fixed.

Definition 1 (Deficiency). For a graph G and a vertex v ∈ V (G), let dfG(v) = max{0, k − degG(v)} denote the deficiency of v
in G . We denote the total deficiency in G by df(G) = ∑

v∈V (G) dfG(v).

Note that the addition of an edge between two vertices of G can decrease df(G) by at most two. It also does not make 
any sense to add edges that do not decrease deficiency if we aim to complete G to a graph of minimum degree k. We 
distinguish added edges by whether they decrease deficiency by two or one.

Definition 2 (Good/bad edges). For nonadjacent vertices u, v ∈ V (G) a new added edge uv is good if both dfG(u) > 0 and 
dfG(v) > 0. If dfG(u) = 0 and dfG(v) > 0, then uv is bad.

Thus adding a good edge decreases the total deficiency by 2 and adding a bad one by 1.

Definition 3 (A k-core graph). We say that a graph G is a k-core if G is the k-core of itself. We also say that a vertex set H in 
G induces a k-core in G if G[H] is a k-core.

Note that whenever there is a vertex set H of size at least p which induces a k-core in G , the k-core of G has also size 
at least p, since it is the unique maximal induced subgraph of G which is a k-core. We often use this simple observation 
throughout the paper whenever we show that the k-core is large by presenting a large vertex set which induces a k-core.

3. Growing from forest

In this section we present our polynomial time algorithm for Edge k-Core on forests and the underlying graph-theoretical 
result.

The algorithm itself is a dynamic programming over subtrees. Normally, an algorithm like this would go from leaves to 
larger and larger subtrees, storing for every subtree a list of possible configurations a solution could induce on this subtree. 
In the Edge k-Core problem, naturally we want to store information about edges added inside the subtree and vertices from 
the subtree which we may later connect to something outside.
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Naively, this would take exponential space, as it seems we have to store at least the degrees of the selected vertices in 
the subtree. However, the following theorem, which is the central technical result of this section, helps greatly.

Theorem 4. For any integer k, any forest T on at least k + 1 vertices can be completed to a graph of minimum degree k by adding at 
most ⌈1

2

∑
v∈V (T )

max{0,k − deg(v)}
⌉

edges, and this cannot be done with less edge additions. Moreover, in the case k ≥ 4, it can be done in a way that the added edges form 
a connected graph on the vertices they cover.

For our algorithm, Theorem 4 means that whenever we fix the subset of vertices H , we have to add exactly �df(T [H])/2	
edges in order to induce a k-core on H . Thus it is enough to find a subset of vertices H of size at least p with the smallest 
possible df(T [H]). This objective turns out to be simple enough for the bottom-up dynamic programming. Namely, for a 
subtree T v rooted at v , it is enough to store the size of H ∩ T v , the total deficiency of these vertices, whether v is in H
and how many neighbors in H ∩ T v it has. Since v separates T v from the rest of the tree, the deficiency of other vertices in 
H ∩ T v is unchanged no matter how H looks like in the rest of the tree.

The discussion above ultimately leads to a polynomial time algorithm, stated formally in the next theorem.

Theorem 5. Edge k-Core is solvable in time O(kn2) on the class of forests.

Proof. Let (G, b, k, p) be the given instance of Edge k-Core, and G be a forest. Consider a subset H ⊆ V (G) of the vertices 
of G . Since G[H] is a forest, by Theorem 4, one needs � 1

2 df(G[H])	 edge additions to make H a (subset of a) k-core in 
G . Thus, to solve the given instance, it is enough to check whether there is a subset H ⊆ V (G) with |H | ≥ p, such that 
2b ≥ df(G[H]). Hence, it is enough to find H with the smallest value of df(G[H]). In the rest of the proof, we show how to 
find such H in polynomial time using dynamic programming. The algorithm itself is in fact a special case of our treewidth 
dynamic programming, presented in Lemma 22 of Section 5. However, we describe the algorithm for forests in full detail 
here for the sake of completeness of this section.

To simplify our task, let us first make G connected. For that, introduce a new vertex r to G , and connect this vertex with 
each connected component of G by a single edge arbitrarily, even if G consists of a single connected component. We thus 
obtained a tree T that differs from G only in the newly-introduced vertex r. For each H ⊆ V (G), G[H] = T [H]. Hence, we 
are now looking for a subgraph in T on at least p vertices, such that this subgraph does not contain r, and we want its 
total deficiency to be minimum possible.

Make T rooted in r. For vi ∈ V (T ), by T vi we denote the subtree of the vertex vi in T . Let ti be the number of child 
vertices of vi in T . By ci,1, ci,2, . . . , ci,ti denote the children of vi in T in arbitrary order. If vi is a leaf vertex, ti = 0. For 
each j ∈ {0, 1, . . . , ti} by T j

vi
denote the subtree of vi in T , but including only subtrees of the first j of its children. That is,

T j
vi

= T vi [{vi} � V (Tci,1) � V (Tci,2) � . . . � V (Tci, j )].
Clearly, T vi = T ti

vi
.

Now for each vi ∈ V (T ), each j ∈ {0, . . . , ti} and each s ∈ {0, 1, . . . , |V (T j
vi

)| − 1}, let

O P T j
0(vi, s) = min

⎧⎨⎩df(T j
vi

[S])
∣∣∣∣∣∣

S ⊂ V (T j
vi

),

|S| = s,
vi /∈ S

⎫⎬⎭ .

In other words, O P T j
0(vi, s) equals the minimum deficiency of a subgraph of T j

vi
on exactly s vertices, such that it does not 

contain vi . Also denote O P T0(vi, s) = O P T ti
0 (vi, s).

On the other hand, for each vi ∈ V (T ), each j ∈ {0, 1, . . . , ti} each s ∈ [|V (T j
vi

)|] and each d ∈ {0, 1, . . . , k}, define

O P T j
1(vi, s,d) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩df(T j
vi

[S])

∣∣∣∣∣∣∣∣∣
S ⊆ V (T j

vi
),

|S| = s,
vi ∈ S,

df
T j

vi
[S](vi) = d

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Thus, O P T j
1(v, s, d) equals the minimum deficiency of a subgraph of T j

vi
on s vertices, including vi , such that the deficiency 

of vi in this subgraph equals d. For some choice of vi , j, s, d, there may be no corresponding subgraphs. In such cases, we 
put O P T j

(vi, s, d) = ∞. Also denote O P T1(vi, s, d) = O P T ti (vi, s, d).
1 1
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Finally, for each v ∈ V (T ) and each s ∈ {0, 1, . . . , |V (T v)|}, let

O P T (vi, s) = min

{
O P T0(vi, s),

k
min
d=0

O P T1(vi, s,d)

}
denote the minimum deficiency of a subgraph of T vi on s vertices.

Clearly, the minimum possible deficiency we are looking for equals

|V (G)|
min
i=p

O P T0(r, i),

and it is enough to compare this value with 2b to solve the initial instance of Edge k-Core. We now show how we compute 
the values of O P T . We do this in a bottom-up manner, starting from the leaf vertices of T .

Let vi ∈ V (T ) be a vertex in T . Since T 0
vi

consists of a single vertex, the only choice of s for O P T 0
0 (vi, s) is s = 0, and 

O P T 0
0 (vi, 0) = 0. For O P T 0

1 (vi, s, d), the only choice is s = 1 and d = k, and O P T 0
1 (vi, 1, k) = k, as df(T 0

vi
) = k. If vi is a leaf 

vertex, then computations for vi are finished, as O P T0(vi, s) = O P T 0
0 (vi, s) and O P T1(vi, s, d) = O P T 0

1 (vi, s, d).
Otherwise, ti > 0, and we can assume that all values of O P T for the children of vi are already computed. Consider 

computing O P T j
0(vi, s) for j > 0. Take S ⊂ V (T j

vi
), vi /∈ S . Since subtrees of the children of vi are connected only through 

vi , it is true that

df(T j
vi

[S]) = df(T j−1
vi

[S ∩ V (T j−1
vi

)]) + df(Tci, j [S ∩ V (Tci, j )]). (1)

In some sense, we can minimize total deficiencies of T j−1
vi

and Tci, j separately. We obtain

O P T j
0(vi, s) =

min{s,|V (Tci, j )|}
min
si=0

(
O P T j−1

0 (vi, s − si) + O P T (ci, j, si)
)

.

Thus, O P T j
0(vi, s) is computed in O(|Tci, j |) time. We compute these values in increasing order of j. Since there are |T j

vi
|

choices of s for a fixed j, computing all values of O P T0 for vi in total takes O(|T 0
vi

| · |Tci,1 | +|T 1
vi

| · |Tci,2 | + . . .+|T ti−1
vi

| · |Tci,ti
|)

time.
We now turn onto computing O P T j

1(vi, s, d) for j > 0. Take S ⊆ V (T j
vi

), vi ∈ S . Denote S0 = S ∩ V (T j−1
vi

) and S1 =
S ∩ V (Tci, j ), so S = S0 � S1. The vertex vi is now included in the subgraph T j

vi
[S], and it may now influence the deficiency 

of its child ci, j . Thus, equation (1) is not quite correct in this case. If vi ∈ S and dfTci, j [S1](ci, j) > 0, then in T j
vi

the deficiency 

of ci, j decreases by one because of the edge vici, j . If df
T j−1

vi
[S0](vi) > 0, then the deficiency of vi in T j

vi
also decreases by 

one. Thus, if ci, j ∈ S ,

df(T j
vi

[S]) = df(T j−1
vi

[S0]) − min(1,df
T j−1

vi
[S0](vi)) + df(Tci, j [S1]) − min(1,dfTci, j [S1](ci, j)), (2)

and if vi /∈ S , equation (1) holds true. Denote by

J O I N(ci, j, si) = min

{
O P T1(ci, j, si,0),

k
min
di=1

(
O P T1(ci, j, si,di) − 1

)}
the minimum total deficiency of a subgraph of Tci, j on si vertices including ci, j , but with the deficiency of ci, j decreased by 
one, if it is non-zero. This corresponds to the second half of the right part of equation (2). Each value J O I N(ci, j, si) can be 
computed in O(k) time, and there are |Tci, j | choices of si for any j ∈ [ti]. Hence, all values of J O I N for the children of vi

together can be computed in total O(|Tci,1 | · k + |Tci,2 | · k + . . . + |Tci,ti
| · k) =O(|T vi | · k) running time. We then obtain

