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Abstract One of the primary mechanisms of loss of Earth's atmosphere is the persistent “cold”

(T £20eV)ion outflow that has been observed in the magnetospheric lobes over large volumes with
dimensions of order several Earth radii. As the main source of this cold ion outflow, the polar cap F region
ionosphere and conditions within it have a disproportionate influence on these magnetospheric regions.
Using 15 years of measurements of plasma density N, made by the Swarm spacecraft constellation and the
Challenging Mini Satellite Payload (CHAMP) spacecraft within the F region of the polar cap above 80°
Apex magnetic latitude, we report evidence of several types of seasonal asymmetries in polar cap N,.
Among these, the transition between “winter-like” and “summer-like” median polar cap N, occurs 1 week
prior to local spring equinox in the Northern Hemisphere (NH) and 1 week after local spring equinox in
the Southern Hemisphere (SH). Thus, the median SH polar cap N, lags the median NH polar cap N, by
approximately 2 weeks with respect to hemispherically local spring and fall equinox. From
interhemispheric comparison of statistical distributions of polar cap plasma density around each equinox
and solstice, we find that distributions in the SH are often flatter (i.e., less skewed and kurtotic) than those
in the NH. Perhaps of most significance to cold ion outflow, we find no evidence of an F region plasma
density counterpart to a previously reported hemispheric asymmetry whereby cold plasma density is
higher in the NH magnetospheric lobe than in the SH lobe.

Plain Language Summary The Earth's magnetic poles are not perfectly aligned with the
Earth's geographic poles, and the degree of misalignment is greater in the Southern Hemisphere.
Furthermore, as a result of the Earth's elliptical orbit around the Sun, summer and fall in the Northern
Hemisphere together are approximately 1 week longer than summer and fall in the Southern Hemisphere,
because the Earth is very slightly closer to the Sun around December solstice (summer in the Southern
Hemisphere). These seasonal asymmetries, together with the asymmetric displacement of the Earth's
magnetic poles relative to the geographic poles, suggest that the plasma density in the topside ionosphere's
geomagnetic polar regions may also be subject to seasonal and hemispheric asymmetries. The polar
regions are the primary site of loss of the Earth's atmosphere via so-called ion outflow processes that, over
geological time scales, are believed to lead to loss of the Earth's atmosphere. Using 15 years of plasma
density measurements made by four different satellites to statistically study the plasma density of each
hemisphere's geomagnetic polar cap ionosphere in the altitude range 350-520 km, we find that the polar
cap ionosphere at these altitudes exhibits a variety of seasonal and hemispheric asymmetries.

1. Introduction

A substantial fraction of the plasma in the Earth's magnetosphere is supplied by the ionosphere
(e.g., Chappell et al., 1987, 2000) through the outflow of ions from the high-latitude polar cap regions, where
terrestrial magnetic field lines are open and connected to solar wind magnetic field lines. Ion outflow is the
result of ionization of atmospheric gases and outward transport due to vertical forces and is considered to be
a primary means of loss of the Earth's atmosphere (e.g., André, 2015). Recent results suggest that low-energy
ions from the open polar cap area usually dominate the ion density and the outward flux in populating
large volumes of the magnetosphere. Furthermore, ionization (i.e., availability of free charges) rather than
transport is thought to be the limiting factor for ion outflow (André et al., 2015; Haaland et al., 2012).
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Ionization is primarily driven by solar illumination, although other processes such as cosmic rays
(e.g., Adams & Masley, 1965; Velinov, 1970) and particle precipitation also contribute (e.g., Rees, 1963, 1982).
Solar radiation at ultraviolet (UV) and extreme ultraviolet (EUV) wavelengths is the most efficient source
of ionization in terms of ionizing atmospheric atoms and molecules and producing ion-electron pairs
(e.g., Appleton, 1956; Brekke, 1997; Ivanov-Kholodnyy, 1962; Rees, 1989; Schunk & Nagy, 2009). Since the
ionosphere as a whole is quasi-neutral, both the electron number density and ion number density are often
simply referred to as the plasma density.

The resulting plasma density in the atmosphere is a balance between production (ionization) processes on
the one hand and losses by recombination and transport processes on the other hand (e.g., Khocholava, 1977;
Quinn & Nisbet, 1965; Rees, 1989; Rishbeth, 1997). Since production and loss processes do not necessarily
work on the same time scale, the plasma density at a given location can vary significantly over time. In the
terrestrial atmosphere the peak plasma density is typically located in the ionospheric F layers, around 200-
to 400-km geodetic altitude (e.g., Feldstein et al., 1975; Rishbeth, 1962). Since ionization is strongly driven
by solar illumination, plasma density exhibits solar cycle variations as well as strong seasonal and diurnal
variations (e.g., Appleton, 1939). Typical plasma densities are of order 10°-10° cm~3 in the sunlit ionosphere
but can be less by an order of magnitude or 2 in darkness.

