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Abstract Plasma convection in the coupled inner magnetosphere-ionosphere is influenced by different
factors such as neutral winds, penetration electric fields, and polarization electric fields. Several crucial
insights about the dynamics in the region have been derived by interpreting observations in conjunction
with numerical simulations, and recent expansion in ground- and space-based measurements in the region
along with improvements in theoretical modeling has fueled renewed interest in the subject. In this paper
we present a comprehensive review of the literature with an emphasis on studies since 2012 relevant to the
National Science Foundation Geospace Environment Modeling program. We cover four specific areas: (1) the
subauroral polarization stream, (2) penetration electric fields, (3) the disturbance dynamo, and (4) quiet time
subauroral convection. We summarize new observations and resulting insights relevant to each of these
topics and discuss various outstanding issues and unanswered questions.

1. Introduction

Determining the dynamics of the coupled magnetosphere-ionosphere region has been an active topic of
research for several decades. The vast majority of studies have used data acquired at high latitudes (e.g., Heelis
et al., 1982; Kim et al., 2013; Prikryl et al., 2013; Ruohoniemi & Baker, 1998) and at equatorial latitudes (e.g.,
Fejer & Scherliess, 1995; Fejer et al., 2007; Kelley et al., 1979). Efforts directed toward understanding plasma
convection at midlatitudes have been limited, partly due to the lack of infrastructure in this region. Several fac-
tors such as the neutral winds (Blanc & Richmond, 1980; Rishbeth, 1971), polarization electric fields (Anderson
et al., 1993; Galperin et al., 1974; Spiro et al., 1979), and penetration electric fields (PEFs; Blanc et al., 1977; Jaggi
& Wolf, 1973) are expected to influence plasma flow at midlatitudes. During geomagnetically quiet conditions,
it has commonly been assumed that neutral winds drive subauroral F region convection (Richmond et al.,
1976; Rishbeth, 1971). This implied convection should be in the same direction as the neutral atmosphere,
that is, eastward in the premidnight sector and westward in the postmidnight sector. During geomagnetic
disturbances, strong westward directed flows driven by polarization electric fields have been reported in
the subauroral region (Foster & Vo, 2002; Galperin et al., 1974; Spiro et al., 1979). In this paper, we review
those studies that have examined inner magnetosphere-ionosphere convection under different geomagnetic
conditions, with an emphasis on the studies related to the Storm-Time Inner Magnetosphere-Ionosphere Con-
vection (SIMIC) focus group of the National Science Foundation (NSF) Geospace Environment Modeling (GEM)
program (2012–2017).

Early studies used measurements from satellites (Heelis & Coley, 1992) and incoherent scatter radars (ISRs)
(Buonsanto et al., 1993; Richmond et al., 1980) to derive average patterns of midlatitude ionospheric plasma
drifts. Contrary to expectations, Heelis and Coley (1992) reported observations of westward flow at ∼ 55∘

magnetic latitude, throughout the nightside. These reports were further confirmed by Richmond et al. (1980)
and Wand and Evans (1981) using electric field measurements from the ISRs. Finally, Buonsanto et al. (1993)
and Buonsanto and Witasse (1991) derived average convection patterns for three seasons using Millstone
Hill ISR measurements and found a predominantly westward flow in the nightside midlatitude region, with
a strong seasonal dependence. This inconsistent behavior suggests that neutral winds may not be the
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dominant drivers of midlatitude ion convection and perhaps other factors such as PEFs can be important
even during quiet geomagnetic conditions (Carpenter & Kirchhoff, 1975; Heelis & Coley, 1992; Wand & Evans,
1981). These early studies revealed the limitations in our understanding of quiet time subauroral convection
by demonstrating that neutral winds cannot completely explain the observed patterns.