O P T j
1(vi, s,d) =

min{s,|V (Tci, j )|}
min
si=0

{

O P T j−1
1 (vi, s − si,d) + O P T0(ci, j, si),

O P T j−1
1 (vi, s − si,d + 1) + J O I N(ci, j, si)

}, (3)

for any s ∈ [|V (T j
vi

)|] and any d < k. The first argument of min in equation (3) corresponds to vi /∈ S and equation (1), and 
the second argument corresponds to vi ∈ S and equation (2). If d = k, i.e., the deficiency of vi in S equals k, then necessarily 
vi /∈ S . Thus, in the case d = k, we compute O P T j

1(vi, s, d) according to equation (3), but without the second argument of 
min. This finishes the description of formulas for computing the values of O P T1. Each separate value of O P T j

(vi, s, d) is 
1
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computed in O(|Tci, j |) time. There are |T j
vi

| · (k + 1) choices of (s, d), so computing all values of O P T j
1 for vi together takes 

O(k ·∑ti
j=0 |T j

vi
| · |Tci, j |) running time. Note that this also covers the running time needed for computing the values of J O I N

for all children of vi .
It is left to show that the total running time of the algorithm is O(k · |V (T )|2) =O(k · |V (G)|2). Computing the values of 

O P T0 and O P T1 for a fixed vertex vi ∈ T takes O(k · ∑ti
j=0 |T j

vi
| · |Tci, j |) running time. We need to show that

∑
vi∈V (T )

ti∑
j=0

|T j
vi

| · |Tci, j | ≤ |V (T )|2,

which is equivalent to

∑
vi∈V (T )

ti∑
j=0

|T j
vi

× Tci, j | ≤ |V (T ) × V (T )|.

Note that all sets T j
vi

× Tci, j are pairwise-disjoint, and each of them is a subset of V (T ) × V (T ). Hence, the last inequality is 
essentially true. Thus, the dynamic programming itself is done in O(k · |V (G)|2) running time by the algorithm. Any other 
part of the algorithm, including constructing and rooting T and finding and comparing min|V (G)|

i=p O P T0(r, i) with 2b, takes 
O(|V (G)|) time, which is covered by O(k · |V (G)|2). This finishes the proof. �

For the remaining part of this section we focus on the proof of Theorem 4.

Proof of Theorem 4. The theorem says that the completion of T to a graph of total deficiency 0 can be done using � 1
2 df(T )	

edge additions. Note that this bound is tight because a single edge addition decreases the total deficiency by at most two. 
When df(T ) is even, we have to prove that it is possible to complete T by adding only good edges. When df(T ) is odd, 
we have to complete T to a graph of total deficiency 1 adding � 1

2 df(T )� good edges and then add one bad edge. Fixing 
deficiency 1 with one bad edge is always possible, since the only deficient vertex u has degree k − 1 and so must have a 
non-neighbor. In the case k ≥ 4 this can be also done in a way that connects u to the already added good edges. Thus, from 
now on, it suffices to prove that we can add � 1

2 df(T )� good edges, in a connected way for k ≥ 4.
For k = 1, vertices with non-zero deficiency are exactly the isolated vertices of T . In this case pairing isolated vertices 

arbitrarily provides the required � 1
2 df(T )� good edges.

For k ≥ 2, it is sufficient to prove the theorem statement for the case when T is connected, i.e., T is a tree. If T is a forest 
consisting of at least two trees, one may reduce the number of trees in T . This can be done by picking two leaf vertices 
of distinct connected components in T and adding an edge between them. Clearly, such an edge addition is good since any 
leaf vertex has non-zero deficiency, and it reduces the number of connected components in T .

Moreover, for k = 2, vertices with non-zero deficiency are exactly the leaves of T . Since T is a tree with at least three 
vertices, an edge connecting any two leaves can be added. Thus, as in the case of k = 1, pairing the leaves arbitrarily suffices.

Now, for every integer k ≥ 3, we prove Theorem 4 by induction on the number of vertices in the tree. The fact that the 
graph on the added edges must be connected in the case k ≥ 4 will be useful for the induction.

Base case. Let T be a tree on n = k + 1 vertices. The only way to complete T to a graph of minimum degree k is to 
turn it into a complete graph, i.e., add every possible missing edge between vertices in V (T ). Clearly, each edge addition in 
such a completion is good, thus the completion requires exactly 1

2 df(T ) edge additions. Suppose there are two connected 
components formed by the added edges. Then T must contain all edges between these components, so it also contains a 
cycle, since each of the components has at least two vertices. Thus the connectivity condition must be satisfied.

Inductive step. Suppose that Theorem 4 holds for all trees on n vertices, and let T be a tree on n + 1 vertices. We prove 
that Theorem 4 holds for T . Let v be a leaf of T and let T ′ = T − v be the tree obtained by deleting v from T . By the 
induction hypothesis, T ′ can be completed to a graph of total deficiency (df(T ′) mod 2) using � 1

2 df(T ′)� edge additions. Let 
A′ be the graph on the deficient vertices of T ′ formed by the good edges added during the completion.

Our ultimate goal is to transform A′ in such a way that it accounts for the new vertex v as well. We shall do this by 
first removing edges from A′ , and then adding good edges between vertices which are not yet adjacent. In the case k ≥ 4, 
we must also end up with a connected graph on the added edges.

Briefly explained, our technique of adding and removing edges is as follows. Take an edge st ∈ E(A′), such that 1) s �= v , 
t �= v and 2) sv and tv are not yet in the graph. Delete the edge st , and add both edges sv and tv . This operation preserves 
deficiencies of both s and t , while it decreases the deficiency of v by two. Note that s and t also remain connected through 
v . We can do the same with a matching instead of a single edge, thus we need a matching of size roughly k/2 to nullify 
the deficiency of v .

The rest of the proof is structured in two parts. First, we show that there is indeed a sufficiently large matching in A′ . 
Second, we give a detailed description of how to reroute the edges of the matching to the new vertex v , and carefully verify 
the correctness of the procedure.
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Finding a matching. We will need the following properties of A′ .

If k ≥ 4, A′ is connected. (4)

The correctness of (4) follows from the induction hypothesis. Because each vertex in T ′ has deficiency at most k − 1 and 
each edge addition is good, we have that

�(A′) ≤ k − 1. (5)

Also

|E(A′)| ≥ n(k − 2) + 1

2
, (6)

since there must be at least nk−1
2 edges in the graph after the completion to deficiency (df(T ′) mod 2), and only n − 1 of 

the edges are in T ′ .

|V (A′)| ≥ k. If n > k + 1, then |V (A′)| > k. (7)

To prove (7), suppose that |V (A′)| ≤ k − 1. By (5), 2 · |E(A)| ≤ �(A′) · |V (A′)| ≤ (k − 1)2. Then by (6), we have that either 
(k − 1)2 ≥ n(k − 2) + 1, or k2 − 2k ≥ n(k − 2). Hence k ≥ n, which is a contradiction. Therefore, |V (A′)| ≥ k.

Suppose now that |V (A′)| = k, but n ≥ k + 2. Then either k(k − 1) ≥ n(k − 2) + 1 ≥ (k + 2)(k − 2) + 1, or k2 −k ≥ k2 − 3, so 
k ≤ 3. Thus, k = 3 and n = k + 2 = 5 (if n > k + 2, k should be strictly less than 3). Since |V (A′)| = k = n − 2, T ′ should have 
two vertices of degree at least three. But then T ′ should contain at least five edges, but it only contains four. A contradiction.

We now use these properties of A′ to show that there is a large matching in A′ . For lower bounds on the size of a 
maximum matching we rely on the recent work of Henning and Yeo [15].

Proposition 6 ([15]). For any integer t ≥ 3, any connected graph G with |V (G)| = n, |E(G)| = m and �(G) ≤ t, contains a matching 
of size at least(

t − 1

t(t2 − 3)

)
n +

(
t2 − t − 2

t(t2 − 3)

)
m − t − 1

t(t2 − 3)
, if t is odd,

or at least

n

t(t + 1)
+ m

t + 1
− 1

t
, if t is even.

We shall use Proposition 6 to show that A′ contains a matching of size roughly k
2 , as stated in the following claim.

Claim 7. When k is odd and n = k + 1, A′ has a matching of size at least k−1
2 . Otherwise, A′ has a matching of size at least � k

2 	.

Proof. Consider the case when k is even. We apply Proposition 6 with t = k − 1 and A′ , and use properties (4) and (5). 
Since the lower bound from the theorem statement is rounded up, we need to show that(

t − 1

t(t2 − 3)

)
|V (A′)| +

(
t2 − t − 2

t(t2 − 3)

)
|E(A′)| − t − 1

t(t2 − 3)
>

k

2
− 1.

By properties (6) and (7), and by replacing k with t + 1, it is sufficient to show that

(t − 1)(t + 1)

t(t2 − 3)
+

(
t2 − t − 2

t(t2 − 3)

)
·
(

n(t − 1) + 1

2

)
− t − 1

t(t2 − 3)
>

t + 1

2
− 1, (8)

for any odd t ≥ 3 and any n ≥ k + 1 = t + 2. After multiplying both parts of (8) by 2t(t2 − 3), we obtain

2(t − 1)(t + 1) + (t2 − t − 2) · (n(t − 1) + 1) − 2(t − 1) > (t + 1 − 2) · t(t2 − 3),

which is simplified to

n · (t3 − 2t2 − t + 2) > t4 − t3 − 6t2 + 6t + 2.

Since n ≥ t + 2, it is sufficient to show that

(t + 2) · (t3 − 2t2 − t + 2) > t4 − t3 − 6t2 + 6t + 2,

or that
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t3 + t2 − 6t + 2 > 0.

Since t > 0, we weaken the last inequality to

t3 − 6t > 0,

which holds true for t >
√

6. Thus, for t ≥ 3, inequality (8) holds. We hereby have shown that when k is even, A′ has a 
matching of size k

2 .
Consider now the case of k = 3. We need to consider this case separately since t = k − 1 = 2 does not follow from 

Proposition 6. When k = 3, we need a matching of size two in A′ . If A′ is not connected, it suffices to pick any two of its 
connected components and take an edge from each; note that by construction A′ does not have isolated vertices. Otherwise, 
A′ is connected and by (5) has maximum degree two. Hence, A′ is either a simple cycle or a simple path. By property (6), 
A′ is a cycle or a path consisting of at least � (k+1)(k−2)+1

2 	 = � 4·1+1
2 	 = 3 edges. Clearly, if A′ is a path on at least three 

edges or a cycle on at least four edges, A′ has a matching of size two. The only option left for A′ is to be a cycle on three 
vertices and edges, so |V (A′)| = 3 = k. By property (7), this is only possible if n = k + 1. Thus, if n > k + 1, A′ has a matching 
of size at least two. If n = k + 1, A′ is only guaranteed to have a matching of size 1 = k−1

2 .
It is left to consider the case of odd k ≥ 5. Again, apply Proposition 6 to A′ with even t = k − 1. We need to show that 

A′ has a matching of size at least k+1
2 = t+2

2 , so it is sufficient to show that

|V (A′)|
t(t + 1)

+ |E(A′)|
t + 1

− 1

t
>

t + 2

2
− 1.