In the polar regions the variation of plasma density with season is strongest, followed by diurnal variation
and variation with solar cycle (e.g., Feldstein et al., 1975). The seasonal variation can largely be understood
on the basis of solar illumination: Under summer conditions, the polar cap is fully illuminated. Conversely,
under winter conditions major portions of the polar cap are in complete darkness. The Sun-Earth distance
plays a lesser, though nonnegligible, role for variations in solar illumination (e.g., Dang et al., 2017). One
would therefore expect solar illumination, ionization, and plasma production around equinox to be very
similar in the Northern Hemisphere (NH) and Southern Hemisphere (SH).

In contrast to ionization and production of ionospheric plasma, which are primarily due to solar EUV radi-
ation, transport of ionospheric plasma is driven mostly by electromagnetic forces and is organized with
respect to the geomagnetic rather than the geographic poles. Horizontal transport is mainly driven by
large-scale magnetospheric convection setup by reconnection at the dayside magnetopause (e.g., Dungey,
1963) and thermospheric neutral winds (e.g., Forster et al., 2008).

Vertical transport—upflow and outflow—is due to a combination of various forces. For example, according
to the classical polar wind paradigm (e.g., Axford, 1968; Banks & Holzer, 1968; Dessler & Michel, 1966;
Nishida, 1966) light ion species in the ionosphere gain upward mobility via plasma and neutral pressure
gradients as well as ambipolar electric fields formed and sustained by requiring charge balance between
electrons and ions in the ionosphere. Due to the mirror force, any additional transverse acceleration at the
exobase (500-1,000 km) and above effectively acts as upward acceleration (e.g., Klumpar, 1979). At altitudes
of a few Earth radii, centrifugal forces (Cladis, 1986; Horwitz et al., 1994; Liu et al., 1994; Nilsson et al., 2008,
2010) become dominant.

Thus, the significant difference in magnetic topology of the NH and SH polar regions (e.g., Cnossen &
Forster, 2016; Laundal et al., 2017) is a likely factor in reported hemispheric asymmetries in ionospheric
outflow around equinox (e.g., Haaland et al., 2017; Li et al., 2020; Maes et al., 2016). This difference plays
a role, for example, in the seasonal variation of thermospheric and ionospheric winds (Aruliah, Farmer,
Fuller-Rowell, et al., 1996, Aruliah, Farmer, Rees, & Bradndstrém, 1996; Mikhailov & Schlegel, 2001). Pre-
cisely establishing the role of this topological difference in ion outflow is however complicated, since the
size and shape of the source regions (primarily the open polar cap and also the cusp and auroral zone) vary
greatly in response to solar wind driving (Li et al., 2012; Milan, 2009; Milan et al., 2008; Sotirelis et al., 1998).

In this study, we follow up on previous studies (André et al., 2015; Haaland et al., 2012, 2017) indicating or
otherwise suggesting that available ionospheric plasma rather than transport is the limiting factor for cold
ion outflow from the polar cap. Using a large database of ionospheric plasma density measurements made
by the Swarm and Challenging Mini Satellite Payload (CHAMP) satellites in both hemispheres, we seek to
determine under which seasons hemispheric asymmetries in cold plasma outflow might be expected on the
basis of available ionospheric plasma.
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This study is organized as follows. In section 2 we describe the Swarm and CHAMP combined polar cap
plasma density database. In section 3 we identify and describe a number of seasonal and hemispheric
asymmetries in polar cap plasma density.

In section 4 we discuss results from the preceding section and describe some implications for cold ion
outflow. In section 5 we summarize the results of this study and conclude.

2. Swarm and CHAMP Plasma Density Measurements

We use plasma density measurements made by two separate missions, the original three-satellite Swarm
constellation (Friis-Christensen et al., 2008) and the CHAMP satellite (Reigber et al., 2006).

The original three Swarm satellites complete approximately 15 orbits per day in a near-polar orbit, over the
6-year period extending from launch on 22 November 2013 to the present. The two lower satellites, Swarm
Alpha (Swarm A) and Swarm Charlie (Swarm C), cover the range of geodetic altitudes between 445 and
500 km (up to 527 km during commissioning phase); Swarm Bravo (Swarm B) covers the range of geode-
tic altitudes between 510 and 545 km (down to 500 km during commissioning phase). The Electric Field
Instrument (EFI) (Knudsen et al., 2017) aboard the three original Swarm satellites includes two dedicated
low-gain and high-gain Langmuir Probes (LPs). The two LPs measure plasma density and electron temper-
ature at 2 Hz. The most complete in-flight calibrations and validations of the Swarm LP plasma density and
electron temperature measurements, based on comparisons with plasma density measurements measured
by other satellites and ground-based instruments, have been performed by Lomidze et al. (2018).

