to index             2016_11_09 Previous lecture             LECTURE NOTE   2016_11_10           2016_11_16 next lecture note

Additional discussions


     Some additional comments


     Creation and annihilation - the ladder operators  -  and the LADDER  - the equidistant spectrum of the oscillator

      sc_0300.png

       sc_0300.png


       The integration over directions -  the density of states   -  a large version of the picture

      sc_0600.png

       sc_0600.png


      Back to the  "two expansions" - and the simulation of the Golden rule - with stress on the NATURAL LINE WIDTH
      The "width" appears in the eigenstates of the "total hamiltonian"

      Here is the lecture sketch togethe with later added snapshots from the presentation

      sc_0700.png

       sc_0700.png


    Playing with matlab - the matrix, the diagonalization

      sc_0750.png

       sc_0750.png


     The eigenvectors  and eigenvalues

      sc_0800.png

       sc_0800.png


     The eigenvectors squared - the probability amplitudes - the natural width illustrated

      sc_0900.png

       sc_0900.png


     Older matlab version of the Golden rule program - the matlab diagonalization above - the dots
 
     On this picture the state has decayed ....

      zZP1_large_time.png

       zZP1_large_time.png


     Older matlab version of the Golden rule program - the matlab diagonalization above - the dots
 
     On this picture the state has NOT YET decayed ....

      zZP2_small_time.png

       zZP2_small_time.png


     Here we look at 12 states only - in the pictures and below in the numerical part of the program

      zZP3_small_N.png

       zZP3_small_N.png


  
     Here we look at 12 states only - in the numerical part of the program - the picture above is running


      zZP4-term_small_N.png

       zZP4-term_small_N.png


       Here is one calculation - with long time scale     the state has decayed .....
    

      zZP5_decayed.png

       zZP5_decayed.png


      But for large times we see so called recurrences - the original state comes back

      The "quasiperiod" of the recurrences can be found to depend on the energy (frequency) spacing
      For truly continuous case  - delta omega -> 0     i.e.  T -> infinity

      Recurrencies happen in real cavity experiments - when the eigenmode spectrum is similar to this model
      Sometimes this is called Collapse and  Revival
      See e.g. https://en.wikipedia.org/wiki/Quantum_revival

      zZP6_decayed_Reccurence.png

       zZP6_decayed_Reccurence.png



      Next:   various additional aspects


to index             2016_11_09 Previous lecture             LECTURE NOTE   2016_11_10           2016_11_16 next lecture note