According to (6) and (7), it is enough to show that

t + 1

t(t + 1)
+ 1

t + 1
· 1

2
· (n(t − 1) + 1) − 1

t
>

t + 2

2
− 1,

(t − 1)n + 1

2t + 2
>

t

2
.

Multiplying both parts by 2t + 2 and using n ≥ k + 2 = t + 3, we obtain

(t − 1)(t + 3) + 1 > t(t + 1),

or, equivalently, t > 2. Thus, when k ≥ 5 is odd and n ≥ k + 2, A′ has a matching of size k+1
2 .

When n = k + 1, we need a matching of size k−1
2 = t

2 , so we need to show that

|V (A′)|
t(t + 1)

+ |E(A′)|
t + 1

− 1

t
>

t

2
− 1,

or

(t − 1)n + 1

2t + 2
>

t

2
− 1.

This is equivalent to

t2 + t − 1 > t2 − t − 2,

which is true for t ≥ 0. This completes the proof of the lemma. �
Rerouting the edges. Now we shall use the matching provided by Claim 7 to conclude the inductive step. Denote by 

G ′ the graph obtained after the completion of T ′ to a graph of total deficiency (df(T ′) mod 2). That is, V (G ′) = V (T ′) and 
E(G ′) = E(T ′) � E(A′). If df(T ′) is odd, G ′ has a single vertex with deficiency one, denote it by u. For every other vertex 
s ∈ V (G ′), dfG ′ (s) = 0. Our goal is to transform G ′ into a graph G that will correspond to the graph obtained after the 
completion of T using only good edge additions.

We initialize G with G ′ . Let us remind that v is a leaf of T and T ′ = T − v . We denote the only neighbor of v in T by p. 
Since G is missing vertex v , we introduce v to G , which is now isolated in G . Now V (G) = V (T ), so it is left to add missing 
edges to G , while possibly removing some of the existing edges. Of course, these added edges should include the edge pv , 
since E(T ) ⊆ E(G) must hold. Similarly, we should not remove any edges of T ′ from G . Thus, we can remove edges in E(A′)
only. We denote by A the graph of added edges in G , analogously to A′ in G ′ .

As was explained before, our basic technique is to remove the edges of the matching in A′ , and connect their endpoints 
to v . However, there are several issues to deal with. First, if p is in V (A′), we have to ensure that one of the edges in E(A′)
incident to p gets removed, otherwise one of the edge additions is wasted on p. This edge removal may in turn disconnect 
A′ . Second, depending on the parity of df(T ′) we may have to deal with the already-deficient vertex u of G ′ , and the parity 
of k comes into play as well. Thus, in the rest of the proof we go over five different cases and show that in each of them 
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(c)

pu

v

(d) p

v

(e)
u

p

v

Fig. 1. The cases of rerouting for k = 3. Solid edges denote the edges of G ′ . Straight black edges denote the edges of T ′ , and curved red edges denote the 
edges of A′ . Edges of the matching in A′ that are deleted in G are highlighted bold. Dashed edges denote the newly-added edges in G . (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

the rerouting is possible. We start with the cases where k is even. Recall that we always start with G being a copy of G ′
with v as an isolated vertex.

Case (a). k is even and p ∈ V (A′). By Claim 7, there is a matching of size k
2 in A′ . Denote this matching by M . Since 

p ∈ V (A′), we may assume that p ∈ M by the following. Suppose that p /∈ M , p is incident to at least one edge in E(A′), 
say pq. If q ∈ M , remove the edge covering q from M . If q /∈ M , remove an arbitrary edge from M . Finally, add the edge 
pq to M . Now M is a matching of size k

2 and p ∈ M . We want to remove all edges of M from G , and add all 2 · k
2 = k

edges connecting v with the vertices covered by M . Then the degree of v in G is exactly k, so dfG(v) = 0, no deficiency of 
any other vertex has changed, and G now contains the edge pv . However, the graph formed by the good edges A must be 
connected, and this may not be the case since we replace the edge pq by edges pv and qv , and pv belongs to T so p and 
q are not necessarily connected through the edges of A.

So before replacing the edges of M , we tweak it in order to preserve the connectivity. If p has degree one in A′ , then 
after replacing the edges, p is not covered by the good edges anymore. If p has a neighbor t in A′ which has degree one 
in A′ , then we take the edge pt instead of pq in M . Since v is going to have at least three incident edges, there will be at 
least one edge of A among them which is not vt , and thus t will be connected to the rest of A. If removing pq makes A
disconnected and none of the above is the case, the connected component of p in A′ − pq has an edge which is not incident 
to p. If one of these edges is already in M , then the connectivity will hold since q will be adjacent to v and a vertex in 
the same component as p will be adjacent to v . Otherwise we remove from M any edge which is not pq and add any edge 
which belongs to the connected component of p in A′ − pq and is not incident to p.

Finally, after rerouting the edges of M the obtained graph G corresponds to an appropriate completion of T . Note that if 
G ′ contains the vertex u with deficiency one, it remains deficient in G as well.

Case (b). k is even and p /∈ V (A′). The difference with the previous case is that now we cannot simply ensure that edge 
pv gets added to G . Add edge pv to G . This does not change the deficiency of p, since it is a vertex of zero deficiency, but 
deficiency of v now equals k − 1. Take a matching M of size k

2 in A′ , according to Claim 7. If G contains the unique vertex u
of deficiency one, and u ∈ M , remove the edge covering u from M . Otherwise, remove an arbitrary edge from M . M is now 
a matching of size k

2 − 1 with u /∈ M , if u exists. Note that p /∈ M necessarily, as p /∈ V (A′). Remove all edges of M from 
G , and add all k − 2 edges connecting v with vertices covered by M . v is now a vertex of deficiency one in G . If u exists, 
connect u and v by a new edge. Clearly, this is a good edge addition. This edge did not exist before, because we made sure 
that u /∈ M . If u does not exist, v is a single vertex of deficiency one in G . In any case, G is an appropriate completion of T .

We have hereby proved Theorem 4 for the case of even k. We now turn to the cases where k is odd. Clarifying pictures 
for all three cases to consider are presented in Fig. 1. We start with the easier case.

Case (c). k is odd and p /∈ V (A′). As in Case (b), introduce the edge pv to G , so dfG(v) = k − 1, and the deficiency of p
does not change. By Claim 7, there is a matching M of size k−1

2 in A′ . As before, remove all edges of M from G , and add all 
k − 1 edges connecting v with the endpoints of edges in M . The vertex v has zero deficiency now, and for any other vertex 
the deficiency is the same. Clearly, G is an appropriate graph.

Case (d). k is odd and p ∈ V (A′), there is no deficient vertex in G ′. Take a matching M of size k−1
2 in A′ , and ensure that 

p ∈ M . In the case k ≥ 5, do the same tweaking to M as in Case (a) to ensure connectivity. Remove all edges of M from 
G and connect v to all k − 1 vertices covered by M . The edge pv is now contained in G , and v is the only vertex with 
deficiency one in G . This is an appropriate completion of T .

Case (e). k is odd and p ∈ V (A′), dfG ′ (u) = 1. Note that n ≥ k + 2 in this case, since for n = k + 1 there may be no deficient 
vertices in G ′ . Take a matching M of size k+1

2 in A′ according to Claim 7, and ensure that p ∈ M . We consider two cases, 
either up ∈ M or not. In the case up ∈ M , if there is another neighbor q of p in A′ which is not covered by M , replace up
in M by qp, and thus we reduce to the second case. Otherwise, remove all edges of M from G . Now degG(u) = k − 2, so at 
least two vertices covered by M are not adjacent to u. At least one of these vertices is distinct from p, denote this vertex 
by w . Add edges connecting v to each vertex covered by M , except for the vertex w . Thus, v gets connected to exactly 
k+1

2 · 2 − 1 = k vertices, including p and u, so dfG(v) = 0. Finally, add an edge connecting u and w . Now each vertex in G is 
of zero deficiency. Clearly, each edge addition in this construction is good. To see that A is connected in the case k ≥ 5, first 
note that only removing edges up and wt could influence connectivity, where t is such that wt ∈ M . For all other edges 
of M which were removed, their endpoints are adjacent to v in A, and thus connected in A. The pair w and t remains 
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connected in A since t is adjacent to v , and w is connected to v through u. The vertex p either had the only neighbor u
in A′ , then p is not in V (A), or there was another neighbor q of p in A′ . Note that q is necessarily covered by M since we 
could not replace the edge up. Then q is adjacent to v in A, and p and u are connected through q and v . Also pv ∈ E(G), 
so G is an appropriate completion of T .

If up /∈ M , first remove from M the edge covering u, or if there is no such edge, remove an arbitrary edge from M so 
that p remains covered by M . Remove all edges of M from G and connect v to all endpoints of these edges as before. Now 
dfG(u) = dfG(v) = 1, and uv /∈ G , so add a good edge between u and v . After that, G is an appropriate completion of T with 
no deficient vertices. To see that A is connected, we only need to check that p and its pair q in M remain connected. Either 
u is in the connected component of p in A, and then p and q are connected through u and v , or we do the same tweaking 
to M as in Case (a) before actually removing the edges.

We considered each case required to accomplish the inductive step. This concludes the proof of Theorem 4. �
Since the class of forests is exactly the class of 1-degenerate graphs, it is reasonable to ask whether Edge k-Core is 

polynomially solvable on other classes of graphs of bounded degeneracy. The answer is negative, and it was shown by 
Chitnis and Talmon in [12], where they provided a reduction from Clique to Edge k-Core. We note that they used this 
reduction to prove that Edge k-Core is W[1]-hard when parameterized by the combined parameter b + p, even when k = 3.