Overshielding/undershielding electric fields are an additional factor reported to influence midlatitude con-
vection, especially during the early phases of geomagnetic storms (Blanc & Richmond, 1980; Huang et al.,
2006; Maruyama et al., 2005; Nishida, 1968). Under geomagnetically steady conditions, the inner magneto-
sphere is thought to be shielded from the cross-tail electric field by a dusk-dawn-directed shielding electric
field, generated due to charge separation associated with region-2 field-aligned currents (FACs; e.g., Jaggi &
Wolf, 1973; Kelley et al., 1979, 2003; Wolf et al., 2007). However, during periods of large and rapid fluctuations
of the interplanetary magnetic field (e.g., during the early phase of a geomagnetic storm) the shielding bal-
ance should be perturbed, resulting in either undershielding or overshielding of the inner magnetosphere
(Jaggi & Wolf, 1973; Maruyama et al., 2005; Maruyama & Nakamura, 2007; Sazykin, 2000). In short, when inter-
planetary magnetic field BZ suddenly turns southward (northward), the cross-tail electric field should increase
(decrease) rapidly whereas the shielding electric field takes time to readjust, resulting in undershielding (over-
shielding) of the inner magnetosphere. When the inner magnetosphere is undershielded convection electric
fields penetrate to the subauroral latitudes, and such electric fields are commonly referred to as PEFs and are
expected to have time scales ranging from a few minutes to a few hours (Huang et al., 2006; Wolf et al., 2007).
These shielding electric fields are typically thought to dominate during the early phases of a geomagnetic
storm (Maruyama et al., 2005).

A majority of studies examining midlatitude dynamics have focused on disturbed geomagnetic conditions
and reported observations of strong westward directed flows in the region equatorward of the auroral oval
(Anderson et al., 1993; Spiro et al., 1979; Yeh et al., 1991). A number of terms such as polarization jets (PJ)
(Galperin et al., 1974), subauroral ion drift (SAID; Anderson et al., 1993, 2001; Spiro et al., 1979), subauroral
electric fields (Karlsson et al., 1998), and substorm associated radar auroral surges (Freeman et al., 1992) have
been used to describe these flows. The term subauroral polarization stream (SAPS) was coined by Foster and
Burke (2002) to encompass all these separately reported phenomena that exhibit a certain degree of similarity.
SAPSs were defined as latitudinally broad regions (3∘ –5∘ wide) of enhanced westward flows observed in the
nightside subauroral region (e.g., Yeh et al., 1991), while SAID/polarization jets are latitudinally narrow (∼ 1∘)
channels of intense westward flows, often exceeding 1 km/s, which are embedded within the SAPS (Foster &
Burke, 2002). SAPSs are thought to occur during the main and recovery phases of geomagnetic storms when
a misalignment between the ion and electron Alfvén layers (Gussenhoven et al., 1987; Heinemann et al., 1989)
generates strong poleward-directed electric field (Anderson et al., 1993; Foster & Burke, 2002). In addition,
the enhanced electric fields lead to increased collision frequencies and ion recombination resulting in further
decrease in conductivity (Schunk et al., 1976) producing a feedback effect that allows the electric fields to
grow even more (Anderson et al., 1993, 2001). These early studies showed that SAPS was a prominent feature
of the storm time subauroral region and different from PEFs (Huang et al., 2006). Finally, Wang et al. (2008) and
Wang and Lühr (2011) used ion drift meter measurements from the Defense Meteorological Satellite Program
(DMSP) to examine the influence of subauroral flux tube integrated conductivity on SAPS and found that
lower conductivity is more favorable to their formation and for higher flux tube integrated conductivity SAPS
moved to poleward latitudes and their velocities were suppressed.

The disturbance dynamo is the storm time version of the neutral wind dynamo, generating predominantly
poleward electric field at the middle and low latitudes due to thermospheric circulation driven by auroral
heating and the Coriolis force (Blanc & Richmond, 1980; Gonzales et al., 1978). A number of studies on midlati-
tude convection reported the effects of the disturbance dynamo using different observations such as satellites
(Heelis & Coley, 1992) and incoherent scatter radars (Gonzales et al., 1978; Richmond et al., 1980). The distur-
bance dynamo develops over many hours and is typically thought to be dominant during the recovery phase
of a geomagnetic storm (Blanc & Richmond, 1980; Maruyama et al., 2005). Although PEFs and the disturbance
dynamo dominate at different phases of a geomagnetic storm, it has been a challenging task to determine
their relative contributions just based on observations because of the similarities in electric fields generated
by them (Fejer & Scherliess, 1995; Fejer et al., 2007). The importance of using first-principle models in con-
junction with observations to understand the complex dynamics of PEFs and the disturbance dynamo was
demonstrated by Maruyama et al. (2005) and Maruyama and Nakamura (2007).
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2. Inner Magnetosphere-Ionosphere Convection: Recent Developments
The overall objective of the NSF GEM program is to make accurate predictions of geospace by developing
physical understanding of the large-scale organization and dynamics from observations, theory, and increas-
ingly realistic models. The GEM program’s strategy to achieve this goal is by undertaking a series of focus
groups, and one such focus group was SIMIC, active between 2012 and 2017. The aim of the SIMIC focus
group was to utilize the augmentations to space- and ground-based infrastructure during the last solar cycle
in conjunction with numerical advances in first-principle models, to synthesize a new understanding of how
plasma distributions, convection electric fields, and current systems emerge and evolve in the inner magne-
tosphere and conjugate ionosphere, especially during geomagnetically disturbed periods. The new insights
that emerged from the SIMIC effort can be summarized as follows:

Quiet Time Convection: The expansion of Super Dual Auroral Radar Network (SuperDARN) to midlatitudes
combined with observations of electric fields in the inner magnetosphere by the Van Allen Probes have
provided new opportunities to study quiet time convection in the subauroral region. Previous reports of west-
ward flows (Heelis & Coley, 1992; Richmond et al., 1980) with a seasonal dependence (Buonsanto et al., 1993;
Buonsanto & Witasse, 1991) throughout the nightside subauroral ionosphere were confirmed by Maimaiti
et al. (2018) using over 2 years of midlatitude SuperDARN observations and by Lejosne and Mozer (2016)
using direct current electric field measurements from the Van Allen Probes. To explain this pattern, Maimaiti
et al. (2018) proposed that PEFs could be the dominant drivers in the premidnight sector, whereas the neu-
tral wind dynamo might prevail in the postmidnight sector. Another important factor reported to influence
subauroral convection is season (Buonsanto et al., 1993; Buonsanto & Witasse, 1991; Maimaiti et al., 2018).
Plasma drifts in the subauroral region were found to reach a few tens of meters per second in magnitude,
with the strongest and most spatially variable flows observed during winter (Maimaiti et al., 2018). In par-
ticular, Maimaiti et al. (2018) showed that near-midnight subauroral convection during winter was almost
twice as strong compared to other seasons. Furthermore, a significant latitudinal gradient in flow velocity was
observed during winter but was not as pronounced in other seasons. These recent studies suggest that quiet
time subauroral convection is driven by complex interplay between PEFs and neutral winds, with season and
local time determining the relative dominance of the drivers. To gain further insight, it is perhaps necessary to
use first-principle models in conjunction with observations to determine the dynamics of quiet time subauro-
ral convection. However, to date, modeling studies have focused almost exclusively on geomagnetic storms
(e.g., Raeder et al., 2016; Yu et al., 2015).

The SAPS: SAPS is considered a prominent feature of the disturbed time subauroral convection and has
been an important research theme in the recent literature (Clausen et al., 2012; Gallardo-Lacourt et al., 2017;
Kunduri et al., 2012, 2017; Lejosne & Mozer, 2017; Lyons et al., 2015; Mishin et al., 2017; Wang, Lühr, et al.,
2012). Using multisatellite observations, He et al. (2018) suggested that during severe geomagnetic storms
SAPS flows appear near the dusk sector first and then expand toward the midnight sector, and large-scale
structures associated with SAPS correspond closely with those of Region-2 FACs. Recent studies have revealed
new insights into SAPS driving mechanisms, challenging the traditional paradigm. Specifically, Mishin et al.
(2017) suggested current closure in the two-loop substorm current wedge (Kepko et al., 2015; Murphy et al.,
2013) may be driving SAPS instead of the previously accepted current generator and voltage generator mech-
anisms. Furthermore, observations of SAPS during geomagnetically quiet conditions (Kunduri et al., 2017;
Lejosne & Mozer, 2016) and with velocities as low as 150 m/s (Nagano et al., 2015) show that the electric fields
associated with such low-speed SAPS events are almost an order of magnitude lower than the theoretically
estimated threshold of 50 mV/m (Schunk et al., 1976) required to generate frictional heating, an important
mechanism that is thought to sustain and enhance SAPS. These studies demonstrate the limitations in our
current understanding of how SAPS is generated and the influences that modulate its dynamics. Lyons et al.
(2015) and Gallardo-Lacourt et al. (2017) showed strong correlations between SAPS enhancements (SAID) and
auroral streamers. They suggested that auroral streamers can intensify SAPS by enhancing the pressure gradi-
ents in ring current, and flow bursts in the plasma sheet can reach the inner magnetosphere and strengthen
SAPS flows. Another important modulating influence on SAPS is the neutral wind, as discussed by Zhang
et al. (2015). Contrary to the expected disturbance dynamo pattern, a poleward-directed meridional wind in
the premidnight sector was observed by Zhang et al. (2015) during the 2015 St. Patrick’s day storm. Using
observations from the Millstone Hill ISR and Fabry-Perot interferometer in conjunction with first-principle
models, Zhang et al. (2015) demonstrated that this anomalous behavior in wind was driven by SAPS. Specifi-
cally, SAPS drove a strong westward wind (∼300 m/s) observed by multiple FPIs , due to ion drag, and Coriolis
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force effects on this westward neutral wind was thought to drive a poleward wind (reaching ∼100 m/s). The
authors argued that such regional disturbances might counteract the influence of disturbance dynamo dur-
ing geomagnetic storms. Finally, the important role played by SAPS in determining the dynamics of inner
magnetosphere was further demonstrated by Lejosne et al. (2018). Previous studies showed that energetic
electrons penetrate to lower L shells (L < 4) compared to ions (e.g., Reeves et al., 2016), inconsistent with the
expected picture. In order to explain the differences between energetic electron and ion dynamics, Lejosne
et al. (2018) suggested that SAPS could transfer potential energy to energetic electrons, resulting in their
inward motion. Collectively, these new observations show that SAPS are more common features of the cou-
pled inner magnetosphere-ionosphere region than previously realized and can have a significant influence
on the dynamics of the inner magnetosphere.