The CHAMP satellite also completed approximately 15 orbits per day in a near-polar orbit over a ~10-year
period extending from 15 July 2000 to 19 September 2010. The nominal range of geodetic altitudes covered
by CHAMP extended over ~300-455 km. The Planar Langmuir Probe (PLP) instrument (Rother et al., 2005)
aboard CHAMP made measurements of plasma density at a 15-s cadence. In-flight calibration of the PLP
instrument has been performed by McNamara et al. (2007).

In this study we use all Swarm Level 1B LP plasma density measurements downsampled to 15-s cadence,
from the period between 10 December 2013 and 5 February 2020 (https://swarm-diss.eo.esa.int/). Down-
sampling is achieved by selecting every 30th measurement. We also use all CHAMP Level 2 PLP plasma den-
sity measurements from the period between 19 February 2002 and 21 December 2009 (https://dataservices.
gfz-potsdam.de/portal/?qg=CHAMP*) made at >350-km geodetic altitude. We impose this altitude restric-
tion on CHAMP density measurements to ensure that all plasma density measurements are made above
the altitude at which the F2 layer plasma density peak hmF2 is located (e.g., Bjoland et al., 2016; Burns
et al., 2012; Shim et al., 2011). To Swarm plasma density measurements, we apply the Lomidze et al. (2018)
in-flight calibrations (see Appendix A).

Since ion outflow and ionosphere-magnetosphere coupling are organized by the geomagnetic field, we are
here concerned with the geomagnetic polar cap, which we define (Table 1) as the region at and above 80°
magnetic latitude in the modified apex coordinate system at a reference geodetic altitude of 110 km (i.e.,
MA,;, coordinates) (Laundal & Richmond, 2016; Richmond, 1995). In the MA,,, coordinate system, which
is based on the International Geomagnetic Reference Field (IGRF) model (Thébault et al., 2015), all points
along a particular IGRF field line have the same magnetic latitude (MLat) and longitude (MLon). To find
the MLat and MLon of a satellite at a particular time, the location of the satellite is traced earthward, along
the relevant IGRF field line, to the 110-km reference altitude. We perform the conversion of geocentric
coordinates to MA,;, coordinates via the apexpy Python package (Emmert et al., 2010; van der Meeren
et al., 2018). Table 1 summarizes some properties of the polar caps in each coordinate system.

The total numbers of plasma density (IV,) measurements in the NH and SH geomagnetic polar caps are
respectively 2,410,423 and 1,045,654. There are two primary reasons that the statistical coverage of the
NH geomagnetic polar cap is greater. First, as a result of the greater displacement of the SH geomagnetic
pole relative to the geographic pole than the displacement in the NH, the Swarm and CHAMP satellites
pass less frequently through the SH geomagnetic polar cap. Second, the SH geomagnetic polar cap area is
approximately 9% smaller than the NH geomagnetic polar cap area (Table 1 and Figure S1 in supporting
information). The difference in geomagnetic polar cap area arises because the Earth's magnetic field is
stronger in the vicinity of the SH magnetic pole than in the vicinity of the NH magnetic pole (Laundal et al.,
2017). The measurement coverage is approximately the same in both hemispheres (2.64 and 2.68 million
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Table 1
Definitions and Properties of the Geomagnetic and Geocentric Polar Caps
Hemisphere Polar cap Area? (km?) Circumference? (km)

Geomagnetic (MA,;,) coordinates
North > 80° MLat® 3.98 x 10° 7.11x 103
South < —80° MLat 3.65 % 10° 6.76 X103
Geocentric coordinates

North > 80° Lat® 3.91 x 10° 6.98x103
South <—80° Lat 3.91x10° 6.98 x 103

aArea and perimeter at 0-km altitude. PMLat = Magnetic latitude in MA; ;o
coordinates (see text). “Lat = Latitude in geocentric coordinates.

measurements in the NH and SH geocentric polar caps, respectively) if one instead considers the polar caps
defined in a geocentric coordinate system.

In the remainder of the manuscript all references to N, and statistics refer only to measurements made in
the geomagnetic polar caps, unless specified otherwise.

We seek to investigate seasonal and hemispheric asymmetries via statistical comparison of plasma den-
sity measurements in the geomagnetic polar cap made by different satellites. Such an investigation is
complicated by a number of factors, including the following:

1. Differences in the altitudes of each satellite, which vary on time scales of days and years due to satel-
lite drag and operational maneuvers and which are systematically different in the two hemispheres due
to both the shape of each satellite’s orbit and the oblateness of the Earth (Text S2 and Figures S2 and
S3 of the supporting information). These differences correspond to sampling of different heights in the
ionosphere.