Proposition 8 ([12]). Edge k-Core is NP-hard even on the class of 2-degenerate graphs for k = 3.

4. Handling small vertex cover

This section is dedicated to Edge k-Core parameterized by the minimum size of a vertex cover of the input graph G . We 
show that this problem admits an FPT algorithm and complement this result by ruling out the existence of a polynomial 
kernel. We start with the high level description of the main ideas behind our algorithm.

High-level description of the algorithm. In order to prove that Edge k-Core is FPT parameterized by the vertex cover 
number of the input graph, we construct an FPT-time Turing reduction from Edge k-Core to instances of integer linear 
program (ILP), where the number of variables is bounded by some function of the vertex cover. While reducing to ILP is 
a common approach in the design of parameterized algorithms, see [19, Chapter 6], the reduction for Edge k-Core is not 
straightforward. In order to make the whole approach applicable, we need a new combinatorial result, Lemma 13. The proof 
of this lemma strongly exploits the refinement of Tripathi and Vijay [32] of the classical theorem of Erdős and Gallai about 
degree sequences [20].

The reduction target is the following Integer Linear Programming Feasibility (ILP) problem.

Input: Matrix A ∈ Zm×� and vector b ∈ Zm .
Task: Is there a vector x ∈ Z� such that A · x ≤ b?

ILP parameterized by �

ILP is FPT by the celebrated result of Lenstra [16].

Proposition 9 ([17,16,18]). ILP can be solved using O(�2.5�+o(�) · L) arithmetic operations and space polynomial in L. Here L is the 
number of bits in the input.

Let G be a simple undirected graph on n vertices and b, k, and p be integers. Let vc be the minimum size of a vertex 
cover in an n-vertex graph G . Our FPT Turing reduction constructs in time 2O(vc2) · nO(1) at most 2O(vc2) instances of ILP. 
Each instance of ILP has � = 2O(vc) variables. Moreover, at least one of the constructed instances of ILP is a yes-instance if 
and only if one can build a k-core of size p in G by adding at most b edges. Thus by applying Proposition 9 to each of the 
instances of ILP, we obtain an FPT (parameterized by vc) algorithm for Edge k-Core.

Recall that in Edge k-Core we are looking for a vertex subset H ⊆ V (G) of size at least p such that G[H] can be 
completed to a graph of minimum degree at least k using at most b edge additions. In what follows, we describe the 
reduction from Edge k-Core to ILP.

We start with computing a minimum vertex cover C of G . It is well-known that a simple branching algorithm does this 
job in time 2|C | · nO(1) , see e.g. [19]. We simplify our task a bit by assuming that C ⊆ H : we just branch into 2|C | possible 
options of H ∩ C . For each option we delete vertices C \ H from G . We use the following notion of vertex types.

Definition 10 (Vertex types). Let G be a graph and C be its vertex cover. For S ⊆ C and a vertex v /∈ C , we say that v has type 
S if NG(v) = S .
77



F.V. Fomin, D. Sagunov and K. Simonov Journal of Computer and System Sciences 132 (2023) 68–88
We encode the choice of H (up to isomorphism of G[H]) using only 2|C | positive integers: for each S ⊆ C we just need 
to indicate how many vertices of type S are in H . That is, the values of 2|C | variables xS := |{v ∈ H | NG(v) = S, v /∈ C}|
uniquely define the graph G[H]. Then inequality |C | + ∑

S⊆C xS ≥ p ensures that |H | ≥ p.
The non-trivial part of the proof is to encode in ILP that G[H] can be completed into a k-core graph using at most b

edges. In graph G[H], the vertex set C is a vertex cover and the set I = H \ C is an independent set. Assume that G[H] can 
be completed into a k-core graph by making use of a set of edges B , |B| ≤ b. The set B can be partitioned into B = BC ∪ B I . 
Here BC are the edges with at least one endpoint in C , and B I ⊆ ( I

2

)
are the remaining edges. Every edge of B I has two 

endpoints in I . We encode the sets BC and B I in ILP in different ways.
It is convenient to assume that BC contains no edges with both endpoints in C . We reach this condition by branching 

into 2(|C |
2 ) = 2O(vc2) possible options of which edges between vertices in C are added to G . For each such guess we also 

update the value b and the conditions on degrees of vertices in C .
The next step in the reduction to ILP is to encode the graph G[H] + BC . Since we do not have edges with both endpoints 

in C anymore, BC consists only of edges between C and I . Since C is also a vertex cover of G[H] + BC , there are at most 
2|C | different types of vertices in H \ C in the graph G[H] + BC . A vertex v of type S ′ in G[H] + BC has type S ⊆ S ′ in 
the graph G[H]. Let yS,S ′ (for S ⊆ S ′ ⊆ C ) denote the number of vertices of type S in G[H] that become vertices of type 
S ′ in G[H] + BC . Then the set of equations 

∑
S ′⊇S yS,S ′ = xS , for each S ⊆ C , ensures that these values correspond to the 

actual structure of G[H]. The cardinality of BC is then encoded as 
∑

S ′⊆C

∑
S⊆S ′ |S ′ \ S| · yS,S ′ . Since for each vertex v ∈ C

the graph G[H] + BC contains all edges incident to v in G[H] + B , the resulting degree of v can be checked immediately. 
Formally, degG[C](v) + ∑

S ′�v

∑
S⊆S ′ yS,S ′ ≥ k is equivalent to degG[H]+B(v) ≥ k.

We proceed with the description of how we encode the edge set B I . For that we need to ensure that for each vertex 
of I its degree in G[H] + (BC ∪ B I ) is at least k. Since adding edges between vertices in I could significantly increase the 
vertex cover of G[H], we cannot do the encoding in the same way as for the edges in BC . However, I remains to be an 
independent set in G[H] + BC . Therefore, B I can be any set of edges subject to the condition that in G[I] + B I the degree 
of every vertex v ∈ I is at least dfG[H]+BC (v). Thus, to ensure that B I is an appropriate set all we need to consider are the 
deficiencies of vertices in I .

The deficiencies of vertices in I are integers within the range [max{0, k − |C |}, k]. Since G[I] is an empty graph, it is 
not necessary to know the deficiency of each particular vertex in I . Knowing the number of vertices in I of each particular 
deficiency is sufficient for our purposes. For i ∈ [max{0, k − |C |}, k], let si denote the number of vertices in I with deficiency 
i. These variables can be encoded with ILP equations using the variables yS,S ′ .

We arrive at the most interesting and non-trivial part of the reduction. While the inequalities we have built so far are 
necessary for encoding the information about the set B I , they are not sufficient. The reason is that not every sequence of 
integers corresponds to a sequence of vertex degrees in a graph. There is a classical theorem of Erdős and Gallai providing 
a characterization of graphic sequences. However, if we use this theorem to encode graphic sequences in ILP, the resulting 
integer program could have unbounded (by a function of vc) number of variables. To overcome this obstacle, we need 
Lemma 13, a new combinatorial result about graphic sequences.

We want to encode the property that there exists a set of edges B I of size at most b − |BC | such that the edges of B I

form a graph with at least sk vertices of degree at least k, at least sk−1 other vertices of degree at least k − 1, and so on 
down to smax{0,k−|C |} . One technical obstacle here is that we ask for si vertices of degree at least i, not of degree exactly i. 
In what follows, for clarity, we explain only how to encode the existence of an edge set forming a graph with ti vertices 
of degree exactly i for each i ∈ [max{0, k − |C |}, k]. For the “at least” case we need to do more work, but the main idea 
remains the same. Note that the case we explain here (requiring ti vertices of degree exactly i) is achieved automatically if 
all edges in B I are good edges (that is, consecutive addition of edges from B I decreases deficiencies of exactly two vertices 
by one) and the cardinality of this set is found easily as 1

2

∑
i ti .

Let us remind the following classical graph-theoretical notion.

Definition 11 (Graphic sequences). A sequence d1, d2, . . . , dn of non-negative integers is called graphic if there exists a graph 
G with V (G) = {v1, v2, . . . , vn}, such that degG(vi) = di for each i ∈ [n].

In terms of this notion, our task is to check that a sequence consisting of integers from [max{0, k − |C |}, k], where the 
integer i appears exactly ti times, is a graphic sequence. The problem of determining that a given sequence is graphic was 
approached by Erdős and Gallai in their famous work [20].

Proposition 12 (Erdős-Gallai theorem, [20]). A sequence of non-negative integers d1 ≥ d2 ≥ . . . ≥ dn is graphic if and only if 
∑n

i=1 di

is even and 
∑t

i=1 di ≤ t · (t − 1) + ∑n
j=t+1 min{d j, t} for each t ∈ [n].

However, the statement of Proposition 12 does not allow us to encode corresponding inequalities in ILP with the number 
of variables bounded by |C |. We need a refined version of this proposition, Lemma 13. This combinatorial result on graphic 
sequences of integers in a short range is crucial in constructing ILP inequalities with bounded number of variables. The 
proof of the lemma is based on the modification of the Erdős-Gallai theorem due to Tripathi and Vijay [32].
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Lemma 13. Let d1 ≥ d2 ≥ . . . ≥ dn be a sequence of non-negative integers, such that for each j ∈ [n] d j ∈ [k − a, k], for some integers 
0 ≤ a ≤ k < n. For each i ∈ [k −a, k], let ti = |{ j | d j = i}| be the number of integers equal to i in the sequence. For each D ∈ [k −a, k], 
let T D =

k∑
i=D

ti .

Then d1, d2, . . . , dn is graphic if and only if 
∑k

i=k−a i · ti is even and for each D ∈ [k − a, k] at least one of the following holds:

1. T D < k − a, or
2. T D > k, or

3.
k∑

i=D
i · ti ≤ T D · (T D − 1) +

D−1∑
i=k−a

min{i, T D} · ti .

Proof. Clearly, by Proposition 12, the condition that 
∑k

i=k−a i · ti = ∑n
j=1 d j is even is necessary for any graphic sequence 

d1, . . . , dn .
We now prove that if d1, . . . , dn is graphic, then the third condition (hence, at least one condition) is satisfied for each 

D ∈ [k − a, a]. Note that the third condition corresponds exactly to the inequality of Erdős and Gallai from Proposition 12
with t = T D , just expressed in the terms of ti instead of d j . Hence, if d1, d2, . . . , dn is graphic, then the third condition is 
satisfied for each D such that T D ∈ [n]. The only case left is T D = 0. In this case, the left part of the inequality is equal to 
zero, so the third condition is also satisfied. It is left to prove the theorem statement in the other direction.

