to index              2015_09_17 Previous lecture note             LECTURE NOTE    2015_10_07           2015_10_08 Next lecture note


Many Electron Atoms - Part 1

Starting by Few slides on Spin (missing in the He part)          - see last year

Many electron atoms start at a blue region below (link)             Some slides got lost - replaced by reconstructions
and last year versions   ../2014_09_23/index.html

 Extra on spin

 Pauli matrices  - (up to the hbar/2 ) represent the "spin angular momentum"
The same commutation relations as angular momentum
   ... see also the vector product of the operator L by itself   <----->    commutation relations

Magnetic moment
      and      angular momentum     /      spin magnetic moment

Addition of two spins                             Addition of two   angular momenta

      00010.png

       00010.png

Above :   Addition of two spins                             Addition of two   angular momentuma 

Under :     Singlet and triplet energies    - Effective  spin - spin interaction
      00020.png

       00020.png

 
Singlet and triplet energies    - Effective  spin - spin interaction
        since there is different energy for two values of "total spin"  -  S=0  and  S=1
       we can try to write the energy as function of the SCALAR PRODUCT
                                                                           - i.e the ANGLE between the 2 electron spins
      It thus becomes proportianal to the relative orientations of the spins
      ....  in this case   parallel   or   anti-parallel

      zz_effective_spin_spin_interaction.png

       zz_effective_spin_spin_interaction.png


The exchange interaction  -  leads to effective spin - spin alignment  (   minus sign  )

      zz_z_effective_spin_spin_ferromagnetic.png

       zz_z_effective_spin_spin_ferromagnetic.png

The above comments:  FERROMAGNETISM; Theories  - Heisenberg Ferromagnet model

Thus understanding exchange interaction /  effective spin spin   in He   ===>   Nature of Ferromagnetism

Also: spin - spin alignment - effective spin - spin  --   SEE HUND'S RULE in the foollowing part



Many Electron Atoms - Part 1

Filling of the shells, Build - up - "Aufbau - Prnciple
Hund's Rule - spins want to be parallel ==>  effective spin-spin interaction; cf. Helium triplet (orthohelium)

                              Historically, Hund's rules were very important.
                              For us they are just an example of the "effecive spin interaction - the Helium triplet states,
                              i.e. the Pauli principle - and thus antisymmetry of the space part

      00041_Hunds_Rule.png

       00041_Hunds_Rule.png

Filling of the shells, Build - up - "Aufbau - Prnciple  - Pauli
      00042_Aufbau__building-up.png

       00042_Aufbau__building-up.png


Number of states in n-shell
n l m quantum numbers                                                             n     l    m

      00043_Number_of_states_in_a_shell_N_.png

       00043_Number_of_states_in_a_shell_N_.png
                                             But the Noble gases are not Z=2, 10, 28, 60;  rather  Z= 2, 10, 18, 36, 54, ....


Experimental Ionization Potentials
    (  minus  times  the Binding energies )
Closed shells  -  PEAK    -  i.e. large DIP in Binding energy
                            WHY   -   see the sketch in the lower part

Closed shells are NOT   closed n - shells    --- except  for  Z=2  and Z=10  Next should be Z=28

      00046_Ionization_Energies_and_Binding_E.png

       00046_Ionization_Energies_and_Binding_E.png

above - schematic drawing:    Closed shells  -  PEAK    -  i.e. large DIP in Binding energy
                                                   WHY   -     - 1/2  Z2 / n2      -   ---        gets smaller and smaller with Z
                                                                                                                until n filled   - JUMP up to    Z2 / (n+1) 2         



Towards the SELF-CONSISTEN FIELD THEORY

Electron cloud   -   improve the Helium - effective charge by much more flexible "cloud of negative charge"

What is the interaction of an electron with such a "cloud" ?

interaction of an electron with a "cloud" of charge, the charge density, and the charge distribution from the probability
- trying to find which potential energy should be used to describe one independent electron in the atom
                                             (Hartree 1926- 1930s)

                                                                                                                           Here WE HAVE LOST ORIGINAL - THIS IS A RECONSTRUCTION
      00050_two_charges_dq1_dq2.png

       00050_two_charges_dq1_dq2.png


The density (rho) coming from the orbitals, but the orbitals are found
solving Schrödinger equation with the potential resulting from the density (rho)

      00060_Interaction_with_the_CLOUD.png

       00060_Interaction_with_the_CLOUD.png


Electron density from probability density  ... from wavefunctions ( orbitals) --> cloud
Orbitals from    the potential       < ----    with the CLOUD
                                                                                                    ITERATION  

      00070_Plug_the_W_into_Schroedinger_Eq.png

       00070_Plug_the_W_into_Schroedinger_Eq.png

 
                                                                                                   ITERATION
                                                                                                              SELF-CONSISTENT criterium

      00078_Iteration_selfconsistent_field.png

       00078_Iteration_selfconsistent_field.png

      xcf_0020_orbitals_in_cloud.png

       xcf_0020_orbitals_in_cloud.png

----   COPIED FROM 2014
      xcf_0025_ORBITALS.png

       xcf_0025_ORBITALS.png


  Illustration of the iteration; all necessary orbitals must be found                                                                       ---- COPIED FROM 2014

      xcf_0029_ITERATIONS.png

       xcf_0029_ITERATIONS.png

                                                                                                                                                           ---- COPIED FROM 2014
The iteration in other symbols ....
                 
      xcf_0030_self-Consistent_field.png

       xcf_0030_self-Consistent_field.png

 
                            SELF-CONSISTENT criterium

      00083_Iteration__Converge-and-stop.png

       00083_Iteration__Converge-and-stop.png


                     The above point concludes the introduction of the SELFCONSISTENT FIELD MODEL



                                                                                                                                                           ---- COPIED FROM 2014
Configurations and energies
Closed shells do not follow the    n2   rule            1s  2s  2p  3s       3p     3d      4s    4p     4d    4f     5s
                                                                                              1s  2s  2p  3s       3p     4s      3d   4p      5s    4d    4f  

      xcf_0040_Configuration_orbitals.png

       xcf_0040_Configuration_orbitals.png



The explanation of this behaviour   -  in terms of the self-consitent field   - NEXT LECTURE




to index              2015_09_17 Previous lecture note             LECTURE NOTE    2015_10_07           2015_10_08 Next lecture note