2. Variations in solar and geomagnetic activity, which lead to differences in ionospheric conditions.

We partially account for these factors via (i) application of an empirically derived scale height to N, mea-
surements that “maps” N, to a common geodetic altitude of 500 km and (ii) application of an empirically
derived correction factor that accounts for the variation of N, measurements with 10.7-cm wavelength solar
radio flux (otherwise known as the F10.7 index). The latter correction scales N, to a nominal solar activity
(normalized solar radio flux index) of (F10.7),, = 80, where (F 10.7),, isarolling average of the preceding 27
days of the F10.7 index. Throughout this manuscript, we use the notation N’ to refer to these final adjusted
densities. More details about the derivation of the relevant scaling factors are located in Appendix A and in
the supporting information. This database of adjusted geomagnetic polar cap density measurements (N7 )
is publicly available (Hatch et al., 2020).

3. Hemispheric and Seasonal N Variations

Figure 1a shows N in the NH (blue) and SH (red) geomagnetic polar caps as a function of day of year. The
solid blue and dashed red lines, respectively, indicate the median NH and SH N values within 10-day bins.

One of the apparent differences between the median N values in the NH and SH geomagnetic polar caps
is that N takes on more extreme values in the SH than in the NH. This difference may be related to the
“lonospheric annual asymmetry,” which has to do with NmF2, the ionospheric F2 layer peak plasma den-
sity, being about 30% greater globally around December solstice than around June solstice (Rishbeth &
Miiller-Wodarg, 2006). The ionospheric annual asymmetry and related phenomena are well documented
(e.g., Chartier etal., 2019; Danget al., 2017; Lei et al., 2016; Mendillo et al., 2005; Rishbeth & Miiller-Wodarg,
2006; Sai Gowtam & Tulasi Ram, 2017; Torr et al., 1980; Xiong et al., 2018); the asymmetry is the result of a
combination of effects related to solar irradiance, atmospheric chemistry, neutral winds, and the global geo-
magnetic field configuration. The precise role of the global geomagnetic field configuration, in particular,
apparently remains to be determined (Dang et al., 2017).
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Figure 1. Geomagnetic polar cap plasma density N statistics versus day of year in the Northern Hemisphere and Southern Hemisphere. Here N denotes
plasma density measurements that are scaled to a common geodetic altitude of 500 km and to a nominal solar activity of (F10.7),, = 80, as described in
Appendix A. (a) N; measurements and binned medians. The transparent “x” and “+” markers, respectively, indicate 50,000 randomly selected individual
measurements made in the NH and SH geomagnetic polar cap for each hemisphere. (Most readers will need to view the plot at full resolution or zoom in to see
the distinction between these symbols.) Median N; values within each 10-day bin are, respectively, indicated by the solid blue (north) and dashed red (south)
line. Error bars indicate the 95% confidence interval of the bin median, calculated as described in Text S3 of the supporting information. (b) MAD(N;) in the
NH (solid blue line) and SH (dashed red line) geomagnetic polar caps, in 10-day bins. In both panels the dotted black lines at DOY ~ 79.9 and DOY = 266.3,
respectively, indicate the average DOY on which March and September equinoxes occur during the years 2000-2020; the time and date of each equinox are
calculated as described in section 3. MAD=median absolute deviation.

Central tendency and variation of a statistical quantity are often indicated by the mean and standard devi-
ation, respectively. However, Ny distributions in each bin in Figure 1a are heavy-tailed, and the mean is
not a robust indicator of central tendency. In Figure 1a we therefore show median N statistics in each bin.
Likewise, in Figure 1b we show the median absolute deviation

MAD(N?) = median [N — median (N7")

instead of standard deviation to indicate the variation of N’ in each 10-day bin. Figure 1b shows MAD(N?)
in the NH and SH as solid blue and dashed red lines, respectively.

Two salient aspects of MAD(N;) curves in Figure 1b are (i) the SH MAD(N?) is typically greater than NH
MAD(N;) and (ii) MAD(N;) in the NH geomagnetic polar cap evinces two distinct peaks, before March
equinox and after September equinox, while MAD(N7) in the SH geomagnetic polar cap evinces one primary
peak after March equinox, a MAD(N?) “plateau” that extends from September to the end of December and
a global minimum near June solstice.