By the result of Tripathi and Vijay [32], to check that d1, . . . , dn is graphic it is sufficient to check the condition of 
Proposition 12 for all values of t such that dt > dt+1, and for t = n. Note that all such values of t are values of T D for 
some choices of D . That is, if dt > dt+1, let D = dt . Then T D = ∑k

i=D ti = |{i : di ≥ D}| = t . If we choose D = k − a, we 
achieve T D = n. Thus, to check that d1, . . . , dn is graphic it is enough to check the condition of Proposition 12 for t = T D , 
for each D ∈ [k −a, k]. This is exactly what the third condition checks, except for the choices of D when one of the first two 
conditions is satisfied. Hence, it is now left to show that when T D < k − a or T D > k, then the third condition is satisfied 
automatically.

First, consider the case T D > k. Note that

k∑
i=D

i · ti ≤
k∑

i=D

k · ti = k ·
k∑

i=D

ti = k · T D ≤ (T D − 1) · T D .

Thus, the third condition is satisfied for T D > k.
Now consider the case T D < k − a. Then

D−1∑
i=k−a

min{i, T D} · ti =
D−1∑

i=k−a

T D · ti = T D ·
D−1∑

i=k−a

ti = T D · (n − T D).

As k < n, we have that

k∑
i=D

i · ti ≤ (n − 1) ·
k∑

i=D

ti = (n − 1) · T D = T D · (T D − 1) + T D · (n − T D),

which is equivalent to the inequality of the third condition of the lemma. Thus, for T D < k − a the third condition is also 
satisfied. This concludes the proof of the lemma. �

Lemma 13 still does not yield directly the desired encoding in ILP. Though T D can be expressed as a sum of ti ’s, the 
summand T D · (T D − 1) is not allowed in a linear equation with T D being a variable. However, since the number of T D ’s is 
at most |C | + 1, for each T D the algorithm can guess whether T D > k, T D < k − |C | or the exact value of T D ∈ [k − |C |, k]. 
For each T D it leads to at most |C | + 3 options, so there are at most |C |O(|C |) possible options in total. This allows us to 
use the values of T D ’s in ILP as constants. Since the variables of type ti are the only remaining variables, we can write the 
corresponding constraints as linear inequalities.

We are now ready to state the main result of this section and prove it formally, accumulating the ideas discussed above 
in this section. The proof also contains the full description of the constructed linear program.

Theorem 14. Edge k-Core admits an FPT algorithm when parameterized by the vertex cover number. The running time of this algo-
rithm is 2O(vc·3vc) · nO(1) , where vc is the minimum size of a vertex cover of the input n-vertex graph.

Proof. Let (G, b, k, p) be an instance of Edge k-Core, and let C ⊆ V (G) be a minimum vertex cover in G . Denote vc = |C |. 
Note that if C is not given as input, it can be found in 2vc ·nO(1) running time with the well-known FPT branching algorithm 
for Vertex Cover.
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Edge-k-Core-ILP

achieve

(1)
∑

S ′⊆C

∑
S⊆S ′

|S ′ \ S| · yS,S ′ +
k∑

i=max{0,k−|C |}

i∑
j=max{0,k−|C |−1}

(i − j) · ui, j + z ≤ b

subject to xS ≥ 0, yS,S ′ ≥ 0, si ≥ 0, ui, j ≥ 0, t j ≥ 0, z ≥ 0, and

(2) xS ≤ |{v | NG (v) = S, v /∈ C}| , ∀ S ⊆ C ,

(3) |C | + ∑
S⊆C

xS ≥ p,

(4)
∑

S⊆S ′⊆C
yS,S ′ = xS , ∀ S ⊆ C ,

(5) degG[C](v) + ∑
S ′�v

∑
S⊆S ′

yS,S ′ ≥ k, ∀ v ∈ C ,

(6) si = ∑
S ′⊆C,k−|S ′ |=i

∑
S⊆S ′

yS,S ′ , ∀ i ∈ [k − |C |,k], i ≥ 0,

(7)
i∑

j=max{0,k−|C |−1}
ui, j = si, ∀ i ∈ [k − |C |,k], i ≥ 0,

(8) t j =
k∑

i= j
ui, j, ∀ j ∈ [k − |C | − 1,k], j ≥ 0,

(9) t j = 0, ∀ j ∈ [Dmax + 1,k],
(10) tDmax > 0,

(11) Dmax ≤
k∑

j=max{0,k−|C |−1}
t j − 1,

(12) 2z =
Dmax∑

j=max{0,k−|C |−1}
j · t j,

(13)
Dmax∑
j=D

t j = T D , ∀ D ∈ [L, R], if L ≤ R ,

(14)
Dmax∑

j=R+1
t j < k − |C | − 1, if Dmax > R ,

(15)
Dmax∑

j=L−1
t j > Dmax, if L > max{0,k − |C | − 1},

(16)
Dmax∑
j=D

j · t j ≤ T D (T D − 1) +
D−1∑

j=max{0,k−|C |−1}
min{ j, T D } · t j, ∀ D ∈ [L, R].

Fig. 2. The ILP formulation of Edge k-Core. Dmax, L, R and T D ’s are parameters guessed by the algorithm. Note that equations in the formulation should be 
replaced with two symmetrical inequalities in order to obtain a valid linear program.

Let H ⊆ V (G) be a subset of the vertices of G such that H becomes a k-core in G after adding at most b edges to G . 
We can assume that the set of added edges B is a subset of 

(H
2

)
, otherwise B is not minimal. Since we are not interested 

in the vertices outside of H , let our algorithm iterate over all possible values of H ∩ C , and delete all vertices in C \ H from 
G for a fixed choice of H ∩ C . Clearly, there are 2vc choices of H ∩ C , so this adds a factor of 2vc to the running time of 
the algorithm. We can now assume that we are looking for a k-core that contains all vertices of the vertex cover of G , i.e., 
C ⊆ H . Note that C is a vertex cover in G[H] and denote by I = H \ C the independent set in G[H].

Let the algorithm also guess the edges that are added between the vertices of C . There are at most 2(vc
2 ) (at most 2O(vc2)) 

possible options of adding at most b of these edges. Our algorithm iterates over all possible options of adding edges between 
the vertices of C , adds these edges in G and decreases the budget b accordingly for each option. This adds a factor of 2O(vc2)

to the running time of the algorithm. Now, for a fixed such guess, we consider only adding at most b edges to G such that 
each edge added has at least one endpoint in I .

We are now ready to describe the ILP formulation of Edge k-Core. The whole description of Edge-k-Core-ILP is presented 
in Fig. 2.

The formulation uses values Dmax, L, R, T D , that are not variables of the linear programming, but are values that the 
algorithm also needs to guess. To explain the purpose of these values and Edge-k-Core-ILP itself, we start directly with the 
following claim.

Claim 15. Let B ⊆ (V (G)
2

) \ E(G) \ (C
2

)
be a subset of at most b edges, and let G ′ denote the graph G + B. Let H be the k-core of G ′ . If 

C ⊆ H and |H | ≥ p, then there exist integers Dmax, L, R and T D ’s (for each D ∈ [L, R]), such that Edge-k-Core-ILP is feasible for this 
choice of Dmax, L, R, T D . Moreover, all these integers are non-negative integers in [k − |C | − 1, k].
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Proof. We show how to assign values to the variables of Edge-k-Core-ILP so that every inequality is satisfied. We also 
explain the purpose of each variable.

For each S ⊆ C , assign xS = |{v ∈ H \ C | NG(v) = S}|. Thus, xS denotes the number of vertices of type S in H . Clearly, 
inequalities (2) are satisfied by such values of xS . Then (3) counts the vertices in H and ensures that there are at least p of 
them. This inequality is also satisfied because |H | ≥ p.

Consider now how the type of a vertex v ∈ H \ C changes in G ′ . That is, NG(v) = S , but when edges of B are added 
to G , v may change its type to NG ′ (v) = S ′ for some S ′ ⊇ S . Variables yS,S ′ correspond to the amount of vertices of type 
S in G[H] that change their type to S ′ in G ′[H]. Thus, yS,S ′ = {v ∈ H \ C | NG(v) = S, NG ′(v ′) = S ′}. Equalities (4) ensure 
that these amounts agree with the number of vertices of a certain type in G[H], and are clearly satisfied. Note that this 
handles all edges in B that have one endpoint in I and the other endpoint in C . Thus, one may now evaluate the degree of 
each v ∈ C by counting vertices of certain types in G ′[H]. Inequalities (5) ensure that the degree of each v ∈ C is at least k. 
Each one of these inequalities is satisfied since H is a k-core in G ′ . We now assume that B ⊆ (H

2

)
, otherwise all edges with 

an endpoint outside of B can be removed from B while the k-core H in G ′ and G ′[H] remains the same. Hence, G ′[H] is 
exactly the graph G[H] + B .

The rest of inequalities of Edge-k-Core-ILP handle edge additions inside G[I]. Divide B into two parts, B = BC ∪ B I , 
where BC is the set of all edges in B having at least one endpoint in C , and B I is the set of edges in B having both 
endpoints in I . After adding all edges in BC to G[H] we obtain an intermediate graph G[H] + BC . A vertex v ∈ H ∩ I of 
type S ′ in G[H] + BC has deficiency dfG[H]+BC (v) = max{0, k − |S ′|}. Then (6) evaluates the number of vertices with certain 
deficiencies in G[H] + BC . Clearly, all possible deficiency values lie in [k −|C |, k], so si indeed denotes the number of vertices 
with deficiency i for each non-negative i ∈ [k − |C |, k].

We now consider B I ⊆ ( I
2

)
. Fix an arbitrary ordering of edges in B I and consider how edges of B I are added to G[H] + BC

in this order. Some of these edge additions are good and some are bad. If there are edge additions that do not change 
deficiency of any vertex, we can remove such edge from B and G[H] + B still remains a k-core. Thus, B I can be divided 
into two parts B I = B(2)

I � B(1)
I , where B(2)

I corresponds to the set of good edges and B(1)
I corresponds to the set of bad 

edges. Correspondingly, their additions change the total deficiency of G[H] + BC by two and by one when some order is 
fixed. Consider the graph G[I] + B(2)

I formed by the good edges in B . For each v ∈ I , deg
G[I]+B(2)

I
(v) ≤ dfG[H]+BC (v), as each 

edge in B(2)
I is good when added to G[H] + BC . Let t j = {v ∈ I | deg

G[I]+B(2)
I

(v) = j} be the number of vertices of degree j in 

G[I] + B(2)
I . Then ui, j denotes the number of vertices in I with deficiency i in G[H] + BC that have degree j in G[I] + B(2)

I , 
and j ≤ i. That is, ui, j = {v ∈ I | dfG[H]+BC (v) = i, deg

G[I]+B(2)
I

(v) = j}. This is described by equalities (7) and (8), that are 
satisfied by the chosen values of t j and ui, j . We only need to show that j is always an integer in [k − |C | − 1, k]. If k ≤ |C |, 
it is true since j ≥ 0, so we consider k > |C |.

