Previous lecture 2010.11.02                                    to index                                Next lecture 2010.11.16     

Quantizing extended system,                                  04.11.2010
Creation+Annihilation Operators,
Density of states


Included below: Lagrange function and Hamilton function for a charged particle in el mag field
charge-in-elmag-derivation-jpg/ Here are preliminary pictures of pages ....


1-quantum-theory-of-extended-systems.png

Classical mechanics - Finding eigenmodes


2-eigenmodes-of-coupled-oscillating...png


3-eigenmodes-of-coupled-oscillating...png


Quantum mechanics - for each independent Harmonic Oscillator


5-QM-harm-oscillator.png


EXTRA BONUS:  Solve Schrödinger Equation as a 1. order equation - see below
6-extra-QM-harm-oscillator.png


7-Fields.png

Electro-magnetic fields;  ENERGY
a1-energy-inmagn-field.png

Quantization of El-Mag Field
a2-field-energy-QM.png


a3-field.png


Lagrange function and Hamilton function for a charged particle in el mag field

charge-in-elmag-derivation-jpg/ Here are preliminary pictures of pages ....
a4-doing_particle_in_elmag.png

Density of states   -  Continuum energies - Quasicontinuum derivations

b1-density-of-states.png


b1-f-density-of-states.png


b2-density-of-states.png


b2-n-factors-density-of-states.png



b3-sum_1_over_delta_sum_delta.png   (Both picture and text from PHYS208 Lecture)

The colored "expression" can be anything in the sum (integral) above

The argumet goes like this:
   sum    ->  sum  with the proper deltas which are compensated by the 1/Deltas outside the sum
 
Then  keep the 1/Deltas outside the sum 
 and concentrate on the Sum with deltas;   Taking this by itself, it will converge to an integral
                                                                    when you make Deltas infinitesimal
The Deltas outside are not to be made infinitesimal, SINCE they connect to the original sum

This is sometimes not so easy to keep in mind ....  ( the sum itself would go to infinity ... )

From this follows the dependence of Fermi energy on N/V - the density (see last time ... )

FINAL RESULT - Discussion
ee.png


ff-stimulated_emission.png

Previous lecture 2010.11.02                              to index                                       Next lecture 2010.11.16