3.1. Asymmetries in Seasonal Variation

We now compare variations in N} as a function of season. We wish to (i) avoid the systematic bias that
would be introduced by performing a comparison based on day of year in the Gregorian calendar, which is
inherently asymmetric from year to year with respect to the day of year on which equinoxes and solstices
occur, and (ii) consistently account for variation in the length of the seasons themselves, which differ on
the order of days. To accomplish this, we scale the precise time period between each equinox and solstice
for each year such that the period between each equinox and solstice has a duration of 1, and the total
duration of all four seasons (i.e., 1 year) is 4. We thus define the “global season parameter” ¢ € [0, 4), with
March and September equinoxes, respectively, corresponding to ¢, = 0 and ¢, = 2. June and December
solstices, respectively, correspond to ¢; = 1 and ¢ = 3. The time stamps of all N} measurements are then
scaled to values between 0 and 4. The dates and times of occurrence of each equinox and solstice for all
relevant years between 2002 and 2020 are calculated to second precision via the skyfield Python package
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Figure 2. Statistics of Swarm and CHAMP height- and solar flux-adjusted geomagnetic polar cap plasma density N, as a function of global season parameter ¢,
(left panels; see section 3.1) and local season parameter ¢, (right panels) in the Northern Hemisphere (solid blue line) and Southern Hemisphere (dotted red
line). The tick marks in each panel precisely indicate the relevant equinox or solstice. Panels (a) and (d) (top row) show median N in each hemisphere. Each
error bar indicates the 95% confidence interval of the median within the corresponding bin, calculated as described in Text S3 of the supporting information.
Panels (b) and (e) (middle row) show median absolute deviation (MAD) of N;. Panels (c) and (f) (bottom row) show the distributions of N} in each hemisphere
for each season, with statistics taken from +15 days around the corresponding equinox or solstice. For each distribution, the thick dashed line indicates the
median and the two thin dashed lines indicate the first and third quartiles. To facilitate comparison of the transition from December solstice to March equinox
(panel c), and from local winter to local spring (panel f), the N distributions around March equinox and local spring equinox are repeated at far right in each
of these panels. The transparent histograms at the bottom of Figure 2a indicate the number of N values used to calculate the median statistic in each bin. The
average number of measurements in each bin is 120,000 in the NH and 52,500 in the SH; the dashed gray line indicates N = 54,000. The total number of SH
measurements is about 60% less than the total number of NH measurements (see section 2).

(Rhodes, 2019). We also define the “local season parameter”

_1 % ;NH;
%= { (¢ +2) mod4 ;SH W

to compare N for the same local season in each hemisphere. For example ¢, = 0, or local spring equinox,
corresponds to March equinox in the NH and September equinox in the SH.

Figure 2a displays median N values in the NH (solid blue line) and SH (dotted red line) geomagnetic polar
caps as a function of ¢ for bins of 0.2. At March equinox the median value of SH N is 7 + 1% greater than
the value of NH N7, while there is apparently no such asymmetry (0.4 + 1%) around September equinox.

Figure 2b displays MAD(N;) in each hemisphere as a function of ¢;. In addition to the general trends in
MAD(N;) described at the beginning of this section, here it is also apparent that the combined hemispheric
MAD(N?) at December solstice are greater than the combined hemispheric MAD(N;) around June solstice.
The globally greater variability of F region N around December solstice has been shown (Chartier et al.,
2019) to result from a combination of the ionospheric annual asymmetry and O* plasma lifetimes that are
longer during December solstice than during June solstice.

Figure 2c displays distributions of N in each hemisphere for March and September equinoxes and for
June and December solstice. These distributions represent all N measurements within +15 days around
the relevant equinox or solstice and indicate multiple aspects of polar cap N that are not represented by
either median or MAD statistics. We discuss these differences in terms of the two other common measures
of central tendency, the mean and mode, and in terms of standard deviation. Estimation of the mode of
N7, which is a continuous variable, is nontrivial. We estimate the mode via the procedure described by
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Table 2
Northern and Southern Hemisphere N Statistics During Each Equinox and Solstice
Season Mode Median Mean Std. dev Skew Kurtosis
Mar NH 4.95 5.86 6.35 3.10 0.987 1.74
Mar SH 3.59 6.43 7.37 5.10 1.11 1.71
Jun NH 6.70 7.02 7.13 2.03 0.327 0.301
Jun SH 0.31 1.49 2.23 2.26 2.00 5.77
Sep NH 4.66 5.10 5.42 2.40 0.888 1.55
Sep SH 1.49 5.06 5.80 4.16 1.24 4.05
Dec NH 0.83 1.69 2.20 1.89 2.35 9.99
Dec SH 6.26 7.85 8.63 4.29 1.24 2.74
Spring NH 4.95 5.86 6.35 3.10 0.987 1.74
Spring SH 1.49 5.06 5.80 4.16 1.24 4.05
Summer NH 6.70 7.02 7.13 2.03 0.327 0.301
Summer SH 6.26 7.85 8.63 4.29 1.24 2.74
Fall NH 4.66 5.10 5.42 2.40 0.888 1.55
Fall SH 3.59 6.43 7.37 5.10 1.11 1.71
Winter NH 0.83 1.69 2.20 1.89 2.35 9.99
Winter SH 0.31 1.49 2.23 2.26 2.00 5.77

Note. Statistics in columns 2-5 are given in 10* cm~3. Statistics in columns 6-7 are unitless.

Bickel and Frithwirth (2006); this methodology yields mode estimates that are very similar (typically differ-
ing by less than 0.1%) to mode estimates obtained by identifying the peak of the N distributions that are
shown in Figure 2c.