Note that ui, j actually corresponds to adding bad edges from B(1)
I . If a vertex v ∈ I has deficiency dfG[H]+BC (v) = i, but 

is incident with only deg
G[I]+B(2)

I
(v) = j good edges, then it requires i − j bad edges in B(1)

I incident to it to be added in G . 
This can be considered as follows. Initially, we are given a sequence of vertex deficiencies in I in G[H] + BC . This sequence 
is described by the values of si : for each i, we have si vertices in I with deficiency i, so we have si integers equal to i in the 
sequence. By (3), there are at least p −|C | ≥ k + 1 −|C | vertices in this sequence. If this sequence is graphic, then we do not 
require any bad edge addition inside G[H] + BC : just pick good edges as the edges of a graph on |I| vertices corresponding 
to this sequence. Thus, if the values of si correspond to a graphic sequence, B(1)

I can be chosen to be empty. Otherwise, we 
need to slightly change the sequence of deficiencies using bad edge additions, and we want to minimize these bad edge 
additions. ui, j specifies how many integers with value i in the sequence are changed to j. This corresponds to adding i − j
bad edges incident to each one of ui, j vertices with deficiency i.

Consider the sequence of integers from [k −|C |, k] that is not graphic. With a single operation, we are allowed to decrease 
some integers of this sequence by one. By Proposition 12, we should always decrease the maximum integer in the sequence 
by one with a single operation. Suppose that we repeated this operation and obtained integer k − |C | − 2 in the sequence 
at some moment. Then at some moment all integers in the sequence were equal to k − |C |, and at some moment later all 
integers in the sequence were equal to k − |C | − 1. Since at least one of k − |C | and k − |C | − 1 is even and also there are 
at least k + 1 − |C | integers in the sequence, there exists a (k − |C |)-regular or a (k − |C | − 1)-regular graph consisting of 
n ≥ k + 1 − |C | vertices. Thus, at least one of the sequences consisting of integers all-equal to k − |C | or to k − |C | − 1 is 
graphic. Hence, we do not need to decrease any integer below k − |C | − 1 in order to minimize the number of operations of 
changing the sequence.

We have shown that j ∈ [k − |C | − 1, k]. What remains is to explain the purpose of the remaining inequalities of Edge-k-

Core-ILP and to show how to choose the values of Dmax, L, R and T D ’s for each D ∈ [L, R] in order to satisfy them. The 
actual purpose of inequalities (9)–(16) is to check that t j corresponds to a graphic sequence according to Lemma 13. The 
value of a in Lemma 13 is chosen as a = min{k, |C | + 1}. Pick Dmax = max{ j : t j > 0}. Then (9) and (10) ensure that Dmax is 
chosen correctly. Inequality (11) guarantees that there are at most Dmax + 1 integers in the sequence, since otherwise it is 
not graphic. Equality (12) checks that the sum of integers in the sequence is even. Note that z = |B(2)

I | equals the number 
of good edges in B .
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Then, L and R are the bounds of D for which the third condition of Lemma 13 should be verified. Sequence 
Tmax{0,k−|C |−1}, . . . , Tk−1, Tk is non-increasing, so L is the smallest integer for which T L ≤ k. Analogously, R is the largest 
integer for which T R ≤ k − a. If i < L or i > R , then at least one of the first two conditions of Lemma 13 is satisfied, and we 
can omit checking the Erdős-Gallai inequality for this Ti . Note that it may be the case that L > R , then we do not have to 
check the third condition of Lemma 13 at all. Otherwise, for each D ∈ [L, R], T D is a non-negative integer in [k − |C | − 1, k]. 
Then (13)–(15) ensure that L, R and T D ’s are chosen correspondingly to the values of t j and are satisfied for our choices 
of these parameters. Finally, (16) is responsible that the third condition of Lemma 13 holds for each D ∈ [L, R]. Thus, if t j
satisfies (9)–(16) for the correct choice of Dmax, L, R and T D ’s, then by Lemma 13, t j corresponds to a graphic sequence. 
Note that for each choice of t j there is exactly one feasible choice of the parameters T D , Dmax, L, and R .

It is left to explain the role of (1) of Edge-k-Core-ILP. We show that the left part of this inequality equals |B|. Note 
that |BC | = ∑

S ′⊆C

∑
S⊆S ′

|S ′ \ S| · yS,S ′ , as edges in BC can be counted using the number of type changes from S to S ′ , and a 

type change from S to S ′ is done with |S ′ \ S| edge additions. The correspondence between bad edges in B I and the values 
ui, j is described above, so the second summand in inequality (1) corresponds to |B(1)

I |. Finally, the summand z equals 
|E(G I )| = |B(2)

I |. Thus, the left part of the inequality equals |BC | + |B(1)
I | + |B(2)

I | = |B|, and |B| ≤ b. The proof of the claim is 
completed. �

We have shown that if G can be completed to a graph with a k-core of size at least p, then Edge-k-Core-ILP is feasible 
for the correct choice of the parameters. Note that each of Dmax, L, R and T D ’s are integers in [k − |C | − 1, k], so there 
are |C | + 2 options for each of them. Since there are at most R − L + 1 ≤ |C | + 2 choices of index D for T D , there are 
at most |C | + 5 integers to choose from [k − |C | − 1, k]. Clearly, this leads to a total of O(|C ||C |) possible options for the 
parameters. The algorithm iterates over all possible choices of these values, constructs an ILP formulation for each fixed 
choice and then employs the algorithm of Proposition 9 to check if Edge-k-Core-ILP is feasible. There are O(3|C |) variables 
and inequalities in the formulation (with yS,S ′ being the majority of the variables), so the feasibility of the formulation is 
checked in O(3|C |)O(3|C |) · nO(1) = 3O(|C |·3|C |) · nO(1) . The outer guesses of H ∩ C , B ∩ (C

2

)
and the parameters of ILP add a

factor of |C ||C | · nO(1) to the running time of the algorithm. This factor is dominated by the double exponent, so the total 
running time is still 3O(|C |·3|C |) · nO(1) . It is only left to say that if the algorithm finds Edge-k-Core-ILP feasible for some 
choice of parameters, then the initial instance is a yes-instance of Edge k-Core.

Claim 16. If Edge-k-Core-ILP is feasible for some choice of Dmax, L, R, T D , then (G, b, k, p) is a yes-instance of Edge k-Core.

Proof. One needs to follow the proof of the previous claim. It can be shown that from a feasible solution to Edge-k-Core-

ILP can be constructed a set of vertices H ⊆ V (G) (following the values of xS ) and sets of edges BC (following the values of 
yS,S ′ ), B(1)

I (following the values of ui, j ) and B(2)
I (following that the values of t j correspond to a graphic sequence). Then 

G[H] can be completed to a graph of minimum degree k by adding edges from B = BC ∪ B(1)
I ∪ B(2)

I to G . Inequalities ensure 
that |H | ≥ p and |B| ≤ b. Note that the constructed H is not necessarily the k-core of G ′ , but it is necessarily a subset of its 
vertices. �

This completes the proof of Theorem 14. �
To complement our FPT algorithm, we show that Edge k-Core does not admit a polynomial kernel when parameterized 

by the combined parameter vc + k + b + p. It was shown in [33] that the Bounded Rank Disjoint Sets problem does not 
admit a polynomial kernel, and our proof is by reduction from this problem.

Input: A family F over a universe U with every set S ∈ F having size at most d together with a 
positive integer k.

Task: Does there exist a subfamily F ′ of F with |F ′| ≥ k such that for every pair of sets S1, S2 ∈
F ′ we have S1 ∩ S2 = ∅?

Bounded Rank Disjoint Sets

Proposition 17 ([33]). Bounded Rank Disjoint Sets does not admit a polynomial kernel when parameterized by d +k even restricted 
to instances where |U | = dk and for every S ∈F the size of S is exactly d, unless NP ⊆ coNP/ poly.

Note that the result above is originally stated under the assumption that the polynomial hierarchy does not collapse 
to the third level (PH �= �3

p) [33]. Here we state the results under the weaker assumption that NP � coNP/ poly, as it 
is common in the modern literature on kernelization [21]. Proposition 17 in the stated form follows from the following: 
Dom et al. [33] show that the problem admits an OR-composition, which immediately implies that the problem admits 
a cross-composition into itself. By employing the general result on cross-compositions [21, Theorem 17.8], this fact gives 
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Proposition 17. For more details on the framework for showing infeasibility of polynomial kernels see Bodlaender et al. [34], 
Fortnow and Santhanam [35], and the recent book on kernelization [21].

Now we show our reduction.

Theorem 18. Unless NP ⊆ coNP/ poly, Edge k-Core does not admit a polynomial kernel when parameterized by the combined pa-
rameter vc + k + b + p.

Proof. We provide a polynomial reduction from Bounded Rank Disjoint Sets. Consider an instance (U , F , k, d) of Bounded 
Rank Disjoint Sets such that |U | = dk and all the sets in F have size exactly d. We may assume that k is even, otherwise 
extend the universe by d new elements, add one set containing all of these elements to F , and increase k by one. Clearly, 
the new set must always be in the resulting subfamily, and thus the transformed instance has a solution if and only if the 
original instance has a solution.

Now we construct an instance (G, b, k′, p) of Edge k-Core. The vertices of G consist of set vertices, one for each set in 
F , universe vertices, one for each element of the universe, and d clique vertices. The clique vertices are pairwise connected, 
each of the universe vertices is connected to each of the clique vertices, and for each set S ∈F the vertex corresponding to 
S is connected to the universe vertices corresponding to the elements contained in S . Formally,

V (G) = VF ∪ V U ∪ V C = {v S : S ∈ F} ∪ {vu : u ∈ U } ∪ {vci : i ∈ {1, · · · ,d}},
E(G) = {v S vu : S ∈ F, u ∈ S} ∪ {vu vci : u ∈ U , i ∈ {1, · · · ,d}} ∪ {vci vc j : 1 ≤ i < j ≤ d}.

