to index              2015_10_07 Previous lecture note             LECTURE NOTE    2015_10_08           2015_10_14 Next lecture note


Many Electron Atoms - Part 2
In this lecture

1. The problem from the last lecture:  why are the energies not as for H-like atom, depending only on n (4s under 3d)

2. Evaluation of      <  Phi  |  H  |  Phi  >       for  Slater determinant, starting by product function

3. Towards the variational derivation of the selfconsistent field



Energy eigenvalues of the Nucleus + Cloud  potentiuals

For H-like atom, the energy eigenvalues are depending only on n;   In reality, the state 4s has lower energy than 3d.
Is it possible to explain this in simple terms? Is it systematic?

We model the "cloud" by a simple "screening"

       for large r, the electron only feels z=1
       for r close to 0  - the cloud effect is small, the full charge  Z   

the simple formula with the exponential reduction has this property

Further, the radial equations contain the contribution from the angular part (centrifugal barrier)

The figures show clearly that the L > 0 states are "pushed outside", especially the L=2 and larger
Therefore these will be less bound

Simply, the presence of the other electrons is responsible for the systematically reduced binding
of the d-states (and higer L)
   
      10010_Hartree_vs_Coulomb_Periodic_Tab.png

       10010_Hartree_vs_Coulomb_Periodic_Tab.png


    Calculated potential from the Herman - Skillman code  (numerical exercise )

    The above discussed behaviour is confirmed (the analytical model is a reasonable
    representation of the numerical results )

      10030_Hartree_potential_calculations.png

       10030_Hartree_potential_calculations.png


   Many - Electron Atom - Independent electrons - Slater determinant
   Evaluation of the total energy expectation value

        Determinant - mathematical object from linear algebra
        Has accidentally  "symmetry" properties needed for Pauli - principle obeying functions  ( exchange  "symmetry" )

      10100_SLater_Determinant_1.png

       10100_SLater_Determinant_1.png


Slater determinant  -  applying determinant definition to product wavefunctions
Exchange of "particles"  -  swapping of columns  - gives + or - 

      10110_SLater_Determinant_2.png

       10110_SLater_Determinant_2.png

   
    Total energy for He and Li   - Li is the first "many-electron"      N=3 
                              He      one pair          Li   3 pairs                      N (N-1) / 2     pairs

    Also, there are N  single - electron terms

    Sum over coordinates ( singl-electron terms)       and   sum over pairs  of coordinates  

      10120_Helium_and_Lithium_first.png

       10120_Helium_and_Lithium_first.png


     What shall we  see -  details are seen on the printed frames discussed below

      10150_More_than_3_particles.png

       10150_More_than_3_particles.png


     First we evaluate the expectation value for a simple PRODUCT function   ( Slater determinant has N! such products )

    1) the product function is normalized  
    2) it is easily seen that the following is true
            The sum over coordinates     -->    sum over the involved orbitals
            The sum over pairs of coordinates   -->  sum over pairs of orbitals

            first -   sum over coordinates     -->    sum over the orbitals

      A10_Energy_N_particles_Product_only.png

       A10_Energy_N_particles_Product_only.png


   second part  PRODUCT function
                  sum over pairs of coordinates   -->  sum over pairs of orbitals

      A20_Energy_N_particles_Product_result.png

       A20_Energy_N_particles_Product_result.png

  

     Slater determinant   -  First the normalization overlap    -  it evaluates to one
 
     out of the    N!  x  N!  terms, only   N!    "diagonal" terms   are non-zero
                                                                   i.e. only the same product from left and right

      A21_Normalization_Overlap.png

       A21_Normalization_Overlap.png


     For single-particle operators   - very similar to the overlap

     out of the    N!  x  N!  terms, only   N!    "diagonal" terms   are non-zero
                                                                   i.e. only the same product from left and right

      A23_Single_particle_operators.png

       A23_Single_particle_operators.png


     In the following we illustrate the complexity  - but finally we shall see that the evaluation
     is in fact quite simple  -  due to the similarity with the overlap

     First helium     -  NOTE THE APPEARANCE OF THE EXCHANGE TERM

      A25_Helium_energy.png

       A25_Helium_energy.png


    second  - Lithium case   -  three pair terms - at the bottom the Slater determinant

      A30_lithium.png

       A30_lithium.png

 
    We explore the pair operator situation here:  above the red terms have + sign, the blue have - sign
    The same notation below - but with rounded rectangle symbols
    ...   we take   the first red term against all 6 terms  -  and one of the pairs r 2-3 
          it is illustrated that of the 6 terms most are zero
         only a direct  term (the same on both sides  <bc|   |bc>  )   and  one exchanged term   2-3  to  3-2 i.e.  <bc|   |cb> )
         will be non-zero

      A40_Lithium_pair_terms.png

       A40_Lithium_pair_terms.png


     Final resolution  of the pair terms:
     It is analogous to the single particle operators  -  but  with addition of the EXCHANGE TERM  - see the lithium above

     One can simply say:    
                                         There are N! terms on each side of the operator
                                          Generally, all those which are not coupled must be the same on both sides (orthogonality)
                                                Thus only the SAME PAIR on both sides of the operator
                                                As seen in the Lithium example  -  the pair can be swapped
                                          Thus for each PRODUCT term     and for each coordinate pair   - there  is only
                                                                                                                  one direct term    and     one   exchange term
                                                          thus each product has a sum over all orbital pairs

                                          This situation appears  N!   terms       (identically, sum over all orbital pairs)


      A50_Slater_pair_terms.png

       A50_Slater_pair_terms.png


    The single particle operators discussed above
    Now the pair - operators  -  there is the exchange term  in addition

      A55_Slater_Total_Energy.png

       A55_Slater_Total_Energy.png


       The above is the final result for total energy - including the additional exchange term, as in He

       This will be the starting point for the variational approach
       Below:     Schr. Eq. from variational principle??
       The formal derivation is shown

      B010_Schroedinger_from_Variations.png

       B010_Schroedinger_from_Variations.png


       Reminder:  Variational methods in clssical mechanics  - Minimizing the Lagrange function

      B050_Functionals_Classical_Mechanics.png

       B050_Functionals_Classical_Mechanics.png



    NEXT  LECTURE:    variational derivation of self-consistent field  based on the two previous slides:
                                      Schrödinger eq. from variational method
                                      applied to the
                                      Expectation value of total H in the Slater determinant

                                      Such variational method gives  N   Schrödinger - like equations   for N  orbitals


to index              2015_10_07 Previous lecture note             LECTURE NOTE    2015_10_08           2015_10_14 Next lecture note