Table 2 shows that the SH N’ distribution mode is greater than the NH N distribution mode only during
December solstice, which is local summer in the SH. On the other hand the SH N} mean is greater than the
NH N’ mean for all seasons except June solstice, and the SH N standard deviation is always greater than the
NH N; standard deviation. The NH and SH N7 distributions otherwise appear most similar during March
and September equinox (respectively, ¢, = 0 and ¢; = 2) and most disparate during June and December
solstice (respectively, ¢, = 1 and ¢, = 3), as expected. We further discuss the relevance of these differences
to cold ion outflow in section 4.

Figure 2d displays median N} values in the NH (solid blue line) and SH (dotted red line) geomagnetic polar
caps as a function of ¢,. From this figure it is immediately apparent that (i) the range of median SH N;
values in the SH is overall larger than the range of median NH N values, which is also visible in Figure 1a,
and (ii) variation in median SH N lags behind median NH N around local spring and fall equinoxes by
several days. We quantify this lag in the following subsection. These statistics also suggest that the annual
maximum in median NH N occurs before local summer solstice, while the annual maximum in median
SH N occurs at or perhaps slightly before local summer solstice. A secondary peak in median N between
local summer solstice and local fall equinox is also apparent in both hemispheres.

Figure 2e displays MAD(N;) in each hemisphere as a function of ¢;. The most immediate observation is
that SH MAD(N?) (dotted red line) are almost always greater than NH MAD(N;) (solid blue line), except
for the period between local winter and local spring where the MAD(N;') values in each hemisphere are
similar. Beyond this basic difference, in both hemispheres MAD(N) peaks after local fall, reaches a global
minimum near local winter, and either peaks (in the NH) or plateaus (in the SH) near local spring.

Figure 2f shows N distributions in each hemisphere organized by local season. Table 2 indicates that the SH
N distribution mode is always less than the NH N distribution mode, and the SH N standard deviation is
always greater than the NH N standard deviation. On the other hand the SH N mean is less than the NH
N} mean only during local spring solstice. The NH and SH N distributions otherwise appear most similar
during local winter solstice (¢; = 3).
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Figure 3. Median N; statistics in 15-day bins relative to the number of days since equinox (Figures 3a-3d). (a) Median NH N7 relative to March equinox (thin
blue line) and September equinox (thick blue line). (b) Median SH N relative to March equinox (thin dotted red line) and September equinox (thick dotted red
line). (c) Median NH N7 (solid blue line) and SH N; (dotted red line) relative to local spring equinox. (d) Median NH N7 (solid blue line) and SH N; (dotted red
line) relative to local fall equinox. The 95% confidence intervals of the medians in Figures 3a-3d are calculated as described in Text S3 of the supporting

information.

3.2. Equinoctial Asymmetries

We now consider the evolution of the median N} in each hemisphere around equinox. Figure 3a shows
median NH N values relative to March equinox (thin blue line) and September equinox (thick blue line)
in 15-day bins. Crossover occurs at —7.2 days relative to equinox. Figure 3b shows median SH N values
relative to March equinox (thin red dotted line) and September equinox (thick dotted red line). Crossover
occurs at +9.1 days relative to equinox. Figure 3¢ shows NH and SH median N} values relative to March and
September equinox, respectively, and Figure 3d shows NH and SH median N values relative to September
and March equinox, respectively. That is, Figures 3c and 3d show median N values in each hemisphere
relative to local spring and fall, respectively.

Figure 3c shows that the local spring crossover between median NH N (solid blue line) and median SH N
(dotted red line) occurs at +18 days relative to equinox. Figure 3d shows that the local fall crossover between
median NH N7 (solid blue line) and median SH N (dotted red line) occurs at +58 days relative to equinox.
However, it should be noted that these two lines also nearly cross at approximately 430 days. To calculate

Table 3
Equinoctial Asymmetries in Median Adjusted Geomagnetic Polar Cap Plasma Density Ny
Identified in This Study

Asymmetry Fig At (all sat.) At (individ. sat.)®
days days
NH/SH Mar crossover delay la 4.0 [2.3, 0.4, 10.0, 6.0]
NH/SH Sep crossover? la 0.4 [1.0, —0.4, 0.4, —2.3]
NH spring/fall crossing 3a -7.2 [-9.7, -7.6, —6.0, —7.3]
SH spring/fall crossing 3b 9.1 [8.3, 6.5, 14.2, 8.4]
NH/SH spring crossing 3c 18.0 [19.1,16.7,19.3,17.4]
NH/SH fall crossing 3d 57.8¢ [26.2, 57.8, 60.0, 58.7]

3CHAMP, Swarm A, Swarm B, and Swarm C. PEvidence for this asymmetry is weak,
as At is small and exhibits spread around zero. ©As indicated in section 3.2, median
N; in the NH and SH are within a few percent of each other over days 30 to 60 after
equinox.
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the crossover point in each panel, we interpolate between each 15-day median with a resolution of 0.1 days
and determine the relative day of year for which the two lines shown in each panel are nearest each other.

