to index              2015_10_08 Previous lecture note             LECTURE NOTE    2015_10_14           2015_10_15 Next lecture note


Many Electron Atoms - Part 3                 Hartree - Fock Equations from Variational Method


In this lecture we mainly derive the Hartree-Fock equations from a version of variational principle

END LAST LECTURE:    variational derivation of self-consistent field  based on the discussed "trick"
                                         Schrödinger eq. from variational method
                                         applied to the
                                         Expectation value of total H in the Slater determinant

                                         Such variational method gives  N   Schrödinger - like equations   for N  orbitals


This will be done using the method which we will re-visit below
We start by the sort of summary  -  apply the Lagrange multipliers for EACH of the extra normalization condition of
EACH of the orbitals  - see the inter-changed notation  -  by  | alpha >  we denote | psi_alpha > and vice versa

Now the variation of the product N-electron product function  - sum of all variations for each of the orbitals

But then the zeros must be true for each delta-alpha independently - we get N independent equations

      500_variation_Schroed_Slater_expectation.png

       500_variation_Schroed_Slater_expectation.png


We re-visit the Schrödinger variational method from the last time (see also next time)
Hartree-Fock continues two slides below

The following slide has been added from the "future" - additional discussion in the 2015_10_15 next lecture note

      1000_note_on_variation_Only_bra_vector.png

       1000_note_on_variation_Only_bra_vector.png


We re-visit the Schrödinger variational method from the last time (see also next time)

      503_variation_Schroed_Slater_expectation.png

       503_variation_Schroed_Slater_expectation.png


Hartree-Fock continue:
Two slides above: the variation of the product N-electron product function  - sum of all variations for each of the orbitals
But then the zeros must be true for each delta-alpha independently - we get N independent equations

In each equation there will be a "direct part term" and an "exchange part term"

Note the somewhat unclear notation: we make matrix elements "integrated over one variable only"
                                                           i.e. they remain FUNCTIONS of the other variable
                                                           (there should be a different "bra and ket" e.g. round    (   | V |   )   )
schematically
   G(x)  =   integral dy   psi( y)   V(x,y)  psi(y)     -->    G(x)  =  ( psi(y)  |  V(x,y)  | psi(y)  )   -->    G(x)  =  ( psi |  V(x,y)  | psi  ) 
                                                                                                  but we use for simplicity             G(x)  =  < psi |  V(x,y)  | psi > 

WIth this in mind, we see that the   exchange term behaves in a strange way
                                        while the direct term leeds to the Hartree result

      510_deriving_Hartree_and_Exchange.png

       510_deriving_Hartree_and_Exchange.png


Summary of the Hartree - Fock from the presentation

      513_deriving_Hartree-Fock.png

       513_deriving_Hartree-Fock.png


See below the explicit form (in terms of integrals)  of the Hartree - Fock equations

      515_deriving_Hartree-Fock.png

       515_deriving_Hartree-Fock.png


What is a local or non-local potential?
          We show how local operator emerges from an abstract operator
                completeness relation    
                                                              Sum  | i > < i |  = Unity         --->       Integral   | x > <  x  |  dx   =   Unity 

                                                    and     < x | x' >  =  delta ( x - x' )
 
      520_what_is_non-local-potential.png

       520_what_is_non-local-potential.png



Most operators in elementary systems are LOCAL
 
....     but there are some non-local operations       (  Green's function operator, for example; not in this course )


to index              2015_10_08 Previous lecture note             LECTURE NOTE    2015_10_14           2015_10_15 Next lecture note