The disturbance dynamo: During the later stages of a geomagnetic storm, the disturbance dynamo mecha-
nism is thought to have a significant influence on convection at middle and low latitudes (Blanc & Richmond,
1980; Heelis & Coley, 1992; Maruyama et al., 2005; Maruyama & Nakamura, 2007). Using more than 5 years
of data from the Hokkaido SuperDARN radar, Zou and Nishitani (2014) presented a comprehensive analysis
of midlatitude convection (40∘ –50∘ magnetic latitude) during disturbed geomagnetic conditions and found
that westward flows at midlatitudes intensified 5 hr after substorm onset, and the effect lasted for up to 20 hr,
maximizing near 12 hr after onset. This intensification of flows and the associated time periods were consis-
tent with the disturbance dynamo mechanism (Blanc & Richmond, 1980). Although there has been significant
progress in characterizing subauroral convection during the last solar cycle, a comprehensive understand-
ing of the complex interactions between the disturbance dynamo and PEFs and their relative influence on
subauroral convection is yet to be developed. Maruyama et al. (2005) and Maruyama and Nakamura (2007)
showed that PEFs dominate during the early stages of the storm, particularly on the dayside, whereas dur-
ing the recovery phase PEFs are comparable to the disturbance dynamo on the nightside. Moreover, PEFs are
known to change F region electron density, Pedersen conductivity, and ion drag and thereby modify the dis-
turbance dynamo (Maruyama et al., 2005), further complicating the situation. These studies demonstrate the
importance of comparing observations with first-principle models to separate the various driving influences
of inner magnetosphere-ionosphere convection.

Modeling efforts: A majority of the modeling efforts during the last solar cycle were focused on SAPS obser-
vations during geomagnetic storms, especially the St. Patrick’s day storms in 2013 and 2015 (Huba et al., 2017;
Krall et al., 2017; Raeder et al., 2016; Yu et al., 2015). For example, Yu et al. (2015) modeled SAPS on 17 March
2013 using ring current-atmosphere interactions model with self-consistent magnetic field and Block Adap-
tive Tree Solarwind-Roe-Upwind Scheme and captured a SAPS feature at subauroral latitudes, but the SAPS
velocities were underestimated, and its location was deeper than in actual observations. Raeder et al. (2016)
modeled the same event using Open Geospace General Circulation Model, Coupled Thermosphere Iono-
sphere Model, and Rice Convection Model and found better overall agreement with observations in terms
of SAPS location and velocity; they attributed the improvement (compared to Yu et al., 2015) to the contri-
bution of ionospheric feedback in the trough. The influence of SAPS on thermospheric winds was analyzed
using the Thermosphere Ionosphere Electrodynamics General Circulation Model by Wang, Talaat, et al. (2012)
who showed that SAPS drive westward thermospheric winds due to joule heating and ion drag, similar to the
observations presented in Zhang et al. (2015). Furthermore, Wang et al. (2018) used the global ionosphere
and thermosphere model to demonstrate that during SAPS intervals westward winds are enhanced at dusk
and the influence of SAPS on neutral winds varies with universal time. This dependence has been attributed
to the influence of solar illumination (which in turn varies with universal time) on ion drag. Collectively, these
studies highlight several important aspects of magnetosphere-ionosphere-thermosphere coupling in SAPS
and demonstrate the utility of first-principle models in understanding the physics behind different phenom-
ena. However, looking forward, it is necessary to model a wider range of geomagnetic conditions (rather than
limiting our focus to geomagnetic storms) to develop a more comprehensive picture of the full spectrum of
behavior in the coupled inner magnetosphere-ionosphere-thermosphere system.