4. Discussion

Results in the preceding section indicate the existence of several seasonal and hemispheric asymmetries
in the plasma density of the geomagnetic polar caps. Table 3 summarizes the equinoctial asymmetries
identified from Figures 1-3 on the basis of the combined database of Swarm and CHAMP measurements.

A central purpose of this study is to determine whether the hemispheric asymmetry in magnetospheric lobe
cold plasma density reported by Haaland et al. (2017) could be explained on the basis of plasma densities
in the ionospheric polar caps. In specific, they found that cold plasma densities in the NH lobe were overall
greater than the cold plasma densities in the SH lobe around September equinox and speculated whether
this asymmetry was due to differences in outflow and plasma densities between NH and SH. No such corre-
sponding asymmetry in median geomagnetic polar cap N; at September equinox is apparent in Figures 1a
and 2a. And while there are clear differences between the distributions of N} in each hemisphere at Septem-
ber equinox (¢, = 2 in Figure 2c), as we discuss in section 3.1, we find no evidence suggesting that NH N
is systematically greater than SH N around September equinox.

In summary, on the basis of the Swarm and CHAMP N; distributions that we have presented, the hemi-
spheric asymmetry in Cluster-observed cold plasma densities in the magnetospheric lobes (Haaland et al.,
2017) has no clear correspondence with plasma densities in the geomagnetic polar caps. We believe that this
is the most significant result of this study.

Among the possible causes of the hemispheric asymmetry in lobe cold plasma density are hemispherically
asymmetric vertical transport, flux tube volume, or conductivities in the geomagnetic polar caps. Li et al.
(2020) have shown, for instance, that the strength of the Earth's magnetic field is anticorrelated with iono-
spheric outflow. The cause of this apparent discrepancy between Swarm, CHAMP, and Cluster observations
will be the subject of future work.

Another significant result of analysis in section 3.2 is displayed in Figure 3. In Figure 3a the crossover point
of the two NH (solid blue) lines occurs approximately 7 days before equinox, whereas in Figure 3b the
crossover point of the two SH (dotted red) lines occurs approximately 9.1 days after equinox. Thus, the days
on which the local hemisphere geomagnetic polar cap density N crossover near local equinox occurs are
hemispherically asymmetric. This asymmetry is also present when the polar caps are defined in geocentric
coordinates (not shown) and so is not the result of a particular choice of coordinate system.

Comparison of median N} curves from each geomagnetic polar cap around local spring (Figure 3c) and
around local fall (Figure 3d) shows that the crossover points in both hemispheres occur more than 2 weeks
after equinox. This suggests the existence of a seasonal “phase offset” between the two hemispheres in
median N around local spring and fall equinoxes, whereby median N} in the SH geomagnetic polar cap lags
median N} in the NH geomagnetic polar cap by at least 2 weeks. The lag around local spring equinox is even
more pronounced, 6 weeks or more, when the polar caps are defined in geocentric coordinates (not shown).

Thus, the relative lag between SH and NH polar cap N around local spring equinox is not the result of
choosing a particular definition of the polar caps (i.e., geomagnetic versus geocentric; see Table 3). On the
other hand there is apparently no lag between SH and NH geocentric polar cap median N’ around local
fall equinox, which suggests that the relative lag exhibited by median N; in the geomagnetic polar caps is
related to the choice of coordinate system (i.e., geomagnetic instead of geocentric polar caps).

The different lags imply that there are at least two contributing factors to the delay, which likely operate
somewhat differently in the two sets of polar caps during local spring and local fall. Here it is worth noting
that the existence of a relative lag in geomagnetic polar cap N around local fall equinox may be related to
reported hemispheric asymmetry in ion outflow processes and ionosphere-magnetosphere coupling that is
organized by the geomagnetic field (André et al., 2015; Haaland et al., 2012, 2017).

To test the robustness of the asymmetries identified in Figures 1-3 and Table 1, we have also performed
the analysis separately for each of the four satellites used in this study (not shown). The values obtained
from each of these separate analyses are shown in the rightmost column of Table 3. All of the asymmetries
we have just discussed also appear in the analyses based on measurements from individual satellites. More
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specifically with the exception of the weak evidence for a NH/SH crossover delay at September equinox,
the other delays are consistent between all four spacecraft albeit with slight differences in the estimated
At values.

We believe that these separate analyses are important indicators of the robustness of each asymmetry,
since the Swarm and CHAMP satellites monitor polar cap plasma density at effectively three different alti-
tude ranges over two different portions of a solar cycle, with two different and independent types of LP
instruments and three different orbits.