Finally, we set b = k/2, k′ = d + 1 and p = d + |U | + k. Since V U ∪ V C is a vertex cover of G , vc ≤ |U | + d = kd + d, so the 
combined parameter vc + k′ + b + p is indeed bounded by a polynomial in k + d.

Next, we show that (G, b, k′, p) is a yes-instance of Edge k-Core if and only if (U , F , k, d) is a yes-instance of Bounded 
Rank Disjoint Sets. First, assume there is a subfamily F ′ ⊂ F such that |F ′| ≥ k and for each pair of sets S1, S2 from 
F ′ , S1 ∩ S2 = ∅. Since each set in F contains exactly d elements and |U | = kd, |F ′| = k and ∪S∈F ′ S = U . Consider the 
following vertex set H in G: H = V C ∪ V U ∪ {v S : S ∈ F ′}, and an arbitrary matching B ⊂ (V (G)

2

) \ E(G) of size b on vertices 
{v S : S ∈ F ′}. Clearly, B exists since VF is an independent set in G and |F ′| = k which is even; also, |B| = k/2 = b. Let G ′
denote the graph G + B . We claim that H induces a k′-core in G ′ . Each of the set vertices in H is adjacent to d universe 
vertices, and also to another set vertex by an edge from B , so its degree in G ′[H] is d + 1. Each of the universe vertices is 
adjacent to one set vertex in H , since ∪S∈F ′ S = U , and also to d clique vertices, so its degree in G ′[H] is also d + 1. Each of 
the clique vertices is adjacent to d − 1 clique vertices and dk universe vertices, so its degree in G ′[H] is dk + d − 1 ≥ d + 1, 
since dk ≥ 2 as k is even. The size of H is d + |U | + k = p, so B is a solution to (G, b, k′, p).

In the other direction, assume there exist H ⊂ V (G) and B ⊂ (V (G)
2

) \ E(G) such that |H | ≥ p, |B| ≤ b and H induces a 
k′-core in G ′ , where G ′ denotes the graph G + B . Since set vertices have degree d in G , |H ∩ VF | must be at most 2b = k as 
each vertex in H ∩ VF must have at least one incident edge in B . Since |H | ≥ p = d + |U | + k, H contains V C and V U , and 
|H ∩ VF | = k. Then each of the vertices in H ∩ VF has exactly one incident edge in B , and so B is a matching on H ∩ VF . 
For each vu ∈ V U there exists an adjacent v S ∈ H ∩ VF , otherwise degG ′[H](vu) = d < k′ as vu is adjacent only to V C in 
G , and no edge in B is incident to vu . Then, F ′ = {S : v S ∈ H ∩ VF } covers the whole universe, and so F ′ is a solution to 
(U , F , k, d), since |F ′| = k, |U | = kd and thus the sets in F ′ must be disjoint. This finishes the proof of the theorem. �
5. Exploiting the treewidth

In this section, we give an FPT-algorithm for Edge k-Core parameterized by tw + k. This improves upon the following 
result of Chitnis and Talmon, and we also use their algorithm as a subroutine.

Proposition 19 ([12]). Edge k-Core can be solved in time (k + tw)O(tw+b) · nO(1) .

We start with the central combinatorial result of this section that allows for the algorithmic improvement. Namely, we 
show that whenever the total deficiency of a graph G exceeds a polynomial in k, G can always be completed to a graph 
of minimum degree k using the minimum possible number of edges with the given deficiency. Also, the required edge 
additions can be identified in polynomial time.

We believe that this result is interesting on its own, since it considerably simplifies the problem whenever the budget is 
sufficiently high compared to k. If we are trying to identify the best vertex set H which induces a k-core, we have to only 
care about the total deficiency of G[H], and not of any particular structure on it.

Theorem 20. For any integer k ≥ 2, any graph G with df(G) ≥ 3k3 can be completed to a graph of minimum degree k using � 1
2 df(G)	

edge additions in polynomial time.

Proof. It is enough to prove that we can satisfy all deficiencies by adding only good edges, except if df(G) is odd, exactly 
one edge addition is bad.
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We constructively obtain a graph G ′ of form G + B , where initially B = ∅. The construction is a polynomial time algo-
rithm.

First, we exhaustively apply the following rule, which always adds one good edge. If there are two distinct vertices 
u, v ∈ V (G ′) such that dfG ′ (u) > 0, dfG ′ (v) > 0, and uv /∈ E(G ′), then add the edge uv to B . Assume that the rule is no 
longer applicable. Let us denote C = {v ∈ V (G)| dfG ′ (v) > 0}, by the conditions of the rule, C induces a clique in G ′ . Then, 
|C | ≤ k, since otherwise vertices in C could not have positive deficiency.

Now we exhaustively apply the following second rule. Fix two vertices u, v ∈ C , such that either u and v are distinct, or 
u = v and dfG ′ (u) ≥ 2. Then find two distinct vertices u′, v ′ ∈ V (G ′) \ C such that u′v ′ ∈ B and uu′, v v ′ /∈ E(G ′). Since u′v ′ is 
in B , u′ and v ′ have degree exactly k, as previously we have only added good edges and u′, v ′ /∈ C . Delete u′v ′ from B , now 
u′ and v ′ have positive deficiencies. Add edges uu′ and v v ′ to B , by the choice of u′ and v ′ these edges are not in E(G ′), 
and also both these additions are good.

We claim that when the second rule is no longer applicable, the size of C is at most one, and df(G ′) is also at most one. 
Suppose it is not true, in this case there is always a proper choice of u, v ∈ C . Then there are no u′, v ′ ∈ V (G) \ C satisfying 
the conditions above. Then each edge u′v ′ ∈ B is of one of the following kinds:

1. u′, v ′ ∈ C , since |C | ≤ k, there are at most 
(k

2

)
such edges;

2. one of u′ , v ′ is in C and the other is not in C , there are at most k(k − 1) edges of this kind, since |C | ≤ k and degrees 
in C are less than k;

3. u′, v ′ /∈ C , and either uu′ ∈ E(G ′) or v v ′ ∈ E(G ′); there are at most k(k − 1) vertices adjacent to C , and each of them has 
at most k incident edges from B , so there are at most k2(k − 1) such edges.

Then the size of B is at most 
(k

2

) + k(k − 1) + k2(k − 1) < 2k3. However, df(G) = 2|B| + df(G ′), and df(G ′) ≤ |C | · k ≤ k2. So 
df(G) < 3k3 contradicting the statement.

Therefore, by the constructed sequence of good additions we reached the situation where |C | and df(G ′) are both at most 
one. If C is empty, we are done. If C consists of one vertex u, then its deficiency is one. Since df(G) = 2|B| + df(G ′), df(G)

is odd, and we have one more edge addition. Then we add to B an edge from u to any other vertex v such that uv /∈ E(G ′); 
this is always possible since degG ′ (u) < k, and V (G) > k because df(G) ≥ 3k3. �

The intuition to our FPT algorithm is as follows. When we can obtain a sufficiently large k-core by adding a number of 
edges b < 3k3, the algorithm from Proposition 19 suffices. Otherwise b ≥ 3k3 and by Theorem 20 we can focus on finding 
a vertex subset in G of size at least p minimizing the total deficiency of the induced subgraph. We show how to do that 
with a dynamic programming over a tree decomposition. First we introduce some preliminaries about treewidth and tree 
decompositions from [19]. A tree decomposition of a graph G is a pair T = (T , {Xt}t∈V (T )), where T is a tree whose every 
node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the following three conditions hold:

(T1)
⋃

t∈V (T ) Xt = V (G).
(T2) For every uv ∈ E(G), there exists a node t of T such that bag Xt contains both u and v .
(T3) For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt}, i.e., the set of nodes whose corresponding bags contain u, induces 

a connected subtree of T .

The width of tree decomposition T = (T , {Xt}t∈V (T )) equals maxt∈V (T ) |Xt | − 1, that is, the maximum size of a bag in T
minus 1. The treewidth of a graph G , denoted by tw(G), is the minimum possible width of a tree decomposition of G .

For simplicity, we will only consider so-called nice tree decompositions. A tree decomposition (T , {Xt}t∈V (T )) rooted at 
r ∈ T is nice if the following conditions are satisfied:

• Xr = ∅ and X� = ∅ for every leaf � of T . In other words, all the leaves as well as the root contain empty bags.
• Every non-leaf node of T is of one of the following three types:

– Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some vertex v /∈ Xt′ ; we say that v is 
introduced at t .

– Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w} for some vertex w ∈ Xt′ ; we say that w is 
forgotten at t .

– Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

As shown in [19], any tree decomposition can be turned into a nice one in polynomial time. For a node t in a nice tree de-
composition T = (T , {Xt}t∈V (T )) denote by Vt the union of all the bags present in the subtree of T rooted at t , including Xt .

Proposition 21 ([19]). Given a graph G of treewidth tw, a nice tree decomposition of an n-vertex graph G of width 4tw + 4 can be 
constructed in time 8tw · nO(1) .

Now we are ready to show our algorithm.
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Lemma 22. Given an n-vertex graph G of treewidth tw and integers k, p, the value

min{df(G [̂S]) : Ŝ ⊆ V (G), |̂S| ≥ p}
can be computed in time kO(tw) · nO(1) .

Proof. Consider a nice tree decomposition T = (T , {Xt}t∈V (T )) of G given by the algorithm in Proposition 21, width of T
is O(tw). For every node t , every S ⊂ Xt , every function f : S → {0, · · · , k}, and every number s ∈ {0, · · · , |Vt |} define the 
following value:

c[t, S, f , s] = min{df(G [̂S]) : Ŝ ∈ C[t, S, f , s]},
where

C[t, S, f , s] = {̂S ⊂ Vt : Ŝ ∩ Xt = S, |̂S| = s, and for every v ∈ S,dfG [̂S](v) = f (v)}.
Next, we show how the values of c[·, ·, ·, ·] are computed for all kinds of nice tree decomposition nodes.

