to index              2012.11.06 PREVIOUS lecture note             LECTURE NOTE   2012.11.08           2012.11.13 next lecture note
   
   Extended Systems - Coupled vibrations

System of oscillators is a model. For any system in equillibrium - there is a minimum in potential energy,
i.e. no forces - forces would cause accelerarations and thus motion.
Minima in potential(s) - the expansions lead to V(xi, xj,... xn) -> k ( xi, - xj )2 + O( ( xi, - xj )3) + ....
Thus it mathematically looks as a system connected by springs, or (coupled) harnonic oscillators.

We shall see that many other systems (like electromagnetic fields ) can be brought to a similar model,
through the concept of eigenmodes.

Eigenmodes for a coupled system of vibrations - classical energy written in most general form.
      1_systems_coupled_oscillators_eigenmodes.png

       1_systems_coupled_oscillators_eigenmodes.png
Here above - how the string of balls connected by springs obeys this form.

Eigenmodes sketched
      2_systems_coupled_oscillators_eigenmodes.png

       2_systems_coupled_oscillators_eigenmodes.png

Quantum mechanics of an harmoic oscillator in algebraic formulation
Transform to dimension-less form - operator q (position) and p (momentum) to dimension-less Q and P
      3_Harmonic_Oscillator_Algebraic_Method.png

       3_Harmonic_Oscillator_Algebraic_Method.png
We have defined a transformation  Q, P ->   a+ ,  a   - called creation and annihilation operators - see bellow
ALSO         N = a+  a       -  will be called Number operator


      4_transforming _a.plus_a.png

       4_transforming _a.plus_a.png

Here we work with     N = a+  a       -  called Number operator  and we see why
Commutation of  N = a+  a      with  a+  and  a   ( starting with a )
      5_H_O_Algebraic_Method_1.order.diff.eq.png

       5_H_O_Algebraic_Method_1.order.diff.eq.png




to index              2012.11.06 PREVIOUS lecture note             LECTURE NOTE   2012.11.08           2012.11.13 next lecture note