5. Summary

Using 15 years of plasma density measurements made by the original three Swarm satellites and the
CHAMP satellite, we have identified equinoctial asymmetries in F region ionospheric plasma density in the
geomagnetic polar caps. In particular:

1. Haaland et al. (2017) have reported overall lower cold plasma densities in the SH magnetospheric lobe
relative to the NH magnetospheric lobe around September equinox; they conjecture that the difference
may be related to available ionospheric plasma in the polar cap. We find no evidence supporting this
conjecture.

2. We present evidence that SH polar cap plasma density lags behind NH polar cap plasma density by at
least 2 weeks around March and September equinox.

3. For every season the SH distribution of F region polar cap plasma density is spread over a wider range of
values than the NH distribution. The mode of the SH distribution is also generally lower than the mode
of the NH distribution.

Appendix A: Correction and Adjustment of Ne

Here we provide some additional details on the procedure for obtaining the final height- and solar
flux-adjusted density measurements that are denoted N throughout the manuscript. A detailed descrip-
tion of this procedure and relevant figures is located in Text S2 and Figures S2 and S3 of the supporting
information.

After applying the Lomidze et al. (2018) in-flight calibrations to Swarm plasma density measurements, we
additionally account for differences in altitude and solar activity via (i) application of an empirically derived
scale height to N, measurements that “maps” N, to a common geodetic altitude of 500 km and (ii) appli-
cation of an empirically derived correction factor that accounts for the variation of N, measurements with
10.7-cm solar radio flux (otherwise known as the F10.7 index).

As pointed out in section 2 the CHAMP satellite and the three Swarm satellites cover different altitude ranges
and thus different portions of the F region. The altitude range covered by the CHAMP satellite (315-455
km) is the lowest of all four satellites, while the altitude range covered by Swarm B (500-545 km) is mostly
above those of the other satellites.

From 380 conjunctions between Swarm B and either Swarm A or Swarm C for which Swarm LP data are
currently available (December 2013 through February 2020), we derive the Vertical Scale Height VSH =
dh/(dInN,) (e.g., Hu et al., 2019). We use “robust regression” (e.g., Holland & Welsch, 1977; Huber, 1973)
to estimate VSH from the ratio of plasma density measurements during the 380 identified conjunctions
(Figure S2c in supporting information). From this regression we obtain VSH values of 205 km on the dayside
(6 <MLT < 18) and 167 km on the nightside (MLT < 6 and MLT > 18). These scale heights are within the
range of typical estimates at geodetic altitudes of 350-500 km (e.g., Figure 2 in Hu et al., 2019 and Figure 1b
in Stankov & Jakowski, 2006).

To each N, measurement, we then apply a scaling factor

N,

e,

n, = Neexp |(h—hy) /VSH], (A1)

where h is the altitude at which the measurement is made. We arbitrarily select a reference geodetic altitude
hy, = 500 km. This scaling decreases the value of N, for measurements made below h,, and increases the
value of N, for measurements made above h,,.
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In addition to variation with altitude polar cap N, also varies approximately linearly with (F 10.7),,, an
average of the F10.7 index during the preceding 27 days. We use (F 10.7),,, as a proxy for solar EUV intensity.
Another common choice for averaging the F10.7 index is a centered 81-day window (e.g., Liu & Chen, 2009;
Schunk & Nagy, 2009). We have elected to use (F 10.7),; instead, since we find that the RMS error between
this quantity and N, , is slightly (~5%) lower than the RMS error between an 81-day centered average of
the F10.7 index and N, .

We use robust regression to fit N, , and (F 10.7),, values with a model of the form

N,

e.

hy = A(F10.7)5, = B=N (a(F10.7),, - 1) . (A2)

The resulting best fit model parameters are a = 0.02564 and N = 46,780 cm™3. We apply the portion of the
model in Equation A2 that is dependent on (F 10.7),,, namely, the parameter a, to each N, , value to finally
obtain the height- and solar flux-adjusted density

N* 80a -1

=N, —>4—-2 A3
e~ e g(F10.7),, — 1 (A3)

The numerator in Equation A3 scales the final adjusted density N, to a nominal solar flux level of (F10.7),, =
80. (Final adjusted densities are shown in Figure S3b of the supporting information.)

Data Availability Statement

The Level 2 CHAMP PLP data set and Level 1B Swarm LP data set are publicly accessible via https://
dataservices.gfz-potsdam.de/portal/2q=CHAMP* and https://swarm-diss.eo.esa.int/, respectively. The
F10.7 index is available via the NASA OMNI database (https://omniweb.gsfc.nasa.gov/form/dx1.html). The
database of adjusted geomagnetic polar cap density measurements, denoted N, in the manuscript, is also
publicly available (Hatch et al., 2020) (https://doi.org/10.5281/zenodo.3813145).
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