Leaf node. If t is a leaf node, there is only one value c[t, ∅, f∅, 0] = 0, where f∅ denotes the empty function to {0, · · · , k}.
Introduce node. Let t be an introduce node, t′ be its only child and v be the vertex such that v /∈ Xt′ , Xt = Xt′ ∪ {v}. We 

claim that for any S , f , s from the definition of c[t, ·, ·, ·]

c[t, S, f , s] =

⎧⎪⎨⎪⎩
c(t′, S, f , s) if v /∈ S;
c(t′, S \ {v}, f |S\{v}, s − 1) + f (v) if v ∈ S, f (v) = dfG[S](v), s > 0;
∞ otherwise .

(9)

If v /∈ S , (9) clearly holds since the families of the sets Ŝ are the same in both parts of the equation. If v ∈ S , then for 
Ŝ ∈ C[t, S, f , s] to exist s must be greater than zero since v ∈ Ŝ . Also, f (v) must be equal to dfG[S](v) since there are no 
edges from v to Vt \ Xt by the definition of a nice tree decomposition, and thus dfG[S](v) = dfG [̂S](v). This shows that the 
third case of (9) holds, so only the second case remains.

When the conditions of the second case hold, we show that for each Ŝ in C[t, S, f , s] there is a corresponding Ŝ ′ in 
C(t′, S \ {v}, f |S\{v}, s − 1), this is a one-to-one correspondence, and df(G [̂S]) = df(G [̂S ′]) + dfG[S](v). Namely, Ŝ ′ = Ŝ \ {v}, 
and this concludes the proof of (9).

Forget node. Let t be a forget node, t′ be its only child and v be the vertex such that v /∈ Xt , Xt′ = Xt ∪ {v}. We claim 
that for any S , f , s from the definition of c[t, ·, ·, ·]

c[t, S, f , s] = min{c(t′, S, f , s)} ∪ {c(t′, S ∪ {v}, f ′, s) : f ′|S = f }. (10)

First, consider any Ŝ ∈ C[t, S, f , s]. If v /∈ Ŝ , then Ŝ is also in C(t′, S, f , s). If v ∈ Ŝ , then Ŝ is in C[t′, S ∪ {v}, f ′, s], where 
f ′|S = f and f ′(v) = dfG [̂S](v).

In the other direction, if Ŝ ∈ C[t′, S, f , s] or Ŝ ∈ C[t′, S ∪ {v}, f ′, s] where f ′|S = f , then Ŝ ∈ C[t, S, f , s].
Join node. Let t be a join node, t1 and t2 be its children, such that Xt = Xt1 = Xt2 . We claim that for any S , f , s from 

the definition of c[t, ·, ·, ·]

c[t, S, f , s] = min
s1+s2=s+|S|, f1, f2

(
c(t1, S, f1, s1) + c(t2, S, f2, s2) +

∑
v∈S

( f (v) − f1(v) − f2(v))

)
, (11)

where f1 and f2 are such that for every v ∈ S , f (v) = max(0, f1(v) + f2(v) − k − degG[S](v)). To show the correctness of 
(11), first we show that the right side of (11) is at most the left side. Consider an Ŝ ∈ C[t, S, f , s] on which the minimum 
is attained, i.e., c[t, S, f , s] = df(G [̂S]). Denote Ŝ1 = Ŝ ∩ Vt1 , Ŝ2 = Ŝ ∩ Vt2 , s1 = |̂S1|, s2 = |̂S2|. Since Ŝ1 ∩ Ŝ2 = Ŝ ∩ Vt1 ∩
Vt2 = Ŝ ∩ Xt = S , s1 + s2 = s + |S| holds. Define also f1 and f2 as f1(v) = dfG [̂S1](v), f2(v) = dfG [̂S2](v). By definition, 
Ŝ1 ∈ C[t1, S, f1, s1] and Ŝ2 ∈ C[t2, S, f2, s2]. Since for every v ∈ S

dfG [̂S](v) = max(0,k − degG [̂S](v)) =
max(0,k − degG [̂S1](v) − degG [̂S2](v) + degG[S](v)) =

max(0,dfG [̂S1](v) + dfG [̂S2](v) − k − degG[S](v)) =
max(0, f1(v) + f2(v) − k − degG[S](v)), (12)

and f (v) = dfG [̂S](v), the condition on f , f1 and f2 holds. Thus, the right side of (11) is at most
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df(G [̂S1]) + df(G [̂S2]) +
∑
v∈S

( f (v) − f1(v) − f2(v)) =

df(G [̂S1]) −
∑
v∈S

dfG [̂S1](v) + df(G [̂S2]) −
∑
v∈S

dfG [̂S2](v) +
∑
v∈S

dfG [̂S](v) =
∑

v∈ Ŝ1\S

dfG [̂S1](v) +
∑

v∈ Ŝ2\S

dfG [̂S2](v) +
∑
v∈S

dfG [̂S](v) =
∑
v∈ Ŝ

dfG [̂S](v) = df(G [̂S]), (13)

since (̂S1 \ S) � (̂S2 \ S) � S = Ŝ , and for every v ∈ Ŝ1 \ S , dfG [̂S1](v) = dfG [̂S](v) as v is adjacent only to vertices in Ŝ1, the 
analogous holds for every v ∈ Ŝ2 \ S . Since df(G [̂S]) = c[t, S, f , s], the first part of the correctness proof is done.

Second, we show that the left side of (11) is at most the right side of (11). Consider s1, s2, f1, f2 on which the minimum 
of the left side of (11) is attained, and consider also Ŝ1 ∈ C[t1, S, f1, s1] and Ŝ2 ∈ C[t2, S, f2, t2] such that df(G [̂S1]) =
c[t1, S, f1, s1] and df(G [̂S2]) = c[t2, S, f2, s2]. Let Ŝ = Ŝ1 ∪ Ŝ2, we claim that Ŝ ∈ C[t, S, f , s]. Since Xt = Xt1 = Xt2 and 
Ŝ1 ∩ Xt1 = Ŝ2 ∩ Xt2 = S , ̂S ∩ Xt is also S . Since ̂S1 ∩ Ŝ2 = S , |̂S| = |̂S1| + |̂S2| − |S| = s1 + s2 − |S| = s. The equation (12) holds 
with the new choice of Ŝ , Ŝ1, and Ŝ2; thus, dfG [̂S](v) = f (v) for every v ∈ S , and Ŝ ∈ C[t, S, f , s]. Finally, (13) also holds, 
and df(G [̂S]) is equal to the value of the right side of (11). Thus the correctness of (11) is fully proven.

We compute all values c[·, ·, ·, ·] by going through nodes of T in the tree order, starting from the leaves, and applying 
one of the above formulas, depending on the type of node t , for all possible values of S , f , s at this node. Finally, at the root 
node r for every number s ∈ {0, · · · , n} we have the value c[r, ∅, f∅, s], which is equal to min Ŝ⊂V (G),|̂S|=s df(G [̂S]). Finally, 
we return the value minp≤s≤n c[r, ∅, f∅, s].

For each of the O(kn) nodes of t , there are 2|Xt | variants of S , at most (k + 1)|Xt | variants of f , and n + 1 variants of s
in the definition of c[t, S, f , s]. So the total number of values computed is kO(tw) · nO(1) , and the total running time is also 
kO(tw) · nO(1) . �

With all pieces together, we are ready to prove the main algorithmic result of this section.

Theorem 23. Edge k-Core admits an FPT algorithm when parameterized by the combined parameter tw + k.

Proof. Consider the instance (G, b, k, p) of Edge k-Core. Assume p > k since the size of a k-core is always at least k + 1.
If b ≤ 3k3, we run the algorithm of Chitnis and Talmon given by Proposition 19 and return its result. Otherwise, we run 

the algorithm from Lemma 22 on the input (G, k, p), and obtain the value d such that there is a Ŝ∗ ⊂ V (G) of size at least 
p with df(G [̂S∗]) = d, and df(G [̂S]) ≥ d for every Ŝ ⊆ V (G) of size at least p.

Now, if d < 3k3, we report a yes-instance, since b ≥ 3k3, and G [̂S∗] can be trivially turned into a k-core. Namely, for each 
v ∈ Ŝ∗ , while degG [̂S∗] < k add an edge connecting v and some other vertex in Ŝ∗ arbitrarily. This is always possible since 
|̂S∗| > k, and the number of edges added is at most d.

If d ≥ 3k3, we compare b to � 1
2 d	. If b ≥ � 1

2 d	, we report a yes-instance, since G [̂S∗] can be turned into a k-core using 
� 1

2 df(G [̂S∗])	 edge additions by Lemma 20. If b < � 1
2 d	, we report a no-instance, since for every Ŝ ⊂ V (G) completing G [̂S]

to a k-core requires at least � 1
2 df(G [̂S])	 edge additions, and d ≤ df(G [̂S]) for every Ŝ of size at least p.

It remains to bound the running time. In the case b ≤ 3k3, the running time is (k + tw)O(k3+tw) ·nO(1) by Proposition 19. 
In the case b ≥ 3k3 the algorithm from Lemma 22 dominates the running time, which is kO(tw) · nO(1) . Thus, the whole 
algorithm is FPT parameterized by tw + k. �
6. Conclusion and open questions

In this work, we investigated the complexity of Edge k-Core on several sparse graph classes: forests, graphs with bounded 
vertex cover and graphs of bounded treewidth. There are, however, several natural questions that remain open. First, while 
we show an FPT algorithm when parameterized by treewidth plus k, we are not aware of any hardness result excluding an 
FPT algorithm parameterized by treewidth only. In fact, for any structural parameter “between” vertex cover and treewidth, 
e.g. feedback vertex set or treedepth, this question remains open. Second, while known NP-hardness reductions for Edge 
k-Core work even for constant values of k and the degeneracy of the graph, it would be interesting to know whether Edge 
k-Core admits an FPT algorithm when parameterized by k plus degeneracy plus some other parameter, e.g. the budget b. 
Third, we are not aware of a lower bound matching the double exponential running time of our vertex cover algorithm. It 
would be interesting to see whether there is a more efficient FPT algorithm in this parameterization, or a non-trivial fine-
grained hardness result. Finally, our work leaves wide open the complexity of Edge k-Core on dense graph classes. Is there 
an FPT algorithm for Edge k-Core parameterized by, say, cliquewidth or neighborhood diversity, possibly, together with 
another parameter like k or b? Based on our results, we can only project tractability for very special “dense” parameters. 
For example, FPT algorithm parameterized by the vertex deletion distance to a bounded number of disjoint cliques is likely 
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to follow along the same lines as our FPT by vertex cover algorithm, with additional variables capturing how many vertices 
from a particular neighborhood class of a particular clique are taken into the core.
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