3. Conclusions and Still-Open Questions
Over the past 10 years a significant increase in observations at midlatitudes and improvement in model-
ing techniques have advanced our understanding of the dynamics of inner magnetosphere convection.
New self-consistent models have demonstrated the importance of active ionospheric feedback in driv-
ing/enhancing SAPS, and the traditional paradigm of SAPS was challenged by new observations. Several
unresolved questions still remain:
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1. What are the drivers of SAPS under different geomagnetic conditions? The traditional paradigm proposes
SAPS to be a manifestation of an active magnetosphere-ionosphere feedback process whereby Region-2
FACs close across the midlatitude trough, eliciting chemical changes that further reduce ionospheric con-
ductivity while increasing the electric field in a manner that maintains current continuity. However, recent
studies (Kunduri et al., 2017, 2018; Lejosne & Mozer, 2017; Mishin et al., 2017) show SAPS can also occur dur-
ing periods of geomagnetic quiet, which cannot be explained by the traditional paradigm. To help improve
our understanding of SAPS, it is necessary to determine the extent to which the traditional paradigm is valid
under different geomagnetic conditions and to determine the role of different factors in driving SAPS flows
that were overlooked in previous studies. Specifically, data from different ground-based resources such as
Millstone Hill ISR, SuperDARN, and space-based resources such as DMSP, Swarm, and AMPERE should be col-
lectively analyzed to develop a statistical characterization of SAPS and determine the role of different factors
such as the region-2 FACs, substorm current wedge, and undershielding in driving and controlling them.

2. What is the role of PEFs and neutral winds in driving quiet time convection? Measurements provided by the
midlatitude SuperDARN radars and the Van Allen Probes show that the quiet time convection is predom-
inantly westward throughout the nightside subauroral ionosphere. To explain these observations, recent
studies (Maimaiti et al., 2018) suggested the possibility that PEFs could be the dominant drivers of convec-
tion in the dusk sector and neutral winds dominate in the dawn sector. However, the persistent penetration
of high-latitude electric field into the subauroral region has not been fully tested yet and needs to be val-
idated using first-principle models in combination with observations. It is therefore necessary to model
subauroral ionospheric convection during geomagnetically quiet conditions and to compare the results
with longitudinally extended observations from SuperDARN and Millstone Hill ISR, to determine the relative
contributions of PEFs and neutral winds in driving quiet time subauroral convection.

3. What is the role of ionospheric conductivity and local time effects in modulating the drivers of subauroral
convection such as PEFs, the neutral winds/disturbance dynamo, and the substorm current wedge? Two
major factors that influence ionospheric convection are conductivity and local time. However, only a few
studies (Sazykin, 2000; Senior & Blanc, 1984; Wang et al., 2008; Wang & Lühr, 2011) discuss their role in
modulating subauroral convection, and we do not yet have a comprehensive understanding. For example,
ionospheric feedback from the midlatitude trough (a region of low ionospheric conductivity) is thought to
play an important role in driving and sustaining SAPS flows. However, new observations of low-velocity SAPS
(Kunduri et al., 2017, 2018; Nagano et al., 2015) suggest that electric fields observed during these events are
almost an order of magnitude lower than the theoretically estimated threshold necessary to generate fric-
tional heating in the trough. Measurements from Millstone Hill ISR and GPS TEC can be used to determine
the magnitude of electric fields necessary to produce frictional heating in the trough. Longitudinally dis-
tributed electric field measurements could be combined with conductivity information from ISRs and DMSP
to develop a statistical characterization of the dependence of PEFs on conductivity and local time.

Measurements of multiple parameters such as ionospheric convection, FACs, conductivity, and neutral
winds are necessary to answer some of these questions. Different sources such as AMPERE, Super-
DARN (expansion across China), GPS TEC, Exploration of energization and Radiation in Geospace, Mill-
stone Hill ISR, Van Allen Probes, Swarm, and China Seismo-Electromagnetic Satellite have been providing
some of these measurements. Finally, the upcoming Ionospheric Connection Explorer and Global-scale
Observations of the Limb and Disk missions will provide exciting new opportunities to investigate
magnetosphere-ionosphere-thermosphere coupling and help determine the role of neutral winds in driving
quiet time subauroral convection.
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